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Abstract

In this thesis, we consider the deformation of a non-ageing solid linear viscoelastic
compressible isotropic body, the interior of which occupies the region Ω ⊂ Rn, n ∈ {1, 2, 3},
with convex polygonal boundary ∂Ω. We employ the finite element method to discretise
in space, whereas for time discretisation the trapezoidal rule for approximation is used.
We assume that the acceleration is negligible. This, from Newton’s law of motion, yields
the quasistatic force balance equation,

−σij,j = fi(x, t),

with Dirichlet and/or Neumann boundary conditions, where i, j = 1, . . . , n. Here σij is
the stress tensor written in component form and , j denotes ∂

∂xj
, with repeated indices

implying the summation convention. The above body deformation is under the action
of body forces f := (fi(x, t))

n
i=1 and surface tractions and is considered for every time

t ∈ I := [0, T ] at some position x in Ω. Only small strains are considered, thus confining
ourselves to the linear theory of deformation.

In addition to the body forces and tractions, we also consider the effects of tem-
perature on the deformation of the above physical body. Thus, assume that for every
t ∈ I, a temperature field is applied externally to the body under consideration, where the
temperature comes from the solution of the heat conduction problem, given by,

κθ̇(x, t)−Q∇2θ(x, t) = l(x, t).

Here θ(x, t) is temperature, l is a given heat source, θ̇(x, t) is the partial derivative of θ with
respect to time t and ∇2 is the Laplace operator. κ and Q are assumed to be constants.
We assume that, due to heat, the body expands in a volumetric manner, which in turn
means that only direct strain is present. In this case, we use the following stress-strain
law written in vector-matrix notation,

σ(u(t)) = D [ε(u(t))− α(θ(t)− θr)I0]−
∫ t

0
Ds(t− s) [ε(u(s))− α(θ(s)− θr)I0] ds,

where D is the constitutive matrix from the elasticity theory, α is known as the coefficient
of thermal expansion, θr is a reference temperature and I0 = [1 1 0]. The above law
then leads to a linear coupled problem between the heat equation and the force balance
equation.

The notion of a thermorheologically simple polymer is also introduced and we explain
the nonlinear coupling that results from the introduction of reduced time ρ in the stress-
strain law above, which then takes the following form,

σ(u(t)) = D [ε(u(t))− α(θ(t)− θr)I0]−
∫ t

0
Ds(ρ(t)−ρ(s)) [ε(u(s))− α(θ(s)− θr)I0] ds.

For clarity, in both laws above the x dependence of u, θ and ρ is suppressed. Both coupled

problems, linear and nonlinear, represent a novel study as part of this thesis. Theoretical

results such as stability and a priori error estimates are derived. We also conduct exper-

imental work and show some computational results in terms of the convergence rates in

the H1 and L2 norms.
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Chapter 1

Introduction

1.1 Outline

In this thesis we initially deal with the mathematical modelling of the behaviour of a

solid viscoelastic material body under the action of given forces and tractions. Only

small strains are considered. A second constraint is that we only consider the qua-

sistatic case, meaning that the inertia term in the equilibrium equation is neglected,

after all the transients have died away. We then extend this problem: a temperature

field, coming from the solution of the heat conduction problem, is applied externally

to the body under consideration. This results in a coupled problem: first, the heat

equation is solved, then this is fed into viscoelasticity. There is a tendency of materi-

als to expand under the influence of heat. The phenomenon of thermal expansion is

modelled by modifying the stress-strain law for viscoelasticity. Finally, we introduce

a special class of materials known as “thermorheologically-simple materials”, and

a nonlinearity in the memory integral for thermoviscoelasticity. We use the finite

element method and the trapezoidal rule for time integrals to solve the system of
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equations modelling such behaviour. The theoretical analysis plays a very impor-

tant part in this thesis. We consider stability and a priori error estimates. Stability

analysis is needed to ensure that the problem solution is bounded by data and ini-

tial conditions in a continuous manner. Error estimates are important to show how

error depends on the mesh size and time steps (for time dependent problems) and

then one can investigate whether these are consistent with any computational results

(e.g convergence rates) achieved. All the computational results are derived using

Matlab. The original sources of codes are Alberty et al. (1999) and Alberty et al.

(2002). This thesis is organized as follows:

Chapter 1

It contains a brief outline of the thesis and review of preliminary functional analysis.

We define Banach space Lp and Sobolev spaces Wm
p and norms related with spaces.

We state important theorems such as: Friedrich’s inequality and Ritz representa-

tion theorem. Some inequalities are presented which are used extensively in this

thesis. A brief overview of Volterra equations is given, followed by two versions of

the Gronwall’s lemmas, continuous and discrete.

Chapter 2

We discuss basic elements of continuum mechanics. Definitions of displacement,

stress and strain are given. Also, we show how a strain-displacement relation is de-

rived when small deformations are assumed. Brief introduction into elasticity theory

is presented. Properties of viscoelastic materials are discussed, and stress-strain law

for linear viscoelasticity is given. This is followed by a brief introduction into heat

conduction theory, phenomenon of thermal expansion and the concept of reduced

time. Then, we present the proposed model problem for this thesis. New forms of

stress-strain laws are given. We define the linear and nonlinear problem, where we
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give weak formulations to these.

Chapter 3

In this chapter we show how the finite element method is used to find an approx-

imate solution by discretizing in space. We apply this to the elasticity and heat

problem. In the case of the heat problem we also discretize in time, where we use

Crank-Nicolson method. We then give fully discrete schemes to viscoelasticity and

heat problem. For viscoelasticity we also give some numerical results. Finally, in

this chapter fully discrete schemes to linear and nonlinear problem are given.

Chapter 4

This is the first chapter where we start to work on the theoretical aspect of thesis.

Here we derive a stability bound in energy norm for the linear problem, the contin-

uous and discrete formulation. To achieve this, stability bounds for continuous and

discrete temperature are also needed; they are too derived in this chapter. Theorems

4.1.1 and 4.2.1 show the two results for the stability bounds for displacement. We

give detailed proofs to the theorems.

Chapter 5

We now move to error analysis for the linear problem. Here we derive a priori error

estimates in energy norms for the heat problem and the linear problem. Theoretical

results derived are shown in Theorems 5.1.1 and 5.2.1. Detailed proofs of theorems

are given. We end this chapter by showing some numerical results for the linear

problem.

Chapter 6

Stability bounds for the nonlinear problem are derived, both continuous and dis-
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crete. These results are presented in Theorems 6.1.1 and 6.2.3.

Chapter 7

In this chapter we derive a priori error estimate for the nonlinear problem. Theo-

rem 7.2.1 shows the error estimate derived for this problem. Finally, we give some

numerical results for this problem.

Chapter 8

In the last chapter we review what is achieved in this thesis in the form of conclu-

sions, both the theoretical and computational aspect. We also give suggestions for

future work, that is, we propose some potential ideas to extend the work presented

in this thesis.

1.2 The finite element method

The finite element method (FEM) is a technique for generating discrete algorithms

for approximating the solutions of differential equations. It is the preferred method

of the engineering community for the numerical solution of partial differential equa-

tions. This method is based on earlier works of Galerkin, Rayleigh and Ritz. It was

first proposed in a seminal work by Courant in 1943, Zienkiewicz (2004). FEM finds

a widespread application in mechanics, fluid dynamics, electromagnetism, medicine,

financial modelling etc. FEM is based on the Galerkin method for finding approxi-

mate solutions of PDE‘s.

The determination of suitable basis functions for use in the Galerkin method can
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be extremely difficult, especially when the domain does not have a simple shape.

The finite element method overcomes this difficulty by providing a systematic means

for generating basis functions on domains of fairly arbitrary shape. The domain is

partitioned in a finite number of subdomains called finite elements. Based on this

partition, then an approximate solution is sought, Reddy (1998). More about this

method, later.

1.3 Preliminary functional analysis and notation

The smoothness of the analytical solution to a partial differential equation (PDE)

under consideration, together with the smoothness of the data, plays an important

role on the accuracy of finite element approximation to the equation.

By considering function spaces of functions with specific differentiability and inte-

grability properties one can conveniently formulate precise assumptions about the

regularity of the solution and the data. In this section we present a brief overview of

the mathematics that will be used throughout this thesis. This includes basic defini-

tions and simple results from the theory of function spaces, however most notation

is introduced as it appears. We remark here, for future reference, that all functions

that appear in this thesis will be assumed to be real-valued. For more details on

these topics we can refer to Brenner and Scott (2002) and Reddy (1998).

Overview of Function Spaces

We first introduce some useful definitions which are of crucial importance in analysis

that will be carried out later in this thesis.

Definition 1.3.1. Given a linear space V, a norm ‖ · ‖ is a function from V to R

with the following properties:
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1. ‖v‖ > 0 for any v ∈ V , with ‖v‖ = 0 if and only if v = 0,

2. ‖cv‖ = |c|‖v‖ for any v ∈ V and c ∈ R,

3. ‖u+ v‖ 6 ‖u‖+ ‖v‖ for any u, v ∈ V.

It is possible to define an inner product as well (on real vector spaces).

Definition 1.3.2. The inner product (u, v) of u, v ∈ V is an operation that satisfies

the following properties, for all u, v, w ∈ V and α, β ∈ R :

1. (u, v) ∈ R,

2. (u, v) = (v, u) (the operation is symmetric),

3. (αu+ βv, w) = α(u,w) + β(v, w) (linearity),

4. (u, u) > 0 and (u, u) = 0 if and only if u = 0 (positive-definiteness).

Definition 1.3.3. A linear space V together with an inner product defined on it is

called an inner-product space and is denoted by (V, (·, ·)).

Definition 1.3.4. A normed linear space V is called a Banach space if it is

complete with respect to the metric induced by the norm ‖ · ‖.

Definition 1.3.5. Let (V, (·, ·)) be an inner-product space. If the associated normed

linear space (V, ‖ · ‖) is complete, then (V, (·, ·)) is called a Hilbert space.

Given an inner-product space (V, (·, ·)), there is an associated norm defined on V

namely ‖v‖ =
√

(v, v), which means that an inner product space can be made into

a normed linear space. A normed space is said to be complete if and only if every

Cauchy sequence from the space converges to an element in the space. Since every

inner product defines a norm, every Hilbert space is a Banach space.

Let Ω be an open bounded connected subset of Rn with a Lipschitz boundary

∂Ω. A generic point in Rn is denoted by x = (x1, . . . , xn). For multi-variable
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functions, it is convenient to use the multi-index notation for partial derivatives. A

multi-index, τ, is an n-tuple of non-negative integers, τi, whose length is given by

|τ | :=
n∑
i=1

τi.

For the multi-index τ we denote by

Dτu :=
∂|τ |u

∂xτ11 ∂x
τ2
2 . . . ∂xτnn

,

the partial derivative of order τ of u.

We denote by C(Ω) the space of all continuous functions defined on Ω, whereas

by C(Ω̄) we denote the space of all functions that are continuous on the closed set

Ω̄ = Ω ∪ ∂Ω. The space Cm(Ω) is the space of functions which together with all

their derivatives up to and including those of order m, are continuous on Ω. Using

the multi-index notation these can be written as,

Cm(Ω) = {u ∈ C(Ω) : Dτu ∈ C(Ω) for |τ | ≤ m}

and

Cm(Ω̄) = {u ∈ C(Ω̄) : Dτu ∈ C(Ω̄) for |τ | ≤ m}.

We denote by Lp(Ω) the Banach space of all functions equipped with the norm,

‖u‖Lp(Ω) :=


(∫

Ω
|u(x)|pdΩ

)1/p
1 ≤ p <∞,

ess sup
x∈Ω
|u(x)| p =∞,

where the essential supremum is defined to be the infimum of the constants γ that
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bound |u| almost everywhere:

ess sup
x∈Ω
|u(x)| = inf{γ : |u(x)| 6 γ a.e.}.

A special case corresponds to taking p = 2. Then,

‖u‖L2(Ω) =

(∫
Ω

|u|2dΩ

)1/2

.

The space L2(Ω) is defined by

L2(Ω) := {u : u is defined on Ω,

∫
Ω

u2dΩ <∞}.

An important extension to the Lp(Ω) spaces are the Sobolev spaces Wm
p (Ω). These

are spaces of functions which together with all their partial derivatives of order up

to and including m belong to Lp(Ω). Then, the Sobolev space of order m > 0, p > 1

is defined as

Wm
p (Ω) := {u : Dmu ∈ Lp(Ω) ∀τ such that 0 6 |τ | 6 m} ,

whose norm is given by

‖u‖Wm
p (Ω) :=



∑
|τ |6m

∫
Ω

|Dτu|pdx

1/p

1 6 p <∞,

max
|τ |6m

‖Dτu‖L∞(Ω) p =∞.

The spaces Lp(Ω) are called Lebesgue spaces. When p = 2 it is common to write

Hm(Ω) := Wm
2 (Ω). Both L2(Ω) and Hm(Ω) are Hilbert spaces equipped with the
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inner products,

(u, v)Ω =

∫
Ω

uvdx and (u, v)Hm(Ω) =
∑
|τ |6m

(Dτu,Dτv)Ω , (1.3.1)

respectively. It is possible to define the functions from the L2 space on the manifold

∂Ω as follows:

L2(∂Ω) :=

{
v :

∮
∂Ω

v2dΓ <∞
}
,

which is a Hilbert space when equipped with the inner product:

(u, v)L2(∂Ω) :=

∮
∂Ω

uvdΓ,

and the norm:

‖v‖L2(∂Ω) :=
√

(v, v)L2(∂Ω).

One can also define the space L2(Γ) for Γ ⊂ ∂Ω. Sometimes it is useful to bound

the norm of a function in terms of the norm of the gradient of the same function.

The following theorem enables us to do just that and it plays an important role in

the analysis; this is shown in (Oden and Reddy, 1970, p.82), for example.

Theorem 1.3.1 (Friedrich’s inequality). Let Ω be an open bounded domain with

Lipschitz boundary ∂Ω, then there is a positive constant CF such that

‖v‖2
L2(Ω) 6 CF‖∇v‖2

L2(Ω),

for all v ∈ H1(Ω) such that v = 0 on ∂Ω. ∇ is the gradient operator.

Very useful in this thesis is also the following norm,

‖u‖L2(0,t;V ) :=
(∫ t

0

‖u(s)‖2
V ds
)1/2

. (1.3.2)
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In continuum mechanics it is useful to define the product space

(Hm(Ω))n := Hm(Ω)× . . .×Hm(Ω) (n times),

which for a vector u := (ui)
n
i=1, we equip with the product norm

‖u‖Hm(Ω) =

(
n∑
i=1

‖ui‖2
Wm

2

)1/2

, u ∈ (Hm(Ω))n .

The normed linear space
(
Wm
p (Ω)

)n
can be defined in the obvious way. We define

the seminorm on Wm
p (Ω) by

|u|Wm
p (Ω) =

∑
|τ |=m

‖Dτu‖Lp(Ω)

1/p

, u ∈ Wm
p (Ω).

The concept of a (symmetric) bilinear form and that of a linear functional are very

important in the analysis of boundary value problems, and hence in the analysis that

will be presented in this thesis. For their definitions the reader may refer to Brenner

and Scott (2002) and Reddy (1998). We say that a linear functional L : V → R is

continuous if there exists a constant K, such that

L(v) 6 K‖v‖, ∀v ∈ V.

If V is a normed space, then the space of all continuous linear functionals is called

the dual space of V , denoted by V ′, with associated norm

‖L‖V ′ := sup
0 6=v∈V

|L(v)|
‖v‖V

. (1.3.3)

The following theorem is also an important result in numerical analysis, Atkinson

and Han (2010).
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Theorem 1.3.2 (Riesz representation theorem). Let (V, (·, ·)) be a Hilbert space

and let L ∈ V ′. Then there is a unique u ∈ V , for which

L(v) = (v, u), ∀v ∈ V.

Furthermore, we have

‖L‖V ′ = ‖u‖V .

Some inequalities

Here we give some useful inequalities that will be used extensively in this thesis.

These can be found, for example, in Atkinson and Han (2010).

Inequality 1.3.1 (Young’s Inequality). For all a, b ∈ R and ∀ε > 0,

ab 6
ε

2
a2 +

1

2ε
b2.

Inequality 1.3.2 (Hölder’s Inequality). For 1 ≤ p, q ≤ ∞, u ∈ Lp(Ω) and v ∈

Lq(Ω), with 1
p

+ 1
q

= 1 then, uv ∈ L1(Ω) and

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Inequality 1.3.3 (Minkowski’s Inequality). For 1 ≤ p ≤ ∞ and u, v ∈ Lp(Ω), we

have

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω).

Inequality 1.3.4 (Cauchy-Schwartz Inequality). If (V, (·, ·)) is an inner product
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space with norm defined by ‖ · ‖ =
√

(·, ·), then

|(u, v)| 6 ‖u‖‖v‖.

1.4 Volterra equations

It is worthwhile to present here a brief review of the so-called Volterra equations.

Let b(t, s) ∈ C([0, T ]× [0, T ]) and f(t) ∈ C[0, T ] be two given functions, where T is

some positive number, and s and t are such that 0 6 s 6 t 6 T . The simplest form

of Volterra equation is the equation of the second type and is given by

u(t) = f(t) +

∫ t

0

b(t, s)u(s)ds, t ∈ [0, T ], (1.4.1)

where b is known as the kernel and u is the function to be found. So we note that

the function u appears under the integral and outside the integral. In the case of

the generic Volterra equation of the first type the function u appears only under the

integral,

f(t) =

∫ t

0

b(t, s)u(s)ds, t ∈ [0, T ]. (1.4.2)

An important lemma in the study of both theoretical and numerical aspects of

time-dependent problems is the Gronwall type inequality which we present here.

Lemma 1.4.1 (Continuous Gronwall lemma, c.f. Shaw (1993)). Let u > 0 be an

integrable function and v > 0 a non-decreasing function, both defined on I := [0, T ],

T > 0. Then, the inequality

u(t) 6 v(t) + C

∫ t

0

u(s)ds, ∀t ∈ I, (1.4.3)
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where C > 0 is a constant, implies that u(t) 6 v(t) exp(Ct) for all t ∈ I.

Proof. For the case when t = 0, this is obviously true, since the integral vanishes.

For t > 0, let u(t) = z(t) exp(Ct), and for some arbitrary τ ∈ (0, T ] let t̂ ∈ [0, τ ] so

that z(t̂) = maxt∈[0,τ ] z(t). Then, from (1.4.3), we have the following:

u(t̂) = z(t̂) exp(Ct̂) 6 v(t̂) + C

∫ t̂

0

z(s) exp(Cs)ds

6 v(t̂) + Cz(t̂)

∫ t̂

0

exp(Cs)ds, (since z(t̂) is a max in [0,t̂])

= v(t̂) + z(t̂)(exp(Ct̂)− 1), (integrating the above)

6 v(τ) + z(t̂)(exp(Ct̂)− 1),

because v is a non-decreasing function and t̂ 6 τ . From z(t̂) exp(Ct̂) 6 v(τ) +

z(t̂)(exp(Ct̂) − 1) we have that 0 6 v(τ) − z(t̂), which gives z(t̂) 6 v(τ). Since by

definition, z(τ) 6 z(t̂), then it is obvious that also z(τ) 6 v(τ). Thus, the fact that

u(τ) = z(τ) exp(Cτ), gives u(τ) 6 v(τ) exp(Cτ). Since τ is arbitrary, this completes

the proof.

There is also the discrete version of the Gronwall inequality which we introduce

here.

Lemma 1.4.2 (Discrete Gronwall lemma, c.f. Lees (1960)). Given a positive inte-

ger N , let u > 0 be a function defined on Ik := {ti ∈ I : ti = ik, i = 0, . . . , N = T/k}

with ui := u(ti) and v > 0 a non-decreasing function also defined on Ik. Then the

inequality

ui 6 vi + Ck
i−1∑
j=0

uj, ∀ti ∈ Ik, (1.4.4)

where C > 0 is a constant, implies that ui 6 vi exp(Cti) for all ti ∈ Ik.
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Proof. For the case when i = 0, we define the sum to be an empty set. For i > 0,

define zi by ui = zi exp(Cti). For some m ∈ {1, . . . , N}, choose n ∈ {0, . . . ,m} so

that zn = max
i∈{0,...,m}

zi. Then this implies the following:

zn exp(Ctn) 6 vn + znCk

n−1∑
j=0

exp(Ctj).

From here, we can write,

k
n−1∑
j=0

exp(Ctj) 6
∫ tn

0

exp(Cs)ds =
1

C

(
exp(Ctn)− 1

)
.

Since vi is a non-decreasing sequence, then the last two results give,

zn exp(Ctn) 6 vn + zn(exp(Ctn)− 1),

which implies that zn 6 vm, since vn 6 vm. Therefore,

um = zm exp(Ctm) 6 vm exp(Ctm).

Since m is arbitrary, this completes the proof.

1.5 Summary

In this chapter an outline of the thesis was given. Some preliminary functional anal-

ysis was presented: spaces of functions, norms, as well as some useful notation and

inequalities. In the next chapter we give a brief overview of continuum mechanics.



Chapter 2

Basic Continuum Mechanics

The fundamental postulate of continuum mechanics is the continuum concept of

matter. This concept implies that any material body, whether it be solid, liquid or

gas, can be modelled by disregarding molecular considerations and by assuming the

material to be continuously distributed throughout its volume and to completely fill

the space it occupies. The material may be satisfactorily considered as a continuum

when the distance between physical particles is very small compared to the charac-

teristic dimensions of the problem. Other classical theories such as aerodynamics,

fluid mechanics, elasticity, plasticity, and viscoelasticity are special branches of con-

tinuum theory. The continuum theory is a mathematical theory. A material is said

to be homogeneous if it has identical properties at all points. A material is said to

be isotropic if it does not have a characteristic orientation.
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2.1 Displacement, stress and strain

The continuum concept allows us to identify a material body with an open bounded

subset of Rn. Thus, let B be a compressible solid body, initially in its undeformed

state, defined in the region Ω ⊂ Rn, n ∈ {1, 2, 3} with boundary ∂Ω. We say that Ω

is the reference configuration or the placement of B in Rn. Assume that at some time

t this body is acted upon by body and surface forces. Body forces are forces which

are not due to physical contact between bodies, for example, the gravitational force,

or are due to self-weight. Surface forces, which are also called surface tractions,

represent forces that are due to physical contact between bodies. These forces are

referred to as external forces. The boundary ∂Ω is partitioned into disjoint subsets,

ΓD, called the Dirichlet boundary, and ΓN , called the Neumann boundary. The

partition is such that ∂Ω ≡ ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, the empty set.

Displacement, stress and strain. Under the action of body forces and tractions,

as a consequence, the body B will deform to a new shape, unless it is perfectly rigid.

Let the displacement of a particle at a point x ∈ Ω be denoted by u(x, t) = (ui)
n
i=1,

and the new position of particle will be x+ u. In order to measure the deformation

of the body B in terms of relative displacement of particles in the body, it is necessary

to define what strain is. Strain is the measure of deformation of a body under the

influence of forces; it measures the relative movement between particles in the body.

Stress at a point in the body B is a measure of the local force intensity and describes

the action of neighbouring parts of B on that point. Stress can be direct or shear,

depending on direction.

