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Abstract 

 

The objective of this thesis is to establish whether or not online, objective 

questions in elementary graph theory can be written in a way that exploits the 

medium of computer-aided assessment. This required the identification and 

resolution of question design and programming issues. The resulting questions 

were trialled to give an extensive set of answer files which were analysed to 

identify whether computer delivery affected the questions in any adverse ways 

and, if so, to identify practical ways round these issues.  

A library of questions spanning commonly-taught topics in elementary 

graph theory has been designed, programmed and added to the graph theory 

topic within an online assessment and learning tool used at Brunel University 

called Mathletics. Distracters coded into the questions are based on errors 

students are likely to make, partially evidenced by final examination scripts. 

Questions were provided to students in Discrete Mathematics modules with an 

extensive collection of results compiled for analysis. Questions designed for use 

in practice environments were trialled on students from 2007 – 2008 and then 

from 2008 to 2014 inclusive under separate testing conditions. Particular focus is 

made on the relationship of facility and discrimination between comparable 

questions during this period. Data is grouped between topic and also year group 

for the 2008 – 2014 tests, namely 2008 to 2011 and 2011 to 2014, so that it may 

then be determined what factors, if any, had an effect on the overall results for 

these questions. 

Based on the analyses performed, it may be concluded that although CAA 

questions provide students with a means for improving their learning in this field 

of mathematics, what makes a question more challenging is not solely based on 

the number of ways a student can work out his/her solution but also on several 

other factors that depend on the topic itself. 
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Chapter 1 Introduction 
 

 

The objective for this introduction is to provide a motivation for the work 

undertaken in this thesis and to understand it in the context of the following: 

 

 Possible users of this software 

 Previous and current computer-aided assessment in use, providing 

advantages and disadvantages of use, an understanding of its 

framework, and some applications already available 

 Types of assessment and the design of questions 

 Analysing assessments 

 

1.1 Background and Motivation 

 

Decision mathematics is a subject within mathematics that spans multiple 

topics and reaches multiple disciplines. In the A-level syllabi of the three major 

U.K. examination boards, namely EdExcel1, AQA2, and OCR (with MEI)3, 

although the topics are generally the same throughout, the location of topics 

between each module varies, as shown in Table 1.1; this is rather important 

because Decision Mathematics 1 (D1) is an AS-level module, whereas Decision 

Mathematics 2 (D2) is an A2-level module. D2 can only be studied by students if 

they have already studied D1. Students who study to obtain one A-level credit 

only need to take two applied modules. Statistics 1 (S1) and Mechanics 1 (M1) 

are alternative options and students will already be familiar with statistics as they 

will have learned some of the key topics from S1 in their GCSEs.  

Upon contacting OCR, it was learned that for the 2013 – 2014 academic 

year, approximately 13,800 students sat their D1 examination (between their 

regular OCR module and their OCR MEI module), but only about 1,540 students 

sat D2. However, OCR was hesitant to provide exact numbers and information, 

citing that this information was “commercially sensitive”. 

Information provided from AQA, however, provided some detailed insight. 

They provided exact numbers from 2009 – 2014. The results are shown in Table 
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1.2. They have significantly higher numbers of students sitting their D1 and D2 

examinations than OCR, but what is more interesting is the significant increase in 

students sitting the D1 examinations in 2013 – 2014. According to AQA, students 

who sat the 2012 – 2013 examination were well prepared4, so it is unexpected 

that there were a significant number of students resitting this module in 2013 – 

2014. Requests to communicate with EdExcel resulted in a link5 to a webpage on 

their site, which provides details only for each mathematics award it offers, rather 

than student numbers for each module; it is worth noting that EdExcel, unlike 

AQA and OCR, is not a registered charity, and so, OCR’s noted concern of 

“commercially sensitive” data might be a reason for the lack of available 

information. 

 

Module Decision Mathematics 1 Decision Mathematics 2 

AQA Algorithms 
Graphs & Networks 
Spanning Trees 
Matchings 
Shortest Paths in Networks 
Route Inspection Problem 
Travelling Salesperson 

Problem 
Linear Programming 

Critical Path Analysis 
Allocation 
Dynamic Programming 
Network Flows 
Linear Programming: Simplex 

Method 
Game Theory for Zero Sum Games 

EdExcel Algorithms 
Algorithms in Graphs 
The Route Inspection 

Problem 
Critical Path Analysis 
Linear Programming 
Matchings 

Transportation Problems 
Allocation 
Travelling Salesperson Problem 
Linear Programming: Simplex 

Method 
Game Theory 
Network Flows 
Dynamic Programming 

OCR Algorithms 
Graph Theory 
Networks 
Linear Programming 

(including Simplex Method) 

Game Theory 
Network Flows 
Matchings and Allocations 
Critical Path Analysis 
Dynamic Programming 

Table 1.1 Topics covered by U.K. examination boards for Decision Mathematics 1 and 
Decision Mathematics 2. Data expected to be updated with upcoming changes to 
A-level syllabus across the country. 

 

Examination boards do give syllabi, past examination papers, mark 

schemes, and examiners’ reports for each assessment it provides. However, 

examination boards can choose to not award marks for follow-through work 
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completed correctly where a mistake occurred earlier in the problem solving 

process. Also, examiners’ reports do not detail reasons for students’ errors in 

problem solving, but rather simply general details about each question and how 

students performed overall.  

 

Year D1 D2 

2013 – 2014 15,222 2,847 

2012 – 2013 11,918 1,986 

2011 – 2012 11,352 1,602 

2010 – 2011 10,123 1,553 

2009 – 2010 9,183 1,540 

TOTAL 57,798 9,528 

Table 1.2 Numbers of students who sat AQA D1 and D2 examinations from 2009 – 2014. 

 

At the postsecondary level, discrete mathematics can play a similar role to 

decision mathematics in that it can encompass many similar topics. The topics of 

linear programming and graph theory, which appear in D1 and D2, can appear as 

separate modules in postsecondary mathematics courses. Linear programming 

often involves the use of simplex tableaus to determine optimal solutions to 

problems using different methods, whereas graph theory will use a combination 

of graphs and adjacency matrices to better understand networks and their 

algorithms.  

Brunel University currently has two modules that have a focus on topics 

within graph theory, namely MA0422 (Discrete and Decision Mathematics)6 and 

MA2726 (Elements of Combinatorics)7. There are approximately 100 students 

who register for MA0422 each academic year, all of whom are enrolled the 

Foundations of Information Technology (FoIT) programme. There are 

approximately 125 students who register for MA2726 each academic year, all of 

whom are enrolled in a B.Sc. course for mathematics. Previously, graph theory 

appeared in the module, MA2920, and it was not necessary at the time for all 

students who were enrolled in the B.Sc. course for mathematics to study this 

module; however, all B.Sc. mathematics students must now study MA2726. 

 At Brunel University, the numbers of students taking discrete mathematics 

is high, comprising all mathematics and computer science students, along with 
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electrical engineering students. It is estimated that over 400 students are 

studying discrete mathematics to some extent at the university. Students 

studying economics or business studies may indirectly encounter some of the 

topics found in discrete mathematics or graph theory later in their courses. The 

potential for the number of students in the United Kingdom studying discrete 

mathematics at the post-secondary level is excellent with possibly over 60,000 

students in the post-secondary sector alone studying discrete mathematics1,8. 

 Due to the significantly large number of students needing to study graph 

theory-related topics, it is important that any modules teaching these topics are 

manageable. As will be explained later, the use of online learning and 

assessment is helpful in providing additional learning tools to students and 

managing large-scale assessments, which is especially important in a post-

secondary environment. Additionally, although there is some expected 

functionality of matrices that can be coded to generate algorithms with which to 

solve problems in linear programming, generating graphs so that observable 

properties can be inspected is more difficult and answering questions related to 

these properties can require some intriguing mathematical insight. This thesis will 

specifically look at designing graph theory questions for use in an online 

environment. Later sections in this chapter will further explain the rationale 

behind the research conducted, which will then lead to the research questions to 

be answered for this thesis. 

 

1.2 Computer-Aided Assessment and Learning 

 

1.2.1 Definitions 
 

The history of the internet is somewhat recent; it was not until 1991 that 

the Internet was introduced for public use as the World Wide Web9. However, 

online assessment and learning (also known as e-assessment and e-learning) 

dates back to the 1960s and the use of PLATO (Programmed Logic for Automatic 

Teaching Operations)10 and TICCIT (Time-shared Interactive Computer-

Controlled Information Television)10. Today, there are numerous online education 

                                            
1
 Estimate calculated using statistics from the Higher Education Statistics Agency for 2013 – 2014. 
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applications and software tools available, some of which are commercial and 

others are freely available, often accessible online through the internet. Various 

relevant applications used in the United Kingdom will be mentioned later in this 

chapter. 

In this thesis, e-assessment and e-learning will be replaced by the 

following terms: 

Computer-aided assessment (CAA) and computer-aided learning 

(CAL) are terms used to define the assessment and learning practices commonly 

seen in a classroom setting, but using computers as a means for conducting 

them. CAL applications aid in a student’s learning without necessarily having to 

assess input data. However, CAA will assess student responses to questions and 

can provide a lecturer with additional tools for managing and analysing an 

assessment to better understand the strengths and weaknesses of students.  

Some of the advantages and disadvantages to using CAA include the 

following11,12: 

 

Advantages 

 Readily available 

 Large-scale assessments are easier to organise and manage 

 Assessments can include randomised sets of questions based on 

selected criteria 

 Supports different learning environments 

 Reporting software can provide detailed feedback about an 

assessment 

 

Disadvantages 

 Limitations with some question types 

 Worries over security of data when setting up an invigilated 

assessment 

 Knowing with certainty who is answering the questions 

 Restrictions on availability and usability of technology may cause some 

students to be unable to interact with software 

 Use of other software or online applications whilst answering questions 
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Some question types seen previously as difficult to implement in CAA are 

now being investigated for possible use. Computers are continually becoming 

more accessible and new features allow more people to use them with more 

ease. 

However, not all problems have been resolved; for instance, there are still 

some question types that are difficult to implement. To explain this better, we 

need to explain the types of questions that can be asked. According to the 

Teaching for Success National Faculty Success Center13, an objective question 

is a question that has clear, correct answers which can be verified upon a simple 

analysis of the answer, whereas a subjective question is a question which must 

be scored based on a detailed analysis of the answer using a specified set of 

criteria. However, this explanation does not clearly define what are “clear, correct 

answers”, “a simple analysis”, and “a detailed analysis”. Objective questions can 

be analysed more easily as outcomes are independent of any assessor bias14. 

However, not all objective questions can easily be coded into CAA as the correct 

answer(s) currently needs to be provided within the question coding (usually as a 

result of some algorithm implemented at runtime rather than as a pre-determined 

list). 

 

Example 1.1 Give an example of a graph of 8 vertices that can be coloured 

with a maximum of 4 colours. 

 

 The question in Example 1.1 is an objective question. However, correct 

answers cannot necessarily be pre-set into the question coding as there are no 

known algorithms for determining adequate solutions. 

 To better understand objective questions within CAA, we must understand 

that objectivity occurs in the scoring of answers. Therefore, for the purpose of this 

research, the following definition will be applied: 

 

Def. 1.1 An objective question is a question, which has answers that can 

be determined using an algorithm and can be automatically marked 

by the system.12,15. 
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For the teacher, it is also important to understand the different types of 

assessment that can be provided to students: 

 

Def. 1.2 A formative assessment16 is an assessment that analyses the 

quality of answers and provides detailed feedback regarding the 

progress of the individual who answered the questions. This type of 

assessment is usually given during the learning process. 

 

Def. 1.3 A summative assessment16 is an assessment that details the 

achievement status of the individual answering the questions, 

usually by means of scoring answers and summing up the scores. 

This type of assessment is usually given after the learning process 

has been completed. 

 

Def. 1.4 A diagnostic assessment17 is an assessment in which basic 

mental capacities are assessed individually to determine an 

individual’s current ability to comprehend the topic material. This 

type of assessment is usually provided at the beginning of the 

learning process. 

  

 Summative assessments are the easiest to produce using CAA. However, 

when providing answers to students, it is possible to code detailed feedback for 

students to see; this provides a measure of formative feedback which will help 

students to better understand the topic material within the question. Diagnostic 

assessments can be used formatively or summatively, so CAA can also be used 

to design a reasonable diagnostic assessment with formative feedback to help 

the student progress later in their learning. Nonetheless, summative 

assessments provide scored measures of ability in answering questions 

correctly, which is important here for conducting the necessary statistical 

analyses to be used to determine the effectiveness of the questions and to 

investigate why some questions were easier to answer than others. 

 The main difference in these assessment types is the timing of the 

learning that takes place. Diagnostic tests occur to test assumed (or 

prerequisite) knowledge prior to learning new material that builds on this 
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prerequisite knowledge. Formative assessments occur during the learning 

process. Summative assessments generally occur at the end of the learning 

process. Diagnostic and formative assessments will have additional learning 

taking place after these assessments have been conducted, so student learning 

will likely have some impact on the design of these assessments. Summative 

assessments, on the other hand, do not need to consider the impact of student 

learning as a factor in the design of the assessments. This thesis will explore the 

design of a versatile and robust library of graph theory questions within CAA, 

which can then be used in the design of assessments; this thesis will not require 

any knowledge about a student’s assumed skills or knowledge, but instead, will 

focus on the feasibility of a teacher or lecturer using CAA in graph theory in 

setting functional, user-friendly assessments for students to attempt. Therefore, 

to fulfil this purpose, summative feedback was used in the statistical research 

conducted for this thesis to analyse attempted questions in relation to each other 

and to overall assessments. 

 

1.2.2 Software Applications 

 

There are many CAA applications now available online with which 

students can practise answering relevant mathematical questions:  

Numbas18 is a free, open-source tool available online. It has a lot of 

flexibility in how it can be used; it can be used online or offline and tests from 

Numbas can be uploaded onto various learning platforms. Various styles of 

media can be added to the design of tests to provide a better structured test to 

students. It can include interactive graphics using the open-source library, 

JSXGraph, to provide additional flexibility in engaging with the test topic material. 

DEWIS19 is an e-assessment system used by the University of the West of 

England (UWE). It has been used extensively by the UWE in different subjects to 

test mathematical skills. It is well-designed for efficient use by anyone engaging 

with the software. It was designed intentionally to be independent of commercial 

software so that modifications can more easily be made. It allows for a detailed 

analysis of all assessment attempts, which is very useful for pedagogic research. 
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The System for Teaching and Assessment using a Computer algebra 

Kernel (STACK)20 was originally created at Birmingham University and is now a 

Moodle question type that was developed in partnership with the Open 

University. It is an open-source system that emphasizes the use of formative 

assessment by providing detailed, efficient feedback, sometimes suggestive of 

the answers provided by students. It is visually efficient for students as it will re-

design answers in a mathematically appropriate fashion (e.g. displaying “5𝑥3 −

2𝑥 +
1

𝑥
” instead of “5x^3-2x+(1/x)”) so that they may then determine if they wish to 

submit the answers shown by the system. Answers are deemed correct usually if 

the difference between the student’s answer and the system’s answer is 

approximately zero, rounded to an appropriate level of accuracy. 

Maple T.A.21 is a public software package which uses the Maple software 

package. It was developed by Maplesoft, now a subsidiary of Cybernet Systems 

Co. Ltd. There are additional testing features, which will allow students to answer 

coordinate geometry and graphing questions by drawing directly onto sets of 

coordinate axes. It has the added flexibility of asking and assessing any objective 

question, including the question provided in Example 1.1. It is respectful of 

mathematical equivalence, implying that it will accept multiple correct answers for 

the same question. 

MyMathLab22 is a commercial software CAA package available by 

Pearson Education, Inc. specifically for use in higher education. Similar to Maple 

T.A., MyMathLab is user-friendly for both the student and the teacher. A selection 

of courses are available for purchase and teachers can modify assessments 

within courses in order to have more control over assessment schemes. 

WileyPLUS23 is a commercial software CAA/CAL package with a great 

emphasis on CAL. Similar to MyMathLab, it has courses that are available for 

purchase. They also have WileyPLUS with ORION, which is an adaptive, 

personalised learning system that allows teachers to conduct diagnostic 

assessments and measure progress through continuous assessment during each 

course. 

Although all of these CAA tools have excellent functionality and visually 

appealing features, they do not appear to have questions designed around graph 

theory for available use in CAA. Commercial systems were problematic due to 
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the lack of flexibility in creating one’s own coded questions and then using the 

advanced features to present questions and analyse submitted answers more 

thoroughly. Some commercial systems also did not make it absolutely clear if 

their questions included the use of random parameterisation in the design of their 

questions. Non-commercial systems had provided a lot of additional flexibility, but 

at the time this research began, very little was known about these systems and 

many of these features may have been implemented well after research began 

on this thesis; for instance, Gwynllyw & Henderson24 note that their consideration 

into creating DEWIS came after licensing issues with QuestionMark Pereception 

(QMP); this system will be discussed later. 

Of particular interest to this thesis is the work of Ruokokoski25, who visits 

multiple subjects within mathematics to investigate the possibility of random 

parameterisations within CAA questions. Ruokokoski uses STACK to design 

questions and makes an effort at design some relevant questions in graph 

theory. One problem noted within Ruokokoski’s research is the design of graphs 

to appear with suitable characteristics and random parameterisation within 

questions. However, it was also important when preparing this research to 

understand the relevance of designing the questions themselves. Looking back 

at the work shown by Ruokokoski5, some of the questions that were designed do 

not inform the student of the formatting required to answer the questions 

correctly. Ruokokoski also seems to focus mostly on graphs when it comes to 

designing graph theory questions. The visual element of a graph is a key feature 

to graph theory, but it is not the only feature as adjacency matrices can also be 

used to define a particular graph or network, although it is mainly numerical in 

presentation.  

maths e.g.26 is an online databank of CAA/CAL questions that can be 

used mainly at the postsecondary level with random parameterisation embedded 

within question codes. Some of these questions included those which were 

originally created at Brunel University under the title, Mathletics27, which uses 

QMP software to facilitate question generation and assessment reporting. A 

licence was required to operate the QMP software, but some questions from the 

Mathletics data sets can now be attempted online freely.  Similar to the work of 

Ruokokoski, there were some issues with the visual appearance of graphs, but 

due to the added flexibility of Mathletics, this can be addressed. QMP provides 
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excellent assessment information, which is especially helpful for the purposes of 

this particular research. Due to the usefulness and practicality of this software, 

this research will focus on the use of Mathletics running within QMP to answer 

the research questions. 

 

1.3 Design of Questions 
 

As it still appears to be the case that the implementation of graph theory 

within CAA is a relatively new concept, it is important that such a system be 

designed with versatile and robust questions that can be assessed and provide 

an organised assessment system for a teacher or lecturer to use. As such, 

student factors, such as characteristics of individual students, background 

studies of students, etc., will not be considered within this thesis. However, since 

this research is within the scope of assessment and learning, it was helpful to 

explore some basic educational theory in an attempt to better focus the design of 

questions prior to creating assessments with them. As will be explained later, 

educational theory will not be considered in the analyses that will occur later, but 

it has been helpful to have this understanding of question design when preparing 

graph theory questions for CAA. 

 

1.3.1 Features of QuestionMark Perception 
 

This section looks at the features readily available within Questionmark 

Perception28 version 3, which runs Mathletics. Questions that were designed and 

analysed in this thesis use version 3 of the software rather than the current 

version 5; this is because issues arose in the latest version with authoring 

capabilities, which limited the amount of flexibility that was desired in designing 

suitable questions for topics in graph theory. 

Mathletics provides good features for organising databanks of questions, 

providing more control to teachers and lecturers in setting assessments and 

analysing student results. Ellis, Greenhow, and Hatt29 discuss relevant features, 

some of which are discussed in this section, that bring graph theory questions 

into the application; additional information about the technical features of 

Mathletics and the implementation of graph theory into it are noted in the works 
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of Hatt & Greenhow30 and Hatt31 and will be detailed, along with screenshots of 

designed questions, in Chapter 2, Chapter 3, Chapter 4 and Chapter 5.  

The management of question design allows question authors to edit 

questions as needed for their particular assessments. One useful feature is 

defined as follows: 

 

Def. 1.5 A random parameter32 is an element within a question code that 

can take on multiple values, as assigned within the question coding.  

 

Randomised parameters are added using Javascript and MathML coding 

so that different realisations of the same question will appear every time. 

Random parameters are not built-in, as if through a wizard tool, into QMP, so any 

random parameters that could be included are done practically and directly into 

the design and coding of questions. Scalable vector graphics (SVG)33 are also 

used to bring randomised parameters into any graphs to be displayed. In 

mathematics, this is especially useful as it can provide individualised testing to 

students, providing each student with a unique test to complete with identical 

assessment objectives. Most questions designed for use in graph theory include 

randomised parameters and SVG, which minimises copying and allows multiple 

attempts to be made for practising to answer questions. 

