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Abstract 

The focus of this research work is the estimation of gaps (missing blocks) in digital 

images. To progress the research two main issues were identified as (1) the 

appropriate domains for image gap restoration and (2) the methodologies for gap 

interpolation.  

Multi-scale transforms provide an appropriate framework for gap restoration. The 

main advantages are transformations into a set of frequency and scales and the 

ability to progressively reduce the size of the gap to one sample wide at the 

transform apex. Two types of multi-scale transform were considered for comparative 

evaluation; 2-dimensional (2D) discrete cosines (DCT) pyramid and 2D discrete 

wavelets (DWT).  

For image gap estimation, a family of conventional weighted interpolators and 

directional edge-guided interpolators are developed and evaluated. Two types of 

edges were considered; ‘local’ edges or textures and ‘global’ edges such as the 

boundaries between objects or within/across patterns in the image.  

For local edge, or texture, modelling a number of methods were explored which aim 

to reconstruct a set of gradients across the restored gap as those computed from the 

known neighbourhood. These differential gradients are estimated along the 

geometrical vertical, horizontal and cross directions for each pixel of the gap. 

The edge-guided interpolators aim to operate on distinct regions confined within 

edge lines. For global edge-guided interpolation, two main methods explored are 

Sobel and Canny detectors. The latter provides improved edge detection.  

The combination and integration of different multi-scale domains, local edge 

interpolators, global edge-guided interpolators and iterative estimation of edges 

provided a variety of configurations that were comparatively explored and evaluated. 

For evaluation a set of images commonly used in the literature work were employed 

together with simulated regular and random image gaps at a variety of loss rate. The 

performance measures used are the peak signal to noise ratio (PSNR) and structure 
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similarity index (SSIM). The results obtained are better than the state of the art 

reported in the literature. 
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JPEG Joint Photographic Expert Group 

JPEG2000 Joint Photographic Experts Group in 2000 

KL Karhunen–Loève (Transform) 

LC Left cross  

LP Linear prediction 

LPF Low-pass filter  

MB Macro block 

ML Maximum likelihood 

MMSE Minimum mean square error 

MSE Mean squared error  

http://en.wikipedia.org/wiki/Joint_Photographic_Experts_Group
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NACK Negative acknowledgment  

OS Operating system 

Pixel Picture element 

PC Principal component  

PDF Probability distribution function 

PNG Portable network graphics 

PLC Packet loss concealment 

PSNR Peak signal to noise ratio  

RC Right cross  

RGB Red, green and blue  

RI Region of interest  

RMS Root mean square  

SNR Signal-to-noise ratio 

SSIM The structural similarity index 

TIFF Tagged image file format 

UDP User datagram protocol  

V Vertical  

List of Symbols 
 

𝐴  matrix of input vector 

𝐴1 and 𝐴2 are matrices derived from the 2-D DCT matrix 

𝐴𝑚,𝑛missing sample in the (m,n) directions 

𝐴𝑀  matrix of sizes 𝑀  

𝐴𝑁  matrix of sizes 𝑁 

𝐴 (𝑥, 𝑦) intensity values (an amplitude) of the pixel (𝐴) in x and y directions 

𝑐(𝑖, 𝑗) the closest point of the input samples to the unknown pixel 𝑝 

𝑑𝑥 represents a small change in distance in the 𝑥 direction 

𝑑𝑦 represents a small change in distance in the  𝑦 direction 

𝑑𝑦

𝑑𝑥
 = edge 

𝐹𝑠  Frequency 

𝐹(𝑝,𝑞) the DCT coefficient in row k1 and column k2 of the DCT matrix. Coordinates 

in the frequency domain 

f(i,j) is the intensity of the pixel in row i and column j;  
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𝑓𝜎(𝑥, 𝑦) denotes the 2D optimal filter 

𝑓𝜎() 1D Gaussian’s derivative 

𝐺𝑥 gradient in x direction 

𝐺𝑦 gradient in y direction 

𝑔[𝑛] high-pass filter  

𝐺𝜎() denote the 1D Gaussian function 

H  horizontal direction 

ℎ[𝑛] low-pass filter  

𝐾 the element to change the filter into different edge detectors 

𝐿(𝑥, 𝑦) The Laplacian of an image  

M M data samples 

M-by-N-by-3 array of RGB values. The first, second and third matrix contains the 

red, the green and the blue components 

M×N matrix by M rows and N columns 

N signal samples 

2N spectral 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑝 entry of the DCT of an image 

𝑞 entry of the DCT of an image 

𝑠 the pyramid layer 

𝑆𝑥 differential operator in the x direction 

𝑆𝑦 differential operator in the y direction 

T The DCT basis functions 

𝑇′ Inverse of matrix 𝑇 

𝑇𝑝𝑞DCT Matrix with p and q entries 

V vertical direction 

𝑥 Signal  

𝑥 𝑥 direction 

𝑋 to vectors from  𝑀𝑠 × 𝑁𝑠 input pixels 

𝑥[𝑛] original signal  

𝑦 y direction 

𝑌 𝑀𝑠 × 𝑁𝑠 DCT output 

∞ infinite 

𝜃(𝑥, 𝑦) represents the direction of the gradient 

𝜓 The mother wavelet function  

∅(𝑥) 1D wavelets 
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∅(𝑦) 1D wavelets 

Ø the scaling function  

𝜎 variance  
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Chapter 1 

1. Introduction 

The subject of this thesis is the development of image processing models for image 

gap restoration. The gaps or missing data can be due to loss in transmission or 

damage to the storage medium. The restoration methods strive to make an optimal 

numerical estimate of the missing parts of an image consistent with the available 

data.  

The estimation of gaps in data is a fundamental problem in classical estimation and 

interpolation theory with numerous applications in the fields of numerical data 

analysis, including econometrics, scientific data analysis and communication signal 

processing (Gonzales and Woods, 2008).  

The interpolation problem is particularly challenging when applied to the restoration 

of gaps in images due to the non-homogenous, non-stationary nature of image 

content that is often composed of a mixture of different objects, textures, patterns 

and edges on the various sides of the gaps.  The interpolation should be capable of 

restoring the gap in a way that is consistent with the non-stationary patterns 

surrounding it. 

For a stationary process, that is, one without underlying space-time variations or 

edges, a low-pass filter is the ideal interpolator as it can provide a smooth 

replacement of the missing gap signal. However a typical image is a highly non-

stationary, space-variant process and hence,  a low-pass filter/smoother will not 

provide satisfactory results for the regions of image gaps that span edges and 

different patterns on the various  sides of the gaps. The low-pass interpolation result 

is likely to be a blurred smeared mix of different patterns that surround any gap. 

Consequently, for satisfactory interpolation of gaps in images, advanced image 

processing methods need to be developed that involve combining appropriate signal 
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analysis and transform tools so as to take account of edges and patterns as well as 

deal with gap sizes that are beyond the capability of a simple ‘ideal’ low-pass filter 

interpolator. 

The application of image gap restoration has a multitude of applications, such as in 

the medical, nuclear physics, astrophysics and image/video communication field. 

Image gap loss concealment is particularly important and is the subject of this 

research thesis. 

1.1 A Brief History of Image and Visual Communication  

Visual records are the most information-rich, and valuable form of communication 

with a long history taking various forms such as engravings, sculptures, paintings, 

and in modern times electronic-media image sequences.   

The recording of historical/social/artistic events or scientific observations by means 

of images begins with the appearance of visual communication systems in the 

Neolithic era, as evident from archaeological records of different historical periods 

(Bonatz, 2007), and has continued up until the recent space images of Pluto 

transmitted by the New Horizons spacecraft at the time of writing this thesis. 

The idea of modern photography is attributed to Thomas Wedgwood some time 

during the 18
th

 century. He appears to have been the first person, reliably 

documented, to have used light-sensitive chemicals to capture silhouette images on 

durable material and the first to have attempted to photograph the image formed in a 

camera obscura; a device that consists of a box or room with a hole in one side 

(Katzman, n.d.). The date of his first experiments in photography is unknown, but he 

is believed to have indirectly advised James Watt on the practical details prior to 

1800 (Greenspun, 1999).  

The process of photography was further developed by Nicéphore Niépce and Louis 

Daguerre, (Greenspun, 1999). Nicéphore Niépce started his work on light sensitive 

varnished materials used in lithography in 1814. In order to create a light sensitive 

plate, he covered a coated pewter plate with asphaltum and then covered all of this in 

wax before placing it in sunlight.  To complete the process, the plate was washed 

https://en.wikipedia.org/wiki/Thomas_Wedgwood_(photographer)
https://en.wikipedia.org/wiki/Silhouette
https://en.wikipedia.org/wiki/Camera_obscura
https://en.wikipedia.org/wiki/James_Watt
https://en.wikipedia.org/wiki/Nic%C3%A9phore_Ni%C3%A9pce
https://en.wikipedia.org/wiki/Louis_Daguerre
https://en.wikipedia.org/wiki/Louis_Daguerre
https://en.wikipedia.org/wiki/Nic%C3%A9phore_Ni%C3%A9pce
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with a solvent and etched in an acid bath to remove the asphaltum and the result was 

a printed plate. Later, the same method was utilised for the photography of the first 

camera image (Katzman, n.d.). However, the technique was time consuming and the 

result was not clear. Louis Daguerre continued the experiment and proposed a new 

silver-plated copper technique in 1840, which resulted in mirror-like images 

(Yaroslavsky, 2011). The first captured image of a person is demonstrated in Figure 

1.1, which is a view from Louis Daguerre’s window. It took around ten minutes of 

exposure, hence the traffic did not appear in the image.  

 

Figure 1.1: Boulevard du Temple - Paris, by Daguerre, 1838, includes the earliest 

known candid photograph of a person – man having his boots polished. 

From then on, the hardware and methods of capturing and processing image 

photography improved dramatically and nowadays, digital image recording   and 

processing is commonplace with the advent of high resolution stand-alone and 

integrated cameras. The most recent technology integrated in mobile phones offers 

as much as a massive 41 mega pixels resolution (with an uncompressed file size of 

123 megabytes), which for a normal size image, surpasses natural human eye 

https://en.wikipedia.org/wiki/Louis_Daguerre
https://en.wikipedia.org/wiki/Louis_Daguerre
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resolution (Microsoft, 2016). State of the art digital images are very large 

multidimensional files for which advanced image processing and compression 

methods have been developed. 

1.2  Thesis Subject: Image Gap Restoration 

The purpose of image restoration is to recover the best approximation of an original 

image degraded by gaps, noise or through blurring (Kim, 2002).  

The focus of this work is on the development of advanced image processing methods 

for image gap restoration. Image restoration has a history that goes back to the 

scientific endeavour of the space programmes of both the United States and the 

former Soviet Union in the 1950s.  Subnormal environment conditions degraded the 

quality of pictures obtained from most space missions. Owing to the amount of 

resources spent on space projects and avid public and media interest, there was a 

need for using the available information to perform image enhancement and 

restoration (Banham and Katsaggelos, 1997). The advent of digital computers and 

digital image processing in 1960s led to the development of digital transformations, 

estimation theory and algorithms for a host of image processing applications 

including image restoration.  

Applications of image restoration include scientific explorations, medical imaging, 

legal/forensic investigation, reissuing films or using clips of old films in new 

productions, image/video coding and decoding, consumer photographs, image 

reconstruction in astronomy, radar imaging, tomography and image reconstruction 

for damaged historical and art objects. The wide range of applications demonstrates 

that there is an important role for effective image restoration methods in today’s 

world. 

The focus in this thesis is on the restoration of still images, which presents major 

research challenges that require in-depth study of the main issues and the current 

methods, development of new improved methods and solutions and comparative 

evaluations of the proposed algorithms. Note that the methods developed for still 
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images can also be applied to video, although the use of temporal information across 

frames would be expected to result in further improvements. 

1.2.1  Causes of Image Gaps 

 

The cause of loss of data and gaps in images can be due one of the following (Ira, 

2008):   

1) Physical degradation or scratches of storage material, this is particularly the 

case with older archived image materials; 

2) Losses due to electromagnetic interference (EMI) during recording or 

transmission of signals; 

3) Losses due to transmission signal outage, particularly in wireless, that is 

errors in synchronisation or equalisation; 

4) Packet losses in internet protocol (IP) networks due to fading, congestion or 

network problems. 

1.2.2  Different Approaches to Recovery/Restoration of Images with Lost 

Segments  

There are three broad approaches for mitigating the loss of quality in received 

images due to packet loss:  

(a) Request for retransmission of the lost packets;  

(b) Error control via forward error correction (FEC) methods; 

(c) Error concealment (EC) methods.  

These three methods are explored in some detail in Chapter 2. The focus of this 

thesis is the receiver-based EC image processing methods that aim to replace the lost 

packets with estimates obtained from the received ones. To recover lost packets from 

the neighbouring pixel values, EC methods utilise the structural observation that 
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images often contain high spatial correlations, recurring textures and patterns 

(Salama, Shroff & Delp, 1998; Wang et al., 2002; Kim, Koo & Jeong, 2006; Zhai et 

al., 2010; Asheri et al., 2012). 

1.2.3  Standard Test Images and Restoration Performance Measures 

A standard test image is a digital image file used across different institutions to test 

image processing and image compression algorithms. Standard test images are 

maintained primarily to support research in image processing, image analysis, and 

machine vision. Therefore those images are used throughout this research to compare 

results, both visually and quantitatively with state of art methods. USC-SIPI Image 

Database is an example which can be found at http://sipi.usc.edu/database.   

To evaluate the results, the restored image should be compared with the original. 

Two most widely used and popular objective image quality metrics are Mean 

Squared Error (MSE), and then Peak Signal to Noise Ratio (PSNR), which can be 

obtained from MSE (Thung & Raveendran, 2009). MSE is calculated as the average 

of the squared difference between the original image and the restored one. PSNR is 

commonly used to measure the quality of the restored image and illustrates the ratio 

between the maximum possible power of signal and the power of noise. The signal 

in this case is the original data and the noise is the error introduced by processing 

artifacts. The PSNR is selected to compare results of the proposed method with the 

previously proposed method as they used PSNR for evaluation. 

The structural similarity (SSIM) index (Wang et al., 2004) is an alternative method 

of quality measurement which is used in some parts of the thesis. This method is 

utilised for measuring the similarity between two images, with the measuring of 

image quality being based on a distortion-free image as reference. The mathematical 

expressions for performance measures are introduced in Chapter 3.  

1.2.4  Image Processing Challenges in Image Gap Restoration 

 

The main challenges in image gap restoration are listed as follows: 

https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Image_compression
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 Selection of Transformation domain: A decision needs to be made on the 

selection of the appropriate processing domain such as the raw image, 

frequency domain, wavelets, and pyramid. For practical reasons, as explained 

later, efficiency of performance, computational complexity and compatibility, 

pyramid discrete cosine transform (DCT) and wavelets were selected as the 

alternative pyramid transformation domain for image gap restoration. 

 Texture processing: Estimation and reproduction of local texture information 

from the known samples in the neighbourhood of the gap. Textures are 

relatively homogenous patterns within the boundaries of objects or segments, 

they may involve local edges or slowly-varying changes in colours, but do 

not include major segment boundaries. 

 Structure/Pattern processing: Estimation and reproduction of global, 

structural, information. Such structures include different textures and edge 

lines/curves that need to be modelled and reproduced in gap estimation. 

 Edges detection: Estimation of local, global edges and segment boundaries. 

The estimation of ‘local’ textures or ‘global structures’ requires tools for 

edge detection and estimation. 

 Development of a hierarchical and/or iterative method: For improved 

performance, in particular, when replacing large size gaps. The method 

combines pyramid transforms, a local texture model and edge detection for 

improved gap estimation. 

1.2.5  List of Contributions to Image Restoration 

1. Incorporation of edge-guided interpolation within multi-scale pyramid 

transformation for image gap restoration, which involves the integration of 
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edge-detection and segmentation of image objects. Subsequently, the 

interpolation is confined within homogenous regions to avoid blurring across 

edges and loss of edge information. 

2. Inclusion of local edge or texture within pyramid image restoration. Global 

edge detection would be erroneous without first interpolating the gaps with a 

local texture interpolator as an initial approximation. Hence, local texture 

interpolation benefits are: 

2.1 Interpolation of textures within segmented homogenous regions; 

2.2 Pre-processing for subsequent edge-guided interpolation across 

‘global’ segments; 

2.3 Can be used in strategies that combined local and global 

interpolations. 

3. Inclusion of global edge estimates and interpolators within the pyramid 

transforms image restoration. 

4. Comparison of the impact of the use of different edge detection and 

interpolation methods, as well as applying iterative method. 

5. Investigation of a number of different wavelet types as an alternative to DCT 

pyramid transforms in edge-guided image gap restoration. In addition, the use 

of horizontal, vertical and cross details components of the wavelets for 

restoration of edges in images. 

1.3  Organisation of the thesis 

This thesis is organised into seven chapters and the six remaining ones are as 

follows. 
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Chapter 2: contains an overview of the published literature on the recovery and 

restoration of lost gaps in images. Image gap replacement has a wide range of 

applications, including: in-painting of missing or damaged segments in still/moving 

images (Padmavathi , Priyalakshmi & Soman, 2012; Swati, Malviya & Lade, 2013), 

replacement of image data packets lost in transmission, enhancement of distorted 

biomedical signals (Prochazka,  Vysata, & Jerhotova 2010; Jonic & Sorzano, 2011), 

restoration of archived damaged images (Khoshelham & Elberink, 2012) and packet 

loss concealment over the internet protocol (IP) or wireless networks (Zeng & Liu, 

1995; Banham & Katsaggelos, 1997; Rane, Sapiro & Bertalmio, 2003). 

Different approaches and methods for correcting or minimising the degradation of 

transmitted image quality due to lost blocks of pixels are critically. 

The advantages and disadvantages of various techniques are discussed. Moreover, 

insight regarding why some applications and tools were selected for developing the 

methodology for this thesis, is provided. The emphasis in the literature review is on 

published work in gap concealment which is the focus of this thesis. 

Chapter 3: provides an overview of the theory and applications of image processing 

methods and tools used in this thesis, with the focus being on the following:  

 Image processing basics; 

 Discrete cosine transforms (DCT); 

 Discrete wavelet transforms (DWT); 

 Edge detection. 

This chapter cover all mathematics which is used throughout the proposed method. 

Chapter 4: an overview of the multi-scale pyramid image transformation method 

presented and applied to image gap restoration. Through a process of pyramid 

transformation and down-sampling, the image is transformed into a series of 

progressively reduced size layers until at the pyramid apex the gap size is one 

sample. The process is then reversed; at each stage, the missing samples are 

estimated, up-sampled and combined with the available samples.  
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This chapter includes an investigation into the different types of gap interpolation 

techniques and their advantages and disadvantages. The proposed algorithm includes 

a combination of multi-resolution transforms, different interpolation methods and 

blending techniques (DCT based interpolation) capable of restoring missing macro 

blocks. The algorithm is evaluated on various test images and the results are 

presented and reviewed in details.  

Chapter 5: presents the second proposed methodology of image gap restoration, 

which is based on incorporation of edge-based directional interpolation within a 

DCT multi-scale pyramid transform. Two types of image edges are reconstructed: (a) 

the local edges or textures, based on the linear and locally-directional interpolation 

approaches, are inferred from the gradients of the neighbouring pixels and used to 

recover the missing gap, and (b) the global edges, or boundaries between image 

objects or segments, inferred using different types of edge detector applications.  The 

evaluation is performed for the same images and the results are discussed in detail, 

being subsequently compared to those of chapter 4 and a range of published works. 

Chapter 6: contains the third proposed methodology, a multi-scale pyramid method 

using wavelet transform, proposed as an alternative to the DCT-pyramid image gap 

reconstruction described in Chapter 5. The wavelet pyramid incorporates, as 

alternatives, conventional and edge-guided interpolation.  The method is tested on 

the same set of test images and the results are discussed as well as being compared 

with those of DCT-pyramid interpolation and several state of the art methods, in 

relation to their capacities for restoration of the corrupted regions in damaged 

images.   

Chapter 7: this final chapter concludes the work covered in this thesis and reviews 

the methods and results presented in the various chapters.  The discussion in this 

chapter provides a summary and overview of several problems encountered in image 

gap restoration and consideration of how the proposed methodologies can overcome 

those problems. In addition, ideas for future work and extension of the methods 

proposed in this thesis are put forward. 
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Chapter 2  

2. Literature Review 

 

2.1 Introduction 

This chapter provides an overview of the published literature on the recovery or 

restoration of gaps in digitised images. That is replacement of pixels that are 

missing, lost or obliterated by noise. Image gap replacement has a wide range of 

applications including packet loss concealment over the internet protocol (IP) or 

wireless networks. 

With the growing demand for image data streaming over the internet protocol (IP) 

networks, maintaining acceptable quality of service (QoS) is an important 

requirement for IP service providers, because these networks are ‘best effort 

environments, meaning that they do their best but cannot guarantee acceptable QoS. 

Three factors usually affect the QoS: jitter, delay and packet losses. Buffering and 

caching is used at the receiver side to conceal the effects of jitter and delay, however, 

in the case of packet losses the negative effect still remains (Hayasaka, Gamage & 

Miki, 2005). Packet loss can occur through network congestion, signal fading and 

thermal noise. Irrespective of the reason, data corruption degrades the quality of the 

received image and adversely impacts on the user experience (Kwok & Sun, 1993), 

as demonstrated in Figure 2.1. 

This chapter starts with a review of three main approaches to minimising the 

degradation in quality of transmitted images due to lost blocks of pixels, namely: 

retransmission,  forward error coding and error concealment (EC). It is argued that 

spatial error concealment (EC) methods have distinct advantages over the other two, 

in terms of requiring less bandwidth, having less delay, probable prevention of 
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additional errors and the ability to market as standalone or embedded applications. 

As a consequence, error concealment is the main subject of this thesis. 

 

Figure 2.1: The original image of peppers and right, the image with 40% random 

missing macro blocks (8 × 8). 

In particular, the focus is on the different strategies for implementation of EC 

techniques, such as the choice of front-end image transformation domains and the 

interpolation methods used to achieve improved error concealment. Hence in the 

relevant literature, in relation to the subject matter, discrete cosine transform (DCT) 

pyramid methods, discrete wavelets transform, edge-guided interpolators and edge 

detection methods are reviewed.  

2.2 The Packet Loss Recovery and Concealment Methods 

One of the most important applications of image gap restoration is packet loss 

concealment in transmission networks (Salama, Shroff & Delp, 1998). These packet 

loss errors might occur due to network congestion, thermal noise, switch noise or 

signal fading. The dominant cause varies according to the network and transmission 

media, such as landline and mobile devices. Additionally, as most signals 

transmitted on ‘real world’ channels are compressed, any packet loss can have a 

significant impact on the perceived quality of the decompressed images (Kwok & 

Sun, 1993). 
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There are three broad approaches for mitigating the loss of quality in received 

images due to packet loss, which are: (1) packet retransmission strategies (Feamster 

& Balakrishnan, 2002), (2) pre-processing error control coding techniques 

(Hayasaka,  Gamage & Miki, 2005) and (3) post-processing error concealment 

algorithms (Zhai et al., 2010). These are more formally known in algorithmic terms 

as: 

 Automatic request for retransmission (ARQ) of the lost packets; 

 Error control coding via forward error correction (FEC) methods; 

 Error concealment (EC) methods.  

2.2.1 Automatic Request for Retransmission (ARQ) 

This method, on a request from the receiver, retransmits the original copy of the 

damaged/lost packet, as shown in Figure 2.2, which results in: recovery of lost 

images at the expense of an increase in the bandwidth and a growth in the delay 

proportional to loss rate (Hayasaka, Gamage & Miki, 2005). Clearly, this method can 

be used on request for retransmission in networks where is the provision of specific 

channels and protocols for an ongoing interaction between the sender and receiver 

modules.  

In ARQ, the sender will retransmit the lost packets after receiving a notification of 

loss from the receiver, the so-called negative acknowledgment (NACK), regarding 

the packet loss (Figure 2.2). However, this can involve a relatively high delay time 

for retransmitting the packets and hence, this method is unsuitable for real-time 

application. In addition, the act of retransmission can increase the congestion rate in 

an already congested network and as a result, more packet loss might occur. Hence, 

there needs to be a controller module for regulating the transmission rate. 

To overcome the congestion problem, a source rate control method is used to give 

priority to the retransmit packets in order to ensure that they definitely arrive at the 

receiver end. When the network is congested, the controller reduces the source rate, 

thereby the encoding media transmission rate is reduced. For this purpose, a method 

of priority coding of the important part of the data has been proposed by Floyd, 

Padhye & Widmer (2000), where, the sender explicitly adjusts its sending rate as a 
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function of the measured rate of loss events, where a loss event consists of one or 

more packets dropped within a single round-trip time.  

For dealing with the disadvantages of delay due to retransmission, a combination of 

receiver post-processing and selective retransmission has been proposed for the 

recovery of packet loss in image/video streaming over the internet (Feamster & 

Balakrishnan, 2002). The proposed method retransmits only the most important data 

to the receiver instead of all of the missing parts, such that from a set of the least 

retransmitted data a minimum level of quality of service can be constructed.  

 

Figure 2.2: Framework of the automatic request repeat (ARQ) process, from the top 

row: with no error, with errors and retransmission. 

A potential problem with the use of ARQ is due to the required enabling facility 

between the sender and receiver in that it is vital to have the retransmission protocol, 

two-way connection and additional bandwidth. However, in some error-prone 

networks, such as the user datagram protocol (UDP), there is no suitable 

communication channel for ARQ between the sender and receiver.  As a 

consequence, the functions of acknowledgement of receiving data packet or request 

for retransmission are not available. The other drawback of this method can be seen 

in networks that are not immune to errors being repeated, such as the Internet, i.e. 

there may be recurrence of packet loss after retransmission in such networks. In 

addition, in Wang & Zhu, 1998 and Zhai et al., 2010 the authors have shown that it 

might not be practical to retransmit the data for packet loss recovery in some time-

sensitive applications, because each retransmission adds an additional round-trip 
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time to the system and for those applications that are time-sensitive any additional 

delays can disrupt all data and thus make them useless (Belfiore et al., 2003). In 

summary, ARQ is not an efficient method for image loss replacement given all of the 

above mentioned drawbacks. 

2.2.2 Forward Error Correction (FEC) 

The second category of methods, FEC, employs error correction coding, with the 

addition of redundant ‘guard’ bits, to enable the recovery of lost pixels from the 

received information. Typically, in an (𝑛,𝑚) coding scheme, 𝑘 = 𝑛 −𝑚 ‘guard’ 

bits are added to 𝑚 data bits, usually using some form of linear block coding or 

convolutional coding algorithms. This implies that the pixel values in successive 

blocks of images will be coded, combined and/or spread over several successive 

packets. An example of (𝑛,𝑚) block coding is shown in Figure 2.3, where there are 

eleven packets in total: seven original data bits and four guard bits.  

FEC codes increase the minimum distance between the raw source codes and hence, 

in proportion, to the increase in the minimum distance, increase the immunity to 

noise or data loss. Best known examples of FEC include Hamming (7,4) block codes 

with a minimum distance of 3 bits and error correction capability of 1 bit. 

With an FEC method, all redundant data packets are transmitted with the original 

data packets (Hayasaka, Gamage & Miki, 2005). The advantage of this method is 

that it can guarantee correction of lost bits over less than the minimum distance, 

whilst the disadvantages are an increase in the number of data bits, greater 

bandwidth and delay (Ira, 2008; Yang & Bourbakis, 2009).  

When FEC is employed in the whole network, it might increase the congestion 

owing to its overhead. Hence, this method is mainly useful in networks that have low 

congestion, because in highly congested networks with a high rate of packet loss, 

FEC can add extra traffic into the system, which will lead to a high amount of loss 

and consequently, the QoS will be degraded (Wang & Zhu, 1998). 

To overcome the congestion problem, as a variation of FEC, an information hiding 

method has been introduced by Yang & Bourbakis (2009), whereby an additional 
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communication channel capacity has been added to the network from the data 

embedding capacity of the host. The embedded data is then extracted in the receiver 

to recover packet loss. There are three main parts to this technique: high bitrate 

information hiding, network modelling, and finally applying the error recovery 

technique.  

 

Figure 2.3: Diagram of the forward error correction (FEC) method (× show lost bits). 

Hayasaka, Gamage & Miki (2005) proposed another variation of the FEC method to 

overcome some of its disadvantages. As buffer overflow at the routers side is one of 

the significant problems in an FEC, the aim of this method is to decrease the 

congestion caused by the overhead, by sending all FEC content to the receiver-end 

before the streaming starts. To make the method more efficient and cope with the 

overflow, priorities are also used to categorise the packets, with some being given 

low priority, based on the encoding technique and the FEC recovery features. The 

simulation results show improvement when compared with a simple FEC. 

Ira, (2008) provides an algorithm called Lost Packet Recovery (LPR) to avoid packet 

loss by temporary allocation of a part of the bandwidth for Forward Error Correction. 

Once packet loss happens, a part of the bandwidth is allocated for sending the FEC 

data to the receiver end and the size of the FEC data channel is changed iteratively to 

find the minimum bandwidth required for the receive system to reconstruct all lost 

parts. As the available bandwidth in network is usually limited, another version of 
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FEC, called priority encoding transmission, was proposed by Albanese et al. (1996), 

to prevent a high level of bandwidth requirement. This is based on giving priority 

value to each part of the bit-stream. The priority values specify the sufficient amount 

of correctly received packets so as to recover the missing parts at the receiver side. 

Consequently, the receiver is still capable of restoring the missing parts when it has 

received a sufficient amount of packets. Whilst this method decreases the data rate, it 

is not capable of dealing with burst losses. 

FEC is an end-to-end (from sender to receiver) method for packet loss recovery, but 

when it is applied to all available bandwidth then the additional overhead is added to 

the network and the QoS may decrease. Most of the losses are due to buffer overflow 

at the routers which is caused by network congestion. So, a method that does not add 

extra overhead to the network is preferable. 

2.2.3 Error Concealment (EC) Method 

The third category of methods, EC, involves receiver-based image processing aimed 

at replacing the lost packets with computational estimates obtained from the 

correctly received data (Banham & Katsaggelos, 1997). To recover lost packets from 

the neighbouring pixel values, EC methods utilise the observation that images often 

contain high spatial structures, correlations between neighbouring pixels as well as 

recurring textures and patterns (Suh & Ho, 1997; Wang, Yu & Zhang, 1998; 

Hemami, 1995; Rane, Sapiro & Bertalmio, 2003; Agrafiotis, Bull & Canagarajah, 

2006; Zhai et al., 2010).  

In general, these methods are divided into temporal and spatial approaches 

depending on the type of information that they use. The former is suitable for 

moving images and videos, employing the temporal information from consecutive 

frames, whilst the latter utilises the spatial information from intra coded frames or 

images. For videos, there are also methods that combine the temporal and spatial 

approaches. 

Further development of spatial EC for the recovery of missing image blocks is the 

chosen focus of this research thesis, due to following assessment: 
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 Among the three aforementioned categories of solutions for packet loss 

recovery, an effective EC would be most beneficial as it adds no further load 

onto bandwidth or causes delay; 

 EC methods can be used for real-time or non-real-time applications; 

 In contrast to EC, ARQ is not compatible for real-time applications, as it 

causes irregular delays in packet delivery; 

 In contrast to FEC, EC does not require adding redundant information to the 

data, which leads to use of more bandwidth, an increase in delay and a 

decrease in the compression ratio; 

 The ARQ and FEC techniques are not immune to further errors; 

 Unlike EC, ARQ and FEC are not standalone applications; EC can be 

embedded or downloaded as a stand-alone app for use at the receiver 

terminal; 

 In contrast to ARQ and FEC, EC methods do not require an international 

telecommunication union (ITU) approved standard and as mentioned, can be 

coded as stand-alone apps and deployed in networks or used as embedded 

applications on the receiver handsets/terminals. 

Therefore, for above reasons advantages which will be used later in these research, 

spatial EC image gap restoration is the category of solution explored in this research. 

At their core, image EC computation algorithms often involve three distinct 

processes: 

 Front-end image transformation; 

 Structural data extraction, such as segment boundaries or edges; 

 Extrapolation or interpolation of missing gaps. 

The varieties of image transformations used are many, with the most popular being 

the identity transform (raw image), discrete Fourier transform (DFT or its fast 

version FFT), discrete cosine transform (DCT) and the discrete wavelets transform 

(DWT).  

The main structural information used for EC is segment boundaries obtained by use 

of edge detection, which are employed as part of edge-guided interpolators. There 

are also various types of spatial EC restoration methods, such as linear or averaging 
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interpolation (Shirani, Kossentini & Ward, 2000), bilinear interpolation (Salama,  

Shroff & Delp, 1998), directional interpolation (Asheri et al., 2012) and statistical 

learning based interpolation (Zhai et al., 2010), with the first two methods being 

defined as non-directional, whilst the rest are based on directional interpolation 

categories.   

2.3 Image Transformation Methods for Gap Interpolation 

At the front-end of a spatial EC method there is usually an image transformation 

module. The selection of the transform domain in which the image is interpolated 

can have a major impact on the methodology and outcome of the restoration 

technique (Park, Kim & Lee, 1997; Alkachouh, & Bellanger, 2000; Shirani, 

Kossentini, & Ward, 2000; Meisinger & Kaup, 2004; Park et al., 2005). The 

common choices of transform domain vary from direct interpolations over raw 

spatial domain pixels (Kaup, Meisinger & Aach, 2005; Asheri et al., 2012), to 

methods that involve transformation of images using discrete Fourier transforms 

(DFT) (Meisinger & Kaup, 2004), discrete cosine transforms (DCT) (Wang & Zhu, 

1991; Zhai et al., 2010) discrete wavelet transforms (DWT) (Rombaut, Pizurica, & 

Philips, 2008; Prochazka,  Vysata & Jerhotova, 2010) or EC methods using a 

combination of spatial and frequency domains as investigated in Wang, Zhu & 

Shaw, 1993,  Alkachouh, & Bellanger, 2000,  Zhai et al., 2010 and Marvasti et al., 

2012). 