We consider two neighbouring particles occupying points x and x+4x before

deformation and points X and X + 4X in the deformed configuration, Masse

(1970). Due to external force, particle at position x will move to a new position

X = x+ u. Let the differential element of length between X and X +4X be dL
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and the differential element between x and x + 4x be dl. We use the difference

(dL)2 − (dl)2 as a measure of deformation that occurs between the initial (or the

undeformed) state and the final (or the deformed) state. Then we have,

(dL)2 = dXT · dX. (2.1.1)

We also have that

(dl)2 = dxT · dx, (2.1.2)

where dX is given by

dX =


dX1

dX2

dX3

 =


∂X1

∂x1
dx1 + ∂X1

∂x2
dx2 + ∂X1

∂x3
dx3

∂X2

∂x1
dx1 + ∂X2

∂x2
dx2 + ∂X2

∂x3
dx3

∂X3

∂x1
dx1 + ∂X3

∂x2
dx2 + ∂X3

∂x3
dx3



=


∂X1

∂x1

∂X1

∂x2

∂X1

∂x3

∂X2

∂x1

∂X2

∂x2

∂X2

∂x3

∂X3

∂x1

∂X3

∂x2

∂X3

∂x3



dx1

dx2

dx3

 := F dx, where F =


∂X1

∂x1

∂X1

∂x2

∂X1

∂x3

∂X2

∂x1

∂X2

∂x2

∂X2

∂x3

∂X3

∂x1

∂X3

∂x2

∂X3

∂x3

 .

The matrix F is the deformation gradient. In terms of the displacement u, it can

be written as

F =


1 + ∂u1

∂x1
0 + ∂u1

∂x2
0 + ∂u1

∂x3

0 + ∂u2

∂x1
1 + ∂u2

∂x2
0 + ∂u2

∂x3

0 + ∂u3

∂x1
0 + ∂u3

∂x2
1 + ∂u3

∂x3

 = I +∇u,
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where I is a 3 × 3 identity matrix and the gradient of displacement ∇u is defined

by

∇u :=


∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

 .
Using (2.1.1), (dL)2 can now be written as

(dL)2 = dXT · dX = dxTF TF dx. (2.1.3)

We can now express the difference (dL)2 − (dl)2 as

(dL)2 − (dl)2 = dxT [F TF − I]dx = 2dxTEdx, (2.1.4)

where,

E :=
1

2
(F TF − I). (2.1.5)

Substituting for F in the above gives,

E =
1

2

[
∇u+ (∇u)T

]
+

1

2

[
(∇u)T∇u

]
. (2.1.6)

If we confine our study to the small deformation theory, then a sufficient requirement

is that the components of the displacement gradients ought to be small compared

to unity, Masse (1970). Thus, neglecting the second term in (2.1.6), since it is much
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smaller than the sum of the first two terms, we may express E as,

E =


∂u1

∂x1

1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
1
2

(
∂u1

∂x3
+ ∂u3

∂x1

)
1
2

(
∂u2

∂x1
+ ∂u1

∂x2

)
∂u2

∂x2

1
2

(
∂u2

∂x3
+ ∂u3

∂x2

)
1
2

(
∂u3

∂x1
+ ∂u1

∂x3

)
1
2

(
∂u3

∂x2
+ ∂u2

∂x3

)
∂u3

∂x3

 .

The elements of this matrix are the strain components, which we denote by tensor

notation εij, and it is known as infinitesimal strain tensor. Thus, the strain tensor

can be expressed as,

εij(u) :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.1.7)

where i, j ∈ {1, 2, 3} for three-dimensional cases. In this thesis, for computational

modelling we confine ourself to the two-dimensional case. The expression (2.1.7)

implies a linear relation between the strain ε and the gradient of displacement ∇u

and is used throughout the thesis. Recall that the nonlinear product term (∇u)T∇u

has been neglected due to assumptions on small strain deformation since it is much

smaller than the linear term.

Linear elasticity. In elastic materials, for a fixed stress, the strain stays constant

and upon removal of load it disappears immediately. In linear elasticity theory, the

constitutive relation which relates σ and ε for an isotropic and compressible material

is linear and is given by Hooke’s law,

σij = λ∇ · uδij + 2µεij(u), (2.1.8)

where δij above is the Kronecker delta. This can also be written in the form,

σij = Dijklεkl, (2.1.9)
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where 1 6 i, j, k, l 6 n. Stress is a symmetric tensor, that is σij = σji.

In matrix form, we can express strain as,

ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 .

For computational purposes, it is useful to arrange the strain components into an

array. So for a three-dimensional case, this would be,

ε(u) := [ε11, ε22, ε33, 2ε12, 2ε13, 2ε23]T =



∂u1

∂x1

∂u2

∂x2

∂u3

∂x3

∂u1

∂x2
+ ∂u2

∂x1

∂u1

∂x3
+ ∂u3

∂x1

∂u2

∂x3
+ ∂u3

∂x2


. (2.1.10)

For a two-dimensional case, this will reduce to

ε(u) := [ε11, ε22, 2ε12]T =


∂u1

∂x1

∂u2

∂x2

∂u1

∂x2
+ ∂u2

∂x1

 . (2.1.11)

In vector-matrix notation, (2.1.9) can be written as,

σ = Dε, (2.1.12)

where D is a positive definite, fourth order tensor representing the elastic response

of the material called the constitutive matrix, which in two dimensions is given by



2.2 Properties of viscoelastic materials 21

D =


λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ

 .

We shall adopt the vector-matrix notation (2.1.12) for our analysis in later chap-

ters. The material constants λ and µ are the Lamé coefficients. They describe the

volumetric and shear behaviour of the material and are given by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (2.1.13)

where ν and E are Poisson ratio and Young’s modulus, respectively. The Poisson

ratio may be defined as the fraction of expansion divided by the fraction of compres-

sion, for small values of these changes. This is the Possion effect: when a material

is compressed in one direction, it tends to expand in the other two perpendicular

directions. Young’s modulus is a measure of the stiffness of an elastic isotropic ma-

terial.

2.2 Properties of viscoelastic materials

The theory of viscoelasticity is concerned with materials which exhibit strain rate ef-

fects in response to applied stresses, and vice-versa. This means that under constant

stress a phenomenon of creep will occur, which is a slow continuous deformation of

the material. On the other hand, under constant strain a phenomenon of stress

relaxation will occur where stress gradually decreases. Viscoelastic materials ex-

hibit both viscous and elastic characteristics when undergoing deformation. Other
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phenomena which are common to many viscoelastic materials are: instantaneous

elasticity, instantaneous recovery and delayed recovery, (Findley et al., 1989, chap.

5). Common examples of viscoelastic materials in engineering science are the ther-

moplastic polymers. An important feature of a viscoelastic medium is that the stress

at any given time at a point depends on the entire strain history from the moment

that stress is applied for the first time. Because of this property viscoelastic ma-

terials are described as having memory, which mathematically suggests that stress

can be expressed as a functional of strain, or vice-versa, in the form of Volterra

equations. In general there are two alternative forms used to represent the stress-

strain-time relations of viscoelastic materials. These are the differential operator

method and the integral representation. Both methods are dealt with in Findley

et al. (1989). The second method can be easily extended to describe the effect of

temperature in the deformation of material. The hereditary form of stress-strain

law (i.e the constitutive relation) for linear viscoelasticity is given by

σ(t) = D(0)ε(t)−
∫ t

0

Ds(t− s)ε(s)ds. (2.2.1)

This can be derived using the Boltzmann type of superposition, as shown in Shaw

(1993). Taking the x-dependence into account, we can write (2.2.1) in the following

form,

σ(u;x, t) = D(x, 0)ε(u(x, t))−
∫ t

0

Ds(x, t− s)ε(u(x, s))ds, (2.2.2)

where the subscript s in the above equations denotes differentiation with respect

to the history variable s itself. One can assume that the viscoelastic body under

consideration is synchronous. We say that a viscoelastic material is synchronous

if λ(x, t) = ϕ(t)λ(x) and µ(x, t) = ϕ(t)µ(x), meaning that λ(x, t) and µ(x, t) are
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such that their time-dependence is the same. ϕ(t) is called the relaxation function.

Then, there exists a temporally constant matrix D(x, 0) and the scalar function

ϕ(t− s) such that

D(x, t− s) = D(x, 0)ϕ(t− s), (2.2.3)

where D(x, 0) is the same constant matrix that appears in linear elasticity.

Assumptions 2.2.1. We make the following assumptions on the relaxation func-

tion:

(i) Fading memory hypothesis:

ϕ(t) > 0 and ϕ′(t) < 0, ∀t ∈ I,

(ii) Normalisation: ϕ(0) = 1.

Next we have the following corollary.

Corollary 2.2.1. Using Assumptions 2.2.1, we deduce the following:

(a) 0 < ϕ(t) 6 1, ∀t ∈ (0, T ], which follows from (i) and (ii) above,

(b) ϕs(t− s) > 0 in {0 6 s 6 t 6∞}, which follows from (i) above.

In practice, there are some possible choices for ϕ(t), but from the computational

standpoint, a popular and convenient form is the Dirichlet series which is a sum of

decaying exponentials. This choice comes from a generalisation of the spring and

dashpots models, Golden and Graham (1988). The relaxation function is given by,

ϕ(t) = ϕ0 +

Nϕ∑
p=1

ϕpe
−αpt, (2.2.4)
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where ϕ0 > 0 for solid and ϕ0 = 0 for fluid, ϕp > 0, αp > 0, and
∑Nϕ

p=0 ϕp = 1 for

normalization, Nϕ takes a positive integer value. The constitutive law (2.2.2) then

becomes,

σ(u;x, t) = D(x, 0)ε(u(x, t))−
∫ t

0

D(x, 0)ϕs(t− s)ε(u(x, s))ds. (2.2.5)

For clarity, in what follows we shall suppress the x dependence, and for the consti-

tutive matrix above we shall just write D.

Remark 1. We note here that the x and t dependence of D is assumed generally.

For this study, since we assume a homogeneous material, D is independent of x and

t. This is due to that fact that λ and µ, which D depends on, are parameters which

depend on material properties.

2.3 Inclusion of temperature

The pioneer of the modern mathematical theory of heat conduction was Joseph

Fourier. He was the first to consider the transfer of heat between a finite number of

bodies arranged in a straight line, Hill and Dewynne (1987). For three dimensional

heat flow he obtained the equation

κ
∂θ

∂t
= Q∇2θ,

where κ is the thermal diffusivity and Q is the thermal conductivity. θ = θ(x, t) is

the temperature at position x and time t, ∇2 is the Laplace operator. In deriving

the heat equation, the knowledge that the rate of flow across an isothermal surface

per unit area is proportional to the temperature gradient at the surface is crucial.
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This may be expressed, using the Fourier’s law of heat conduction, as

j = −Q∇θ,

where j denotes the heat flux vector. In general, heat flow is accompanied by

temperature change. One can talk about “the heat in a body” as long as there is

temperature difference between the body and its surroundings. Temperature and

heat flow are two important quantities in problems of heat conduction. Temperature

at any point in a body is completely defined by its numerical value since it is a scalar

quantity, whereas heat flow is defined by its numerical value and direction since it

is a vector quantity. For details on how to derive heat equation one can refer, for

example, to Hill and Dewynne (1987) and Ozisik (1968).

Thermal expansion. One may wish to consider the effect of temperature on the

behaviour of materials, in particular on viscoelastic solid materials. There is a ten-

dency of matter to change in volume under the influence of an applied temperature

field. The ratio of the degree of expansion to the change in temperature is known as

the coefficient of thermal expansion, which we may denote with α. It describes how

the size of a body changes with a change in temperature. For a one-dimensional

case, this is given by

4L
L

= α(θ − θr), (2.3.1)

where θr is a reference temperature, at which nothing happens in terms of the volume

of the body if no other external forces are applied. L is the (initial) length at θr

and 4L is the change in length after the change of temperature. When the body

is heated to some temperature θ, it expands. Hence the stress, in the case of linear

elasticity, may be written as

σ = E (ε− α(θ − θr)) , (2.3.2)
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where E is the Young’s modulus and ε is the strain in the x-direction. The term

inside the brackets is subtracted because when the body expands due to heat there

is no stress induced, and the amount subtracted is the strain which would have been

induced anyway. We assume the expansion is volumetric. This argument is used in

Morland and Lee (1960) and Fagan (1992).

Reduced time. In general, it is possible to consider the effect of temperature on the

constitutive equations by assuming that the relaxation modulus D in the hereditary

representation can be written as a function of temperature and time. This means

that the right side of

D(t− s) = Dϕ(t− s), (2.3.3)

coming from (2.2.3), becomes Dϕ(θ, t − s), where θ is temperature, Findley et al.

(1989). In (2.3.3) the matrix D is identical to the matrix D(x, 0) in 2.2.3).

Theoretical and experimental results indicate that for this class of material the

effect due to time and temperature can be embedded into a single variable using the

following relation

ϕ(θ, t) = ϕ(θb, ρ), (2.3.4)

where

ρ(θ, t) = t/ψ(θ), (2.3.5)

where t is the real time of observation measured from first application of load, θ

is the temperature, ψ is the temperature shift factor and ρ is the “reduced time”,

Findley et al. (1989). Relations (2.3.4) and (2.3.5) represent a translational shift of

the relaxation modulus plotted against the logarithm of time at different uniform

temperatures. The relaxation modulus at an arbitrary uniform temperature, θ, is

thus expressed in terms of a base temperature, θb, and a new time scale which

depends on the temperature θ. Materials exhibiting this property are classified as
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“thermorheologically simple” by Schwarzl and Staverman (1952). The equivalence

relation (2.3.4) can be rewritten as

ϕ(θ, ln t) = ϕ(θb, ln t+ f(θ)), (2.3.6)

where the relaxation function ϕ(θ, ln t) is written as a function of ln t at a uniform

temperature θ and f(θ) is measured relative to some arbitrary θb and is a posi-

tive increasing function for θ > θb. The above equivalence relations imply that the

relaxation modulus curve will shift towards shorter times with increase of temper-

ature. In Williams et al. (1955), Williams, Landel and Ferry propose the following

analytical expression, which relates the shift factor ψ and temperature θ,

log10 ψ(t) ≡ k1(θ − θg)
k2 + θ − θg

, (2.3.7)

where k1 and k2 are assumed to be universal constants with values −17.44 and 51.6,

respectively. θg is the glass transition temperature and can take different values

for different systems. This is the temperature at which a polymer solid changes

to liquid. In Findley et al. (1989), a loglog plot of relaxation modulus is shown

at different temperature levels. The curve at 70◦F is fixed. If all other curves are

shifted parallel to the time axis, eventually they will lie along a single line known as

the master curve. We shall later refer to (2.3.7) also as the “WLF formula”.

For the case where a general temperature field θ(x, t) is considered where each

particle has a temperature varying with time, Morland and Lee (1960) propose the

following reduced time

ρ(θ, t) =

∫ t

0

dξ

ψ(θ(ξ))
. (2.3.8)

In what follows, for clarity, we shall write ρ(t) rather then ρ(θ, t). In the next section,

we shall define the model for study in this thesis.
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2.4 Model problem

The proposed model problem is as follows. Consider the deformation of a non-ageing

solid linear viscoelastic compressible isotropic body, the interior of which occupies

the region Ω ⊂ Rn, where n ∈ {1, 2, 3}, with convex polygonal boundary ∂Ω. We

assume that the acceleration is negligible, that is, the inertia term üi = ∂2ui
∂t2

is not

included. This, from Newtons law of motion, yields the quasistatic force balance

given by

−σij,j = fi(x, t), x ∈ Ω,

ui(x, t) = 0, x ∈ ΓD1 , σijn̂j = gi(x, t), x ∈ ΓN1 , (2.4.1)

where i, j = 1, . . . , n and , j denotes partial derivative of σij with respect to the

variable xj with repeated indices implying summation convention. We assume that

the above deformation is under the action of a body force f := (fi(x, t))
n
i=1 and a

surface traction g := (gi(x, t))
n
i=1 and is considered for every time t ∈ I := [0, T ], for

some real positive number T > 0. The Neumann boundary ΓN1 and the Dirichlet

boundary ΓD1 form a disjoint and time independent partition of the boundary ∂Ω,

see Fig. 2.1. We denote by u := (ui)
n
i=1 the resulting displacement at a point x :=

(xi)
n
i=1 ⊂ Ω := Ω ∪ ∂Ω. Here σij and εij denote the components of the symmetric

stress and strain tensors, respectively, where 1 6 i, j 6 n; n̂ := (n̂i)
n
i=1 is the unit

outward normal vector to ΓN1 . Only small strains are considered, thus confining

ourselves to the linear theory of deformation. For the purposes of computation the

components of stress are arranged into an array. Thus, for example, for n = 3,

σ = (σ11, σ22, σ33, σ12, σ13, σ23)T , (2.4.2)
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whereas for n = 2,

σ = (σ11, σ22, σ12)T , (2.4.3)

The strain tensor is given by (2.1.7), whereas for computational purposes (2.1.11)

and (2.1.10) are used. For the sake of clarity, the x dependence for the terms in

(2.4.1) will be suppressed. The meaning of −σij,j = fi in 2.4.1 can be explained as

follows. In our notation, for a 2-dim problem, where i, j = 1, 2, we have x1 = x

and x2 = y. Thus, for example, f1 = −∂σ11

∂x
− ∂σ12

∂y
and f2 = −∂σ21

∂x
− ∂σ22

∂y
. The

values of σij will be derived using the stress-strain laws.

If we were to include the inertia term in our model problem, then this would appear

on the left side of (2.4.1) and the additional initial conditions would be: ui(x, 0) =

u0
i (x) and u̇i(x, 0) = u1

i (x), x ∈ Ω.

Remark 2. We note here that in this study we do not consider a specific viscoelastic

material, however we assume that the material is a solid.

In addition to the body forces and tractions, we are also interested to consider

the effects of temperature on the deformation of the above physical body. Thus,

assume that for every t ∈ I, a temperature field is applied externally to the body

under consideration, where the temperature comes from the solution of the heat

conduction problem, given by

κθ̇(x, t)−Q∇2θ(x, t) = l(x, t), x ∈ Ω, (2.4.4)

∇θ(x, t) · n̂ = q(x, t), x ∈ ΓN2 ,

θ(x, t) = 0, x ∈ ΓD2 .

Here θ(x, t) is the temperature at x ∈ Ω at time t ∈ I = (0, T ], l(x, t) is a given

(external) heat source, q(x, t) is the temperature gradient. Also, θ̇(x, t) =
∂θ(x, t)

∂t
,



2.4 Model problem 30

(0,0)

(1,1)

x

y

ΓD1 ,ΓD2ΓD1 ,ΓD2

ΓN1 ,ΓN2

ΓN1 ,ΓN2

Figure 2.1: 2D domain for the displacement and heat problem.

n̂ is the unit outward normal vector to ΓN2 , the Neumann boundary. ΓD2 denotes the

Dirichlet boundary, see Fig. 2.1. κ and Q are constants. We denote by θ0=θ(x, 0) a

given initial temperature. For the sake of clarity, the x dependence of the terms in

(2.4.4) will be suppressed. We assume that the viscoelastic body under consideration

expands in a volumetric manner. Then, we suggest we use the same reasoning in our

model problem that was used in the elasticity case (2.3.2) in the previous section.

We modify the strain inside and outside the time integral in the stress-strain law

for viscoelasticity, given by (2.2.1). With the inclusion of temperature effects, this

law now takes the following form,

σ(t) = D
[
ε(u(t))− α(θ(t)− θr)I0

]
−
∫ t

0

Ds(t− s)
[
ε(u(s))− α(θ(s)− θr)I0

]
ds.

(2.4.5)

Here I0 = [1 1 0]. The effect of I0 is such that the amount of strain subtracted,

α(θ(s)− θr)I0, has zero shear strain. Thus, we can write

ε(u(t))− α(θ(t)− θr)I0 =


ε11

ε22

2ε12

−

α(θ(t)− θr)

α(θ(t)− θr)

0

 .
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The presence of temperature, θ(t), in the stress-strain law (2.4.5), implies that

we now have a coupled problem, via (2.4.5), between the quasistatic force balance

equation (2.4.1) and the heat conduction problem (2.4.4).

Introducing the nonlinearity. With the inclusion of the reduced time, now the

viscoelasticity consitutive equation (2.2.1) takes the form,

σ(t) = Dε(u(t))−
∫ t

0

Ds(ρ(t)− ρ(s))ε(u(s))ds, (2.4.6)

where now the integral kernel has a nonlinear time argument due to the presence of

the reduced time which in turn depends on temperature via a logarithmic function,

as shown in the WLF formula (2.3.7). If we now consider the thermal expansion of

such materials, the stress-strain law becomes,

σ(t) = D
[
ε(u(t))− α(θ(t)− θr)I0

]
−
∫ t

0

Ds(ρ(t)− ρ(s))
[
ε(u(s))− α(θ(s)− θr)I0

]
ds. (2.4.7)

The fact that we now have two different constitutive laws, (2.4.5) and (2.4.7), it

is obvious that consequently we shall have two different problems to consider. We

shall refer to the problem arising from the thermal expansion via (2.4.5) as the lin-

ear problem. Whereas, the problem arising from the reduced time via (2.4.7) will be

referred to as the nonlinear problem.

It is of crucial importance to state here that both problems represent a novel

study, and that we are not aware up to now that these have been studied elsewhere in

literature, particularly deriving stability and error estimates and numerical results.

The study on viscoelasticity at constant temperature has been advanced in terms of

deriving stability and error estimates as well as numerical results, for example, Shaw

et al. (1994), Shaw et al. (1997), Shaw and Whiteman (1998). The analysis on the
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heat problem is not new in this study, however we present a more detailed analysis

that can hardly be found in literature, especially the work on error estimate. Work

on heat problems can be found, for example, in Johnson (2009) and Thomée (2006).

Weak formulations for displacement

The first step in deriving fully-discrete formulations is to obtain the so-called weak

formulations of the problems. We start by deriving the weak formulation for the

equilibrium equation (2.4.1). We define a test space V as:

V :=
{
v ∈

(
H1(Ω)

)n
: v = 0 on ΓD1

}
. (2.4.8)

Let (V, (·, ·)V ) be a Hilbert space with its dual (V ′, (·, ·)V ′). We assume that f ∈

(C(Ω))n and g ∈ (C(ΓN1))n for each t. Also, let w ∈ H1(Ω). In order to derive

the weak formulation, we need the following Green’s theorem from (Johnson, 2009,

chap. 1),

∫
Ω

vi
∂w

∂xi
dΩ +

∫
Ω

w
∂vi
∂xi

dΩ =

∫
∂Ω

wvin̂i dΓ, for i = 1, . . . , n (2.4.9)

where n̂ = (n̂1, . . . , n̂n) is the unit outward normal to ∂Ω. Using the force balance

equation (2.4.1), the next step in deriving the weak formulation is to take the scalar

product of this equation with a test function v ∈ V and then to integrate over the

domain Ω. This gives,

−
∫

Ω

σij,jvi dΩ =

∫
Ω

fivi dΩ ∀v ∈ V. (2.4.10)

Integrating by parts the left-hand side of (2.4.10) using the Green’s formula gives,

−
∫

Ω

σij,jvi dΩ =

∫
Ω

σijvi,j dΩ−
∫

ΓN1

σijn̂jvi dΓ, (2.4.11)
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where the summation convention is applied to all terms: summing over the repeated

indices. Using the fact that σij = σji and the definition of εij given by (2.1.7), we

have,

σijεij(v) =
1

2
(σijvi,j + σjivj,i) =

1

2
(σijvi,j + σijvi,j) = σijvi,j. (2.4.12)

Note the interchange of indices above. Using the above and the traction boundary

condition in (2.4.1), we arrive at the weak formulation for the equilibrium equation:

∫
Ω

σijεij(v) dΩ =

∫
Ω

fivi dΩ +

∫
ΓN1

givi dΓ. (2.4.13)

This is rather general, as we have not used a constitutive relationship to derive it.