Keywords can be assigned to questions on the system in the question 

descriptions to make them easier for teachers and lecturers to find upon 

searching. Questions can also be tagged to provide additional organisation. All 

questions designed for use in graph theory are tagged using a perceived difficulty 

level. 

Questions can also be organised in categories and subcategories, 

depending on subject area, using Question Manager; for instance, a question on 

Kruskal’s algorithm will appear in Decision Mathematics  Minimum Spanning 

Trees  Kruskal’s algorithm34. This helps a teacher or lecturer by organising 

topics so that they are easily searchable when preparing an assessment. 

Questions relating to graph theory have been included in its own category of 

Mathletics, as illustrated in Figure 1.1. 
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Figure 1.1 Library of topics in the category of Graph theory in Mathletics, updated 2015. 
Each topic has a series of questions associated with it so that questions can be 
chosen based on preference. 

 

Question authors have control over each aspect of the question, from its 

appearance to the assessment and feedback of provided solutions. Different 

marking schemes can be implemented, including partial marking and negative 

marking35. Feedback can be detailed as needed with randomised parameters 

and SVG helping to explain all of the relevant information required to answer 

each question. Assessments can be customised to suit the demands of the 

teacher or lecturer administering the module and results of assessments provide 

lots of additional information that can be used to modify future assessments or 

understand students’ abilities better. 
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For students, there is an accessibility feature36 in Mathletics, which allows 

them to view questions on the screen to their preference. This feature is 

especially important for students with particular difficulties in reading questions 

effectively based on colour and text font, size, and colour; this can include 

students with colour blindness or dyslexia37. Although these features are useful in 

the design of the software application, they will not have an impact on the 

assessments themselves as students are expected to set their text viewing 

preferences at the beginning of each assessment. 

 

1.3.2 Question Types 
 

The different types of questions that exist within Mathletics are given 

below. The different types of questions, as will be discussed later, may have 

some impact on student performance within an assessment. 

 

1.3.2.1 Multiple-Choice Questions 

 

The history of multiple-choice (MC) questions dates back to at least 1913 

when Yerkes designed a multiple-choice device to assess the behaviours of 

animals and humans to form ideas38. During World War II, Harrower-Erickson 

designed a multiple-choice group Rorschach test for screening purposes39, but 

this was found unsuitable by the Psychiatric Unit at the U.S. Naval Training 

Station, Newport, Rhode Island one year later40.  

Much research has since been conducted regarding MC questions. 

Torres, Lopes, Babo, and Azevedo41 discuss a strategy for creating useful MC 

questions in mathematics. They refer to the MATH model shown in Figure 1.2 as 

a basis for designing their questions and then note some difficulty in writing good 

distracters. There is some discussion on the homogeneity of distracters in order 

to avoid guessing the correct answer by a process of elimination. However, this is 

debatable as distracters can be determined through the understanding of 

relevant mathematical theory or by viewing students’ attempts at solving 

problems and determining common errors they are making in the process. 

Common errors may not necessarily be homogeneous to the correct answer, so 
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this needs to be considered further; there will also be considerable focus on 

linking relevant mathematical theory to the design of distracters. They also 

mention “None of the above” as a common answer to choose if a student cannot 

see the answer immediately. However, as will be shown in chapter 3 and chapter 

4, the creation of distracters can allow for “None of the above” to be a valid option 

to MC questions. 

 

Group A Group B Group C 

Factual 
knowledge 

Information 
transfer 

Justifying and 
interpreting 

Comprehension Application in 
new 

situations 

Implications, 
conjectures, and 

comparisons 

Routine use of 
procedures 

 Evaluation 

Figure 1.2 MATH (Mathematical Assessment Task Hierarchy) for question design in 
postsecondary education. 

 

A subcategory of this question type is the true or false question, where a 

statement is given and the correct answer is one of two possibilities, namely True 

(T) or False (F). An immediate problem with this question type is that there is a 

50% probability of answering the question correctly, implying that the question 

does not necessarily challenge the students’ learning of the subject material 

within the question. However, Baruah, Gill, and Greenhow42 investigate this 

question type by suggesting a 4TFUSP (4 True, False, or Undecidable; Subject 

and Property) question, where four different statements are each given with each 

subject receiving one property that might be associated with it. This question not 

only brings in another option, namely the Undecidable (U) option, but the 

assessment of the question creates another challenge in that you may not 

receive any marks if some of the four randomised answers are incorrect. 

Cumulative probabilities of answering each statement correctly are provided in 

Table 1.3. Probabilities are calculated using a binomial distribution, where, 

from a set of 𝑛 trials, there will be 𝑥 successes and 𝑛 − 𝑥 failures; the probability 

of 𝑥 successes is given by the formula, 

 

𝑃(𝑋 = 𝑥) = (
𝑛
𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥, where 𝑝 is the probability of success. 
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To challenge students’ understanding of graph theory, it is necessary to 

investigate the use of graphs and adjacency matrices in questions. The 4TFUSP 

question type could be helpful in investigating students’ awareness of properties 

of graphs, but students need to be able to analyse graphs and adjacency 

matrices in some detail to answer these questions correctly. Therefore, although 

4TFUSP questions may have some usage in the design of additional graph 

theory questions in the future, this question type was not considered in the 

design of graph theory questions analysed in this thesis. 

 

Number of correct 

answers, 𝒙 
4 3 2 1 0 

Cumulative 
probability, 

𝑷(𝑿 ≤ 𝒙) 

81

81

= 1 

80

81
 

72

81

=
8

9
 

48

81

=
16

27
 

16

81
 

Table 1.3 Cumulative probabilities of correctly answering a 4TFUSP question in Mathletics. 

 

1.3.2.2 Numerical Input Questions 

 

Numerical input (NI) questions are perhaps the most common type of 

mathematics question. These questions ask for a number to be typed into a text 

box in order to be verified by the system. Many NI questions can be designed by 

verifying the numerical response given by a student with the answer provided in 

the question coding. 

Some NI questions are responsive numerical input (RNI) questions. RNI 

questions make use of possible distracters students may trigger upon submitting 

a solution. If a distracter is triggered, then the feedback will highlight the possible 

error(s) made by the student as a means of providing additional feedback and 

warning students about such problems in answering questions.  

A subcategory of this question type is the hotline question42, where 

students are asked to find an error in a line of a detailed answer to a problem. 

With the use of graphs and adjacency matrices in a higher level subject like 

graph theory, the solution to a question may require numerous steps in the 

working and so, there can be numerous lines shown in the original questions. 



17 
 

Also, some of the topics presented investigate defined properties of graphs and 

so, do not necessarily have algorithmic methods with which to solve related 

problems. Although it may have some usage in the design of additional graph 

theory questions in the future, this question type was not considered in the 

design of graph theory questions analysed in this thesis. 

However, with some questions, approximations may need to be 

considered for accuracy. Some questions in chapter 3 and chapter 4 will 

investigate this to see how better to design numerical input questions for this 

scenario. 

 

1.3.2.3 Word Input Questions 

 

Word input (WI) questions are similar to NI questions, but with any text 

being allowed as input. Unlike NI questions, because text is involved, the 

formatting of each answer will become an issue in assessing them. WI questions 

can also modify student answers by removing any unnecessary spaces prior to 

evaluating submitted answers. Graph theory requires an understanding of edges 

and vertices, so it is inevitable that WI questions will be necessary for the data 

set in graph theory. Questions in chapter 3 and chapter 4 which require word 

input will highlight various issues and how they are resolved in order to ensure 

students input answers in the correct format. 

Similar to NI questions, WI questions can also be responsive (RWI). RWI 

questions will work in a similar way to RNI questions, but additional distracters 

could include the formatting of answers so as to remind students to double-check 

their work prior to submitting it. WI and RWI questions can also include pop-up 

windows, as shown in Figure 5.2. These pop-up windows are helpful in reminding 

students to double-check their work before resubmitting their answers. If their 

answers do not change when they click Submit a second time, then their answers 

are analysed; if their answers are changed, then the pop-up window will appear 

again and this will continue until a submitted answer is identical to a previously 

submitted answer. 

 



18 
 

1.4 Analysis of Questions 
 

To effectively analyse graph theory questions designed using Mathletics, 

two key values will be analysed: 

 

Def. 1.6 Facility of a question is the mean value awarded to all students 

who attempted the question. 

 

 This is the main value to be analysed for the purposes of this thesis as it 

will assess the difficulty of each question, which will be helpful in analysing 

characteristic differences between related questions. 

 

Def. 1.7 (Index of) Discrimination of a question is the correlation between 

each student’s whole score for the question and the total score 

awarded for the whole assessment. 

 

 This value will also be analysed within this thesis as it will help to 

determine the reliability of the design of each question within an assessment. 

Since correlated values range from -1 to 1, any negative or low non-negative 

values will suggest the question may need to be improved for future 

assessments. 

 The statistical analyses of these values are discussed in the methodology 

in chapter 5. 

 

1.5 Research Questions and Hypothesis 
 

The objective of this thesis is to determine if an online assessment tool 

can be used to design questions with random parameterisation for use in graph 

theory and, if so, then also determine what within these questions can cause 

them to be more difficult than other questions in the same field of mathematics.  

To complete this thesis, these research questions need to be answered: 

 

1. How can the potential of computer-aided assessment be exploited to 

set versatile and robust questions in graph theory?  
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In chapter 2, technical features of Mathletics will highlight the 

capabilities of the software that have been included to accommodate 

suitable questioning in graph theory. A library of 49 questions, 14 

belonging to introductory graph theory and 35 belonging to 

intermediate / advanced graph theory, have been prepared in 

Mathletics. Chapter 3 and chapter 4 will look at the design of graph 

theory questions within Mathletics, along with all of its particular 

features, to demonstrate its capabilities. 

 

2. What question features exist that could change how students interact 

with questions?  

 

All of the questions designed in Mathletics for use in graph theory will 

be detailed. To do this, a description of each topic will be given, 

followed by a description of the designed questions, their functionality, 

question appearance, and feedback provided. The design of questions 

in chapter 3 and chapter 4 will highlight different question 

characteristics, such as question type, use of a graphs or adjacency 

matrices, and question style (e.g. mathematical problem or word 

problem in context). This information will form a basis for setting up the 

methodology of the statistical analyses in chapter 5. 

 

3. Which factors, if any, can cause an objective question in graph theory 

to be more difficult than other questions in the same topic?  

 

This will investigate the features found earlier to determine if 

comparable features have any significant impact on the answers 

students give to similar questions. The statistical analyses in chapters 

6 and 7 will investigate different possible factors to determine if factors 

exist which can cause some questions to become more difficult to 

answer correctly. 

 

The first analysis, conducted in 2008, involved students from the 

Brunel University mathematics module, MA2920: Algebra and Discrete 
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Mathematics43. Students completed two sets of practice tests, namely 

a “visual test” using graphs and a “logical test” using adjacency 

matrices, prior to sitting an invigilated test, which combined graphs and 

adjacency matrices in each question. The analysis will determine what 

potential these questions have in the assessment of graph theory, but 

they will also highlight any patterns that may cause a significant 

change in overall assessment scores. 

 

The second analysis, conducted in 2015, involves different cohorts of 

students who sat the Brunel University mathematics module, MA0422: 

Discrete and Decision Mathematics6 from 2008 – 2014. Due to a 

change from 2011, in which caused topics to be removed, added, or 

edited significantly, data has been grouped separately for 2008 – 2011 

and for 2011 – 2014. This analysis will determine if there are particular 

characteristics that cause one question to be more difficult to answer 

than another question. As there are multiple questions in each topic, an 

analysis within each topic will explore possible issues; however, it is 

also important to analyse topics together as some topics may be 

perceived as being “harder” to answer than others. 

 

The assessments conducted throughout are performed so that the best 

result out of five attempts in one invigilated test session is recorded as 

the student’s final result for the assessment. In each assessment, upon 

submitting their answers, students received immediate feedback about 

their answers and how to solve problems correctly if they answered 

incorrectly. This structuring of assessments provides summative and 

formative feedback to students during the assessment. 

 

Note that since 2008, additional work from Zaczek2,44 has updated 

some of the questions already prepared for graph theory and have 

been used in this analysis. Questions on spanning tree algorithms 

                                            
2
 It is unfortunate that Zaczek’s work does not reference previous work completed by Hatt

30,31,35
 on graph 

theory and Mathletics. However, Zaczek’s work does follow from these previous works. Questions about 

Prim’s and Kruskal’s algorithms are new to Mathletics since 2008, so these will be referenced later in 

Section 3.10. 
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specifically focus on the use of Prim’s algorithm and Kruskal’s 

algorithm and will also be included in this analysis. 

 

The hypothesis is that although online, objective learning and assessment 

can be beneficial for use within discrete mathematics and especially graph 

theory, some issues will emerge, e.g. visual components versus numerical 

components, which will cause students to have difficulty answering similar 

questions, which could have an impact on the future of question design in graph 

theory. It also needs to be emphasized that this thesis focuses on the efficacy of 

the questions themselves within Mathletics and CAA and so, will not make 

significance of any factors relating to students, their learning environments, or 

their progress; however, considerations focusing on these factors will be 

discussed later for possible future research. 

 

1.6 A Note About The References 
 

Some of the references featured will come from alternative sources as 

opposed to traditional “textbook” resources. While efforts have been made to 

minimise the amount of alternative references, some still remain as they were still 

seen as being helpful in understanding some of the details relevant to this 

research and therefore, these references must still be noted.   
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Chapter 2 Design of Template 
Codes for Graph Theory 
in Mathletics 

 

2.1 Question and Template Design: An Introduction 

 

QuestionMark Perception allows question designers to create robust 

questions with random parameters and scalable vector graphics (SVG) that allow 

for a better presentation of questions to appear on the screen. In the case of graph 

theory, it is important that SVG appears in questions when possible. The creation 

of graphs involves the addition of edges and vertices, so these features need to be 

included as part of the programming behind the scenes. Additional programming 

will be required for graphs that need to include special properties, such as 

Eulerian graphs, planar graphs, and graphs used in vertex colouring. Some 

additional features on top of this may also be required, such as loops, values for 

weighted edges, arrows for directed edges, etc. Additional considerations can also 

be provided within QuestionMark Perception so that the graph can be easily seen 

in proportion to font sizes, colours, etc., according to each student’s preferences. 

Having one programmed code to design a graph of 𝑛 vertices with selected edges 

and all of these features to be included when necessary would be exceptionally 

helpful as the general structure of the graph remains intact whilst adding features 

through the use of function variables. However, creating a programming code for a 

graph can use a lot of character space and unfortunately, each question code is 

limited to 32,000 characters45. Templates can be called from questions, though, so 

that character use is reduced, so it is advantageous to use this approach when 

designing questions. To do this, not only does the graph need to be created, but 

so does the template. 

Creating the template is simple, but any useful functions for use in graph 

theory need to be included in the template. The use of labelling can easily call 

algebraic programming functions; in addition, questions involving vertex colouring 

can explore algebraic functions. Therefore, the linear algebra template will often 
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be used. However, including a significantly large code for graphs in the linear 

algebra template will cause any questions using this template to take much longer 

to load since templates scan through all of the codes in order to use those that are 

being called. Alternatively, templates can be combined and used as a “new” 

template for those questions requiring both linear algebra and graph theory 

functions; this is not so difficult as little memory is typically used in template files. 

The following sections will highlight and detail the key codes created for use 

in Mathletics. Notes about key portions of the code are provided in bold print. 

 

2.2  Simple Network 

 

The first code in the template shows the code for a simple network. The 

network is designed by fixing a random number of points, as chosen by the 

question designer, so that the points are equally spaced around a circle. Smaller 

circles are created, with each point acting as the centre for each circle, so that 

these points are made visible as vertices in the graph. Edges are created between 

sets of two points as required by the question designer. Arrows are added if 

directed edges are required and weights are also added where weighted networks 

are required; arrows appear as triangles along an edge and weights appear 

slightly off an edge so that values of weights may be legible. 

 

function 
SVG_network(A,weights,arrow_ratio_along_line,filled,weights_ratio_along_line,we
ights_font_colour,weights_font_scale){NRC = MatrixSize(A); 
var n = NRC[0]; 
var fs = getFontSize()/16; 
if(weights_font_colour == null){weights_font_colour = getFgColor(); 
} 
if(weights_font_scale == null){weights_font_scale = fs;} 
size1 = fs*800; size2 = fs*800; size3 = fs*(100*fs*fs+410*fs+250); size4 = 
fs*(100*fs*fs+410*fs+200); 
   svg_start = '<iSvg:svg height="'+size1+'" width="'+size2+'" viewBox="0 0 
'+size3+' '+size4+'"><iSvg:g id="canvas">'; 
   svg_end = '<iSvg:g></iSvg:svg>'; 
SVG_graph = ""; 
r = getFontSize()/16*200; rrloop = getFontSize()/16*50; rloop = r + rrloop; 
offset = r+getFontSize()/16*200; offset2 = r+getFontSize()/16*75; 
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x_coord = new Array(n); y_coord = new Array(n); 
x_coord_loop = new Array(n); y_coord_loop = new Array(n); 
x_coord_label = new Array(n); y_coord_label = new Array(n); 
for(k = 0; k <= n-1; k++){ 
  x_coord[k] = r*Math.cos(2*k*Math.PI/n)+offset; 
  y_coord[k] = r*Math.sin(2*k*Math.PI/n)+offset; 
  x_coord_label[k] = (r+offset2)/2*Math.cos(2*k*Math.PI/n)+(offset); 
  y_coord_label[k] = (r+offset2)/2*Math.sin(2*k*Math.PI/n)+offset; 
  x_coord_loop[k] = rloop*Math.cos(2*k*Math.PI/n)+offset; 
  y_coord_loop[k] = rloop*Math.sin(2*k*Math.PI/n)+offset;} 
var colour = getFgColor(); 
for(i = 1; i <= n; i++) { 
  SVG_graph += SVG_ellipsebl(x_coord[i-1],y_coord[i-
1],0.1,0.1)+SVG_scale_text(x_coord_label[i-1],y_coord_label[i-1],alphabet(i-
1,1),colour,fs); 
     for(j = 1; j <= n; j++){ 
        if(A[i][j] == 1){ 
if(arrow_ratio_along_line != 0){ 
SVG_graph += SVG_arrow(x_coord[i-1],y_coord[i-1],x_coord[j-1],y_coord[j-
1],arrow_ratio_along_line,filled);} 
else{ 
SVG_graph += SVG_line(x_coord[i-1],y_coord[i-1],x_coord[j-1],y_coord[j-1])}; 
     }  
} 
 
The next portion of the code gives loops on a single vertex when required: 

 
        if(A[i][i] != 0){SVG_graph += SVG_ellipse(x_coord_loop[i-1],y_coord_loop[i-
1],rrloop,rrloop); 
}} 
 
The last portion of the code adds network weights so that they are always 

on top and legible. 

 
for(i = 1; i <= n; i++) {for(j = 1; j <= n; j++){ if(A[i][j] != 0){ 
x1 = x_coord[i-1]; x2 = x_coord[j-1]; y1 = y_coord[i-1]; y2 = y_coord[j-1]; 
var length_of_line = Math.pow((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2),0.5); 
var angle_of_line = angle_from_xy(x2-x1,y2-y1); 
var xtext = x1*(1-weights_ratio_along_line)+x2*weights_ratio_along_line; 
var ytext = y1*(1-weights_ratio_along_line)+y2*weights_ratio_along_line; 
if(weights_ratio_along_line != 0){SVG_graph += 
SVG_scale_text(xtext,ytext,weights[i][j],weights_font_colour,weights_font_scale*fs
)};}}} 
return svg_start + SVG_graph + svg_end;} 
 

Code 2.1 The code for an undirected and unlabelled network. 
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2.3 Digraphs 

 

The next code in the template shows the code for a digraph. This code is 

very similar to the network code, but with fewer variables to be considered; this 

may be helpful for question designers who specifically want to draw digraphs 

rather than detailed networks with some directed edges. 