2.3.1 Discrete Cosine Transform (DCT) 

DCT transforms are the most widely used frequency transforms in image coding 

applications (Wang & Zhu, 1991; Zhai et al., 2010). There are three reasons for the 

common use of these transforms in image processing:  

(1) Optimality: The fixed DCT matrix efficiently approximates the performance 

of data-dependent optimal Karhunen-loeve transform (KLT) (or equivalently 

principal component analysis (PCA)) derived from the covariance matrix; 

(2) Practicality: DCT is relatively easy to implement, it is robust and 

computationally efficient;  
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(3) Compatibility: DCT is already the standard transform employed for many 

image coding apps such as Jpeg and Mpeg. 

Hence, unsurprisingly, DCT are used in most research and development efforts 

(Wang & Zhu, 1991; Zhu, Wang & Shaw, 1993; Wang, Zhu & Shaw, 1993; 

Alkachouh, & Bellanger, 2000; Zhai et al., 2010) as a solution to recover the 

corrupted areas of an image.  These DCT-based methods advantageously utilise the 

observation that images, except for the edges, have primarily low frequency content. 

Hence, the high frequency coefficients do not carry important image information and 

most image information is compressed into low-frequency coefficients (Park & Lee, 

1999). 

Frequency domain reconstruction is applied to gap restoration in Wang & Zhu 

(1991). A linear combination of correctly received coefficients is calculated within 

the surrounding blocks to replace the missing areas. However, this method only 

reconstructs the lowest fifteen coefficients for a complete block loss, in the case of 

an 8 × 8 macro block size (64 coefficients) and the rest of the coefficients remain 

lost (zeroed). Hence, most of the high frequency details are lost and so the quality of 

the image is degraded. 

Alkachouh & Bellanger (2000) proposed an approach for replacing a missing block 

by using a DCT, which transforms the missing block and the available neighbouring 

pixels into the frequency domain. The higher frequencies are set to zero as the lower 

ones are deemed more important and carry the main information. Then, the same 

position as the missing block in the neighbouring blocks is used to recover the 

missing data areas. Perhaps unsurprisingly, the PSNR outcome is not convincing, 

especially regarding the details and diagonal edges, owing to the high frequency 

information having been removed.   

In Wang, Zhu & Shaw (1993) the maximally smooth image recovery method was 

put forward using a constrained energy minimisation approach in the DCT domain. 

It calculates the spatial variation (gradient or Laplacian) between pixels in the 

missing block and the adjacent pixels in the neighbouring blocks, subsequently, 

minimising this measure to recover the lost blocks. However, as this scheme is based 

on a low-pass filter, it ignores high frequency data and consequently, the edges, the 
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boundary areas and lines are adversely affected. Also, due to utilising only a small 

part of the available image area, this technique is not able to provide accurate 

structural/pattern information in the image reconstruction. 

A combination of frequency domain and spatial interpolation was used in Hemami & 

Meng (1995), based on the assumption that there is a similarity between lost 

coefficients and the corresponding ones in the neighbouring blocks. Four 

corresponding coefficients in the surrounding blocks are selected to interpolate the 

value of a missing block by using the method of maximally smooth recovery in 

Wang, Zhu & Shaw (1993).  Due to the distance of the selected coefficients for 

interpolation, from the missing pixels, the result might be inaccurate owing to the 

low level of correlation.  

 

Figure 2.4: a) The missing pixel is interpolated by the values of four pixels on all the 

boundaries. b) The missing pixel is estimated by two pixels on the nearest two 

boundaries. 

Aign & Fazel (1995) proposed a method of interpolating the missing pixels by 

utilising four immediate pixels in four neighbouring blocks, instead of the 

corresponding pixels, in contrast to the method used in Hemami & Meng (1995), 

which resulted in the estimation being more accurate. There are two alternative 

estimation models of the missing block in this method (Figure 2.4) with first, the 
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missing pixel being interpolated by values of four pixels on all the boundaries 

(Figure 2.4.a), whilst for the second model the missing pixel is estimated by two 

pixels on the nearest two boundaries (see Figure 2.4.b). 

A further approach to restoration of a missing block using a DCT transform domain 

was proposed by Ancis & Giusto (1999), which investigated four different methods 

of interpolations. Among four considered techniques a combination of median and 

edge based interpolation was selected in order to recover the missing blocks. 

2.3.2 Discrete Wavelet Transform (DWT) 

As an alternative approach, discrete wavelet transform (DWT) can be used, instead 

of the discrete cosine transform (DCT), to reconstruct the corrupted image pixels in 

error prone networks. The essential differences between DCT and DWT are: 

(1) DWT employs a set of varying duration (scale) and frequency basis 

functions, with ‘bell-shaped’ decaying profile, known as wavelets, whereas 

the cosine basis functions in DCT have the same duration and are of constant 

amplitudes and have harmonically-related frequencies; 

(2) DWT progressively and equally divides bandwidth and transforms images 

into four frequency quadrants (Low-low, low-high, high-low, and high-high). 

Hence DWT inherently has a pyramid-like structure, which is useful as 

pyramid type transforms are employed in this thesis; 

(3) At each decomposition stage, DWT involves a set of different scales that may 

be better suited to non-stationary edge-type structures; 

(4) DWT is computationally more complex to implement and run than DCT. 

Under this approach, the main assumption is that the correlation between the lost 

block and its surrounding ones can be evaluated in the wavelet domain to replace the 

missing parts. 

The easiest way to cope with data loss in a DWT transform is to discard any that 

occurs and replace its coefficients with zeros. Consequently, the received image has 

dark ‘spot’ owing to the discarding of the low-frequency coefficients that contain 

most of the energy. As removing the lost coefficients causes image quality 
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degradation, to overcome the problem by a basic DWT gap restoration, a simple 

method of using four surrounding neighbouring blocks to calculate a linear 

interpolation has been proposed by Bajic´ & Woods (2003).  Even though the 

method is not complicated and the outcome is acceptable in the smooth area, inferior 

restoration occurs at the edges, as can be seen in Figure 2.5. 

 

Figure 2.5: Recovered Lena image by Bajic´ & Woods (2003) with 25% packet loss. 

Two separate methods were utilised to restore the missing coefficients in Hemami & 

Gray (1997), one for the low-frequency coefficients (smooth areas) and the other for 

the high-frequency coefficients (edges areas). The correlation of the available low-

low sub-band at the lowest level of decomposition is used to recover the smooth 

areas (utilises both inter-band and intra-band correlation between the coefficients). In 

addition, a bi-cubic interpolation approach is applied to reconstruct the corrupted 

coefficients at high frequencies. High-low and low-high sub-bands are used to 

estimate the vertical and horizontal edges for each missing coefficient through 

thresholding at the same decomposition level and the lost high frequency coefficients 

in the HH sub-band being ignored and set to zero. This method has been tested only 

on uncompressed images and most of images in packet networks are compressed, 

hence it is not appropriate for widely used compressed image types. 

Another method of DWT restoration was proposed by Rombaut, Pizurica, & Philips 

(2008), which involves an adaptive interpolation approach that takes into account the 

available coefficients in both the horizontal and vertical directions. In addition, an 
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optimal interpolation weight is calculated from the correctly received surrounding 

coefficients. Each lost low-frequency coefficient is restored by these interpolation 

weights, which are computed from interpolation errors. These errors are based on 

interpolation of the missing coefficients from available neighbouring ones in both 

vertical and horizontal directions. 

In Lee & Chen (2002) an approach to DWT restoration was presented that utilises 

the correctly received bit-plane to recover damaged bit-plane data in the missing 

parts. However, as wavelet transform eliminates most of the correlation between 

coefficients, there is not sufficient information for restoration and hence, the 

published result of the proposed method is not convincing (as the outcome can be 

seen in that paper).  

Ye, Sun & Chang (2004) proposed an edge-based filter to restore the missing 

coefficients in the wavelet domain. The reconstruction is based on a combination of 

the correlations in the spatial and wavelet domains. After estimation of the missing 

parts, a refinement algorithm is applied into the recovered coefficients, which 

involves two parameters; the first being the statistical correlation between the 

coefficients and the second, keeps the correctly received coefficients unchanged. 

More edges can be preserved by this method.  

2.3.3 Pyramid Transforms 

Pyramidal data coding/transform structure is an important transform coding scheme 

in the field of image processing with applications regarding image compression, 

restoration and recognition (Adelson et al., 1984). This method is a transform or 

filter-based representation of a signal, which decomposes the input data into subsets 

of progressively reduced-scale, bandwidth, basis functions and coefficients 

information, at several levels of the pyramid. This is in order to extract the main 

features as well as reduce the noise and redundancy. The latter feature can be 

beneficial in the coding, image enhancement and image analysis. Furthermore, the 

human visual system includes a similar decomposition process (Tan & Ghanbari, 

1992). 
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Pyramid transforms are structurally similar to wavelet transforms and the latter could 

be regarded as a category of the former. Gabor developed a form of pyramid 

(wavelet) transform by using a combination of complex sinusoids and Gaussian 

windows functions, which perform the optimal time-frequency localisation outcome 

(Lee, 1996). 

One of the original papers on the application of the pyramid method to image 

processing pertains to the classical Laplacian pyramid coding, first proposed by Burt 

& Adelson (1983). Their method is based on the assumption that different scales of 

an image can be used as the basis functions, when those scales have the same basic 

shape but appear at many scales. Redundancies between pixels are removed by 

separating the low-pass version of the image from the original one and the low-pass 

filtered part appears in the next scale level. Then, the same process is repeated 

progressively on the low-pass filtered section, to reach the required level of 

decomposition.  

As an alternative to the Laplacian transform, DCT transform has been employed in 

pyramidal coding (Tan & Ghanbari, 1992) as it is a widely used, efficient and robust 

transform and additionally has the important property of compacting most of the 

energy in the 𝑀 lower frequencies coefficients from a total of 𝑁 coefficients. 

Consequently, the (𝑁 −𝑀) DCT coefficients, which do not carry important 

information, can be omitted.  

Figure 2.6 illustrates the decomposition of an image into a DCT-pyramid together 

with the reconstruction process. The basic operations employed are DCT, IDCT and 

subsampling/decimation, the latter amounts to retaining 𝑀𝑖 out of 𝑁𝑖 DCT 

coefficients. While the main theoretical restriction is 𝑀𝑖  <  𝑁𝑖, for gap restoration a 

value of 𝑀𝑖 = 𝑁𝑖/2 ,  is used. 

The processing functions that transform one pyramid level onto the next reduced-

scale level are as follows: 

1- Apply DCT to an 𝑁𝑖-pixels image at the current level to obtain 𝑁𝑖 DCT 

coefficients; 

2- Select 𝑀𝑖 lowest index coefficients out of 𝑁𝑖 coefficients; 
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3- Apply IDCT to 𝑀𝑖  lowest coefficients to obtain the decimated image for the 

next level. 

Decimation is used in pyramidal data coding to reduce the image and transform its 

size to the next level by retaining a subset of 𝑀 out of 𝑁 coefficients. This is done by 

applying an 𝑁-point DCT transform, the selection of a subset of 𝑀 coefficients and 

subsequent application of an 𝑀-point inverse DCT transform. The pixels are derived 

by sub-sampling the filtered original image by an interval of  
𝑁

𝑀
 .  

Once a pyramid of DCT coefficients, such as that shown on the left hand side of 

Figure 2.6, is constructed, the desired functions, such as quantisation, noise 

reduction or image restoration can be applied to each level of the pyramid. The 

original image can then be reconstructed from the decimated and processed sub-

images by interpolation in the DCT domain. The process of interpolation (up-

sampling) starts from the apex by applying an 𝑀 point DCT transform on the 

decimated image and then zero padding from a size of 𝑀 to the size of the next level 

𝑁, followed by an 𝑁-point inverse DCT transform, as can be seen in Figure 2.6. 

 

Figure 2.6: Illustration of DCT-Pyramid processing. Three levels of a two-
dimensional DCT pyramid coding and reconstruction IDCT pyramid (Tan & 

Ghanbari, 1992). 
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Using the DCT transform helps to reduce the blocking effects and in addition, the 

drawbacks of Laplacian pyramid are resolved. First, in contrast to the Laplacian 

pyramid, the difference image is in the transform domain and second, the whole 

image part of the DCT pyramid always remains equal to 𝐴, albeit on reduced scale 

(the total image area). 

2.4  Interpolation of Missing Gaps 

Interpolation methods are used to replace unknown pixel values from the known data 

values. For interpolation, the choice is broadly between non-directional (Salama, 

Shroff & Delp, 1998; Wang et al., 2002; Wang & Zhu, 1991;  Wang, Zhu & Shaw, 

1993; Zhu, Wang & Shaw, 1993; Park, Kim & Lee, 1997; Wang, Yu & Zhang, 

1998; Alkachouh & Bellanger, 2000; Agrafiotis, Bull & Canagarajah, 2006) and 

directional (Kwok & Sun, 1993; Zeng & Liu, 1995; Hsia, 2004; Kim, Koo & Jeong, 

2006; Asheri et al., 2012) interpolation. Each approach has its own advantages and 

drawbacks.  

Bilinear and non-directional techniques are able to recover the smooth areas, but fail 

to restore the visually important edge information. In contrast, directional 

interpolations are able to recover edges more accurately, but leave the blurring 

artefacts on the smooth areas.  

2.4.1 Non-directional Interpolation Methods 

One type of a non-directional method is basic spatial interpolation, which uses a 

weighted average of the neighbouring pixels to recover the lost gap. One of the 

weight-averaging approaches devised by Salama, Shroff & Delp (1998) employs 

four immediate neighbouring pixels in four directions. The missing pixel is replaced 

by the weighting composition of these four available pixels, but despite this method 

being simple, the result is not persuasive as the edges and structures cannot be 

accurately reproduced. 

Varsa, Hannuksela & Wang (2001) utilised the same approach of the weighting of 

the average interpolation of four pixel values in four directions, top, bottom, left and 
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right, as can be seen in Figure 2.7, where 𝑊1, 𝑊2, 𝑊3 and 𝑊4 represent the 

distance between the interpolated pixel and the available neighbouring pixels in the 

top, bottom, left and right directions. It is assumed that all four corresponding pixels 

are available, but in real scenarios those pixels can be affected (Alejandro et al., 

2012) and if this is the case, then the quality of the restored image decreases 

significantly. A further shortcoming is that only the immediate neighbouring pixels 

are used for the interpolation and hence, the method does not include a wider area. 

This means it might not obtain all the information required for a high quality 

restoration. Although with this method and other weighting averaged approaches, a 

satisfactory result is achieved in the smooth areas, the performance around the edges 

can be blurred, as it does not model the impact of edge discontinuity (Hemami, 1995; 

Wang et al., 2002). 

 

Figure 2.7: Weighting average interpolation, one missing MB (8×8), four available 

surrounding blocks. 

The shortcomings of the methods explained above demonstrate that it is essential to 

use a large ‘global’ area of surrounding MBs to reconstruct edges rather than just 

using the immediate local neighbours. 

Zhu, Wang & Shaw (1993) proposed another method which is a combination of 

coding and EC for DCT-based packet images. The method relies on the hypothesis 

that image contents change smoothly as well as having a low frequency component 

and block interleaving was the solution they used. This involves gathering all 

spatially adjacent image blocks into distinct packets and maximising the distance 

between adjacent blocks. As placing the nearby blocks at a far distance leads to 

reconstruction/encoding delays, to overcome these, an even/add interleaving 
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program is sometimes used. Consequently, when a block with an even index is lost, 

its neighbour with an odd index is generally available. Afterwards, a smooth 

reconstruction process is applied to the lost areas to reconstruct the corrupted block 

by finding the best maximally smooth block that fits along the boundaries 

(Debrunner et al., 2000). Whilst this method allows for the reconstruction of the 

smooth area, unfortunately, the resulting image is blurry at the edges. Furthermore, 

as these methods take account of both internal smoothness similarities in the block 

and boundaries, the computation complexity is high. 

Hemami (1995) proposed two different approaches to restoring missing image 

blocks, the first involves the use of vector-quantised linear interpolation, while the 

second, employs a linear combination of four neighbours of the missing macro 

block’s weights. However, a 10% space overhead is added to the system by the 

former method and the reconstruction of the main edges are not convincing when 

applying the latter.  

To overcome the disadvantages of (Wang & Zhu, 1991; Zhu, Wang & Shaw, 1993; 

Wang, Zhu & Shaw, 1993) algorithms, Park, Kim & Lee (1997) suggested a new 

method, which uses a smoothness constraint along the boundaries that involves 

solving a set of linear equations. The method reduces the computational complexity 

by decomposing the linear equation into four linear equations, thereby making the 

method more suitable for real time applications. To restore the corrupted blocks the 

cost function needs to be computed in the DCT domain and its derivation is 

calculated for each of the missing 64 coefficients of a macro block.  It has been 

shown that this method is able to recover a maximum of 28 coefficients, which are 

mostly low frequencies and the rest are set to zero, consequently the high frequencies 

and edges are not recovered. Despite the new method utilising less restoration 

information, the quality of the restored image is better than those of the previous 

methods.  

An approach by Shirani, Kossentini, & Ward (2000) extracts the correlation between 

adjacent blocks. This method utilises a weighed linear combination of all 

neighbouring available blocks (a least squares solution minimising the boundary 

error between the known and missing blocks) and the collection of this surrounding 

information leads to achieve a better estimation for diagonal edges. 
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Rane, Sapiro & Bertalmio (2003) presented a technique which utilises the correlation 

between the lost packet and its neighbours and it employs a combination of two 

separate algorithms. Firstly, all lost blocks are divided into texture and structure 

types. Then, texture synthesis is used to reconstruct the texture type missing blocks 

and an image in-painting method is deployed to restore the structure type missing 

blocks. However, there are several drawbacks to this method, for in the cases of 

losing the image feature completely or there being a high level of missing blocks, it 

is not able to recover the image properly. In addition, it is not always easy to predict 

the type of missing block, particularly when there is a high level of loss and 

therefore, methods with the capability of dealing with such loss are preferable 

(Meisinger, 2007).   

A further approach to SEC is described in Wang,Yu & Zhang (1998) using a 

technique called best neighbourhood matching, which is based on block-wise 

similarity within the image (special kind of information redundancy). The method 

searches for the best similar macro-block (MB) within a predefined search area in 

the image in order to replace the missing one with it. The process, as shown in 

Figure 2.8, starts by defining the search area, called the centre point and then an 

extension is added to the missing block in the local neighbourhood in each 

dimension, which is called the range block. Afterwards, the search for a ‘good’ block 

in the image is started by using the appropriate luminance transformation in each 

block candidate. Then, the mean squared error (MSE) distance between the shifted 

and centre blocks is calculated for each of the candidates of the same size and the 

block with the smallest MSE, called domain block, is selected to fill  the missing 

part.  

Although it has been proven that the reconstructed image quality is acceptable in 

Wang, Yu & Zhang (1998), the running search time is high, especially regarding use 

in real-time applications. Some work has been done to improve the algorithm, for 

example, by He &  Zhang (2010) aimed at reducing the runtime and computational 

complexity by deploying a rotating style, which dynamically detects and cuts the 

search range.  
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Figure 2.8: Diagram of a lost block, range block, domain block and searching range 

block. 

Another work of block-level similarity put forward by Zhai et al. (2008). They 

established a block-based bilateral filtering (BBF) framework, which operates in a 

block-wise manner. It has been shown the problem of error-concealment using BBF 

can be considered as a superset of image denoising using BF. The BBF has the 

ability to capture the block-level similarity that well matches the need of error-

concealment. 

Finally, in Tschumperle & Deriche (2005) vector-valued image regularisation based 

on variation methods and partial differential equations were introduced for image 

enhancement and in-painting. This formulation is particularly adapted to understand 

the local smoothing behaviour of diffusion partial differential equations (PDEs).  

2.4.2 Directional Interpolation Methods 

From the research literature on image processing, it is evident that EC methods work 

well in recovery of the low frequency smooth parts of the image (Wang & Zhu, 

1991; Wang, Zhu & Shaw, 1993; Zhu, Wang & Shaw, 1993), but they are normally 

incapable of restoring the high frequency details and also, they miss the main edges. 

Consequently, to obtain high quality image restoration results, it is of paramount 

importance to include the image edge information explicitly.  
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In directional interpolation, a more complete utilisation of the spatially correlated 

details from the neighbouring pixels is used to perform a better interpolation of the 

smooth and edge details present in the surrounding blocks. Many techniques have 

been proposed for using edge-related information for image interpolation (Kwok & 

Sun, 1993; Hsia, 2004; Zhao et al., 2005; Kim, Koo & Jeong, 2006; Asheri et al., 

2012), with some employing simple approaches to estimate edges within images 

(Suh & Ho, 1997; Salama, Shroff & Delp, 1998; Park & Lee, 1999), which are 

capable of interpolating the low frequency details of missing areas, but they fail to 

reconstruct the highly detailed parts. Other approaches (Wang, Yu & Zhang, 1998; 

Li & Orchard, 2002; Park et al., 2005; Gharavi & Gao, 2008) have achieved an 

improvement in image detail restoration and have provided more reliable 

interpolation results. 

A directional interpolation approach was proposed by Kwok & Sun in 1993, for 

which a Sobel filter is used to calculate the gradient vector 𝐺 for each pixel by 

employing the local geometric information from the correctly received neighbouring 

blocks to the missing one, which leads to the strongest edges being found. Then, the 

gradient angle is computed by the following equation to find the strongest edge 

direction: 

𝐺 = √𝑔𝑥 2  + 𝑔𝑦 2                 𝜃 =  tan−1 (
𝑔𝑥
𝑔𝑦
)                             (2.1) 

Eight possible directions are defined by rounding the gradient angle to the nearest 

value of  22.5° equally spaced around 180° (see Figure 2.10). A counter is allocated 

to each direction and is incremented if a line of the magnitude gradient and angle 𝜃 

at pixel 𝑝 = (𝑖, 𝑗) is passing through the missing area. 
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Figure 2.9: Missing MB (8×8) with eight available surrounding MBs (8×8). 

In Kwok & Sun (1993) it is assumed that all eight neighbouring MBs are available 

(Figure 2.9) to calculate the missing MB and hence problems may arise if any are 

absent. Edge detection is a non-trivial process and any error can yield noticeable 

artefacts in the image restoration outcome. Moreover, as the method only takes into 

account the immediate surrounding MBs, the performance suffers if the predominant 

edge map is different to the immediate surrounding MB area (Alejandro et al., 2012).  

 

Figure 2.10: Eight edge directions. 

Two factors are involved in an alternative method proposed by Jung, Chang & Lee 

(1994) for interpolation:  interpolation direction and projection data. Missing blocks 

are estimated from correctly received neighbours through bilinear reconstruction, 

which is followed by an enhancement step. Projective interpolation uses the edge 

pattern enhancement to improve the edge restoration. The quality of outcome is 

improved (as can be seen in (Jung, Chang & Lee (1994))) and this is mainly due to 

the good estimation of the edges. 
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Projection onto convex sets (POCS) is another method employed by Sun & Kwok 

(1995) (see Figure 2.11), which utilises band-limited extrapolation by spectral 

estimation in addition to the gradient measures in the spatial domain, as with the 

previous method. Neighbouring blocks are divided into two categories: smooth and 

edge areas. A discrete Fourier transform (DFT) module transforms the missing 

blocks and their available neighbouring ones together as one large block. Then, 

separate transforms are applied to each block based on its category.  A low-pass 

filter and a band-pass are used for the smooth and edge areas, respectively. 

Afterward, the neighbouring blocks are replaced with estimated samples after 

inverse DFT. When multi-directional edges exist in the missing parts, the missing 

block is interpolated along all the edge directions and then the method utilises the 

prospective principle to unify these multiple edges, as can be seen in Figure 2.11.  

As explained above, the process includes subsequent iterations and also two 

transforms are needed for each, consequently the computational complexity is high. 

Moreover, this method is not able to restore multi-directional edges, the smooth 

areas are not immune to incorrect restoration owing to overshoot effects caused by 

band-limited extrapolation methods (Meisinger, 2007) and the edge detection 

operators are sensitive and might give false detection in the edge areas, which leads 

to wrong block classification. Generally, this method is usually reliable for situations 

where all the surrounding MBs are available, but in cases where the neighbouring 

blocks are corrupted, the resulting image is not satisfactory.  

 

Figure 2.11: POCS iterative process on a missing block and eight available 

surrounding MBs (Sun & Kwok, 1995). 

In Zeng & Liu (1995), a spatial directional interpolation scheme is proposed, which 

makes use of the local geometric information extracted from the surrounding blocks. 
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A neighbouring frame, two-pixels wide, from available surrounding pixels is used in 

the proposed method to restore the missing block. A geometrical structure is 

exploited from that frame by first thresholding to a binary format, then by using the 

number of changes from black to white and also the location on the frame, the edges 

and their directions that are passing the missing block, are estimated. Afterward, 

based on edge and direction estimation the block is divided into different zones and 

different types of interpolation are employed to interpolate the missing block. 

To overcome the drawbacks of the previous methods, Rabiee, Radha & Kashyap 

(1996) proposed a scheme called multi-directional recursive nonlinear filtering 

(MRNF) (see Figure 2.12). The interpolation starts from the boundaries of the MB 

moving towards the centre and the correlation between it and its neighbouring MBs 

is extracted by a variable kernel, which works as a processing window. While in 

another exploration the relationship between surrounding macro blocks is exploited 

by using a W-GMLOS (weighted generalised maximum likelihood ordered statistics) 

filter. This combination leads to a probing of the cross-correlation between the 

corrupted macro block and its neighbouring ones. 

 

Figure 2.12: Multi-directional recursive nonlinear filtering (MRNF) and eight 

interpolation directions. 

Park & Lee, (1999) presented a two-dimensional non-uniform rational B-spline 

(NURBS) interpolation process. After employing this function, this method involves 

utilising an optimisation technique to find the optimal control point so as to be able 

to replace the missing area. The sharp edges and smooth areas can be estimated more 

intensely, as this technique uses all the information along surrounding neighbours. 
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Despite the outcomes being improved compared with the previous proposed 

methods, which just use bilinear (Salama, Shroff & Delp, 1998), DCT transform 

(Wang & Zhu, 1991) Projection onto convex sets (POCS) (Sun & Kwok, 1995), the 

quality is still unconvincing, as can be seen in Figure 2.13. In addition, it requires 

hundreds of iterations to find the optimum result and hence, involves a high amount 

of computation complexity. 

Hough transforms and edge detection were combined by Gharavi & Gao (2008) to 

propose a method for edge detection. The scheme is based on designing a new 

Hough transform-based technique that is capable of continuously connecting edges 

irrespective of the number of edge points surrounding missing areas. Then, the 

connected edges are used to divide the missing areas into different regions for 

interpolation along the directions of each detected line. However, the performance 

result of the method decreases in the case of an image with multiple edges and 

texture.  

 

Figure 2.13: Corrupted Lena, the restored Lena by (NURBS) interpolation and the 

zoomed imperfections. 

Directional EC methods are not usually able to deal with multi-directional edges, 

which are involved in the missing block and this is one of the major problems. Li & 

Orchard (2002) offered an adaptive approach for a flexible edge direction finding 

within the block to recover a missing one with complex edge features. The corrupted 

blocks are restored by calculating a weighted linear combination (fourth order linear 

interpolation) of the neighbouring pixel values in eight directions. A sequential 

process is used and previously recovered pixels can be used in the recovery 
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afterward. Hence, this approach makes the interpolation more effective for restoring 

more detail information.   Nevertheless, even though the PSNR result is improved, 

this method has a high level of complexity. Moreover, the restoration of details may 

not be accurate. 

An enhancement for packet loss recovery especially for edge parts was put forward 

by Hsia (2004), which starts with a one-dimensional boundary search of 

neighbouring blocks to find the best match of the possible edge directions. 

Afterwards, the corrupted parts are estimated by a weighting linear interpolation 

using the estimated edge direction from the previous process level. Finally, the 

remaining missing blocks are calculated by a median filter. 

In Zhao et al. (2005) a spatial error concealment algorithm was presented using 

directional extrapolation. The pixels within the corrupted block are recovered one by 

one. Each pixel in the corrupted block is recovered by two steps. The first step 

involves determining if there is an edge with one of ten directions traversing the 

pixel to be recovered. Then the pixel is recovered through simple extrapolation of 

two pixels along the determined direction. The experiment results showed that the 

proposed technique has achieved objective and subjective improvements compared 

with the previously published work. 

An alternative to estimation of the missing block is a pixel-wise fine directional 

interpolation (FDI), which is based on the introduction of a spatial direction vector 

(SDV) (Kim, Koo & Jeong, 2006), (see Figure 2.14). SDV is calculated from the 

edge information of the surrounding available blocks by utilising a Sobel gradient 

filter and edge direction can be classified into one of eight possible directions 

(Figure 2.10). Then, the missing area is interpolated by best edge direction, based on 

the SDV vector and each pixel is estimated by the corresponding edge direction. The 

outcome shows an improvement over some of the other methods in the literature 

(Suh & Ho, 1997; Wang & Zhu, 1998; Salama, Shroff & Delp, 1998; Hsia, 2004) 

and can cope with complicated image structures. 
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Figure 2.14: Restoration by dominant SDVs: DSDV1 and DSDV2. 

Bayesian estimation is employed for EC to solve the problem of missing image 

blocks as a statistical machine-learning based interpolation (Zhai et al., 2010; Liu et 

al., 2014). The essence of the Bayesian philosophy applied to image restoration is to 

calculate the interpolation weights from the likelihood and prior functions, in turn 

calculated from the available information.  Zhai et al. (2010) proposed a method 

which is a combination of a Bayesian framework and a DCT transform on a multi-

scale EC platform. To begin, both missing and correctly received pixels are 

considered as vectors and then all missing as well as the pilot vectors gathered, are 

used to estimate the missing parts. In addition, the DCT transform, as mentioned 

before, helps to enhance the restoration. The image is first transformed to the DCT 

domain in a multi-scale frame and afterwards the missing details are restored through 

an iterative process, which takes account of previously recovered pixels as a guide 

for further improvement in the interpolation.  

It can be seen from Figure 2.15, that the outcome of Zhai et al. (2010) is improved 

when compared with a number of state of the art methods. However, the result can 

be further improved to achieve a higher PSNR and better visual perception.  
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Figure 2.15: Comparison of different EC algorithms on Lena with 25% loss (8 × 8 

isolated block loss). (a) Lossy image, (b) Bayesian EC (Zhai et al., 2010), (c) BBF 

(Prochazka,  Vysata & Jerhotova, 2010), (d) Sequential EC (Li & Orchard, 2002), (e) 

FSE(Meisinger & Kaup, 2004) and (f) POCS-based EC (Park et al., 2005). 

A further Bayesian estimation method based on an adaptive linear prediction by Liu 

et al. (2015) achieved a higher PSNR and better visual perception. Missing pixels are 

reconstructed sequentially, pixel by pixel, utilising linear prediction, with the order 

of the predictor being determined by adopting a Bayesian information criterion 

(BIC) and hence, more details and structures are restored and its PSNR is improved 

compared with the method of Zhai et al. (2010).  

Another error concealment technique (Koloda et al., 2013) is based on sparse linear 

predictions. The missing MB areas are restored sequentially using a linear predictor, 

the coefficients of which are estimated by an adaptive procedure based on sparsity 

and a missing data imputation approach. The estimation of the predictor coefficients 

is defined as a convex optimisation problem and then an alternative is derived based 

on an exponential approximation. Different exponential estimators can be utilised in 
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(d)
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EC methods, such as in Zhai et al. (2008) Zhai et al. (2010) where a linear prediction 

model, a combination of sparse recovery and sequential filling, is proposed. 

2.4.3 Combined Directional and Non-Directional Interpolation Methods 

While directional interpolation methods are successful in recovering of the edges, 

they introduce stripe-shaped artefacts in the smooth parts of the image, such as edge-

oriented directional interpolations that were investigated in Kwok & Sun (1993) and 

Hsia (2004). 

 

Figure 2.16: Framework of content adaptive spatial error concealment. 

In Rongfu,  Yuanhua & Xiaodong (2004) an adaptive method was proposed in order 

to develop an EC algorithm that benefits from the best of a combination of 

directional and non-directional methods. Two steps are involved in this technique. 

First, the type of the error block (EB) is detected and classified into one of the 

following types: uniform, texture or edge groups. Then, a suitable EC method is 

applied to each category to conceal the missing block. As illustrated in Figure 2.16, 

bilinear interpolation, best block matching and directional interpolation are used for 

block of type uniform, texture and edge categories, respectively. For this method and 

in general for all adaptive methods, image blocks need to be categorised correctly to 
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achieve high performance, for in cases of wrong classification the result will be 

severely reduced quality.  

2.5 Conclusion 

There are different causes for image loss in broadcast networks; however, the result 

is degradation of the image quality. Many interpolation methods have been proposed 

for estimating the missing parts, when there is a loss in the received image, with the 

aim of recreating an acceptable image quality, but problems still exist. The main 

ones associated with these interpolation methods relate to the inability to recover 

edges and details correctly. In particular, a reliable and effective interpolation 

method is necessary for hiding the effect of missing blocks in still and moving 

images. 

Having reviewed some of the most relevant literature, the EC interpolation approach 

is considered to offer the most fruitful avenue of enquiry and hence, is chosen as the 

focus of the current research. Spatial reconstruction techniques take various forms, 

but all are based on the assumption that there is high level of correlation between 

neighbouring macro blocks. There are some key elements required for a reliable EC 

method: 

 The EC method needs to extract accurately the statistical correlation of the 

neighbouring blocks; 

 The EC method needs to extract effectively the spatial structure of the 

neighbouring blocks including the edges; 

 The EC method must be robust; 

 The EC method must be computationally efficient.  

It has been observed from the literature review that it is essential to design a new 

more effective error concealment method to improve upon the existing ones and 

thus, achieve a suitable reconstruction quality for the corrupted image. The new 

approach needs to cover all types of block including, smooth, edge and texture. To 

this end, for this research an effective method based on both local/global edges 

analysis and DCT/DWT transform in a multi scale skeleton is proposed. 
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For this research, image restoration is investigated within a pyramid structure that 

lends itself to the use of DCT or various families of DWT as the kernel function. The 

main justification for the choice of a pyramid as the framework for interpolation is 

pragmatic: a relatively large gap at the base is reduced to a single sample at the apex 

which can be conveniently interpolated. The result can then be progressed 

downwards towards the pyramid base through a set of repeated and scaled-up 

operations. 
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Chapter 3  

3. Image Processing Methods and Tools 
 

3.1 Introduction 

This chapter provides an overview of the theory and applications of image 

processing methods and tools used in this thesis. The focus is on 1) image processing 

basics, 2) discrete cosine transforms (DCT), 3) wavelet transforms and 4) edge 

detection methods. 