However, this will be very useful when we begin to derive the weak formulation

for viscoelasticity later in this chapter. Next, using Hooke’s law (2.1.8), we can

eliminate σij to get,

∫
Ω

λ∇ · u∇ · v + µεij(u)εij(v) dΩ =

∫
Ω

fivi dΩ +

∫
ΓN1

givi dΓ. (2.4.14)

We have thus arrived at the following weak formulation of the elasticity problem:

find u ∈ V , such that

a(u,v) = L(v) ∀v ∈ V, (2.4.15)

where

a(u,v) =

∫
Ω

λ∇ · u∇ · v + µεij(u)εij(v)dΩ (2.4.16)

L(v) =

∫
Ω

fivi dΩ +

∫
ΓN1

givi dΓ, (2.4.17)
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where a(·, ·) is a symmetric bilinear form and L(·) is a linear functional. Note that

(2.4.13) can also be written as

(σ, ε(v))Ω = (f ,v)Ω + (g,v)ΓN1
, ∀v ∈ V. (2.4.18)

Note that here f and g refer to their own values at t = 0, since at t = 0 viscoelasticity

reduces to an elasticity problem. Using (2.4.18) we can derive the weak formulation

for linear viscoelasticity. Hence, substituting (2.2.5) in (2.4.18) and using the fact

that Ds(t− s) = Dϕs(t− s), we arrive at: find u ∈ C(0, T ;V ), such that

(Dε(u(t)), ε(v))Ω = (f(t),v)Ω + (g(t),v)ΓN1

+

∫ t

0

ϕs(t− s) (Dε(u(s)), ε(v))Ω ds, ∀v ∈ V. (2.4.19)

Note that now the linear form L(t;v) = (f(t),v)Ω + (g(t),v)ΓN1
is time dependent

since we are now dealing with the viscoelasticity problem. A more useful way of

stating the weak formulation would be to use the (time independent) bilinear form

a(·, ·) instead, and write: find u ∈ C(0, T ;V ) such that

a(u(t),v) = L(t;v) +

∫ t

0

ϕs(t− s)a(u(s),v)ds, ∀v ∈ V. (2.4.20)

Next, we derive the weak formulation for the linear problem. Substituting the stress-

strain law (2.4.5) above in (2.4.18) and using the fact that Ds(t− s) = Dϕs(t− s)

together with the linearity, we arrive at the weak formulation for the linear problem:
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find u ∈ C(0, T ;V ) such that

a
(
u(t),v

)
−
∫ t

0

(
Dϕs(t− s)ε(u(s)), ε(v)

)
Ω
ds

= L(t;v) +
(
αD(θ(t)− θr)I0, ε(v)

)
Ω

−
∫ t

0

(
αDϕs(t− s)(θ(s)− θr)I0), ε(v)

)
Ω
ds, ∀v ∈ V. (2.4.21)

Finally, substituting the stress-strain law (2.4.7) in (2.4.18), using the linearity prop-

erty and the fact that Ds(ρ(t) − ρ(s)) = Dϕs(ρ(t) − ρ(s)), we arrive at the weak

formulation for the nonlinear problem: find u ∈ C(0, T ;V ), such that

a(u(t),v)−
∫ t

0

(
Dϕs(ρ(t)− ρ(s))ε(u(s)), ε(v)

)
Ω
ds

= L(t;v) +
(
αD(θ(t)− θr)I0, ε(v)

)
Ω

−
∫ t

0

(
αDϕs(ρ(t)− ρ(s))(θ(s)− θr)I0, ε(v)

)
Ω
ds, ∀v ∈ V. (2.4.22)

We note here that for the existence of a solution to (2.4.21) and (2.4.22) we assume

u ∈ C(0, T ;V ), whereas for the forthcoming a priori error analysis we require higher

regularity, u ∈ C2(0, T ;V ).

Weak formulation for the heat equation

Note that this is needed due to the presence of temperature θ in the coupled prob-

lems above, linear and nonlinear. We let V ⊂ H1(Ω) be a test space given by

V :=
{
v ∈ H1(Ω) : v = 0 on ΓD2

}
, (2.4.23)

where v ∈ V is a test function. Let (V , (·, ·)V) be a Hilbert space with its dual

(V ′, (·, ·)V ′). We multiply (2.4.4) by the test function v and integrate by parts using

the First Green Formula. This gives the weak formulation of (2.4.4) as: find θ ∈ V ,
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such that

∫
Ω

κθ̇v dΩ +

∫
Ω

Q∇θ · ∇v dΩ−
∫

ΓN2

∇θ · n̂v dΓ

=

∫
Ω

lvdΩ, ∀v ∈ V , t ∈ I(0, T ]. (2.4.24)

Alternatively, this can be written as:

(κθ̇, v)Ω + aH (θ(t), v) = (l(t), v)Ω + (q(t), v)ΓN2
, ∀v ∈ V , t ∈ I = (0, T ],

(θ(0), v)Ω = (θ0, v)Ω, (2.4.25)

where aH (θ, v)=
∫

Ω
Q∇θ · ∇vdΩ is a symmetric bilinear form. We also define the

linear functional 〈G(t), v〉 := (l(t), v)Ω + (q(t), v)ΓN2
.

Before we embark on analysis, we show the uniqueness of the solution to (2.4.21).

We assume that there are two solutions u1 and u2, satisfying (2.4.21). Then, sub-

tracting one from the other gives,

a(u1(t)− u2(t),v) =

∫ t

0

(
Dϕs(t− s)ε(u1(s)− u2(s)), ε(v)

)
Ω
. (2.4.26)

Now, using the definition of the energy norm ‖ · ‖E given in Assumptions 2.4.1 (iii),

and putting v = u1(t)− u2(t), gives

‖u1(t)− u2(t)‖2
E 6

∫ t

0

ϕs(t− s)‖u1(s)− u2(s)‖Eds‖u1(t)− u2(t)‖E.

Then, ‖u1(t)− u2(t)‖E 6
∫ t

0

ϕs(t− s)‖u1(s)− u2(s)‖Eds (2.4.27)

Using Gronwall’s lemma 1.4.3, gives ‖u1(t) − u2(t)‖E 6 0, which implies that

‖u1(t)− u2(t)‖E = 0, hence u1(t) = u2(t).
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Next we prove the continuity of L(t, ·). Thus we have,

|L(v)| 6 ‖f‖L2(Ω)‖v‖L2(Ω) + ‖g‖L2(Γ)‖v‖L2(Γ)

= c1‖v‖L2(Ω) + c2‖v‖L2(Γ)

6 c1‖v‖H1(Ω) + c2‖v‖H1(Ω) using Trace theorem,

6 c‖v‖H1(Ω), c=max{c1, c2}. (2.4.28)

For the Trace theorem see Reddy (1998). Exactly in the same way the continuity

of 〈G(t), v〉 can be shown. With respect to the shift factor ψ, for analysis purposes,

we are interested in the behaviour of 1/ψ for large values of θ, more precisely, in the

limit of 1/ψ as θ tends to infinity. This is because, ρ′ = 1/ψ, coming from (2.3.8),

appears in the forthcoming analysis. This limit is,

lim
θ→∞

−17.44(θ − θg)
51.6 + (θ − θg)

= −17.44, =⇒ 1

ψ
= 1017.44. (2.4.29)

In order to facilitate the forthcoming analysis, we make the following assumptions.

Assumptions 2.4.1. (i) The data g and f are such that there exists solution u ∈

C(I;V ) solving (2.4.21). We also assume that the same solution u ∈ C(I;V )

exists and is unique, solving (2.4.22).

(ii) The data l and q are such that there exists solution θ ∈ C(I;V), which is

unique, solving the heat conduction problem (2.4.4).

(iii) The symmetric bilinear form a(·, ·) is continuous and coercive and we define

an energy norm by ‖v‖E =
√
a(v,v). Also assume that aH(·, ·) for the heat

problem is continuous and coercive and define an energy norm by ‖v‖A =√
aH(v, v).

(iv) With regards to the nonlinear problem (2.4.22), we assume the temperature θ
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Figure 2.2: 1/ψ versus temperature θ. θg = 25

to be in the range θ > θg − 51.6. This is due to the fact that at θ = θg − 51.6

there is an asymptote, as shown in Fig. 2.2. In this range, ρ′(s) =
1

ψ(θ)
has a

bound, that is, ‖ρ′‖L∞([0,T ]×Ω) 6 Cρ, see (2.4.29) and (2.3.7). We also assume

here that ψ, ψ′ ψ′′ exist and are finite.

It is worth mentioning here that for both, displacement and temperature, through-

out the thesis, the boundary conditions are as depicted in Fig. 2.1.

The next step towards derivation of fully-discrete schemes corresponding to the weak

formulations given in this section is the finite element approximation, also known as

discretization in space. This topic is part of the next chapter, where we also derive

fully-discrete schemes.
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2.5 Summary

In this chapter the concept of continuum mechanics was discussed. Definitions of

stress, strain and displacement were introduced, together with some physical deriva-

tions. Also a brief discussion on elasticity and linear viscoelasticity was presented.

We then introduced the physical concepts of thermal expansion and reduced time.

Finally, the model problem for this thesis was introduced together with new forms of

stress-strain laws and weak formulations for viscoelasticity and the problems under

study.



Chapter 3

Discrete Schemes for

Displacement and Heat

In this chapter we show how the finite element method is used to discretize in space,

and for time-dependent problems we also discretize in time in order to derive fully-

discrete schemes. The first step in the construction of a finite element method (FEM)

for a boundary value problem is to convert the problem into a weak formulation.

This was mainly dealt with in Section 2.4. In order to illustrate the use of FEM in

finding an approximate solution to a given problem, we shall apply it to the elasticity

and heat conduction problem.

3.1 FEM for elasticity

For the finite element approximation we consider a finite dimensional subspace V h ⊂

V consisting of piecewise linear functions, where each v ∈ V can be written as a

linear combination of the basis functions φkΩ
, kΩ = 1, . . . , nM , and where M is just
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the number of nodes in the discretized domain of the problem under consideration

and n is the dimension of the displacement vector. For computational purposes in

this thesis we take n = 2. We consider a triangulation T = {Eα̂ : α̂ = 1, . . . ,mΩ}

of Ω into non-overlapping closed triangular elements Eα̂, such that no vertex of one

triangle lies on the edge of another triangle, where mΩ is the number of elements in

the mesh. Also each edge e ⊂ Γ of an element E ∈ T belongs either to Γ̄N1 or to

Γ̄D1 , and ΓD1 has a positive measure. We also assume that each triangular element

Eα̂ has diameter hα̂, and then set

h := max
16α̂6Ωm

hα̂. (3.1.1)

The finite element approximation to (2.4.15) is defined as: find uh ∈ V h ⊂ V ,

such that

a(uh,v) = L(v) ∀v ∈ V h. (3.1.2)

In matrix form this can be written as

AU = L,

where A ∈ RnM×nM is the global stiffness matrix and is given by

AkΩm =
∑
E∈T

∫
E

εT (φkΩ
) ·Dε(φm)dE, kΩ,m = 1, ..., nM,

where ε(φkΩ
) is a 3× 6 matrix containing the derivatives of the basis functions. The

load vector L is given by,

LkΩ
=
∑
E∈T

∫
E

fφkΩ
dE +

∑
e⊂ΓN1

∫
e

gφkΩ
de, kΩ = 1, ..., nM.
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Note that, above, e = T ∩ ΓN1 for each T , such that T ∩ ΓN1 6= ∅.

3.2 Discrete schemes for viscoelasticity

Having derived the weak formulation in Section 2.4, we are now able to give a

fully-discrete scheme for the linear viscoelasticity problem. We initially derive the

discretization in space followed by the discretization in time. This then leads to the

full discretization of the problem.

3.2.1 Discretization in space and time

For the finite element approximation, we again consider the subspace V h ⊂ V . Thus,

we have: find uh ∈ C(0, T ;V h) such that,

a(uh(t),v) = L(t;v) +

∫ t

0

ϕs(t− s)a(uh(s),v)ds, ∀v ∈ V h. (3.2.1)

This is also known as the semi-discrete formulation.

To provide fully discrete approximations to the weak formulation (2.4.20), we use

the trapezoidal rule for numerical integration to discretize in time. We assume a

constant time step k := ti − ti−1, ti = ki, i = 1, . . . , N , where k = T/N . The time

domain I is discretized into

Ik := {0 = t0 < t1 < . . . < tN = T}. (3.2.2)
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The trapezoidal rule is given by

∫ ti

0

m(s)ds ≈
i∑

j=1

k

2
(m(tj) +m(tj−1)) , (3.2.3)

see, for example, Scott (2011). Replacing the integral in (3.2.1) by the trapezoidal

approximation, we arrive at the following fully discrete approximation of (2.4.20):

find uhi ≈ uh(ti) ∈ V h for each i = 1, . . . , N , such that

a(uhi ,v) = L(ti;v)

+
k

2

i∑
j=1

(
ϕs(ti − tj)a(uhj ,v) + ϕs(ti − tj−1)a(uhj−1,v)

)
, ∀v ∈ V h.

(3.2.4)

In matrix form, this can be written as

AU i = Li +
k

2
A

i∑
j=1

(ϕs(ti − tj)U j + ϕs(ti − tj−1)U j−1) . (3.2.5)

We can re-write (3.2.5) as,

AU i = Li +
k

2
Aϕs(ti − ti)U i

+
k

2
A

i−1∑
j=1

ϕs(ti − tj)U j

+
k

2
A

i∑
j=2

ϕs(ti − tj−1)U j−1

+
k

2
Aϕs(ti)U 0. (3.2.6)

Hence,

A

(
1− k

2
ϕs(0)

)
U i = Li +AH i, (3.2.7)
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where

H i =
k

2
ϕs(ti)U 0 + k

i−1∑
j=1

ϕs(ti − tj)U j. (3.2.8)

Now substituting for ϕs, coming from (2.2.4), in the above result, we arrive at,

H i =

Nϕ∑
q=1

[
k

2
αqϕqe

−αqtiU 0 +
i−1∑
j=1

kαqϕqe
−αq(ti−tj)U j

]

=

Nϕ∑
q=1

H iq, (3.2.9)

where we have denoted by H iq the expression inside the square brackets. Now,

using the fact that,

e−αqti = e−αq(ti−ti−1)e−αqti−1 = e−αqke−αqti−1 , (3.2.10)

we can write for H iq,

H iq = e−αqkH(i−1)q + kαqϕqe
−αq(ti−ti−1)U i−1. (3.2.11)

This is because,

H(i−1)q =
k

2
αqϕqe

−αqti−1U 0 +
i−2∑
j=1

kαqϕqe
−αq(ti−1−tj)U j. (3.2.12)

Here A ∈ RnM×nM is exactly as before in the FEM elasticity problem. Li is the

load vector computed at time ti and is given by

(Li)kΩ
=
∑
E∈T

∫
E

fφkΩ
dE +

∑
e⊂ΓN

∫
e

gφkΩ
de, kΩ = 1, . . . , nM.

Also note that, above, e = T ∩ ΓN for each T , such that T ∩ ΓN 6= ∅.
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3.2.2 Numerical results

We now give an algorithm for the viscoelasticity problem. Note that at t = 0, from

(2.4.20), we have that a(u(0),v) = L(0;v), which implies that AU 0 = L0.

Algorithm 1: Quasistatic viscoelasticity problem

—————————————————————————————–

1. Solve AU0 = L0

2. Initialize Hq = 1
2
kαqϕqe

−αqt1U0, q = 1, . . . , Nq

3. for i=1,...,N

4. Solve A(1− k
2
ϕs(0))Ui = Li + A

∑Nq
q=1 Hq

5. update Hq

6. Hq ← e−αqkHq + kαqϕqe
−αqkUi

7. next i

——————————————————————————————

The values for viscoelastic parameters, for all computational work in this thesis, are

as follows: E = 100000 and ν = 0.3; then using these, λ and µ are computed using

(2.1.13). The values of αq and ϕq, for q = 1, . . . , Nϕ = 3, are αq = [0.1 0.05 0.01]

and ϕq = [0.3 0.2 0.1]. First, we compute displacement at t = 0, as shown in line

1 on the algorithm; this is just the elasticity problem. Next we initialise Hq. Then

at each discrete time we solve the matrix equation in line 4 which corresponds to

equation (3.2.7) and update Hq using the recursive relation (3.2.12).

To check for convergence of the algorithm, we give three examples. The errors

are computed in such a way that the maximum values of components of the error

|u−uhi | are retrieved over all discrete times ti and over all nodes of the mesh, where

u is the exact solution (or the “manufactured solution”) and uhi is the fully discrete

(computed) approximate solution for displacement. We may call this the “max er-
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ror”. This is how it is done: for a fixed number of time steps and a fixed mesh size

(i.e. the number of elements in the mesh), for each discrete time ti we compute the

max error for the whole mesh (over all nodes), then we retrieve the maximum value

out of all these max errors, that is, maxerror = max {errort1 , errort2 , . . . , errortEND}.

To show convergence of the algorithm, we consider the following three examples.

Example 1: Exact solution u(x, t) =

(
3x− 2y

4x+ y

)
t

Table 3.1 shows no displacement errors as the mesh size increases by a factor of

two (i.e. horizontally) since the dependence of exact solution on spatial coordinates

is linear. However we see that there are errors as the time steps are doubled (i.e.

vertically) even though dependence on t is linear and this is due to the fact that

the approximation by trapezoidal rule has a second order convergence. It can be

seen from the table that the error changes slightly as the mesh size increases; ide-

ally there should be no changes at all. This may be due to quadrature error in the

code since the integrals are computed using one point of quadrature which is exact

for integrands of order one (center of gravity); the integrands involved here are not

linear.

Table 3.1: Displacement max errors for viscoelasticity: ×10−3, Example 1

mesh size
time
steps 2 4 8 16 32 64

2 0.150280 0.160557 0.165915 0.168193 0.168757 0.168981

4 0.037568 0.040137 0.041476 0.042046 0.042187 0.042243

8 0.009391 0.010034 0.010369 0.010511 0.010546 0.010560

16 0.002347 0.002508 0.002592 0.002627 0.002636 0.002640

32 0.000586 0.000627 0.000648 0.000656 0.000659 0.000660

64 0.000146 0.000156 0.000162 0.000164 0.000164 0.000165
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Example 2: Exact solution u(x, t) =

(
3x− 2y

4x+ y

)
t2

As Table 3.2 shows, again there are no displacement errors as the mesh size is

increased, and this is because the exact solution is again linear in spatial variables.

There are only temporal errors and this is because of the trapezoidal rule and the

term t2. As in the previous example, due to quadrature error in the code, there is a

slight change in the error as the mesh size increases.

Table 3.2: Displacement max errors for viscoelasticity: ×10−3, Example 2

mesh size
time
steps 2 4 8 16 32 64

2 1.871755 1.999757 2.066493 2.094862 2.101886 2.104676

4 0.467918 0.499917 0.516600 0.523692 0.525448 0.526146

8 0.116978 0.124977 0.129148 0.130921 0.131360 0.131535

16 0.029244 0.031244 0.032287 0.032730 0.032840 0.032883

32 0.007311 0.007811 0.008071 0.008182 0.008210 0.008220

64 0.001827 0.001952 0.002017 0.002045 0.002052 0.002055

Example 3: Exact solution u(x, t) =

(
x2 + y3

x3 + y2

)
t2

In this case, different from the first two, there are both temporal and spatial errors

present. This is due to the fact that the exact solution is not linear either in the

spatial coordinates or in time. As Table 3.3 shows, there is second order convergence

along the diagonal. That is, the error is reduced by a factor of four as the mesh size

and the number of time steps are doubled.
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Table 3.3: Displacement max errors for viscoelasticity: ×10−3, Example 3

mesh size
time
steps 2 4 8 16 32 64

2 22.421437 7.308300 3.141031 2.047279 1.773113 1.701675

4 21.178083 6.063612 1.890683 0.792868 0.513760 0.443045

8 20.867262 5.752457 1.578114 0.479343 0.198939 0.128405

16 20.770131 5.655222 1.480437 0.381368 0.100638 0.049746

32 20.770131 5.655222 1.480437 0.381368 0.100638 0.030097

64 20.765275 5.650361 1.475553 0.376470 0.095740 0.025187

3.3 Discrete schemes for the heat conduction prob-

lem

We will first consider a so-called semi-discrete analogue of the heat equation (2.4.4),

which implies discretization in space. To obtain a fully discrete scheme we will also

need to discretize in time. For the time-discretization we shall employ the Crank-

Nicolson method (CN) and follow the style of Johnson (2009), where the backward

Euler method is derived in. This is mainly bookwork, but here we show in more

detail the use of CN, something which is omitted in Johnson (2009).

3.3.1 Discretization in space

For the discretization in space we choose a finite-dimensional subspace Vh ⊂ V

with basis functions {Ψ1, . . . ,ΨM}. We assume that Vh consists of piecewise linear

functions on the triangulation of Ω. Next, replacing V with Vh, we consider the
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following semi-discrete version of (2.4.25): find θh(t) ∈ Vh, such that

κ(θ̇h, v)Ω + aH
(
θh, v

)
= (q, v)ΓN2

+ (l, v)Ω , ∀v ∈ Vh, t ∈ I.

(θh(0), v)Ω = (θ0, v)Ω. (3.3.1)

Next we write

θh(x, t) =
M∑
p=1

ξp(t)Ψp(x), x ∈ Ω, t ∈ I, (3.3.2)

with time-dependent coefficients ξp(t) ∈ R, M is the number of nodes in the mesh.

Using (3.3.2) and v = Ψr in (3.3.1), we get

κ

(
M∑
p=1

ξ̇p(t)Ψp,Ψr

)
Ω

+ aH

(
M∑
p=1

ξp(t)Ψp,Ψr

)
= (l,Ψr)Ω + (q,Ψr)ΓN2

M∑
p=1

ξp(0)(Ψp,Ψr)Ω = (θ0,Ψr)Ω, (3.3.3)

r = 1, . . . ,M and t ∈ I. In matrix form this system reads,

κBξ̇(t) + Aξ(t) = G(t), t ∈ I.

Bξ(0) = Θ0. (3.3.4)

3.3.2 Discretization in time

For the time discretization of (3.3.1), and equivalently of (3.3.4), we shall use the

Crank-Nicolson method. Taking the average of (3.3.1) over two consecutive time
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steps gives:

κ
1

2
(θ̇h(ti) + θ̇h(ti−1), v)Ω +

1

2
aH

(
θ̇h(ti) + θ̇h(ti−1), v

)
=

1

2
(li + li−1, v)Ω +

1

2
(qi + qi−1, v)ΓN2

, (3.3.5)

where the subscript i denotes the discrete time ti. Next we approximate

θ̇h(ti) + θ̇h(ti−1)

2

by

θh(ti)− θh(ti−1)

k
,

with discretization error O(k2). Then (3.3.5) becomes: find θhi ≈ θh(ti) ∈ Vh,

i = 1, . . . , N , such that

κ

(
θhi − θhi−1

k
, v

)
Ω

+ aH

(
θhi + θhi−1

2
, v

)
=

(
li + li−1

2
, v

)
Ω

+

(
qi + qi−1

2
, v

)
ΓN2(

θh0 , v
)

Ω
= (θ0, v)Ω . (3.3.6)

Using (3.3.2) this can be written

κ


M∑
p=1

ξipΨp −
M∑
p=1

ξi−1
i Ψp

k
, v


Ω

+ aH

(∑M
p=1 ξ

i
pΨp +

∑M
p=1 ξ

i−1
p Ψp

2
, v

)

=

(
li + li−1

2
,Ψp

)
Ω

+

(
qi + qi−1

2
,Ψp

)
ΓN2

. (3.3.7)
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Finally, after some algebra the Crank-Nicolson method in matrix form reads:

(
κB +

1

2
Ak
)
ξi =

(
κB − 1

2
Ak
)
ξi−1 +

k

2

(
Gi +Gi−1

)
, i = 1, . . . , N, (3.3.8)

where

θhi =
M∑
p=1

ξipΨp(x), (ξip ∈ R).