 

function 
SVG_digraph(A,ratio_along_line,filled,double_path_colour,double_path_skinnyne
ss,svg_start){ 
if(double_path_skinnyness == null){double_path_skinnyness = 10}; 
NRC = MatrixSize(A); var n = NRC[0]; 
var fs = getFontSize()/16; size1 = fs*800; size2 = fs*800; size3 = 
fs*(100*fs*fs+410*fs+250); size4 = fs*(100*fs*fs+410*fs+200); 
 
if(svg_start == null){svg_start = '<iSvg:svg height="'+size1+'" width="'+size2+'" 
viewBox="0 0 '+size3+' '+size4+'"><iSvg:g id="canvas">';} svg_end = 
'<iSvg:g></iSvg:svg>'; SVG_graph = ""; 
r = fs*200; rrloop = fs*50; rloop = r + rrloop offset = r+fs*200; offset2 = r+fs*75; 
x_coord = new Array(n); y_coord = new Array(n); 
x_coord_loop = new Array(n); y_coord_loop = new Array(n); 
x_coord_label = new Array(n); y_coord_label = new Array(n); 
for(k = 0; k <= n-1; k++){ 
  x_coord[k] = r*Math.cos(2*k*Math.PI/n)+offset; 
  y_coord[k] = r*Math.sin(2*k*Math.PI/n)+offset; 
  x_coord_label[k] = (r+offset2)/2*Math.cos(2*k*Math.PI/n)+(offset); 
  y_coord_label[k] = (r+offset2)/2*Math.sin(2*k*Math.PI/n)+(offset); 
  x_coord_loop[k] = rloop*Math.cos(2*k*Math.PI/n)+offset; 
  y_coord_loop[k] = rloop*Math.sin(2*k*Math.PI/n)+offset;} 
colour = getFgColor(); 
for(i = 1; i <= n; i++) {SVG_graph += SVG_ellipsebl(x_coord[i-1],y_coord[i-
1],0.1,0.1)+SVG_scale_text(x_coord_label[i-1],y_coord_label[i-1],alphabet(i-
1,1),colour,fs); 
     for(j = 1; j <= n; j++){if(A[i][j] == 1){ 
if(ratio_along_line != 0){SVG_graph += SVG_arrow(x_coord[i-1],y_coord[i-
1],x_coord[j-1],y_coord[j-1],ratio_along_line,filled)}else{ 
SVG_graph += SVG_line(x_coord[i-1],y_coord[i-1],x_coord[j-1],y_coord[j-1])};} 
  if(A[i][j] == 2){ 
cxx = (x_coord[i-1]+x_coord[j-1])/2; cyy = (y_coord[i-1]+y_coord[j-1])/2; 
dx = (x_coord[i-1]-x_coord[j-1]); dy = (y_coord[i-1]-y_coord[j-1]); 
if(dx == 0){theta = 90}else{theta = Math.atan(dy/dx)*180/Math.PI}; 
rxx = Math.pow((x_coord[i-1]-x_coord[j-1])*(x_coord[i-1]-x_coord[j-1])+(y_coord[i-
1]-y_coord[j-1])*(y_coord[i-1]-y_coord[j-1]),0.5)/2; 
ryy = rxx/double_path_skinnyness; // gives a skinny ellipse 
SVG_graph += SVG_ellipse_rotate(cxx,cyy,rxx,ryy,theta,double_path_colour);}} 
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The next portion of the code gives loops on a single vertex when required: 

 
        if(A[i][i] != 0){SVG_graph += SVG_ellipse(x_coord_loop[i-1],y_coord_loop[i-
1],rrloop,rrloop);}} 
 
return svg_start + SVG_graph + svg_end;} 

Code 2.2 The code for a digraph. 

 

2.4 Labelled Digraph 

 

The next code in the template shows the code for a digraph with labels 

included. 

function 
SVG_digraph_label(A,labels,ratio_along_line,filled,double_path_colour,double_pa
th_skinnyness,svg_start){ 
if(double_path_skinnyness == null){double_path_skinnyness = 10}; 
NRC = MatrixSize(A); 
var n = NRC[0]; var fs = getFontSize()/16; 
size1 = fs*800; size2 = fs*800; size3 = fs*(100*fs*fs+410*fs+250); size4 = 
fs*(100*fs*fs+410*fs+200); 
if(svg_start == null){svg_start = '<iSvg:svg height="'+size1+'" width="'+size2+'" 
viewBox="0 0 '+size3+' '+size4+'"><iSvg:g id="canvas">';} 
   svg_end = '<iSvg:g></iSvg:svg>'; 
SVG_graph = ""; 
r = getFontSize()/16*150; rrloop = getFontSize()/16*50; rloop = r + rrloop 
offset = r+getFontSize()/16*200; offset2 = r+getFontSize()/16*75; 
x_coord = new Array(n); y_coord = new Array(n); 
x_coord_loop = new Array(n); y_coord_loop = new Array(n); 
x_coord_label = new Array(n); y_coord_label = new Array(n); 
for(k = 0; k <= n-1; k++){ 
  x_coord[k] = r*Math.cos(2*k*Math.PI/n)+offset; 
  y_coord[k] = r*Math.sin(2*k*Math.PI/n)+offset; 
  x_coord_label[k] = ((1.4*r)+offset2)/2*Math.cos(2*k*Math.PI/n)+(0.9*offset); 
  y_coord_label[k] = ((1.4*r)+offset2)/2*Math.sin(2*k*Math.PI/n)+(offset); 
  x_coord_loop[k] = rloop*Math.cos(2*k*Math.PI/n)+offset; 
  y_coord_loop[k] = rloop*Math.sin(2*k*Math.PI/n)+offset;} 
colour = getFgColor(); 
for(i = 1; i <= n; i++) { 
  SVG_graph += SVG_ellipsebl(x_coord[i-1],y_coord[i-
1],0.1,0.1)+SVG_scale_text(x_coord_label[i-1],y_coord_label[i-
1],labels[i],colour,fs); 
     for(j = 1; j <= n; j++){if(A[i][j] == 1){ 
if(ratio_along_line != 0){SVG_graph += SVG_arrow(x_coord[i-1],y_coord[i-
1],x_coord[j-1],y_coord[j-1],ratio_along_line,filled)}else{ 
SVG_graph += SVG_line(x_coord[i-1],y_coord[i-1],x_coord[j-1],y_coord[j-1])}; 
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     } 
  if(A[i][j] == 2){ 
cxx = (x_coord[i-1]+x_coord[j-1])/2; cyy = (y_coord[i-1]+y_coord[j-1])/2; 
dx = (x_coord[i-1]-x_coord[j-1]); dy = (y_coord[i-1]-y_coord[j-1]); 
if(dx == 0){theta = 90}else{theta = Math.atan(dy/dx)*180/Math.PI}; 
rxx = Math.pow((x_coord[i-1]-x_coord[j-1])*(x_coord[i-1]-x_coord[j-1])+(y_coord[i-
1]-y_coord[j-1])*(y_coord[i-1]-y_coord[j-1]),0.5)/2; 
ryy = rxx/double_path_skinnyness; 
 
The portion of the code appearing above provides a “skinny” ellipse; such 

an ellipse is more presentable on screen for the purposes we require than a 

wider, shorter ellipse. 

 
SVG_graph += SVG_ellipse_rotate(cxx,cyy,rxx,ryy,theta,double_path_colour);}} 
 
The next portion of the code gives loops on a single vertex when required: 

 
        if(A[i][i] != 0){SVG_graph += SVG_ellipse(x_coord_loop[i-1],y_coord_loop[i-
1],rrloop,rrloop);}} 
 
 
return svg_start + SVG_graph + svg_end;} 
 

Code 2.3 The code for a labelled digraph. 
 

2.5 Vertex Colouring 

 

The next code shows the code for a graph that is used in vertex colouring. 

A similar coding to the network coding above is used, where circles are created to 

show visible vertices, but instead of colouring them in one colour, a variety of 

colours can be chosen; of course, for the purposes of vertex colouring, colours 

need to be specifically chosen, so that is considered in the coding below. 

 

//function 
SVG_digraph_label_colours(A,labels,ratio_along_line,filled,double_path_colour,ve
rtex_colours,numeric_order,double_path_skinnyness,vertex_radius,svg_start) 
 
If labels == 0, then an alphabetical order is given to the labels. If you want 

large, coloured vertices to appear, then set vertex_radius = 10. Otherwise, 

set vertex_radius = 0.1. 
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function 
SVG_digraph_label_colours(A,labels,ratio_along_line,filled,double_path_colour,ve
rtex_colours,numeric_order,double_path_skinnyness,vertex_radius,svg_start){ 
if(double_path_skinnyness == null){double_path_skinnyness = 10}; 
NRC = MatrixSize(A); 
var n = NRC[0]; 
substituted_labels = new Array(); 
if(labels == 0){ 
  for(i = 1; i <= n; i++){ 
     substituted_labels[i] = alphabet(i-1,1); 
  } 
}else{ 
  for(i = 1; i <= n; i++){ 
     substituted_labels[i] = labels[i]; 
  } 
} 
var fs = getFontSize()/16; 
size1 = fs*800; 
size2 = fs*800; 
size3 = fs*(100*fs*fs+410*fs+250); 
size4 = fs*(100*fs*fs+410*fs+200); 
if(svg_start == null){svg_start = '<iSvg:svg height="'+size1+'" width="'+size2+'" 
viewBox="0 0 '+size3+' '+size4+'"><iSvg:g id="canvas">';} 
   svg_end = '<iSvg:g></iSvg:svg>'; 
SVG_graph = ""; 
r = getFontSize()/16*150; 
rrloop = getFontSize()/16*50; 
rloop = r + rrloop; 
offset = r+getFontSize()/16*200; 
offset2 = r+getFontSize()/16*75; 
x_coord = new Array(n); 
y_coord = new Array(n); 
x_coord_loop = new Array(n); 
y_coord_loop = new Array(n); 
x_coord_label = new Array(n); 
y_coord_label = new Array(n); 
for(k = 0; k <= n-1; k++){ 
  x_coord[k] = r*Math.cos(2*k*Math.PI/n)+offset; 
  y_coord[k] = r*Math.sin(2*k*Math.PI/n)+offset; 
  x_coord_label[k] = ((1.4*r)+offset2)/2*Math.cos(2*k*Math.PI/n)+(0.9*offset); 
  y_coord_label[k] = ((1.4*r)+offset2)/2*Math.sin(2*k*Math.PI/n)+(offset); 
  x_coord_loop[k] = rloop*Math.cos(2*k*Math.PI/n)+offset; 
  y_coord_loop[k] = rloop*Math.sin(2*k*Math.PI/n)+offset; 
} 
colour = getFgColor(); 
for(i = 1; i <= n; i++) { 
 
     for(j = 1; j <= n; j++){ 
        if(A[i][j] == 1){ 
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if(ratio_along_line != 0){SVG_graph += SVG_arrow(x_coord[i-1],y_coord[i-
1],x_coord[j-1],y_coord[j-1],ratio_along_line,filled)}else{ 
SVG_graph += SVG_line(x_coord[i-1],y_coord[i-1],x_coord[j-1],y_coord[j-1])}; 
     } 
  if(A[i][j] == 2){ 
cxx = (x_coord[i-1]+x_coord[j-1])/2; 
cyy = (y_coord[i-1]+y_coord[j-1])/2; 
dx = (x_coord[i-1]-x_coord[j-1]); 
dy = (y_coord[i-1]-y_coord[j-1]); 
if(dx == 0){theta = 90}else{theta = Math.atan(dy/dx)*180/Math.PI}; 
rxx = Math.pow((x_coord[i-1]-x_coord[j-1])*(x_coord[i-1]-x_coord[j-1])+(y_coord[i-
1]-y_coord[j-1])*(y_coord[i-1]-y_coord[j-1]),0.5)/2; 
ryy = rxx/double_path_skinnyness;  
 
The portion of the code appearing above provides a “skinny” ellipse; such 

an ellipse is more presentable on screen for the purposes we require than a 

wider, shorter ellipse. 

 
SVG_graph += SVG_ellipse_rotate(cxx,cyy,rxx,ryy,theta,double_path_colour); 
     } 
  } 
 
The next portion of the code gives loops on a single vertex when required: 

 
        if(A[i][i] != 0){ 
           SVG_graph += SVG_ellipse(x_coord_loop[i-1],y_coord_loop[i-
1],rrloop,rrloop); 
     } 
} 
for(i = 1; i <= n; i++) { 
SVG_graph += SVG_ellipseblx(x_coord[i-1],y_coord[i-
1],vertex_radius,vertex_radius,vertex_colours[(numeric_order[i-1]-0)-
1])+SVG_scale_text(x_coord_label[i-1],y_coord_label[i-
1],substituted_labels[i],colour,fs); 
} 
return svg_start + SVG_graph + svg_end; 

} 

Code 2.4 The code for vertex colouring a graph. 
 

2.6 Wheel Graphs 

 

The next code in the template shows the code for a wheel graph. This 

graph looks at the points formed in a circle, but the centre point of that circle is 

included as an additional point. All points formed around the circle must join the 



30 
 

centre point and neighbouring points in the circle in order to create a proper wheel 

graph. 

 

function 
SVG_wheelgraph_label(rows,labels,ratio_along_line,filled,double_path_colour,dou
ble_path_skinnyness,svg_start){ 
 
A = getrandommatrix(rows, rows, 0, 0, 1); 
Dis = getrandommatrix(rows, rows, 0, 0, 1); 
for (i = 1; i <= rows-2; i++){ 
  A[i][i+1] = (A[i][i+1]-0)+1; 
} 
A[rows-1][1] = (A[rows-1][1]-0)+1; 
for(i = 1; i <= rows-1; i++){ 
 A[i][rows] = (A[i][rows]-0)+1; 
}  
for(i = 1; i <= rows; i++){ 
  for(j = i; j <= rows; j++){ 
     Dis[i][j] = Math.max((A[i][j]-0),(A[j][i]-0)); 
     Dis[j][i] = Math.max((A[i][j]-0),(A[j][i]-0)); 
  } 
} 
 
if(double_path_skinnyness == null){double_path_skinnyness = 10}; 
NRC = MatrixSize(Dis); 
var n1 = NRC[0] - 1; 
var n = NRC[0]; 
var fs = getFontSize()/16; 
size1 = fs*1200; 
size2 = fs*1200; 
size3 = fs*(100*fs*fs+410*fs+250); 
size4 = fs*(100*fs*fs+410*fs+200); 
if(svg_start == null){svg_start = '<iSvg:svg height="'+size1+'" width="'+size2+'" 
viewBox="0 0 '+size3+' '+size4+'"><iSvg:g id="canvas">';} 
   svg_end = '<iSvg:g></iSvg:svg>'; 
SVG_graph = ""; 
r = getFontSize()/16*150; 
rrloop = getFontSize()/16*50; 
rloop = r + rrloop 
offset = r+getFontSize()/16*150; 
offset2 = r+getFontSize()/16*75; 
x_coord = new Array(n); 
y_coord = new Array(n); 
x_coord_loop = new Array(n); 
y_coord_loop = new Array(n); 
x_coord_label = new Array(n); 
y_coord_label = new Array(n); 
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for(k = 0; k <= n1-1; k++){ 
  x_coord[k] = r*Math.cos(2*k*Math.PI/n1)+offset; 
  y_coord[k] = r*Math.sin(2*k*Math.PI/n1)+offset; 
  x_coord_label[k] = ((1.4*r)+offset2)/2*Math.cos(2*k*Math.PI/n1)+(0.85*offset); 
  y_coord_label[k] = ((1.4*r)+offset2)/2*Math.sin(2*k*Math.PI/n1)+(offset); 
  x_coord_loop[k] = rloop*Math.cos(2*k*Math.PI/n1)+offset; 
  y_coord_loop[k] = rloop*Math.sin(2*k*Math.PI/n1)+offset; 
} 
  x_coord[n-1] = offset; 
  y_coord[n-1] = offset; 
  x_coord_label[n-1] = (r/5)+offset; 
  y_coord_label[n-1] = (r/5)*Math.sin(2*Math.PI/n1)+offset; 
  x_coord_loop[n-1] = offset; 
  y_coord_loop[n-1] = offset; 
colour = getFgColor(); 
//SVG_graph += SVG_ellipsebl(x_coord[n-1],y_coord[n-
1],0.1,0.1)+SVG_scale_text(x_coord_label[n-1],y_coord_label[n-1],"",colour,fs); 
for(i = 1; i <= n; i++) { 
  SVG_graph += SVG_ellipsebl(x_coord[i-1],y_coord[i-
1],0.1,0.1)+SVG_scale_text(x_coord_label[i-1],y_coord_label[i-1],labels[i-
1],colour,fs); 
     for(j = 1; j <= n; j++){ 
        if(A[i][j] == 1){ 
if(ratio_along_line != 0){SVG_graph += SVG_arrow(x_coord[i-1],y_coord[i-
1],x_coord[j-1],y_coord[j-1],ratio_along_line,filled)}else{ 
SVG_graph += SVG_line(x_coord[i-1],y_coord[i-1],x_coord[j-1],y_coord[j-1])};} 
  if(A[i][j] == 2){ 
cxx = (x_coord[i-1]+x_coord[j-1])/2; 
cyy = (y_coord[i-1]+y_coord[j-1])/2; 
dx = (x_coord[i-1]-x_coord[j-1]); 
dy = (y_coord[i-1]-y_coord[j-1]); 
if(dx == 0){theta = 90}else{theta = Math.atan(dy/dx)*180/Math.PI}; 
rxx = Math.pow((x_coord[i-1]-x_coord[j-1])*(x_coord[i-1]-x_coord[j-1])+(y_coord[i-
1]-y_coord[j-1])*(y_coord[i-1]-y_coord[j-1]),0.5)/2; 
ryy = rxx/double_path_skinnyness; // gives a skinny ellipse 
SVG_graph += SVG_ellipse_rotate(cxx,cyy,rxx,ryy,theta,double_path_colour);}} 
 
The next portion of the code gives loops on a single vertex when required: 

 
        if(A[i][i] != 0){ 
           SVG_graph += SVG_ellipse(x_coord_loop[i-1],y_coord_loop[i-
1],rrloop,rrloop); 
     }} 
 
return svg_start + SVG_graph + svg_end; 

} 

Code 2.5 The code for a wheel graph. 
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2.7 Ladder Graphs 

 

The next code in the template shows the code for a ladder graph. Since all 

ladder graphs have an even number of vertices (i.e. in order for a proper ladder 

shape to be formed), the laddersize variable is the “height” of the ladder (i.e. how 

many vertices high the ladder will go to be formed). The ladder shape is formed in 

the code below, meaning that the “circular” pattern used in the previous codes is 

not considered here. 

 

function SVG_laddergraph(laddersize,ratio_along_line,filled,svg_start){ 
double = 2*laddersize; 
A = getrandommatrix(double, double, 0, 0, 1); 
Dis = getrandommatrix(double, double, 0, 0, 1); 
for(i = 1; i <= laddersize - 1; i++){ 
  A[i][i+1] = 1; 
} 
for(i = 1; i <= laddersize; i++){ 
  A[i][i+laddersize] = 1; 
} 
for(i = laddersize+1; i <= double - 1; i++){ 
  A[i][i+1] = 1; 
} 
# alert(A); 
 
for(i = 1; i <= double; i++){ 
  for(j = i; j <= double; j++){ 
     Dis[i][j] = Math.max((A[i][j]-0),(A[j][i]-0)); 
     Dis[j][i] = Math.max((A[i][j]-0),(A[j][i]-0)); 
  } 
} 
fs = getFontSize(); 
size1 = fs/16*1000; 
size2 = fs/16*1200; 
size3 = fs/16*1200; 
size4 = fs/16*1400; 
if(svg_start == null){svg_start = '<iSvg:svg height="'+size1+'" width="'+size2+'" 
viewBox="0 0 '+size3+' '+size4+'"><iSvg:g id="canvas">';} 
   svg_end = '<iSvg:g></iSvg:svg>'; 
SVG_graph = ""; 
r = getFontSize()/16*150; 
offset = r+getFontSize()/16*100; 
offset2 = -r+getFontSize()/16*75; 
label_shift = getFontSize()/16*5; 
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This portion of the code details the placement of vertices in the “ladder 

shape”. 

 
x_coord = new Array(n); 
y_coord = new Array(n); 
x_coord_label = new Array(n); 
y_coord_label = new Array(n); 
for(k = 0; k <= laddersize-1; k++){ 
  x_coord[k] = (r*k)-(2*offset2); 
  y_coord[k] = offset; 
  x_coord_label[k] = x_coord[k]; 
  y_coord_label[k] = offset-label_shift;} 
for(k = laddersize; k <= double-1; k++){ 
  x_coord[k] = (r*(k-laddersize))-(2*offset2); 
  y_coord[k] = 2*offset; 
  x_coord_label[k] = x_coord[k]; 
  y_coord_label[k] = 2*offset+4*label_shift;} 
colour = getFgColor(); 
for(i = 1; i <= double; i++) { 
  SVG_graph += SVG_ellipsebl(x_coord[i-1],y_coord[i-
1],0.1,0.1)+SVG_scale_text(x_coord_label[i-1],y_coord_label[i-
1],labels[i],colour,fs/16); 
 for(j = 1; j <= double; j++){ 
        if(A[i][j] == 1){ 
           if(ratio_along_line != 0){ 
              SVG_graph += SVG_arrow(x_coord[i-1],y_coord[i-1],x_coord[j-
1],y_coord[j-1],ratio_along_line,filled) 
           }else 
{ 
              SVG_graph += SVG_line(x_coord[i-1],y_coord[i-1],x_coord[j-1],y_coord[j-
1]) 
}; 
           } 
   } 
} 
return svg_start + SVG_graph + svg_end; 

} 

Code 2.6 The code for a ladder graph. 
 

 

2.8 Shortest Path Graphs 
 

The last code in the template shows the code for a graph used in shortest 

path problems. In these problems, ordering of vertices needs to go from left to 
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right to help illustrate the movement from a starting vertex to a terminating vertex. 