3.2 Image Processing History 

The history of digital images can be traced back to 1920s when the first ones were 

sent through the submarine cable (Bartlane cable) telegraph between London and 

New York, which were used in newspaper publication (Gonzales & Woods, 2008).  

An early example of the application of digital image processing was in July 1960 

when the first pictures of the moon were transferred from the Ranger 7 to the Jet 

Propulsion Laboratory and enhanced by a computer to improve the quality (Banham 

& Katsaggelos, 1997).  

In addition to the space programme, many other digital image processing 

applications were developed between 1960 and 1970. The image processing field has 

evolved over the last half century to encompass a broad range of everyday 

applications in: astronomy, medicine, physics, automation, security, biometrics, 

television, social media and entertainment.  

For example medical imaging called computerised axial tomography (CAT or CT for 

short), developed in 1970, is one of the main medical applications in image 

processing, using X-rays for medical diagnosis (Gonzales & Woods, 2008).  
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In order to understand image processing applications, first, it is necessary to 

comprehend what a digital image really is. Generally, an analogue image is captured 

by one of the imaging machine devices, whereas a digital image is obtained by 

applying a sampling and quantisation process to the real natural image (SchÖnlieb, 

n.d.).   

3.3  Image Processing Basics 

Although human vision is limited to the visual band of the electromagnetic spectrum, 

imaging machines can cover the entire spectrum from sound to gamma waves, such 

as ultra sound. One of the easiest ways to have a fundamental understanding of 

image processing is to categorise images by their sources of energy, which can be 

any of the following: electromagnetic stream, ultra sound, electronic or computer 

based. Nearly all images of scenes originate in the reflection/absorption of an 

illumination source. 

3.3.1 Image Acquisition 

Figure 3.1 shows how illumination from the source of energy is transformed into a 

voltage waveform. Sensor elements are sensitive to a specific type of energy and 

when the illumination reaches the sensor after passing a filter, each element reacts to 

the received energy. The combination of the input power and reaction of the sensor 

to the energy produces a continuous output voltage, as can be seen in the Figure 3.1. 

Usually, the nature (amplitude and spatial) of the output voltage is based on the 

physical information of the source energy (Curtin, n.d.). 

There are different types and configurations of sensors, from a single element to a 

line or array, which are categorised based on the structure of the sensor elements. In 

order to create a digital image the continuous voltage outcome needs to be 

transformed into digital information. Sampling and quantisation are two processes 

required to convert the continuous sensed data into a digital format. 
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Figure 3.1: Input-output block diagram of an imaging sensor. Input: light energy 

(photons), output: sampled and digitised voltage. 

3.3.2 Image Sampling and Quantisation 

As explained in subsection 3.3.1, there are various methods to acquire images, with 

their outcomes being a continuous (in both spatial and amplitude) voltage waveform, 

which is nearly the same for all of the techniques. Sampling and quantisation are the 

two main processes for converting the output of sensing machines into the digital 

images in spatial and amplitude forms, respectively. Sampling refers to the process 

of digitising the coordinates of the image, whereas quantisation pertains to digitising 

of the amplitude.  

The digitisation process starts with sampling the image into separate lines of 

elements, which include the continuous sample of the image by taking a line in the 

horizontal direction and then, taking the samples from that line at equal intervals 

(Figure 3.2.a). From this, the discrete values of the image coordinates are obtained. 

Then, in order to provide discrete values for the intensity of each sample, usually a 

scale of discrete intervals is used for quantisation. The scale can include various 

values of intervals ranging from white to black, and then a specific amount is given 

to each sample depending on the pixel intensity amplitude (Gonzales & Woods, 

2008). 

Figure 3.2 shows the image that has been captured by the imaging device and a line 

𝑐 − 𝑑 has been set to provide a continuous sample. The continuous line is converted 

into the discrete samples by selecting separate elements in sufficiently small equal 

intervals (sampling interval < 1/ (2×Bandwidth), as can be seen in Figure 3.2 (b). 
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Figure 3.2: a) continuous image captured by the imaging machine, b) sampling and 

quantisation of the captured image. 

The intensity value of each sample is quantised according to a discrete interval scale, 

and in this example the amplitude scale includes eight values. Figure 3.3 (a) shows 

the same image on a sensor array and the result of digitising that image is illustrated 

in the Figure 3.3 (b). 

 

Figure 3.3: a) sensor array with a continuous image, b) sampled and quantized 

image. 

3.3.3 Digital Image Representation 

A digital image is a grid of elements (values) called pixels (Figure 3.4), of which 

there are two types: grey valued and colour valued. The former consist of scalar 
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values ranging from between 0 (black) and 255 (white), whilst the later include three 

vector values (r, g, b). Each individual pixel in a colour image consists of three 

separate primary colour intensities, red, green and blue (RGB), as a multi-valued 

function, which combine together to produce the whole image. 

The representation of the image in mathematical form is called the image function 

𝐴 (𝑥, 𝑦) and is a two dimensional function in the 𝑥 and 𝑦 directions with an 

amplitude of 𝐴. The image pixels values can be represented as a matrix (Figure 3.4). 

 

Figure 3.4: A part of Lena image showing the image pixels. Matrix of 8×8 pixel 

values which is marked by a red square in the image. 

A true colour specification for an image file requires an m-by-n-by-3 array of RGB 

values. The first, second and third matrix contains the red, the green and the blue 

components of each element, respectively, in the image (Figure 3.5). 

 

Figure 3.5: Lena.BMP 512×512 pixels, 768 KB and the individual RGB 

components. 

The image degree of brightness is quantised into a sample format, a common form of 

which is 8-bit integers, but this can only represent  28 = 256   discrete values 

(Kolås, n.d.). This means that 2,097,152 bits would be needed to represent the entire 

512 × 512 image with 256 grey levels. Thus, reducing the content of the data for 

storing, transmitting and downloading while preserving the quality is very important 
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in image processing, for which various types of image formats have been proposed, 

with some of these being covered briefly in the next subsection.  

Resolution in an image is the amount of detail it contains, and directly depends on 

the size of the sampling intervals that the pixels represent in the image. Greater detail 

and smaller pixel size leads to higher resolution. Even though the resolution range 

available varies, nowadays, there are much higher resolution images than before, 

such as that of the Machu Picchu, which is claimed to be the highest resolution 

image ever taken. Jeff Cremer is the photographer and the resolution of the image, 

which was taken with the Canon 7D and a 400mm lens, is about 15.9 giga-pixels 

(Machu Picchu, n.d.). 

3.3.4  Image File Formats and Image Compression Algorithms 

After acquisition and digitising, an image is composed of pixels, which include 24 

bits of resolution that define its colour. An image should be in one of a number of 

standard file formats in order to be displayable on a mobile phone, camera, computer 

or printer. The file format is essentially the compressed and encoded form of the raw 

digitised image. The different formats differ in terms of the method of compression 

and encoding of the digital samples and the quality and the size of the output file. In 

addition, there are different types of image files, including vector, compressed and 

uncompressed formats.  

Compression for binary data is completely different from the algorithms that have 

been proposed for an image compression, and this is because of the specific 

statistical features of the image. The main aim of image compressing techniques is to 

save storage area and bandwidth as much as possible while losing little or no visible 

quality. Image compression also results in spending less time and power in 

transferring and receiving an image as well as providing faster results in search 

engines. 
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Figure 3.6: Compression framework of both the lossy and lossless methods. 

In general, image compression methods can be divided into two main categories 

(Figure 3.6). The first, the lossless method, exploits the data redundancies to reduce 

the size of the file, but keeps an exact replica of the original data and this is usually 

used for archival purposes, such as documents, medical records or art related images, 

where having a copy of the original image is necessary (Rehman, Sharif & Raza, 

2014).  

The second category, the lossy technique, is often used in the situation where some, 

usually imperceptible, loss is acceptable in order to reduce the bit rate, such as for 

digital TV, video and photographs in applications. Usually, the output file size of 

lossy methods is less than with the lossless techniques for the same image (Rehman, 

Sharif & Raza, 2014).  

a) Lossless formats 

BMP (bitmap): This is an uncompressed format which is used by the Microsoft 

Windows graphics device interface (GDI) subsystem and operating system (OS/2). 

The bitmapped graphics format normally takes the form of a simple graphics file, 

from which image dimensions and different colour depths to show the resolution can 

be obtained. 

PNG (Portable Network Graphics): This format is a lossless data compression 

proposed by the Internet Engineering Steering Group in 1996.  As this method was 

developed for the Internet, it is not suitable for high-quality print graphics and as a 

result, cannot be used in non-RGB colour spaces. Moreover, the PNG type is 

suitable for images with small variation in colour or large areas of the same colour. 
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TIFF (Tagged Image File Format): This method was proposed by the company 

Aldus in the mid-1980s, in order to have a common file format for image scanning 

across all scanner companies. At that time, it had just two binary values for each 

pixel, but after progress was made in scanner quality, it could handle both grey and 

RGB images.  

In general, lossless compression, such as PNG and TIFF, cannot be applied to high 

quality images that have very bright colours and textures. In scenarios when an 

image has great detail lossless algorithms do not work well in compression, working 

better with those images that have small variation in colour or large areas of the 

same colour.  

b) Lossy formats 

JPEG: The acronym JPEG refers to the Joint Photographic Expert Group, which 

proposed the method in 1992 and this technique can work for both colour images 

and grey scale ones. The rate of compression that can be selected by users starts from 

100 to 1 with the higher the number giving less compression and better quality. 

Consequently, there is an inverse relation between the image quality and the storage 

size, whereby picture-quality can be traded for a smaller file size.  

For compression, JPEG uses the discrete cosine transform, which converts all 

sources from the spatial domain into the frequency domain. Then, it removes the 

high frequency parts by quantisation, thus only keeping the lower frequency part. 

Following this, a sequence of quantised factors is packed in a bit stream ready for 

transmission. This method is generated based on the human visual system, which is 

more sensitive on parts that are alike in order to identify those that have more 

variation with high frequency and also, luminance is considered more important than 

colour.  

JPEG format is ideal for large images because it has a large compression ratio which 

reduces the image quality. As can be seen from Figure 3.5 and Figure 3.7 the size of 

the Lena image (512×512) file is reduced from 768 KB in the BMP format to 61 KB 

in the JEPG format. But on the other hand, the JPEG compression format is not 

suitable for images that require the original copy of the data to be reconstructed and 

http://en.wikipedia.org/wiki/Aldus
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in addition, it is not good for textual or iconic graphics, because noticeable artifacts 

can occur due the sharp contrast between adjacent pixels. Furthermore, this format is 

not suitable for scenarios where the image might be edited several times, because in 

this case it loses its quality (jpeg. n.d.). 

 

Figure 3.7: Lena.JPEG 512×512 pixels, 61 KB and its individual RGB components 

Lena.JEPG. 

JPEG2000: This is a wavelet-based compression method which was also proposed 

by the Joint Photographic Experts Group committee in 2000 (Boliek, Christopoulos 

& Majani, 2000). It was developed to meet the demand for a new standard to apply 

as a compression technique in different still images types and is capable of providing 

effective lossy and lossless compression. JPEG2000 is optimised for efficient, 

scalable, and interoperable compression (Skodras, Christopoulos & Ebrahimi, 2001). 

The wavelet transform is used in JPEG2000 as an alternative of DCT in JPEG. 

Figure 3.8 shows that the wavelet is first applied to the original image, then the 

coefficients are quantised and consequently, the compressed image can be produced 

by using Huffman coding to encode the coefficients.   

 

Figure 3.8: Wavelet-based compression method. 
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3.3.5  Packet loss 

A number of image blocks are combined together into a packet and then transmitted 

in packet based networks, each packet being transmitted separately with its own 

address. However, the address field can be lost due to network congestion or signal 

fading, which leads to packet loss. Consequently, during the transmission of a DCT 

compressed image bit errors or packet loss can be produced by compression or 

network congestion, respectively. The result of this problem manifests itself as bit 

error, packet delay, packet loss, packet intrusion or block de-synchronisation. Some 

samples of the user’s visual experience being distorted with corrupted Lena are 

shown in Figure 3.9. 

 

Figure 3.9: a) Original Lena image, b) Lena image with a 25% regular 8×8 missing 

macro block and c) Lena image with a 10% random 8×8 missing macro block. 

3.4 Discrete Cosine Transform (DCT)  

The discrete cosine transform (DCT) was proposed by Ahmed, Natarajan & Rao 

(1974) for use in various digital image processing areas. By using DCT, the data can 

be transferred from the time or spatial domain to the frequency domain and 

represented by an efficient reduced set of frequency coefficients (Haberdar, 2012).  

DCT is a way of encoding the original data with a new set of cosine basis functions 

and the representation of information in this transform is a set of cosine functions at 

a range of frequencies from zero to half the sampling rate (Figure 3.11).  

a cb
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DCT is now the mainstream transform of choice for many popular commercial 

coding applications, particularly in image processing, but also in audio processing. It 

has been applied in various well known international applications for image/video 

storage and transmission, such as in JPEG (jpeg. n.d.), the Moving Pictures Expert 

Group (MPEG) (Aign & Fazel, 1995), MP3 and the International 

Telecommunications Union’s (ITU) recommendation for H.261 and H.263 

(Wiegand, et al., 2003).  

For image processing, DCT has the important property that the images are 

compressed to a relatively small region of the low frequency coefficients centred on 

and around the zero frequency, which itself represents the mean image value. 

However, some higher frequency coefficients are needed in images that contain 

significant edge information. Nevertheless, for most images retaining only 16% of 

the lowest image coefficients can provide a relatively good reproduction of the 

image (Klein, 1990).  

DCT is a close approximation to the theoretically optimal (for Gaussian signals) 

Karhunen–Loève (KL) transform (Dony, 2001) or principal component (PC) analysis 

(Pauluzzi & Beaulieu, 2000). KL and PC transformation incur an additional 

computational cost in estimation of the covariance matrix (or tensor, 3-D matrix) of 

the image from which the transform matrix is calculated. In contrast, DCT’s basis 

functions are fixed, but still provide a good approximation, in terms of efficiency of 

performance, when compared with the KL and PC transformations. 

 

Figure 3.10: Original colour Lena and the energy compression map of this image 

after applying a large 512×512 DCT. 
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By using orthogonal cosine transforms, the number of significant coefficients is 

relatively small and hence, other less significant ones can be eliminated. Thus, a 

significant reduction in computation load is provided at the cost of a small gain in 

the mean-square estimation error when compared with state of the art transforms, 

such as fast Fourier and Haar (Ahmed, Natarajan & Rao, 1974).  

Nowadays, one of the most popular and effective transform coding algorithms is 

DCT coding, which is able to compress most of the signal energy within a few 

coefficients and the degree of compression depends on the correlation structure of 

the data (Haberdar, 2012). For perceptually good reconstruction only a few high 

energy low frequency coefficients are required. In addition, usually a DCT is used to 

restore image corruption with macro-blocks of 8 × 8. 

 

Figure 3.11: Illustration of 64 basis functions of 8 × 8 2D DCT. Top left corner 

shows lowest (zero) frequency and bottom right corner the highest. Note, energy 

colour coded: white highest energy and black zero energy. 

pixels and the intensity transitions between these blocks become more and more 

apparent when the high-frequency data are eliminated due to heavy quantisation 

(Belfiore et al., 2003). 
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3.4.1 DCT Equations and Basis Functions 

a)  One-Dimensional DCT 

The general equation for a 1-D (𝑀 data samples) DCT applied to a signal 𝑥 is 

defined as: 

𝐹(𝑝) =  (
2

𝑀
)

1
2
 ∑ Λ(𝑖)cos (

𝜋𝑝

2𝑀
 (2𝑖 + 1))  𝑥(𝑖)                       

𝑀−1

𝑖=0

(3.1) 

Note, successive basis functions have a frequency spacing of 
𝜋

𝑀
 or equivalently 

𝐹𝑠

2𝑀
. 

In matrix form this equation can be expanded as: 

𝐹 = 𝑇𝑋                                                               (3.2) 

or: 

(

 
 
 

𝐹0
𝐹1
𝐹2
⋮

𝐹𝑀−2
𝐹𝑀−1)

 
 
 
=

[
 
 
 
 
 
 
 
 
 
1 1 1 1 1

1 cos
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3𝜋

2𝑀
⋯ cos

𝜋(2𝑀 − 1)

2𝑀

1 cos
𝜋(2𝑀 − 1)

𝑀
1 ⋮ ⋮ ⋮ ⋮

1 cos
𝜋(𝑀− 2)(2𝑀 − 1)

2𝑀

1 cos
𝜋(𝑀− 1)(2𝑀 − 1)

2𝑀 ]
 
 
 
 
 
 
 
 
 

  

(

  
 

𝑥0
𝑥1
𝑥2
⋮

𝑥𝑀−2
𝑥𝑀−1)

  
 
        (3.3) 

where, the elements of matrix 𝑇 are  the DCT basis functions, 𝑀 is data samples, 𝑝 is 

an entry of the DCT of an image and 𝑥 is an entry signal. 

DCT is basically the same as DFT, but the difference is that the former only uses the 

real part of the equation and not the imaginary part.  

DCT is a block-based algorithm that divides an image into separate 𝑀 ×𝑁 blocks 

(usually macro blocks of 8 × 8 pixels) and transfers them separately from the 𝑀 × 𝑁 

samples in the spatial domain to 𝑀 ×𝑁 samples in the frequency domain. The 

frequency domain resolution is 
𝐹𝑠/2

𝑀
.  
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b)  Two-Dimensional DCT (DCT2) 

Two-dimensional DCT takes a block of 𝑀 ×𝑁 coefficients from the image and then 

following transformation in the DCT domain, most of the energy is concentrated in 

the top left low-frequency corner, whereas the higher frequency components have 

relatively lower energy and are less significant. Thus, after applying DCT, data 

reduction or bit-resource reduction, can be achieved by concentrating more (bit) 

resources on the few highest value coefficients. This strategy is able to provide 

compression of the data with consequent memory/power/bandwidth/computation 

savings.  

For example, because the human eye is less sensitive to low energy higher frequency 

coefficients, if the coefficients over a certain threshold are discarded, this will not 

have a significant impact on the visual result. 

A flow chart of a general application of DCT in image processing is illustrated in 

Figure 3.12.  

 

Figure 3.12: A image processing flow chart incorporating DCT as the main 

transform for data representation and data reduction. 

For image processing, DCT is applied across all rows/columns of the image and the 

values are calculated using the DCT formula. The 64 (8 ×  8) DCT basis functions 

are illustrated in Figure 3.11 and it can be seen that the higher energy is concentrated 

in the top left corner. 
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The 2D-DCT of an 𝑀 ×𝑁 matrix 𝐹 is defined as: 

𝐹𝑝,𝑞 = (
2

𝑀
)

1

2
 (

2

𝑁
)

1

2∑  ∑ 𝑥(𝑖)𝑥(𝑗)cos (
𝜋𝑝

2𝑀
(2𝑖 + 1)) cos (

𝜋𝑞

2𝑁
(2𝑗 + 1)) 𝑓(𝑖, 𝑗) 𝑁−1

𝑗=0  𝑀−1
𝑖=0 (3.4) 

where, Equation 3.4 computes the 𝑝, 𝑞 entry of the DCT of an image, 𝑀 and 𝑁 

represent the size of the DCT block, 𝑓(𝑖, 𝑗) is the 𝑝, 𝑞 element of the input image 

which is represented by matrix 𝐴.  

A commonly used macro block size in applications of DCT to image processing is 

8 × 8 and this is also the case in the proposed methods employed in this thesis 

𝑀 = 𝑁 = 8, and the indices 𝑝, 𝑞 are in the range from 0 to 7. Figure 3.13 shows the 

DCT of the Lena in four down-sampling levels. 

 

Figure 3.13: From left to right, DCT of Lena image and sub-images of size:           

(512 × 512), (256 × 256), (128 × 128) and (64 × 64) pixels, respectively. 

The inverse discrete cosine transform (IDCT) is a process for reconstructing the                     

image (Equations 3.5 and 3.6). 

 𝑓𝑖,𝑗 = 𝐹−1
𝑝,𝑞

= 𝐼𝐷𝐶𝑇2(𝐹𝑝,𝑞)                                            (3.5) 

 

𝐹−1𝑖,𝑗 = (
2

𝑀
)

1

2
(
2

𝑁
)

1

2∑  ∑ 𝑥(𝑝)𝑥(𝑞)cos (
𝜋𝑝

2𝑀
 (2𝑝 + 1)) cos (

𝜋𝑞

2𝑁
(2𝑞 + 1)) 𝐹(𝑝, 𝑞) 𝑁−1

𝑞=0
𝑀−1
𝑝=0   (3.6) 

where,                               𝑥(𝜀) =  {

1

√2 
               𝑖𝑓 𝜀 = 0,

1           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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By utilising Equation 3.6, the most important DCT coefficients can reconstruct the 

image effectively by using the zero padding method. 

As an alternative representation, the output DCT vector is computed by applying the 

DCT Matrix 𝑇𝑝𝑞 on the matrix 𝐴 input vector. The DCT Matrix 𝑇𝑝𝑞can be expressed 

as (Equation 3.7):  

𝑇𝑝𝑞 = 

{
 
 

 
 

1

√𝑁 
                                             𝑖𝑓 𝑝, 𝑞 = 0

√
2

𝑁 
cos [

(2𝑝 + 1)𝑞𝜋

2𝑁
]              𝑖𝑓 𝑝, 𝑞 > 0    

     

                  (3.7) 

The result of  𝑇 ∗ 𝐴 is a matrix with columns that are the one dimensional DCT of 

the columns of 𝐴 and Equation 𝐵 = 𝑇 ∗ 𝐴 ∗ 𝑇′ represents the two-dimensional DCT. 

The inverse of matrix, 𝑇′, can be calculated by transposing the original matrix, 

because 𝑇 is an orthogonal matrix. 

 

Figure 3.14: Left, original Boat image and right, the reconstructed image using only 

7% of the low-frequency 2D-DCT coefficients and applying 2D-IDCT (8×8 macro 

blocks). 

Figure 3.14 shows reconstruction using 2D-DCT and 2D-IDCT of (8 × 8) blocks in 

the Boat image, with the number of coefficients set to zero in the DCT matrix being 

58 out of the total of 64 in each macro block. Even though 93% of the image DCT 



62 | P a g e  
 

coefficients are eliminated and hence, the size of the image file is greatly decreased, 

the image is still visually in-differentiable from the original. In general, the quality of 

the image can be improved by increasing the number of DCT coefficients used in the 

reconstruction. 

3.4.2  DCT for Resizing Images 

Zero-padding of a signal followed by a frequency transformation is a method of 

interpolation or up-sampling in time/space or frequency domains, which can be used 

in two ways: 

(1) Zero-padding a signal in time/space followed by a frequency 

transformation results in interpolation in spectrum; it yields a 

spectrum with additional interpolated spectral lines, thus achieving a 

higher ‘apparent’ frequency resolution. 

 [ N signal samples,  N-zeros ] 
  𝐹𝑇   
→    [ 2N signal samples ] 

 

(2) Zero-padding in the frequency domain followed by an inverse 

frequency transform provides interpolation in time/space. 

 [ 2N signal samples ] 
   𝐼𝐹𝑇  
←       [ N spectral samples, N-zeros ] 

Zero-padding combined with DCT can be used to resample and resize an image. 

Shirani, Gallant & Kossentini (2001) proposed zero padding in order to control the 

redundancy for images in the DCT domain. Zero-padding facilitates oversampling 

by adding a number of zeros to the transformed image, whereby some redundant 

information is combined with the original data in the frequency domain. Thus, when 

first applying DCT additional zeros are padded into the image and then the IDCT 

process is applied on the larger signal. 

The process of up-sampling using DCT is illustrated in Figure 3.15. To up-sample an 

image from a size of  𝑛 × 𝑛 to a size of 𝑝 × 𝑝, first, a 2D DCT is applied on the rows 

and then to the columns of the input image with a size of 𝑛 × 𝑛 pixels. This yields an 

𝑛 × 𝑛  DCT matrix, which is augmented to size 𝑝 × 𝑝  by appending 𝑝 − 𝑛 rows and 
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columns of zeros. Consequently, the number of pixels (image size) is increased by a 

factor of (Tillo & Olmo, 2007): 

𝑣𝑝 = (𝑝2 − 𝑛2)/𝑛2                                                  (3.8) 

Then, the zero-padded DCT matrix is transformed to the image domain by an IDCT, 

which yields an up-sized image with dimension 𝑝 × 𝑝. 

 

Figure 3.15: Image size expansion: zero-padding in the transform domain to 

oversample or reconstruct a truncated input image. 

Figure 3.16 shows a successive, two stage, application of up-sampling via DCT to an 

image of boats and lighthouse. The oversampled image is in fact the original image 

at a higher sampling rate. However, it must be noted that the actual image resolution 

is not increased since the new data have only been interpolated and therefore, the 

pixel samples are less close to each other with their values being more correlated. 

The amount of the padding determines the oversampling factor and hence, the level 

of redundancy introduced in the image. 

3.4.3 Zig-zag Scanning 

Zig-zag scanning is a method of scanning a matrix or image into a vector. For DCT 

it allows the DC coefficient (the coefficient with zero frequency in both dimensions) 

and the lower frequency AC coefficients (remaining 63 coefficients with non-zero 

frequencies) to be scanned first. With this method, the coefficients are scanned in a 

zig-zag order to convert the 2-D DCT coefficients into a 1-D data stream. For 

example, it can map a 8 × 8  macroblock to a 1 × 64 vector and gather low 

frequency coefficients at the top of the vector. 
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Figure 3.16: Actual application to images 8×8 MBs (512×512) transformed to 16×16 

(1024×1024) or 32×32 (2048×2048); useful for fitting to screen displays of different 

sizes. 

In general, the frequency is increasing in a DCT matrix in the first dimension and is 

also increasing in a column in the second dimension. Since after zig-zag scanning the 

AC coefficients with larger energy usually locate at the first few entries in the 1-D 

data stream, then higher coding efficiency can be achieved (Ding, Wei & Chen, 

2011). Figure 3.17 shows the process of zig-zag scanning. 

 

Figure 3.17: Zig-zag scanning for an MB (8×8) in 2D-DCT. 

3.5 Discrete Wavelet Transforms 

Wavelet transforms are commonly used as alternatives to the more historically 

established Fourier transform (FT), which was proposed in 1950 and the DCT (as 

explained in section 3.3).  

1:2 1:2

512×512

2048×2048

1024×1024



65 | P a g e  
 

Conventional frequency transform methods assume that the input signal is stationary 

(i.e. time/space invariant) and employ a set of stationary waves, such as cosine and 

sine functions of different frequencies as the basis functions for the transformation of 

a signal. The term stationary implies that the signal’s statistical features, such as the 

mean value, power/variance and higher order statistics remain constant. A sinewave 

is an example of a stationary signal, whereas a bird chirp is an example of a non-

stationary one.  

Problems arise due to the non-stationary time/space-varying nature of signals such as 

audio and image. The solution is short-time (block) frequency transforms where the 

signals are divided into short segments, such that within each segment the signal can 

be considered as relatively stationary. 

Wavelets employ non-stationary basis functions and, at least in theory, are better 

suited to representation of non-stationary signals, such as speech, music or image. 

The basis functions of wavelets are transient signals of different frequencies and 

scales that are often derived from the impulse responses of a pair of mirror-imaged 

low-pass and high-pass ‘mother’ wavelets (Gonzales & Woods, 2008). 

The mathematician Alfred Haar is credited as the first person to put forward the idea 

of wavelets in 1909. Subsequently, the concept was reintroduced in the context of 

modern digital image processing, by Jean Morlet in 1981. Morlet continued his 

research with Alex Grossman and in 1984, they coined the term of wavelet (Liu, 

2010). The first orthogonal wavelets were proposed by Stromberg in the early 

1980’s, whilst the second type was introduced by Yves Meyer in 1985 (Jawerth & 

Sweldens, 1993).  

Multi-resolution is one of the important aspects in the wavelet proposed by Meyer 

and Stephen Mallat in 1988. Subsequently, Ingrid Daubechies contributed a 

systematical method for the development of a compact support orthogonal wavelet. 

Moreover, a fast wavelet transform was proposed by Mallat in 1989, which was one 

of the first examples of wavelet applications in the image processing field (Liu, 

2010).    
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3.5.1 Wavelet Analysis-Synthesis  

Wavelet transformation is one of the main techniques for time-frequency signal 

transformations. Wavelets are made of square-integrable (finite energy) functions, 

and can include real/complex values that are generated by a wavelet using specific 

orthonormal series (Walker, 2008).  Generally, wavelets are short wavelike functions 

that can be scaled (dilated) and translated (shifted), whereby in a wavelet transform 

each signal can be represented as a scaled and translated wavelet. 

A discrete wavelet transform (DWT) is used in this work, because it can analyse the 

signal with various resolutions at different frequency bands by a simple procedure, 

as it decomposes/separates the original signal into two parts, approximation and 

details, thus allowing independent analysis of the coefficients at different scales 

(Khaziakhmetov & Zakharova, 2012). 

 

Figure 3.18: Schematic diagram of a 1D wavelet transform. 

Wavelet decomposition is affected by a cascade series of image processing blocks, 

with each block consisting of a low-pass filter, a high-pass filter and down samplers, 

as depicted in Figure 3.18. The input-output relationship of the combined filtering 

and down-sampling operation can be expressed as: 

𝑦[𝑛] =  ∑ ℎ[𝑘]. 𝑥[2𝑛 − 𝑘]

∞

𝑘=−∞

                                       (3.9) 

where, ℎ[𝑘] are the filter coefficients and  2𝑛 signifies down-sampling. Successive 

high-pass and low-pass filtering is applied to the time domain signal in order to 

decompose it into different frequency bands. Firstly, a half-band high-pass filter 
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(HPF) 𝑔[𝑛] is applied to the original signal 𝑥[𝑛], and then the outcome is passed 

through a low-pass filter (LPF) ℎ[𝑛]. After the filtering, half of the samples can be 

eliminated (down-sampled) according to the Nyquist’s rule, whereby the signal can 

be subsampled by factor of 2, simply by discarding every other sample (Polikar, 

2006). This decomposition process can be repeated many times and produces multi-

resolution layers, which constitute one level of decomposition and can be 

mathematically expressed as follows: 

𝑦ℎ𝑖𝑔ℎ[𝑛] =  ∑𝑔[𝑘]. 𝑥[2𝑛 − 𝑘]                                     (3.10)

𝑛

 

 𝑦𝑙𝑜𝑤 [𝑛] =  ∑ℎ[𝑘]. 𝑥[2𝑛 − 𝑘]

𝑛

                                    (3.11) 

where, the results of the high-pass and low-pass filters after decomposition by a 

factor of 2 are 𝑦ℎ𝑖𝑔ℎ[𝑛] and 𝑦𝑙𝑜𝑤[𝑛], respectively. The block diagram of a 1D DWT 

transform can be seen in Figure 3.18. 

 

Figure 3.19: Schematic diagram of sub-band decomposition for one level of a 2D 

wavelet transform. 

For image processing applications we need a wavelet that is two-dimensional (Figure 

3.19). Generally, two one-dimensional wavelets or scaling functions are combined to 

produce a two-dimensional wavelet (Equations 3.10 and 3.11). The 2D method 

contains progressive one dimensional decompositions; one operating on image rows 

and another on image columns as:  
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∅(𝑥, 𝑦) = ∅(𝑥)∅(𝑦)                                            (3.12) 

where, both ∅(𝑥) and ∅(𝑦) are 1D wavelets and the combination of them can 

produce a 2D wavelet. 

The wavelet transform of an image, as shown in Figure 3.20.a, is also a multi-

resolution description as at each stage the resolution (number of pixels) is reduced in 

a pyramid manner. The wavelet transform uses scaled and translated versions of a 

prototype wavelet as basic functions to represent a signal. The three high-pass 

filtered datasets (high-low, low-high, and high-high) represent the wavelet 

transforms details components at that level of scale of the transform. The low-pass 

filtered dataset (low-low) is the approximation components at that level of scale and 

the four sets of components have four times fewer elements than the original data 

set. The approximation components can now be used as the sampled data input for 

another pair of wavelet filters, identical to the first pair, thus generating another set 

of details and approximation components at the next lower level of scale and the 

proposed method requires three and four steps of decomposition for a missing macro 

block size of 8 × 8 and 16 × 16, respectively. 

The decomposition of an image signal can be viewed as low-pass-horizontal and               

low-pass-vertical filtering, high-pass-horizontal and high-pass-vertical filtering, the     

low-pass-horizontal and high-pass-vertical filtering and the high-pass-horizontal,                    

low-pass-vertical filtering, respectively (Swati, Malviya & Lade, 2013) (see Figure 

3.20). During this transformation each stage of the decomposition can be expressed 

as a product of the input image and a filter matrix: 

𝑐𝐴𝑗+1 = [𝐿𝐿𝑗+1]𝑐𝐴𝑗                                                (3.13) 

𝑐𝐻𝑗+1 = [𝐿𝐻𝑗+1]𝑐𝐴𝑗 

𝑐𝑉𝑗+1 = [𝐻𝐿𝑗+1]𝑐𝐴𝑗  

𝑐𝐷𝑗+1 = [𝐻𝐻𝑗+1]𝑐𝐴𝑗 

where ,  is the decomposition stage and initially, 𝑐𝐴0 = 𝑖𝑚𝑎𝑔𝑒. 
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3.5.2 Components of Wavelet Decomposition: Approximation and 

Details  

An example of image decomposition is shown in the top left of Figure 3.20 and is 

decomposed into four quadrants with different interpretations (HH, HL, LH and LL).  