In (3.3.8), A ∈ RM×M is the global stiffness matrix and is given by

Apr =
∑
E∈T

∫
E

∇Ψp · ∇ΨrdE.

B ∈ RM×M is the mass matrix and is given by

Bpr =
∑
E∈T

∫
E

ΨpΨrdE.

Gi ∈ RM is the time-dependent load vector computed at time ti and includes the

contributions from both l and q, and it is given by

Gi =
∑
E∈T

∫
E

lΨrdE +
∑
e⊂ΓN2

∫
e

qΨrde.

Note that, above e = T ∩ ΓN2 for each T , such that T ∩ ΓN2 6= ∅.
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3.4 Discrete schemes for the linear and nonlinear

problem

For the fully-discrete approximation to the linear problem (2.4.21), we consider the

subspace V h ⊂ V and then use the trapezoidal rule, given by (3.2.3), for approximat-

ing the time integrals. This gives: for arbitrary i = 1, . . . , N , find uhi ≈ uh(ti) ∈ V h,

such that

a(uhi ,v) =
k

2

i∑
j=1

(
ϕs(ti − tj)a(uhj ,v) + ϕs(ti − tj−1)a(uhj−1,v)

)
+ L(ti;v) +

(
αD(θhi − θr)I0, ε(v)

)
Ω

− k

2

i∑
j=1

(
αDϕs(ti − tj)(θhj − θr)I0, ε(v)

)
Ω

− k

2

i∑
j=1

(
αDϕs(ti − tj−1)(θhj−1 − θr)I0, ε(v)

)
Ω
. (3.4.1)

Analogously for the fully discrete approximation to the nonlinear problem (2.4.22),

we consider the subspace V h ⊂ V and employ the trapezoidal rule for approximating

the time integrals. This yields: for arbitrary i = 1, . . . , N find uhi ≈ uh(ti) ∈ V h,

such that,

a(uhi ,v) = L(ti;v) +
k

2

i∑
j=1

[(
Dϕs(ρ

h
i − ρhj )ε(uhj ), ε(v)

)
Ω

+
(
Dϕs(ρ

h
i − ρhj−1)ε(uhj−1), ε(v)

)
Ω

]
+
(
αD(θhi − θr)I0, ε(v)

)
Ω
− k

2

i∑
j=1

[(
αDϕs(ρ

h
i − ρhj )(θhj − θr)I0, ε(v)

)
Ω

+
(
αDϕs(ρ

h
i − ρhj−1)(θhj−1 − θr)I0, ε(v)

)
Ω

]
, ∀v ∈ V h, (3.4.2)
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where the approximate value ρhi of reduced time is given by,

ρhi =
k

2

i∑
j=1

( 1

ψ(θhj )
+

1

ψ(θhj−1)

)
, (3.4.3)

coming from (2.3.8).

3.5 Summary

In this chapter we gave a more detailed account of the finite element method. Fi-

nite element approximations were given for the elasticity, viscoelasticity and heat

problems. Fully discrete schemes were derived for viscoelasticity and heat problem.

Convergence rates were shown for displacement in the case of viscoelasticity. Fully

discrete approximations were given for the linear and nonlinear problem. Having

done this, in the next chapter we move to the theoretical aspect of thesis, and derive

stability bounds for the linear problem.



Chapter 4

Stability Analysis for the Linear

Problem

4.1 The continuous formulation

In this section we aim to derive a bound in the energy norm for the continuous

formulation for displacement u in the case of the linear coupled problem given by

(2.4.21), motivated by the need to show that there is stability in the sense that the

solution u in the energy norm is bounded by data, exact solution, derivatives of

exact solutions and constants. We state the following theorem.

Theorem 4.1.1. Let Assumptions 2.4.1 (i) - (iii) and Corollary 2.2.1 hold and let

α > 0, then for u, the exact solution of (2.4.21), we have the following bound,

‖u‖L∞(0,t;E) 6
1

ϕ(t)
‖L‖L∞(0,t;E′)

+
2C(α,D)

ϕ(t)

(
‖θ0‖L2(Ω) +

1

κ
‖G‖L∞(0,t;E′) + |θr|

√
Vol(Ω)

)
, (4.1.1)
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where C(α,D) = α‖D1/2I0‖L∞(Ω) is a positive constant.

Proof. Choosing v = u(t) in (2.4.21) for some t ∈ I, using the energy norm and the

Cauchy-Schwartz inequality on the right side gives,

‖u‖2
E 6 ‖L‖E′‖u‖E +

∫ t

0

ϕs(t− s)‖u(s)‖Eds‖u(t)‖E

+ C(α,D)‖u(t)‖E‖θ(t)− θr‖L2(Ω)

+

∫ t

0

ϕs(t− s)C(α,D)‖θ(s)− θr‖L2(Ω)ds‖u(t)‖E. (4.1.2)

Writing,

∫ t

0

ϕs(t− s)‖u(s)‖Eds 6 ‖u‖L∞(0,t;E)

∫ t

0

ϕs(t− s)ds

= (1− ϕ(t)) ‖u‖L∞(0,t;E), (4.1.3)

and substituting this in (4.1.2), yields

‖u‖L∞(0,t;E) 6
1

ϕ(t)
‖L‖L∞(0,t;E′) +

2

ϕ(t)
C(α,D)‖θ(t)− θr‖L∞(0,t;L2(Ω)). (4.1.4)

We recall here that 0 < ϕ(t) 6 1. Next step of the proof is to derive an estimate for

‖θ(t) − θr‖L∞(0,t;L2(Ω)). Recall from Assumptions 2.4.1 (iii), that the energy norm

for the heat problem is given by

‖v‖A := (Q∇v,∇v)Ω = ‖Q1/2∇v‖L2(Ω (4.1.5)

Rewrite the weak formulation (2.4.24) for the heat problem as,

(κθt, v)Ω + (Q∇θ,∇v)Ω = 〈G, v〉, ∀v ∈ V , (4.1.6)
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with θ(x, 0) given. Next, for some t ∈ (0, T ], choose v = θ(t) in (4.1.6), to get

κ

2

d

dt
‖θ(t)‖2

L2(Ω) + ‖Q1/2∇θ‖2
L2(Ω) = 〈G, θ〉. (4.1.7)

Definition of the dual norm (1.3.3) gives,

|〈G, θ〉| 6 ‖G‖A′‖θ(t)‖A. (4.1.8)

Using the definition of the energy norm above and (4.1.8), we can rewrite (4.1.7) as,

κ

2

d

dt
‖θ(t)‖2

L2(Ω) + ‖θ(t)‖2
A 6 ‖G(t)‖A′‖θ(t)‖A. (4.1.9)

Applying Inequality (1.3.1) with ε = 1 on the right-hand side, we get

κ
d

dt
‖θ(t)‖2

L2(Ω) + ‖θ(t)‖2
A 6 ‖G(t)‖2

A′ . (4.1.10)

Integrating this between 0 and t, gives

κ

∫ t

0

d

ds
‖θ(s)‖2

L2(Ω)ds+

∫ t

0

‖θ(s)‖2
Ads 6

∫ t

0

‖G(s)‖2
A′ds, (4.1.11)

which then yields,

κ‖θ(t)‖2
L2(Ω) +

∫ t

0

‖θ(s)‖2
Ads 6 κ‖θ(0)‖2

L2(Ω) +

∫ t

0

‖G(s)‖2
A′ds. (4.1.12)

Rearranging this, gives

‖θ(t)‖2
L2(Ω) 6 ‖θ(0)‖2

L2(Ω) +
1

κ

∫ t

0

‖G(s)‖2
A′ds

= ‖θ(0)‖2
L2(Ω) +

1

κ
‖G(s)‖2

L2(0,t;A′). (4.1.13)



4.2 Discrete formulation 57

Using the fact that for a, b, c > 0, a2 6 b2 + c2 implies a 6 b+ c, enables us to give

a bound for θ in the L2 norm,

‖θ(t)‖L2(Ω) 6 ‖θ(0)‖L2(Ω) +
1√
κ
‖G(s)‖L2(0,t;A′). (4.1.14)

Next, the triangle inequality gives,

‖θ(t)− θr‖L2(Ω) 6 ‖θ(t)‖L2(Ω) + ‖θr‖L2(Ω)

6 ‖θ0‖L2(Ω) +
1√
κ
‖G(s)‖L2(0,t;A′) + |θr|

√
Vol(Ω). (4.1.15)

Taking the L∞ norm, we can write,

‖θ − θr‖L∞(0,t;L2(Ω) 6 ‖θ0‖L2(Ω) +
1√
κ
‖G‖L2(0,T ;A′) + |θr|

√
Vol(Ω). (4.1.16)

Substituting this back into (4.1.4), proves the theorem.

4.2 Discrete formulation

In this section we aim to derive a bound in the energy norm for the discrete for-

mulation for displacement uhi in the case of the linear coupled problem given by

(3.4.1), motivated by the need to show that there is stability in the sense that the

solution uhi in the energy norm is bounded by data, derivatives of exact solutions

and constants. We start by stating the following theorem,

Theorem 4.2.1. Let Assumptions 2.4.1 (i) - (iii) and Corollary 2.2.1 hold and let

α > 0. Then for the fully discrete approximate solution uhi of (3.4.1), for k small
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enough, we have the following bound,

‖uhi ‖E 6 C2e
C1T , (4.2.1)

where C1 and C2 are non-negative quantities. C1 depends on max
06j6i−1

ϕs(ti − tj),

whereas C2 depends on data, initial conditions and other constants.

Proof. First, re-arranging (3.4.1) gives, find uhi ∈ V h such that,

a(uhi ,v) =
k

2
ϕs(0)a(uhi ,v)− k

2
ϕs(ti)a(uh0 ,v) + L(ti;v) + k

i−1∑
j=0

ϕs(ti − tj)a(uhj ,v)

− k

2

(
αDϕs(ti)(θ

h
0 − θr)I0, ε(v)

)
Ω
− k

2

(
αDϕs(0)(θhi − θr)I0, ε(v)

)
Ω

+
(
αD(θhi − θr)I0, ε(v)

)
Ω

− k
i−1∑
j=1

(
αDϕs(ti − tj)(θhj − θr)I0, ε(v)

)
Ω
∀v ∈ V h. (4.2.2)

For an arbitrary i ∈ {1, . . . , N} take v = uhi in (4.2.2). Assumptions (2.4.1), (iii),

gives

‖uhi ‖2
E =

k

2
ϕs(0)a(uhi ,u

h
i )−

k

2
ϕs(ti)a(uh0 ,u

h
i ) + L(ti;u

h
i ) + k

i−1∑
j=0

ϕs(ti − tj)a(uhj ,u
h
i )

− k

2

(
αDϕs(ti)(θ

h
0 − θr)I0, ε(uhi )

)
Ω
− k

2

(
αDϕs(0)(θhi − θr)I0, ε(uhi )

)
Ω

+
(
αD(θhi − θr)I0, ε(uhi )

)
Ω

− k
i−1∑
j=1

(
αDϕs(ti − tj)(θhj − θr)I0, ε(uhi )

)
Ω
. (4.2.3)
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Furthermore, Assumptions (2.4.1), (iii) and (2.4.28), and Cauchy-Schwartz, give

‖uhi ‖2
E 6

k

2
ϕs(0)‖uhi ‖2

E + Ck‖uh0‖E‖uhi ‖E + C̃k

i−1∑
j=0

‖uhj ‖E‖uhi ‖E + ‖L‖E′‖uhi ‖E

+ C‖uhi ‖E‖θhi − θr‖L2(Ω) + Ck‖uhi ‖E‖θh0 − θr‖L2(Ω) + Ck‖uhi ‖E‖θhi − θr‖L2(Ω)

+ C̃k

i−1∑
j=1

‖uhi ‖E‖θhj − θr‖L2(Ω). (4.2.4)

Here C̃ = max
06j6i−1

ϕs(ti − tj). Dividing through by ‖uhi ‖E, this simplifies to,

(1− k

2
ϕs(0))‖uhi ‖E 6 Ck‖uh0‖E + ‖L‖E′ + C‖θhi − θr‖L2(Ω) + Ck‖θh0 − θr‖L2(Ω)

+ Ck‖θhi − θr‖L2(Ω) + Ck
i−1∑
j=1

‖θhj − θr‖L2(Ω) + Ck
i−1∑
j=0

‖uhj ‖E,

(4.2.5)

where we require k <
2

ϕs(0)
. In order to derive a bound on ‖θhi − θr‖L2(Ω) we first

need to derive a bound for ‖θhi ‖L2(Ω). From (3.3.6), multiplying by 2k, gives

2κ
(
θhi − θhi−1, v

)
+ k

(
Q∇(θhi + θhi−1),∇v

)
= k (〈G(ti), v〉+ 〈G(ti−1), v〉) . (4.2.6)

Using the linearity on the first term, the definition of the energy norm (4.1.5) and

that of the dual norm (1.3.3), and then choosing v = θi + θi−1, yields

2κ
(
‖θhi ‖2

L2(Ω) − ‖θhi−1‖2
L2(Ω)

)
+ k‖θhi + θhi−1‖2

A

6 k (‖Gi‖A′ + ‖Gi−1‖A′) ‖θhi + θhi+1‖A. (4.2.7)
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Summing from i = 1 to m 6 N gives,

2κ
m∑
i=1

(
‖θhi ‖2

L2(Ω) − ‖θhi−1‖2
L2(Ω)

)
+ k

m∑
i=1

‖θhi + θhi−1‖2
A

6 k

m∑
i=1

(‖Gi‖A′ + ‖Gi−1‖A′) ‖θhi + θhi+1‖A. (4.2.8)

The first summation on the left side of (4.2.8) gives ‖θhm‖2
L2(Ω) − ‖θh0‖2

L2(Ω). Using

Inequality (1.3.1) with ε = 1 on the right side of (4.2.8) and then ignoring the term

k

2

m∑
i=1

‖θhi + θhi−1‖2
A on the left, we arrive at:

‖θhm‖2
L2(Ω) 6 ‖θh0‖2

L2(Ω) +
k

4κ

m∑
i=1

(
‖Gi‖2

A′ + ‖Gi−1‖2
A′
)
. (4.2.9)

This can be written as,

‖θhm‖L2(Ω) 6 ‖θh0‖L2(Ω) + C

√
T

κ
max

06i6m
{‖Gi‖A′} . (4.2.10)

After using the triangle inequality to write ‖θhi − θr‖L2(Ω) 6 ‖θhi ‖L2(Ω) + ‖θr‖L2(Ω),

substituting (4.2.10) in (4.2.5), gives

‖uhi ‖E 6 C̄ + Ck

i−1∑
j=0

‖uhj ‖E, (4.2.11)

where C̄ and C depend on data, initial conditions and other constants. Finally,

using Lemma 1.4.2 (the discrete version of Gronwall’s lemma), this becomes

‖uhi ‖E 6 C̄eCT , (4.2.12)
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and this proves our theorem.

4.3 Summary

In this chapter we derived stability bounds for the continuous and discrete formula-

tions for displacement for the linear coupled problem. As part of the proof, we also

derived a bound in the L2 norm for the heat problem, both for the continuous and

discrete case.



Chapter 5

A Priori Error Analysis for the

Linear Problem

The aim in this chapter is to derive an a priori error estimate for the linear coupled

problem. We first derive an error bound for the heat conduction problem, as a first

result towards deriving the error bound for the linear coupled problem (2.4.21).

5.1 A priori error analysis for the heat conduction

problem

In this section we aim to derive a fully discrete error estimate in the L2 norm for

the heat problem. We employ the Ritz or elliptic projection for this purpose.

We recall that weak formulation of the heat equation is given by: find θ ∈ V , such
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that,

κ (θt, v)Ω + (Q∇θ,∇v)Ω = 〈G, v〉, ∀v ∈ V , t ∈ I = (0, T ] (5.1.1)

(θ(0), v)Ω =
(
θ0, v

)
Ω
, (5.1.2)

where V is the Hilbert test space given by (2.4.23), θt = θ̇ and recall that 〈G, v〉 =

(l, v)Ω + (q, v)ΓN2
. (Q∇θ,∇v)Ω corresponds to the bilinear form aH(θ, v). For the

fully discrete problem we can write,

κ
(
∂tθ

h
n, v
)

+
(
Q∇θ̄hn,∇v

)
= 〈Ḡn, v〉, ∀v ∈ Vh, (5.1.3)

n = 1, . . . , N . Here θ̄hn and Ḡn are averages over two time steps, tn−1 and tn, that is,

θ̄hn :=
θhn−1 + θhn

2
and Ḡn :=

Gn−1 +Gn

2
. We note that above we have adopted the

following notation,

∂tθ
h
n :=

θhn − θhn−1

k
. (5.1.4)

Definition 5.1.1. Let the Ritz projection Rθ ∈ Vh at each t be defined by

(∇ (θ −Rθ) ,∇v) = 0, ∀v ∈ Vh.

The map R : V → Vh maps each element of V to some element in the subspace Vh.

From the above definition we can write,

‖∇θ −∇Rθ‖2
L2(Ω) = (∇θ −∇Rθ,∇θ −∇Rθ)

= (∇θ −∇Rθ,∇θ −∇πθ)

6 ‖∇θ −∇Rθ‖L2(Ω)‖∇(θ − πθ)‖L2(Ω). (5.1.5)
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This is because πθ,Rθ ∈ Vh. Here πθ is known as the linear interpolation of θ and

for its definition we refer to Theorem 3.1 in Scott and Zhang (1990). The above

then simplifies to the following estimate,

‖Q∇(θ −Rθ)‖L2(Ω) 6 ‖Q∇(θ − πθ)‖L2(Ω)

6 Ch‖θ‖H2(Ω), (5.1.6)

using a standard estimate from (Johnson, 2009, p.90). Before we give a theorem

showing a priori error estimate for the heat problem, we give a lemma showing the

error estimate for the trapezoidal rule.

Lemma 5.1.1. For a function w ∈ C2([0, T ]) we have the following error estimate

for the trapezoidal rule approximation,

∣∣E(ω)
∣∣ =

∣∣∣k
2

(ω(tn) + ω(tn−1))−
∫ tn

tn−1

ω(y)dy
∣∣∣ 6 Ck2

∫ tn

tn−1

|ω′′(y)|dy, n > 0.

(5.1.7)

Proof. Using the Peano-Kernel theorem, (Scott, 2011, p.211), we have the following

error estimate for the trapezoidal rule,

∣∣E(ω)
∣∣ =

1

2

∣∣∣ ∫ tn

tn−1

(tn − y) (tn−1 − y)ω′′(y)dy
∣∣∣

6
1

2

∫ tn

tn−1

|tn − y||tn−1 − y||ω′′(y)|dy

6
k2

2

∫ tn

tn−1

|ω′′(y)|dy, (5.1.8)

where tn−1 < y < tn, and this proves the lemma.

Theorem 5.1.1. Let Assumptions 2.4.1 hold. Let θ and θhn be the solutions of
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(5.1.2) and (5.1.3), respectively. Then,

κ‖θ(tm)− θhm‖2
L2(Ω) + k

m∑
n=1

‖Q∇
(
θ̄(tn)− θ̄hn

)
‖2
L2(Ω)

6 Ch2
(
‖θ(tm)‖2

H2(Ω) + ‖θ(0)‖2
H2(Ω) + ‖θt‖2

L2(0,T ;H2(Ω))

)
+ Ck4‖θttt‖2

L2(0,T ;L2(Ω)).

Proof. The first step is to form an error equation: we average (5.1.2) over two

consecutive times, tn and tn−1, and then subtract (5.1.3) from it. Thus,

κ
(
θ̄t(tn)− ∂tθhn, v

)
+
(
Q∇

(
θ̄n − θ̄hn

)
,∇v

)
= 〈Ḡn, v〉 − 〈Ḡn, v〉 = 0, ∀v ∈ Vh. (5.1.9)

To proceed, we define the following,

η(tn) := θ(tn)−Rθ(tn) and ζn := θhn −Rθ(tn). (5.1.10)

These imply the following,

θ(tn)− θhn = (θ(tn)−Rθ(tn))−
(
θhn −Rθ(tn)

)
= η(tn)− ζn. (5.1.11)

We can also write,

θ̄t(tn)− ∂tθhn = θ̄t(tn)− ∂tθ(tn) + ∂t
(
θ(tn)− θhn

)
. (5.1.12)

With this to hand, (5.1.9) can be re-written as,

κ
(
∂t
(
θ(tn)− θhn

)
, v
)

+
(
Q∇(θ̄n − θ̄hn),∇v

)
= −κ

(
θ̄t(tn)− ∂tθ(tn), v

)
, ∀v ∈ Vh.

(5.1.13)
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The term η(tn) is the error in an elliptic problem which depends only on the exact

solution and may be handled as such, whereas the term ζn will be the main object

of the analysis. Using definitions (5.1.10), (5.1.13) now takes the following form,

κ (∂tζn, v) +
(
Q∇ζ̄n,∇v

)
= −κ

(
∂tθ(tn)− θ̄t(tn), v

)
+ κ (∂tη(tn), v) + (Q∇η̄(tn),∇v) , ∀v ∈ Vh, (5.1.14)

where we have moved η(tn) to the right as a “known” term. Also note that the last

term above is zero, by definition.

