Contents

Abs	stract		I
Cor	itent		II
List	of Tal	bles	VIII
List	of Fig	ures	IX
Cł	apte	er 1 Introduction	
1.1	Overv	iew of Smart Clothing Development	1
	1.1.1	Definition and Origin of Smart Clothing	1
	1.1.2	Participants in Smart Clothing Development	2
	1.1.3	Drivers behind Smart Clothing Development	3
	1.1.4	Evolution and Future Trends of Smart Clothing	4
	1.1.5	Current Situation of Smart Clothing Development	9
	1.1.6	Problems of Smart Clothing Development	10
	1.1.7	Summary of Smart Clothing Development	13
1.2	Theor	ies and Models of New Product Development (NPD) Process	14
	1.2.1	Strategic Approach and NPD Conceptual Models	14
	•	Definition of the Strategic Approach in NPD process	14
	•	Key Elements of Strategic Approach in NPD Process	16
	•	Definition of the New Product Development (NPD) Process	16
	•	Generic Models of the New Product Development (NPD) Process	17
	•	Relationship between the Strategic Approach and the Conceptual Model	19
	•	Summary of Strategic Approach and Conceptual Models of NPD Process	23

	1.2.2	Collaborative Approach for NPD Process	23
	•	Definition of Collaborative Approach in NPD Process	24
	•	Current Situation of Collaborative Approach in NPD Process	25
	•	Proposed Theories to Improve Collaboration in NPD Process	26
	•	Summary of the Collaborative Approach for NPD Process	32
1.3	Proble	m Statement and Hypotheses	32
1.4	Resear	rch Scope	34
1.5	Aim a	nd Objectives	36
1.6	Resear	rch Contributions	37
1.7	Structi	are of the Thesis	38
Ch	apte	er 2 Literature Review	
2.1	Appar	el NPD Process in Practice	40
	2.1.1	Apparel Product Development in Context	40
	2.1.2	NPD Process in Apparel Industry	43
	2.1.3	Strategic Approaches and NPD Models	52
2.2	Electro	onic NPD Process in Practice	53
	2.2.1	Electronic Product Development in Context	54
	2.2.2	NPD Process in Electronic Industry	56
	2.2.3	Strategic Approaches and NPD Models	63
2.3	Smart	Clothing NPD Process in Practice	65
	2.3.1	NPD Process in Smart Clothing Projects	66
	2.3.2	Comparison Between NPD Models	71
	•	Comparison	71

	•	Product Context.	72
2.4	Concl	usion	75
Cł	napte	er 3 Research Methods	
3.1	Semi-	structure Interviews	80
	•	Aims	80
	•	Subjects	80
	•	Materials	83
	•	Procedures	84
3.2	Case S	Study	84
	•	Aims	84
	•	Subjects	84
	•	Materials	87
	•	Procedures	87
3.3	Questi	onnaire	88
	•	Aims	88
	•	Hypotheses	89
	•	Participants	89
	•	Materials	90
3.4	Focus	group	91
	•	Aims	92
	•	Subjects	92
	•	Materials	94

	•	Procedures	95
3.5	Analy	tical Methods	96
	3.5.1	Grounded Theory Analysis	98
	•	Open Coding	98
	•	Axial Coding	101
3.6	Concl	usion	103
Cł	napte	er 4 Key Findings and Discussion	
4.1	Metho	ods to Balance All Contributions	106
	4.1.1	Main Problems of Smart Clothing Development	106
	4.1.2	Alternative Ways to Solve Identified Problems	109
	4.1.3	Conclusion – Methods to Balance All Contributions	113
4.2	Metho	ods to Overcome Creative Constrains	114
	4.2.1	Alternative Ways to Overcome the Creative Constraints	115
	4.2.2	Conclusion – Methods to Overcome the Constraints	120
4.3	Metho	ods to Achieve Full Integration	122
	4.3.1	Contributions from Fashion Designers	122
	4.3.2	Contributions from Product Designers	124
	4.3.3	Alternative Ways to Achieve Full Integration	127
	4.3.4	Conclusion – Methods to Achieve Full Integration	132
4.4	Smart	Clothing's Context	133
	4.4.1	User Profile and Requirements	133
	4.4.2	Vision of Future Lifestyle	139
	4.4.3	New Design Direction	140