The successive application of two-dimensional DWT leads to a decomposition of the 

approximation coefficients at level 𝑗 in four components: the approximation at level 

𝑗 +  1, and the details in three orientations (horizontal, vertical, and diagonal) that 

are related mostly to image edges.  It can be seen in Figure 3.20, top right, that the 

two-dimensional wavelet decomposition computes the approximation coefficients 

matrix cA and details coefficients matrices cH, cV, and cD (horizontal, vertical, and 

diagonal, respectively), obtained by wavelet decomposition of the input image. 

LL (cA) : are all the filtered coefficients (with half the resolution) obtained from 

applying a low-pass filter ℎ[𝑛] along rows and then columns, gathered on the upper 

left section.  

LH (cH) and HL (cV) represent the energy of the wavelet coefficients in the 

horizontal and vertical direction, respectively: filtered coefficients obtained from 

applying ℎ[𝑛] and 𝑔[𝑛] along the rows and columns of the image. The LH section 

includes horizontal edges, and the HL section shows vertical ones. 

HH (cD) represent the energy of the wavelet coefficients in the diagonal direction: 

all filtered coefficients obtained from applying a high-pass filter 𝑔[𝑛], along rows 

and then columns. HH coefficients illustrate the edges in the diagonal         

directions. 

The wavelet transform is a multi-scale process and Figure 3.21 shows the three-stage 

wavelet pyramid image decomposition on the Lena image. In each level of 

decomposition, cA, cH, cV and cD are illustrated, which represent LL, LH, HL and 

HH respectively. Moreover, Figure 3.21 demonstrates the three-stage wavelet 

pyramid image decomposition and its application to the Lena image on four down-

sampling levels from 512 × 512 to 64 × 64. 
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Figure 3.20: (a) Wavelet pyramid image decomposition coefficients in three- stages; 

and (b) its application to Lena image of size 512×512. 
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The wavelet transform might be more suitable for transient (fast changing) 

audio/image/video data compression. For, information data may store in less space 

than the other alternative methods such as DCT. However it is not effective with 

smooth data, for which the traditional techniques like the Fourier transform are more 

beneficial.  

 

Figure 3.21: Block diagram of the three-stage wavelet pyramid image decomposition 

and its application to the Lena image. 

3.6 Edge Detection 

Edge detectors are one of the main tools employed in digital image processing and 

have been applied in several practical applications including in this thesis. The main 

aim of edge processing applications is to reduce the amount of data, while keeping 

the structural information of the image, in order to use it in the next image 

processing procedure. One of the first applications is attributed to Marr and Hildreth 

(1980) and is based on the zero-crossing of the Laplacian of Gaussian in each image. 

The main aim of using edge detectors is defining different segments, regions and 

objects within an image by finding the presence and location of the major edges. 

Theoretically, an edge is a step discontinuity that in its classical form is non-

differentiable 
𝑑𝑦

𝑑𝑥
|
𝑒𝑑𝑔𝑒

→ ∞. However, in practice edges are sharp transitions that 

occur over a non-zero time-space zone and hence, are differentiable. Edges tend to 

256 × 256 128 × 128 64 × 64512 × 512
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define the boundary between different signal events or objects (such as the alphabet 

in this thesis). Edge detection is used to reduce an image to a skeleton copy 

composed of the boundaries of the objects within the image.  

An edge can be described as a sharp change in the intensity levels of an image (Basu, 

2002). In general, edges in an image are a group of joint pixels, which define the 

boundaries between image regions, such as between various objects and the 

background. Hence, an edge detection process separates the image into a region of 

discontinuity by using image segmentation (Canny, 1986). 

Edge detection methods simplify image processing by eliminating the amount of 

unnecessary data, and provide vital structural information regarding boundaries 

within the image (Canny, 1986). In general, there are various types of edge detectors, 

which use alternative differential operators. Laplacian based techniques and gradient 

based methods are two widely used techniques, with Marr-Hildreth being one of the 

former and those of Sobel, Prewitt, Robert and Canny examples of the latter. 

Laplacian edge detectors: were first proposed by Marr and Hildreth (Asghari 

Oskoei & Hu, 2010). They are able to locate the sharp and sudden changes in 

intensity of the image, consequently edges can be found by this method. Laplacian 

edge detection techniques are based on finding the zero crossing points in the second 

derivations of the image. The Laplacian 𝐿(𝑥, 𝑦) of an image is given by (Seerha & 

Kaur, 2013): 

𝐿(𝑥, 𝑦) =  
𝜕2𝑥

𝜕𝑥2
+ 

𝜕2𝑦

𝜕𝑦2
                                               (3.21) 

where, 𝑥 and 𝑦 are the pixel intensity values of the pixel 𝐴(𝑥, 𝑦). 

Gradient (Gaussian) based edge detector techniques: are based on finding the 

maximum and minimum values for the first derivative of the image along the 𝑥 and 

𝑦 directions (Basu, 2002), with these derivatives being a measure of the change in 

pixel intensity with distance in the 𝑥 and 𝑦 directions, as can be seen in the Equation 

3.14. Then, the gradient values at each pixel in the image need to be calculated, in 

order to obtain the gradient of the image as a whole. 
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     𝐺𝑥 = 
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
=  

𝑓(𝑥 + 𝑑𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

𝑑𝑥
                           (3.14) 

𝐺𝑦 = 
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
=  

𝑓(𝑥, 𝑦 + 𝑑𝑦) − 𝑓(𝑥, 𝑦)

𝑑𝑦
  

where, 𝑑𝑥 and 𝑑𝑦 represent a small change in distance in the 𝑥 and 𝑦 directions. As 

𝑑𝑥 and 𝑑𝑦 are the number of pixels between a pair of pixels in a discrete image, then 

those values can be set to one (for neighbouring pixels) and as a result, Equation 

3.15 is changed to (Seerha & Kaur, 2013): 

𝑑𝑥 = 1     →      𝐺𝑥 =  𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)                         (3.15) 

𝑑𝑦 = 1     →      𝐺𝑦 =  𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦) 

There are two main functions in the gradient-based edge detection methods. The first 

is the gradient magnitude (Equation 3.16), which calculates the change in the 

gradient value at the point (𝑥, 𝑦).  

𝐺(𝑥, 𝑦) = √(𝐺𝑥
2 + 𝐺𝑦

2)                                         (3.16)                  

Second, the gradient orientation or gradient direction is calculated by Equation 3.17 

(Petrou & Petrou, 2010): 

𝜃(𝑥, 𝑦) = tan (
𝐺𝑦

𝐺𝑥
)                                              (3.17) 

where, 𝜃(𝑥, 𝑦) represents the direction of the gradient. Note, the edge direction is 

orthogonal to the gradient vector when find a pixel’s gradient (Petrou & Petrou, 

2010). 

Each of the Equations 3.15 describes a one dimensional method for calculating the 

gradient of change along the 𝑥 and 𝑦 directions using a one dimensional mask vector 

[1, −1]. The calculations of the differential operators along these directions can be 

extended to a two dimensional matrix (mask of size 2 × 2) for including the diagonal 

edges. The first 2D filter (as can be seen in Equation 3.18) was proposed by Roberts 
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in 1965 (Rashmi, Kumar & Saxena, 2013). As an improvement, a mask of size 2 × 2 

with more information about the directions has been used and defined as: 

𝐺𝑥 = [
−1 0
0 1

]                                                       (3.18) 

𝐺𝑦 = [
0 −1
1 0

]         

Even though those 2D edge detection methods are simple to implement and not time 

consuming, they are more sensitive to noise and not symmetric to the center. To 

address this, a variety of modern edge detection methods developed since the 1960s 

use two-dimensional 3 × 3 masks of the form: 

𝐺𝑥 = [
−1 −𝑘 −1
  0   0   0
  1   𝑘   1

]                                             (3.19) 

𝐺𝑦 = [
−1   0   1
−𝑘   0    𝑘
−1   0   1

]    

The advantage this mask offers is smoothing in one direction and taking the 

difference in another direction. The parameter  𝐾 can have different values and then 

the filter will be changed to different edge detectors.  

Selecting 𝑘 = 1, represents a mask of a Prewitt edge detector which was put forward 

in 1970 by the author as (Asghari Oskoei & Hu, 2010): 

𝐺𝑥 = [
−1 −1 −1
  0  0  0
  1  1  1

]                                             (3.20) 

𝐺𝑦 = [
−1   0   1
−1   0   1
−1   0   1

]    

The Sobel method has a similar mask with a value of 𝑘 = 2, which provides for 

better coping with noise, but it increases the computational complexity. 

The first group of edge detection methods set out above only utilises the local 

gradient operation and is able to find edges with some specific orientation. Hence 

these methods are not capable of detecting edges in a noisy image and so some do 
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not provide high performance in the case of having such an image. Under these 

circumstances, they usually increase the probability of producing a false edge and 

are incapable of the diagnosis of sharp edges. 

As system performance will be hampered by edge detector errors, finding the best 

operator is vital in order to achieve the best result. Figure 3.22 shows the 

performance results on the Lena image after passing it through different edge 

detection methods. The outcomes show the best result belongs to the Canny edge 

detector, whilst Sobel and Prewitt are approximately the same and the worst result 

comes from the Roberts edge detection. Of all the proposed edge detection methods, 

up until now, the Canny nearly always provides the best results and hence, it is 

widely 

 

Figure 3.22: Experiments using different edge detection methods on Lena 

(512×512); note Canny has two threshold parameters in comparison to one threshold 

parameter for other methods. 

Roberts Prewitt

Sobel Canny

Lena



76 | P a g e  
 

employed (Canny, 1986; Asghari Oskoei & Hu, 2010; Seerha & Kaur, 2013; 

Rashmi, Kumar & Saxena, 2013). In addition, Canny uses Sobel as a computational 

filter for finding horizontal, vertical and diagonal edges (Seerha & Kaur, 2013). 

Hence, in the following, two prominent edge detectors, Sobel and Canny, are 

introduced. 

3.6.1 Sobel Edge Detection 

Sobel is a well-known classic edge operator proposed by Irwin Sobel in 1968 

(Asghari Oskoei & Hu, 2010), which uses a mask matrix as a 2D spatial gradient 

convolution in order to find the edges. A  Sobel filter applies its convolution mask in 

two directions: vertical and horizontal in the image.  

The general mask was proposed as Equation 3.19 and if the parameter 𝐾 is replaced 

with 2 then we have the 2D Sobel mask for vertical and horizontal direction 

(Equation 3.22) (Petrou & Petrou, 2010). 

𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝑆𝑦 = 𝑆𝑥
𝑇 = [

−1 −2 −1
  0   0    0
  1   2   1

]                 (3.22) 

Filtering of the source image 𝐴 with the differential operators, 𝑆𝑥 and 𝑆𝑦, yields two 

differentially-enhanced images 𝐺𝑥 and 𝐺𝑦 (Equation 3.23) and the vector containing 

these two values shows the direction of the greatest rate intensity change at (𝑥, 𝑦). 

𝐺𝑥 = 𝑆𝑥 ∗ 𝐴  𝑎𝑛𝑑   𝐺𝑦 = 𝑆𝑦 ∗ 𝐴                                     (3.23) 

where, the operator * denotes the 2D convolution or filtering operation. The two 

differentially-enhanced images, 𝐺𝑥 and 𝐺𝑦, can be combined to give the gradient 

magnitude operator, defined as: 

 𝐺 = √𝐺𝑥2 + 𝐺𝑦2                                                  (3.24) 

Figure 3.23 and 3.24 illustrates all 𝐺, 𝐺𝑥 and 𝐺𝑦, which are images with the same 

size as the original. 

http://en.wikipedia.org/wiki/Irwin_Sobel
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Figure 3.23: Application of the Sobel filter: a) original Lena (512×512), b) 𝒙 

direction (𝑮𝒙), c) 𝒚 direction (𝑮𝒚), and d) the combined gradient direction. 

 

        𝐴 = 𝐿𝐸𝑁𝐴                         𝐺𝑥                            𝐺𝑦                          𝐺 

Figure 3.24: Application of the Sobel filter to zoomed Lena (512×512) in 𝒙, 𝒚 and 

the combined gradient directions. 

3.6.2 Canny Edge Detection 

The Canny edge detection technique was proposed in (1986) by Canny. The purpose 

of his work was to present a better edge detection method able to provide the optimal 

detection of edges with less false detection, whilst preserving sharp edges. 

Nowadays, Canny is one of the main edge detection methods employed (Seerha & 

Kaur, 2013).  

Canny uses a multi-stage algorithm employing pruning, linking and thinning. There 

are three main desired criteria involved in the Canny edge detection operator: good 

detection (detecting the correct edge and not having a false detection where there are 

none), good localisation (minimum distance from the detected edge and the actual 

edge) and having one representative for each edge (in some cases there is more than 

one detected edge) (Gonzales & Woods, 2008).  

a b c d
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Canny utilises an exponential function and then, applies the first derivative of the 

Gaussian function to achieve high performance. The Gaussian filter operates as a 

smoothing function and subsequently, the first derivative is applied to the outcomes.  

𝑓𝜎(𝑥) =  
𝑑𝐺𝜎(𝑥)

𝑑𝑥
 =  −𝑘 

𝑥

𝜎2
exp(−

𝑥2

𝜎2
)                          (3.25) 

where,  𝐺𝜎(𝑥) and 𝑓𝜎(𝑥) denote the 1D Gaussian function and its derivative, 

respectively. 

For a 2D edge, Canny uses the feature of a Gaussian filter and utilises two separate 

1D filters in the horizontal and vertical directions. By using two 1D filters the 

complexity might be reduced (Asghari Oskoei & Hu, 2010). 

𝑓𝜎(𝑥, 𝑦) = [𝑓𝜎(𝑥) ∗  𝐺𝜎(𝑦)        𝐺𝜎(𝑥) ∗  𝑓𝜎(𝑦)]                   (3.26) 

where, 𝑓𝜎(𝑥, 𝑦) denotes the 2D optimal filter and 𝐺𝜎() and 𝑓𝜎() denote the 1D 

Gaussian function and its derivative, respectively. 

Signal noise ratio (SNR) is utilised in order to measure the detection ability, which 

has a reverse relation with the probability of detecting the false edge in the image. 

The higher the SNR value implies the less the false detection probability and this 

value can be calculated as:  

𝑆𝑁𝑅 =
|∫ 𝐺(−𝑥)𝑓(𝑥)𝑑𝑥

𝑊

−𝑊
|

𝑛0√(∫ 𝑓2
𝑤

−𝑤
(𝑥)𝑑𝑥)

                                      (3.27) 

where, 𝐺(𝑥), 𝑓(𝑥) and 𝑛0 represent the edge, optimal operator and root mean square 

(RMS) of the noise, respectively.  

The localisation equation is derived from Equation 3.28 and the maximisation of the 

following equation (based on the derivatives of the edge and the operator) provides 

the optimal localisation for the proposed method (Basu, 2002). 

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
|∫ 𝐺′(−𝑥)𝑓′(𝑥)𝑑𝑥

𝑊

−𝑊
|

𝑛0√(∫ 𝑓′2
𝑤

−𝑤
(𝑥)𝑑𝑥)

                              (3.28) 
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And finally, different edge detection might be provided for a single edge and it is 

necessary to eliminate the false ones.  

The Canny proposed method demonstrated that for a 1D signal, the use of the 

Gaussian filter with variance 𝜎 is sufficient to obtain improved results. Similarly, 

with a 2D signal, two filters are utilised separately for horizontal and vertical 

direction.   

In addition, to reduce spurious edge detection, adaptive thresholding with two 

different thresholds are used.  

The implementation of the Canny operator can be expressed in the following stages 

(Gonzales & Woods, 2008) (Figure 3.25): 

 

Figure 3.25: Diagram of the Canny edge detector. 

 

1) A Gaussian filter used as a pre-processor to smooth out random fluctuations 

and noise that may result in the detection of spurious edges (because some 

Gaussian 
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images might include noise and it can decrease the ability of detection). The 

variance of the filter can be empirically changed to obtain the best value; 

2) Computation of horizontal, vertical and diagonal (finding gradients) edges 

using a difference filter, such as the Sobel filter and calculating gradients in 

both the 𝑥 and 𝑦 directions (by finding the maximum intensity changes within 

the image); 

3) Suppression of insignificant non-maximum gradient edges by using the local 

gradient; 

4) Tracing of significant edges through image and hysteresis (both high and low 

threshold) thresholding. After suppression of non-maximum gradient edges, 

each pixel is marked by their values. Some are correct edges and the rest might 

be detected because of noise or location in the image. Therefore, thresholding 

can be used to eliminate the ones which have not reached the value of the 

threshold. If the gradient magnitude of a pixel is above the high threshold then 

it is marked as an edge. If this magnitude is above the low threshold and also is 

next to an edge, it is selected as an edge, but if this is not the case, it is not 

selected. Finally, if the gradient magnitude of a pixel is less than the low 

threshold it is not counted as an edge. 
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Chapter 4  

4. Image Gap Restoration Using a          

Multi-scale DCT Pyramid 
 

4.1 Introduction 

Multi-scale methods are one of the major image processing approaches employed to 

obtain efficient estimation and coding solutions. Often they combine the division of 

signals into progressively smaller frequency bands and time/space scales. 

In this process a signal is divided into a number of sub-signals by multi-scale 

techniques in order to analyse the different representation levels, and as a result these 

methods are able to obtain the beneficial features among all the provided 

information. In addition, the transformation creates an information pyramid, where 

successive down-sampled layers of the signal have less detail (low-pass processes), 

which leads to easier interpolation and estimation, hence the pyramid can be used to 

facilitate the estimation strategy and reduce the computational complexity (Dorini & 

Leite, 2009).  

Sub-band transform coding (e.g. filters, DCT, FFT) is the main component of the 

successive layers of a pyramid, being a type of transform coding that divides a signal 

into a number of different frequency bands and applies the procedure on each one 

independently. In tree-structured sub-band methods, such as quadrature mirror filters 

(a filter whose magnitude response is a mirror image about 
𝜋

2
 of that of another 

filter), a signal is progressively split into sub-bands and down-sampled and then 

further split into narrower bands, which produces a family of multi-scale signals. The 

general form of a multi-scale pyramid decomposition is illustrated in the block 

diagram of Figure 4.1. A 2D transform or a set of 2D filters decomposes the signal 

into low and high frequency regions. The low frequency part of the image is down-

http://en.wikipedia.org/wiki/Transform_coding
http://en.wikipedia.org/wiki/Frequency_band
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sampled and further decomposed into sub-band frequency regions. The process is 

repeated several times depending on the application and the size of the image blocks. 

 
Figure 4.1: Multi-scale pyramid decomposition. 

Wavelets and scale-space filtering are the other two techniques that use the multi-

scale approach. Wavelet is a powerful mathematical time-frequency-transformation 

technique in signal analysis, which can capture both frequency and location in time, 

this being its advantage over a Fourier transform (Mohlenkamp, n.d.). The Scale-

space filtering technique is a framework for multi-scale signal representation for 

handling image structures at different scales using Guassian masks over a sequence 

of sizes, which are subsequently transformed into a tree frame that can provide a 

complete qualitative framework covering all scales of the observation (Witkin,1984).  

The multi-scale discrete cosine (DCT) transform pyramid and discrete wavelet 

(DWT) transform are used in this project and are explained are the following 

sections. 

4.2 Multi-Scale Discrete Cosine Transform Pyramid 

In the multi-scale DCT method, the transformation of the image blocks into the 

constituent sub-band regions is achieved using the DCT transform. The multi-scale 

DCT pyramid processing method illustrated in Figure 4.2 and Figure 4.3 (four and 

five layers of pyramid, respectively) progressively decomposes image macro blocks 

(MBs) into four spectral quadrants, LL, LH, HL, HH, where L and H denote the low 

and high frequency halves of the spectrum, respectively.  

2D Transform 
or Filter

Down
sampler

LL

LH

HH

HL

2D Transform 
or Filter

Down
sampler

LL

LH

HH

HL

http://en.wikipedia.org/wiki/Multiscale_mathematics
http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Scale_(ratio)
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At the first stage of DCT decomposition each macro block is transformed into the 

DCT domain, the low frequency LL quadrant is selected, which is then transformed 

back to the image domain to produce an image, the bandwidth and scale of which are 

a quarter of that of the input image. At each subsequent down-sampling and 

decomposition stage, the LL quadrant is further decomposed into four spectral 

quadrants, the new down-sampled LL is selected and the inverse is transformed back 

to the image until the macro block is reduced to a single pixel. For a macro block of 

size 8 × 8, three stages of decomposition and down-sampling reduces the macro 

block to one pixel, as shown in Figure 4.2. Whereas for a macro block of size 16 ×

16, four stages of decomposition and down-sampling reduce the macro block to one 

pixel as illustrated in Figure 4.3. The name pyramid arises from the fact that       

reduced-scale image layers can be thought of as forming a structure of this shape.  

 

Figure 4.2: Four layer pyramid decomposition using 8×8 macro blocks. 

 

 

Figure 4.3: Five layer pyramid decomposition using 16×16 macro blocks. 
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This multi-scale DCT decomposition method is similar to wavelet filter structures, 

however, the DCT functions are used here as the basis function.  

The multi-scale 2D-DCT of an 𝑀𝑠 × 𝑁𝑠 matrix, 𝐴, at the base layer is defined as: 

𝐵𝑝𝑞0 = 𝑎𝑝𝑎𝑞 ∑ ∑  𝐴𝑚𝑛

𝑁𝑠−1

𝑛=0

cos
𝜋(2𝑚 − 1)𝑝

2𝑀𝑠
cos

𝜋(2𝑛 − 1)𝑞

2𝑁𝑠
        

𝑀𝑠−1

𝑚=0

    (4.1) 

where, the subscript 𝑠 denotes the pyramid layer for a block size of 𝑀 ×𝑁, for s = 

0,1,2,3 block size 𝑀 ×𝑁 are 𝑀3 = 𝑁3 = 8,  𝑀2 = 𝑁2 = 4, 𝑀1 = 𝑁1 = 2, 𝑀0 =

𝑁0 = 1.   0 ≤ 𝑝 ≤ 𝑀𝑠 − 1, 0 ≤ 𝑞 ≤ 𝑁𝑠 − 1 and: 

𝑎𝑝 =  {
1 √𝑀𝑠⁄ ,     𝑝 = 0

√2 𝑀𝑠⁄ ,    𝑝 ≠ 0
     and   𝑎𝑞 =  {

1 √𝑁𝑠⁄ ,    𝑞 = 0

√2 𝑁𝑠⁄ ,    𝑞 ≠ 0
 

Note that, as shown in Figure 4.4 and Figure 4.5, the down-sampling by a factor of a 

half (2: 1) is performed by simply retaining a quarter of the low-frequency index 

coefficients, the LL quadrant, and discarding the remaining three quarters, higher 

index, coefficients. 

Note also that a single DCT is sufficient to produce a set of layered pyramid 

coefficients composed of the subsets of the DCT coefficients. However, separate 

DCT and IDCT might be required at each sub-processing stage and in the 

recombination stages, as shown in Figure 4.4 and Figure 4.5.  

The 2D-DCT coefficients of the layers 1 to 3 for block of size 8 × 8 are defined in 

terms of the base layer DCT coefficients as: 

Pyramid layer 1 coefficients for a block of size 4 × 4 (𝑝 = 0: 3, 𝑞 = 0: 3) are 

extracted from the DCT of the base layer 0: 

𝐵𝑝𝑞1 =𝐵𝑝𝑞0       

Pyramid layer 2 coefficients for a block of size 2 × 2 (𝑝 = 0: 1, 𝑞 = 0: 1) are 

extracted from the layer 1 and layer 0 DCT: 
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𝐵𝑝𝑞2 = 𝐵𝑝𝑞1 = 𝐵𝑝𝑞0      

Pyramid layer 3, the apex coefficients of size 1 × 1 (𝑝 = 0, 𝑞 = 0) are extracted 

from the layer 1 DCT or equally from layer 2 and layer 0: 

𝐵𝑝𝑞3 = 𝐵𝑝𝑞2 = 𝐵𝑝𝑞1 = 𝐵𝑝𝑞0      

During the re-composition stages, starting from the apex of the multi-scale pyramid, 

image up-sampling by a factor of two (1: 2) is performed by a combination of a 

process of zero-padding of the 2D-DCT coefficients and the subsequent application 

of inverse 2D-DCT. 

 

Figure 4.4: Block diagram of the three-stage DCT pyramid image decomposition and 

its application to the Foreman image for a missing block size of 8×8. 
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Figure 4.5: Block diagram of the four-stage DCT pyramid image decomposition and 

its application to the Peppers image for a missing block size of 16×16. 

As illustrated in Figure 4.5, four stages of a DCT pyramid are required for image 

decomposition with a block size of 16 × 16. Then, after applying down-sampling 

and required image processing it is vital to revert the image back to the original size. 

Figure 4.6 shows the visual impact of reconstruction to the size of 512 × 512 from 

down-sampled signals, where this is performed directly from each layer of the 

pyramid.  

There are different types of reconstruction of down-sampled image to the original 

image size. Hence, the performance of different interpolation methods (nearest 

neighbour (NN), linear, cubic and spline interpolation) for MB sizes  8×8 and 16×16 

is evaluated (to reconstruct the image to the image original size from the apex layer 

by using the interpolation methods only), in order to compare the result and select 

the best method for this research (Table 4.I and 4.II). 
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Figure 4.6: Reconstruction from individual pyramid layers: layer 1 (down-sampled 

by 2×2), layer 2 (down-sampled by 4×4) and layer 3 (down-sampled by 8×8). 

Table 4.I: Performance comparisons of different interpolation methods (NN, linear, 

cubic and spline interpolation) for MB size = 8×8, on Lena original image size 

512×512. 

Down 

sample 

factor 

Image 

size 

Performance 

measure 

Interpolation methods 

NN Linear Cubic Spline 

2 256×256 
PSNR (dB) 

SSIM 

33.63 

0.9525 

38.07 

0.9012 

41.16 

0.9441 

42.42 

0.9894 

4 128×128 
PSNR (dB) 

SSIM 

27.74 

0.8281 

30.08 

0.9070 

31.44 

0.9490 

31.99 

0.9134 

8 64×64 
PSNR (dB) 

SSIM 

23.77 

0.6703 

24.91 

0.9012 

25.74 

0.9441 

25.99 

0.7752 

Table 4.I shows the PSNR and SSIM for four different interpolation methods, for 

cases where images were interpolated to the original size of 512 having been down-

sampled by factors of 2 (256 × 256) , 4 (128 × 128) and 8 (64 × 64), with a 

macro block of size of (8 × 8). As the down-sampling rate and hence information 

1:8
1x1:8x8

1:4
2x2:8x8

1:2
4x4:8x8
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loss increases, the gap in the performance of the linear interpolator (the worst) and 

the spline interpolator (the best) decreases from 8.79 dB to 2.22 dB in the macro 

block of size of (8 × 8).   

Table 4.II: Performance comparisons of different interpolation methods (NN, linear, 

cubic and spline interpolation) for MB size = 16×16, on Lena original image size 

512×512. 

Down 

sample 

factor 

Image 

size 

Performance 

measure 

Interpolation methods 

NN Linear Cubic Spline 

2 256×256 
PSNR (dB) 

SSIM 

33.44 

0.9508 

38.02 

0.9679 

41.20 

0.9744 

42.61 

0.9896 

4 128×128 
PSNR (dB) 

SSIM 

27.42 

0.8164 

30.12 

0.8560 

31.42 

0.8789 

32.00 

0.9100 

8 64×64 
PSNR (dB) 

SSIM 

23.53 

0.6547 

24.94 

0.6925 

25.69 

0.7319 

25.93 

0.7672 

16 32×32 
PSNR (dB) 

SSIM 

20.45 

0.5741 

21.08 

0.6055 

21.65 

0.6473 

21.51 

0.6606 

Table 4.II demonstrates the same procedure for a macro block of size of (16 × 16), 

and images were interpolated to the original size of 512 having been down-sampled 

by factors of 2 (256 × 256) , 4 (128 × 128), 8 (64 × 64) and 16 (32 × 32). The 

performance of the linear interpolator (the worst), and the spline interpolator (the 

best) decreases from 9.17 dB to 1.06 dB. 

4.3 Gap Restoration using Multi-scale 2D-DCT 

The algorithm for implementing the proposed method for gap restoration (Figure 

4.7) is as follows: 

1) Divide the image into macro-blocks of size 𝑀 ×𝑁 e.g. 8 × 8; 
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2) Decompose the image macro-blocks into a DCT pyramid structure, with the 

apex of the pyramid representing the last stage of down-sampling, where 

each MB of size 8 × 8 or 16 × 16 is reduced to one pixel only; 

3) Starting from the apex of the DCT pyramid, interpolate the decimated gap 

using the information from neighbouring pixels and use various methods of 

interpolation; 

4) Up-sample the enhanced interpolated image, via zero-padded inverse 2D-

DCT, and combine/merge with the available received samples of the same 

layer of up-sampling; 

5) Go to step (1) and repeat the process for each intermediate stage of up-

sampling. 

The details of these sub-processes are described next in this chapter. 

4.4 Alternative methods of Interpolation  

Image enhancement is one of the four broad categories of functions in image 

processing and the other three are: image representation, image restoration/filtering 

and compression. Interpolation may be considered as a subset of image enhancement 

and it can be applied for subsequent analysis, display or in order to have a 

continuous space image from a discrete-space image. Hence, one of the most 

important steps for designing a restoration algorithm is choosing a good interpolation 

function in order to increase the accuracy of the estimation (Pan, 2003). 

Discrete image data samples are recovered in order to have a continuous intensity 

surface (Su & Willis, 2004). When performing a digital image interpolation, empty 

spaces are being created in the source image, which are filled with the appropriate 

pixel values, and then the problem of approximating the intensity of the unknown 

pixels in an image can be solved by interpolation methods (Figure 4.8). Interpolation 

works by using known data to estimate values at unknown points in two dimensions 

and aims to achieve a best approximation of a pixel's colour and intensity based on 

the values at available surrounding pixels. This makes the interpolation algorithms 
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yield different results depending on the concept used to estimate these values 

(Olivier & Hanqiang, 2012). 

 

Figure 4.7: Block diagram of image gap restoration using a multi-scale DCT 

pyramid. 

There are two types of image interpolation: adaptive and non-adaptive methods. The 

former involves decision making, where the filter is adapted to apply the different 

version of the associated algorithms on different pixels depending on the pixel type 

(sharp edges or smooth texture). Bayesian methods can be considered as a version of 

adaptive algorithms, where the mean, variance and prior information are adapted to 

different image segments. 

 
Figure 4.8: Up-sampling a 2×2 macro block into a 4×4 pixel grid by 2D interpolation 

(spline). 

8×8
MB

Enhanced
Image

IDCT

1:2

Merge Interpolation

MergeIDCT Interpolation

Merge

1:2

Interpolation

1:2

Enhanced 
Image

2×2

1×1

4×4

1×1

2×2

4×4

8×8

2×2

2D- DCT

LL
4×4

LH

HL HH

Up-sample

Interpolation

? ? ?

?

?? ?

?

?

?

?
2D Interpolation

?

2x2 4x4 4x4

1:2



92 | P a g e  
 

Non-adaptive techniques use the same function for all types of pixels like the most 

widely used methods for image interpolations: nearest, linear, cubic and spline 

interpolation.  A further example of non-adaptive interpolation is the use of zero-

padding with a Fourier or DCT transform for up-sampling (see subsection 4.4.1). 

These methods are completely different in terms of image resolution, speed, and 

theoretical assumptions. 

The interpolation methods developed in this project (Chapter 5 and Chapter 6) are of 

the data-adaptive variety, whereby the interpolator coefficients or the regions that 

they operate on are adapted to the local and global edges of the segments. 

In this research interpolation is used for several stages of image gap restoration: 

 For estimation of the missing samples at the layers of the pyramid using local 

and global edges; 

 For up-sampling from one pixel grid sampling layer to another higher pixel 

grid sampling layer (Figure 4.8); 

 In the post processing stage, for producing an output that blends with the 

pattern of the neighbouring samples. 

There are several commonly used approaches to interpolation (Pan, 2003; Su & 

Willis, 2004; Getreuer, 2011; Jonic & Sorzano, 2011; Olivier & Hanqiang, 2012). 

Each of these has its own features and yield different results. The performances of 

several methods are compared in this chapter in order to find the best techniques to 

be used in this thesis. Some of the interpolation methods are as follows: 

 Low-pass filtering of the zero inserted signals, which is mostly used for up-

sampling rather than estimation of missing/lost samples in a gap (see 

subsection 3.4.2); 

 Frequency-transform, e.g. DCT, based interpolation, which can be configured 

and employed for both up-sampling applications and the estimation of 

missing gaps in a signal; 

 Nearest neighbour interpolation; 

 Linear interpolation; 

 Cubic interpolation; 

 Spline interpolation. 
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4.4.1  Frequency Transform, DCT Based, Interpolation 

A macro block of a given size can be interpolated and up-sampled by a factor of 2 

using a DCT-based interpolator, as illustrated in the block diagram of Figure 4.9. 

The process is composed of the following stages: 

 

Figure 4.9: DCT based interpolation for up-sampling by factor of 2. 

1- Apply DCT to macro blocks to obtain a 2 dimensional DCT matrix; 

2- Zero-pad the 2D DCT matrix of each macro-block to form an up-sampled 

block size four times the original (assuming interpolation by a factor of 2 in 

𝑥𝑦 directions); 

3- Apply inverse DCT to the zero-padded DCT matrix to obtain an interpolated 

MB matrix. 

In order to compute an interpolated up-sampled image macro block, the output 

𝑀𝑠 × 𝑁𝑠 matrix is defined by Equation 4.1 and the transformation can be written in 

matrix form as follows: 

𝑌 = 𝐴𝑀𝑁 . 𝑋                                                           (4.2) 

where, 𝑋 refers to vectors from  𝑀𝑠 × 𝑁𝑠 input pixels,  𝑌 represents 𝑀𝑠 × 𝑁𝑠 DCT 

output and 𝑠 denotes the pyramid layer. Each (2-D) DCT matrix (𝐴𝑀𝑁) can be 

written (by Kronecker factorisation) as two (1-D) DCT matrices ( 𝐴𝑀 and 𝐴𝑁 

matrices of sizes 𝑀 and 𝑁, respectively). 