Next, choose v = 2kζ̄n ∈ Vh in (5.1.14) to get,

κ‖ζn‖2
L2(Ω) − κ‖ζn−1‖2

L2(Ω) + 2k‖Q∇ζ̄n‖2
L2(Ω)

= 2kκ
(
∂tθ(tn)− θ̄t(tn), ζ̄n

)
+ 2kκ

(
∂tη(tn), ζ̄n

)
. (5.1.15)

Summing the above over n = 1, . . . ,m 6 N , yields,

κ‖ζm‖2
L2(Ω) + 2k

m∑
n=1

‖Q∇ζ̄n‖2
L2(Ω)

= κ‖ζ0‖2
L2(Ω) + 2k

m∑
n=1

κ
[(
∂tθ(tn)− θ̄t(tn), ζ̄n

)
+
(
∂tη(tn), ζ̄n

)]
6 κ‖ζ0‖2

L2(Ω) + 2kκ
m∑
n=1

‖∂tθ(tn)− θ̄t(tn)‖L2(Ω)‖ζ̄n‖L2(Ω)

+ 2kκ
m∑
n=1

‖∂tη(tn)‖L2(Ω)‖ζ̄n‖L2(Ω), (5.1.16)

where we have used Cauchy-Schwartz. Next, using Theorem (1.3.1) (Friedrich’s
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inequality) followed by Inequality (1.3.1) with ε = 2, we can write (5.1.16) as,

κ‖ζm‖2
L2(Ω) + 2k

m∑
n=1

‖Q∇ζ̄n‖2
L2(Ω)

6 κ‖ζ0‖2
L2(Ω) + 2C2

Fκ
2Q−1k

m∑
n=1

‖∂tθ(tn)− θ̄t(tn)‖2
L2(Ω) +

k

2

m∑
n=1

‖∇Qζ̄n‖2
L2(Ω)

+ 2C2
Fκ

2Q−1k
m∑
n=1

‖∂tη(tn)‖2
L2(Ω) +

k

2

m∑
n=1

‖Q∇ζ̄n‖2
L2(Ω). (5.1.17)

Rearranging this, yields,

κ‖ζm‖2
L2(Ω) + k

m∑
n=1

‖Q∇ζ̄n‖2
L2(Ω)

6 κ‖ζ0‖2
L2(Ω) + Ck

m∑
n=1

(
‖∂tη(tn)‖2

L2(Ω) + ‖∂tθ(tn)− θ̄t(tn)‖2
L2(Ω)

)
. (5.1.18)

Next we deal with term ‖∂tη(tn)‖2
L2(Ω) above. We aim to bound this term by the

exact solution θ and/or its derivatives. Again using Friedrich’s inequality and the

estimate (5.1.6), gives,

‖∂tη(tn)‖2
L2(Ω) 6 ‖∂tη(tn)‖2

H1(Ω)

6 (CF + 1)‖∇∂tη(tn)‖2
L2(Ω)

6 Ch2‖∂tθ(tn)‖2
H2(Ω). (5.1.19)
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But,

‖∂tθ(tn)‖2
H2(Ω) = (∂tθ(tn), ∂tθ(tn))H2(Ω)

=
1

k2

(∫ tn

tn−1

θt(t)dt,

∫ tn

tn−1

θs(s)ds

)
H2(Ω)

=
1

k2

∫ tn

tn−1

∫ tn

tn−1

(θt(t), θs(s))H2(Ω) dtds

6
1

k2

∫ tn

tn−1

∫ tn

tn−1

‖θt(t)‖H2(Ω)‖θs(s)‖H2(Ω)dtds, (Cauchy-Schwartz)

=
(1

k

∫ tn

tn−1

1‖θt(t)‖H2(Ω)dt
)2

6
1

k2

∫ tn

tn−1

12dt

∫ tn

tn−1

‖θt(t)‖2
H2(Ω)dt =

1

k

∫ tn

tn−1

‖θt(t)‖2
H2(Ω)dt (5.1.20)

Hence, from (5.1.19) and (5.1.20), we have the following estimate,

‖∂tη(tn)‖2
L2(Ω) 6

Ch2

k

∫ tn

tn−1

‖θt(t)‖2
H2(Ω)dt. (5.1.21)

For the term ‖∂tθ(tn) − θ̄t(tn)‖2
L2(Ω) in (5.1.18), using Lemma (5.1.1) with ω = θt,

we can derive the following estimate,

‖∂tθ(tn)− θ̄t(tn)‖2
L2(Ω) =

1

k2

∥∥∥∫ tn

tn−1

θt(t)dt−
k

2
(θt(tn) + θt(tn−1))

∥∥∥2

L2(Ω)

=
1

k2

∫
Ω

∣∣∣k
2

(θt(tn) + θt(tn−1))−
∫ tn

tn−1

θt(t)dt
∣∣∣2dΩ

6
1

k2

∫
Ω

C2k4

(∫ tn

tn−1

1|θttt|dt
)2

dΩ

6 Ck2

∫ tn

tn−1

12dt

∫ tn

tn−1

‖θttt‖2
L2(Ω)dt

= Ck3

∫ tn

tn−1

‖θttt‖2
L2(Ω)dt. (5.1.22)
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Next, substituting (5.1.21) and (5.1.22) in (5.1.18), gives,

κ‖ζm‖2
L2(Ω) + k

m∑
n=1

‖Q∇ζ̄n‖2
L2(Ω) 6 κ‖ζ0‖2

L2(Ω) + Ch2

m∑
n=1

∫ tn

tn−1

‖θt‖2
H2(Ω)dt

+ Ck3

m∑
n=1

∫ tn

tn−1

‖θttt‖2
L2(Ω)dt

6 κ‖ζ0‖2
L2(Ω) + Ch2‖θt‖2

L2(0,T ;H2(Ω)) + Ck4‖θttt‖2
L2(0,T ;L2(Ω)). (5.1.23)

To derive an estimate for ‖ζ0‖2
L2(Ω), we use the fact that,

(
θh0 , v

)
= (θ(0), v) ∀v ∈ Vh, (5.1.24)

which is given in (3.3.6). Thus, we have,

‖ζ0‖2
L2(Ω) =

(
θh0 −Rθ(0), θh0 −Rθ(0)

)
=
(
θh0 , θ

h
0 −Rθ(0)

)
−
(
Rθ(0), θh0 −Rθ(0)

)
=
(
θ(0)−Rθ(0), θh0 −Rθ(0)

)
=
(
η(0), θh0 −Rθ(0)

)
6 ‖η(0)‖L2(Ω)‖θh0 −Rθ(0)‖L2(Ω)

=⇒ ‖ζ0‖L2(Ω) 6 ‖η(0)‖L2(Ω). (5.1.25)

Then, using Friedrich’s inequality and the estimate (5.1.6), for the term ‖ζ(t0)‖2
L2(Ω)

we can write,

‖ζ(t0)‖2
L2(Ω) 6 ‖η(0)‖2

L2(Ω) 6 Ch2‖θ(0)‖2
H2(Ω). (5.1.26)

From (5.1.11), using the triangle inequality, we have,

‖θ(tm)− θhm‖2
L2(Ω) = ‖ζ(tm)− ηm‖2

L2(Ω)

6
(
‖ζ(tm)‖L2(Ω) + ‖ηm‖L2(Ω)

)2

6 2‖ζ(tm)‖2
L2(Ω) + 2‖ηm‖2

L2(Ω). (5.1.27)
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Similarly,

k
m∑
n=1

‖Q∇
(
θ̄(tn)− θ̄hn

)
‖2
L2(Ω) 6 2k

m∑
n=1

‖Q∇ζ̄n‖2
L2(Ω) + 2k

m∑
n=1

‖Q∇η̄(tn)‖2
L2(Ω).

(5.1.28)

Adding (5.1.27) and (5.1.28), gives

‖θ(tm)− θhm‖2
L2(Ω) + k

m∑
n=1

‖Q∇
(
θ̄(tn)− θ̄hn

)
‖2
L2(Ω)

6 2‖η(tm)‖2
L2(Ω) + 2k

m∑
n=1

‖Q∇η̄(tn)‖2
L2(Ω)

+ Ch2‖θ(0)‖2
H2(Ω) + Ch2‖θt‖2

L2(0,T ;H2(Ω)) + Ck4‖θttt‖2
L2(0,T ;L2(Ω)). (5.1.29)

For the term 2‖η(tm)‖2
L2(Ω), we have,

2‖η(tm)‖2
L2(Ω) 6 Ch2‖θ(tm)‖2

H2(Ω). (5.1.30)

Similarly,

2k
m∑
n=1

‖Q∇η̄(tn)‖2
L2(Ω) 6 Ckh2

m∑
n=1

‖θ̄(tn)‖2
H2(Ω) 6 CTh2‖θ‖2

L∞(0,T ;H2(Ω)). (5.1.31)

Finally, substituting (5.1.30) and (5.1.31) in (5.1.29), yields the required estimate,

κ‖θ(tm)− θhm‖2
L2(Ω) + k

m∑
n=1

‖Q∇
(
θ̄(tn)− θ̄hn

)
‖2
L2(Ω)

6 Ch2‖θ(tm)‖2
H2(Ω) + CTh2‖θ‖2

L∞(0,T ;H2(Ω))

+ Ch2‖θ(0)‖2
H2(Ω) + Ch2‖θt‖2

L2(0,T ;H2(Ω)) + Ck4‖θttt‖2
L2(0,T ;L2(Ω))

6 Ch2‖θ(tm)‖2
H2(Ω) + Ch2‖θ(0)‖2

H2(Ω)

+ Ch2‖θt‖2
L2(0,T ;H2(Ω)) + Ck4‖θttt‖2

L2(0,T ;L2(Ω)), (5.1.32)
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and this proves the theorem.

5.2 A priori error analysis for the linear problem

Having derived the error estimate for the heat problem, we now have to hand an

important result towards the main aim of this chapter: to derive an a priori error

estimate for the linear problem. We proceed in a similar fashion as we did with the

heat problem in the previous section. We recall that the weak formulation for the

linear problem is given by (2.4.21), whereas the fully discrete formulation is given

by (3.4.1). We now present the following theorem.

Theorem 5.2.1. Let Assumptions 2.4.1 hold. Let u and uhi be the solutions of

(2.4.21) and (3.4.1), respectively. For k a positive constant, small enough, the fol-

lowing estimate holds:

‖u(ti)− uhi ‖E 6 C(h+ k2)

where the positive constant C depends on exact solutions, derivatives of exact solu-

tions and other constants.

Proof. We define the Ritz projection, Ru(ti) as:

a ((u−Ru)(ti), v) = 0 ∀v ∈ V h, ti ∈ Ik,

where i ∈ {0, . . . , N}, and set, for ti ∈ Ik,

η(ti) := u(ti)−Ru(ti) and ζi := uhi −Ru(ti),
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which then gives,

uhi − u(ti) = ζi − η(ti) (5.2.1)

Note that η and ζ here are analogous to the those used in the previous section,

however they have different meanings. We subtract the weak formulation (2.4.21)

with t = ti from the fully discrete scheme (3.4.1). In the result that follows, we have

added and subtracted the following terms,

k

2

i∑
j=1

(
ϕs(ti − tj)a(u(tj),v) + ϕs(ti − tj−1)a(u(tj−1),v)

)
and

k

2

i∑
j=1

[(
αDϕs(ti − tj)(θ(tj)− θr)I0, ε(v)

)
+
(
αDϕs(ti − tj−1)(θ(tj−1)− θr)I0, ε(v)

)]
. (5.2.2)

These terms give us the error terms uhj − u(tj) and θhj − θ(tj), respectively. In

addition, we are also able to use the trapezoidal rule for approximation. Thus we
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have,

a(uhi − u(ti),v) =
k

2

i∑
j=1

[
ϕs(ti − tj)a(uhj − u(tj),v)

+ ϕs(ti − tj−1)a(uhj−1 − u(tj−1),v)
]

+
(
αD(θhi − θ(ti))I0, ε(v)

)
Ω

− k

2

i∑
j=1

[(
αDϕs(ti − tj)(θhj − θ(tj))I0, ε(v)

)
+
(
αDϕs(ti − tj−1)(θhj−1 − θ(tj−1))I0, ε(v)

)]
−
[ ∫ ti

0

ϕs(ti − s)a(u(s),v)ds

− k

2

i∑
j=1

(
ϕs(ti − tj)a(u(tj),v) + ϕs(ti − tj−1)a(u(tj−1),v)

)]
+

∫ ti

0

(
αDϕs(ti − s)(θ(s)− θr)I0, ε(v)

)
ds

− k

2

i∑
j=1

[(
αDϕs(ti − tj)(θ(tj)− θr)I0, ε(v)

)
+
(
αDϕs(ti − tj−1)(θ(tj−1)− θr)I0, ε(v)

)]
. (5.2.3)
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Using (5.2.1), this can be re-written as,

a(ζi,v) = a(η(ti),v) +
k

2

i∑
j=1

[ϕs(ti − tj)a(ζj,v) + ϕs(ti − tj−1)a(ζj−1,v)]

− k

2

i∑
j=1

[ϕs(ti − tj)a(η(tj),v) + ϕs(ti − tj−1)a(η(tj−1),v)] +
(
αD(θhi − θ(ti))I0, ε(v)

)
Ω

− k

2

i∑
j=1

[(
αDϕs(ti − tj)(θhj − θ(tj))I0, ε(v)

)
+
(
αDϕs(ti − tj−1)(θhj−1 − θ(tj−1))I0, ε(v)

)]
−
[ ∫ ti

0

ϕs(ti − s)a(u(s),v)ds

− k

2

i∑
j=1

[
ϕs(ti − tj)a(u(tj),v) + ϕs(ti − tj−1)a(u(tj−1),v)

]]
+

∫ ti

0

(αDϕs(ti − s)(θ(s)− θr)I0, ε(v)) ds

− k

2

i∑
j=1

[(
αDϕs(ti − tj)(θ(tj)− θr)I0, ε(v)

)
+
(
αDϕs(ti − tj−1)(θ(tj−1)− θr)I0, ε(v)

)]
. (5.2.4)
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Next, put v = ζi ∈ V h above, to get

a(ζi, ζi) = a(η(ti), ζi) +
k

2

i∑
j=1

[
ϕs(ti − tj)a(ζj, ζi) + ϕs(ti − tj−1)a(ζj−1, ζi)

]
− k

2

i∑
j=1

[
ϕs(ti − tj)a(η(tj), ζi) + ϕs(ti − tj−1)a(η(tj−1), ζi)

]
+
(
αD(θhi − θ(ti))I0, ε(ζi)

)
Ω

− k

2

i∑
j=1

[(
αDϕs(ti − tj)(θhj − θ(tj))I0, ε(ζi)

)
+
(
αDϕs(ti − tj−1)(θhj−1 − θ(tj−1))I0, ε(ζi)

)]
−
[ ∫ ti

0

ϕs(ti − s)a(u(s), ζi)ds

− k

2

i∑
j=1

(
ϕs(ti − tj)a(u(tj), ζi) + ϕs(ti − tj−1)a(u(tj−1), ζi)

)]
+

∫ ti

0

(
αDϕs(ti − s)(θ(s)− θr)I0, ε(ζi)

)
ds

− k

2

i∑
j=1

[(
αDϕs(ti − tj)(θ(tj)− θr)I0, ε(ζi)

)
+
(
αDϕs(ti − tj−1)(θ(tj−1)− θr)I0, ε(ζi)

)]
. (5.2.5)

The first two sums above give,

k

2

i∑
j=1

[ϕs(ti − tj)a(ζj, ζi) + ϕs(ti − tj−1)a(ζj−1, ζi)]

− k

2

i∑
j=1

[ϕs(ti − tj)a(η(tj), ζi) + ϕs(ti − tj−1)a(η(tj−1), ζi)]

= k

i∑
j=0

ϕs(ti − tj)a(ζj, ζi)− k
i∑

j=0

ϕs(ti − tj)a(η(tj), ζi) +
k

2
ϕs(ti)a(η(t0), ζi)

− k

2
ϕs(ti)a(ζ0, ζi)−

k

2
ϕs(0)a(ζi, ζi) +

k

2
ϕs(0)a(η(ti), ζi). (5.2.6)
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Substituting this in (5.2.5) and using the definition of the energy norm, that is

‖ · ‖2
E = a(·, ·), yields,

‖ζi‖2
E 6 ‖η(ti)‖E‖ζi‖E + C1k

i∑
j=0

‖ζj‖E‖ζi‖E + C1k

i∑
j=0

‖η(tj)‖E‖ζi‖E

+
k

2
ϕs(ti)‖ζ0‖E‖ζi‖E +

k

2
ϕs(ti)‖η(t0)‖E‖ζi‖E +

k

2
ϕs(0)‖ζi‖2

E +
k

2
ϕs(0)‖η(ti)‖E‖ζi‖E

+ C(α,D)‖θhi − θ(ti)‖L2(Ω)‖ζi‖E + C(α,D)C1k

i∑
j=1

‖θhj − θ(tj)‖L2(Ω)‖ζi‖E

+ C(α,D)C2k
i∑

j=1

‖θhj−1 − θ(tj−1)‖L2(Ω)‖ζi‖E

+
i∑

j=1

[
Ck2

∫ tj

tj−1

| (ϕs(ti − s)a(u(s), ζi))
′′ |ds

]

+
i∑

j=1

[
Ck2

∫ tj

tj−1

| ((αDϕs(ti − s)(θ(s)− θr)I0, ε(ζi)))′′ |ds

]
. (5.2.7)

Here C1 = C2 = max
06j6i

ϕs(ti − tj). The last two terms above have been obtained by

applying the trapezoidal rule (Lemma 5.1.1) to the appropriate terms in (5.2.5).

Thus, we have

∫ ti

0

ϕs(ti − s)a(u(s),v)ds

− k

2

i∑
j=1

[ϕs(ti − tj)a(u(tj),v) + ϕs(ti − tj−1)a(u(tj−1),v)]

6
i∑

j=1

[
Ck2

∫ tj

tj−1

| (ϕs(ti − s)a(u(s), ζi))
′′ |ds

]
, (5.2.8)
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and,

∫ ti

0

(
αDϕs(ti − s)(θ(s)− θr)I0, ε(ζi)

)
ds

− k

2

i∑
j=1

[(
αDϕs(ti − tj)(θ(tj)− θr)I0, ε(ζi)

)
+
(
αDϕs(ti − tj−1)(θ(tj−1)− θr)I0, ε(ζi)

)]
6

i∑
j=1

[
Ck2

∫ tj

tj−1

| ((αDϕs(ti − s)(θ(s)− θr)I0, ε(ζi)))′′ |ds

]
. (5.2.9)

Labelling the terms on the right-hand side of (5.2.7) in order as I, II, . . . , XII, using

the Inequality 1.3.1 we can derive the following estimates by considering these terms

individually:

Term I:

‖η(ti)‖E‖ζi‖E 6
1

2ε12
‖η(ti)‖2

E +
2ε1
2
‖ζi‖2

E

=
1

4ε1
‖η(ti)‖2

E + ε1‖ζi‖2
E. (5.2.10)

Term II:

C1k
i∑

j=0

‖ζj‖E‖ζi‖E 6 C1k

[
i∑

j=0

(
C1T

2ε2

1

2
‖ζj‖2

E +
2ε2
C1T

1

2
‖ζi‖2

E

)]

= C1k
C1T

4ε2

i∑
j=0

‖ζj‖2
E + C1k

2ε2
C1T

1

2

i∑
j=0

‖ζi‖2
E

6
CkT

4ε2

i−1∑
j=0

‖ζj‖2
E +

CkT

4ε2
‖ζi‖2

E + ε2‖ζi‖2
E. (5.2.11)
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Term III:

C1k
i∑

j=0

‖η(tj)‖E‖ζi‖E 6 C1k

[
i∑

j=0

(
C1T

2ε3

1

2
‖η(tj)‖2

E +
2ε3
C1T

1

2
‖ζi‖2

E

)]

= C1k
C1T

2ε3

1

2

i∑
j=0

‖η(tj)‖2
E + C1k

2ε3
C1T

1

2

i∑
j=0

‖ζi‖2
E

6
CTk

4ε3

i∑
j=0

‖η(tj)‖2
E + ε3‖ζi‖2

E. (5.2.12)

Term IV:

k

2
ϕs(ti)‖ζ0‖E‖ζi‖E 6 C̃ϕk

(
C̃ϕk

2ε4

1

2
‖ζ0‖2

E +
2ε4

C̃ϕk

1

2
‖ζi‖2

E

)

=
Ck2

4ε4
‖ζ0‖2

E + ε4‖ζi‖2
E, (5.2.13)

where 1
2
ϕs(ti) 6 1

2
|ϕ′(0)| = C̃ϕ. Here we first need to deal with the error term ‖ζ0‖E.

From (2.4.21) with t = 0 and (3.4.1) with i = 0, and v = ζ0 ∈ V h, we get

a
(
uh0 −Ru(0), ζ0

)
= a
(
u(0)−Ru(0), ζ0

)
+
(
αD(θh0 − θ(0))I0, ε(ζ0)

)
. (5.2.14)

This then gives,

‖ζ0‖2
E 6 ‖η(0)‖E‖ζ0‖E + C(α,D)‖θh0 − θ(0)‖L2(Ω)

=
ε

2
‖η(0)‖2

E +
1

2ε
‖ζ0‖2

E +
1

2ε
‖ζ0‖2

E +
ε

2
Ch2‖θ(0)‖2

H2(Ω), (5.2.15)

which, with ε = 2, becomes

‖ζ0‖2
E 6 2‖η(0)‖2

E + Ch2‖θ(0)‖2
H2(Ω) 6 Ch2‖θ(0)‖2

H2(Ω). (5.2.16)
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Term V:

k

2
ϕs(ti)‖η(t0)‖E‖ζi‖E 6 C̃ϕk

(
C̃ϕk

2ε5

1

2
‖η(t0)‖2

E +
2ε5

C̃ϕk

1

2
‖ζi‖2

E

)

=
Ck2

4ε5
‖η(t0)‖2

E + ε5‖ζi‖2
E, (5.2.17)

Term VI:

k

2
ϕs(0)‖ζi‖2

E 6 Ck‖ζi‖2
E

Term VII:

k

2
ϕs(0)‖η(ti)‖E‖ζi‖E 6 Ck

(
Ck

2ε6

1

2
‖η(ti)‖2

E +
2ε6
Ck

1

2
‖ζi‖2

E

)
=
Ck2

2ε6
‖η(ti)‖2

E + ε6‖ζi‖2
E. (5.2.18)

Term VIII:

C‖θhi − θ(ti)‖L2(Ω)‖ζi‖E 6 C

(
C

2ε7

1

2
‖θhi − θ(ti)‖2

L2(Ω) +
2ε7
C

1

2
‖ζi‖2

E

)
=

C

4ε7
‖θhi − θ(ti)‖2

L2(Ω) + ε7‖ζi‖2
E. (5.2.19)

Term IX:

Ck

i∑
j=1

‖θhj − θ(tj)‖L2(Ω)‖ζi‖E 6 Ck

i∑
j=1

(
CT

2ε8

1

2
‖θhj − θ(θj)‖2

L2(Ω) +
2ε8
CT

1

2
‖ζi‖2

E

)

6
CkT

4ε8

i∑
j=1

‖θhj − θ(tj)‖2
L2(Ω) + ε8‖ζi‖2

E. (5.2.20)



5.2 A priori error analysis for the linear problem 80

Term X:

Ck
i∑
j=i

‖θhj−1 − θ(tj−1)‖L2(Ω)‖ζi‖E 6 Ck

i−1∑
j=0

(
CT

2ε9

1

2
‖θhj − θ(θj)‖2

L2(Ω) +
2ε9
CT

1

2
‖ζi‖2

E

)

6
CkT

4ε9

i−1∑
j=0

‖θhj − θ(tj)‖2
L2(Ω) + ε9‖ζi‖2

E. (5.2.21)

Term XI:

∫ tj

tj−1

|
(
ϕs(ti − s)a(u(s), ζi)

)′′|ds 6 C ′′′ϕ

∫ tj

tj−1

(
‖u(s)‖E + ‖u′(s)‖E + ‖u′′(s)‖E

)
‖ζi‖Eds

6
√

3C ′′′ϕ

∫ tj

tj−1

(
‖u(s)‖2

E + ‖u′(s)‖2
E + ‖u′′(s)‖2

E

) 1
2
ds‖ζi‖E

6
CTk

2ε10

1

2

(∫ tj

tj−1

(
‖u(s)‖2

E + ‖u′(s)‖2
E + ‖u′′(s)‖2

E

) 1
2
ds

)2

+
2ε10

CTk

1

2
‖ζi‖2

E

6
CTk

4ε10

(∫ tj

tj−1

12ds

)∫ tj

tj−1

(
‖u(s)‖2

E + ‖u′(s)‖2
E + ‖u′′(s)‖2

E

)
ds+

ε10

CTk
‖ζi‖2

E

=
CTk2

4ε10

∫ tj

tj−1

(
‖u(s)‖2

E + ‖u′(s)‖2
E + ‖u′′(s)‖2

E

)
ds+

ε10

CTk
‖ζi‖2

E. (5.2.22)

The notations: “ ′ ”, “ ′′ ” and “ ′′′ ”, denote the first, second and third order

derivatives, respectively. Hence,

i∑
j=1

Ck2

∫ tj

tj−1

|
(
ϕs(ti − s)a(u(s), ζi)