	4.4.4	Context of Smart Clothing	147
4.5	Conclu	usion of the Findings	150
O.		v E Madal Eaves dation	
Cr	iapte	r 5 Model Formulation	
5.1	Conce	ptual Model's Requirements	154
5.2	Creati	ve Techniques	156
	5.2.1	Lateral Thinking	156
	5.2.2	Six Thinking Hats and Boundary Shifting	157
	•	The Six Thinking Hats	157
	•	Boundary Shifting	158
5.3	Model	Formulating Procedure	160
	5.3.1	Identifying Dominating Concepts	160
	5.3.2	Continuity Analysis	161
	5.3.3	Challenging Invalid Concepts	164
	•	The Concept Fan	165
	•	Provocation	167
	•	The Random Input	172
	5.3.4	Evaluate and Implement New Ideas	174
5.4	Conce	ptual model and implementation	188
Cr	napte	er 6 Validation and Modification	
6.1	Valid	lation Process	193
	•	Aims	193
	•	Hypotheses	193

	• Si	ubjects	194
	• M	I aterials	195
6.2	Results	and Statistical Analyses	195
6.3	Model I	Modification	198
Cha	apter	7 Conclusion	
7.1	Contrib	outions of the Research	211
7.2	Limitati	ions of the Research	213
7.3	Suggest	tions for Further Research	213
References		215	
Apı	pendi	x	
Appe	endix A	Questionnaire Survey	i
Appe	endix B	Questionnaire Results	vi
Appe	endix C	Statistical Analysis	viii
Appe	endix D	Validation Questionnaire	xii
Appe	endix E	Profiles of the Experts	xvii
Appe	endix F	Results of Model Validation	xxii
Appe	endix G	Validation Result Analysis	xxvii

Publications

List of Tables

Table 2.1: Five examples of the NPD processes employed in the fashion industry	4
Table 2.2: Five examples of the NPD processes employed in the electronic industry	58
Table 2.3: Four examples of the NPD processes employed in the Smart Clothing area	67
Table 3.1: Profiles of each interviewee	82
Table 3.2: Age groups of the questionnaire respondents	90
Table 3.3: Profiles of all the participants in the second type of the focus groups	93
Table 3.4: Example of properties and dimensional range within the categories	100
Table 3.5: Advantages and disadvantages of each research methods	103
Table 4.1: Properties and dimension range of 'Balanced Contribution' Phenomenon	111
Table 4.2: Principles and work procedures of all disciplines involved	117
Table 4.3: Properties and dimension range of 'Creative Constrain Breakthrough'	119
Table 4.4: Properties and dimension range of 'Full Integration' Phenomenon	130
Table 4.5: Desirable factors affecting consumer's purchasing	135
Table 4.6: Comparison of the frequencies of purchasing	135
Table 4.7: Undesirable factors affecting consumer's purchasing	136
Table 4.8: Users' preference – comparison between three different products	138
Table 4.9: Smart Clothing's design directions deduced from the interviews	141
Table 4.10: Smart Clothing's design directions deduced from the focus groups	143
Table 5.1: The new ideas developed through the use of lateral thinking method	174

List of Figures

Figure 1.1: Diagram explaining evolution of the Smart Clothing development	5
Figure 1.2: Examples of Smart Clothing applications from the first period	6
Figure 1.3: Examples of Smart Clothing applications from the second period	7
Figure 1.4: Examples of Smart Clothing applications from the third period	8
Figure 1.5: Examples of Smart Clothing applications available in the market	10
Figure 1.6: Diagram representing the key problems and relationships	11
Figure 1.7: Functional/technical approach VS fashion approach	12
Figure 1.8: A generic Stage-Gate New Product Process (Cooper, 1993)	18
Figure 1.9: Steps of the design process (Pahl and Beitz, 1984)	18
Figure 1.10: Fashion Design cycle (Rhodes, 1995)	21
Figure 1.11: Matsushita Industrial's Fusion style of NPD process (Hughes, 1995)	21
Figure 1.12: Product development framework emphasising retailers' influence	22
Figure 1.13: Conceptual models proposed to improve cross-functional cooperation	28
Figure 1.14: Cross-functional integration and Multifunctional team	29
Figure 1.15: Sonnenwald's conceptual models	30
Figure 1.16: Factors influencing charged behaviour (Sethi and Nicholson, 2000)	31
Figure 1.17: Diagram showing focus of the research	35
Figure 2.1: Retail product development model	41
Figure 2.2: Fashion Calendar	42
Figure 2.3: The process of apparel design and product development	44
Figure 2.4: The generic fashion design process (Sinha, 2001)	45