The code below achieves this using negatives and is detailed below. 

 

 
SVG_shortest_path(A,labels,ratio_along_line,filled,double_path_colour,vertex_col
ours,numeric_order,double_path_skinnyness,vertex_radius,svg_start) 
 
If labels == 0, then alphabetical order is given to the labels. 

If you want large, coloured vertices to appear, then set vertex_radius = 10; 

otherwise, set vertex_radius = 0.1. 

If numeric_order == 0, then normal increasing ordering occurs; otherwise, 

an array is required for numeric_order. 

 
function 
SVG_shortest_path(A,labels,ratio_along_line,filled,double_path_colour,vertex_col
ours,numeric_order,double_path_skinnyness,vertex_radius,svg_start){ 
if(double_path_skinnyness == null){double_path_skinnyness = 10}; 
NRC = MatrixSize(A); 
var n = NRC[0]; 
substituted_labels = new Array(); 
if(labels == 0){ 
  for(i = 1; i <= n; i++){ 
     substituted_labels[i] = alphabet(i-1,1); 
  } 
}else{ 
  for(i = 1; i <= n; i++){ 
     substituted_labels[i] = labels[i]; 
  } 
} 
var fs = getFontSize()/16; 
size1 = fs*800; 
size2 = fs*800; 
size3 = fs*(100*fs*fs+410*fs+250); 
size4 = fs*(100*fs*fs+410*fs+200); 
if(svg_start == null){svg_start = '<iSvg:svg height="'+size1+'" width="'+size2+'" 
viewBox="0 0 '+size3+' '+size4+'"><iSvg:g id="canvas">';} 
   svg_end = '<iSvg:g></iSvg:svg>'; 
SVG_graph = ""; 
r = getFontSize()/16*150; 
rrloop = getFontSize()/16*50; 
rloop = r + rrloop; 
offset = r+getFontSize()/16*200; 
offset2 = r+getFontSize()/16*75; 
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This section of the code details the placement of vertices. For this particular 

type of function, it is important that vertices appear in a left-to-right 

formation to help illustrate the path from a starting vertex to a terminating 

vertex. Negatives are included in the x-coordinates to begin on the left-hand 

side, but have also been included in the y-coordinates, as powers of -1, in 

order to use vertices above and below as ordering moves from left to right. 

 

x_coord = new Array(n); 
y_coord = new Array(n); 
x_coord_loop = new Array(n); 
y_coord_loop = new Array(n); 
x_coord_label = new Array(n); 
y_coord_label = new Array(n); 
for(k = 0; k <= n-1; k++){ 
  x_coord[k] = (-1)*r*Math.cos(2*Math.ceil(k/2)*Math.PI/n)+offset; 
  y_coord[k] = Math.pow(-1,k)*r*Math.sin(2*Math.ceil(k/2)*Math.PI/n)+offset; 
  x_coord_label[k] = (-
1)*((1.3*r)+offset2)/2*Math.cos(2*Math.ceil(k/2)*Math.PI/n)+(0.98*offset); 
  y_coord_label[k] = Math.pow(-
1,k)*((1.3*r)+offset2)/2*Math.sin(2*Math.ceil(k/2)*Math.PI/n)+(offset); 
  x_coord_loop[k] = (-1)*rloop*Math.cos(2*Math.ceil(k/2)*Math.PI/n)+offset; 
  y_coord_loop[k] = Math.pow(-
1,k)*rloop*Math.sin(2*Math.ceil(k/2)*Math.PI/n)+offset; 
} 
 
colour = getFgColor(); 
for(i = 1; i <= n; i++) { 
  if(numeric_order == 0){ 
     SVG_graph += SVG_ellipseblx(x_coord[i-1],y_coord[i-
1],vertex_radius,vertex_radius,vertex_colours[i-
1])+SVG_scale_text(x_coord_label[i-1],y_coord_label[i-
1],substituted_labels[i],colour,fs); 
  }else{ 
     SVG_graph += SVG_ellipseblx(x_coord[i-1],y_coord[i-
1],vertex_radius,vertex_radius,vertex_colours[(numeric_order[i-1]-0)-
1])+SVG_scale_text(x_coord_label[i-1],y_coord_label[i-
1],substituted_labels[i],colour,fs); 
  } 
     for(j = 1; j <= n; j++){ 
        if(A[i][j] == 1){ 
if(ratio_along_line != 0){SVG_graph += SVG_arrow(x_coord[i-1],y_coord[i-
1],x_coord[j-1],y_coord[j-1],ratio_along_line,filled)}else{ 
SVG_graph += SVG_line(x_coord[i-1],y_coord[i-1],x_coord[j-1],y_coord[j-1])}; 
     } 
  if(A[i][j] == 2){ 
cxx = (x_coord[i-1]+x_coord[j-1])/2; 
cyy = (y_coord[i-1]+y_coord[j-1])/2; 
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dx = (x_coord[i-1]-x_coord[j-1]); 
dy = (y_coord[i-1]-y_coord[j-1]); 
if(dx == 0){theta = 90}else{theta = Math.atan(dy/dx)*180/Math.PI}; 
rxx = Math.pow((x_coord[i-1]-x_coord[j-1])*(x_coord[i-1]-x_coord[j-1])+(y_coord[i-
1]-y_coord[j-1])*(y_coord[i-1]-y_coord[j-1]),0.5)/2; 
ryy = rxx/double_path_skinnyness; // gives a skinny ellipse 
SVG_graph += SVG_ellipse_rotate(cxx,cyy,rxx,ryy,theta,double_path_colour); 
     } 
  } 
 

The next portion of the code gives loops on a single vertex when required: 

 
        if(A[i][i] != 0){ 
           SVG_graph += SVG_ellipse(x_coord_loop[i-1],y_coord_loop[i-
1],rrloop,rrloop);}} 
 
return svg_start + SVG_graph + svg_end;} 
 

Code 2.7 The code for a graph to be used in a shortest path problem 
question. 
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Chapter 3 Content and Design of 
Graph Theory Problems 
within Online Learning 
and Assessment 

 

3.1 Degree 
 

3.1.1 Addition of Weights 
   

Four prepared questions test students’ understanding of order. The first 

question introduces the student to the concept of order by just looking at the 

weights of the edges within the corresponding digraph. The idea behind the 

question is to set the concept of in(out)degree in a concrete and easily 

understood setting. 

 

 

Figure 3.1 Example of a question on order and network matrices. 
 

The student is asked to determine the number of cards Reginald gave 

away; however, the coding also allows the possibility for the question to have 

asked to see how many cards he received. In this question, the correct answer is 

the sum of the values in the 8th row, i.e. 10 + 4 + 8 + 5 + 0 + 9 + 8 + 0 + 9 + 0 + 9 

+ 9 = 71. 
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As a guideline to help students further, there is a note at the beginning of 

the question that states the meaning of entry, a2,9. Also, this is a numeric input 

(NI) question, which is useful for determining whether or not the student correctly 

added up the proper values (i.e. the row entries or the column entries for the 

selected person; zero entries will not affect final outcomes). Doing this helps to 

enable the student to see the difference between indegree and outdegree. 

This question randomly selects one number between eight and fifteen; this 

number will represent the number of people to be listed in the adjacency matrix. 

Furthermore, each entry in the adjacency matrix is a random number between 

zero and ten. However, for determining the values to be used, it is important to 

use fewer tens simply due to the ease of calculating a sum with more tens 

included. Therefore, when displaying the adjacency matrix, it is important to edit 

the normally used formula, Math.round(Math.random()*10), slightly so that fewer 

tens can appear. Therefore, the formula being used for each entry is given as 

Math.round(Math.random()*9.7).  

 

3.1.2 Order of an Undirected Graph 
   

The next question involves asking the student for the degree of a 

particular vertex (in this case, the vertex is Cormac). Note that this is not the 

same as asking for the sum of entries in a row or column because degree only 

refers to the number of connections to (or from) a particular vertex. Because 

students may easily make this error, it is important to highlight this concept and 

compare it with the previous question on the sum of weights in order to more 

clearly demonstrate the difference between the two concepts. Also, because this 

question is asking for the degree of a particular vertex, the adjacency matrix must 

be symmetrical in every case. However, do note that although the corresponding 

network matrix does not have to be symmetric, it is made symmetric in this 

question to avoid confusion for students. 

The programming used in this question is the same as the previous 

question, but instead, there are more zeros being included. In doing this, the 

likelihood of having similar answers every time is reduced, albeit by a small 

amount. This question could also easily be made into a Responsive, Numeric 
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Input (RNI) question, allowing for some additional feedback for answering the 

question by calculating the sum of the weights in the associated row or column. 

This type of question is most useful to teachers who can then see how often 

various distracters are used by a cohort of students. However, the feedback 

states the solution with much detail, including a graphical interpretation of the 

data, and furthermore, such an incorrect answer would not warrant any partial 

credit anyway. Therefore, it is more appropriate to use Numerical Input for this 

problem. 

 

 

Figure 3.2 Example of a question about degree in Graph Theory. 
 

 

Figure 3.3 Solution to example on degree in Figure 3.2. 
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3.1.3 Order of a Directed Graph 
   

The third question asks either for the indegree or the outdegree of a 

particular vertex. In the first example, the question is asking for the indegree for 

Linda. Similar to the previous question, this question is asking for the number of 

people that have traded any number of cards (greater than zero) to or from a 

particular player. However, in this question, students can very easily misinterpret 

indegree and outdegree or they may even simply not read the question properly 

and calculate the wrong degree. Therefore, having an RNI question here is a 

considerable option and hence, has also been created. 

 

 

Figure 3.4 An example of a question about the indegree of a vertex. 
 

The second example is looking at the outdegree for Hannah. 

 

 

Figure 3.5 An example of a question about the outdegree of a vertex. 
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3.1.4 Degree Sequences 
   

Also important when understanding order is understanding how particular 

sequences of vertex degrees can lead to particular graphs:  

 

Def. 3.1 A degree sequence is a monotonic, non-increasing sequence of 
vertex degrees46. 

 

This is usually applied to undirected graphs as digraphs can have differing 

indegrees and outdegrees for the same vertex of a particular graph. For 

undirected graphs, it is necessary to note that the sum of degrees in the 

sequence needs to be even as every edge joins two vertices. 

The example shown in Figure 3.6 illustrates one particular graph and the 

formatting of the question. Note the italicised print in the example. Also note the 

question format is special because it amalgamates two other question types, 

namely Word Input (WI) and Responsive Numeric Input (RNI), to create a 

Responsive Word Input (RWI) question. The italicised print makes it clear how 

to input the answer. In this case, all values need to be separated only by a 

comma and there should be no spaces whatsoever in the response. Additionally, 

there are two hidden distracters in this question, namely 

 

 List is in non-decreasing, numerical order (e.g. {4,4,6,6,7,8,9}) 

 List is in alphabetical order of vertices (e.g. {4,7,4,6,9,6,8}) 

 

 

Figure 3.6 An example of a Responsive Word Input (RWI) question about the degree 
sequence of a graph. 
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If a student was to implement the first distracter, then (s)he would receive 

a partial credit of 1 mark out of 2 for having the correct values in a particular, 

numeric order, although the order was incorrect. However, if the student 

implements the second distracter, then (s)he would not receive any marks as 

(s)he did not attempt to arrange the values in any particular, numeric order, but 

rather typed in the values as they appear alphabetically in the graph. 

 

3.2 Adjacency Matrices 
 

3.2.1 Translating a Graph and an Adjacency Matrix 
 

  

Figure 3.7 An example of a Responsive Word Input (RWI) question, asking to find the error 
between an adjacency matrix and its corresponding graph. 

 

To use adjacency matrices, it is important to be able to look at a graph and 

translate the information from it into an adjacency matrix; likewise, it is important 

to be able to look at an adjacency matrix and be able to draw a graph from it. The 

question shown in Figure 3.7 allows the student to practice doing this by asking 
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him/her to find an error between an adjacency matrix and its corresponding 

graph. 

This is an RWI question as the correct answer is a string of two letters 

instead of a typical, numerical response. This question uses digraphs instead of 

undirected graphs, whose adjacency matrices are symmetric, thus making it 

easier to detect an error, whereas simple digraphs are not symmetric and so, it is 

more difficult to find any error in the corresponding adjacency matrix. The 

highlighted position is also used to help the student understand how to input the 

answer in the text box.  

In this question, the correct answer is 𝐹𝐸⃗⃗⃗⃗  ⃗. In the matrix, 𝐹𝐸⃗⃗⃗⃗  ⃗ = 0, but the 

edge exists in the graph as there is an arrow going from F to E. 

 

3.2.2 Finding an Appropriate Adjacency Matrix 
 

There are three questions to this section, which look at comparing 

adjacency matrices to their graphs. The first question looks at a graph and asks 

students to determine the correct adjacency matrix. An example of this is shown 

in Figure 3.8. However, before looking at the example, it is important to recall the 

following definition of a loop47: 

 

Def. 3.2 A loop is an edge that connects a vertex to itself or a pair of edges 
that are both connected to the same pair of vertices (also known as 
parallel edges). 

 

Note that the red edges represent loops travelling between two vertices. 

The correct answer to the problem in Figure 3.8 is “None of these!”. 
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Figure 3.8 An example of a question asking to match the graph to one of four adjacency 
matrices. 

 

3.2.3 Finding an Appropriate Graph 
 

The second question looks at an adjacency matrix and asks the student to 

determine the correct graph. This question is as simple as the previous question 

since the creativity of having a student select an incorrect answer only lies with 

the creation of one matrix and then adding (or subtracting) random edges from it 

to create the other graphs. 

Because this question simply involves matching the adjacency matrix to 

the correct graph, there are virtually no common errors that can be made, other 

than a simple error in matching the edges, or lack thereof, to the given adjacency 

matrix. Therefore, this question is only worth one mark. Also, for the same 

reason, the feedback is limited to suggest that this problem may be solved using 

the method of deduction and that they need to carefully eliminate each distracter. 
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Figure 3.9 An example of a Responsive Word Input (RWI) question, asking to find an error in 
the corresponding graph for a given adjacency matrix, including a pop-up window 
that appears after first submitting an answer.  

 

The third question, shown in Figure 3.9, looks at an adjacency matrix and 

a corresponding digraph for it. In this question, the student is asked to examine 

the digraph and determine which edge is not in the digraph, but appears in the 

adjacency matrix. In order for the student to input a feasible correct answer, 

details about how to input the answer are given immediately above the answer 

box. However, for added effectiveness, one position in the adjacency matrix is 

randomly highlighted and a corresponding answer is then given; note that this 

may actually be the correct answer, but will often not be the case. Also, as this 

looks at a digraph, it is possible for the answer to not be in alphabetical order (i.e. 

BA  instead of AB ), but this should be expected of any capable student 

undergoing such questions in graph theory. 

When submitting an answer, a pop-up window appears, asking the student 

to make sure that the answer submitted is in the proper format and that it is 
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exactly what they wish to submit. The reason for choosing a pop-up window is 

because it appears instantly and usually with a sound effect included so that 

students are immediately drawn to it. Also, once a pop-up window appears, 

students cannot continue answering the question until the pop-up window is 

closed, so it compels them to pay attention to it. Once the pop-up window is 

closed, if the student is still satisfied with his/her answer, then (s)he can resubmit 

the answer; otherwise, (s)he can submit another answer; in doing so, though, the 

pop-up will reappear, but this is noted in the pop-up window already. 

As this question simply involves a quick search for a missing edge, one 

mark is given for a correct answer. However, if a student were to give the reverse 

of a correct answer, then no marks are given, but additional feedback is given to 

suggest what error the student may have made.   

 

3.3 Edge and Vertex Sets 
 

 

Four questions have been prepared within the Edge and Vertex Sets 

section of Mathletics. All of the questions in this section use the Word Input (WI) 

format with a character check to ensure that the length of a student’s answer is 

the same as that of the correct answer; this also prevents students from writing 

any derogatory remarks or any other unnecessary things in the answer box. 

 

3.3.1 Vertex Sets 
 

The first question in this section asks to determine the vertex set for a 

randomly chosen graph. This question is relatively simple and the parentheses 

are already included so that students do not accidentally select a different set of 

parentheses when attempting the question. 

 

3.3.2 Vertex Sets for Unconnected Graphs 
 

In the question shown in Figure 3.10, some students may fail to recognise 

that although vertices, C and D, are disconnected from the rest of the graph, they 
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are still part of the graph, as shown. Therefore, some students may give the 

answer, {A,B,E,F,G}, even though the correct answer is {A,B,C,D,E,F,G}.  

 

 

Figure 3.10 An example of a question asking to determine the vertex set of a graph with two 
vertices, namely C and D, having no edges connected to them. 

 

 

Figure 3.11 An alert box appears, asking the student to verify the answer entered before 
clicking on Submit a second time. 

 

One issue when dealing with this question is the generic format of the 

Word Input questions. If a student answered A,B,E,F,G, then (s)he would be 

given an alert, noting that the answer is invalid because of the number of 

characters in the answer. Because of this, students may ponder about the 
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reasoning for this. One option, which has been implemented in this question and 

shown in Figure 3.11, is to change the alert so that it does not give away the 

answer so easily. For both of these questions, the alert will appear automatically, 

reminding students to verify their answers. If a student decides to change his/her 

answer, then the alert will appear again. However, if a student decides to keep 

his/her answer, then, upon clicking the Submit button again, the alert will not 

appear and the answer will be recorded and evaluated. 

 

3.3.3 Edge Sets for Undirected Graphs 
 

This question does not involve digraphs, so students just need to enter 

each edge separately and in alphabetical order. There are no specified common 

errors that could be made here, other than a simple error in listing all of the 

edges. The only problematic situation is the inclusion of loops in a graph. Using 

the format provided in the question, students should notice that the loop for 

vertex, A, should be labelled as AA because the labels show the beginning and 

end vertices for each edge; similarly, the loop for vertex, D, should be labelled as 

DD. However, this would be an error in the understanding of the question, not a 

perceived common error. In this particular question, the correct answer would be 

{AA,AB,AD,BC,BD,BE,CE,DD,DE}. 

 

3.3.4 Edge Sets for Directed Graphs 
 

The final question, as shown in Figure 3.12, in this set is similar to the 

previous question, but it makes use of digraphs instead. Note that the question 

type implemented is Responsive Word Input (RWI). 

The important thing to note in this question is the direction of the edges. It 

is possible for a digraph to have all edges listed so that each pairing is in 

alphabetical order, such as AB , CD , and EF . Therefore, one edge, at least, is 

deliberately set so that it will go in anti-alphabetical order, such as EA ; this is 

done by randomly selecting two unequal values from 1 to n, where n is the 

number of vertices in the question, and allowing , 1j ia  , where j i , , 0i ja  . 
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In this question, the ordering of the letters for each edge is important 

because, for instance, CF  does not appear in the graph because there are no 

edges going in that direction, but FC  does appear because there is an edge that 

shows an arrow pointing from F to C. For this given question, the correct answer 

would be  

{𝐴𝐷⃗⃗ ⃗⃗  ⃗, 𝐴𝐸⃗⃗⃗⃗  ⃗, 𝐵𝐶⃗⃗⃗⃗  ⃗, 𝐵𝐷⃗⃗⃗⃗⃗⃗ , 𝐵𝐹⃗⃗⃗⃗  ⃗, 𝐶𝐴⃗⃗⃗⃗  ⃗, 𝐶𝐸⃗⃗⃗⃗  ⃗, 𝐶𝐹⃗⃗⃗⃗  ⃗, 𝐷𝐶⃗⃗⃗⃗  ⃗, 𝐸𝐷⃗⃗ ⃗⃗  ⃗, 𝐸𝐹⃗⃗⃗⃗  ⃗, 𝐸𝐺⃗⃗⃗⃗  ⃗, 𝐹𝐺⃗⃗⃗⃗  ⃗, 𝐺𝐴⃗⃗⃗⃗  ⃗, 𝐺𝐵⃗⃗⃗⃗  ⃗, 𝐺𝐷⃗⃗ ⃗⃗  ⃗} 

Of course, when students answer this question, they will not have use of 

the vector arrows, so they will just input the letter pairs instead. 

 

 

Figure 3.12 An example of a Responsive Word Input (RWI) question asking to determine the 
edge set of a digraph. 

 

3.4 Simple and Connected Graphs 
 

Due to the simpler nature of simple and connected graphs, both graph 

types are combined together in this section when writing questions on these 

topics. Also, because of the simple nature of the graphs, there are only three 

questions. The first question looks at finding a simple and connected graph 

among a list of four candidates, the second question looks at finding a simple and 

connected graph among a list of four adjacency matrices, and the third question 

combines graphs and adjacency matrices. However, in order to make the 

question slightly more difficult, a scenario is given in such a way that a student 

reading the question must determine what has to be found.  
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Distracters are easily determined using the definitions of simple and 

connected graphs: One distracter has a loop around one vertex and another 

distracter has a loop around a pair of vertices. A third distracter is not connected. 