𝐴𝑀𝑁 = 𝐴𝑀 ⨂ 𝐴𝑁                                                     (4.3) 
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In order to obtain an estimation for a missing block of size of (𝑀 −  2𝑠)  ×  (𝑁 −

 2𝑠) pixels, this has to be restored by its (𝑀 ×  𝑁)  − (2𝑠) non-corrupted border 

pixels, as can be seen in the Figure 4.10. Then define 𝑋1, the vector of (𝑀 ×  𝑁)  −

(2𝑠) available pixels and  𝑋2,  the (𝑀 −  2𝑠)  × (𝑁 −  2𝑠) corrupted pixels and thus 

Equation (4.3) can be changed to: 

𝑌 = 𝐴1. 𝑋1 + 𝐴2. 𝑋2                                                 (4.4) 

 

Note that 𝐴1 and 𝐴2 are matrices derived from the 2-D DCT matrix. By the same 

assumption, vector 𝑌 can be written as two vectors (𝑌1 and 𝑌2) with (𝑀 ×  𝑁)  −

(2𝑠) and (𝑀 −  2𝑠)  ×  (𝑁 −  2𝑠) elements, respectively, and now the system of 

equations can be written as follows with the elements of the DCT matrix 𝐴𝑀𝑁: 

[
𝑌1
𝑌2
] =  [

𝐴11 
𝐴21 

 
𝐴12
𝐴22

  ]  . [
𝑋1
𝑋2
]                                          (4.5)     

In order to solve the system equation, vector 𝑌2 is set to zero and det [𝐴22] ≠ 0, then 

the vector of the corrupted pixels  𝑋2 is expressed as: 

𝑋2 = −𝐴22
−1. 𝐴21 .𝑋1                                                  (4.6) 

The interpolation mask matrix 𝑍 is made of  (𝑀 −  2𝑠)  ×  (𝑁 −  2𝑠) rows and               

(𝑀 ×  𝑁) − (2𝑠) columns, which can provide estimation for the corrupted pixels 

from the available ones. 

𝑍 = −𝐴22
−1. 𝐴21                                                   (4.7) 

 

 

 

 

Figure 4.10: Known and missing pixels sizes (1×1) in the apex layer and (2×2) in the 

next layer down. 
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4.4.2 Nearest Neighbour Interpolation 

Nearest neighbour (NN) interpolation is the simplest method of in-painting and scale 

magnification in terms of implementation (Pan, 2003), which gives the value to the 

unknown pixel from the points around the missing data in one or more dimension 

and the result is a piecewise-constant process.  It only considers one pixel, the closest 

one to the interpolated missing point, as can be seen in Figure 4.11 and Figure 4.12 

(Equation 4.8) and it seems to have the effect of simply making the closest pixel 

bigger (Figure 4.12). 

𝑝(𝑥, 𝑦) = 𝑐(𝑖, 𝑗)                                                   (4.8) 

𝑐(𝑖, 𝑗) represents the closest point of the input samples to the unknown pixel 𝑝 at 

position (𝑥, 𝑦) and therefore, only one supporting point is required for the nearest 

neighbour interpolation. In the current work, the values of nearby known pixels are 

used for estimation of the output pixel values. The local one point interpolation is 

defined as:   

      𝐾1(𝑡) =  {1     𝑖𝑓    −
1

2
≤ 𝑡˂

1

2
,

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                                     (4.9) 

Figure 4. 11, shows the 4 neighbour points ( i , j), ( i, j + 1), ( i + 1, j ) and ( i + 1,j + 

1) to the unknown pixel 𝑝. The distances between (𝑥, 𝑦) and ( i, j ), ( i, j + 1), ( i + 1, 

j ) and ( i + 1,j + 1) are calculated and then the values of (𝑥, 𝑦) are set as the value of 

the point nearest to 𝑝(𝑥, 𝑦) (Olivier & Hanqiang, 2012). 

 

Figure 4.11: Diagram of the nearest neighbour interpolation algorithm. 
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Figure 4.12 demonstrates up-sampling of a 2×2 macro block into a 4×4 pixel grid by 

the NN interpolation. As can be seen in Figure 4.13 and Figure 4.14, the result of the 

nearest neighbour interpolation is not smooth in one and two dimensional 

interpolation and tends to increase the noise, because of the repetitions of the pixel 

𝑐(𝑖, 𝑗). Consequently, strong aliasing and blurring effects are associated with the 

nearest neighbour method for image interpolation.  

 

Figure 4.12: Up-sampling a 2×2 macro block into a 4×4 pixel grid by NN 

interpolation. 

Table 4.III: Performance comparisons for an MB size= 8×8, on Lena, Man, Peppers, 

Boat and Elaine for the nearest neighbour interpolation. 

Interpolation 

Method 

Performance 

measure 

Images 

Lena Man Peppers Boat Elaine Average 

NN 

PSNR(dB) 

SSIM 

Time (s) 

23.77 

0.6703 

14.26 

22.09 

0.5178 

13.40 

24.81 

0.6966 

14.37 

22.30 

0.5855 

12.91 

24.02 

0.4345 

15.06 

23.39 

0.5809 

14 

 

Table 4.III demonstrates the performance comparisons for a macro block size of  

8 × 8 on Lena, Man, Peppers, Boat and Elaine for the nearest neighbour 

interpolation, where the images were interpolated to the original size of 512 × 512 

having been down-sampled by factors of 8 (64 × 64). 
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Figure 4.13: Illustration of a one-dimensional nearest neighbour (red) interpolated 

through a number of known data samples (blue). 

 

 

Figure 4.14: Illustration of up-sampling of a 2 dimensional mesh-grid (blue) by a 

factor of 2 using a nearest neighbour 2D interpolator (red). 

However, the nearest neighbour assumption does not permit estimation of new 

intermediate values, but instead sets the value at the empty location by replicating 

the pixel value located at the shortest distance and the effect of this is heavy jagged 

edges. A solution to such jaggedness was achieved through use of another 

interpolation, known as the bilinear based algorithm, which generates softer images. 
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4.4.3 Linear Interpolation 

Linear interpolation is the simplest method for estimation of missing data without 

the jagged artefact problem of NN interpolation. In general, a linear interpolator is 

composed of a series of linear polynomials that are fitted to segments of data and at a 

minimum the polynomial passes between each pair of data points for curves, or 

between sets of four points for surfaces (Pan, 2003; Getreuer, 2011).  

Bilinear interpolation is an extension of linear interpolation for interpolating  images, 

in which the linear interpolation is applied first in one direction and then the process 

is performed in another direction for 2D interpolation. In general, for a missing pixel 

in an image the interpolation is calculated as a weighted average of the attributes of 

the four surrounding pixels (the closest 2 × 2 neighbourhood), which are located in 

diagonal directions from a given pixel, as shown in Figure 4.15 and then appropriate 

intensity values are assigned to the unknown pixels (as illustrated in Equations 4.10, 

4.11 and 4.12). 

 

Figure 4.15: Diagram of the linear interpolation algorithm. 

To find the unknown value of the function 𝑓(𝑝) at the point 𝑝 =  (𝑥,  𝑦), linear 

interpolation is first performed in the x-direction for four known points 𝐴11 =

(𝑥1,  𝑦1), 𝐴12 = (𝑥1,  𝑦2),  𝐴21 = (𝑥2,  𝑦1)  and  𝐴22 = (𝑥2,  𝑦2) , as follows: 

𝑓(𝑅1) ≈  
𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑓(𝐴11) + 

𝑥 − 𝑥1
𝑥2 − 𝑥1

𝑓(𝐴21)                        (4.10) 
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http://en.wikipedia.org/wiki/Linear_interpolation
http://en.wikipedia.org/wiki/Interpolation
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𝑓(𝑅2) ≈  
𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑓(𝐴12) + 

𝑥 − 𝑥1
𝑥2 − 𝑥1

𝑓(𝐴22)                       (4.11) 

Note that 𝑅1  =  (𝑥 ,  𝑦1) and 𝑅2  =  (𝑥 ,  𝑦2). Then, linear interpolation is carried 

out in the y-direction: 

𝑓(𝑝) ≈  
𝑦2 − 𝑦

𝑦2 − 𝑦1
𝑓(𝑅1) + 

𝑦 − 𝑦1
𝑦2 − 𝑦1

𝑓(𝑅2)                        (4.12) 

 

Figure 4.16: Illustration of a one-dimensional linear curve (red) interpolated through 

a number of known data samples (blue). 

 

Figure 4.17: Illustration of up-sampling of a 2 dimensional mesh-grid (blue) by a 

factor of 2 using a linear 2D interpolator (red). 

It can be seen from Figure 4.16 and Figure 4.17 that the result for one and two 

dimensional linear interpolation is improved compared with the NN interpolation, 
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but there is still some distortion. Table 4.IV shows the result comparisons for 

bilinear interpolation on Lena, Man, Peppers, Boat and Elaine with a macro block 

size of 8 × 8, where the images were interpolated to the original size of 512 × 512 

having been down-sampled by factors of 8 (64 × 64). There is an improvement of 

0.86 dB in PSNR on average when compare with NN interpolation, but the 

computational complexity has increased by 2.60 seconds. 

Table 4.IV: Performance comparisons for an MB size = 8×8, on Lena, Man, Peppers, 

Boat and Elaine for the bilinear interpolation.  

Interpolation 

Method 

Performance 

measure 

Images 

Lena Man Peppers Boat Elaine Average 

Bilinear 

PSNR(dB) 

SSIM 

Time (s) 

24.91 

0.6703 

17.64 

22.82 

0.5178 

17.93 

25.82 

0.6966 

14.22 

22.70 

0.5855 

16.27 

25.03 

0.4345 

16.97 

24.25 

0.5809 

16.60 

Although bilinear interpolation is computationally a fast technique, and unlike other 

interpolation methods, such as bi-cubic interpolation, only considers the closest 

2 × 2  neighborhood values of an unknown pixel to find the appropriate intensity 

values of that pixel and reduces some of the visual distortion, but it usually yields 

discontinuities at each point and a smoother method is preferable.  

4.4.4 Cubic Interpolation 

Cubic interpolation offers continuity between segments by the simplest process 

amongst all interpolation methods (Pan, 2003; Getreuer, 2011). Bicubic interpolation 

is an extension to the cubic interpolation technique for interpolating missing data 

points on a 2D environment. This technique is similar to bilinear interpolation, but it 

extracts sixteen pieces of information (red and blue dots in  Figure 4.18) from the 

values of at least four known neighbouring points (blue dots in Figure 4.18), in order 

to make an estimation. Because these sixteen points are at various distances from the 

unknown pixel, those that are closer are given a higher weighting and thus, have 

http://en.wikipedia.org/wiki/Bicubic_interpolation
http://en.wikipedia.org/wiki/Interpolation
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more influence on the estimation of the missing pixel value in the calculation. As a 

result, the image is slightly sharper than the one produced by bilinear interpolation.  

𝑝(𝑥, 𝑦) =  ∑   ∑𝑎𝑖𝑗𝑥
𝑖

3

𝑗=0

𝑦𝑗    

3

𝑖=0

                                    (4.13) 

Note that, 𝑎𝑖𝑗 are constants and 𝑥 and 𝑦 are parameters ranging from 0 to 1. The 

interpolation problem consists of determining the 16 coefficients of 𝑎𝑖𝑗. The 𝑥, 𝑦 and 

𝑥𝑦 cross products of these values and the interpolated area can be calculated from 

the above equation, and the interpolated result area, 𝑝(𝑥, 𝑦), is continuous.  

The interpolation kernel as a solution of the linear system is as follows for each grid 

cell:  

𝑠(𝑥) =  

{
 
 

 
 1 −

5

2
 │𝑥│2  +  

3

2
 │𝑥│3,                                                │𝑥│ ≤ 1

2 − 4  │𝑥│ + 
5

2
 │𝑥│2 − 

1

2
 │𝑥│3 ,                 1 < │𝑥│ ≤ 2

0                                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (4.14) 

 

Figure 4.18: Diagram of a cubic interpolation algorithm. 

Figure 4.19 and Figure 4.20 demonstrate that the results for one and two dimensional 

bicubic interpolation are an improvement on NN and linear interpolations. Table 4.V 

shows the result comparisons for bicubic interpolation on Lena, Man, Peppers, Boat 

and Elaine, when the macro block size is 8 × 8 and the images were interpolated to 

the original size of 512 × 512 having been down-sampled by factors of 8 (64 ×

64). It can be seen that the performance is higher than for the two previous methods 

(NN and linear) by 1.5 dB and 0.64 dB, respectively. 
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`  

Figure 4.19: Illustration of a one-dimensional cubic curve (red) interpolated through 

a number of known data samples (blue). 

 

Figure 4.20: Illustration of up-sampling of a 2 dimensional mesh-grid (blue) by a 

factor of 2 using a cubic 2D interpolator (red). 

However, this method is slower than NN and linear interpolation by 5.13s and 2.53s, 

respectively, because it needs to solve sixteen linear equations, but the result is 

smoother. Additionally, it can offer true continuity between the segments, which 

thus makes it a solution for interpolating the surface where higher quality is required 

and time is not an issue. 
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Table 4.V: Performance comparisons for an MB size= 8×8, on Lena, Man, Peppers, 

Boat and Elaine for bicubic interpolation. 

Interpolation 

Method 

Performance 

Measure 

Images 

Lena Man Peppers Boat Elaine Average 

Bicubic 

PSNR(dB) 

SSIM 

Time (s) 

25.74 

0.6703 

20.65 

23.32 

0.5178 

18.61 

26.59 

0.6966 

19.01 

23.07 

0.5855 

19.61 

25.73 

0.4345 

17.77 

24.89 

0.5809 

19.13 

4.4.5 Spline Interpolation 

A spline function is a higher order (𝑛) piecewise polynomial interpolation involving 

the use of more surrounding information than a linear interpolator, and as a result it 

can retain more reconstructed data, which thus means it is much more 

computationally intensive (Pan, 2003; Getreuer, 2011). For a spline of degree 𝑘, 

each segment is a polynomial of degree 𝑘 with segment pieces smoothly connected 

together and the points at which they meet are called knots. 

Splines can be uniquely characterised in terms of a b-spline (b stands as basic) 

expansion, as any spline function of degree 𝑘 on a number of knots can be expressed 

as a linear combination of b-splines and the representation is as follows (Pan, 2003): 

𝑠(𝑥) =  ∑c(k)𝛽𝑛(𝑥 − 𝑘)

𝑘∈𝑍

                                        (4.15) 

where, c(k) are the polynomial functions of order k , and n is the number of control 

points. 

B-splines are most commonly used owing to their computational efficiency. In 

particular, cubic B-splines offer a good trade-off between the computational cost and 

the interpolation quality. Owing to the separability property of B-splines, operations 

on multidimensional data can be carried out by successive processing of one-

dimensional (1D) (equation 4.15) data along each dimension. In addition, their multi-

resolution property means they are good for making wavelet bases and for multi-

scale processing. In general, given these features, many image processing 
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applications have been designed to use B-splines (Jonic & Sorzano, 2011). They can 

be implemented efficiently and simply, even though they are mathematically quite 

complicated. 

A one dimension operation can be derived from the Equation (4.15) and the result is 

as follows: 

𝑠(𝑥) =  ∑𝑐(𝑘)𝛽(𝑥 − 𝑘)

𝑘

                                         (4.16) 

𝑠0(𝑥) =  

{
 
 

 
 1,        −  

1

2
< │𝑥│ ≤

1

2
1

2
 ,                     │𝑥│ =

1

2
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                    (4.17) 

To process an image, the method must consider more than a single dimension. For 

instance, a 2D spline involves weighting the interpolation in one direction (same as 

equation 4.15) and then going in another direction. This is defined as follows: 

𝑠(𝑥, 𝑦) =  ∑   ∑ c(𝑘, 𝑙)𝛽𝑛(𝑥 − 𝑘)𝛽𝑛(𝑦 − 𝑙)

(𝑙+𝑙1−1)

𝑙=𝑙1

   

(𝑘+𝑘1−1)

𝑘=𝑘1

          (4.18) 

2D splines are used in various applications like rotation, zooming, reformating and 

resizing. 

Figure 4.21 and Figure 4.22 show that there is an improvement for one and two 

dimensional spline interpolation when compared to the NN, linear and cubic 

interpolations.  
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Figure 4.21: Illustration of a one-dimensional spline curve (red) interpolated through 

a number of known data samples (blue). 

 

Figure 4.22: Illustration of up-sampling of a 2 dimensional mesh-grid (blue) by a 

factor of 2 using a B-spline 2D interpolator (red). 

Table 4.VI illustrates the result comparisons for spline interpolation on Lena, Man, 

Peppers, Boat and Elaine when the macro block size is 8 × 8 and the images are 

interpolated to the original size of 512 × 512 having been down-sampled by factors 

of 8 (64 × 64). There is an improvement for the spline method by 0.14 dB when 

compared with the average performance for cubic interpolation. In addition, the 

spline interpolation surpasses both the NN and linear techniques by 1.64 dB and 0.78 

dB, respectively.  
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Moreover, in the terms of computational complexity, Table 4.VI shows that while 

the spline method achieves a better outcome for the average processing time over 

those of cubic by 4.38 s and linear by 1.85 s, this is lower than NN by 0.75 dB. 

Table 4.VI: Performance comparisons for an MB size = 8×8, on Lena, Man, Peppers, 

Boat and Elaine for spline interpolation. 

Interpolation 

Method 

Performance 

measure 

Images 

Lena Man Peppers Boat Elaine Average 

B-spline 

PSNR(dB) 

SSIM 

Time (s) 

25.99  

0.6703 

14.64 

23.35 

0.5178 

13.81     

26.70 

0.6966 

16.31 

23.16 

0.5855 

14.73 

25.97 

0.4345 

14.27 

25.03 

0.5809 

14.75 

 

4.4.6 Comparison Between Different Interpolation Methods 

The nearest neighbour and bilinear interpolation methods are both easy to apply, due 

to their simplicity, but their accuracy is limited and hence, could be insufficient 

when interpolating high-frequency signals. That is, for these techniques, there is a 

trade-off between computational complexity and accuracy. NN interpolation is the 

most efficient of the two in terms of computation time, for bilinear interpolation 

requires 2.60s more for this. Cubic interpolation requires the most processing time 

about 19.30s, which is 5.30s more than the computation time of the NN 

interpolation. 

However, the NN generally performs poorly leading to a jagged or blocky 

appearance. Bilinear interpolation creates a smoother appearance, but the grey levels 

are changed during computation, thus producing blurring or loss of image resolution. 

In sum, cubic interpolation provides the best result of these three, but the 

computation time is very high compared to the rest of these techniques. 

It has been observed from experiments, that among all the interpolation techniques 

the spline method has the greatest approximation, being quite smooth as well as 

more continuous (Figure 4.23). Moreover, it has the best cost-performance trade off 

of all the described approaches. In addition, it is the preferred algorithm for multi-



107 | P a g e  
 

scale approximation, including resizing, pyramids and wavelets as well as for a 

substantial number of other applications regarding image processing (Jonic & 

Soriano, 2011).  

The experimental results give the guidance to choose the best interpolation algorithm 

to achieve optimum outcomes, whereby it is essential to limit the interpolation 

artifacts and this motivates the use of b-splines as the appropriate way to keep them 

in check without any significant cost penalty.  

 

Figure 4.23: Illustration of a one-dimensional NN curve (green), linear curve (red), 

cubic curve (blue) and spline curve (yellow) interpolated through a number of known 

samples (blue). 

4.5 Evaluation for Regular Loss Pattern  

As demonstrated in Figure 4.7, at the last stage of down-sampling, the size of the 

missing block was reduced from (8 × 8) or (16 × 16) to one sample. In order to 

estimate the missing pixel, two types of estimation are applied:  mean estimate and 

median estimate. The former (Equation 4.19) replaces the missing point by the 

average of all (8) surrounding pixels (if they are not corrupted), whereas the latter 

(Equation 4.20) is an edge preserving function, which takes into the account the edge 

information from all neighbouring pixels. 
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𝑝(𝑖, 𝑗) =  mean([A(i − 1: i + 1, j − 1: j + 1, 𝑖, 𝑗 ≠ 0)])              (4.19) 

 

𝑝(𝑖, 𝑗) =  median([A(i − 1: i + 1, j − 1: j + 1, 𝑖, 𝑗 ≠ 0)])             (4.20) 
 

Note that 𝑝 is the missing pixel at the position (𝑖, 𝑗) and A(i − 1: i + 1, j − 1: j + 1) 

includes all eight surrounding pixels (if they are not corrupted), but not (𝑖, 𝑗) itself. 

To blend an estimate with the surrounding pixels an interpolator (DCT-based) is 

applied to the restored image at each level starting from the apex of pyramid, as 

explained in subsection 4.4.1. Then, the estimate is up-sampled to the next layer by 

using one of the explained interpolation methods and merged with uncorrupted 

available pixels, which continues until it reaches the last base level. Various methods 

of interpolation, which have been seen before, can be used in the up-sampling 

process, and different results are obtained depending on the different methods, as can 

be seen in Table 4.VII and Table 4.VIII. 

It can be seen (Table 4.VII and 4.VIII) that the median estimator achieves the higher 

result in comparison with the mean method as it includes edge information in the 

estimation of the missing pixel. In addition, these tables illustrate that the different 

techniques that have been used in the up-sampling process provide almost similar 

results. More specifically, the spline supplies the best outcome the linear and cubic 

techniques have almost the same result, whilst the nearest neighbour is the worst of 

all.  

The similarity among the results comes from the relatively high correlation that 

exists among neighbouring image pixels and also, the efficiency of the pyramid DCT 

structure in capturing the correlations of the image pixels. 

Figure 4.24 shows the subjective quality of the recovered images from the original 

ones with 25% loss rate for a macro block size of 8×8 on Lena, Peppers, Man and 

Boat for the spline interpolation and some distortion can be seen in all images, 

especially around the edges. Thus, it is concluded that using interpolation methods 

alone does not provide an effective recovery result in the missing macro block case. 
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Table 4.VII: Performance comparisons of different interpolation methods for an MB 

loss rate of 25% (MB size = 8×8) on Lena, Man, Peppers, Boat and Elaine with a 

mean estimator at the apex. 

Interpolation 

Method 

Performance 

measure 

Images 

Lena Man Peppers Boat Elaine Average 

 

NN 

 

PSNR (dB) 

SSIM 

Time (s) 

31.21 

0.9396 

12.09 

29.07 

0.9006 

12.03 

31.95 

0.9434 

12.38 

28.68 

0.9096 

11.42 

32.35 

0.9217 

11.74 

30.65 

0.9229 

11.93 

 

Bilinear 

 

PSNR (dB) 

SSIM 

Time (s) 

31.72 

0.9456 

11.21 

29.43 

0.9073 

12.47 

32.46 

0.9493 

12.12 

28.98 

0.9143 

12.09 

32.81 

0.9272 

11.79 

31.08 

0.9287 

11.93 

Bicubic 

PSNR (dB) 

SSIM 

Time (s) 

31.57 

0.9446 

12.22 

29.32 

0.9062 

12.42 

32.30 

0.9480 

12.12 

28.82 

0.9129 

12.31 

32.69 

0.9262 

12.39 

30.94 

0.9275 

12.29 

 

B-spline 

 

PSNR (dB) 

SSIM 

Time (s) 

31.83 

0.9463 

12.12 

29.63 

0.9080 

11.23 

32.57 

0.9498 

11.53 

29.15 

0.9151 

12.49 

32.94 

0.9278 

12.11 

31.22 

0.9294 

11.89 
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Table 4.VIII: Performance comparisons of different interpolation methods for an MB 

loss rate of 25%, MB size = 8×8, on Lena, Man, Peppers, Boat and Elaine with the 

median estimator at the apex.  

Interpolation 

Method 

Performance 

measure 

Images 

Lena Man Peppers Boat Elaine Average 

 

NN 

 

PSNR(dB) 

SSIM 

Time (s) 

31.56 

0.9440 

17.10 

29.27 

0.9041 

17.37 

32.25 

0.9466 

21.51 

28.90 

0.9132 

18.72 

32.74 

0.9248 

18.04 

30.94 

0.9265 

18.55 

 

Bilinear 

 

PSNR(dB) 

SSIM 

Time (s) 

31.89 

0.9475 

17.41 

29.53 

0.9089 

17.38 

32.60 

0.9507 

17.69 

29.09 

0.9158 

17.47 

33.00 

0.9286 

17.25 

31.22 

0.9303 

17.44 

Bicubic 

PSNR(dB) 

SSIM 

Time (s) 

31.84 

0.9477 

19.18 

29.47 

0.9087 

17.74 

32.53 

0.9503 

17.88 

28.99 

0.9154 

19.26 

33.00 

0.9285 

17.70 

31.16 

0.9301 

18.35 

B-spline 

PSNR(dB) 

SSIM 

Time (s) 

32.03 

0.9488 

17.97 

29.70 

0.9097 

17.92 

32.70 

0.9523 

17.66 

29.23 

0.9167 

18.23 

33.17 

0.9293 

20.76 

31.36 

0.9313 

18.50 
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Figure 4.24: From left to right, original images, images with 25% MB (size = 8×8) 

loss rate, restored and zoomed images on Lena, Peppers, Man and Boat for spline 

interpolation. 
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4.6 Conclusion 

In this chapter the use of multi-scale techniques which divide the signals into a series 

of filtered and down-sampled layers of progressively reduced scales and bandwidth 

has been investigated. Multi-scale transformation into a pyramid layers might 

facilitate easier interpolation and estimation of missing gaps by creating an 

information pyramid, where at the apex the missing gap is reduced to one sample 

only. Consequently, it might facilitate the estimation and reduce the computational 

complexity.  

The main contribution of the work in this chapter has been to establish a baseline for 

interpolation performance within a DCT pyramid against which the edge-guided 

interpolation introduced in the following chapter can be compared. The algorithm 

includes a combination of multi-resolution transforms, different interpolation 

methods and blending techniques (DCT based interpolation) capable of restoring 

missing macro blocks.  

The impact of using four different interpolation methods for gap estimation was 

assessed, these being the: nearest neighbour, linear, cubic and spline methods. The 

interpolators were first compared with regard to their comparative ability to retrieve 

a down sampled signal without any gap for down-sampling rates 2, 4, 8. The results 

show that spline interpolation performs best followed by the cubic, linear and nearest 

neighbour interpolators. However, as the down-sampling rate and hence information 

loss increases the difference in the performance of the nearest neighbour interpolator 

(the worst) and the spline interpolator (the best) decreases. Similarly, for the case 

where there is loss of image macro blocks, then the differences in the performance of 

various interpolators decrease. 

In order to improve the results, the combination of interpolation and post processing, 

blending, functions were performed with two different estimators (mean and median) 

at the apex of the pyramid. As expected, the median achieved better results as it is an 

edge-preserving statistic.  The first observation is that all interpolation methods, 

employed within pyramid estimation, result in reasonably high and very similar 

values of PSNR of around 31 dB and an SSIM of 0.92 It is proposed that the reasons 

for the similar results are: 
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1) The relatively high correlation that exists among neighboring image pixels; 

2) The efficiency of the pyramid DCT structure in capturing the correlations of 

the image pixels; 

3) The gap loss, since the experimental result indicates that as the information 

loss increases the interpolators’ performances converge to similar values.  

Further work described next includes the use of the interpolation methods in this 

project as a data-adaptive variety. More specifically, the interpolator coefficients or 

the regions that they operate on are adapted to the local and global edges of the 

segments on which they operate. 
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Chapter 5 

5. Multi-scale Edge-Guided DCT Image 

Gap Restoration 
 

5.1 Introduction 

Chapter 5 presents novel edge-guided interpolation methods for image gap 

restoration through incorporation of edge-based directional interpolation within a 

multi-scale pyramid transform. Two categories of image edges are proposed and 

utilised in image gap reconstruction in this research: 

a) The local edges or textures inferred from estimation of the gradients of the 

neighbouring pixels in various directions and, 

b) The global edges, or boundaries between image objects or segments, 

inferred using Canny or Sobel edge detectors.   

Through a process of pyramid transformation and down-sampling, the image is 

transformed into a series of progressively reduced size layers until at the pyramid 

apex the gap size is one pixel. The process is then reversed; at each stage, the 

missing samples are inferred using estimates of the local and global edges, up-

sampled and combined with the uncorrupted samples. For comparison with 

published works the DCT pyramid is used although a wavelet transform could also 

be employed. A further justification for using DCT is the fact that most available and 

widely used applications for image compression coding based on the block coding 

techniques employ DCT as the transform. Evaluations over a range of images 

demonstrate that the proposed method improves PSNR and the visual quality 

compared to a range of published works.   
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5.2  Local Edges, Textures in Multi-Scale Image Gap 

Interpolation 

The local edges are inferred from the neighbourhood of the missing pixels without 

the benefit of global edge detectors. The local edges capture the texture information 

as well as any segment of the global edges that happen to reside within the locality. 

At each scale of the reconstruction process, spatial gap concealment interpolates the 

missing block by using the local edge or texture information obtained from the 

surrounding available neighbouring pixels. Preserving the texture edges is important 

for successful error concealment. In this respect, several observations are instructive: 

1) Along the direction of an edge, the differences of neighbouring pixel values are 

relatively small; 

2) Across the direction of an edge the differences of pixel values at the edge 

discontinuity are relatively large; 

3) On each side of a gap, the differences of the neighbouring pixel values across 

an edge are consistent and of similar sign, with the possible exception being 

where the gap coincides with the end-points of an edge segment.  

5.2.1  Local Interpolation of a Single Missing Pixel at the Apex of a 

Multi-Scale Pyramid  

In the proposed pyramid method, edge-based interpolation begins with computing an 

estimate of the missing pixel at the final level of decomposition, i.e. at the pyramid 

apex where the missing image gap is reduced to a single sample.  

As illustrated in Figure 5.1 a missing pixel at the apex of the pyramid is surrounded 

by uncorrupted pixels which can be used to define the direction of the edge. Local 

directional interpolation preserves the following three types of local edges (Figure 

5.1): 

1) Horizontal (H) edges above and below the missing pixels, Figure 5.1.a; 

2) Vertical (V) edges to the left and right of the missing pixels, Figure 5.1.b; 

3) Cross (C) edges across four directions, Figure 5.1.c 
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          Horizontal (H) edges      Vertical (V) edges                     Cross (C) edges 

                       (a)                                  (b)                                            (c) 

Figure 5.1: Directional interpolation for each missing pixel at the apex of a multi-

scale pyramid (in eight possible directions). 

The edge-enhanced estimation of the missing sample, 𝐴𝑚,𝑛, is given by the 

following Equation 5.1. 

𝐴𝑚,𝑛 = ∑ ∑𝑤𝑚+𝑘,𝑛+𝑙(𝐴𝑚+𝑘,𝑛+𝑙+𝑒𝑑𝑔𝑒𝑚+𝑘,𝑛+𝑙)

𝑘,𝑙𝐻,𝑉,𝐶∈𝑅𝐼

               (5.1) 

where, 𝑒𝑑𝑔𝑒(𝑚 + 𝑘, 𝑛 + 𝑙) is a local estimation of the edge obtained separately in 

each of the horizontal (H), vertical (V) and cross (C) directions, which is shown in 

Figure 5.1(8 possible directions) and 𝑅𝐼 is the Region of Interest which for local 

interpolation, on an un-segmented image, includes information from all 

neighbouring pixels. The edges along the directions (𝑚, 𝑛)  → (𝑚 + 𝑘, 𝑛 + 𝑙) are 

obtained from the average of all the available edges of the same direction in the 

immediate neighbourhood of the missing sample. For example, at the apex level, 

where the gap is reduced to one sample, for the horizontal direction, 𝑒𝑑𝑔𝑒(𝑚 −

1, 𝑛)(the brown direction in the Figure 5.1), where the index m denotes horizontal 

rows and n denotes vertical columns, can be computed simply as: 

 𝑒𝑑𝑔𝑒𝑚−1,𝑛 = {
0   𝑖𝑓 𝑒𝑑𝑔𝑒𝑚−1,𝑛−1 × 𝑒𝑑𝑔𝑒𝑚−1,𝑛+1 < 0 

  0.5 (𝑒𝑑𝑔𝑒𝑚−1,𝑛−1 + 𝑒𝑑𝑔𝑒𝑚−1,𝑛+1)   𝑒𝑙𝑠𝑒   
             (5.2) 

or a statistical estimate of the average of the majority of neighbouring edges with 

similar signs can be obtained from a window of length 2𝑙 +  1 as: 

 𝑒𝑑𝑔𝑒𝑚−1,𝑛 = 𝑠𝑡𝑎𝑡𝑠(𝑒𝑑𝑔𝑒𝑚−1,𝑛−𝑖 )       𝑖 = −𝑙:+ 𝑙                     (5.3) 

In order to make a weighted estimate consistent with the most distinct 

neighbourhood edges, the edge combination weights can be expressed as a function 

of their intensity, as: 
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𝑤𝑚+𝑘,𝑛+𝑙 =
𝑒𝑑𝑔𝑒𝑚+𝑘,𝑛+𝑙

∑ 𝑒𝑑𝑔𝑒𝑚+𝑘,𝑛+𝑙𝑘=−1:1,𝑙=−1:1 𝑘,𝑙≠0

                           (5.4) 

 Note that ∑ 𝑤𝑚+𝑘,𝑛+𝑙𝑘=−1:1,𝑙=−1:1 𝑘,𝑙≠0 = 1 

5.2.2  Local Block Interpolation at [𝑵 ×𝑵] Pyramid Scale 

After interpolation of the apex sample, at the subsequent stages of interpolation, for 

blocks of size 𝑁 ×𝑁 a strategy similar to that described above is used. Starting from 

the outer boundaries of the macro block, the missing pixels are progressively 

replaced towards the centre, while the local edge-guided interpolation methodology 

aims to obtain estimates that are consistent with the neighbouring edges in each of 

the horizontal, vertical and cross directions.  

 

Figure 5.2: Diagram of the process in the local edge-guided interpolation. 