)′′|ds 6 CTk4

4ε9
‖u‖H2(0,T ;E) +

kε10

T

i∑
j=1

‖ζi‖2
E

6
CTk4

4ε10

‖u‖2
H2(0,T ;E) + ε10‖ζi‖2

E. (5.2.23)
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Term XII:

∫ tj

tj−1

|
(
αDϕs(ti − s)(θ(s)− θr)I0, ε(ζi)

)′′|ds
6 C(α,D)C ′′′ϕ

∫ tj

tj−1

(
‖θ(s)− θr‖L2(Ω) + ‖(θ(s)− θr)′‖L2(Ω)

+ ‖(θ(s)− θr)′′‖L2(Ω)

)
‖ζi‖Eds

6
√

3C(α,D)C ′′′ϕ

∫ tj

tj−1

(
‖θ(s)− θr‖2

L2(Ω) + ‖(θ(s)− θr)′‖2
L2(Ω)

+ ‖(θ(s)− θr)′′‖2
L2(Ω)

) 1
2
ds‖ζi‖E

6
CTk

2ε11

1

2

(∫ tj

tj−1

(
‖θ(s)− θr‖2

L2(Ω) + ‖(θ(s)− θr)′‖2
L2(Ω) + ‖(θ(s)− θr)′′‖2

L2(Ω)

) 1
2 ds

)2

+
ε11

CTk
‖ζi‖2

E

6
CTk2

4ε11

∫ tj

tj−1

(
‖θ(s)− θr‖2

L2(Ω) + ‖(θ(s)− θr)′‖2
L2(Ω) + ‖(θ(s)− θr)′′‖2

L2(Ω)

)
ds

+
ε11

CTk
‖ζi‖2

E. (5.2.24)

Hence,

i∑
j=1

Ck2

∫ tj

tj−1

|
(
αDϕs(ti − s)(θ(s)− θr)I0, ε(ζi)

)′′|ds
6
CTk4

4ε11

‖θ − θr‖2
H2(0,T ;L2(Ω)) +

kε11

T

i∑
j=1

‖ζi‖2
E

6
CTk4

4ε11

‖θ − θr‖2
H2(0,T ;L2(Ω)) + ε11‖ζi‖2

E. (5.2.25)

Substitute these estimates back in (5.2.7), by choosing ε1 = ε2 = . . . = ε11 =
1

12
. We

also make use of the estimate ‖η(t)‖ 6 CRh|u(t)|H2(Ω), see Shaw et al. (1997). Then,
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taking ‖ζi‖2
E to the left as a common factor, we can write (5.2.7) as,

(
1

12
− k
(3CT

11
+ C

))
‖ζi‖2

E

6 Ch2|u(ti)|2H2(Ω) + CT 2h2|u|2L∞(0,T ;H2(Ω)) + Ch2k2|u(t0)|2H2(Ω) + Ch2k2‖θ(0)‖2
H2(Ω)

+ Ch2k2|u(ti)|H2(Ω) + C‖θhi − θ(ti)‖2
L2(Ω) + CTk

i∑
j=1

‖θhj − θ(tj)‖2
L2(Ω)

+ CTk
i−1∑
j=0

‖θhj − θ(tj)‖2
L2(Ω) + CTk4‖u‖2

H2(0,T ;E) + CTk4‖θ − θr‖2
H2(0,T ;L2(Ω))

+ CTk
i−1∑
j=0

‖ζj‖2
E. (5.2.26)

Let ε0 :=
1

12
− k
(3CT

11
+ C

)
. We require that ε0 > 0, which implies that k <

1

12C
.

Dividing (5.2.26) through by ε0, and recalling that T is also a constant, yields

‖ζi‖2
E 6 Ch2|u(ti)|2H2(Ω) + Ch2|u|2L∞(0,T ;H2(Ω)) + Ch2k2|u(t0)|2H2(Ω) + Ch2k2‖θ(0)‖2

H2(Ω)

+ Ch2k2|u(ti)|2H2(Ω) + C‖θhi − θ(ti)‖2
L2(Ω) + Ck

i∑
j=1

‖θhj − θ(tj)‖2
L2(Ω)

+ Ck
i−1∑
j=0

‖θhj − θ(tj)‖2
L2(Ω) + Ck4‖u‖2

H2(0,T ;E) + Ck4‖θ − θr‖2
H2(0,T ;L2(Ω))

+ Ck
i−1∑
j=0

‖ζj‖2
E. (5.2.27)
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Substituting the result for the heat error estimate from (5.1.32) gives,

‖ζi‖2
E 6 Ch2|u(ti)|2H2(Ω) + Ch2|u|2L∞(0,T ;H2(Ω)) + Ch2k2|u(t0)|2H2(Ω) + Ch2k2‖θ(0)‖2

H2(Ω)

+ Ch2k2|u(ti)|2H2(Ω) + Ch2‖θ‖2
L∞(0,T ;H2(Ω)) + Ch2‖θ(0)‖2

H2(Ω)

+ Ch2‖θt‖2
L2(0,T ;H2(Ω)) + Ck4‖θttt‖2

L2(0,T ;L2(Ω)) + Ck4‖u‖2
H2(0,T ;E)

+ Ck4‖θ − θr‖2
H2(0,T ;L2(Ω)) + Ck

i−1∑
j=0

‖ζj‖2
E

6 C(h2 + k4) + Ck
i−1∑
j=0

‖ζj‖2
E. (5.2.28)

And using the Gronwall inequality (Lemma (1.4.2)), yields

‖ζi‖2
E 6 Cec1T (h2 + k4). (5.2.29)

Using the triangle inequality, we can write

‖u(ti)− uhi ‖2
E 6 2‖η(ti)‖2

E + 2‖ζi‖2
E

6 Ch2|u|2H2(Ω) + Cec1T (h2 + k4). (5.2.30)

Finally, taking square roots, we are arrive at,

‖u(ti)− uhi ‖E 6 C(h+ k2). (5.2.31)

This completes the proof.
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5.3 Numerical results

In this section we derive an algorithm which computes the fully approximate solution

uhi for the discrete linear problem (3.4.1). The first summation on the right-hand

side of (3.4.1), including the factor k
2
, can be written as

k

2
αϕs(0)F̂ i + kα

i−1∑
j=1

ϕs(ti − tj)F̂ j +
k

2
αϕs(ti)F̂ 0, (5.3.1)

where

F̂ i =
(
D(θhi − θr)I0, ε(v)

)
Ω
. (5.3.2)

Similarly, for F̂ j and F̂ 0, with ti replaced with tj and t0 = 0, respectively. The sum

of the last two terms in (5.3.1) gives,

kα
i−1∑
j=1

ϕs(ti − tj)F̂ j +
k

2
αϕs(ti)F̂ 0

=

Nϕ∑
q=1

[
k

2
ααqϕqe

−αqtiF̂ 0 +
i−1∑
j=1

kααqϕqe
−αq(ti−tj)F̂ j

]

=

Nϕ∑
q=1

Ĥ iq. (5.3.3)

Using the identity (3.2.10), we can write

Ĥ iq = e−αqkĤ(i−1)q + kααqϕqe
−αq(ti−ti−1)F̂ i−1, (5.3.4)

because

Ĥ(i−1)q =
k

2
ααqϕqe

−αqti−1F̂ 0 +
i−2∑
j=1

kααqϕqe
−αq(ti−1−tj)F̂ j. (5.3.5)
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The last recursive relation is derived mainly to save computer memory thus increas-

ing the efficiency of the computer code. We are now able to write an algorithm for

solving the linear coupled problem.

Algorithm 2: Linear problem (no reduced time)

————————————————————————————

1. Given θ(0), i.e temperature at t=0

2. Find F̂0

3. Solve AU0 = L0 + αF̂0, i.e find displacement at t=0

4. Initialize Hq = k
2
αqϕqe

−αqt1U0, q = 1, . . . , Nq

5. Initialize Ĥq = k
2
ααqϕqe

−αqt1 F̂0, q = 1, . . . , Nq

6. for i=1,...,N

7. Solve A(1− k
2
ϕs(0))Ui = Li + A

∑Nq
q=1 Hq −

∑Nq
q=1 Ĥq + α(1− k

2
ϕs(0))F̂i

8. update Hq

9. Hq ← e−αqkHq + kαqϕqe
−αqkUi

10. update Ĥq

11. Ĥq ← e−αqkĤq + kααqϕqe
−αqkF̂i

12. next i

————————————————————————————

As the above algorithm shows, we first give the initial condition for temperature:

this is just the exact solution for temperature θ computed at t = 0. With this to

hand, we can proceed to compute the displacement at t = 0 , U0, as shown in line

3 of the algorithm, by feeding θ(0) in the thermal load vector given by (5.3.2). Li

is the load vector. Using the recursive relations 5.3.4 and 3.2.11 we make two ini-

tialisations as shown in lines 4 and 5. Then, inside the time loop, for each discrete

time, we solve the matrix equation shown in line 7 of algorithm, which corresponds

to (3.4.1). We also update Hq and Ĥq. In order to see that the algorithm conver-
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gences, we consider the following example of exact solution:

u(x, t) = (5t(x+ 3y), 2t(4x− 5y)) for displacement, and

θ(x, t) = (1 + 3t)(4x− 2y) for heat.

Table 5.1 shows the max error. As we can see, there is second order convergence

vertically, that is, as the number of time steps is doubled the max error is reduced

by a factor of four in each column. This is because of the trapezoidal rule for ap-

proximation and also due to the exponentials in the algorithm. Also recall that

the heat conduction problem is discretized using the Crank-Nicolson method which

gives a second order convergence for the error when computing the finite element

approximate value for temperature. There are no spatial errors present since the

exact solution is linear in spatial variables. For computational purposes, throughout

this thesis, the value of the thermal expansion coefficient is taken to be α = 0.001

and the reference temperature is taken to be θr=20. We can see that the error has

some dependency on the parameter h. The error changes slightly as the mesh size is

changed. This is probably due to the fact that the integrals involved are not com-

puted exactly. Only one quadrature point is used to compute the integrals (center

of gravity). This is evident in all three tables.

Table 5.1: Max displacement errors × 10−3, linear problem

mesh size
time
steps 2 4 8 16 32 64

2 0.150173 0.160440 0.165797 0.168077 0.168663 0.168879
4 0.037541 0.040108 0.041447 0.042017 0.042163 0.042217
8 0.009385 0.010026 0.010361 0.010504 0.010540 0.010554
16 0.002346 0.002506 0.002590 0.002626 0.002635 0.002638
32 0.000586 0.000626 0.000647 0.000656 0.000658 0.000659
64 0.000146 0.000156 0.000161 0.000164 0.000164 0.000164

Table 5.3 shows the error in the L2 norm. We see that, along the diagonal as the

mesh and time steps are doubled, the error is reduced by a factor of four. The error

in the L2 norm is bounded by C(h2 + k2), this is due to the fact that as one moves
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from L2 to H1, a power of h is lost, due to gradients. The error estimate that we de-

rived earlier in the energy norm, which is equivalent to the H1 norm, was C(h+k2).

The errors in the L2 and H1 norm are computed using their corresponding norm

definitions which were introduced in Chapter 1. Thus, for the L2 error we have,

max
16i6N

‖u(ti)− uhi ‖L2(Ω) = max
16i6N

(∫
Ω

|u(ti)− uhi |2dΩ
)1/2

. (5.3.6)

This means that for each discrete time we compute the L2 error by adding the

contributions from all elements of the mesh, in the form
∫
e
|u(ti)−uhi |2de, and then

finally taking the maximum value over all times.

Table 5.2 shows the error in the H1 norm. As the mesh size and time steps are

Table 5.2: Displacement errors in the H1 norm, ×10−3: linear problem

mesh size
time
steps 2 4 8 16 32 64

2 0.339976 0.382661 0.402686 0.414343 0.420468 0.423402
4 0.084989 0.095660 0.100666 0.103580 0.105111 0.105845
8 0.021247 0.023914 0.025166 0.025894 0.026277 0.026460
16 0.005311 0.005978 0.006291 0.006473 0.006569 0.006615
32 0.001327 0.001494 0.001572 0.001618 0.001642 0.001653
64 0.000331 0.000373 0.000393 0.000404 0.000410 0.000413

Table 5.3: Displacement errors in the L2 norm, ×10−3: linear problem

mesh size
time
steps 2 4 8 16 32 64

2 0.059182 0.071358 0.076145 0.078202 0.079002 0.079290
4 0.014794 0.017838 0.019035 0.019549 0.019749 0.019821
8 0.003698 0.004459 0.004758 0.004887 0.004937 0.004955
16 0.000924 0.001114 0.001189 0.001221 0.001234 0.001238
32 0.000231 0.000278 0.000297 0.000305 0.000308 0.000309
64 0.000057 0.000069 0.000074 0.000076 0.000077 0.000077

doubled, we see that the error is reduced by a factor of four. This is probably due



5.4 Summary 88

to the fact that the exact solution is linear in space. For a solution which is not

linear in space one would expect the error along the diagonal to reduce by a factor

of two, consistent with the error estimate C(h+ k2); we explain why. Taking h as a

measure, then we are interested to know what is the value of k, such that we can get

a solution without loosing any significant accuracy in a reasonable amount of time.

If we take h = k, we obtain an accuracy h+ k2 ∼ h, but then we need 1/k2 = 1/h2

time steps, which are many. On the other hand, if we take h = k2, then we obtain

an accuracy h+ k2 = 2h, in which case one needs 1/k2 = 1/h time steps which are

by far less than before. In both cases we get an estimate C(h), with the second

choice being much more efficient. Now halving h, would half the previous value of

error. For the H1 error we have,

max
16i6N

‖u(ti)− uhi ‖H1(Ω) = max
16i6N

(∫
Ω

(
|u(ti)− uhi |2 + |∇(u(ti)− uhi )|2

)
dΩ
)1/2

.

(5.3.7)

The procedure for computing this is similar to that for computing (5.3.6), with the

only difference being the presence of gradients.

We shall use (5.3.6) and (5.3.7) to compute the L2 and H1 errors throughout

this thesis.

5.4 Summary

Error estimates for the heat conduction and the linear coupled problem were derived.

Some numerical results were shown as well, indicating that the algorithm works

correctly: the results are as expected.



Chapter 6

Stability Analysis for the

Nonlinear Problem

6.1 The continuous formulation

The aim here is to derive a stability estimate for the continuous formulation for

the nonlinear coupled problem 2.4.22, which involves the reduced time. We derive

a stability bound in the energy norm for the exact solution u. We now present a

theorem giving a stability estimate for this problem.

Theorem 6.1.1. Let Assumptions 2.4.1 and Corollary 2.2.1 hold and let α > 0.

Also assume that θ > θg − 51.6, in which case the shift factor
1

ψ(θ)
has an upper

bound, that is,
∥∥ 1

ψ(θ)

∥∥
L∞([0,T ]×Ω)

6 Cρ. Then for u, the exact solution of (2.4.22),

we have the following bound in energy norm:

‖u(t)‖E 6 C1e
C2T , (6.1.1)
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where C1 and C2 are non-negative constants. C1 depends on initial conditions, data

and other constants.

Proof. Choose v = u(t) in (2.4.22) and use the definition of the energy norm,

‖ · ‖2
E = a(·, ·), to get,

‖u(t)‖2
E = L(t;u(t)) +

∫ t

0

(
Dϕs(ρ(t)− ρ(s))ε(u(s)), ε(u(t))

)
Ω
ds

+
(
αD(θ(t)− θr)I0, ε(u(t))

)
Ω

−
∫ t

0

(
αDϕs(ρ(t)− ρ(s))(θ(s)− θr)I0, ε(u(t))

)
Ω
ds. (6.1.2)

Next step is to bound the terms on the right. Thus, labelling them in order as

I, II, III and IV , we can now derive the following estimates:

Term I: Using the definition of the dual norm we can write,

|〈L,u〉| 6 ‖L‖E′‖u(t)‖E. (6.1.3)

Term II: First, note that we have ϕs(ρ(t)− ρ(s)) =

Nϕ∑
q=1

αqϕqe
−αq(ρ(t)−ρ(s))ρ′(s). Us-

ing the upper bound of ρ′(s) = 1/ψ(θ) denoted by Cρ we have,

‖ϕs(ρ(t)− ρ(s))‖L∞([0,T ]×Ω) 6
( Nϕ∑
q=1

αqϕq

)
Cρ =: C ′ϕCρ. (6.1.4)

Then,

∫ t

0

(
Dϕs(ρ(t)− ρ(s))ε(u(s)), ε(u(t))

)
Ω
ds

6
∥∥ϕs(ρ(t)− ρ(s))

∥∥
L∞(0,T ;L∞(Ω))

∫ t

0

∣∣a((u(s),u(t))
∣∣ds

6 C ′ϕCρ‖u(t)‖E
∫ t

0

‖u(s)‖Eds. (6.1.5)
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Term III: Similarly to the linear problem, since α > 0, using Cauchy-Schwartz we

have,

(
αD(θ(t)− θr)I0,ε(u(t))

)
Ω

=

∫
Ω

αD1/2I0 : D1/2ε(u(t))(θ(t)− θr)dΩ

6 α‖D1/2I0‖L∞(Ω)‖D1/2ε(u(t))‖L2(Ω)‖θ(t)− θr‖L2(Ω)

6 C(α,D)‖u(t)‖E‖θ(t)− θr‖L2(Ω), (6.1.6)

where α‖D1/2I0‖L∞(Ω) 6 C(α,D), a positive constant.

Term IV:

−
∫ t

0

(
αDϕs(ρ(t)− ρ(s))(θ(s)− θr)I0, ε(u(t))

)
Ω
ds

6 TC(α,D)
∥∥ϕs(ρ(t)− ρ(s))

∥∥
L∞(0,T ;L∞(Ω))

‖θ − θr‖L∞(0,T ;L2(Ω))‖u(t)‖E

6 TC(α,D)C ′ϕCρ‖θ − θr‖L∞(0,T ;L2(Ω))‖u(t)‖E. (6.1.7)

With these estimates, (6.1.2) now becomes,

‖u(t)‖E 6 ‖L‖E′ + C ′ϕCρ

∫ t

0

‖u(s)‖Eds+ C(α,D)‖θ(t)− θr‖L2(Ω)

+ TC(α,D)C ′ϕCρ‖θ − θr‖L∞(0,T ;L2(Ω))

6 ‖L‖E′ + C‖θ(t)− θr‖L2(Ω) + C‖θ − θr‖L∞(0,T ;L2(Ω)) + C

∫ t

0

‖u(s)‖Eds.

(6.1.8)

Next, using the triangle inequality and the bound on temperature given by (4.1.13),

we can write,

‖θ(t)− θr‖2
L2(Ω) 6 2‖θ(t)‖2

L2(Ω) + 2‖θr‖2
L2(Ω)

6 2‖θ(0)‖2
L2(Ω) + 2‖G(s)‖2

L2(0,t;A′) + |θr|2Vol(Ω), (6.1.9)
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and, taking the supremum over all times of this, gives,

‖θ − θr‖2
L∞(0,T ;L2(Ω)) 6 2‖θ(0)‖2

L∞(0,T ;L2(Ω)) + 2T‖G‖2
L2(0,T ;A′) + |θr|2Vol(Ω).

(6.1.10)

Substituting (6.1.9) and (6.1.10) (after taking square roots) in (6.1.8), and using the

Gronwall’s lemma (1.4.1), gives,

‖u(t)‖E 6 C̃eCT , (6.1.11)

where C̃ > 0 represents everything on the right-hand side of (6.1.8), excluding the

last (integral) term. This proves the theorem.

6.2 The fully-discrete formulation

In this section we derive a stability estimate for the fully-discrete formulation given

by (3.4.2). This can be re-written in a more explicit form as,

find, for each ti, i = 1, . . . , N , a uhi ∈ V h such that,

a(uhi ,v) = L(ti;v)

+
k

2

i∑
j=1

((
Dϕs(ρ

h
i − ρhj )ε(uhj ), ε(v)

)
Ω

)
+
k

2

i∑
j=1

((
Dϕs(ρ

h
i − ρhj−1)ε(uhj−1), ε(v)

)
Ω

)
+
(
αD(θhi − θr)I0, ε(v)

)
Ω
− k

2

i∑
j=1

((
αDϕs(ρ

h
i − ρhj )(θhj − θr)I0, ε(v)

))
− k

2

i∑
j=1

((
αDϕs(ρ

h
i − ρhj−1)(θhj−1 − θr)I0, ε(v)

))
∀v ∈ V h. (6.2.1)
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This may be re-arranged further as,

a(uhi ,v) = L(t;v) +
k

2

(
Dϕs(0)ε(uhi ), ε(v)

)
Ω
− k

2

(
Dϕs(ρ

h
i − ρh0)ε(uh0), ε(v)

)
Ω

+ k

i−1∑
j=0

(
Dϕs(ρ

h
i − ρhj )ε(uhj ), ε(v)

)
Ω

+
(
αD(θhi − θr)I0, ε(v)

)
Ω

− k

2

i∑
j=1

(
αDϕs(ρ

h
i − ρhj )(θhj − θr)I0, ε(v)

)
Ω

− k

2

i−1∑
j=0

(
αDϕs(ρ

h
i − ρhj )(θhj − θr)I0, ε(v)

)
Ω
. (6.2.2)

We are now able to introduce the following theorem.

Theorem 6.2.1. Let Assumptions 2.4.1 and Corollary 2.2.1 hold and let α > 0.

Also assume that θ > θg − 51.6, in which case the shift factor
1

ψ(θhi )
has an upper

bound, that is,
∥∥ 1

ψ(θhi )

∥∥
L∞([0,T ]×Ω)

6 Cρ. Then for uhi , the approximate solution of

(6.2.2), for k small enough, we have the following bound in energy norm:

‖uhi ‖E 6 C̃1e
CT , (6.2.3)

where C̃1 and C are non-negative constants. C̃1 depends on data, initial conditions

and other constants.

Proof. First, choose v = uhi above. Then, labelling the terms on the right in order

as I,II,III,IV ,V ,V I and V II, the following bounds can be derived for each of the

terms.

Term I: Using the definition of the dual norm we have,

|L(ti;u
h
i )| 6 ‖L‖E′‖uhi ‖E. (6.2.4)
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Term II:

k

2

(
Dϕs(0)ε(uhi ), ε(u

h
i )
)

Ω
6
k

2
‖ϕs(0)‖L∞(0,T ;L∞(Ω))

(
Dε(uhi ), ε(u

h
i )
)

Ω

6
k

2
C ′ϕCρ‖uhi ‖2

E, (6.2.5)

where Cρ is an upper bound for
1

ψ(θhj )
.