A fourth distracter has loops everywhere. 

 

 

Figure 3.13 A Multiple-choice (MC) question asking to find the simple, connected graph that 
could be formed among a list of candidate adjacency matrices. 

 

 

3.5 Hamiltonian and Eulerian Cycles 
 

There are six questions that deal with these two special cycles, all of 

which are Multiple-choice (MC) questions. For each cycle, there is one question 

including the graphs themselves, one question including the adjacency matrices 

to the graphs, and one example including a random mixture of graphs and 

adjacency matrices. Even though these are all MC questions, the skills and 

understanding needed to answer these questions will become very challenging, 

in a positive way, for most students. 
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3.5.1 Finding a Graph or Adjacency Matrix that is Non-

Hamiltonian 
 

3.5.1.1 Finding a Graph that is Non-Hamiltonian 

  

 

  

Figure 3.14 An example of a Multiple-choice (MC) question asking to find the graph that does 
not fit the properties of a Hamiltonian graph. 

 

The first question gives a scenario of a person travelling to a number of 

cities exactly once before returning home. However, in the problem, the person 

involved has a set of different route maps (for different areas obviously). The 

problem at hand, though, is that one of the maps may not be sufficient for doing 

such a trip. Therefore, the student is asked to determine which of the maps the 

traveller should definitely not select.  

For this question to work, a lot of mathematical theory is required. In order 

to obtain the correct answer (bottom left), the following theorem is needed: 

 

Theorem 3.1 Let G be a connected, bipartite, undirected graph with the 

vertices, V, partitioned as 1 2V V V  . If 1 2V V , then G cannot 

have a Hamiltonian cycle.48 
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Example 3.1 For the bipartite graph shown in the figure below, show why there 

cannot be a Hamiltonian cycle. 

 

 

Note that the two partitions in this bipartite graph are  1 , ,V A H I  

and  2 , , , , ,V B C D E F G , 1 3V  , 2 6V  , and that 1 2V V . 

Suppose we start with vertex, A, in V1. From vertex, A, we could 

travel to any vertex in V2, so choose vertex, B. From vertex, B, 

we need to return to V1, so choose vertex, H. From vertex, H, we 

need to return to V2, so choose vertex, C. From vertex, C, we 

need to return to V1, so choose vertex, I. From vertex, I, we need 

to return to V2, so choose vertex, D. From vertex, D, we need to 

return to V1, but we cannot do so as we have already visited 

every vertex in V1 and as we have not yet visited vertices, E, F, 

or G, we cannot possibly obtain a Hamiltonian cycle starting with 

a vertex in V1. A similar pattern would occur if we began with a 

vertex in V2.   □ 

 

In this question presented in Figure 3.14, the traveller, Ellen, wants to visit 

a total of eight cities on her road trip. She has four maps for four different areas. 

In two of the graphs, namely the second and fourth graphs, there is clear 

evidence of Hamiltonian cycles being present in each as the second graph (top 

centre) is only one Hamiltonian cycle (thus also making it an Eulerian cycle) and 

as the fourth graph (right side) is nearly complete, i.e. almost all vertices are 

connected by all other vertices. The third graph (bottom centre) can also be 

shown to have the Hamiltonian cycle, A C D F B E A      . All that 

now has to be decided is whether or not the first graph has a Hamiltonian cycle. 

From looking at this graph, it is obvious to see that it is a bipartite graph of 
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partitions of sizes, two and four. As these two partitions are not equivalent, it is 

not possible to form a Hamiltonian cycle with this graph48. 

With this question, it would not be sufficient to leave this as the only 

possible solution as students may discover the pattern through repeated 

attempts. Therefore, alternate solutions can be randomly generated, such as the 

graph shown below: 

 

 

Figure 3.15 An example of an alternate solution to the problem involving Hamiltonian cycles 
with graphs given, using two separate cycles connected by one vertex. 

  

This graph is formed by creating a Hamiltonian path from a starting vertex 

to an end vertex. From there, a set of edges is added, starting with the end vertex 

of the Hamiltonian path, where each vertex is connected to the vertex that is of 

length, two, away from it in the path. However, the second last edge in the 

Hamiltonian path is exempt from this, thus causing a potential Hamiltonian cycle 

to disappear. This causes two distinct Hamiltonian cycles to form, one of which 

being a triangle, connected by a joint vertex. However, together as one graph, no 

Hamiltonian cycles can be formed as any cycle would have to reach the joint 

vertex at least twice before it returns to the starting vertex (three times if the joint 

vertex is the starting vertex). In this example, a Hamiltonian path is given as 

A D C E F G B      . 

For this problem, a third alternate solution is provided so that students 

may not quickly recognize any patterns in the correct solutions. 

With this graph, a Hamiltonian path is created by randomly arranging the 

order of the vertices, then creating a connecting path between adjacent vertices 

in the arrangement. In this example, a Hamiltonian path is 

 

A E F C D H      G B . 
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Figure 3.16 An example of an alternate solution to the problem involving Hamiltonian cycles 
with graphs given, using two separate cycles connected by one edge. 

 

Two cycles are created by splitting the n vertices into two equal partitions 

(i.e. equal partitions when n is even and having one partition with an extra 

element when n is odd); in this example, the partitions are {A,E,F,G} and 

{B,C,D,H}. Each partition then has a Hamiltonian cycle added to it by creating a 

simple polygon from the first vertex in the partition to the last vertex. Extra edges 

are randomly added between vertices in a partition so that each partition of the 

graph (or subgraph) may be more unique. However, even though each partition 

has a Hamiltonian cycle, the graph itself does not as the two partitions are 

connected by one edge (from the Hamiltonian path) created between the last 

vertex in the first partition and the first vertex in the second partition; in this case, 

the edge is G B . Similar to the previous solution, these specific vertices will be 

used at least twice (or three times if one of them is a starting vertex) in order to 

make a cycle. Therefore, no Hamiltonian graphs can be formed.  

This question does require some skill in finding the Hamiltonian cycles 

within the other graphs in order to eliminate them as candidate solutions. 

However, towards the end, it becomes progressively more difficult to find 

Hamiltonian cycles, especially if the above examples of two disjoint cycles were 

to appear. Also recall that although this is a MC question, the option, None of 

these!, is always available and is sometimes the correct solution, thus making 

this question all the more challenging. 

 

3.5.1.2 Finding an Adjacency Matrix that is Non-Hamiltonian 

 

The second question looks at the adjacency matrices rather than the 

graphs, but is otherwise identical to the previous question, where a student has 
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to find the adjacency matrix that does not generate a Hamiltonian cycle. With this 

question, it is more difficult to find Hamiltonian graphs as the graphs are simply 

not given in the question.  

 

3.5.1.3 Finding Either a Graph or an Adjacency Matrix that is 
Non-Hamiltonian  

 

This question combines graphs and adjacency matrices within multiple-

choice answers to create a more challenging question. This question forces 

students to use both their visual and logical intelligences in order to solve the 

problem correctly. In this question, the third option has been randomly chosen to 

be shown as a graph, whereas the other three options have been randomly 

chosen to be shown as adjacency matrices. With each option having its own 

“switch”, it is possible, with a probability of 1
8 , for all four options to appear as 

graphs or for all of them to appear as adjacency matrices. 

 

3.5.2 Finding a Graph or Adjacency Matrix that is Eulerian 
 

The next three questions look at Eulerian cycles. In contrast to the 

Hamiltonian graphs questions, these questions ask to find a graph or adjacency 

matrix that is indeed Eulerian. 

 

3.5.2.1 Finding a Graph which is Eulerian 

 

The third question asks to find an Eulerian cycle from a list of graphs. 

Similar to the questions on Hamiltonian cycles, this question gives a road trip 

scenario, but instead of visiting several towns or cities, the traveller simply wants 

to go on a journey, possibly just to explore the sights. In doing so, the traveller 

does not want to travel the same road twice, so (s)he maps out his/her journey by 

making a note of every road travelled before going home along another route to 

maximize the amount of scenery witnessed. 

An Eulerian graph appears if and only if there is, at most, one nontrivial 

component and (more importantly) all of the vertices have even degree49. 

Therefore, for some students, answering this question will be simple as they can 
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easily eliminate three candidate solutions, at least, by just looking at the degrees 

of the vertices in each graph. 

 

   

Figure 3.17 An example of a Multiple-choice (MC) question, asking to find the graph that best 
fits the properties of an Eulerian graph. 

 

Technically speaking, Eulerian graphs are easier to study mathematically 

than Hamiltonian graphs53. This can be explained using the characterization of 

Eulerian graphs50: 

 

The following statements are equivalent for a connected graph, G: 

1. G is Eulerian. 

2. The degree of every vertex is even. 

3. G is the union of edge-disjoint cycles. 

 

From this, it is clear that students just need to know that the degree of 

every vertex is even and that the graph is not one with no cycles (i.e. a tree) in 

order to see that the graph is Eulerian. As such, the marking scheme for the 

questions generated is reduced somewhat. 

In the example shown in Figure 3.17, it can be easily shown that the fourth 

graph (right side) has an Eulerian cycle with the path, 
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E E G A G F B D B D A C E            . 

 

This question is very simple to answer, especially when the candidate 

solutions can be eliminated so easily. However, in order to eliminate each 

candidate solution, each graph must be analysed in order to find such 

imperfections. 

 

3.5.2.2 Finding an Adjacency Matrix That is Eulerian 

 

The next question is identical to the previous question, but again, involves 

adjacency matrices rather than graphs. However, finding an Eulerian cycle is 

more complex in this question as a student answering this question needs to 

realize that the graph must be connected, as well. 

   

Figure 3.18 A Multiple-choice (MC) question asking to find the adjacency matrix that best fits 
the properties of an Eulerian graph.  

 

This question is easier for students to answer if they can visualise the 

graphs by drawing them manually. However, simply counting the degrees of the 

vertices will not be enough as two disjoint subgraphs would suffice this property, 

but not be Eulerian. Therefore, students need to take more time to consider 

whether any adjacency matrix with all vertices of even degree is indeed Eulerian. 
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This question is worth 4 marks, but the other answers are worth either 2 marks, 0 

marks, or -2 marks, depending on the adjacency matrices that appear in the 

questions. 

Interestingly enough, the answer to the problem given in Figure 3.18 is:  

 

 

Figure 3.19 Correct answer to problem given in Figure 3.18. 

 

What makes this answer interesting is that, at first glance, it does not 

appear to follow the second item that characterises Eulerian graphs (namely that 

the degree of every vertex is even50) as the sum of the entries in row (or column) 

E is odd. However, looking more carefully, it can be seen that there is a loop 

around vertex E. Therefore, this can be ignored and each row sum is now even. 

Furthermore, the graph is connected and has an Eulerian cycle from  

E E D F B A C G D B C E           . 

As such, the distracter is not a separate answer, but rather part of the 

correct answer itself. Of course, this does not always happen, but it is very likely 

nonetheless. Also, this distracter can only appear within adjacency matrices as 

the graphical equivalent would immediately give away the loop being present. 

 

3.5.2.3 Finding a Graph or Adjacency Matrix That is Eulerian 

 

The last question, given in Figure 3.20, looks at a combined problem, 

which views graphs and adjacency matrices together in the same question 

regarding Eulerian graphs. As noted earlier, a “switch” applied to each option 

decides whether or not they individually appear as graphs or adjacency matrices. 

In the example of Figure 3.20, two graphs have been randomly created; 

again, note that it is possible for more or fewer graphs to appear in each 

question. The first adjacency matrix (left side) has odd degree at vertex G. The 

first graph (top of figure) has the bridge, AH , which causes the vertices, A and 

H, to each have odd degree. The second graph (bottom centre) has even degree 
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throughout, but contains two disjoint subgraphs. The second adjacency matrix 

(right side) has multiple loops, but once ignored, has even degree throughout and 

is connected. Therefore, the second adjacency matrix is the correct answer. 

However, notice that vertex C is disjoint from the remaining vertices; this is fine, 

though, since Eulerian graphs are defined by their edges rather than their 

vertices. Similar to Figure 3.19, it is possible in graph theory to “distract” students 

within the correct answer itself by adding a disjoint vertex. 

 

  

 

Figure 3.20 A Multiple-choice (MC) question asking to find the graph or adjacency matrix that 
best fits the properties of an Eulerian graph. 

   

There are random distractions within the correct answer, as well as the 

distracters themselves. Furthermore, this question tests the visual and logical 

intelligences within a student, thus requiring them to carefully inspect each 

solution in a different way before deciding whether or not it is a candidate 

solution. 

However, this is not where the pedagogical side of this question ends. 

Look again at the questions given in Figure 3.18 and Figure 3.20 and note that 

these two questions are completely different. The question in Figure 3.18 gives a 

story of a randomly selected person (in this case, it was Matthias), who goes for 
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a scenic drive one day. Students are not directly told that his drive resembles that 

of an Eulerian cycle, but they are expected to figure this out on their own in order 

to answer the question. In comparison, the question in Figure 3.20 directly asks 

the question, “Which of the following is an Eulerian graph?”. This distinction of 

indirect and direct questioning is very important pedagogically and two definitions 

have therefore been made specifically for pedagogical use: 

 

Def. 3.3 A directed question is a question that specifies what is required of 
the student, enabling him/her to immediately work towards 
answering the question. 

 

Def. 3.4 An indirected question is a question that does not specify what is 
required of the student in order for him/her to answer the question. 

 

The example of Figure 3.18 does not tell the student that Eulerian cycles 

are being tested in the question, even though (s)he is expected to determine this 

on his/her own in order to solve the problem. In order to generate such a 

question, it is most likely that some real-world scenario is given. Therefore, under 

this assumption, it is expected of the student to be able to translate the problem 

into a mathematical problem and hence, it is also necessary for the student to 

apply everyday mathematics into his/her thinking for solving the problem. 

Furthermore, although the contextualised area of the mathematical problem-

solving process is being used, it is not necessary for interpreting the 

mathematical solution back into this area as such a question may still only 

require the student to find the initial, mathematical results. 

This concept of directed and indirected questions for pedagogical use has 

been implemented into many graph theory topics, including simple and 

connected graphs and Hamiltonian cycles, which have already been discussed, 

and also in other topics, which are discussed later in this chapter. 

 

3.6 Isomorphisms 
 

For all of these questions, any one of the five answers programmed into 

these questions can be chosen as the correct answer (Note that this is obviously 

also implemented within the question as a randomised function and in the 

feedback with five different answers.). Also, the other four answers are randomly 
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selected so that, after multiple attempts at practicing these questions, no obvious 

pattern emerges to the student. As such, this question type is labelled as 

Random Selection Multiple-choice (RSMC). 

 

3.6.1 Finding an Isomorphic Graph 
 

In these questions, information can be given about the different graph 

types. This information is very helpful in trying to determine which of the graphs 

would represent the correct answer. However, if students were expected to trial 

these questions, then, during an examination, a harder question can be used in 

replacement, which does not include the additional information; this would force 

students to recall what they read and learned about the different graph types 

from trialling the easier question and would also (likely) cause a decrease in 

marks for students who did not follow the teacher’s instructions. 

For all of these questions, each graph has its own unique feedback. In the 

feedback, students are given easier methods for determining which graph is 

which type. For instance, in the case of antiprisms, one of the main components 

is that the degree of each vertex is four. However, this cannot be seen with any 

of the other graphs for this question, so, although it appears students can now 

answer the next questions easily, this helps them to learn about the patterns they 

need to observe when looking for isomorphisms. 

 

3.6.2 Finding an Isomorphic Adjacency Matrix 
 

These questions use adjacency matrices instead of graphs. After 

numerous attempts, students can use the information acquired from looking at 

the degrees of each of the vertices in order to determine the graph type for each 

adjacency matrix. The selection of the matrices is randomised throughout so that 

students cannot determine any patterns of selection when they should be trying 

to solve the problems instead. 

Each of the questions shown is worth two marks, but a mark of zero is 

given instead if incorrect. Note that there is no possibility of giving a negative 

score for these questions as it is very difficult to determine which graph will 
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appear at any time and as it is not as necessary with such a low score for 

answering correctly.  

 

3.6.3 Finding an Isomorphic Graph or Adjacency Matrix 
 

   

 
Figure 3.21 Example of a Random Selection Multiple-choice (RSCM) question, asking to find 

the adjacency matrix or graph that is isomorphic to the wheel graph, W7, as 
shown in the question. 
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The last two questions both involve combining graphs and adjacency 

matrices within the same question. For some realisations, this will surely prove to 

be a challenge for the students. However, for these examples, as is the case for 

all questions in this topic, there is an additional feature in each case.  

Figure 3.21 has included a visual image of a typical wheel graph to help 

the student to more easily find the correct solution; in Figure 3.22, the added 

image is a typical ladder graph. Since neither of these two graphs adheres to the 

conventions of the circular positioning of vertices, two new functions had to be 

created. The wheel graph takes form from using the circular positioning of the 

vertices, but by also including one more vertex in the centre, which joins all of the 

other vertices. The ladder graph, however, does not consider circular positioning 

whatsoever and so, another strategy had to be implemented in order to create 

this, involving a re-positioning of vertices. 

 

 

 
Figure 3.22 Example of a Random Selection Multiple-choice (RSMC) question, asking to find 

the adjacency matrix or graph that is isomorphic to the ladder graph, L4, as 
shown in the question. 
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3.6.4 Functionality of Random Selection, Multiple-choice 

Questions 

 

This question type is unique in that all distracters embedded in the code 

can appear as the correct solutions. For this to occur, five distracters are created 

and then one of them is randomly selected to be the correct solution to the 

generated problem. However, as there are five possible answers, the necessary 

code for generating the problem and the solution all need to be more flexible. 

When generating the questions, simple keywords may be implemented by 

means of separate functions, thus reducing the number of characters needed in 

generating the full code. The feedback needs to specify the characteristics of 

each graph, though so that the students reading it may be able to understand 

how to watch out for these special graphs in future attempts. Therefore, there is 

no alternative but to create separate feedback for each of the five special graphs. 

Finally, there is the issue of additional feedback that could show students 

what graphs they selected if answers are incorrect. Unfortunately, because the 

answer is randomly selected, as is the ordering of the other candidate solutions, 

it is not possible to create any such feedback to warn students of their errors. 

Nonetheless, students are able to learn about each graph type and their 

characteristics through multiple attempts and through the provided feedback. 

 

3.7 Bipartite Graphs 
 

In this section, there are four questions to consider. Two of the questions 

are virtual copies of each other as MC questions, one using graphs and the other 

using adjacency matrices. However, the third question is a simple, numerical 

input (NI) question that will test to see if students are paying close attention to the 

detail of the partitions and how they function in creating bipartite graphs. 

 

3.7.1 Finding a Bipartite Graph 
 

The first question is a MC question, asking to find a complete, bipartite 

graph with two partitions of unequal amounts. The objective of this question is to 

find a complete, bipartite graph such that the two vertex partitions are unequal. 
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3.7.2 Finding a Bipartite Adjacency Matrix 
 

The second question is the copy of this question, using adjacency matrices 

instead of graphs. In both of these questions, recognising patterns in data is the 

essential element for solving the problems. For graphs, visualisation makes it far 

simpler to detect which of the graphs is bipartite.  

For the adjacency matrix, the simplest way to detect whether a graph is 

bipartite is to find matrices with rows and columns of just zeros (or just ones) that 

match each other and to Analyse them first. 

 

3.7.3 Finding a Bipartite Graph or Adjacency Matrix 
 

The third question combines graphs and adjacency matrices randomly to 

test students using their visual and logical intelligences. 

 

 

 
Figure 3.23 An example of a numeric input (NI) question asking to find the number of vertices 

in the larger partition of a bipartite graph. 

 

These questions are worth 3 marks each, mainly because the questions 

ask for such specific graphs and because some distracters were initially correct, 

but then edits were made, causing them to appear almost correct; as such, some 

of the distracters will award partial credit, but none of the answers will give a 

negative score. 
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Figure 3.24 An example of a numeric input (NI) question asking to find the number of vertices 

in the larger partition of a bipartite graph. 

 

3.7.4 Finding the Number of Vertices in a Partition of a Bipartite 

Graph 
 

The last question in this section looks at the partitions to see how many 

vertices are in each partition. This is done to ensure students are noticing the 

graphs, how they function, and how they are connected. To keep with this theme, 

the bipartite graphs are set up so that they have unequal partitions. Furthermore, 

the question could ask the student to determine the number of vertices in either 

the smaller partition or the larger partition.  

In Figure 3.24, the question asks to find the number of vertices in the 

larger partition of the graph. However, in Figure 3.25, the question asks to find 

the number of vertices in the smaller partition. In either case, the bipartite graph 

is created by randomly separating the set of vertices, V, into two components, 

each of different lengths. From this, any vertex in one set is automatically 

connected to all vertices in the other set; similarly, any vertex in one set is 

automatically disconnected to all other vertices in the same set.  