This estimate is an edge-weighted mean of the available or already estimated 

neighbouring pixels with consistent edges. At the successive levels where an 𝑁 ×𝑁 
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interpolated block replaces a gap, local directional edge-guided interpolation is used 

to fit the missing blocks with the edge patterns of the available neighbouring pixels. 

Figure 5.2 illustrates the process in local edge-guided interpolation.   

 

Figure 5.3: Interpolation using the neighbourhood edges, inferred from the pixels 

available (on three sides of the missing pixel) in two directions: horizontal (H) (red 

arrow) and vertical (V) (green arrow). 

Figure 5.3 is an illustrative example of the method for edge estimation for a 2 × 2 

block, one possible way of using neighbourhood edges inferred from the available 

pixels (on three sides of the missing pixel), in two directions (horizontal (H) and 

vertical (V)). In addition, the estimated pixel itself from the previous steps is 

employed in order to compute the unknown pixel value.  

 

Figure 5.4: The interpolation inferred from four possible directions (represented by 

four different colours) combined with the pixel estimate (white dot). 

A more complete form of inclusion of neighbourhood edge information in the 

inference process is illustrated in Figure 5.4. That is, interpolation inferred from four 

possible directions combined with the pixel obtained from the previous stage is used 

to computed a new estimate of the missing pixel at the block of size 𝑁 × 𝑁. As 

Horizontal Direction (H)

Vertical Direction (V)

Missing sample, 
V

H

Left Cross Direction

Horizontal Direction

Vertical Direction

Right Cross Direction

Missing sample, 



120 | P a g e  
 

shown in Figure 5.4, three pixels are involved in each direction, comprising two 

immediate neighbouring pixels and a third which is the first available pixel after the 

gap in the same direction. However, there is an exception for each pixel in one of the 

cross directions, which just includes two instantly available pixels (right cross in 

Figure 5.4). As demonstrated in Figure 5.4, which refers to the missing block of size 

2 × 2 , four types of edges are applied to estimate the missing sample, 𝐴𝑚,𝑛 , through 

a unique order: 

1) Horizontal (H) edges above and below the missing pixels, Figure 5.4. (Red 

dots); 

2) Vertical (V) edges to the left and right of the missing pixels, Figure 5.4. 

(Amber dots); 

3) Right Cross (RC) edges, Figure 5.4. (Green dots); 

4) Left Cross (LC) edges, Figure 5.4. (Blue dots). 

 

Figure 5.5: Illustration of pyramid DCT decomposition of Lena. A 8×8 gap at the 

base is transformed to a single missing pixel at the apex and directional interpolation 

composed of local edge information is used to infer missing pixel values. After up-

sampling the estimates are used to replace the gap at a lower pyramid layer and the 

process is continued to the pyramid base. 

Image with 

missing MBs

Replace missing 

MBs

Up sampled 

image

Directional 

interpolation

Restored image



121 | P a g e  
 

The edge-enhanced estimation of the missing sample, 𝐴𝑚,𝑛, is given by using the 

Equation 5.1 with a different RI. In addition for each pixel the distance normalised 

weight is computed so as to obtain a more accurate result (Equation 5.5).  

𝐴(𝑚, 𝑛) =  ∑ ∝𝑝𝑞

𝑝𝑞

𝐴(𝑚 + 𝑝, 𝑛 + 𝑞)                                  (5.5) 

where      ∝𝑝𝑞 =  
𝑑𝑝𝑞

∑𝑑𝑝𝑞
  and  𝑑𝑝𝑞 = √𝑝2 + 𝑞2 

where 𝑚, 𝑛, 𝑝, 𝑞 denote the position indices of the pixels,  𝑑𝑝𝑞 is the Euclidean norm 

or distance, ∝𝑝𝑞 is the distance normalised weights and ∑ ∝𝑝𝑞𝑝,𝑞 = 1. 

Figure 5.5 shows the objective result of pyramid DCT decomposition of Lena with a 

missing MB of size 8 × 8, using the local edge-guided interpolation. 

5.2.2.1  Post-Processing; Blending, Block Estimates with Surroundings 

As a further enhancement processing step, to blend the estimate of a block within its 

surrounding texture a DCT based mixing akin to a form of data dependent low-pass 

filtering is used. The method for a missing block of size 2 × 2 can be described as 

follows and is also demonstrated in Figure 5.6. 

 Step 1: Take a 4 × 4  block that includes the 2 × 2 estimate at its core centre.  

 Step 2: Perform a 4 × 4  DCT, retain the low frequency 2 × 2 or 3 × 3  

subset and set the remaining coefficients to zero, this is low-pass filtering. 

 Step 3:  IDCT the modified 4 × 4  set. 

 Step 4:  Retain the core 2 × 2  as the blended estimate. 

 

Figure 5.6: Post-processing: Blending of block estimates with surrounding pixels for 

a missing block of size 2×2. 
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5.2.3  Experimental Result for Local Edge-Guided Interpolation 

Regarding performance evaluation results, the proposed algorithm has been tested on 

a number of standard test images, including: Lena, Peppers, Man and Foreman. The 

image sizes are 512 × 512  pixels, with each grey-scale or one of the primary 

colours represented by 8 bits per pixel in unsigned integer format, with a range of 0-

255. The size of the missing macro block has been set to 8 × 8 and 16 × 16 pixels. 

Three typical missing macro blocks are considered: 

 Regular missing macro block: at 25% loss rate for 8 × 8 missing macro blocks  

(Figure 5.7) ; 

 Regular missing macro block: at approximately 10% loss rate for 16 × 16 

missing macro blocks (Figure 5.8) ; 

 Random (mixed) missing macro blocks: with the loss rate set to 10% for 8 × 8 

missing macro blocks (Figure 5.9). 

The choice of the percentage loss is guided by the desire to compare the results 

illustrated in Tables 5.I, 5.II and 5.IV with available well-known ones reported in the 

literature. 

The performance measurement criteria used for assessment of the quality of image 

recovery is the widely employed Peak-Signal-to-Noise-Ratio (PSNR), which is 

defined as: 

𝑃𝑆𝑁𝑅 = 20 log10
𝑀𝐴𝑋𝐼
𝑅𝑀𝑆𝐸

      dB                                       (5.6) 

The aim of error concealment is to minimise the root mean squared (RMSE) error 

metric, and thus maximise the 𝑃𝑆𝑁𝑅. These metrics are straightforward and easy to 

evaluate. Where 𝑀𝐴𝑋𝐼 = 255 for a pixel value represented in unsigned integer 

format and the RMSE function is defined as: 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐴(𝑚, 𝑛) − 𝐴𝑟(𝑚, 𝑛))2𝑑𝑜𝑚𝑎𝑖𝑛

2
                       (5.7) 

where, 𝐴(𝑚, 𝑛) and 𝐴𝑟(𝑚, 𝑛) are the original and recovered pixel value, 

respectively. The domain, over which the RMSE is calculated might include only the 
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missing samples or it, alternatively, can include the entire image samples composed 

of those missing as well as those available, and 𝑁 is the total number of samples 

used in calculation. 

5.2.3.1  Evaluation for Regular Loss Pattern 

The local edge-guided interpolation method has been applied to the images of Lena, 

Peppers, Man and Foreman, as shown in Figures 5.7 and 5.8. The PSNR results are 

compared to a set of seventeen published works representing a number of methods 

that have employed Bayesian and/or edge information for the recovery of regular lost 

macro blocks. The results are displayed in two different tables. Table 5.I represents 

comparison with the published results, where the PSNRs are averaged over the 

whole image including the available samples and Table 5.II represents comparison 

with published results where the PSNRs are averaged over the missing pixels only. 

Table 5.I illustrates the performance of several methods (values are taken from Kim, 

Koo & Jeong, 2006; Liu et al., 2014). As displayed in Table 5.I, the proposed 

method performs better than all the alternatives considered and there is an 

improvement of 0.46 dB compared with the best average performance of any other 

method, which is that of Kim, Koo & Jeong (2006) when the PSNRs were computed 

from the whole image.  

In Liu et al. (2015) the result is provided only for Lena and it is over by 1 dB. The 

lowest outcome among the rest (Ancis & Giusto, 1999) is at 27.35 and the proposed 

method is above this by 6.61 dB. There is almost the same range of results for Sun & 

Kwok (1995), Hemami & Meng (1995), Shirani, Kossentini, & Ward (2000), and 

Alkachouh & Bellanger (2000) at 29.07, 30.28, 30.44 and 30.75, respectively, and as 

such, they are approximately 3.50 dB lower than the proposed method of the current 

study. Park et al. (2005) achieved an outcome of 32.90 dB, but the proposed method 

surpasses it by 1.06 dB. There is a higher average result for the local edge-guided 

interpolation, as can be seen in the table below, when compared with the best 

performance (Kim, Koo & Jeong, 2006) by 0.39 dB. Despite the proposed method 

obtaining a better outcome for the Man and Peppers images compared with Kim, 

Koo & Jeong (2006) by 0.86 dB and 0.53 dB, respectively, the performance for 
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Lena’s image with respect to theirs was slightly lower by 0.20 dB, as this method 

just utilises the local information. 

Table 5.I: Performance comparisons for MB loss rate of 25%, MB size=8×8, with 

the PSNRs calculated over the whole image for Lena, Man and Peppers for local 

edge interpolation. 

In Table 5.II (values are taken from Li & Orchard (2002), Zhao et al. (2005) and 

Zhai et al. (2010)) the PSNR is calculated for the region of missing sample blocks 

only. It can be seen that Agrafiotis, Bull & Canagarajah’s (2006) outcome provides 

the worst performance, with proposed method achieving an improvement of 5.44 dB 

over theirs. Li & Orchard (2002) introduced Sequential Error-Concealment, such that 

the previously recovered pixels can be used in the recovery process afterwards, but 

compared with the local edge-guided interpolation their result is lower by 0.16 dB. 

Jung, Chang & Lee (1994), Park et al. (2005) and Zhao et al. (2005) obtained similar 

results, whereas the proposed method’s outcomes surpassed theirs by 2.07 dB, 2.41 

dB and 1.48 dB, respectively. However, Zeng & Liu (1995), who made use of the 

local geometric information extracted from the surrounding blocks to interpolate the 

missing pixels, achieved a PSNR at 27.43 and 0.98 dB lower than the proposed 

method. The rest of the techniques obtained approximately the same results, ranging 

from Alkachouh & Bellanger (2000) at 24.00 dB to Hsia (2004) at 25.14 dB and 

Methods 
PSNR (dB) 

Lena Man Peppers Average 

Ancis (Ancis & Giusto, 1999) 28.68 25.47 27.92 27.35 

Sun (Sun & Kwok, 1995) 29.99 27.25 29.97 29.07 

Shirani ( Shirani, Kossentini, & 

Ward, 2000) 
31.69 27.44 31.72 30.28 

Hemami (Hemami & Meng, 1995) 31.86 27.65 31.83 30.44 

Alkachouh (Alkachouh & Bellanger, 

2000) 
31.57 27.94 32.76 30.75 

Park (Park  et al., 2005) 34.65 29.87 34.20 32.90 

Kim (Kim, Koo & Jeong (2006) 34.91 30.62 35.18 33.57 

Liu (Liu et al., 2014) 35.71 -- -- -- 

DCT Local-edge 34.71 31.48 35.71 33.96 
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local edge-guided interpolation provides a significantly higher outcome when to 

compared with these. The best performance among all the compared methods is that 

Zhai et al. (2010) at 28.51 dB. They employed a Bayesian estimation approach with 

a discrete cosine transform, obtaining a 0.10 dB greater outcome than for the 

proposed method.  

Table 5.II: Performance comparisons for MB loss rate of 25%, MB size= 8×8, with 

PSNRs calculated just for the region of the missing block on Lena for local edge 

interpolation. 

Gap Estimation Methods 
Image Lena 

PSNR (dB) 

Zhai (Zhai et al., 2010) 28.51 

Agrafiotis (Agrafiotis, Bull & Canagarajah, 2006) 22.97 

Park (Park et al., 2005) 26.00 

Zhai (Zhai et al., 2008) 28.11 

Zeng (Zeng & Liu 1995) 27.43 

Li (Li & Orchard, 2002) 28.25 

Jung (Jung, Chang & Lee, 1994) 26.34 

Wang(Wang, Chang & Shaw, 1993) 24.70 

Alkachouh (Alkachouh & Bellanger, 2000) 24.00 

Shirani (Shirani, Kossentini, & Ward, 2000) 24.50 

Sun (Sun & Kwok, 1995) 24.70 

Hsia (Hsia, 2004) 25.14 

Zhao (Zhao et al., 2005) 26.93 

DCT Local-edge 28.41 

5.2.3.2  Evaluation for Random Loss Pattern  

In order to evaluate the performance result of the local edge-guided interpolation for 

the random (mixed) block loss, the method has been applied to the Lena, Peppers, 

Man and Foreman images, as shown in Figure 5.9, and compared with the published 

methods (Li & Orchard, 2002 ; Zhai et al., 2010). In the mixed model of packet loss 

there is no specific pattern of loss, and in this case two or more lost macro blocks 

could be adjacent.   
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Figure 5.7: From left to right; the original images, the image with 25% MB loss                   

(8×8 isolated block loss) and the restored images for Lena, Pepper, Man and 

Foreman.  
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In order to have a more reliable test result the variance and standard deviation (SD) 

(Equation 5.8) are calculated for a number of simulations so as to show that the mean 

amount of PSNR is in the range. 

𝑆𝐷 = √
1

𝑁
 ∑(𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛 − 𝑃𝑆𝑁𝑅𝑖)2
𝑁

𝑖=1

 2

                               (5.8) 

where, 𝑁 is a number of iterations, 𝑃𝑆𝑁𝑅𝑚𝑒𝑎𝑛 illustrates a mean of all 𝑁 𝑃𝑆𝑁𝑅s and 

𝑃𝑆𝑁𝑅𝑖 represents the PSNR of the 𝑖𝑡ℎ iteration. 

Table 5.III: Performance comparisons for a random MB loss rate of 10% (MB size = 

8×8) on Lena with ten steps of iteration. 

  Image 

 

Result 

Lena 

1 2 3 4 5 6 7 8 9 10 

PSNR 

(dB) 

31.51 31.32 30.98 31.19 31.40 30.64 30.37 31.00 31.21 30.86 

To start, the mean of ten iterations of PSNR values is computed, afterwards the 

variance and standard variance are calculated using Equations 5.9 and 5.10. The 

small variance indicates (Equation 5.10) that the data points tend to be very close to 

the mean and hence, to each other. Then, the mean value is used to compare the 

result with published state of the art methods. 

𝑀𝑒𝑎𝑛 =  ∑𝑃𝑆𝑁𝑅𝑖

10

𝑖=1

= 
310.48

10
= 31.048 ≈ 31.05                   (5.9) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
1

10
 ∑(31.05 − 𝑃𝑆𝑁𝑅𝑖)

2

10

𝑖=1

=
1.1262

10
= 0.11262            (5.10) 

𝑆𝐷 = √𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  √0.11262 = 0.3355                          (5.11) 

Table 5.III (values are taken from (Li & Orchard, 2002; Zhai et al., 2010)) includes 

the results for four published techniques and the proposed method (average of ten 

iterations). The PSNRs are averaged over the region of missing sample blocks only 

and hence, do not include the available samples.   

https://en.wikipedia.org/wiki/Mean
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Table 5.IV: Performance comparisons for a random MB loss rate of 10%, MB size= 

8×8, with PSNRs calculated just for the region of the missing block for Lena. 

Methods 
Image Lena 

PSNR (dB) 

Zhai (Zhai et al., 2010) 28.13 

Zhai (Zhai et al., 2008) 27.65 

Zeng (Zeng & Liu, 1995) 26.60 

Li (Li & Orchard, 2002) 27.38 

DCT Local-edge 31.05 

As can be seen in the table above, the proposed method is better than all published 

works. The best result among the rest is that of Zhai et al. (2010), which achieved 

2.92 dB less when compared with the proposed scheme. Two other techniques have 

almost the same performance results, being under the current method outcome by 3.4 

dB in Zhai et al.’s (2008) case and 3.67 dB in that of Li & Orchard (2002). The 

worst result is for Zeng & Liu (1995) at 26.60 dB, and the proposed method 

surpassed it by 4.45 dB.  

Figure 5.8 shows the subjective quality of the recovered image and some distortion 

can be seen especially around the sharp edges. Thus, it is concluded that local edge-

guided interpolation is not able to provide an effective result in the random missing 

macro block case and a more advanced method is required. 
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Figure 5.8: From left to right: the original Lena, Peppers, Man and Foreman images, 

the images with 10% random missing MBs and the restored image for local edge 

interpolation. 
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Figure 5.9: From left to right: the original images, corrupted images (16×16 isolated 

block loss), the restored and zoomed in images for Lena, Peppers, Man and Foreman 

for local edge-guided interpolation. 
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5.2.3.3  Evaluation for 16 × 16 Regular Loss Pattern 

A block loss size of 16 × 16 pixels is also applied to the proposed algorithm for 

further evaluation, for which a 5-level DCT pyramid is used and Figure 5.9 

demonstrates the subjective performance. In addition, Table 5.V shows the PSNR 

comparison between the proposed algorithm and previous works. 

Table 5.V: Performance comparisons for MB loss size= 16×16, with PSNRs 

calculated over the whole image for Lena, Man and Peppers with local edge 

interpolation 

Methods 
PSNR (dB) 

Lena Peppers Average 

Salama (Salama, Shroff & Delp, 1998) 35.01 34.71 34.86 

Wang (Wang, Zhu & Shaw, 1993) 35.43 35.07 35.25 

Sun (Sun & Kwok, 1995) 34.95 33.21 34.08 

Park (Park et al. 2005) 35.98 35.50 35.74 

Li (Li & Orchard, 2002) 37.48 38.27 37.87 

Kim (Kim, Koo & Jeong, 2006) 37.37 38.95 38.16 

DCT Local-edge 35.61 36.22 35.91 

Table 5.V contains objective comparisons between the local edge-guided 

interpolation method and six published works on the Lena and Peppers images. From 

the simulation result, while the average for the proposed scheme has a PSNR over 

those of Salama, Shroff & Delp (1998), by 1.05 dB, Wang, Zhu & Shaw, (1993) by 

0.66 dB, Sun & Kwok (1995) by 1.83 dB and Park et al. (2005), by 0.17 dB, it is not 

as effective as the other two techniques. The best result of all is that of Kim, Jasung 

Koo & Jeong (2006), which exceeds that of the local edge-guided algorithm by 2.25 

dB and Li & Orchard’s (2002) is higher by 1.96 dB.  

It can be seen from Figure 5.9, the test result is similar to the 8 × 8 model, and it can 

also be observed (in addition to Figure 5.7 and 5.8) that although there is a 

significant improvement in the local areas compared with the results of Chapter 4, 

severe losses are not successfully reconstructed in the edge regions. Moreover, there 
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is some distortion along the edges, which is indicated by a red arrow in the restored 

Lena in Figure 5.9. Hence, it is evident that a further process, such as a global-edge 

guided interpolation, is required to recover the edge regions that have been neglected 

by the current approach. 

5.3  Global Edge-Guided Image Gap Interpolation 

From the above analysis and evaluation it is observed that preserving the local edges 

mitigates blurring distortions of textures and provides improved interpolation at a 

local texture level, in particular at the boundaries of the available and missing 

samples. For further improvement where the missing blocks contain significant 

edges, such as major boundaries between segments and objects, the global edge 

information, not necessarily evident within the lost macro blocks, needs to be 

utilised. 

The detection of edges is a necessary process in the proposed method. The edge is 

defined as a sharp change in intensity therefore, edge detection applications are used 

in order to identify the presence and location of these intensity step changes. Edge 

detection significantly reduces the amount of data and filters out unwanted or 

insignificant information, thereby providing the significant information and 

specifying edges within an image.  

The proposed method for global edge-guided image gap interpolation is similar to 

the local edge-guided interpolation, but it has an additional process at each level. 

First, the boundaries in the image are identified though the edge detection and then, 

more data can be recovered by using that information. The algorithm is as follows 

(Figure 5.10): 

1) Decompose image macro-blocks into a DCT pyramid structure, with the 

apex of the pyramid representing the last stage of down-sampling (where 

each MB of size 8 × 8 is reduced to only one pixel after three stages and for 

an MB of size 16 × 16 is reduced to only one pixel after four stages); 
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2) Starting from the apex of the DCT pyramid interpolate the decimated              

(down-sampled) gap using the local edge information from the 

neighbouring pixel, as described in section 5.2; 

3) Use an edge detector, such as Sobel or Canny, to track the global edges in 

the interpolated images; 

4) Enhance the interpolated gap estimation using the global edge information, 

5) Up-sample the enhanced interpolated image via zero-padded inverse 2D-

DCT and combine/merge with the available received samples of the same 

layer of up-sampling; 

6) Go to step (1) and repeat the process for each intermediate stage of up-

sampling. 

The details of these sub-processes are illustrated in Figure 5.10. 

 

Figure 5.10: Three-stage DCT pyramid image decomposition                                                  

(D-Interp = Directional Interpolation). 
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5.3.1 Edge Detection 

The global edges are used to avoid or mitigate the problem of blurred/smeared 

interpolation across the significant edges, which is the main cause of large 

interpolation errors and visible distortions in image restoration. With the availability 

of the boundary traces of the edges, it is possible to segment the pixels (Figure 5.11) 

within and in the neighbourhood of missing blocks as well as to confine the available 

samples used for interpolation of a missing sample within a relatively homogeneous 

region on each side of the edge or onto the edge itself, as required. 

 

Figure 5.11: Segmentation of pixels with a global edge detector. 

Figure 5.12 illustrates an edge-based segmentation of an image into two broadly     

homogenous contrasting texture areas. The dark sections are on either side of the 

edges or lie within closely-spaced edges, whereas the light areas represent the pixels 

on the edges. Brighter pixels demonstrate the stronger edges within an image. 

 

Figure 5.12: From left to right an estimated image of Lena after local edge-guided 

interpolation in the last stage, and edge-based segmentation of an image with the 

Sobel edge detector.  

Note regarding Figure 5.12 that the global edge-guided interpolation is performed 

after local edge interpolation, in order to mitigate the impact of the missing samples 
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on the edge detection. For estimation of the main edges in the image, the applications 

of two popular edge detection methods were investigated, namely, the Sobel and the 

Canny edge detectors, which allowed for comparison so as to identify that which 

provides the best results. 

Figure 5.13 illustrates the proposed multi-scale method of restoration for the 

corrupted image of Lena with 25% macro block loss (size of 8 × 8 ). Note that in the 

case of having an macro block of size 16 × 16, the method consists of four stage of 

down/up-sampling. The figure shows that after applying global edge information the 

result is improved at each stage of the process. 

 

Figure 5.13: Application of the proposed multi-scale method to restoration of a 

corrupted image of Lena with 25% of 8×8 blocks loss with the Sobel filter. 
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After edge-based segmentation, the interpolation Equation 5.1 will have its regions 

of interests (RI), for estimation of the edges, 𝐻, 𝑉, 𝐶 ∈ 𝑅𝐼. Equation 5.12 would be 

modified to include edge-segmented (ES) interpolation regions in RI as: 

𝐴𝑚,𝑛 = ∑ ∑𝑤𝑚+𝑘,𝑛+𝑙(𝐴𝑚+𝑘,𝑛+𝑙+𝑒𝑑𝑔𝑒𝑚+𝑘,𝑛+𝑙)

𝑘,𝑙𝐻,𝑉,𝐶∈𝐸𝑆

              (5.12) 

where now, the interpolation and estimation of the textures and shades in the 

horizontal, vertical and cross, 𝐻, 𝑉, 𝐶 ∈ 𝐸𝑆, are confined to edge-segmented (ES) 

regions composed of relatively homogenous textures. Interpolation using pixels 

across edge-segmented regions is not allowed at this stage. 

 

Figure 5.14: Missing pixel (red pixel) might lie in 4 different possible edge 

directions (white). 

 

Figure 5.15: Areas next to the edges (white), the missing pixels could be any of the 

black pixels. 

There are two distinct pixel areas that need to be covered separately, with the first 

being those pixels exactly positioned on the edge boundaries and the second, relates 

to those that lie next to the edge of the boundaries.  Figure 5.14 demonstrates that the 

missing pixels lie in four different possible edge directions. In this case, in order to 

estimate these missing pixels it is necessary to first find the direction of the edges, 

then estimate the missing pixels from those that are on the edge. For the areas that 

are not entirely on the edge (Figure 5.15,16), but next to the boundaries, the intensity 

values of pixels on the same side of those surrounding the missing pixels, but not 
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crossing the edge boundary, should be used, because utilising pixels either on the 

edge or on the other side of the edge can cause blurred estimation.  

 

Figure 5.16: Areas next to the edges (white), in the horizontal, left cross, right cross 

and vertical directions. 

Different distances to the boundaries are used at each level of the process, such that 

longer distances are involved for the higher levels. Figure 5.15 illustrates immediate 

neighbouring pixels to the edge, and Figure 5.16 shows the second and third levels 

from the edge areas, where for example, in the last stage fifteen pixels are checked 

for estimation after each edge. 

5.3.1.1  Sobel Edge Detector  

The Sobel filter as described in section 3.6.1 is a difference function applied to each 

pixel in the horizontal 𝑥 − 𝑎𝑥𝑖𝑠 and the vertical 𝑦 − 𝑎𝑥𝑖𝑠 directions. Through 

rotation the 3×3 mask is able to detect horizontal edges (with a gradient angle of 

approximately 90"), diagonal edges (with angles of +45" and −45"), and vertical 

edges (with an angle of 0"). 

 
         𝐴 = 𝐿𝐸𝑁𝐴                         𝐺𝑥                             𝐺𝑦                          𝐺  

Figure 5.17: Application of the Sobel filter to Lena in 𝒙, 𝒚 and the combined 

gradient directions. 

Figure 5.17 illustrates the application of the Sobel filter to the Lena image and note 

that in 𝐺𝑥 the horizontal edges are enhanced, while in 𝐺𝑦 the vertical edges are 
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enhanced. 𝐺, the gradient magnitude of 𝐺𝑥 and  𝐺𝑦, displays edges enhanced in both 

the horizontal and vertical dimensions.  

a) Percentile-Rank Threshold Edge-Enhanced Image 

Figure 5.17 shows that there are many weak edges due to texture in the gradient 

image 𝐺. In order to retain the most prominent edges only and to suppress the 

remainder, an edge threshold value, 𝜃𝑡ℎ𝑟𝑒𝑠ℎ, is derived from the percentile 

statistics using the following algorithm: 

𝐺_𝑠𝑜𝑟𝑡𝑒𝑑 = 𝑠𝑜𝑟𝑡(𝐺, ′𝑑𝑒𝑠𝑐𝑒𝑛𝑑′); 
𝑖𝑛𝑑𝑒𝑥 = 𝑟𝑜𝑢𝑛𝑑(𝛼 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐺_𝑠𝑜𝑟𝑡𝑒𝑑)); 
𝜃𝑡ℎ𝑟𝑒𝑠ℎ= 𝐺_𝑠𝑜𝑟𝑡𝑒𝑑 (𝑖𝑛𝑑𝑒𝑥); 
𝐺𝑡ℎ𝑟𝑒𝑠ℎ=𝑠𝑖𝑔𝑛(𝐺, 𝜃𝑡ℎ𝑟𝑒𝑠ℎ) 

Where through a process of experimentation, the faction 𝛼, is set to a value of 0.2               

(i.e. 20 percentile statistic) and the function 𝑠𝑖𝑔𝑛(𝐺, 𝜃𝑡ℎ𝑟𝑒𝑠ℎ) sets the values of 

𝐺(𝑖, 𝑗) less than 𝜃𝑡ℎ𝑟𝑒𝑠ℎ to zero. The application of the threshold results in a 

differentially processed Lena, as shown in Figure 5.18. 

 

                                         𝐺                                                        𝐺𝑡ℎ𝑟𝑒𝑠ℎ 

Figure 5.18: Thresholding the output of the Sobel filter, showing input 𝑮 and output 

Gthresh. 

5.3.1.2 Canny Edge Detector 

The Canny detector (described in subsection 3.6.2) is a multi-stage algorithm for 

detection and tracing of the edges in images. 
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Figure 5.19: Canny edge detector for multi-scale Lena and Peppers at scales, from 

left to right: (a) 512
2
, (b) 256

2
, (c) 128

2
, (d) 64

2
. 

Figure 5.19 shows the application of a Canny detector to multi-scale Lena and 

Peppers with the image scale progressively down-sampled by 2:1, in three stages, 

from size 512×512 to 64×64. 

a) Incorporating Global Edge-guided Interpolation in an Iterative 

Method/Loop 

The variance of the Gaussian filter and the maximum and minimum thresholds of the 

significant edges can be varied to change the sensitivity of the Canny detector. To 

achieve a better result, different amounts of maximum and minimum thresholds are 

utilised during the last stage of the process. Three separate iterations (Figure 5.20) 

run in discrete steps and each has a recovered image as an output and then the 

restored image is an input for the next iteration. By using repetition the quality of the 

restored image is improved, as illustrated in Figure 5.20.   

(a) (b) (c) (d)
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Figure 5.20: Three stage of iteration for Lena and theirs PSNRs.  

5.3.2 Experimental Results 

For the performance evaluation results, the proposed algorithm has been tested with 

the same data as in section 5.2.3. The sizes of the missing blocks are set to 8×8 and 

16×16 pixels, with four types of these being evaluated: regular missing macro block 

at 25% loss rate (Figure 5.21), regular missing macro block at 16×16 (Figure 5.22), 

random missing macro block with the loss rate set to 10% (Figure 5.23) and random 

missing macro block with the loss rate set to 40% (Figure 5.24). The choice of the 

percentage loss is guided by the desire to compare the results with those reported in 

the literature.  

The performance measure criteria used for assessment of the quality of image 

recovery is the Peak-Signal-to-Noise-Ratio (PSNR), as in the previous sections. 

Where the domain over which the RMSE is calculated could include only the 

missing samples or it alternatively, might include the entire image samples 

composed of the missing and the available samples. 

5.3.2.1 Evaluation for 8 × 8 Regular Loss Pattern 

The proposed method is applied to commonly used test images of Lena, Peppers, 

Man, Boat, Elaine and two further images, including one of the researcher’s, added 

specifically for this work. The PSNR results are compared to a set of twenty one 

published works representing a number of methods that employ Bayesian and/or 

edge information for the recovery of regular lost macro blocks. The results are 

35.01 dB 35.09 dB34.92 dB
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displayed in two different tables. Table 5.VI represents comparison with the 

published results, where the PSNR are averaged over the whole image including the 

available samples and Table 5.VII gives comparison of these results where the PSNR 

are averaged only over the missing pixels. 

To compare the subjective qualities, the simulation results on a missing block size of 

8×8 pixels in the Lena, Peppers, Man and Foreman images are shown in Figure 5.21. 

Observation shows that the proposed method has achieved noticeable improvement 

in the area of the complex texture structure. In addition, it can be seen that the 

restored image quality is improved overall when compared with the local edge-

guided interpolation technique, especially around the edges, such as in the areas 

pointed to by red arrows.  

Table 5.VI illustrates the performance of the various methods (all the results are 

directly obtained from Park et al. (2005) and Liu et al. (2015)). It can be seen that 

the proposed method performs better than the alternatives considered and there is an 

improvement in the Canny case of 0.85 dB when compared with the best average 

performance. Moreover, there is an improvement in the Sobel case over all methods, 

being 0.79 dB more than the best average performance by Kim, Koo & Jeong (2006) 

when the PSNRs are computed for the whole image. The methods for comparison of 

average performance on five images in the Canny case are as follows. 

Table 5.VI: Performance comparisons for MB loss rate 25%, MB size=8×8, PSNR 

calculated over whole image: Proposed 1, with the Sobel filter and Proposed 2, with 

the Canny filter. 

Methods 
PSNR (dB) 

Lena Man Peppers Boat Elaine Average 

Ancis & Giusto 

(1999) 
28.68 25.47 27.92 26.33 29.84 27.65 

Sun & Kwok 

(1995) 
29.99 27.25 29.97 27.36 30.95 29.10 

Shirani, 

Kossentini & 

Ward (2000) 

31.69 27.44 31.72 29.22 32.10 30.43 
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Methods 
PSNR (dB) 

Lena Man Peppers Boat Elaine Average 

Hemami & 

Meng (1995) 
31.86 27.65 31.83 29.36 32.07 30.55 

Alkachouh & 

Bellanger (2000) 
31.57 27.94 32.76 30.11 31.92 30.86 

Park et al. 

(2005) 
34.65 29.87 34.20 30.78 34.63 32.83 

Kim, Koo & 

Jeong (2006) 
34.91 30.62 35.18 31.40 35.63 33.55 

DCT Sobel 35.19 30.56 35.98 31.31 35.43 33.69 

DCT Canny 36.08 31.59 36.23 31.76 36.08 34.34 

Ancis & Giusto’s (1999) algorithm applies the average and average-median to 

interpolate the missing areas by using the neighbouring blocks edge information and 

the proposed method’s outcome is over by a significant 6.69 dB. Global edge-guided 

interpolation achieves a PSNR improvement against the POCS-based recovery by 

Sun & Kwok (1995) of 5.24 dB. Shirani, Kossentini, & Ward (2000) employ inter-

block correlation interpolation by using eight weights and linear interpolation to 

achieve a better result in on diagonal-edge restoration, but this method is also down 

by 3.91 dB when compared to the proposed method. Hemami & Meng’s (1995) 

technique involves finding four weights rather than eight and has a similar result to 

Shirani’s algorithm, yielding 3.79 dB less than with the proposed method. The DCT 

transformation is used by Alkachouh & Bellanger (2000) to restore the missing 

block after DCT, with the high frequency coefficients being set to zero and then the 

inverse DCT carries out the interpolation, but still the performance of the proposed 

method is 3.48 dB higher. Park et al. (2005) developed an algorithm using the 

method of alternating projection, which is based on orthogonal projections onto 

constraint sets in Hilbert space. It can achieve better outcomes when compared with 

the previous methods, but the global edge-guided interpolation performance is above 

this by 1.51 dB. The last method in this section is that of Kim, Koo & Jeong (2006), 

which employs fine directional interpolation by using a spatial directional vector and 
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achieves the best result out of all of the extant techniques, but this is still lower than 

the global edge-guided interpolation method by 0.79 dB.  