Term III:

−k
2

(
Dϕs(ρ

h
i − ρh0)ε(uh0), ε(v)

)
Ω
6
k

2
‖ϕs(ρhi − ρh0)‖L∞(0,T ;L∞(Ω))‖uh0‖E‖uhi ‖E

6
k

2
C ′ϕCρ‖uh0‖E‖uhi ‖E. (6.2.6)

Term IV:

k
i−1∑
j=0

(
Dϕs(ρ

h
i − ρhj )ε(uhj ), ε(v)

)
Ω
6 kC ′ϕCρ

i−1∑
j=0

(
Dε(uhj ), ε(u

h
i )
)

Ω

6 kC ′ϕCρ

i−1∑
j=0

‖uhj ‖E‖uhi ‖E. (6.2.7)

Term V:

(
αD(θhi − θr)I0, ε(v)

)
Ω
6 C(α,D)‖θhi − θr‖L2(Ω)‖uhi ‖E. (6.2.8)

Term VI:

−k
2

i∑
j=1

(
αDϕs(ρ

h
i − ρhj )(θhj − θr)I0, ε(v)

)
Ω
6
k

2
C ′ϕCρ

i∑
j=1

‖θhj − θr‖L2(Ω)‖uhi ‖E.

(6.2.9)

The same estimate can be derived for term V II as for the term V I. Putting all of
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these estimates together, using (6.2.2), gives

(
1− Ck

)
‖uhi ‖E 6 ‖L‖E′ + CT‖uh0‖E + C‖θhi − θr‖L2(Ω) + CT max

16j6i
‖θhj − θr‖L2(Ω)

+ CT max
06j6i−1

‖θhj − θr‖L2(Ω) + Ck
i−1∑
j=0

‖uhj ‖E. (6.2.10)

We require that 1 − Ck > 0, which implies that k <
1

C
. Dividing (6.2.10) through

by 1− Ck, and using the bound on temperature given by (4.2.9), we can write,

‖uhi ‖E 6 C̃1 + Ck
i−1∑
j=0

‖uhj ‖E. (6.2.11)

Finally, using the discrete version of Gronwall inequality, yields,

‖uhi ‖E 6 C̃1e
CT . (6.2.12)

This completes the proof of the theorem.

6.3 Summary

Stability estimates were derived for the nonlinear problem for the continuous and

the fully-discrete formulations.



Chapter 7

A Priori Error Analysis for the

Nonlinear Problem

7.1 Motivation

In this chapter we aim to derive an error estimate in the energy norm for the non-

linear coupled problem. For this purpose, we refer to the weak formulation for this

problem given by (2.4.22) and correspondingly to the fully-discrete approximation

given by (3.4.2).

7.2 Error estimate

We begin by introducing the following theorem.

Theorem 7.2.1. Let u and uhi be the solutions of (2.4.22) and (3.4.2), respectively.

Provided that Assumptions 2.4.1 hold and that k is small enough, then the following
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estimate holds:

‖u(ti)− uhi ‖E 6 C(h+ k2), (7.2.1)

where the positive constant C depends on data, exact solutions and derivatives of

exact solutions.
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Proof. Subtract (2.4.22) from (3.4.2), with (2.4.22) at t = ti, to get,

a(uhi − u(ti),v) =
k

2

i∑
j=1

[(
Dϕs(ρ

h
i − ρhj )ε(uhj ), ε(v)

)
Ω

+
(
Dϕs(ρ

h
i − ρhj−1)ε(uhj−1), ε(v)

)
Ω

]
− k

2

i∑
j=1

[(
Dϕs(ρ(ti)− ρ(tj))ε(u(tj)), ε(v)

)
Ω

+
(
Dϕs(ρ(ti)− ρ(tj−1))ε(u(tj−1)), ε(v)

)
Ω

]
−
∫ ti

0

(
Dϕs(ρ(ti)− ρ(s))ε(u(s)), ε(v)

)
Ω
ds

+
k

2

i∑
j=1

[(
Dϕs(ρ(ti)− ρ(tj))ε(u(tj)), ε(v)

)
Ω

+
(
Dϕs(ρ(ti)− ρ(tj−1))ε(u(tj−1)), ε(v)

)
Ω

]
+
(
αD(θhi − θr)I0, ε(v)

)
Ω
−
(
αD(θ(ti)− θr)I0, ε(v)

)
Ω

− k

2

i∑
j=1

[(
αDϕs(ρ

h
i − ρhj )(θhj − θr)I0, ε(v)

)
Ω

+
(
αDϕs(ρ

h
i − ρhj−1)(θhj−1 − θr)I0, ε(v)

)
Ω

]
+

∫ ti

0

(
αDϕs(ρ(ti)− ρ(s))(θ(s)− θr)I0, ε(v)

)
Ω
ds

− k

2

i∑
j=1

[(
αDϕs(ρ(ti)− ρ(tj))(θ(tj)− θr)I0, ε(v)

)
Ω

+
(
αDϕs(ρ(ti)− ρ(tj−1))(θ(tj−1)− θr)I0, ε(v)

)
Ω

]
+
k

2

[(
αDϕs(ρ(ti)− ρ(tj))(θ(tj)− θr)I0, ε(v)

)
Ω

+
(
αDϕs(ρ(ti)− ρ(tj−1))(θ(tj−1)− θr)I0, ε(v)

)
Ω

]
. (7.2.2)

It is important to note that in (7.2.2) we have added and subtracted terms for our

convenience. This will be made clearer as we progress in our analysis. As in the

linear case, we make use of relations: η(ti) := u(ti)−Ru(ti) and
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ζi := uhi −Ru(ti), implying that uhi − u(ti) = ζi − η(ti). Thus we can write,

k

2

i∑
j=1

[(
Dϕs(ρ

h
i − ρhj )ε(uhj ), ε(v)

)
Ω
−
(
Dϕs(ρ(ti)− ρ(tj))ε(u(tj)), ε(v)

)
Ω

]
=
k

2

i∑
j=1

[(
Dϕs(ρ

h
i − ρhj )ε(uhj − u(tj)), ε(v)

)
Ω

+
(
Dϕs(ρ

h
i − ρhj )ε(u(tj)), ε(v)

)
Ω

−
(
Dϕs(ρ(ti)− ρ(tj))ε(u(tj)), ε(v)

)
Ω

]
=
k

2

i∑
j=1

[(
Dϕs(ρ

h
i − ρhj )ε(ζj − η(tj)), ε(v)

)
Ω

+
(
D
[
ϕs(ρ

h
i − ρhj )− ϕs(ρ(ti)− ρ(tj))

]
ε(u(tj)), ε(v)

)
Ω

]
.

(7.2.3)

Using Assumption 2.4.1 (iv), we proceed by choosing v = ζi. Thus for the first term

in the last line of (7.2.3), we have the following:

∣∣(Dϕs(ρhi − ρhj )ε(ζj − η(tj)), ε(v)
)

Ω

∣∣ 6 C ′ϕCρ
∣∣a(ζj, ζi)

∣∣+ C ′ϕCρ
∣∣a(η(tj), ζi)

∣∣
6 C ′ϕCρ

(
‖ζj‖E + ‖η(tj)‖E

)
‖ζi‖E. (7.2.4)

With respect to the second term in the last line of (7.2.3), we first deal with the

difference involving the stress relaxation function ϕs. In order to make the analysis

easier, we introduce the following lemma,

Lemma 7.2.1. Let Assumptions 2.4.1 (iv) hold. Then,

‖ϕs(ρhi − ρ
j
j)− ϕs(ρ(ti)− ρ(tj))‖L2(Ω)

6 Ck2 + Ck
i∑

m=0

‖θhm − θ(tm)‖L2(Ω) + C‖θhj − θ(tj)‖L2(Ω). (7.2.5)
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Proof. We have,

ϕs(ρ
h
i − ρhj )− ϕs(ρ(ti)− ρ(tj)) = ϕ′(ρ(ti)− ρ(tj))

1

ψ(θ(tj))
− ϕ′(ρhi − ρhj )

1

ψ(θhj )

=

[
ϕ′(ρ(ti)− ρ(tj))− ϕ′(ρhi − ρhj )

]
ψ(θhj ) +

[
ψ(θhj )− ψ(θ(tj))

]
ϕ′(ρhi − ρhj )

ψ(θ(tj))ψ(θhj )
.

(7.2.6)

But,

ϕ′(ρ(ti)− ρ(tj))− ϕ′(ρhi − ρhj ) =

∫ ρ(ti)−ρ(tj)

ρhi −ρhj
ϕ′′(ξ)dξ

6 ‖ϕ′′‖L∞([0,T ]×Ω)

[(
ρ(ti)− ρ(tj)

)
−
(
ρhi − ρhj

)]
6 ‖ϕ′′‖L∞([0,T ]×Ω)

(
|ρ(ti)− ρhi |+ |ρ(tj)− ρhj |

)
. (7.2.7)

For the error ρ(tj)− ρhj we can write,

ρ(tj)− ρhj =

∫ tj

0

dξ

ψ(θ(ξ))
− k

2

j∑
m=1

( 1

ψ(θhm)
+

1

ψ(θhm−1)

)
=

∫ tj

0

dξ

ψ(θ(ξ))
− k

2

j∑
m=1

( 1

ψ(θ(tm))
+

1

ψ(θ(tm−1))

)
+
k

2

j∑
m=1

( 1

ψ(θ(tm))
− 1

ψ(θhm)

)
6 Ck2

j∑
m=1

∣∣∣( 1

ψ(θ(ξ))

)′′∣∣∣dξ +
k

2
C2
ρ‖ψ‖L∞([0,T ]×Ω)

j∑
m=1

|θhm − θ(tm)|

+
k

2
C2
ρ‖ψ‖L∞([0,T ]×Ω)

j∑
m=1

|θhm−1 − θ(tm−1)|

6 Ck2

j∑
m=1

∣∣∣( 1

ψ(θ(ξ))

)′′∣∣∣dξ + kC2
ρ‖ψ‖L∞([0,T ]×Ω)

j∑
m=0

|θhm − θ(tm)|. (7.2.8)
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Hence,

|ρ(tj)− ρhj | 6 Ck2

j∑
m=1

∣∣∣( 1

ψ(θ(ξ))

)′′∣∣∣dξ + kC2
ρ‖ψ‖L∞([0,T ]×Ω)

j∑
m=0

|θhm − θ(tm)|,

(7.2.9)

where we have used the fact that,

1

ψ(θhm)
− 1

ψ(θ(tm))
=
ψ(θ(tm))− ψ(θhm)

ψ(θhm)ψ(θ(tm))

=

∫ θ(tm)

θhm
ψ′(ξ)dξ

ψ(θhm)ψ(θ(tm))
6 C2

ρ‖ψ′‖L∞([0,T ]×Ω)|θhm − θ(tm)|. (7.2.10)

In an analogous way, for the error ρ(tj)− ρhj , we get,

|ρ(ti)− ρhi | 6 Ck2

i∑
m=1

∣∣∣( 1

ψ(θ(ξ))

)′′∣∣∣dξ + kC2
ρ‖ψ‖L∞([0,T ]×Ω)

i∑
m=0

|θhm − θ(tm)|.

(7.2.11)

We also have that,

ψ(θhj )− ψ(θ(tj)) =

∫ θhj

θ(tj)

ψ′(ξ)dξ 6 ‖ψ′‖L∞([0,T ]×Ω)|θhj − θ(tj)|. (7.2.12)

Returning now to (7.2.6), we can write,

ϕs(ρ
h
i − ρhj )− ϕs(ρ(ti)− ρ(tj))

6 Cρ‖ϕ′′‖L∞([0,T ]×Ω)

(
|ρ(ti)− ρhi |+ |ρ(tj)− ρhj |

)
+ CρCϕ‖ψ′‖L∞([0,T ]×Ω)|θhj − θ(tj)|

6 Ck2 + C|θhj − θ(tj)|+ Ck

j∑
m=0

|θhm − θ(tm)|+ Ck
i∑

m=0

|θhm − θ(tm)|

6 Ck2 + C|θhj − θ(tj)|+ Ck
i∑

m=0

|θhm − θ(tm)|, since j 6 i. (7.2.13)
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Finally,

‖ϕs(ρhi − ρhj )− ϕs(ρ(ti)− ρ(tj))‖L2(Ω)

6 Ck2 + Ck
i∑

m=0

‖θhm − θ(tm)‖L2(Ω) + C‖θhj − θ(tj)‖L2(Ω), (7.2.14)

which proves our lemma.

Returning to the second term in the last line of (7.2.3), using Lemma (7.2.1)

and Inequality 1.3.2, we can now write,

(
D
[
ϕs(ρ

h
i − ρhj )− ϕs(ρ(ti)− ρ(tj))

]
ε(u(tj)), ε(v)

)
Ω

6 ‖ϕs(ρhi − ρhj )− ϕs(ρ(ti)− ρ(tj))‖L2(Ω)‖u‖L∞([0,T ]×Ω)‖ζ‖E

6 Ck2‖ζi‖E + Ck
i∑

m=0

‖θhm − θ(tm)‖L2(Ω)‖ζi‖E + C‖θhj − θ(tj)‖L2(Ω)‖ζi‖E.

(7.2.15)

Similarly, for the terms containing thermal expansion, we can write,

i∑
j=1

[(
αDϕs(ρ

h
i − ρhj )(θhj − θr)I0, ε(v)

)
Ω

−
(
αDϕs(ρ(ti)− ρ(tj))(θ(tj)− θt)I0, ε(v)

)
Ω

]
=

i∑
j=1

[(
αDϕs(ρ

h
i − ρhj )(θhj − θ(tj))I0, ε(v)

)
Ω

]
+
(
αD

[
ϕs(ρ

h
i − ρhj )− ϕs(ρ(ti)− ρ(tj))

]
(θ(tj)− θr)I0, ε(v)

)
Ω

]
. (7.2.16)
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For the first term of (7.2.16), by choosing v = ζi ∈ V h, we can write,

∣∣∣(αDϕs(ρhi − ρhj )(θhj − θ(tj))I0, ε(ζi))
Ω

∣∣∣ 6 C ′ϕCρ · C(α,D)‖θhj − θ(tj)‖L2(Ω)‖ζi‖E

6 C‖θhj − θ(tj)‖L2(Ω)‖ζi‖E. (7.2.17)

Using Lemma (7.2.1) again, the second term of (7.2.16) gives,

(
αD

[
ϕs(ρ

h
i − ρhj )− ϕs(ρ(ti)− ρ(tj))

]
(θ(tj)− θr)I0, ε(ζi)

)
Ω

6 C(α,D)‖ϕs(ρhi − ρhj )− ϕs(ρ(ti)− ρ(tj))‖L2(Ω)‖θ(tj)− θr‖L∞(Ω)‖ζi‖E

6 Ck2‖ζi‖E + Ck
i∑

m=0

‖θhm − θ(tm)‖L2(Ω)‖ζi‖E + C‖θhj − θ(tj)‖L2(Ω)‖ζi‖E. (7.2.18)

Using the trapezoidal rule, for the terms in lines 5, 6 and 7 of (7.2.2), choosing

v = ζi, gives

∫ ti

0

(
Dϕs(ρ(ti)− ρ(s))ε(u(s)), ε(ζi)

)
Ω
ds

− k

2

i∑
j=1

[(
Dϕs(ρ(ti)− ρ(tj))ε(u(tj)), ε(ζi)

)
Ω

+
(
Dϕs(ρ(ti)− ρ(tj−1))ε(u(tj−1)), ε(ζi)

)
Ω

]
6

i∑
j=1

[
Ck2

∫ tj

tj−1

∣∣∣(Dϕs(ρ(ti)− ρ(s))ε(u(s)), ε(ζi)
)′′

Ω

∣∣∣ds]
6 Ck2C ′′′ρ

√
3

∫ ti

0

(
‖u(s)‖2

E + ‖u′(s)‖2
E + ‖u′′(s)‖2

E

) 1
2
ds‖ζi‖E

6 Ck2‖ζi‖E. (7.2.19)
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Similarly, for the terms with thermal expansion,

∫ ti

0

(
αDϕs(ρ(ti)− ρ(s))(θ(s)− θr)I0, ε(ζi)

)
Ω
ds

− k

2

i∑
j=1

[(
αDϕs(ρ(ti)− ρ(tj))(θ(tj)− θr)I0, ε(ζi)

)
Ω

+
(
αDϕs(ρ(ti)− ρ(tj−1))(θ(tj−1)− θr)I0, ε(ζi)

)
Ω

]
6

i∑
j=1

[
Ck2

∫ tj

tj−1

∣∣∣(αDϕs(ρ(ti)− ρ(s))(θ(s)− θr)I0, ε(ζi)
)′′

Ω

∣∣∣ds]
6
√

3Ck2C(α,D)C ′′′ρ

∫ tj

tj−1

(
‖θ(s)− θr‖2

L2(Ω) + ‖(θ(s)− θr)′‖2
L2(Ω)

+ ‖(θ(s)− θr)′′‖2
L2(Ω)

) 1
2
ds‖ζi‖E

6 Ck2‖ζi‖E. (7.2.20)

Putting all these ingredients together in (7.2.2), yields

‖ζi‖2
E 6 ‖η(ti)‖E‖ζi‖E + C

k

2

i∑
j=1

(
‖ζj‖E + ‖η(tj)‖E

)
‖ζi‖E

+ C
k

2

i−1∑
j=0

(
‖ζj‖E + ‖η(tj)‖E

)
‖ζi‖E + C‖θhi − θ(ti)‖L2(Ω)‖ζi‖E

+ C
k

2

i∑
j=1

(
k2‖ζi‖E + k

i∑
m=0

‖θhm − θ(tm)‖L2(Ω)‖ζi‖E + ‖θhj − θ(tj)‖L2(Ω)‖ζi‖E
)

+ C
k

2

i−1∑
j=0

(
k2‖ζi‖E + k

i∑
m=0

‖θhm − θ(tm)‖L2(Ω)‖ζi‖E + ‖θhj − θ(tj)‖L2(Ω)‖ζi‖E
)

+ C
k

2

i∑
j=1

‖θhj − θ(tj)‖L2(Ω)‖ζi‖E + C
k

2

i−1∑
j=0

‖θhj − θ(tj)‖L2(Ω)‖ζi‖E

+ Ck2‖ζi‖E + Ck2‖ζi‖E. (7.2.21)
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Simplifying this further and dividing through by ‖ζi‖E, we get

(
1− Ck

)
‖ζi‖E 6 ‖η(ti)‖E + Ck

i−1∑
j=0

‖ζj‖E + Ck

i∑
j=0

‖η(tj)‖E

+ Ck
i∑

j=0

[
k2 + T max

06m6N
‖θhm − θ(tm)‖L2(Ω) + ‖θhj − θ(tj)‖L2(Ω)

]
+ Ck

i∑
j=0

‖θhj − θ(tj)‖L2(Ω) + C‖θhi − θ(ti)‖L2(Ω),

+ Ck2 + Ck2 (7.2.22)

where we require that 1 − Ck > 0. Using the estimate ‖η(t)‖ 6 Ch|u(t)|H2(Ω) (as

we did for the linear case) and the bound on error for the heat problem given by

(5.1.32), after dividing by 1− Ck yields

‖ζi‖E 6 C(h+ k2) + Ck
i−1∑
j=0

‖ζj‖E. (7.2.23)

Using the discrete version of Gronwall inequality, one gets

‖ζi‖E 6 C(h+ k2)ec2T . (7.2.24)

Using the triangle inequality, we have

‖uhi − u(ti)‖E 6 ‖η(ti)‖E + ‖ζi‖E

6 Ch|u|H2(Ω) + Cec2T (h+ k2)

6 C(h+ k2). (7.2.25)

We have thus proved the theorem.
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7.3 Numerical results

After deriving an error estimate in the previous section, we now show some numerical

results. In this section we show computational results in terms of convergence rates

for a number of exact solutions for the nonlinear problem. First we introduce a

shorthand notation. Let

b(ti, tj;u
h
j ,v) : =

∫
Ω

ε(v) ·Dε(uhj )ϕs(ρhi − ρhj )dΩ

=
(
ε(v),Dε(uhj )ϕs(ρ

h
i − ρhj )

)
Ω
. (7.3.1)

Note that ε(v) as argument of the bilinear form appears on the left side now, com-

pared with the previous notation. Next, let

d(ti, tj; θ
h
j ,v) : =

∫
Ω

ε(v) · αDϕs(ρhi − ρhj )(θhj − θr)I0dΩ

=
(
ε(v), αDϕs(ρ

h
i − ρhj )(θhj − θr)I0

)
Ω
. (7.3.2)

Next, we establish two relations. We will make use of the fact that,

ϕs(ρ
h
i − ρhj ) =

Nϕ∑
q=1

αqϕqe
−αq(ρhi −ρhj )(ρhj )

′. (7.3.3)

This will enable us to rewrite parts of (3.4.2) in terms of (7.3.3). Thus, we can write,
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k

2
b(ti, t0;uh0 ,v) + k

i−1∑
j=1

b(ti, tj;u
h
j ,v)

= k

∫
Ω

Nϕ∑
q=1

[
1

2
ε(v) ·Dε(uh0)αqϕqe

−αq(ρhi −ρh0 )(ρh0)′
]
dΩ

+ k

∫
Ω

Nϕ∑
q=1

[
i−1∑
j=1

ε(v) ·Dε(uhj )αqϕqe−αq(ρ
h
i −ρhj )(ρhj )

′

]
dΩ

= k

∫
Ω

Nϕ∑
q=1

Kiq, (7.3.4)

where,

Kiq =
1

2
ε(v) ·Dε(uh0)αqϕqe

−αq(ρhi −ρh0 )(ρh0)′

+
i−1∑
j=1

ε(v) ·Dε(uhj )αqϕqe−αq(ρ
h
i −ρhj )(ρhj )

′. (7.3.5)

Next, we can again rewrite parts of (3.4.2) in terms of (7.3.3). Thus we can write,

−k
2
d(ti, t0; θh0 ,v)− k

i−1∑
j=1

d(ti, tj; θ
h
j ,v)

= −k
∫

Ω

Nϕ∑
q=1

[
1

2
ε(v) · αDαqϕqe−αq(ρ

h
i −ρh0 )(ρh0)′(θh0 − θr)I0

]
dΩ

− k
∫

Ω

Nϕ∑
q=1

[
i−1∑
j=1

ε(v) · αDαqϕqe−αq(ρ
h
i −ρhj )(ρhj )

′(θhj − θr)I0

]
dΩ

= −k
∫

Ω

Nϕ∑
q=1

P iq, (7.3.6)
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where,

P iq =
1

2
ε(v) · αDαqϕqe−αq(ρ

h
i −ρh0 )(ρh0)′(θh0 − θr)I0

+
i−1∑
j=1

ε(v) · αDαqϕqe−αq(ρ
h
i −ρhj )(ρhj )

′(θhj − θr)I0. (7.3.7)

We are now able to give an algorithm for solving the thermoviscoelasticity problem

with the nonlinearity. For this, we will make use of equations (7.3.4) and (7.3.6).

Algorithm 3: Nonlinear problem (with reduced time)

———————————————————————————–

1. Given θ(0), i.e temperature at t=0

2. Find F̂0

3. Solve AU0 = L0 + αF̂0, i.e find displacement at t=0

4. Find ρ(t = 0), reduced time at t=0

5. for i=1,...,N

6. Compute θi, i.e solve the heat conduction problem for each time i

7. Compute ρi = k
2

[
1

ψ(θi)
+ 1

ψ(θi−1)

]
+ ρi−1

8. Solve A(1− k
2
ϕs(0))Ui = Li +

∑Nq
q=1 Kq −

∑Nq
q=1 Pq + α(1− k

2
ϕs(0))F̂i

9. next i

————————————————————————————

It is probably impossible to find an exact solution in a closed form using WLF

formula for the reduced time given by (2.3.7), from which

1

ψ[θ(ζ)]
= 10

k2+θ−θg
k1(θ−θg) (7.3.8)

One always obtains an integral which cannot be evaluated in closed form when try-
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ing to compute the stress using the stress-strain law given by (2.4.7). We investigate

two different forms of the shift factor ψ.