Notice that this is not a RNI question, but rather just a NI question. As this 

question should be simple to answer, there are no partial marks to award and 
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thus, there is no great need to use the RNI question type here; instead, the 

feedback highlights the key word, either smaller or larger, in bold print to remind 

the student what (s)he was supposed to solve. As either keyword can appear in 

this question, it allows for more randomness to appear as the total number of 

possible realisations doubles to conform to both keywords. This question, which 

should be easy to solve, is worth 1 mark.  

 

 
Figure 3.25 An example of a numeric input (NI) question asking to determine the number of 

vertices in the smaller partition of a bipartite graph. 

 

 

3.8 Planar Graphs 
 

There are four multiple-choice questions for this section; one uses graphs, 

one uses adjacency matrices, and one uses both graphs and adjacency 

matrices. All of these first three questions are similar, but, as will be shown, two 

of these questions are far more difficult because of such changes. The fourth 

question uses pertinent information about them in order for students to draw 

conclusions and make an appropriate decision.  

 

3.8.1 Use of Quantitative Information to Prove Planarity 
 

The first question, which does not use graphs, looks at the students’ 

awareness of the following theorem51: 
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Theorem 3.2  Let  ,G V E  be a planar graph that is simple and 

connected and with 3V  . Then 3 6E V  . 

 

To answer this question, students need to look at the numbers of edges 

and vertices present and, using this, determine for which of the possibilities, if 

any, does the corresponding graph become non-planar. An example of this is 

shown in Figure 3.26. 

 

 
Figure 3.26 An example of a MC question, asking to determine which set of data corresponds 

to a graph that is non-planar. 

 

Note that the number of edges and the numbers of vertices are randomly 

positioned in each line; for each entry, a random “switch” variable determines the 

ordering of the number of vertices and the number of edges.  

 

3.8.2 Finding a Planar Graph 
 

The second question looks at the graphic form of the MC question. In the 

example in Figure 3.27, eight student teachers are asked to throw a ball of yarn 

to each other as part of an icebreaker game. After the last throw, the student 

teachers need to unravel themselves so that the graph formed using themselves 

as vertices and the yarn as edges is planar. 

Even knowing the theorem (and even its proof), finding the correct answer 

here is quite tricky, unless the randomised graphs that appear make it obvious to 

deduce whether or not K5 or K3,3 appear. With this question, though, there are 

also three different scenarios that can randomly appear. 
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The scenario in Figure 3.28a details a maze that must not have any 

overlapping edges. However, all of the options will (normally) have overlapping 

edges. Therefore, each of these graphs would have to be “edited” first in order to 

attempt to get a planar “maze”. In Figure 3.28b, the key information from 

Kuratowski’s Theorem is given. However, in this case, the information is detailed 

to show that K5 and K3,3 are special graphs themselves; an online reference is 

also included as part of the detailing. 

 

 
Figure 3.27 A question relating to an icebreaker game that is asking to find a planar graph. 

 

This question, regardless of which scenario exists, is still somewhat 

difficult as students have to find one of the two key subgraphs in order to 

eliminate it as a candidate for being a planar graph. What makes this even more 

difficult for some students is the uncertainty factor, where students who cannot 

find neither a K5 nor a K3,3 subgraph may think they have made an error and 

instead of assuming they have found the correct answer, will continue looking for 

the subgraphs to appear in the last of the four choices.  

This question is worth 4 marks, but if a student replies with “I don’t know!”, 

then (s)he will receive one mark; note, though, that students should not be made 

aware of this as they may attempt to fast-track the question otherwise.  
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a)  b)  

 
Figure 3.28 Examples of the two additional scenarios for the MC question on finding planar 

graphs: a) Maze creation, and b) Utility graph and Golden Ratio. 

 

 

3.8.3 Finding a Planar Graph when Adjacency Matrices are 

Included 
 

It is clear that visualisation may be a key factor in determining the planarity 

of a graph as it is easier to see the connections that make a K5 or K3,3 graph 

appear. Therefore, these questions are more challenging as students first need 

to draw the graphs corresponding to each of these adjacency matrices before 

determining whether or not any of them are planar.   

Also, as with the previous question, 1 mark will be awarded if a student 

replies with “I don’t know!”, but again, they should not be made aware of this in 

case they decide not to attempt the question altogether. 

 

3.9 Spanning Trees 
 

There are nine questions involving spanning trees. Similar to previous 

topics, these questions include copies of questions with graphs changed either 

into adjacency matrices or with graphs and adjacency matrices appearing 

together. Therefore, only three examples are provided, but they are more 

independent than many of the questions in the previous topics as each question 

provides different information, requiring students to think differently each time 

about how to solve these problems. 
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3.9.1 Finding a Spanning Tree 
 

3.9.1.1 MC Questions on Finding Spanning Trees 

 

Four MC questions have been created involving finding a spanning tree for 

a particular graph. In each instance, either a graph or an adjacency matrix is 

given and the student is required to look at four candidate solutions to see which 

of them resembles a spanning tree for the given graph or adjacency matrix. 

Similar to previous questions, these combinations require the student to remain 

aware of visual and logical skills needed in graph theory so that (s)he may 

perform better on assessments. The four questions created have the following 

combinations of graphs and adjacency matrices: 

 

 Graph is given. Candidates are graphs. 

 Graph is given. Candidates are adjacency matrices. 

 Adjacency matrix is given. Candidates are adjacency matrices. 

 Adjacency matrix is given. Candidates are graphs. 

 

 

Figure 3.29 A directed MC question using only graphs and asking to find a spanning tree for 
the given graph. 
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The example given in Figure 3.29 is a directed question involving only 

graphs. For each combination, there are four possible scenarios; the other three 

scenarios are all indirected and are shown in Figure 3.30. With four scenarios in 

each question and four combinations of intelligences also, this question has a lot 

to offer to students in terms of mathematical and pedagogical assistance. 

Furthermore, the additional, indirected scenarios help to see how this topic is 

more useful in real world situations. 

 

 

Figure 3.30 Examples of the three indirected scenarios for the MC question on finding a 
spanning tree for a given graph. From left to right, the scenarios are: business 
departments, link between towns, university student services. 

 

3.9.2 Determining The Number of Spanning Trees in a Graph 
 

The number of spanning trees in a graph can be calculated using the 

determinant of the difference between a graph’s corresponding degree matrix 

and its corresponding adjacency matrix. Therefore, it is possible, using this 

method, to use the numerical input (NI) question type rather than just using 

multiple-choice (MC) questions. However, it is better to use responsive, numeric 

input (RNI) as this not only allows for additional feedback to be given when a 
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distracter is used, but also, partial marking can be implemented with RNI 

questions, unlike NI questions, where the answer is either correct or incorrect 

(i.e. all-or-none marking). The problem now is to determine what makes a useful 

distracter for this question. 

 

3.9.3 Number of Spanning Trees for Graphs with Bridges 
 

Three questions have been generated, asking the student to determine 

the number of spanning trees in a graph given a selection of branched 

subgraphs, along with a given number of copies for each subgraph. As with other 

topics, one question uses only graphs, one question uses only adjacency 

matrices, and one question uses both graphs and adjacency matrices. However, 

unlike the previous, like questions, which were all MC questions, these are all 

RNI questions. An example of the mixed scenario is given in Figure 3.31. 

 

 

Figure 3.31 Example of an RNI question, asking to determine the number of spanning trees 
in a given graph involving copies of branched subgraphs. 
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3.10 Minimal Spanning Trees 
 

There are twelve questions created in this question set created by Zaczek. 

There are six questions for each algorithm. For each set of six questions, there 

are three questions each which use a graph of 5 – 6 vertices and three questions 

each which use a graph of 7 vertices. Within each subset of three questions, 

there are three different questions being asked, namely: 

 

 Is a named edge included (or even considered) within the 

algorithmic process? 

 What is the minimal spanning tree for the given graph? 

 What is the nth edge considered in the algorithmic process? 

 

As there is a significant amount of sub-categorisation involved and since it 

is important to highlight these key features, it is sufficient for the purpose of this 

thesis to show just three examples that highlight all of the available features for 

all twelve questions. 

One problematic issue in the programming of these questions is 

determining how to alert when a cycle is formed in the algorithmic process. 

Therefore, the graphs presented do not have randomised parameters embedded 

in the coding. Also, these questions are non-responsive (i.e. NI or WI questions). 

Questions shown in this section illustrate the use of changing background 

colours, as mentioned in Section 1.3.1. 

 

3.10.1 Kruskal’s algorithm with a graph of 5 – 6 vertices, asking 

if an edge was considered 
 

The example provided in Figure 3.32 shows an example of a question on 

Kruskal’s algorithm involving a graph of six vertices to determine if a particular 

edge was considered in the algorithmic process. 

The inclusion of the weighted matrix is important as some of the edges are 

overlapping with the weights in the graph. Clear instructions are provided for 

answering this question, showing students exactly how to type in their responses. 

Feedback to this question is provided in Figure 3.33. Feedback is detailed with 
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step-by-step instructions on how the algorithm should have been implemented in 

the question. SVG graphics illustrate the step-by-step instructions nicely, 

illustrating the inclusion of edges without forming a cycle until all vertices have 

been connected. 

 

 

Figure 3.32 An example of a question on Kruskal’s algorithm, asking to determine if the edge, 

𝑪𝑭̅̅ ̅̅ , was considered in the implementation of Kruskal’s algorithm. Different 
background and text colours were used, highlighting the possibility of 
accommodating different students, as discussed in Section 1.3.1. 
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Figure 3.33 Feedback to the question presented in Figure 3.32. 
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3.10.2 Kruskal’s algorithm with a graph of 7 vertices, asking to 

find the minimal spanning tree 
 

 

Figure 3.34 An example of a question using Kruskal’s algorithm on a graph of seven vertices, 
asking to determine the minimum spanning tree for the given graph. 

 

The example provided in Figure 3.34 asks to find the minimal spanning 

tree for a given graph of seven vertices. Again, instructions are provided to 

remind students how to answer questions properly. The weighted matrix is again 

provided to ensure students can see the respective weights of the edges shown 

in the graph. Similar feedback to that shown in Figure 3.33 is provided, showing 

students how to use Kruskal’s algorithm properly in answering this question; 

upon completion of the algorithm, the answer is provided. 

 

3.10.3 Prim’s algorithm with a graph of 7 vertices, asking to find 

the nth edge added in the algorithmic process 
  

The example provided in Figure 3.34 asks to find the sixth edge added in 

the implementation of Prim’s algorithm for a graph of seven vertices. Because 

Prim’s algorithm has a particular focus on vertices, the starting vertex is provided 

in the question. Again, instructions are provided on how to format answers and a 

weighted matrix is also provided to help students read the weights more 

efficiently. There is additional randomisation in choosing the edge which students 

need to find (i.e. 6th edge) in the question. 
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Figure 3.35 An example of a question using Prim’s algorithm on a graph of seven vertices, 
asking to determine the sixth edge added as part of the algorithmic process. 

 

The feedback is provided in Figure 3.36. Similar to the questions involving 

Kruskal’s algorithm, feedback on Prim’s algorithm is detailed, using SVG 

graphics to illustrate the algorithmic process to completion. A worded explanation 

discusses how the algorithm works throughout. 

 

 

3.10.4 Challenges to Kruskal’s and Prim’s Algorithms 
 

As previous noted, there are a couple of notable issues with the creation 

of these questions. These are WI questions and not RWI questions; especially in 

the case of determining the minimal spanning tree, the lack of use of a pop-up 

window may become an issue for students; this will be analysed later in Chapter 

7 and Chapter 8. Also, there is less randomisation than usual, limiting the use of 

graphs to just two fixed structures. There is some randomisation elsewhere in 

these questions, but students will be familiar with the two set structures if they 

practise these questions in advance prior to an assessment taking place. 
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Figure 3.36 Feedback to the question presented in Figure 3.35. 

 

 

3.11 Shortest Path Algorithm 
 

All questions in this section involve directed edges, each pointing in the 

forward direction. If backwards edges were included, then the procedure shown 
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in Example A.4 may not work since any backwards edge would cause previous 

calculations to then be verified and possibly re-assessed. 

 

3.11.1 Calculating the Shortest Path 
 

The shortest path problem is very interesting mathematically, but is also 

very time consuming computationally as it involves the use of complete 

enumeration52, calculating all possible paths and their distances. With a 32,000 

character limit and “pedagogical” time constraints (e.g. time-limited testing), 

creating a suitable code for Dijkstra’s algorithm must involve accommodations.  

First, it is important to note that the design of questions involves a careful 

manipulation of directed edges and vertices so that the “starting vertex” is located 

to the left, with the vertex labelled O, and all movement of directed edges goes 

from left to right, with vertices labelled in alphabetical order from top to bottom, 

left to right, and the terminating vertex being labelled T; additional information 

about this can be found in Section A.11. Knowing these issues helps to better 

understand the technical side of this algorithm. However, the graphical display of 

the network is not the only technical element to this question because the 

solution requires a delicate method for calculating path lengths and determining 

the shortest path. 

 

3.11.2 Distracters in a 2RNAI Question on The Shortest Path 

Algorithm 
 

The other problem posed in this section is identical to the previous 

problem, but asks more questions, requires more from students, and provides 

much to students in terms of conditions for earning a better grade. With this 

problem, two questions are given. The first problem always asks for the minimum 

distance to be travelled from the origin, O, to the terminal, T. However, the 

second question requires the answer to the first question as it asks to either find 

the amount of fuel needed to travel between these two destinations or for the 

cost of the fuel used to travel between them. As such, this is a sequential, 2-

Responsive Numeric Input (sequential 2RNI) question. An example with the 

second question asking for the amount of fuel needed is given in Figure 3.37. 
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In addition to this, though, because of the numerical data given to help 

answer the second problem, rounding errors may occur. As such, special 

attention needs to be given to this and so, this is also a Numeric Approximation 

Input (NAI) question. Therefore, this question is a sequential 2-Responsive 

Numeric Approximation Input (sequential 2RNAI) question. 

 

  

Figure 3.37 An example of a sequential, 2-Responsive Numeric Approximation Input (2RNAI) 
question, asking to find the minimum distance from the origin (labelled O) to the 
terminal (labelled T), along with the amount of fuel needed to travel this distance. 

 

This question is worded so that after each question, an input box appears; 

this clearly shows the student which input corresponds to which question. Also, 

information is given to six decimal places regarding the vehicle’s fuel 

consumption and the price is given as an “equivalency” value in British pounds 

sterling, which suggests that a given question could be representative of any set 

of locations in the world. Also, the value for the average fuel consumption is 

deliberately given to a large number of decimals as part of this problem involves 

testing the students’ abilities in rounding properly when calculating. 
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For the problem in Figure 3.37, the answer given to the first question is 

incorrect; the correct answer should be 242 km. However, for the second 

question, with which the correct answer should be 27.83 L, the correct procedure 

was used, although it involved using the incorrect answer to the first question. 

For this problem, correct answers to both questions is worth 7 marks, but for the 

answers given in this problem, 5 marks are awarded as 2 marks are only 

removed for the incorrect answer in the first question. 

The provision of additional feedback and partial marking is important for 

this problem as not only are there two questions to answer, but also, the pairing 

is sequential and one of the questions may be answered incorrectly due to 

improper rounding, thus causing approximations to be considered. Due to all of 

this, there are eight cases for warranting partial credit and/or additional feedback 

in this problem: 

 

Given the following variables, 

 COR1 is the correct solution to the first question 

 COR2 is the correct solution to the second question 

 ANS1 is the student’s answer to the first question 

 ANS2 is the student’s answer to the second question 

 DIS1 is the first distracter (for the first question) 

 DIS2 is the second distracter (for the first question) 

 DIS3 is the third distracter (for the second question) 

 

1. 1 1ANS COR , but 2 2
2

0.01ANS COR
COR
  . 6 marks are awarded. The error 

involved is a simple rounding error in the second question, although 

just minor. 

2. 1 1ANS DIS , and 2 3 0.05ANS DIS  . 3 marks are awarded. The first 

answer is wrong, but triggers a distracter. The second answer is also 

wrong, but it, too, triggers a distracter. 

3. 1 1ANS DIS , but  1
1

2 2 0.005ANS
COR

ANS COR   . 5 marks are awarded. 

The first answer triggers a distracter, but based on this answer, the 
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second answer given appears to be correct within 0.5%. Therefore, the 

second answer is deemed to be correct. 

4. 1 2ANS DIS , but  1
1

2 2 0.005ANS
COR

ANS COR   . 5 marks are awarded. 

The second answer triggers an alternate distracter, but using this 

answer, the second answer appears to be correct within 0.5%. 

Therefore, the second answer is deemed to be correct. 

5. 1 2ANS DIS , but  1
1

2 2 0.01ANS
COR

ANS COR   . 4 marks are awarded. 

The student’s first answer triggers an alternate distracter. However, 

based on this information, the student’s second answer appears to be 

correct within 1%. Therefore, the second answer is deemed to be 

“almost correct”. 

6. 1 1ANS COR , but 2 3
3

0.005ANS DIS
DIS
  . 6 marks are awarded. The first 

answer is correct, but the second answer triggers a distracter. 

7. 1 1ANS COR , but 2 2ANS COR . 5 marks are awarded. The first 

answer is correct, but the second answer is incorrect and is not even 

close to the correct solution. 

8. 1 1ANS COR , but 2 2
2

0.005ANS COR
COR
  . 2 marks are awarded. The first 

answer is completely incorrect. However, somehow, the student’s 

second answer appears to be correct. 

 

Note that DIS1 and DIS2 are distracters that relate to the appearance of 

other entries in the last column of the resulting matrix using the shortest path 

algorithm. These values may not appear; if this is the case, then the distracters 

are ignored. Also, DIS3 involves placing the average fuel consumption in the 

wrong place during the calculation of the second answer. As there are two 

possibilities for the second part of this problem, there are two variations of DIS3: 

 

 (average_fuel_consumption/cost_of_fuel)*minimum_weight[n], if 

asking for the cash needed to travel the shortest distance.  

 (average_fuel_consumption/minimum_weight[n]), if asking for the 

amount of fuel needed to travel the shortest distance. 
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As noticed from the eight cases, a correct answer to the first question is 

worth 5 marks and a correct answer to the second question is worth 2 marks. 

However, due to rounding issues with the software, it could be possible for a 

student’s answer to the second problem to be close, but not enough to award 

him/her the 2 marks associated with it. Also, note that to answer the second 

question correctly, the only mathematical operations needed are multiplication 

and division. Therefore, since the equation,  1
1

2 2ANS
COR

ANS COR  , looks at a 

student’s wrong answer to the first question and then compares the student’s 

second answer to the product of the correct answer to the second question and 

ratio of the student’s first answer to the correct answer, it can be used to see if 

the student’s second answer is, at least, following the proper methodology. 

 

3.12 Vertex Colouring 
 

There are four questions available in this topic, but unlike other topics, 

these questions only use graphs and do not ask similar questions. Each question 

therefore requires students to think differently about what it is they are trying to 

solve. 

 

3.12.1 Chromatic Numbers using Chromatic Polynomials 
 

The first question in the set is somewhat unique as there are neither 

graphs nor adjacency matrices in it. Instead, a polynomial is given and students 

are required to use this to determine the chromatic number of the corresponding 

graph. An example of this question is shown in Figure 3.38.  

Recall that a chromatic polynomial determines the number of ways with 

which to colour a graph using so many colours. Therefore, for each value of 

k  , the value,  GP k , will determine the number of different colourings using 

k colours that can be created. For this particular question, starting at 1k  , we 

obtain the results shown in Table 3.1. Notice that for 1 4k  ,   0GP k  . 

Therefore, it is not possible to properly colour the corresponding graph with these 

numbers of colours. However, for 5k  ,   720GP k  , which implies that with five 
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colours, the corresponding graph may be coloured in any of 720 different ways. 

As this is the smallest number of colours with which to colour the corresponding 

graph, the chromatic number must be five. However, do note that with six 

colours, there are 8,640 different combinations available for colouring the graph. 

 

 

Figure 3.38 An example of an RNI question, asking to find the chromatic number of a graph 
using its corresponding chromatic polynomial. 

 

 

Figure 3.39 Feedback and scoring provided for answering the question in Figure 3.38 and 
triggering a distracter in the process. 

 

This question is worth 2 marks and has one simple distracter in that it 

looks instead for the highest value of k such that   0GP k  ; this distracter will 

award students with 1 mark and an example of this, following from Figure 3.38, is 

shown in Figure 3.39. This distracter may be performed because students are 
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accidentally looking for this rather than the smallest value (i.e. first value they will 

probably count if counting from 1 onwards) of k such that   0GP k  .  

 

k PG(k)  k PG(k) 

1 0  4 0 

2 0  5 720 

3 0  6 8640 

Table 3.1 Table of values for PG(k) for chromatic polynomial in Figure 3.38. 

 

3.12.2 Finding the Chromatic Number using a Given Procedure 
 

  

Figure 3.40 An example of an RNI question, asking to find the chromatic number of a graph 
using a given procedure. 