Additionally, the global edge-guided interpolation also improved the result of local 

edge-guided interpolation and moreover, it can be seen that the Canny filter performs 

better than the Sobel filter, as it expected from the literature.  

Table 5.VII demonstrates the PSNR values taken from Li & Orchard (2002), Zhao et 

al. (2005) and Zhai et al. (2010) directly and calculated on the region of the missing 

sample blocks only. The outcomes show that the proposed DCT Canny achieves a 

higher result compared with the DCT Sobel method by 1.72 dB. The methods for 

comparison of average performance on thirteen published works in the Canny case 

are as follows. 
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Figure 5.21: From left to right, the original images, the image with 25% missing 

MBs and the restored images for Lena, Peppers, Man and Foreman. 
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Agrafiotis, Bull & Canagarajah’s (2006) method represented the worst performance 

and the current proposed method achieves an improvement of 6.81 dB over theirs. Li 

& Orchard (2002) introduced sequential error-concealment, such that the previously 

recovered pixels can be used in the recovery process afterwards, but compared with 

global edge-guided interpolation the outcome is less by 1.53 dB. Jung, Chang & Lee 

(1994), Park et al. (2005) and Zhao et al. (2005) obtain   almost  similar  results,  

such that the proposed method is better by 3.44 dB, 3.78 dB and 2.85 dB, 

respectively. Zeng & Liu (1995) made use of the local geometric information 

extracted from the surrounding blocks to interpolate the missing pixels and their 

PSNR outcome was 2.35 dB lower than for the proposed method. The rest of 

techniques have approximately the same results, ranging from Alkachouh & 

Bellanger (2000) at 24.00 dB to Hsia (2004) at 25.14 dB, but the global edge-guided 

interpolation provides a higher outcome when compared to theirs. The best 

performance among all the compared methods belongs to Zhai et al. (2010) at 28.51 

dB, who employed a Bayesian and multi-scale estimation approach with DCT and 

yet, the proposed method can also improve this result by 1.27 dB. 

Table 5.VII: Performance comparisons for MB loss rate of 25%, MB size= 8×8, 

PSNR calculated just for the region of the missing blocks for Lena: Proposed 1, with 

the Sobel filter and Proposed 2, with the Canny filter. 

 Methods 
Image Lena 

 Methods 
Image Lena 

PSNR (dB) PSNR (dB) 

Zhai et al. (2010) 28.51 Zhao et al. (2005) 26.93 

Agrafiotis, Bull & 

Canagarajah (2006) 
22.97 

Hsia (2004) 25.14 

Sun & Kwok (1995) 24.70 

Park et al. (2005) 26.00 
Shirani, Kossentini, & 

Ward (2000) 24.50 

Zhai et al. (2008) 28.11 Zeng & Liu (1995) 27.43 

Li & Orchard (2002) 28.25 
Alkachouh & Bellanger 

(2000) 
24.00 

Jung, Chang & Lee 

(1994) 
26.34 DCT Sobel 28.06  

Wang, Zhu & Shaw 

(1993) 
24.70 DCT Canny 29.78 
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Table 5.VIII demonstrates the PSNRs values taken from Liu et al. (2015) directly 

and were calculated over whole image for Lena. The outcomes show that the 

proposed DCT Canny achieves a highest result among all the published works. 

Table 5.VIII: Performance comparisons for MB loss rate of 25%, MB size= 8×8, 

PSNR calculated over whole image for Lena with the Canny filter. 

Methods 
Image Lena 

 Methods 
Image Lena 

PSNR (dB) PSNR (dB) 

Sun & Kwok (1995) 29.99 Park et al. (2005) 34.65 

Ancis & Giusto (1999) 28.68 Zhai et al. (2008) 34.45 

Hemami & Meng 

(1995) 
31.86 

Rongfu,  Yuanhua & 

Xiaodong (2004) 
34.07 

Shirani, Kossentini & 

Ward (2000) 
31.69 

Kim, Koo & Jeong 

(2006) 
34.91 

Alkachouh & 

Bellanger (2000) 
31.57 Liu et al. (2015) 35.70 

Varsa, Hannuksela & 

Wang (2001) 
32.05 Kolada et al. (2015) 33.74 

Li & Orchard (2002) 35.70 DCT Canny 36.08 

 

5.3.2.2  Evaluation for 16 × 16 Regular Loss Pattern 

A block loss size of 16 × 16 pixels is also applied to the proposed algorithm for 

further evaluation and a 5-level DCT pyramid is required to implement the proposed 

method. Figure 5.22 demonstrates the subjective performance of the original, 

damaged and reconstructed images. In addition, Table 5.IX shows the PSNR 

comparison between the proposed algorithm and previous works. 

The 16 × 16 isolated block loss is a most challenging case since many rows of 

image blocks are entirely lost. Table 5.IX contains an objective comparison between 

the global edge guided interpolation method and six published works on the Lena 

and Peppers images. The outcomes show an improvement of global edge-guided 

over the local edge-guided interpolation by 2.32 dB and the Sobel edge-guided 

interpolation is not as effective as the Canny edge-guided interpolation. From the 
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simulation results, the average for the proposed DCT edge-guided scheme has 

superior PSNR over all six published works of Salama, Shroff & Delp (1998), by 

3.37 dB, Wang, Zhu & Shaw, (1993) by 2.98 dB, Sun & Kwok (1995) by 4.15 dB, 

Park et al. (2005), by 2.49 dB, Li & Orchard (2002) by 0.36 dB and Kim, Koo & 

Jeong (2006) by 0.07 dB. 

Table 5.IX: Performance comparisons for MB loss size = 16×16, PSNR calculated 

over whole image on Lena and Peppers: with the DCT Sobel and DCT Canny filters. 

Methods 
PSNR (dB) 

Lena Peppers Average 

Salama (Salama, Shroff & Delp, 1998) 35.01 34.71 34.86 

Wang (Wang, Zhu & Shaw, 1993) 35.43 35.07 35.25 

Sun (Sun & Kwok, 1995) 34.95 33.21 34.08 

Park (Park et al. 2005) 35.98 35.50 35.74 

Li (Li & Orchard, 2002) 37.48 38.27 37.87 

Kim (Kim, Koo & Jeong, 2006) 37.37 38.95 38.16 

Sobel Edge-guided 37.48 38.82 38.15 

DCT Edge-guided 37.57 38.91 38.23 

5.3.2.3  Evaluation for 8 × 8 Random Loss Pattern  

The random loss pattern involves missing macro blocks in random positions that 

may include a random sequence of adjacent horizontal and/or vertical losses. In 

order to evaluate the performance result for the random block loss, the proposed 

method is applied to the Lena, Peppers, Man and Foreman images, degraded with 

random block loss, as shown in Figure 5.23. The positions of the missing macro 

blocks are random and distinct in each evaluation test, therefore the program is 

applied in a number of iterations to find the mean PSNR distortion, and the number 

of iterations is set to a value of ten for this part (Table 5.X), as explained in 

subsection 5.2.3.2. Then, the results are compared with several published methods, 

and Table 5.XI includes those published techniques that are taken from Li & 

Orchard, (2002) and  Zhai et al. (2010) directly. The PSNRs are only for the missing 

pixels and hence, do not include the available samples.   
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Figure 5.22: From left to right, the original images, corrupted images (16×16 isolated 

block loss), the restored images and zoomed in images for Lena, Peppers, Man and 

Foreman (Canny case).  
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Table 5.X: Performance comparisons for random MB loss rate of 10% (MB size = 

8×8) on Lena with ten steps of iteration. 

  Image 

 

Result 

Lena 

1 2 3 4 5 6 7 8 9 10 

PSNR 

(dB) 

33.35 32.84 32.20 32.59 32.83 33.14 33.01 32.67 32.52 32.86 

AVG. 32.80 

As displayed in Table 5.XI, the proposed method performs better than the rest, and 

there is an improvement for the Canny detector by 4.67 dB when compared with the 

best performance among all the prior results. The lowest outcome is that of Zeng & 

Liu (1995), which is 6.20 dB under, what has been achieved here. Zhai et al. (2008) 

proposed two methods, the first, image error concealment via block-based bilateral 

filtering and the second, Bayesian error concealment with a DCT Pyramid (Zhai et 

al., 2010) that does achieve reasonably higher performance at 28.25 dB, but global 

edge-guided surpasses both of these by 5.15 dB and 4.67 dB, respectively.  Finally, 

Li & Orchard (2002) presented sequential error-concealment, whereby previously 

recovered pixels are used in the recovery process afterwards and compared to the 

current method it has a lower PSNR by 5.42 dB. It can be seen that the Sobel filter 

cannot provide competitive results for the proposed method appearing to be inferior 

to nearly all the other methods.  

Table 5.XI: Performance comparisons for a random MB loss rate of 10%, MB   size 

= 8×8, PSNR calculated just for the region of missing MBs for Lena: Proposed 1, 

with the Sobel filter and Proposed 2, with the Canny filter. 

Methods 
Image Lena 

PSNR (dB) 

Zhai et al. (2010) 28.13 

Zhai et al. (2008) 27.65 

Zeng & Liu (1995) 26.60 

Li & Orchard (2002) 27.38 

DCT Sobel 30.76 

DCT Canny 32.80 
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Figure 5.23: From left to right; the original Lena, Peppers, Man and Foreman 

images, the image with 10% random missing MBs and the restored image. 
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The proposed method was tested with a high missing macro blocks rate of 40%, size 

(8 × 8). Figure 5.24 shows the performance on Peppers, and the outcome has clearly 

improved the user experience, compared with the corrupted image. 

 
Figure 5.24: From left to right; the original Peppers image, the image with 40% 

random missing MBs and the restored image. 

 

Figure 5.25: Top: from left to right, the original Lena and the image with 25% 

regular missing MBs (8×8). Bottom: from left to right, the reconstructed image with 

local edge-guided interpolation and global edge-guided interpolation. 
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Figure 5.25 clearly shows that the global edge-guided interpolation achieves better 

results, especially around the main edges, when compared with local edge-guided 

interpolation as well as the various published methods, which have been reported on 

in the previous sections.  

 
Figure 5.26: From left to right, the original image, corrupted image (8×8 isolated 

block loss) and the restored image for my own picture, PSNR at 36.60 dB. 

 

Figure 5.27: From left to right, the original image, corrupted image (16×16 isolated 

block loss) and the restored image for Dolat-Abad Garden, Yazd, Iran. 

In addition the proposed algorithm has been tested on some miscellaneous images, 

which have been taken by the researcher (Figure 5.26 and Figure 5.27).  

Figure 5.28 illustrates the performance comparison between the proposed method 

and six published works on the Man image. The outcome shows that the proposed 

method improved the result by 1.69 dB compared with the best performance among 

all the above mentioned methods.  
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Figure 5.28: Experiment on a lost block size of 8×8 pixels of the “Man” image. (a) 

Original image 512×512, (b) damaged image of one missing block out of every four. 

Restoration using the methods of (c) Ancis and Giusto (PSNR = 25:47 dB), (d) Sun 

and Kwok (PSNR = 27:25 dB), (e) Hemami and Meng (PSNR = 27:65 dB), (f) 

Shirani et al. (PSNR = 27:44 dB),  (g) Alkachouh and Bellanger (PSNR = 27:94 dB), 

(h) Park et al. (PSNR = 29:87 dB), (i) proposed method (31.56 dB). 

(i) 



154 | P a g e  
 

5.4  Conclusion 

In this chapter, an image gap restoration method with application to packet loss 

concealment in networks, where image MB may be lost due to congestion or signal 

fading has been evaluated. The main contributions of the work are the inclusion of 

local and global edge enhancement strategies within a pyramid DCT image 

processing framework. The proposed algorithm includes a combination of multi-

resolution transforms, directional interpolation and edge-guided enhancement 

capable of restoring missing MBs including the edges. The experimental results 

demonstrate that significant improvement in the quality and PSNR of the restored 

images are obtained by the proposed edge-guided image restoration method.  

Moreover, this chapter presents improvements in the image gap restoration of 

chapter four through incorporation of edge-based directional interpolation within a 

multi-scale pyramid transform. Two types of image edges have been reconstructed: 

(a) the local edges or textures inferred from the gradients of the neighbouring pixels 

and (b) the global edges or boundaries between image objects or segments, inferred 

using different types of edge detector applications.  Through a process of pyramid 

transformation and down-sampling, the image has been transformed into a series of 

progressively reduced size layers until at the pyramid apex the gap size is one 

sample. The process is then reversed and at each stage, the missing samples are 

estimated, up-sampled and combined with the available samples.  

The DCT pyramid has been used for comparison with published works and 

evaluations over a range of images have demonstrated the proposed method provides 

a better PSNR. In addition, it has been concluded that the Canny edge detector 

improve the interpolation compared with the Sobel edge detector.  

It has been observed from the performances of various different methods of 

interpolation for an MB loss rate of 25% and MB size of 8 × 8 on well-known test 

images, where the PSNR was calculated for the whole image, that the DCT Canny 

edge detector offers the best average result (at 34.40 dB). The same outcomes are 

obtained in the case of random an MB loss rate of 10% and a regular MB loss rate of 

size 16 × 16, being 32.80 dB and 38.23 dB respectively. Moreover, the results 
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surpass those achieved in Chapter 4. Further work in the next chapter involves the 

use of complex wavelets instead of DCT for pyramid decomposition. 
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Chapter 6  

6. Multi-scale Edge-Guided Wavelet 

Image Gap Restoration 
 

6.1 Introduction 

Wavelet theory naturally lends itself to pyramid decomposition and reconstruction. 

In this chapter, a novel multi-scale pyramid method using wavelet transform is 

proposed as an alternative to DCT-pyramid image gap reconstruction, as described in 

Chapter 5. The wavelet pyramid incorporates, as an alternative to a DCT-pyramid, 

conventional and edge-guided interpolation.  The results are compared with those of 

DCT-pyramid interpolation in relation their capacities for filling the corrupted 

regions in damaged images.   

Through a process of wavelet pyramid transformation, the image is transformed into 

a series of progressively reduced size layers in two separate parts, approximation or 

low-pass components and details or high-pass components, until at the pyramid 

apex, where the gap size is reduced to one sample. The process is then reversed; at 

each stage, the missing samples are inferred using estimates, which may be a 

combination of the local, global edges and also restored details information that is 

then up-sampled and combined with the available uncorrupted samples. 

There are two main benefits of this combination. First, the pyramid method starts 

interpolation from the smaller damaged macro block size, which makes it easier to 

replace the missing parts. Second, wavelet transformation keeps the processes of 

high and low pass information separate (Padmavathi , Priyalakshmi & Soman, 

2012).  
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In order to replace missing regions of the image with the help of surrounding pixel 

information that is already present in the original image, the process for wavelet 

based edge guided interpolation is in the main the same as the DCT based edge-

guided interpolation technique. The same methods of interpolation are applied to the 

approximation section of the damaged image and in addition to that by using the 

wavelet transform, the values of three details parts (vertical, horizontal and diagonal) 

are ascertained. Then, these details parts are restored in the missing parts by using 

the available uncorrupted information. Finally, the two results are combined in order 

to achieve the result, and it is found that the outcome of the process is improved and 

more efficient compared with previous published works. There are two possible 

alternative approaches to the wavelet pyramid: 

(1) Wavelet decomposition and re-composition of the whole distorted images; 

(2) Wavelet decomposition and re-composition of macro block segmented 

images. 

These will be considered in detail next.  

6.2 Wavelet Analysis-Synthesis of Distorted Images 

Wavelet transformation is one of the main techniques for time-frequency signal 

transformations. Discrete wavelet transform (DWT) is used in this method as it can 

analyse the signal with various resolutions at different frequency bands by a simple 

procedure, as it decompose/separates the original signal into two parts, 

approximation and details, thus allowing independent analysis of the coefficients at 

different scales (Maxim & Zakharova, 2012). 

6.2.1 Components of Wavelet Decomposition; Approximation and 

Details  

An example of image decomposition is shown in Figure 6.1 for Lena (512×512) with 

a  block loss size of 8×8, and is decomposed into four quadrants with different 

interpretations (HH, HL, LH and LL).  
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Figure 6.1: Components of wavelet decomposition; approximation and details for 

lossy Lena (block loss size = 8×8), in 256×256, 128×128 and 64×64. 
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The successive application of two-dimensional DWT leads to a decomposition of 

approximation coefficients at level 𝑗 in four components: the approximation at level 

𝑗 +  1, and the details in  three orientations  (horizontal, vertical, and diagonal) that 

are related mostly to image edges.  It can be seen in Figure 6.1, top, that the two-

dimensional wavelet decomposition computes the approximation coefficients matrix 

cA and details coefficients matrices cH, cV, and cD (horizontal, vertical, and 

diagonal, respectively), obtained by wavelet decomposition of the input image. 

6.2.2 Types of Wavelength Applicable to the Gap Restoration Problem 

The characteristics of the signal/image and also the nature of the application 

influence the selection of the type of wavelet. Consequently, a good understanding of 

the attributes of the analysis and wavelet can lead to the choice of one that is optimal 

for each application. As discussed in chapter 3, there are a large number of wavelets 

that can be used for both discrete and continuous analysis. Morlet, Meyer, derivative 

of a Gaussian and Paul wavelets are examples of the continuous, whereas orthogonal 

form, such as Daubechies and B-spline bi-orthogonal wavelets are discrete forms 

that are suitable for the proposed method. One of the important features that aids 

image restoration is multi-resolution analysis. However, it needs to be noted that all 

of the discrete wavelets cannot offer multi-resolution analysis and a Journe wavelet 

is one of these. 

Two methods of wavelet processing will be investigated, one for the whole distorted 

image and the second for macro block segmented images. 

6.2.2.1 Wavelet Analysis-Synthesis over the Whole Distorted Images 

 

Table 6.I illustrates the performance of nine different types of wavelets and their 

applications for the restoration of Lena with 25% missing macro blocks and Figure 

6.2 shows the visual results of restoration for each wavelet form.  It can be seen from 

both Table 6.I and Figure 6.2 that the best performances among all the compared 

methods are db1 and bior1.1 at 35.72 dB, thus these can be used as wavelet 

transforms in the whole distorted images interpolation method. The next five 
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methods dmey, sym2, bior2.2, rbio5.5 and db2 have PSNRs of 10.83 dB, 9.32 dB, 

8.8 dB, 5.06 dB and 7.88 dB lower than the best methods, respectively. Coif5 has the 

worst outcome (22.59 dB) compared with db1, performing 13.13 dB below it. 

Figure 6.2 shows some of the performance results for certain wavelet types. In order 

to investigate this performance, the wfilters ('wname') command is used in Matlab to 

make comparisons for all nine methods in Table 6.I. Generally, wfilters ('wname') 

compute two pairs of filters, first low-pass, high-pass decomposition filters 

(LoD,HiD), and then second,  low-pass, high-pass reconstruction filters (LoR,HiR), 

which are associated with the orthogonal or bi-orthogonal wavelet, named in the 

string 'wname'. Thus, each filter includes its own returns coefficient approximations. 

Table 6.II shows the number and the values of the coefficients for each filter within 

wavelet type. It can be seen from Table 6.I and Table 6.II that the best results for the 

proposed algorithm are the ones that have a short length of only two values. During 

pyramid decomposition, longer length wavelets tend to smear (mix) the boundaries 

of the distorted regions into those of the undistorted ones at successive levels of 

decomposition and hence, cause degradation of the overall results. 

Table 6.I: Performance comparisons using different wavelet types for MB loss size  

(8×8), PSNR over the whole image for Lena, with a missing data rate of 25%. 

Wavelets 

 

Lena 

 

coif5 

 

Dmey 

 

sym2 

 

bior1.1 

 

bior2.2 

PSNR (dB) 22.59 24.89 26.40 36.12 26.96 

SSIM 0.7386 0.7974 0.8154 0.9666 0.8377 

  Wavelets 

 

Lena 

 

rbio1.1 

 

rbio5.5 

 

db1 

 

db2 

PSNR (dB) 36.12 30.66 36.12 27.84 

SSIM 0.9666 0.9269 0.9668 0.8425 
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Figure 6.2: Performance comparisons using nine different wavelet types for                         

the whole distorted Lena (macro block loss size = 8×8). 

6.2.2.2 Wavelet Analysis-Synthesis over Macro-Blocks of Distorted 

Images 

To overcome the degradation of the overall results when using the higher length 

wavelets, which have presented in Table 6.I and Table 6.II, macro block 

segmentation is applied to the image. Regarding this method, the wavelet is applied 

to each macro block separately. As a result, distorted regions are not combined with 

undistorted ones at successive levels of decomposition and hence, the overall 

outcomes are improved. The results for this are shown in Table 6.III. 
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Table 6.II: Performance comparisons using nine different wavelet types, showing the 

number of coefficients in the decomposition low-pass filter (Lo_D) part on Lena                                    

for a macro block loss size = 8×8.(y-axis : coefficients number , x-axis : values). 

 

Wavelets 

Type 

 

Wavelet Coefficient  Sequence 

coif5 

 

Dmey 

 

sym2 -0.1294    0.2241    0.8365    0.4830 

bior1.1 0.7071    0.7071 

bior2.2 0   -0.1768    0.3536    1.0607    0.3536   -0.1768 

rbio1.1 0.7071    0.7071 

rbio5.5 

 

db1 0.7071    0.7071 

db2 -0.1294    0.2241    0.8365    0.4830 
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Figure 6.3: Performance comparisons using nine different wavelet types for                            

the macro block segmented distorted Lena (macro block loss size = 8×8), distortion 

pattern = regular, distortion rate = 25%. 

Nine different types of wavelets and their applications to the restoration of macro-

block segmented Lena with 25% missing macro blocks is shown in Table 6.III. The 

following six methods achieved higher results compared with outcomes of the whole 

distorted image, namely, coif5, dmey, sym2, bior2.2,  rbio5.5 and db2.Their PSNRs 

are 11.83 dB, 10.55 dB, 9.43 dB, 8.71 dB, 3.44 dB and 7.99 dB higher than the 

previous results, respectively. Figure 6.3 shows the visual results of the restoration 

for each wavelet form.   

It can be seen from both Figure 6.3 and Tables 6.III, that although the performances 

of higher length wavelets are improved with the use of macro-block segments, the 

best results still belong to db1 and bior1.1 at 36.12 dB. Thus, in this chapter, the db1 

Sym2Coif5 dmey

bior1.1 bior2.2 rbio1.1

rbio5.5 db2db1
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wavelet is used as the transform in both interpolation approaches over the whole 

distorted images and over the macro block segmented images, in order to achieve the 

best outcome.  

Table 6.III: Performance comparisons using different wavelet types for MB loss 25% 

(MB size= 8×8), PSNR calculated over the macro-block segmented image on Lena. 

      Wavelets 

 

Lena 

 

coif5 

 

Dmey 

 

sym2 

 

bior1.1 

 

bior2.2 

PSNR (dB) 34.42 35.44 35.83 36.12 35.67 

SSIM 0.9620 0.9683 0.9691 0.9702 0.9688 

     Wavelets 

 

Lena 

 

rbio1.1 

 

rbio5.5 

 

db1 

 

db2 

PSNR (dB) 36.12 34.10 36.12 35.83 

SSIM 0.9702 0.9652 0.9702 0.9691 

 

6.2.2.3 Daubechies db1 (Haar) wavelet 

Since the Daubechies db1 wavelet is that of choice for this work, it is explained in 

some further detail. This wavelet, also known as the Haar wavelet, is the only 

orthogonal wavelet with a linear phase. Linear phase refers to it having a filter with 

all of its frequency components having proportional phase change that are shifted 

over time by the same constant amount. The mother wavelet function 𝜓 and the 

scaling function Ø of db1 are illustrated in Equations 6.1 and 6.2: 

𝜓(𝑡) = {
          1          𝑖𝑓            0 ≤ 𝑡 < 1/2,      

−1         𝑖𝑓            1/2 ≤ 𝑡 < 1,
0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                        (6.1) 

∅(𝑡) = {
1     𝑖𝑓      0 ≤ 𝑡 < 1,
0     𝑖𝑓    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                        (6.2)                              
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Figure 6.4 demonstrates the scaling function and wavelet function for the db1 

wavelet. 

 

Figure 6.4: The scaling function and wavelet for Daubechies' wavelet (db1). 

 

Figure 6.5: Impulse responses (left) and frequency responses (right) of the 

decomposition and reconstruction filters for the db1 bi-orthogonal wavelet. 

The impulse response and the frequency response of the decomposition and 

reconstruction filters are plotted in Figure 6.5. As shown, each filter stage is 

composed of a low-pass filter and its quadrature mirror image high pass filter. 
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6.3 Wavelet Reconstruction of Distorted Images – 

Conventional vs Edge-Guided Interpolation 
 

6.3.1 Conventional (non-edge-based) Interpolation 

Tables 6.IV and 6.V show the results when two simple conventional methods, 

namely, median and mean, are solely utilised as estimators for missing pixels at the 

apex of a wavelet coefficient pyramid. While the mean estimate does not include any 

edge information the median estimate has a measure of edge preservation built in. 

Although the median estimator achieves the higher result in comparison with the 

mean method (as it includes edge information in the estimation of the missing pixel), 

it is not still sufficient and hence, a more advanced process is necessary to improve 

the outcome.  

Table 6.IV: Performance comparisons for an MB loss rate of 25% (MB size = 8×8) 

on Lena, Man, Peppers, Boat and Elaine with a mean estimator at the apex. 

Performance 

measure 

Images 

Lena Man Peppers Boat Elaine Average 

PSNR (dB) 29.05 27.62 29.99 27.52 30.29 28.89 

 
 

Table 6.V: Performance comparisons for an MB loss rate of 25% (MB size = 8×8) 
on Lena, Man, Peppers, Boat and Elaine with a median estimator at the apex. 

Performance 

measure 

Images 

Lena Man Peppers Boat Elaine Average 

PSNR (dB) 29.47 27.72 30.46 27.79 30.40 29.16 

 

6.3.2 Edge-Guided Interpolation 

Figure 6.6 illustrates the method in the case when local edge guided information is 

added to the previous technique. As observed in Figure 6.7 and also in section 5.4, 
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preserving the local edges mitigates blurring distortions of textures and provides 

improved interpolation at the local texture level, in particular, at the boundaries of 

the available and missing samples.  

Thus, local edge guided interpolation is used in the approximation part in two steps. 

First, it is applied to the apex of the multi-scale pyramid with the size of the missing 

block being reduced to one, as explained in 5.2.1. Second, after interpolation of the 

apex sample, local edge guided interpolation is utilised for the subsequent stages for 

blocks of size 𝑁 ×𝑁. Starting from the outer boundaries of the macro block, the 

missing pixels are progressively replaced towards the centre by utilising the 

surrounding available pixels edges in the horizontal, vertical and cross directions, the 

equation regarding this is explained in 5.2.2. 

 

Figure 6.6: Diagram of the process of local-edge guided wavelet interpolation. 

Figure 6.7 shows that using the local edge information is not sufficient to obtain a 

satisfactory result, especially around the edges, such as in the areas pointed at by red 

arrows.  

MB
Enhanced

Image

Edge-guided
Interpolation

IDWT

1:2

Merge

MergeIDWT

Merge

1:2

1:2

Enhanced
Image

2D-DWT

LL LH

HL HH

Up-sample

Local Edge
detector

Local Edge
detector

Local Edge
detector

Local Edge
detector

Edge-guided
Interpolation

Edge-guided
Interpolation

Edge-guided
Enhancement

D-Interp

8 × 8

4 × 4

2 × 2

1×1

2×2

8 × 8

1×1

2×2

4×4
4×4



169 | P a g e  
 

 

Figure 6.7: From left to right, the original image, the image with 25% MB loss (8×8 

isolated block loss) and the restored image for Lena with local-edge guided wavelet 

interpolation. 

For further improvement where the missing blocks contain significant edges, such as 

major boundaries between segments and objects, the global edge information, not 

necessarily evident within the lost macro blocks, needs to be utilised separately for 

all four coefficient sections (approximation and three details parts). The process is as 

follows: 

1) Decompose the image into a wavelet pyramid structure and the result 

includes four sections: one approximation and three details coefficient parts. 

The apex of the pyramid represents the last stage of down-sampling (where 

each macro block of size 8 × 8 is reduced to only one pixel after three 

stages, and for an macro bloock of size 16 × 16 is reduced to only one pixel 

after four stages); 

2) Starting from the apex of the wavelet pyramid in the approximation part, 

interpolate the decimated (down-sampled) gap using the local edge 

information from the neighbouring pixel, as described in section 5.2; 

3) Using a Canny edge detector, track the global edges in the interpolated 

images; 

4) Enhance the interpolated gap estimation using the global edge information; 

5) Starting from the apex of the wavelet pyramid in the three details parts, 

separately interpolate the decimated (down-sampled) gap using the local 

edge information from the neighbouring pixel; 
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6) Combine the two outcomes from stages four and five; 

7) Up-sample the enhanced interpolated image via a zero-padded inverse 2D-

wavelet and combine/merge with the available received samples of the same 

layer of up-sampling; 

8) Go to step (1) and repeat the process for each intermediate stage of up-

sampling; 

9) In the last stage of up-sampling the number of iterations in step (3) and step 

(4) is used to improve the result further.  

The details of these sub-processes are illustrated in Figure 6.8. 

 

Figure 6.8: Diagram showing the process of local, global edge-guided interpolation 

for the coefficients parts, which is followed by the addition of the restored details 

part (D-Interp = Directional Interpolation). 

A substantial improvement is shown in Figure 6.9 compared to Figure 6.7 after using 

the global edge guided interpolation; the main edges are recovered and the overall 

image enhancement quality is improved. 
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Figure 6.9: From left to right, the original Lena, Lena with 25% macro block loss 

(8×8) and restored Lena with global edge guided interpolation. 

6.3.2.1 Wavelets and Edge Information 

The main cause of substantial interpolation errors and visible distortions in image 

restoration comes from the wrong interpolation across the significant edges. To 

avoid or mitigate the problem of blurred/smeared interpolation, global edge 

interpolation is applied to the approximation and details parts, singly.  

First: the Canny edge detector is applied to the coefficient part (cA), and an edge-

based segmentation of an image into two broadly homogenous-texture areas is 

provided. Figure 6.10 shows the application of a Canny detector to a multi-scale 

wavelet Lena with the image scale progressively down-sampled by 2:1, in three 

stages, from size 512×512 to 64×64. Then, the outcome can be used as a guide to 

enhance the result from the previous section based on equations presented in 5.3.1. 

 
Figure 6.10: Canny edge detector for a multi-scale wavelet on Lena at scales, from 

left to right: (a) 512
2
; (b) 256

2
; (c) 128

2
; and (d) 64

2
. 

(a) (b) (c) (d)
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Second: details in three orientations, cH, cV, and cD (horizontal, vertical, and 

diagonal), which relate mostly to image edges, are utilised. Figure 6.11 illustrates a 

block diagram of the three-stage wavelet pyramid image decomposition and its 

application to the Lena image for a missing block size of 8×8. It shows that the 

details coefficients cH, cV, and cD provide advantageous edge information.  

As details coefficients matrices cH, cV, and cD are affected by missing pixels, a 

restoration process needs to be applied to this information before using it. Figure 

6.12 clearly demonstrates improvement in the details coefficients matrices cH, cV, 

and cD after performing this restoration process. Subsequently, the image 

information can be combined with the rest of the repaired available data, namely cA.  

 

Figure 6.11: Block diagram of the three-stage wavelet pyramid image decomposition 

on the Lena image for missing block size of 8×8. 

512 × 512 256 × 256 128 × 128 64 × 64
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Figure 6.12: (a) affected coefficients matrices, cV, cH, and cD by missing pixels 

(8×8); and (b) the restored cV, cH and cD on Lena. 

a) Iterative Estimation of Edges and Approximation Coefficients 

The iterative method produces a gain in PSNR. It starts the process by using a high 

level of Canny edge details at the first iteration, and then continues the process by 

reducing the amount of these details as a guide for the interpolation. 

 

Figure 6.13: Performance comparisons with twenty iterations for a macro block loss 

rate of 25% (8×8) on Lena for the last stage of reconstruction of the cA coefficient 

part. 
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Figure 6.13 shows the PSNR values obtained from twenty steps of iteration on Lena 

for a macro block loss rate of 25% (8×8), and the increase from the first to the fourth 

stage is from 35.74 dB to 36.12 dB. Subsequently, it is observed that for further 

iterations the amount of PSNR stays constant and hence, the number is set to four for 

this method. Figure 6.14 demonstrates four stages of iteration on Lena. 

 

Figure 6.14: Four stages of iteration for Lena starting from the left (first stage) and 

finishing on the right (fourth stage). 

6.3.2.2 Threshold Details Coefficients-Enhanced Image 

It can be seen in Figure 6.12 that there is some unnecessary information in all the 

details coefficients. Those redundant data might cause false recovery in the restored 

image and therefore, it is essential to remove them. The designed method for this 

tries to keep wavelet coefficients that include good image information and eliminate 

the rest. Hard-thresholding is used in the proposed algorithm by checking each pixel 

intensity in all three details parts and it sets any coefficient less than or equal to the 

threshold of zero (Equation 6.3). Figure 6.15 shows graphs of both the original and 

discarded wavelet coefficients after applying hard-thresholding. 

𝑐𝑜𝑖𝑓(𝑖) =  {
𝑐𝑜𝑖𝑓(𝑖)      𝑖𝑓 𝑐𝑜𝑖𝑓(𝑖) > 𝜃𝑡ℎ𝑟𝑒𝑠ℎ 

0                 𝑖𝑓 𝑐𝑜𝑖𝑓(𝑖) ≤ 𝜃𝑡ℎ𝑟𝑒𝑠ℎ
                               (6.3) 

where, 𝑐𝑜𝑖𝑓(𝑖), represents each pixel in the coefficients matrices cH, cV and cD. 
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Figure 6.15: (a) original graphs of cA, cH, cV and cD; and (b) graphs of cA, cH, cV 

and cD after threshholding. 