Figure 2.5: Comparison between five different design processes (Sinha, 2001)	50
Figure 2.6: Comparison of the NPD models in apparel industry	51
Figure 2.7: Design Flow (DTI's Electronic Design Programme, 2002b)	56
Figure 2.8: Traditional NPD Process (DTI's Electronic Design Programme, 2002a)	57
Figure 2.9: Xerox's interdisciplinary team and Philips' model of design function	57
Figure 2.10: Project phase sequence (Monds, 1984)	58
Figure 2.11: Philips' NPD process – the Design Track (Heskett, 1989)	61
Figure 2.12: Comparison of the NPD models in consumer electronic industry	62
Figure 2.13: Relationship between clothing, technology and user	67
Figure 2.14: Design Process employed in example no. 3	70
Figure 2.15: The outputs of the four examples selected	71
Figure 2.16: Computational garments and accessories developed by the engineers	71
Figure 2.17: Risk Management Funnel and Microsoft NPD process	74
Figure 3.1: Diagram presenting key issues addressed in objectives $3-6$	77
Figure 3.2: Diagram demonstrating structure of primary research	79
Figure 3.3: Diagram demonstrating three focus groups conducted in this research	94
Figure 3.4: Diagram showing relationships between information and analysis method	ls 97
Figure 3.5: Example of labelling procedure	100
Figure 3.6: Example of discovering categories and naming categories	100
Figure 3.7: Paradigm Model presenting relationship of sub and main categories	101
Figure 3.8: Paradigm Model presenting result of this research	102
Figure 4.1: Integration of qualitative results and quantitative results	105
Figure 4.2: Paradigm Model – phenomenon of balancing all contributions	113
Figure 4.3: Paradigm Model – phenomenon of the creative constraint breakthrough	120

Figure 4.4: The overlapping of electronic product design and clothing design	129
Figure 4.5: Paradigm Model – phenomenon of a full integration achievement	131
Figure 4.6: Pie charts illustrating purchasing criteria of three different products	135
Figure 4.7: Undesirable factors influencing purchasing behaviour	137
Figure 4.8: Spectrum of purchasing criteria illustrating position of different products	139
Figure 4.9: Diagram demonstrating a consensus agreement from all the stakeholders	141
Figure 4.10: New design directions based on the consensus views of stakeholders	147
Figure 4.11: Diagram illustrating Simon and Krose's theories	147
Figure 4.12: Diagram demonstrating product context of sportswear products	148
Figure 4.13: Diagram describing context of sportswear application of Smart Clothing	149
Figure 4.14: Sample of physical appearance regarded as 'Smart' design	150
Figure 4.15: Diagram showing how all results are combined	151
Figure 5.1: A sample of the ideas derived from the lateral thinking technique	157
Figure 5.2: How the change of one constraint can affect the others	159
Figure 5.3: The concept fan demonstrating alternative ideas for the new NPD model	165
Figure 5.4: Bubble diagram presenting a rough idea derived from the concept fan	166
Figure 5.5: Diagram demonstrating an idea derived from the provocation statement	171
Figure 5.6: Diagram demonstrating the relationships between all development tasks	177
Figure 5.7: The structure of Smart Clothing development process is identified	178
Figure 5.8: Positioning participants into the Smart Clothing development structure	179
Figure 5.9: Diagram demonstrating how the framework can be customised	181
Figure 5.10: Diagram demonstrating how the boundary is constructed and extended	182
Figure 5.11: Framework presenting all tasks in details, which can be altered	184
Figure 5.12: The framework being revised and combined with the generic models	184

Figure 5.13: Details within the framework is revised throughout the NPD process	185
Figure 5.14: Different directions on thinking required in the different areas	188
Figure 5.15: The electronic model positions all participants and tasks automatically	189
Figure 5.16: Electronic model provides information about tasks and participants	190
Figure 5.17: Electronic model explains how to extend a boundary into different areas	191
Figure 6.1: Histogram illustrating the scores measuring importance of five key issues	196
Figure 6.2: Histogram demonstrating the scores measuring practicality	197
Figure 6.3: The conceptual model at the highest level after the first modification	200
Figure 6.4: All the terms used in detailed model was revised and replaced	201
Figure 6.5: Certain terms which could lead to misinterpretation or confusion	202
Figure 6.6: Detail is presented in dialogue box when a particular task is selected	203
Figure 6.7: First step – the participants specify their expertise and main contributions	204
Figure 6.8: Second step – the participants specify their contributions in related areas	205
Figure 6.9: Human shape is used to present working boundaries and relationships	206
Figure 6.10: Boundaries can be updated in order to improve the working relationship	207
Figure 6.11: A summary of the final conceptual model and how it can be employed	210