 

The next question asks to find a candidate chromatic number for a graph, 

given a specific procedure for selecting vertices. Any solution obtained would 
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automatically constitute an upper limit to the true chromatic number for the graph. 

Also note that the procedure employed is identical to that of Example A.5. 

Note the procedure; it is asking to start at vertex, G, and then move 

counterclockwise (or anticlockwise). Just like the graph itself, the procedure in 

this question is randomised so that a student can be expected to start at any 

vertex and move in one of three ways, namely clockwise, counterclockwise, or in 

a particular sequence (which is given to students as part of the question). 

Additionally, for n vertices, n colours are also given in each question and are 

randomly generated from a default set of colours. The question itself is also 

randomised, but among a set of two different wordings; the other wording is: 

Using this procedure, what is the upper bound for the chromatic number for this 

graph? 

 

  

Figure 3.41 Feedback to the question presented in Figure 3.40, which includes a fully 
coloured graph and new labels. 

 

The thing that makes this question special, however, is not what happens 

in the question, but rather what happens in the feedback, as shown in Figure 

3.41. 

In the feedback, the graph has changed dramatically to show the colouring 

of the vertices based on this procedure. The sizes of the vertices themselves 

have been enlarged to “boldly” show the colouring of the vertices. The labels of 

the vertices have changed, too, but this is especially important to consider as 

some students may have some degree of colour blindness, causing them to 

misinterpret two colours as being identical. To accommodate this likely 
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possibility, each vertex label identifies which colour in the list, as noted in the 

feedback, is used to represent it. Being able to accommodate students’ needs is 

very important and also, it helps to show the flexibility of the software to adapt to 

such needs. 

The code to generate this special graph type simply uses the original 

graph code and attaches colours to the vertices from within the code. However, 

as the sizes of the vertices had to change in the feedback to show the colours 

properly, a new function was created to ensure all features worked properly. 

 

 

3.12.3 Labelling a Vertex with a Particular Colour 
 

  

Figure 3.42 An example of a Responsive Word Input (RWI) question, asking to find the colour 
associated with vertex, I, using a given procedure. 

 

The next problem is similar to the previous problem, but asks a different 

question. An example of this question, which asks to find the colour associated 

with a particular vertex, can be seen in Figure 3.42. 

This is a Responsive Word Input (RWI) question and asks the student to 

find the colour that would be given to a particular vertex. As this is a RWI 

question and similar to previous RWI questions, an alert box will appear, asking 

the student to double-check his/her answer and then to hit the submit button 

again if (s)he is happy with it or otherwise, edit the answer and re-submit, 

knowing that the alert box will reappear.  
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When performing this algorithmic process for colouring vertices, order is 

important. However, in terms of getting students to attempt this question properly, 

it does not help to ask for the colour of a vertex that the student will encounter 

early in the algorithm. For instance, for the example in Figure 3.42, it would not 

take as much effort to determine the colours of the vertices, G to J, as in 

comparison to the other vertices. However, as noted in the previous section, the 

ordering of vertices is randomly chosen from one of three patterns. Therefore, to 

modify the question to the benefit of the assessor (e.g. teacher or lecturer), some 

accommodations have been made: 

 

 For a completely random ordering, a vertex towards the end of the list 

is selected for which students need to determine the colour. 

 For either a clockwise or counterclockwise (i.e. anticlockwise) 

colouring, if the distance between the target vertex (i.e. the vertex with 

which the student is to determine its colour) and the starting vertex is 

less than three, then the target is shifted down the list by a factor of 

one-third. For instance, if there are twelve vertices and the target 

vertex is the third vertex to appear in the list, then a new target vertex 

is chosen to be the seventh vertex (i.e. 3 + 4 (  1
3

12 ) = 7). 

 

3.12.4 Colouring all Vertices of a Graph 
 

The final question in this set is, again, identical to the question on 

determining the number of colours needed to colour a graph using a given 

procedure. This is a RWI question and an example of this question is found in 

Figure 3.43. 

The most important thing in this question is the ability to read the question 

properly. Instructions are given immediately above the answer box, similar to the 

other RWI question, telling students how to input their answers. Also, upon 

submitting this answer the first time, an alert box will appear, asking students to 

double-check their answers. However, also important is knowing the order in 

which the sequence of colours is to be generated as it is not necessarily in 

alphabetical order or in reverse order as both of these are actually distracters 
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hidden in the question. If either distracter is triggered, then the student who 

triggered this distracter will receive 2 marks out of 4 for this question. Other than 

these differences, all other features of this question are similar to the previous 

questions (except the question on chromatic polynomials). 

 

 

 

Figure 3.43 An example of a Responsive Word Input (RWI) question, asking to generate a 
particular colour sequence for the corresponding graph. 

 

 

3.13 Research Question: Question Features 
 

This section answers the research question: 
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What question features exist that could change how students interact with 

questions? 

 

Chapter 3 discussed relevant features that can be implemented within 

questions in Mathletics on the subject of graph theory. 

Graph theory makes excellent use of graphs and adjacency matrices 

within topics. The implementation of both graphs and adjacency matrices within 

similar questions created a wider range of questioning that can compel students 

to better study and understand the relationship between graphs and adjacency 

matrices within graph theory. 

Different question types provided different techniques for answering 

questions. Multiple-choice (MC) questions provided opportunities to select a 

given answer, whereas Numerical Input (NI) and Word Input (WI) questions 

required solving and typing in answers. WI questions involved entering text in a 

very precise format in order to be evaluated fairly. Additional instructions on how 

to format answers within questions is required to avoid possible conflicts with 

answers that could be assessed unfairly. However, some questions were also 

created so that a pop-up window could remind students to double check their 

answers before hitting the Submit button a second time around. Not all word 

input questions provided the pop-up window and so, brought about an additional 

feature that could be assessed later. Although some research suggested that 

there was no difference in the assessment of MC questions and NI/WI questions, 

this had not been assessed for questions in graph theory, so it was helpful to see 

if a pattern change existed for this subject. 

Questions were designed with some questions directly asking students to 

answer the questions and other questions providing word problems with students 

then being required to interpret the word problems into mathematical problems 

that could then be solved. Similar questions were designed in some topics so that 

a variety of question wordings could be provided; a teacher or lecturer could be 

more interested in asking students to solve word problems in context to show 

students the practicality of the learning material outside the classroom 

environment. 
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Chapter 4 Distracters in Online 
Assessment 

 

4.1 Introduction 
 

In the design of questions, it is important to consider how students may 

make mistakes in answering questions; this helps to remind question designers of 

the importance of the question structure to avoid further issues from occurring 

within online assessments. Some mistakes students make are minor and when 

questions are worth multiple marks, it is fair to award some partial credit. However, 

in online assessment, any such opportunities to award partial credit need to be 

carefully programmed into the question coding.  

In this thesis, incorrect answers are called distracters. Not all distracters 

warrant being included in the coding of a question; for instance, if a distracter is to 

be credited with zero marks, then it is usually better to not mention the distracter in 

the question coding at all, especially as character limits within question coding 

may interfere with the possibility of including other distracters. If a distracter 

appears to be used by many students, then it may be worth considering this within 

the question coding. Also, distracters that could be worth partial credit may be 

worth considering within question coding, provided that partial credit can be 

awarded at all. 

An issue that may occur when creating distracters is accidentally allowing 

correct responses to occur, although student methodologies may have been 

incorrect; as an example of this, substituting 𝑥 = 2 into 2𝑥 instead of 𝑥2 would still 

yield a correct response, even though the wrong formula was used in substitution. 

This is an issue that can occur in graph theory, too; for example, a question could 

ask a student which graph in a MC question has a Hamiltonian cycle and a graph 

with an Eulerian cycle as a distracter (to catch out for issues understanding the 

differences between the two cycles), but if the graph with an Eulerian cycle has 

not been checked properly, then it could, too, have a Hamiltonian cycle. 

This chapter looks at various strategies implemented for finding distracter 

answers that could be used in the design of online questions for Mathletics. The 
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list of strategies provided in this chapter is not exhaustive, but it does provide 

some insight into searching for distracters and why they are important when 

designing questions. It is expected that other strategies that may exist could 

provide more insightful information about why students select particular distracters 

over others; however, what is important for this thesis is simply the use of 

distracters within online assessment and not how distracters are chosen by 

students. Distracters are carefully considered to avoid problematic issues from 

occurring so that all distracters are unique. This chapter will explore the use of 

distracters using the graph theory questions designed in Mathletics, looking at 

specific questions to see how different distracters are considered. Some of the 

methods explained in this chapter take considerably more effort to research, but 

may be more valuable than other methods, which may appear to take less effort to 

research, but are considerably more difficult to obtain. 

 

4.2 Comparable Questions 
 

The first strategy looks at comparable questions to see what differences 

may appear in answering questions. Any significant differences may result in 

different marking schemes being used, but more importantly, using wrong 

strategies could trigger distracters and depending on how different the strategies 

are between comparable questions, partial marking could be awarded and 

additional detailed feedback may also be given. 

From Section 3.1.3, the question on directed graphs is comparable to the 

questions on undirected graphs and the addition of weights. Unlike the other 

questions, this RNI question is worth three marks. Also, there are three 

distracters in place. The first distracter is simply misinterpreting indegree and 

outdegree and thus, calculating the number of edges along the row of the 

corresponding adjacency matrix when they should be using the column instead 

or vice versa; a student entering in an answer with this distracter will receive two 

marks. The second distracter uses the appropriate row or column, but instead 

calculates the sum of the entries from the given network matrix; as students are 

expected not to use the network matrix (from properly reading the question), a 
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student suspected of using this distracter will receive one mark. However, the 

third distracter combines both of the previous distracters by using the network 

matrix and using a row instead of a column or vice versa. This could easily 

represent a student who obviously did not study beforehand and therefore, a 

student caught using this distracter will receive no marks.   

 

4.3 Multiple-choice Questions 
 

Multiple-choice questions require great detail in considering alternative 

answers to be presented as options. If a question has four possible answers and 

three of the possible answers are clearly incorrect, then a student may correctly 

answer a question without properly thinking about the learning material that led to 

understanding how to obtain the correct answer. 

In Mathletics, multiple-choice (MC) questions go further, always providing 

“None of these” as an option. Within the question coding, it is randomly 

determined with a specified probability of occurrence (usually one time in eight 

occurrences) that “None of these” will be the correct answer. To design a MC 

question effectively in Mathletics, five answers need to be provided, namely one 

correct answer and four carefully designed distracters. 

The question noted from Section 3.2.2, which looks at finding an 

appropriate adjacency matrix, is a MC question. The design of this question is 

simple in that the programming did not require much effort, aside from the 

already created functions for the graphs and adjacency matrices; in fact, all that 

is needed is one graph, its corresponding adjacency matrix (which is included in 

the programming of the graph itself), and a few other adjacency matrices. 

However, the problem with this question is finding suitable, common errors that 

students could make. This question only requires students to match up the 

connections to the adjacency matrices, all of which have the corresponding 

labels already attached. However, errors still need to be deliberately created for 

the distracters and thus, care is needed in designing randomised algorithms that 

give unique distracters in all realisations. 

One error involves using ones to signify a “true/false” reaction to finding 

the adjacency matrix. A student may perceive anything connecting a pair of 
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vertices to be “true”, thus entering the number, one, in the corresponding position 

of the adjacency matrix, even if there are multiple edges connecting the vertices. 

The second error in this question places twos in the diagonals of the 

adjacency matrix where loops occur. This error has validity because although 

there is only one edge involved, the two ends of the edge are both connected to 

the vertex. Therefore, some students may input twos in these diagonal positions, 

thus creating the errors. This is a problematic issue as some people recognise 

the importance of using 2s in the diagonal as the Handshake Theorem works well 

using this convention, so teachers / lecturers need to discuss this first in class. 

The third error is to create an asymmetric matrix, such as the third matrix 

shown in Figure 3.8. Even though there are no arrows to represent digraphs, it 

may be possible for students to be inclined to assume that the graph in question 

is indeed asymmetric, especially if they have been practising many questions on 

this topic. However, to create this error, the adjacency matrix needed to be the 

correct answer. Following this, two random, symmetric positions within the 

adjacency matrix, say ,i ja  and ,j ia , are made to be unequal, thus creating the 

error. 

The fourth error has adjustments made to every entry in the adjacency 

matrix. However, for students who make honest attempts at the questions, they 

should never select this to be their answer. Therefore, if a student selects this to 

be his/her answer, then the reason for doing so can simply be because they just 

guessed the answer without looking at the question. In order to discourage 

students from doing this, a mark of -2 will be given for selecting this answer.  

 

4.4 Notation Issues 

 

It is possible within Mathletics for students to have issues with notation of 

answers. Word Input (WI) questions, in particular, may create problems for 

students if not designed carefully. Additionally, especially within the subtopic of 

directed graphs, alphabetical order may play a role in creating distracters. 

The question described in Section 3.3.4 looks at edge sets for directed 

graphs. Upon attempting the other questions or simply by force of habit, students 
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may still enter all of the edges with each entry being in alphabetical order. 

Therefore, for this question, a distracter answer is given with each edge listed in 

alphabetical order (e.g. CF  instead of FC ). If a student enters his or her answer 

in that format, then a partial credit is given as many of the edges would still be 

correct.  

Another possibility, although may seem far-fetched at first glance, would be 

for the students to input all of the answers in the wrong direction. As an example, 

in the above question, not only would a student input CF  instead of FC , but (s)he 

would also input BA  rather than AB  and so on. One reason why a student may 

do this would be that (s)he is getting confused with the understanding of notation 

when directions are included. Remember that students will not have the vector-like 

notation when inputting their answers, so they may think that CF could represent 

“going to C from F”, thus convincing them to list this as part of the solution. 

 

4.5 Making Use of Theorems 

 

One method for creating distracters for a question is to look at 

mathematical theories related to the topic of the question. The use of theorems, 

corollaries, lemmas, etc. can help to create distracters that may be more 

challenging to notice.  

From Section 3.5.1, a series of questions looks at finding non-Hamiltonian 

graphs. In generating these questions, it is important to consider what makes a 

good distracter. In the case of Hamiltonian graphs, there are some theorems that 

help by showing what properties can give away a graph as being Hamiltonian 

and as such, these theorems were implemented into the coding, either as 

distracters or as the correct solution. 

First, it is important to note that the correct solution for the MC questions 

on Hamiltonian cycles is randomly selected amongst a list of three candidates. 

One of these candidates, however, was created based upon the following 

theorem48: 
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Theorem 4.1 Let G be a connected, bipartite, undirected graph with 1 2V V V   

and let V  be the number of vertices in G. If 1 2V V , then G 

cannot have a Hamiltonian cycle.  
 

 

There are also useful corollaries that may be implemented and in this 

instance, one of them helps to create a distracter, looking at the degrees of the 

vertices, deg(vi), of a graph53. 

 

Corollary 4.1 If  ,G V E  is a loop-free, undirected graph with 3V   and if 

2
deg( )

V
v   for all v V , then G has a Hamiltonian cycle. 

 

Another useful corollary is the following, which looks at the number of 

edges in a graph rather than the number of vertices48: 

 

Corollary 4.2 If  ,G V E  is a loop-free, undirected graph with 3V   and if 

1
2

2

n
E

 
  
 

, then G has a Hamiltonian cycle. 

 

There are two other distracters used in these questions on Hamiltonian 

cycles, but they do not need any special distinctions as theorems, corollaries, or 

other terms. One of the distracters is simply a Hamiltonian cycle generated by 

creating an Eulerian cycle that uses all of the vertices in passing. The other 

distracter is a wheel graph, which will obviously be Hamiltonian as it is formed 

by creating a circle of vertices with one additional vertex in the center of the circle 

and connecting all of the other vertices. More on wheel graphs can be seen in an 

upcoming topic, which looks at isomorphisms. 

From Section 3.8, a series of questions looked at finding planar graphs. 

Obtaining the distracters for this topic is easy to do as Kuratowski’s Theorem 

allows two different subgraphs to interfere in the attempt to make a graph planar. 

For one distracter, only the K5 subgraph needs to be included; in another, only 

the K3,3 subgraph needs to be included. For a third distracter, both subgraphs are 

included. However, this does leave one additional distracter open. Therefore, 

special graphs are needed to create a correct answer. 
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Looking back at the questions on isomorphisms, it is easy to notice that 

four of the five special graphs mentioned, namely wheel graphs, prism graphs, 

antiprism graphs, and ladder graphs, are all planar graphs. Using these special 

graphs, one of four possible, correct answers may be generated upon a 

question’s appearance. If a correct answer is to appear, then the computer 

coding will randomly select which of the four special graphs will represent this 

answer. 

Returning to the distracters, the fourth distracter is a complete graph, but 

with one edge removed. In most cases, removing one edge will not make any 

difference. However, if there are only five vertices used in each answer, then, 

according to the theorem, this distracter will also be linear. Therefore, it is 

necessary that in every case, 6V  , where V is the set of all vertices used.  

In Section 3.9.2, the questions designed looked at calculating the number 

of spanning trees in a graph. The essential calculation to be performed using the 

determinant method for finding the number of spanning trees is a difference 

between the 𝑛 × 𝑛 degree (D) and adjacency (A) matrices for the graph. 

However, do note that although  D A A D D A      , students will most likely 

still give the correct answer if they determine the determinant of a cofactor of D – 

A  as either       det det detA D D A D A        , where  det D A   

represents the determinant of any cofactor of the matrix, D – A and when n is 

even or    det detA D D A     , which will undoubtedly prompt students to 

input the absolute value,    det detD A D A     , as they will know that this 

value, which is essentially a counting variable, will be nonnegative. However, 

instead of subtraction, it is possible for students to accidentally perform an 

addition of these matrices. In this instance,    det detD A D A     and so, a 

distracter can be created.  

Another essential feature of this calculation is knowing to calculate the 

cofactor of the matrix, D – A. However, it does seem possible for students to 

easily overlook this and instead of calculating det∗(𝐷 − 𝐴), they could calculate

 det D A . However, there is a problem, as Proposition 4.1 explains, but first, 

one term needs to be defined48: 
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Def. 4.1 Let A be an n n  matrix. Then, for 1 ,i j n  , the minor associated 

with an entry, ,i ja , is the    1 1n n    determinant obtained by 

removing the ith row and the jth column of A. 
 

 Now, the proposition is given. 

 

Proposition 4.1 For any simple, undirected n n  graph, G, let D represent 

its corresponding degree matrix and A represent its 

corresponding adjacency matrix. Then 0D A  . 

 

So, it is not reasonable to use this as a distracter, but it is possible to look 

at a particular minor of the adjacency matrix, A, and calculate the absolute value 

of its determinant. Therefore, this instead can be used as a distracter. 

Following suit to the previous (and now proven to be faulty) distracter, 

another possible distracter can be formed by simply calculating the determinant 

of a cofactor of the adjacency matrix itself, especially at the diagonals, forgetting 

completely about the other, relevant parts of the calculation. The reasoning 

behind this distracter is because it has been observed at Brunel University that 

some students are still expecting a “quick solution” to mathematical problems, 

even at the postsecondary level. Although this may not be generic for all 

students, for this particular group of students, who are to be tested using these 

questions, it seems appropriate to use this distracter. Perhaps by using this 

distracter, too, other students in other institutions may be caught using it. Do 

note, though, that not all determinants of cofactors will be positive and therefore, 

the absolute value of each determinant has been obtained and each new result is 

used as a separate distracter. Additionally, it is possible that any of these results 

will duplicate another distracter in the code. However, based on how the coding 

of the distracters works, if a student gives an answer that could trigger multiple 

distracters, then only the first distracter triggered will be noted in the feedback. As 

such, it is always important to ensure a proper ordering of distracters in the code 

by allowing those that are more likely to occur by a student to appear in the code 

first, followed by the less likely distracters. 
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The three distracters noted have been implemented into two RNI 

questions, one involving a graph and the other involving an adjacency matrix. In 

both questions, students are simply asked to determine the number of spanning 

trees for either the graph or the adjacency matrix. An example of this question, 

along with a response that triggers one of these distracters is given in Figure 4.1. 

 

 

 

Figure 4.1 Example of an RNI question, asking to determine the number of spanning trees 
in a given graph, along with feedback for responding and triggering a distracter. 
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The distracter used in Figure 4.1 involves taking the absolute value of the 

(3,3)-cofactor of the adjacency matrix. However, it should be obvious to any 

student that the correct answer will not be three as the number of edges present 

suggests there are many more spanning trees possible and therefore, a mark of 

two out of four may seem inappropriate. However, what is more important here is 

not the difference between a student’s answer and the correct answer, but rather 

how the student may have answered the question in the first instance. Therefore, 

although the answer is obviously incorrect, the predicted procedure by which the 

student obtained this result shows that the student had some idea, at least, about 

how to solve the problem and so, two marks have been awarded based on this 

assumption. 

In Section 3.12.2, a question on determining the chromatic number of a 

graph using a given procedure is presented. This question has three distracters, 

but two of them are minor. Similar to the questions on the shortest path problem, 

there is not much to work with in terms of researching distracters for this topic. 