 

Figure 6.16: (a) original Lena; (b) Lena with 25% macro block loss (8×8); (c) Lena 

with macro block loss (16×16); and (d) Lena with 10% random MB loss (8×8). 
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6.4 Evaluation for Regular Loss Pattern  

For performance evaluation results, the proposed algorithm has been tested on the 

same data as in section 5.2.3. The sizes of the missing blocks were set to 8×8 and 

16×16 pixels and five types of these were evaluated: regular missing macro block at 

25% loss rate, regular missing macro block at 16×16, random missing macro block 

with the loss rate set to 10% (Figure 6.16) and also random missing macro block 

with the loss rate set to 25% and 40% (Figure 6.20). The choice of the percentage 

loss was guided by the desire to compare the results with those reported in the 

literature. The performance measurement criteria used for assessment of the quality 

of image recovery are same as in the previous chapters: Peak-Signal-to-Noise-Ratio 

(PSNR). 

6.4.1  Regular Loss Pattern 8×8 Missing Block 

In this subsection, experimental results are reported that show the performance of 

regular loss pattern with a missing block size of 8×8 and with the number of inner 

iterations set to four for the cA coefficient part at the last stage of up-sampling. 

There are two ways of calculating PSNR employed: the case when it is solely 

computed over the whole image and that where it is calculated just for the missing 

parts region.  

Figure 6.17 demonstrates the original, erroneous and reconstructed images after 

applying the proposed error concealment method and it can be seen that the result is 

not blurry, with the shape having been recovered correctly. The results of this 

experiment are given in Table 6.VI when the PSNR is calculated over the whole 

image and it is observed that the propose method produces the best PSNR at 34.31 

dB compared to seven previously published methods. In addition, the global edge-

guided interpolation has improved upon the result of the local edge-guided 

interpolation. 
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Table 6.VI: Performance comparisons for MB loss rate 25%, MB size=8×8, PSNR 

calculated over the whole image, with the canny filter. 

Methods 
PSNR (dB) 

Lena Man Peppers Boat Elaine Average 

Ancis & Giusto 

(1999) 
28.68 25.47 27.92 26.33 29.84 27.65 

Sun & Kwok 

(1995) 
29.99 27.25 29.97 27.36 30.95 29.10 

Shirani, 

Kossentini & 

Ward (2000) 

31.69 27.44 31.72 29.22 32.10 30.43 

Hemami & 

Meng (1995) 
31.86 27.65 31.83 29.36 32.07 30.55 

Alkachouh & 

Bellanger (2000) 
31.57 27.94 32.76 30.11 31.92 30.86 

Park et al. 

(2005) 
34.65 29.87 34.20 30.78 34.63 32.83 

Kim, Koo & 

Jeong (2006) 
34.91 30.62 35.18 31.40 35.63 33.55 

Wavelet  

Canny 

Edge-guided 

36.12 31.61 36.35 31.79 36.13 34.40 

Ancis & Giusto’s (1999) algorithm applies the average and average-median to 

interpolate the missing areas by using the neighbouring blocks edge information and 

the proposed method’s outcome is over by a significant 6.75 dB. Proposed wavelet 

edge-guided interpolation achieves a PSNR improvement against the POCS-based 

recovery by Sun & Kwok (1995) of 5.30 dB. Shirani, Kossentini, & Ward (2000) 

employ inter-block correlation interpolation by using eight weights and linear 

interpolation to achieve a better result in on diagonal-edge restoration, but this 

method is also down by 3.97 dB when compared to the proposed method. Hemami 

& Meng’s (1995) technique involves finding four weights rather than eight and has a 

similar result to Shirani’s algorithm, yielding 3.85 dB less than with the proposed 

method. The DCT transformation is used by Alkachouh & Bellanger (2000) to 
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restore the missing block after DCT, with the high frequency coefficients being set to 

zero and then the inverse DCT carries out the interpolation, but still the performance 

of the proposed wavelet method is 3.54 dB higher. Park et al. (2005) developed an 

algorithm using the method of alternating projection, which is based on orthogonal 

projections onto constraint sets in Hilbert space. It can achieve better outcomes when 

compared with the previous methods, but the wavelet edge-guided interpolation 

performance is above this by 1.57 dB. The last method in this section is that of Kim, 

Koo & Jeong (2006), which employs fine directional interpolation by using a spatial 

directional vector and achieves the best result out of all of the extant techniques, but 

this is still lower than the wavelet edge-guided interpolation method by 0.85 dB.  

The PSNR is also calculated for the region of missing blocks, for a missing block 

loss of 8×8 on Lena. Table 6.VII shows the outcomes for twelve published methods 

with PSNR values taken from Belfiore et al. (2003) and Kim, Koo & Jeong (2006) 

directly and it can be seen that the current proposed method achieves an 

improvement over all of the others.  

Table 6.VII: Performance comparisons for MB loss rate of 25%, MB size= 8×8, 

PSNR calculated just for the region of missing blocks for Lena, with the Canny 

filter. 

Methods 
Image Lena 

 Methods 
Image Lena 

PSNR (dB) PSNR (dB) 

Zhai et al. (2010) 28.51 Zhao et al. (2005) 26.93 

Agrafiotis, Bull & 

Canagarajah (2006) 
22.97 

Hsia (2004) 25.14 

Sun & Kwok (1995) 24.70 

Park et al. (2005) 26.00 Zeng & Liu (1995) 27.43 

Zhai et al. (2008) 28.11 Li & Orchard (2002) 28.25 

Shirani, Kossentini, & 

Ward (2000) 24.50 
Alkachouh & Bellanger 

(2000) 
24.00 

Jung, Chang & Lee 

(1994) 
26.34 Wavelet edge-guided 29.83 

Wang, Zhu & Shaw, 

1993 
24.70 



179 | P a g e  
 

 
Figure 6.17: From left to right, the original images, the image with 25% missing 

MBs and the restored images for Lena, Peppers, Man and Foreman. 
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6.4.2  Regular Loss Pattern 16×16 Missing Block 

A block loss size of 16 × 16 pixels is also applied to the proposed algorithm for 

further evaluation, Figure 6.18 demonstrates the subjective performance on Lena, 

Peppers, Man and Foreman images. In addition, Table 6.VIII shows the PSNR 

comparison between the proposed algorithm and previous works. 

Table 6.VIII: Performance comparisons for MB loss size = 16×16, PSNR calculated 

over the whole image for Lena and Peppers, with the Canny filter. 

Methods 
PSNR (dB) 

Lena Peppers Average 

Salama (Salama, Shroff & Delp, 1998) 35.01 34.71 34.86 

Wang (Wang, Zhu & Shaw, 1993) 35.43 35.07 35.25 

Sun (Sun & Kwok, 1995) 34.95 33.21 34.08 

Park (Park et al. 2005) 35.98 35.50 35.74 

Li (Li & Orchard, 2002) 37.48 38.27 37.87 

Kim (Kim, Koo & Jeong, 2006) 37.37 38.95 38.16 

Wavelet Edge-guided 37.65 38.97 38.31 

Table 6.VIII shows objective comparison between the wavelet edge-guided 

interpolation method and six published works on the Lena and Peppers images. The 

outcomes show an improvement of the wavelet edge-guided method over the DCT 

edge-guided interpolation by 0.08 dB. In addition, it can be observed from the 

simulation results, that the average for the proposed wavelet edge-guided scheme has 

superior PSNR over the published works of Salama, Shroff & Delp (1998) by 3.45 

dB, Wang, Zhu & Shaw (1993) by 3.06 dB, Sun & Kwok (1995) by 4.23 dB, Park et 

al. (2005) by 2.57 dB, Li & Orchard (2002) by 0.44 dB and Kim, Koo & Jeong 

(2006) by 0.15 dB. 
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Figure 6.18: From left to right, the original images, corrupted images (16×16 isolated 

block loss), the restored images and zoomed in images for Lena, Peppers, Man and 

Foreman.  
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Figure 6.19: a) Original Lena image (512×512), b) Corrupted image (16 x 16 block 

loss). Images restored using the methods of (c) Sun & Kwok (PSNR = 34.95 dB), (d) 

Li & Orchard (PSNR = 37.41), (e) Kim, Koo & Jeong (PSNR = 37.37 dB) and (f) 

the proposed method (PSNR = 37.65 dB). 

Figure 6.19 shows the performance comparison between the proposed method and 

three published works on the Lena image. The outcomes demonstrate that the 

proposed method improves the result by 0.28 dB compared with the best 

performance among all the other methods.  

6.5 Evaluation for Random Loss Pattern  

The random loss pattern is the same as in Chapter 5 and includes missing macro 

blocks that could be presented at any random position involving a random sequence 

of adjacent horizontal and/or vertical losses. In order to evaluate the performance 

result for the random block loss, the proposed method is applied to the Lena, 

Peppers, Man and Foreman images, degraded with random block loss, as shown in 

Figure 6.21.  

(a) (c)(b)

(d) (e) (f)
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The positions of the missing macro blocks are random and distinct in each evaluation 

test and therefore, the program is applied for a number of iterations to find the mean 

PSNR distortion, with this number being set to a value of ten for this part, as 

explained in subsection 5.2.3.2. Table 6.IX shows the number of iterations and the 

average for each of the ten values. The results are then compared with several 

published methods, including those for four published techniques that are taken from 

(Li & Orchard, 2002; Zhai et al., 2010) directly along with that for the proposed 

method, being illustrated in Table 6.X. The PSNRs are averaged only for the missing 

pixels and hence, do not include those that are available inside the image. The 

results, after reconstruction, show that proposed method for the current research 

provides a better continuation of the structure across the missing areas. 

Table 6.IX: Performance comparisons for a random MB loss rate of 10% (MB size = 

8×8) on Lena with ten steps of iteration. 

  Image 

 

Result 

Lena 

1 2 3 4 5 6 7 8 9 10 

PSNR 

(dB) 

33.34 32.37 32.75 33.08 33.29 33.44 32.85 33.29 32.98 32.27 

AVG. 

32.96 

As displayed in Table 6.X, the designed method outcome is better than the rest, and 

there is an improvement by 4.83 dB when compared with the best performance 

among all the prior results. The lowest outcome is that of Zeng & Liu (1995) which 

is 6.36 dB under what has been achieved here. Zhai et al. proposed two methods, the 

first being image error concealment via block-based bilateral filtering (Zhai et al., 

2008), and the second, Bayesian error concealment with a DCT Pyramid (Zhai et al., 

2010), which does achieve reasonably higher performance at 28.13 dB, but wavelet   

edge-guided surpasses both of these by 5.31 dB and 4.83 dB, respectively.  Finally, 

Li & Orchard (2002) presented sequential error-concealment, whereby previously 

recovered pixels are used as input for the next stage of the recovery process and 

compared to the currently proposed method it has a lower PSNR of 5.58 dB.       
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Table 6.X: Performance comparisons for a random MB loss rate of 10%, MB size = 

8×8, PSNR calculated just for the region of missing MBs for Lena, with the Canny 

filter. 

Methods 
Image Lena 

PSNR (dB) 

Zhai et al. (2010) 28.13 

Zhai et al. (2008) 27.65 

Zeng & Liu (1995)  26.60 

Li & Orchard (2002) 27.38 

DWT edge-guided   32.96 

The proposed method has been tested with a high level of random missing block, and 

Figure 6.20 shows the results for 25% and 40% random missing blocks on the 

Peppers image. Even though many missing blocks are included in each process, the 

proposed method is able to reconstruct the edges and texture within the image. 

 

Figure 6.20: Top from left to right; the original Peppers, the image with 25% random 

missing MBs and the restored image and bottom the original Peppers, the image with 

40% random missing MBs and the restored image. 
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Figure 6.21: From left to right; the original Lena, Peppers, Man and Foreman 

images, with 10% random missing MBs and the restored images. 
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Figure 6.22: Experiment on a lost block size of 8×8 pixels of the “Man” image. (a) 

Original 512×512 and (b) damaged image of one missing block out of every four. 

Restoration using the methods of (c) Ancis and Giusto (PSNR = 25:47 dB), (d) Sun 

and Kwok (PSNR = 27:25 dB), (e) Hemami and Meng (PSNR = 27:65 dB), (f) 

Shirani et al. (PSNR = 27:44 dB), (g) Alkachouh and Bellanger (PSNR = 27:94 dB), 

(h) Park et al. (PSNR = 29:87 dB) and (i) the proposed method (31.61 dB). 

Figure 6.22 illustrates the performance comparison between the proposed method 

and six published works on the Man image. The outcomes show that the proposed 

method improved the result by 1.74 dB when compared with the best performance 

among all the other methods. In addition, the suggested method is tested on a 

miscellaneous image, added specifically for this research (Figure 6.23). 

(i)
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Figure 6.23: From left to right, original image, corrupted image (8×8 isolated block 
loss) and the restored image for the Dolat-Abad Garden, Yazd, Iran. 

6.6 Run-Time Comparison  

To compare the run time of different EC algorithms, test 512×512 images (Lena, 

Baboon and Elaine) are tested. The averaged run time for different loss pattern is 

presented in Table 6.X. The computation time reported in the table is obtained with 

non-optimized MATLAB implementations with Intel CORE i5, 2.3 GHz CPU and 4 

GB memory.2 We can see that the proposed algorithm is much faster (especially in 

the proposed DCT method) than the recently proposed [Liu et al. (2015), Koloda et 

al., 2013, Li & Orchard, 2002, Koloda, Sanchez & Peinado, 2013] algorithms.  

Table 6.X: Average run time in second comparison for 512×512 images, different 

MB loss rate for Lena, Baboon and Elain. 

Methods 

Run Time (second) 

Regular 

8×8 

Random 

8×8 

Random 

16×16 

Sun & Kwok (1995) 4.82 1.91 2.59 

Varsa, Hannuksela & Wang (2001) 0.10 0.08 0.07 

Zhai et al. (2008) 1.28 0.57 0.59 

Rongfu,  Yuanhua & Xiaodong (2004)  4.59 2.81 9.09 

Koloda et al. (2013) 79.75 29.84 124.68 

Koloda, Sánchez & Peinado (2013) 426.59 170.88 89.16 

Shirani, Kossentini & Ward (2000) 9.05 3.56 3.24 

Li & Orchard (2002) 90.28 33.66 29.44 

Liu et al. (2015) 155.30 63.22 53.30 

Proposed DCT 53.62 43.32 45.71 

Proposed DWT 65.19 56.98 58.13 
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Although the proposed algorithm requires longer time than some methods, its 

advantages over other methods are obvious in terms of objective and subjective 

evaluations, as shown in previous Sections. Experiments show there are slight 

improvements of details in DWT, compared with DCT, but the run time is higher for 

DWT (Table 6.X) as it was expected from previous works. 

6.7 Conclusion 

In this chapter, a novel multi-scale pyramid method using wavelet transform has 

been proposed as an alternative to DCT-pyramid image gap reconstruction. The 

proposed algorithm includes a combination of multi-resolution transforms, 

directional interpolation and edge-guided enhancement capable of restoring missing 

MBs including the edges. The experimental results demonstrate that improvement in 

the quality and PSNR of the restored images are obtained compared with the rest of 

proposed methods and in addition, these results are an improvement on the DCT 

edge-guided interpolation outcomes reported in Chapter 5.  

This chapter has presented improvements in image gap restoration through 

incorporation of edge-based directional interpolation within a multi-scale pyramid 

transform. Which utilise three types of edges (a) the local edges or textures inferred 

from the gradients of the neighbouring pixels, (b) the global edges, or boundaries 

between image objects or segments, inferred using Canny edge detector application 

and (c) restored details information in cV, cH and cD. 

The same methods of interpolation as the DCT based edge guided form are applied 

to the approximation section of the damaged image for wavelet based edge-guided 

interpolation. In addition, using the wavelet transform the values of three details 

parts (vertical, horizontal and diagonal) are represented and restored in the missing 

parts by using the available uncorrupted information. Finally, the two results are 

combined in order to achieve the final result, and it is found that the outcome of the 

process is improved and more efficient. Two possible alternative approaches to 

wavelet pyramid are used: 

(1) Wavelet decomposition and re-composition of the whole distorted images, 
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(2) Wavelet decomposition and re-composition of macro-block segmented 

images. 

In the first approach, longer length wavelets tend to smear (mix) the boundaries of 

the distorted regions into those of the undistorted ones at successive levels of 

decomposition and hence cause degradation in the overall results. In order to 

overcome this when using higher length wavelets, macro block segmentation is 

applied to the image. In this method, the wavelet is applied to each macro block 

separately and consequently, distorted regions are not combined with undistorted 

ones at successive levels of decomposition. 

In addition, to improving the result some unnecessary information in all the details 

coefficients parts that might cause false recovery in the restored image have been 

removed by hard-thresholding. Also, the iterative method in the last stage of using of 

the global edge interpolation produces a gain in PSNR. It starts the process by using 

a high level of Canny edge details at the first iteration and then continues the process 

by reducing the amount of these detail as a guide for the interpolation. 
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Chapter 7   

7. Conclusion: Discussion and Future 

Works 

This chapter concludes the work by first discussing the appropriateness and the 

relative success of the selected pyramid frameworks and edge-guided interpolation 

methodologies presented in the different chapters of this thesis. The overall 

framework is based on the multi-scale pyramid transformation, and the 

methodologies that have been explored are the DCT-Pyramid, wavelets, texture 

interpolation and edge-guided interpolations. The discussion below covers the 

overall results obtained by the various methods and highlights the main contribution 

of the thesis. Finally, new directions for continuing the research work are proposed.  

7.1  Conclusion 

As explained, image loss in broadcast networks is due to a variety of different 

causes, such as congestion, network loss and signal fading. The impact of loss of 

data is a degradation of the image quality. Many interpolation methods have been 

proposed for estimating the missing image segments, with the aim of recreating an 

acceptable image quality, but problems with the output quality of restoration still 

persist and hence, there is scope for research leading to further improvements.  

The main issues associated with existing gap interpolation methods relate to their 

deficiencies and inability to recover missing edges and texture details in gaps 

correctly. In particular, a reliable and effective interpolation method is required for 

‘repairing’ the effect of missing blocks in still and moving images. In this thesis, a 

novel method for estimating unknown lost samples by interpolating from known 
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samples data has been derived. The concept presented is referred to as edge-guided 

pyramid image gap restoration.  

The starting point of this research work was the selection, implementation and 

evaluation of an appropriate framework and methods for an image gap restoration 

technique. It was observed that using the EC interpolation method is the most 

common approach to gap restoration. Hence, the EC interpolation methods, which 

are based on the assumption that there is a high correlation between neighbouring 

pixels or macro blocks, were chosen as the focus of the current research. 

The principal issues of the research were identified as follows: 

(1) The choice of transformation domain: pyramid transforms were selected for 

transformation as they have two desirable properties, (i) transformation to 

various sets of frequencies and scales and (ii) progressive reduction of the 

gap size to one sample wide at the pyramid apex. Furthermore, two types of 

pyramid transforms were explored; namely DCT-pyramid and wavelets. 

(2) The choice of interpolations: a family of interpolation methods including; 

weighted linear, nearest neighbour, cubic and spline were explored for 

texture and edge-guided interpolations.  

(3) The choice of edge detection methods: different edge detection methods, 

Sobel and Canny, were comparatively explored.  

(4) Gap blending and post-processing methods: developed as an integral part of 

each stage processes, such as DCT based blending, to improve the results 

further. 

(5) Evaluations: the methods were comparatively evaluated with a range of 

widely used degradations, performance measures and test images. 

In order to address the image enhancement problems successfully the novel 

incorporation of ‘local’ and ‘global’ edge enhancement strategies within a pyramid 

DCT/DWT image processing framework has been proposed. The algorithm includes 

a combination of multi-resolution DCT/DWT transforms, directional interpolation 

and edge-guided enhancement capable of restoring missing MBs including the 

edges.  

The proposed method utilises two types of edges in the DCT-based techniques: 



193 | P a g e  
 

a)  The local edges or textures inferred from the gradients of the neighbouring 

pixels; 

b)  The global edges, or boundaries between image objects or segments, inferred 

using Canny edge detectors. 

For the DWT-based method, the propose method, in addition to utilising the local 

and global edges (as in 𝑎 and 𝑏 above) also involves using: 

c)   Restored details information in cV, cH and cD. 

where, cV, cH and cD are the vertical, horizontal and diagonal details of the 

wavelets, respectively. The experimental results demonstrate that significant 

improvement in the quality and PSNR of the restored images are obtained by 

combining local and global edge-guided image restoration.  

The main contributions of this research work are as follows:  

1. Incorporation of edge-guided interpolation within multi-scale pyramid 

transformation for image gap restoration. A baseline DCT-based pyramid 

transformation incorporates ‘local’ and ‘global’ edges within images. 

2. The use of initial texture interpolation for subsequent local edge-guided 

pyramid interpolation for image gap restoration. The proposed interpolation 

algorithms are aimed at providing a gap estimate consistent with the local 

edges derived from the gradient of the known neighbouring pixels 

surrounding the gap. However, the results obtained were not satisfactory.  

3. Further improvement investigated via the inclusion of global edge estimates 

and interpolators within the pyramid transforms image restoration. This 

involves the use of edge-detection and segmentation of the image objects. 

Subsequently, the interpolation is confined within homogenous regions to 

avoid blurring across edges and loss of edge information. 
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4. Comparative evaluation of the incorporation of Sobel and Canny detectors 

within the pyramid interpolation.  For the Canny detector, its parameters, 

namely, the variance of the Gaussian filter and the threshold of the significant 

edges, were experimentally optimised. Moreover, an iterative restoration 

methodology was applied to the last stage of interpolation. 

5. Exploring a family of wavelets as an alternative to DCT pyramid transforms 

for edge-guided image gap restoration. Further, three corrupted details parts 

of wavelets (cV, cH and cD) have been restored, as these include the edge 

information, the restored details combine with the restored approximation 

coefficients. 

In addition to the main contributions above, the following processing algorithms 

have been investigated. 

Pyramid Transforms: DCT versus Wavelets 

Research into a pyramid structure, that lends itself to the use of the DCT or various 

families of DWT as the kernel function, has been investigated. The main justification 

for the choice of a pyramid as the framework for interpolation is pragmatic; a 

relatively large gap at the base of the pyramid is reduced to a single sample at the 

apex, which can be conveniently interpolated and propagated to the next level of 

interpolation. The process is then reversed and at each stage, the missing samples are 

estimated, up-sampled and combined with the available samples. Multi-scale 

transformation into pyramid layers facilitates interpolation and estimation of missing 

gaps by creating an information pyramid.  

Subsequent work on gap interpolation introduced in this thesis has included the use 

of complex wavelets instead of DCT for pyramid decomposition. A novel multi-

scale pyramid method using wavelet transform has been proposed as an alternative to 

DCT-pyramid image gap reconstruction. The proposed algorithm includes a 

combination of multi-resolution transforms, local directional interpolation and edge-

guided enhancement capable of restoring missing MBs including the edges. The 
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experimental results demonstrate an improvement in the quality and PSNR of the 

restored images that are obtained compared with published methods. Furthermore, 

the wavelets based results are better than those for DCT edge guided interpolation.  

The same methods of interpolation as the DCT based edge-guided interpolation have 

been applied to the approximation section of the damaged image for wavelet based 

edge-guided interpolation. By using the wavelet transform the values of three details 

parts (vertical, horizontal and diagonal) are represented and are restored by using the 

available uncorrupted information in the vicinity of the missing parts. The result is 

then enhanced by applying the edge guided interpolation. Finally, the approximate 

and details results are combined to achieve the outcome of the process which proves 

to be better in quality and efficiency.  

Two alternative approaches to wavelet pyramid are used: 

(1) Wavelet decomposition and re-composition of the whole distorted images; 

(2) Wavelet decomposition and re-composition of macro-block segmented 

images. 

By applying the first approach, longer length wavelets tend to smear (mix) the 

boundaries of the distorted regions into those of the undistorted ones at successive 

levels of decomposition and hence, cause degradation in the overall results. In order 

to overcome this when using longer length wavelets, macro block segmentation is 

applied to the image, then wavelet being applied to each macro block separately. 

Consequently, distorted regions are not combined with undistorted ones at 

successive levels of decomposition. The investigation on various types of wavelets 

transforms shows that the best wavelet type for the proposed method is Daubechies 

version 1, abbreviated db1. 

Moreover, to improve the result some unnecessary information in all three details 

coefficients parts, which might cause false recovery in the restored image, have been 

removed by hard-thresholding.  
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Alternative Methods of Interpolation and Blending 

Another important factor is choosing the best interpolation method at each level of 

the pyramid. Hence, the impact of using four different interpolation methods for gap 

estimation was assessed, these being the: nearest neighbour, linear, spline and cubic 

techniques. The interpolators were first compared based on their comparative ability 

to retrieve a down-sampled image, without any gap, for down-sampling rates 2, 4, 8. 

The results in section 4.4, show that spline interpolation performs best followed by 

the cubic, linear and nearest neighbour interpolators. However, as the down-

sampling rate and hence, information loss rate increases, the difference in the 

performance of the nearest neighbour interpolator (the worst) and the spline 

interpolator (the best) decreases. Similarly, for the case where there is loss of image 

macro blocks, then the differences in the performance of the various interpolators 

decrease. 

In order to improve the results further, the combination of interpolation and post 

processing, blending, functions have been performed with two different estimators 

(mean and median) at the apex of the pyramid. As expected, the median approach 

achieves better results as it is an edge-preserving statistic.  The first observation is 

that all interpolation methods employed within pyramid estimation, result in 

reasonably high and very similar values of PSNR of around 31 dB and an SSIM of 

0.92. It is proposed that the reasons for the similar results are: 

1) The relatively high correlation that exists among neighbouring image pixels; 

2) The efficiency of the pyramid DCT/DWT structure in capturing the 

correlations of the image pixels; 

3) The gap loss, since the experimental result indicates that as the information 

loss increases the interpolators’ performances converge to similar values.  

As a further processing step, to blend the estimate of a block within its surrounding 

texture, a DCT based mixing akin to a form of data-dependent low-pass filtering has 

been used.  
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Methods for Texture Interpolation 

As an improvement to the up-sampling and blending method of gap restoration, the 

use of local edges is explored. The local edges have been inferred from the available 

neighbouring pixels of the missing areas without the benefit of global edge detectors, 

which has allowed for capture of the texture information. At the apex of the pyramid 

the local directional interpolation preserves three types of local edges (horizontal 

(H), vertical (V), cross (C)), which cover all eight surrounding directions of the 

missing pixels.  

Then in next stages of the pyramid approach, the missing pixels are progressively 

replaced from the outer boundaries towards the block centre by the local edge-guided 

interpolation by utilising edges in the horizontal, vertical and cross directions. In 

general, the interpolation inferred from four possible edge directions is combined 

with the pixel estimate obtained from the previous stage so as to compute a new 

estimate of the missing block.  

The performance of the local edge-guided interpolation is increased compared with 

the simple up-sampling method. 

Alternative Methods for Edge Detection 

After using the local edge-guided interpolation, the next process is to apply the 

global edge-guided interpolation. The global edges, or boundaries between image 

objects or segments, are inferred using different types of edge detector applications.  

Edge detections methods are explored in this research to improve the image quality 

further. It has been concluded that in the specified applications the edge detection 

methods are structurally a combination of image smoothing and image 

differentiation followed by post-processing for edge labelling. The smoothing 

reduces the influence of noise and random fluctuations. Image differentiation 

provides information on intensity transition in the image that is necessary to 

represent the position and strength of the edges and their orientation. The edge 

labelling requires post-processing to suppress the false edges, linking the dispersed 

ones, and producing a uniform contour of objects.  
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As the gap restoration performance is hampered by edge detector errors, finding the 

best operator is vital in order to achieve the best performance. The outcomes of 

various edge detection methods are investigated and show that the best result belongs 

to the Canny edge detector, whilst Sobel and Prewitt are approximately the same and 

the worst result comes from the Roberts edge detection. Hence, the two most 

prominent edge detectors, Sobel and Canny, have been implemented in this research 

(Chapter 5) and the results demonstrate that the Canny edge detection achieves a 

higher outcomes as it was expected from the literature.  

The parameters (variance and threshold) of the Canny edge detector need to be 

optimised in order to achieve the best result. In addition, there is some unnecessary 

information in edge-based segmentation of images that do not represent significant 

edges. The insignificant edge data might cause false recovery in the restored image 

and therefore, need to be removed. The method designed for this strives to retain 

significant image edge information and eliminate the remainder. Hard-thresholding 

is used in the proposed algorithm that involves checking each edge intensity and 

setting values less than or equal to the threshold of zero. 

Interpolation in an Iterative Loop  

The experiments concluded in this research show that using an iterative method in 

the last stage of pyramid estimation produces a gain in PSNR. At the base level of 

the process, an iterative edge pruning strategy is applied for edge detection. This 

relies on varying the two parameters of a Canny detector, the variance of the 

Gaussian filter and the threshold of the significant edges, at each iteration in order to 

achieve improved results.  

The experiment starts the process of edge detection and interpolation, by using a 

higher level of Canny edge details at the first iteration and then reduces the amount 

of the details. The simulation results, show the overall PSNR obtained by fixing the 

Gaussian filter variance at an empirically obtained optimal value and then varying 

the threshold in the range 0.01-0.05. Note that starting from a threshold value of 0.01 

the best PSNR is obtained at the 4
th

 iteration after three discrete -step increases in the 
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threshold value. Hence, the optimal number of iteration for this research is four as 

before this the result has an upward trend and subsequent to it, levels off. 

Discussions of Overall Results 

The methods proposed in this thesis were evaluated over a range of test images with 

a range of different loss rates.  

This involved evaluating the performances of various different proposed methods of 

interpolation for an MB loss rate of 25% and MB size of (8×8) on five well-known 

test images, where the PSNR was calculated for the whole image. The pyramid 

wavelet using Canny edge detector offered the best average result (at 34.40 dB), 

followed by pyramid DCT Canny (at 34.34 dB). The worst result is from simple up-

sampling (at 28.01 dB), which only utilises an interpolation method to up-sample 

from one layer to the next. The outcomes of the proposed method show that applying 

a combination of local and global edge detection improves the interpolation along 

with use of pyramid wavelet transformation. 

The same results were obtained for an MB loss rate of 25% and MB size of (8×8) on 

Lena, where the PSNRs were calculated for just the missing parts. The best outcome 

among thirteen published works belongs to the pyramid wavelet using a Canny edge 

detector (at 29.83 dB). In addition, in case of calculating the PSNRs over whole 

image, another thirteen techniques are compared and the best outcome belongs to the 

proposed method at 36.08 dB. 

Moreover, the performance of the proposed methods was assessed on a random MB 

loss rate of 10% (MB size= 8×8), where the PSNRs was calculated just for the 

region of the missing block on Lena. The results show that by adding each level of 

processing, the PSNR is improved and it is concluded that the proposed pyramid 

wavelet Canny method (at 32.96 dB) provides the best PSNR and visual image 

quality, followed by pyramid DCT Canny and pyramid DCT Sobel at 32.80 dB and 

30.78 dB respectively. Finally, the performance of pyramid DCT Local edge is (at 

30.05 dB).  

It is concluded that by applying the proposed interpolation the outcome improves 

and the best restored image quality is achieved. 
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Achievements and Limitation: 

In this research a method is proposed for restoration of lost macro-blocks in digital 

images. The proposed algorithm includes combination of multi-resolution 

transforms, directional interpolation and edge-guided enhancement capable of 

restoring missing blocks including the edges. The main contribution of this work is 

the incorporation of local and global edge-guided interpolators within a pyramid 

structure in an iterative loop at the last stage.  

Two types of pyramid transformation were evaluated namely DCT and wavelets. 

The methods were evaluated on a number of different test images in a range of loss 

rates for regular and random pattern of losses. The results for DCT and wavelets are 

similar (with a slight improvement of details in DWT) and achieve better 

performance than other state-of-the-art methods in terms of objective and subjective 

evaluation. The incorporation of local, global edges and iterative process improves 

interpolation. The results obtained from DCT pyramid are comparable with those 

obtained from wavelets with the DWT offering a slight advantage in computation 

time. The experimental results demonstrate that significant improvement in the 

quality and PSNR of the restored images are obtained by the proposed edge guided 

image restoration method. An interesting aspect of this work is the use of iterative 

methods for improving various layers of pyramid reconstruction including the image 

and the edge, or skeleton, layers. 

Although the proposed algorithm requires longer time than some methods, its 

advantages over other methods are obvious in terms of objective and subjective 

evaluations, as shown in previous Sections.  

There is a limitation in the proposed methodology, when the macro block loss 

exceeds the range of 60% in random loss pattern, the method is not able to recover 

the image. 
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Future Works 

Proposed future works include alternative families of pyramid transforms, different 

edge detection methodologies and other interpolation approaches.  

An alternative pyramid that could be explored is complex Gabor. It has been used in 

many image analysis applications thus, makes it a popular method for feature 

extraction. 

 For further work on edge detection, within the pyramid framework, the details 

components of wavelets, (namely cH, cA, cD) might provide more useful basis for 

the integration of wavelet analysis and edge detection, such that edges or image 

skeletons are a by-product of the wavelet analysis. This could involve devising 

strategies regarding the fusion of information provided by the wavelets details at 

various layers of the pyramid. 

Implementation of the proposed methods for real-time embedded applications is 

another potential avenue for research. This will involve tailoring the different 

methodologies for various platforms and, depending on the required constraints, fast 

and power efficient execution.  

An interesting aspect of this work is the use of iterative methods for improving the 

quality of various layers of pyramid reconstruction including the image, the edge or 

the skeleton, layers. This is a further area of research where work may be fruitful. 

The choice of interpolation methods is a further area that could be the subject of 

future research. The structure in a pyramid can be used such that the interpolation at 

each layer is informed (e.g. via a Bayesian formulation) from the results obtained in 

the preceding layers. 

A further area of for investigation is the incorporation of the pyramid methodology 

for video applications. This might involve the use of motion detection and the 

progressive efficient updating of the pyramid information as the scenes and contents 

in successive image frames evolve. 
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In addition to image restoration, the incorporation of a pyramid structure, with edge 

detection and edge-guided interpolation, might lend itself to other areas of image 

processing, such as efficient multi-layered image coding that can provide different 

levels of service depending on the bandwidth available. 

Last but not least more work can be done for investigating on the computational 

complexity to make the proposed method more efficient.  
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