CASE 1. We propose a simpler form for the shift factor: 1
ψ[θ(ζ)]

= 10θ(ζ), where

we take the temperature θ(ζ) = β, β constant, and displacement

u(x, t) = (3x− 2y, 4x+ y)t. Tabulation of displacement errors when β = 2, is shown

in Table 7.1. These are the same type of errors that were computed for the viscoelas-

ticity and the linear problems, that is, the maximum errors over all discrete times

and over all nodes. We can see that the error due to time steps is decreasing by a

factor of 4, except in the first row, where the time steps are doubled from 2 to 4.

This is probably because of the large value of the shift factor when β = 2. In other

words, at least 4 time steps are needed before the error starts to reduce by a factor

of 4. So each column indicates O(k2) convergence, k being the size of time step. As

expected, there are no spatial errors and this is because the exact solution for the

displacement is linear in spatial coordinates. In Tables (7.2) and (7.3) we show the

errors in the L2 and H1 norms, respectively. Both tables show a convergence rate

by a factor of 4 as the number of time steps is doubled. There are no errors as the

number of elements in the mesh is increased. We see in all three tables that there is

some dependency on h parameter, similarly to the viscoelasticity problem in Section

3.2.2. This is is due to quadrature error in computing the integrals. This is evident

in all three tables showing the different types of error.

CASE 2. Taking 1/ψ to be 1
ψ(θ(ζ))

= θ(ζ,x), one can evaluate the stress in

closed form, by taking the temperature to be θ(ζ,x) =M(x, y)et and displacement

u(x, t) = (u1(x, y), u2(x, y))et. We give four different numerical examples where

convergence rates are shown in the L2 and H1 norms, as well as in the max norm.
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Table 7.1: Max errors for displacement: nonlinearity, Case 1

mesh size
time
steps 2 4 8 16 32

2 18.612156 19.906652 20.583299 20.870252 20.941361
4 0.543710 0.581136 0.600668 0.608964 0.611018
8 0.105918 0.113208 0.117012 0.118628 0.119028
16 0.025116 0.026844 0.027747 0.028130 0.028225
32 0.006199 0.006626 0.006849 0.006943 0.006967
64 0.001545 0.001651 0.001706 0.001730 0.001736

Table 7.2: L2 errors for displacement: nonlinearity, Case 1

mesh size
time
steps 2 4 8 16 32

2 7.320330 8.835289 9.434735 9.692902 9.793268
4 0.214164 0.258332 0.275741 0.283231 0.286143
8 0.041721 0.050325 0.053716 0.055175 0.055742
16 0.009893 0.011933 0.012737 0.013083 0.013218
32 0.002442 0.002945 0.003144 0.003229 0.003262
64 0.000608 0.000734 0.000783 0.000804 0.000813
128 0.000152 0.000183 0.000195 0.000201 0.000203

Numerical Example 1: θ(ζ,x) = et

u(x, t) = (3x− 2y, 4x+ y)et

Tables 7.4 and 7.5 show the L2 and H1 norms, respectively. We see that in both

cases, the errors are decreasing only as time steps are doubled. This is due to the

presence of exponential in the exact solution and the trapezoidal rule approxima-

tion. Both tables show that the error is decreasing by a factor of four along the

diagonal. This is consistent with the error estimate derived in this Chapter. Taking

h = k2 gives an estimate C(h). This is much more efficient than taking h = k, which

would require many more time steps. With regards to the H1 norm the decrease by

a factor of four is because the exact solution is linear in space. Otherwise, this we

would see a decrease by a factor of two, if the solution was not linear in space. Later
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Table 7.3: H1 errors for displacement: nonlinearity, Case 1

mesh size
time
steps 2 4 8 16 32

2 42.052094 47.339318 49.826943 51.279971 52.045258
4 1.230281 1.384831 1.457418 1.499733 1.521988
8 0.239671 0.269778 0.283919 0.292161 0.296497
16 0.056833 0.063972 0.067325 0.069280 0.070308
32 0.014028 0.015790 0.016618 0.017101 0.017354
64 0.003496 0.003935 0.004141 0.004261 0.004325
128 0.000873 0.000983 0.001034 0.001064 0.001080

Table 7.4: Displacement errors in the L2 norm: nonlinearity, Case 2, Example 1

mesh size
time
steps 2 4 8 16 32 64 128

2 0.005180 0.006267 0.006694 0.006877 0.006948 0.006974 0.006983
4 0.001306 0.001580 0.001688 0.001734 0.001752 0.001758 0.001760
8 0.000327 0.000395 0.000422 0.000434 0.000438 0.000440 0.000441
16 0.000081 0.000099 0.000105 0.000108 0.000109 0.000110 0.000110
32 0.000020 0.000024 0.000026 0.000027 0.000027 0.000027 0.000027
64 0.000005 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006
128 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001

examples will show just that. We also see some dependency on the h parameter for

all three types of error in this example. This may be due to quadrature error for

not computing the integrals exactly.
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Table 7.5: Displacement errors in the H1 norm: nonlinearity, Case 2, Example 1

mesh size
time
steps 2 4 8 16 32 64 128

2 0.029758 0.033588 0.035373 0.036407 0.036948 0.037206 0.037321
4 0.007506 0.008470 0.008919 0.009180 0.009316 0.009381 0.009410
8 0.001880 0.002122 0.002234 0.002300 0.002334 0.002350 0.002357
16 0.000470 0.000530 0.000559 0.000575 0.000583 0.000587 0.000589
32 0.000117 0.000132 0.000139 0.000143 0.000145 0.000147 0.000147
64 0.000029 0.000033 0.000034 0.000035 0.000035 0.000035 0.000035
128 0.000007 0.000008 0.000008 0.000009 0.000009 0.000009 0.000009

Table 7.6: Max errors for displacement: nonlinearity, Case 2, Example 1

mesh size
time
steps 2 4 8 16 32 64 128

2 0.013165 0.014116 0.014599 0.014803 0.014854 0.014871 0.014874
4 0.003320 0.003558 0.003680 0.003731 0.003744 0.003748 0.003749
8 0.000832 0.000891 0.000922 0.000934 0.000938 0.000939 0.000939
16 0.000208 0.000223 0.000230 0.000233 0.000234 0.000234 0.000234
32 0.000052 0.000055 0.000057 0.000058 0.000058 0.000058 0.000058
64 0.000013 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014
128 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003

Numerical Example 2: θ(ζ,x) = (2 + sin(2x+ 3y))et

u(x, t) = (3x− 2y, 4x+ y)et

In Example 2, again we see the same behaviour as in Example 1. See Tables 7.7,

7.8 and 7.9. The only difference seems to be that the corresponding errors for the

same norm differ by a factor of four. The only reason for this may be the fact that

in Example 2, the temperature depends on spatial coordinates and is not linear.

This is true for all the norms. Again we see the the errors have some dependency

on h, the reason being that given in Example 1. Also, the consistency between

theoretical estimate and numerical results shown can be justified in the same way
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Table 7.7: Displacement errors in the L2 norm: nonlinearity, Case 2, Example 2

mesh size
time
steps 2 4 8 16 32 64 128

2 0.019563 0.018390 0.021251 0.022401 0.022764 0.022873 0.022906
4 0.015843 0.005595 0.004971 0.005498 0.005685 0.005738 0.005753
8 0.016121 0.005044 0.001473 0.001279 0.001390 0.001427 0.001437
16 0.016271 0.005335 0.001366 0.000377 0.000323 0.000348 0.000357
32 0.016314 0.005431 0.001458 0.000351 0.000095 0.000081 0.000087
64 0.016325 0.005457 0.001487 0.000375 0.000088 0.000023 0.000020

as for Example 1.

Table 7.8: Displacement errors in the H1 norm: nonlinearity, Case 2, Example 2

mesh size
time
steps 2 4 8 16 32 64 128

2 0.096756 0.099016 0.109223 0.113956 0.115887 0.116677 0.116999
4 0.062343 0.028337 0.026391 0.028218 0.028991 0.029270 0.029371
8 0.062072 0.021485 0.007658 0.006796 0.007156 0.007299 0.007344
16 0.062687 0.022293 0.006035 0.001980 0.001722 0.001800 0.001829
32 0.062883 0.022658 0.006283 0.001569 0.000502 0.000433 0.000451
64 0.062934 0.022759 0.006385 0.001633 0.000397 0.000126 0.000108
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Table 7.9: Max errors for displacement: nonlinearity, Case 2, Example 2

mesh size
time
steps 2 4 8 16 32 64 128

2 0.051171 0.044912 0.046054 0.046719 0.046978 0.047038 0.047059
4 0.027033 0.012642 0.011799 0.011754 0.011767 0.011770 0.011773
8 0.027926 0.007418 0.003233 0.003008 0.002958 0.002947 0.002944
16 0.028150 0.007820 0.001903 0.000822 0.000756 0.000740 0.000737
32 0.028206 0.008121 0.002115 0.000481 0.000207 0.000189 0.000185

Numerical Example 3: θ(ζ,x) = et

u(x, t) = (sin(x/2 + 2y/3), sin(x/3− 3y/4)) et

Referring to Example 3, Table 7.10 tabulates the errors in the L2 norm. We see that,

along the diagonal as the mesh size and time steps are doubled, the error decreases

by a factor of four. This is consistent with the estimate C(h2 + k2). This is because

if h and k are halved, then a factor of 1/4 comes in front of error error estimate, due

to the squares in h2 and k2. On the other hand, the error in the H1 norm decreases

by a factor of two along the diagonal, as shown in Table 7.11. This is consistent

with the error estimate, which we derived in this chapter, C(h+k2). Taking h = k2,

gives an estimate C(h), and then halving h, the error is halved as a result. Table

7.12 shows the max errors. We would expect the error here to decrease as C(h2 +k2)

which is consistent with what the table shows: along the diagonal the error reduces

by a factor of four.

Table 7.10: Displacement errors in the L2 norm: nonlinearity, Case 2, Example 3

mesh size
time
steps 2 4 8 16 32 64 128

2 0.040147 0.010162 0.002508 0.001591 0.001739 0.001802 0.001821
4 0.040326 0.010490 0.002572 0.000632 0.000408 0.000441 0.000455
8 0.040373 0.010588 0.002682 0.000646 0.000158 0.000103 0.000110
16 0.040384 0.010613 0.002714 0.000676 0.000161 0.000039 0.000025
32 0.040387 0.010620 0.002723 0.000685 0.000169 0.000040 0.000009
64 0.040388 0.010621 0.002725 0.000687 0.000171 0.000042 0.000010
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Table 7.11: Displacement errors in the H1 norm: nonlinearity, Case 2, Example 3

mesh size
time
steps 2 4 8 16 32 64 128

2 0.248989 0.124410 0.062504 0.032317 0.018292 0.012584 0.010708
4 0.249148 0.124537 0.062192 0.031136 0.015712 0.008152 0.004624
8 0.249198 0.124609 0.062226 0.031092 0.015551 0.007794 0.003935
16 0.249212 0.124629 0.062242 0.031097 0.015545 0.007773 0.003888
32 0.249215 0.124635 0.062246 0.031099 0.015546 0.007772 0.003886
64 0.249216 0.124636 0.062247 0.031100 0.015546 0.007772 0.003886

Table 7.12: Max errors for displacement: nonlinearity, Case 2, Example 3

mesh size
time
steps 2 4 8 16 32 64 128

2 0.015856 0.005200 0.002943 0.003567 0.003741 0.003784 0.003795
4 0.016156 0.006381 0.001538 0.000762 0.000907 0.000944 0.000954
8 0.016232 0.006680 0.001967 0.000403 0.000192 0.000227 0.000236
16 0.016251 0.006755 0.002075 0.000521 0.000102 0.000048 0.000057
32 0.016256 0.006773 0.002102 0.000551 0.000132 0.000025 0.000012
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Numerical Example 4: θ(ζ,x) = (2 + sin(2x+ 3y))et

u(x, t) = (sin(x/2 + 2y/3), sin(x/3− 3y/4)) et

Example 4 is probably the most interesting, since neither u nor θ are linear in space

and time. Table 7.13 shows how the error in L2 norm behaves. As the mesh size and

time steps are doubled (i.e. along the diagonal of the table), the error reduces by a

factor of four. This is again consistent with the theoretical estimate C(h2 + k2).

Table 7.13: Displacement errors in the L2 norm: nonlinearity, Case 2, Example 4

mesh size
time
steps 2 4 8 16 32 64 128

2 0.040181 0.010024 0.004806 0.005462 0.005825 0.005935 0.005967
4 0.040577 0.010432 0.002517 0.001288 0.001410 0.001475 0.001494
8 0.040691 0.010687 0.002661 0.000631 0.000330 0.000356 0.000370
16 0.040721 0.010760 0.002752 0.000670 0.000158 0.000083 0.000089
32 0.040729 0.010778 0.002778 0.000696 0.000168 0.000039 0.000020
64 0.040731 0.010783 0.002785 0.000703 0.000174 0.000042 0.000009

The behaviour of error in the H1 norm is shown in Table 7.14. As the table shows,

the error reduces by a factor of two along the diagonal as the mesh size and time

steps are doubled. The theoretical estimate C(h + k2) which we derived confirms

just that, since as explained the earlier Example 3, h = k2 gives an estimate C(h).

Then halving h, this halves the previous value of error. The max error also behaves

confirm the theoretical estimate, which we would expect to be exactly the same as

for the L2 norm. The max error behaviour is shown in Table 7.15.

The estimate C(h + k2) tells us that the contribution from h and k are not

the same with respect to convergence of the error. For example, Table 7.14 shows

that the error does not start to decrease simultaneously for the same values of mesh

size and time steps. Looking at the columns of the table, we see that only in the
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Table 7.14: Displacement errors in the H1 norm: nonlinearity, Case 2, Example 4

mesh size
time
steps 2 4 8 16 32 64 128

2 0.249108 0.125230 0.066962 0.043047 0.035169 0.033073 0.032586
4 0.249306 0.124491 0.062322 0.031831 0.017369 0.011172 0.008993
8 0.249428 0.124655 0.062210 0.031110 0.015645 0.008017 0.004379
16 0.249464 0.124718 0.062251 0.031094 0.015547 0.007785 0.003917
32 0.249473 0.124735 0.062266 0.031101 0.015545 0.007772 0.003887
64 0.249475 0.124740 0.062270 0.031103 0.015546 0.007772 0.003886

Table 7.15: Max errors for displacement: nonlinearity, Case 2, Example 4

mesh size
time
steps 2 4 8 16 32 64 128

2 0.014004 0.008655 0.012630 0.014158 0.014653 0.014774 0.014806
4 0.014915 0.005792 0.002415 0.003343 0.003620 0.003690 0.003708
8 0.015141 0.006839 0.001781 0.000631 0.000852 0.000909 0.000924
16 0.015198 0.007100 0.002183 0.000472 0.000160 0.000214 0.000227
32 0.015212 0.007166 0.002284 0.000586 0.000119 0.000040 0.000053

forth column the error starts to reduce as the times steps are doubled (i.e. going

downwards). Therefore there is a need to investigate how the error behaves if we

make “ h = k2 ”. In this case, we have: error = ‖u(ti)− uhi ‖E 6 Ch =
C

m
, where

m is the mesh size. In terms of log, this takes the form: log error = logC − logm.

Thus plotting the error vs m in the loglog scale, we would expect a graph of slope

approximately equal to −1, see Fig. 7.1. Choosing two points on the graph, we can

compute the slope.

slope =
log(0.015895)− log(0.031831)

log(64)− log(32)
=
−0.6944

0.6931
= −1.009 (7.3.9)

The slope of approximately −1, confirms that the codes are working correctly and
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Figure 7.1: Loglog plot of error vs mesh size

that the convergence rates are correct. We show this only for Example 4, as all

other examples use the same code.
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Numerical results for the heat problem

Since we are dealing with a coupled problem, and temperature is embedded in this

coupling, it is worthwhile to show that the part of the coupling code which which

solves the heat problem also works correctly in terms of the convergence.

Example 1. θ(ζ,x) = et

Table 7.16: Heat errors in the L2 norm: ×103, T = 10, Example 1

mesh size
time
steps 2 4 8 16 32 64 128

2 0.931609 1.111466 1.155729 1.166751 1.169504 1.170192 1.170364
4 0.483505 0.574926 0.597263 0.602814 0.604200 0.604546 0.604633
8 0.166726 0.197784 0.205333 0.207207 0.207674 0.207791 0.207820
16 0.046081 0.054616 0.056686 0.057200 0.057328 0.057360 0.057368
32 0.011833 0.014021 0.014551 0.014683 0.014716 0.014724 0.014726
64 0.002978 0.003529 0.003662 0.003695 0.003703 0.003705 0.003706
128 0.000745 0.000883 0.000917 0.000925 0.000927 0.000928 0.000928

Table 7.17: Heat errors in the H1 norm: ×103, T = 10, Example 1

mesh size
time
steps 2 4 8 16 32 64 128

2 3.358964 3.759067 3.852780 3.875864 3.881614 3.883050 3.883409
4 1.743302 1.944676 1.991577 2.003115 2.005988 2.006705 2.006885
8 0.601139 0.669059 0.684818 0.688691 0.689656 0.689896 0.689957
16 0.166148 0.184761 0.189074 0.190133 0.190397 0.190463 0.190479
32 0.042665 0.047432 0.048537 0.048808 0.048876 0.048893 0.048897
64 0.010739 0.011938 0.012216 0.012284 0.012301 0.012305 0.012306
128 0.002689 0.002989 0.003059 0.003076 0.003080 0.003081 0.003081

Table 7.17 shows the error in the L2 norm. The error reduces by a factor of four

along the diagonal. This is consistent with the estimate for the heat problem given

by 5.1.1. Looking on the left side of this estimate, the second term is dominant.
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Thus, the error in the L2 norm behaves as C(h2 + k2). The H1 error reduces by a

factor of four as well (rather than a factor of two), but this is due to the fact that

the exact solution does not depend on spatial coordinates.

Example 2. θ(ζ,x) = (2 + sin(2x+ 3y))et

Table 7.18: Heat errors in the L2 norm: ×103, T = 10, Example 2

mesh size
time
steps 2 4 8 16 32 64 128

2 6.601375 2.914935 2.651746 2.737765 2.770018 2.778750 2.780975
4 6.604605 2.188074 1.381707 1.401830 1.427141 1.434713 1.436683
8 6.702427 2.022107 0.637621 0.475438 0.485571 0.491734 0.493493
16 6.759839 2.058266 0.537015 0.168596 0.131529 0.134318 0.135829
32 6.778099 2.078375 0.547806 0.136444 0.042817 0.033786 0.034497
64 6.782960 2.084254 0.553501 0.139288 0.034253 0.010747 0.008504
128 6.784194 2.085779 0.555117 0.140763 0.034974 0.008572 0.002689

Table 7.19: Heat errors in the H1 norm: ×103, T = 10, Example 2

mesh size
time
steps 2 4 8 16 32 64 128

2 41.59911 23.61615 14.44124 10.82397 9.69744 9.39381 9.31629
4 40.95527 22.30510 12.09001 7.35795 5.55464 5.00149 4.85325
8 40.69755 21.84448 11.21976 5.81534 3.24339 2.16263 1.79309
16 40.64333 21.77662 11.10267 5.59252 2.82742 1.46825 0.83365
32 40.63238 21.76830 11.09222 5.57431 2.79246 1.40034 0.70752
64 40.62986 21.76693 11.09117 5.57293 2.79005 1.39569 0.69836
128 40.62925 21.76664 11.09101 5.57280 2.78987 1.39538 0.69777

In Example 2, the exact solution is not linear either in space or in time. The L2

error is behaving as is supposed to behave. This time the H1 error is also behaving

consistent with the theoretical estimate C(h + k2). The explanation is similar to

that given in the examples for displacement. In both examples we take T = 10 as

for smaller values of T it is hard to see how the error behaves; this is probably due
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to the presence of the factor et in the exact solutions.

7.4 Summary

An error estimate in the energy norm was derived for the nonlinear problem. Nu-

merical results were shown for a number of exact solution to demonstrate that the

error converges in consistency with the theoretical estimates, both for displacement

and temperature.



Chapter 8

Conclusions and Future Work

Conclusions. In this thesis the model problem introduced in Section 2.4 has been

considered. The study has been conducted in two aspects: theoretical and compu-

tational.

In view of the theoretical results, the focus has been on deriving stability and a

priori error estimates in the defined energy norm.

In the case of the linear problem, stability bounds have been derived for contin-

uous and discrete formulations. Stability bounds which have been derived for the

discrete case contain exponentials; this is due to Gronwall’s lemma. Such results

containing exponentials are common in literature. The bounds show that the solu-

tion, in both cases, depends continuously on data, as well as initial conditions and

constants. The existence has have been assumed a priori for the linear problem,

whereas the uniqueness has been proved. Hence we can conclude that both formu-

lations are well-posed. In the case of nonlinear problem, the challenge has been on

dealing with the presence of the reduced time. The only possibility to overcome

this was by assuming the temperature to be in some allowed range, as assumed in

Assumptions 2.4.1 (iv). With this to hand, we then have been able to show that,
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for the nonlinear problem too, the bound for both formulations, continuous and

discrete, contains only data, initial conditions and constants, again using Gronwall.

Thus, for the reasons mentioned above, both formulations are well-posed.

A priori error estimates have been derived for the linear and nonlinear problems.

Again, the challenge has been in dealing with the nonlinearity due to the reduced

time. In both cases, it has been shown, using the Gronwall’s lemma, that the error

in the energy norm is bounded by C(h+ k2).

In view of computational results, convergence rates have been shown for a num-

ber of exact solutions, in the L2 and H1 norms as well as in the “max norms”. All

computational results show the expected convergence rates. For the nonlinear prob-

lem we have been unable to use the WLF formula for the shift factor in the reduced

time formula. This is due to the fact that it has not been possible to solve the

integrals in a closed form in the stress-strain law in order to compute the stresses.

One case
1

ψ
= 10β (for β constant) has been the closest to WLF formula (2.3.7),

however this case corresponds to a constant temperature.

Future work. One can consider the possibility of extending the work presented in

this thesis. Some of the ideas are as follows:

• Use the viscoelastic energy dissipation, due to particle frictions, to create a

source term in the temperature equation (2.4.4). Then, implement a discrete

approximation and obtain numerical results. This would include dealing with

the non-trivial nonlinear coupling that would result by linearising with extrap-

olation of temperature from previous time steps. This is a novel idea.

• Include the inertia term ü in the equilibrium equations (2.4.1) and consider

a viscodynamic rather then a quasistatic problem. Then perform stability

and error analysis for this problem. This also constitutes a novel idea. Even

without the thermal effects, such a problem would be considered for the first
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time, as so far we have not come across a study, textbook or paper, which

deals with the numerical analysis of this model.

• Consider large deformations instead. This would imply moving to the non-

linear theory of deformation which is by far more complicated then the linear

theory. For our coupled problem, this would be the first time to study such a

model.

• Include hereditary effects in the temperature equation and also explore the

possibility of deriving well-posedness results for the continuous problem. So

far, we are not aware that this problem has been dealt with.
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