However, based upon one of the theorems stated earlier, one reasonable 

distracter can be created. 

The first two distracters simply take the correct answer and either add or 

subtract 1 from it so that two new values are generated. With this topic, it is quite 

possible to implement a procedure in the correct way, but then “tweak” the final 

result, as if there was something wrong with it; this idea is based on the material 

shown in Section 3.12.1. 

The third distracter looks back at Theorem A.3. Recall that Brooks’ 

Theorem gives an upper bound for the chromatic number of a graph. However, 

the procedure may give a different (or an even better) upper bound. As an 

example, the graph in Figure 3.40, according to Brooks’ Theorem, has an upper 

bound of 9 (since vertex H has maximum degree, 9). However, as was shown in 

Figure 3.41, a new upper bound of 5 was obtained using the suggested 

procedure. Therefore, under the assumptions that Brooks’ Theorem is taught to 

students learning material on vertex colouring and that the upper bounds will 

differ between Brooks’ Theorem and the suggested procedure, this is a valuable 

distracter to have included in the question code. 

In Section 3.12.3, the question asks for the colour to be associated with a 

particular vertex. Although there are no formal distracters for this problem, one 
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“impromptu” distracter has been formed by selecting the colour that appears 

either immediately before it or immediately after it in the list of colours. Also, 

although an alert box will appear, reminding students to double-check their 

answers before submitting them, it may still be likely that a student will give the 

correct answer, but then spell it incorrectly. In such a case, nothing can be done 

for the student as (s)he will be told the answer is incorrect and so, no marks will 

be awarded (as it is not a distracter, either). However, as this material is primarily 

for undergraduate students in university, they should be reminded to carefully 

read all questions and to follow all instructions. At Brunel University, it has been 

noted for online, mathematics tests for other courses/modules that students often 

fail to read questions carefully and so, submit answers that are not formatted 

properly and thus, they, in turn, lose several marks, even though their answers 

are theoretically correct otherwise. For university students, if they cannot read a 

question fully and carefully enough, then strict penalties, such as the loss of all 

marks for that particular question, could be warranted. 

 

 

4.6 Reverse Engineering 

 

Another method for creating distracters is to design the answers and then 

create the question around the answers; this is known as reverse engineering. 

In Section 3.9.1, a MC question is presented on finding a spanning tree from a 

particular graph. In order to create the answers, the original graph needs to be 

created in such a way so that multiple features may appear within the graph. The 

distracters below highlight the features that can appear as a result of reverse 

engineering. 

There are four distracters used in creating the MC questions on spanning 

trees. With these questions, though, distracters are mostly obvious, but with one 

exception. The first distracter is a spanning tree of the given graph, but with one 

edge included so that a cycle is formed. Upon looking at this candidate solution, 

students should easily find the cycle and eliminate it as a candidate. The second 

distracter removes an edge from a spanning tree, causing it to no longer be a 

spanning tree. The removal of this edge should create an unconnected graph 
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and students should see this relatively easily. The third distracter implemented is 

an unconnected union of two subtrees of a graph. Although all vertices have 

connecting edges and although there are no cycles, this union is unconnected 

and thus, it cannot be a candidate solution to represent a spanning tree. 

The fourth distracter is rather interesting in that it actually is a spanning 

tree, but due to the question wording, it does not constitute a spanning tree for 

the given graph and therefore, it is no longer a candidate solution. This candidate 

solution is not easy to catch as the other three solutions and this has the potential 

to catch many students off guard, especially with three obvious, incorrect 

solutions already in use. If the correct answer does not appear in a particular 

question, then it might be likely that a student will not select “None of these!”, but 

rather this distracter as it has all of the characteristics of a spanning tree. 

In each distracter, a candidate spanning tree was introduced, but then it 

was “mutated” to destroy it as a candidate solution. In each case, though, there 

was an initial possibility of each answer being correct as most of the edges 

included matched up to the given graph. However, for these questions, the 

process behind how this works does not use a forward approach, but rather uses 

reverse engineering to allow the initial features of each distracter to combine 

together to create the graph that is seen as the “given graph” in each question. 

To do this, each of the four initial spanning trees, some before being mutated, 

along with the correct solution, were combined together to create something 

similar to a “layering effect”, where repeating edges were removed so that only 

one edge could join any pair of vertices and all other edges remained intact.  

The concept of reverse engineering is very useful in generating 

randomised questions as the answers can be used to manipulate how the 

question is to be worded and how much information may be provided within the 

question. This concept appears again later in another topic, but in that instance, it 

will help to show how this concept may be used in other question types. 

 

4.7 Distracters Created by Students 

 

There are multiple perspectives from which to create distracters. However, 

distracters created from theories, strategies, etc. may not be the most trustworthy 
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in catching out student errors. However, it is possible in some cases to review 

previous students’ answers in order to investigate errors and thus determine what 

distracters to create for a question. This strategy is ideal for determining 

distracters that are used more frequently, but it is trickier to obtain such 

information as ethics committee groups may block people from obtaining previous 

students’ work; in this case, it is ideal for anyone wanting to research common 

distracters to be directly involved with the modules in which assessments may be 

later created using Mathletics. 

From Section 3.9.3, the number of spanning trees is to be calculated from a 

graph with a bridge connecting two disjoint subgraphs. This question is somewhat 

different in that additional strategies can be implemented beyond those already 

created from the previous question set. 

The question in Section 3.9.3 has four distracters. The first distracter 

involves multiplying the number of spanning trees of one subgraph by the 

number of copies of that subgraph; in other words, the number of spanning trees 

for each copy is added together instead of multiplied. This distracter was 

generated based upon past examination results of students in the 2nd year 

course / module, MA2920: Algebra and Discrete Mathematics43, at Brunel 

University, where it was seen that 17.74% of students (i.e. 47 out of 265 

students) who answered the question on spanning trees from 2004 – 2008 

willingly decided to multiply the number of spanning trees by the number of its 

copies rather than perform an exponential calculation of the number of spanning 

trees to the power of the number of its copies. In most of these cases, students 

performed such errors throughout the entire problem, including at the very end, 

when they added the numbers of different spanning trees together instead of 

multiplying them. A student who triggers this distracter will receive an overall 

score of 3
6
. 

This question has been widely used in past examinations for MA2920, so 

past examination papers have also been analysed to assess student errors for 

this question; this can be shown in Appendix D. Students’ examination results 

show that 13 students skipped this question for all tests between 2004 – 2007, 

but then, 14 students skipped it on the 2007 – 2008 examination. Discounting 
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these students, the percentage is now 47
238

19.75% . Also, most of the other errors 

made by students who attempted this question had little commonality, aside from 

those who used the deletion-contraction recurrence54. However, the deletion-

contraction recurrence is difficult to code in such a way as to catch a student 

making an error, so this was not considered in creating a distracter. 

Another distracter for this question originally saw a student calculating the 

difference, A – D, instead of D – A; in other words, all of the values in the matrix 

are opposite of what they should be. For n n  matrices, where n is even, this has 

no effect. However, when n is odd, this causes the determinant to be negated. 

Nonetheless, it is expected that if a student then performs all other calculations 

correctly, then (s)he will omit the negative sign, knowing that the question is 

asking for a quantity of items and hence, must be positive. Doing this will give the 

student the correct answer and therefore, is not an official distracter for this 

question. However, if a student were to perform the same error as in the first 

distracter, then this could cause a major problem for the student. Considering the 

likelihood of the first distracter to occur, a student who commits this error may not 

notice it when (s)he then adds the numbers of spanning trees together. As such, 

this has been included as a second distracter. A student who triggers this 

distracter will receive a score of 2
6
. 

The third distracter considers the possibility of students trying to rush to an 

immediate solution by simply taking the determinants of the adjacency matrices 

corresponding to the subgraphs, but then performs the necessary calculations 

using these values. Much of the work seen in the MA2920 examination scripts 

has students jotting down little pieces of information, but then they try to rush to 

an immediate solution. Although much of the work performed appeared to involve 

rather random procedures, if a student is, at least, somewhat aware of the overall 

procedure, then it is possible for the student to perform this error. For this 

distracter, a student who triggers it will receive a score of 1
6
. 

The final distracter in this question has the student not only using the 

determinants of the adjacency matrices, but also adding the numbers of spanning 

trees. If this error does occur, then it will be apparent that the student has no 

clear indication of the procedure itself and so, no marks will be given for the 
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attempt. However, at least some additional information will be provided to warn 

them of these errors, as is the case with all other distracters for all questions. 

 

4.8 Additional Remarks about Distracters 

 

Distracters can provide much insight into the commonality of errors made 

by students when answering questions. However, determining which distracters 

can occur can be problematic. Looking at errors students have made previously 

seems reasonable and easy to do, but there are ethical issues that can occur in 

doing this. Other strategies mentioned in this chapter provide insight on how to 

seek distracters, but this list is not necessarily exhaustive as other strategies may 

exist which also help in finding distracters. 

In Appendix D, it is shown that some errors made by students have been 

categorised to form a more generalised basis for explaining the errors students 

are making in answering questions. However, when forming distracters, it is 

preferable not to generalise errors, but instead look carefully at the methodology 

to see where errors can occur in order to create suitable distracters. As an 

example of this, the question in Figure 3.40 has two calculation distracters where 

the answers are either one more or one less than the correct solution; although 

you can generalise the categorisation of the distracters, two separate distracters 

would warrant two separate sets of feedback.  
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Chapter 5 Structuring Graph 
Theory Questions in 
Computer-Aided 
Assessment using 
Mathletics 

 

 

5.1 Mathletics On-Screen Features 
 

In the Introduction, relevant features of Mathletics were discussed to 

explain the importance of the features that exist within the online assessment 

software. This section will look at how this works in practice with the questions 

designed for use in graph theory through a worked example, as shown in Figure 

5.1. 

Figure 5.1 shows a question on the topic of graph colouring. The question is 

presented in a default background colour, text size, colour, and font. This can be 

changed to suit a student’s accessibility in viewing questions. Questions can also 

be printed in case students prefer to read it on paper whilst attempting the 

question online. There is only one question presented at a time on the screen in 

this example; this is the standard preference due to technical problems that 

infrequently occur with multiple questions appearing on the screen, especially 

when SVG graphics are included in questions and answers. 

The question mentions “13 towns within Canada”. The name, Canada, is 

chosen randomly from a template list of world countries. The inclusion of 

randomising text within questions helps in presenting individualised questions to 

students, which may help in deterring them from colluding during an assessment. 

The number, 13, is a random parameter designed for a suitable range of 

numbers of vertices. The corresponding graph uses SVG graphics using the 

same number of vertices as given by the random parameter and also selects 

edges to connect vertices using some randomisation, but also any preferences 

embedded into the coding by the question designer (e.g. a complete graph would 

need a subset of either 𝐾5 or 𝐾3,3 to be included as part of the graph and this 
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feature can be embedded into the graph function if desired). The list of colours is 

also randomly chosen from a template list of colours. 

 

 

Figure 5.1 Example of a question designed in Mathletics on the topic of graph colouring 
within the subject of graph theory. Various properties of the question design are 
highlighted to detail features of the design of questions. 

 

 

 

Categorisation of question. 
Background 

colour and text 

colour, font & size 

can be edited to 

optimise viewing 

accessibility of 

questions. This 

question is set to 

default settings. 

Questions may be 

presented one at 

a time or all 

together in one 

screen, depending 

on assessment 

requirements 

made by teacher 

or lecturer. 

An SVG graph 

designed with a 

random number of 

vertices and 

edges. Graphs 

can be coded to 

provide specific 

characteristics 

when required. 

Question body. In 

this question, the 

number of towns 

and the country 

name are 

randomised to 

give unique 

questions each 

time on the same 

topic. 

Added 

instructions on 

how to input 

answers. This is 

necessary as 

formatting of text 

answers needs to 

match provided 

answer so that 

coding can 

recognise the two 

strings as 

matches. 

Text box for 

inputting answer.  

Colours are randomly selected from a list 

embedded in a list of templates. 

Questions can be 

printed if 

preferred. 

If satisfied with an 

inputted answer, 

students need to 

click on the 

Submit button. 



109 
 

The topic of vertex colouring does not have specific algorithms which can 

easily be tested to determine the minimum number of colours needed to colour a 

random graph. However, strategies can be implemented to determine a possible 

minimum, so, in this question, a strategy is detailed. It is important that this 

strategy is well detailed in order to avoid any complications in understanding by 

the student. Also, the required answer is to be a colour, which is to be inputted by 

name, i.e. as text, in the text box provided. Inputted text is seen as a string by 

the code and strings are case-sensitive; for example, to choose the colour, pink, 

the texts, “pink” and “Pink”, would be seen as different strings and, unless 

otherwise coded within the question code, could result in an unnecessary loss of 

marks. Therefore, an added instruction is given after the input box to remind 

students to input their answers in all lowercase letters. Additionally, as shown in 

Figure 5.2, a pop-up window will appear to remind students to verify the 

formatting of their answers before clicking on submit a second time. 

 

 

Figure 5.2 Upon submitting an answer to the question presented in Figure 5.1, a pop-up 
window appears, asking students to verify their answers are written in the correct 
format. Upon clicking OK, if students are satisfied with their answers and click 
Submit again, then the pop-up window will not re-appear; if a student changes the 
answer, then the pop-up window will re-appear. 

 

Answer screens appear after submitting answers to questions. Answers 

provide detailed summative and formative feedback to questions and can include 

SVG graphics, as shown in Figure 5.3. Scores for an assessment are tabulated 
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and will appear in a final screen after submitting all answers and receiving all 

feedback to questions. 

 

 

Figure 5.3 Feedback to answer given to question provided in Figure 5.1. 

 

5.2 Generating Graphs for Use in Mathletics 
 

There are many questions to ask when trying to generate a graph for use in 

Mathletics. In the case of graph theory: 

 

1. How do you create a graph of n vertices such that they all appear 

regardless of the value of n? 
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2. How are the edges added and how is it decided which edges go 

where? 

3. How do you create loops around a vertex and loops between two 

vertices? 

4. How do you create arrows in the case of directed graphs? 

5. If weights are needed, then should they be attached to the graphical 

image? 

 

To answer the first question, vertices are arranged evenly around in a 

circular formation, using the mathematical concept of finding the roots of a 

complex number to place points evenly on a coordinate plane that remains 

invisible throughout.  

Next, the edges have to be included. Doing this, however, requires one 

key component, namely the corresponding adjacency matrices. The SVG 

function that calls all such graphs require the corresponding adjacency matrix in 

order to determine which edges go where. In the case of an undirected graph, 

the adjacency matrix needs to be symmetric; otherwise, the graph will not appear 

properly. For a directed graph, however, the matrix does not need to be 

symmetric; in fact, educationally (or “pedagogically”) speaking, it is preferable for 

the matrix to remain asymmetric as any symmetry may confuse students when 

answering questions. To do this involves editing the matrix within the question 

code itself and ensuring that if 1ija  , then 0jia  . However, if a graph is 

directed, then arrows are needed to show the directionality of the edges. This is 

done by attaching an arrow at a fixed ratio along a corresponding edge, going 

from the starting vertex and pointing towards the destination vertex. Each arrow 

is sized according to the overall size of its corresponding edge so that any 

unusual sizing issues do not arise. 

Following from this, loops need to be created, whenever necessary. In the 

case that a loop is required around a vertex, then a circle is created so that its 

center is located just slightly further away from the center of the large circle than 

the corresponding vertex label. It is important that the distance from the vertex to 

the center of this circle is equivalent to the radius for that circle so that the circle 

will connect to its corresponding vertex. However, loops around a pair of vertices 
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are more difficult as this is essentially two edges instead of one. Creating such a 

loop requires an ellipse rather than a circle, which is not symmetrical from all 

directions, and so, any ellipses that need to be included have to be rotated so 

that they may attach themselves to their corresponding vertices. The “skinniness” 

of any ellipse is also an issue as larger ellipses may interfere with the overall 

design of the graph. However, it is usually known that if a loop is required, then if 

the graph is directed, then the edges are automatically going in opposite 

directions. Nonetheless, though, since it is difficult to attach two arrows to one 

graphical element, it is usually best to either avoid the use of loops around a pair 

of vertices in digraphs or to include a “disclaimer” in each question, warning 

students of this.  

One essential problem with creating these graphs is the labelling of edges 

whenever weights are included. All of the previously mentioned components to 

creating graphs are added in a “layering effect” so that one element is layered on 

top of another element. As each graph is randomly created, determining the 

location of labels for edges is incredibly difficult as any potential overlapping 

based on the layering effect can cause a question to become “unanswerable” 

due to unreadable information. Therefore, if weights are needed, then it is 

preferable to create a weighted matrix and attach it within a question and also, 

preferably adjacent to its corresponding graph. 

With all of these properties, any graph for use in most graph theory topics 

can be generated. The template code for this function is shown in Code 2.4. 

Variations of this graph are explained in Chapter 2 and Chapter 3, detailing the 

technical and pedagogical issues that appear throughout. 

 

 

5.3 Provision of Feedback 
 

For all questions designed in Mathletics, it is possible to provide additional 

feedback after students answer questions to help them better understand what 

they have done correctly or incorrectly. Feedback can be simple or “generic”, as 

shown in Figure 5.3, but this can easily be enhanced, as shown in Figure 3.39 

regarding chromatic polynomials and Figure 3.33 regarding Kruskal’s Algorithm, 

for instance.  
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Since questions are created with the intention of including random 

parameters throughout so that numerous realisations of the same question can 

appear, different strategies and formulae have to be programmed into the coding 

so that feedback is appropriate. Since feedback can be programmed into the 

question code directly, it can call upon the same functions used in the question to 

generate appropriate feedback. 

Feedback can be used to explain how to answer a question correctly if a 

student answered it incorrectly. If a student answers a question correctly, then 

the methodology for solving the problem does not need to be included. 

Additionally, following the feedback, the question is scored and additional 

information, perhaps referring to the students’ answers if preferred, is given; the 

use of distracters, as highlighted in Chapter 4, is very helpful here as partial 

credit and more detailed information about what the student may have done 

incorrectly in answering a question can all be provided. 

 

 

5.4 Research Question: Versatile and Robust Questions in 

Graph Theory 
 

This section answers the research question: 

 

How can the potential of computer-aided assessment be exploited to set 

versatile and robust questions in graph theory? 

 

As was shown in Chapter 4, Mathletics is very helpful in creating an 

organised library of questions within graph theory with additional tagging to allow 

teachers and lecturers to easily search for and design assessments based on 

their own requirements. The questions designed in Mathletics for the subject of 

graph theory have random parameters embedded within them so that numerous 

realisations of the same question can be generated. This creates individualised 

assessments for each student. 

Graph theory relies heavily on the use of graphs and networks in order to 

illustrate problems. Graphs and networks needed to be drawn with a random 

number of vertices and edges, along with weights and coloured vertices, so that 
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they can be flexibly used in multiple topics within graph theory. It was shown in 

Section 5.2 that a clear layout of the graph can be achieved by placing vertices 

equally round a circle. Sometimes, the centre of the graph could also be used as 

a vertex and so, another graph function was created to include this. The image 

needed to be embedded within an image frame on the question screen and this 

was carefully managed so that technical errors would not come up when loading 

a question on the screen. 

A variety of topics within graph theory were visited in Chapter 3. Different 

question types were used to allow a wider range of questioning to be used. 

Questions used graphs or adjacency matrices to provide students with a better 

understanding of the relationship between the two items within graph theory and 

how they can easily be interchanged within topics. Different assessment 

schemes were implemented to ensure added flexibility in designing an 

assessment structure suitable to each assessment.  
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Chapter 6 Analysis of Graph 
Theory Questions using 
Mathletics 

 

 

6.1 Methodology for 2007 – 2008 Analyses 

 

From 2007 – 2008, graph theory questions designed using Mathletics27 

were tested on students enrolled in Brunel University’s MA2920: Algebra and 

Discrete Mathematics43 module. The testing of questions on students was 

designed in three parts: 

 

 Practice test with all questions using graphs where available and 

not using adjacency matrices when possible. 

 Practice test with all questions using adjacency matrices where 

available and not using graphs when possible. 

 Invigilated test with all questions using a combination of graphs and 

adjacency matrices. 

 

For the two practice tests, students were provided access to complete 

tests as often as they wished for a specified period prior to the invigilated test. 

The invigilated test was scheduled during a lecture session two months prior to 

the students sitting their final examination for the module. Students were in a 

controlled environment and were given a maximum of five attempts to complete 

the invigilated test. The maximum score achieved in the invigilated test would be 

the recorded score received and all scores counted toward their overall 

assessment scores for the module.  

Questions were designed to have partial marking included so that students 

could receive partial credit if a predictable error (known as a distracter) was 

given in the students’ answers. Students had to answer one question at a time, 

receiving a score and feedback after answering each question. Spare paper was 

provided to students in case they needed it to help them answer questions. 
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Results were summarised by the system software and formatted into 

spreadsheets, detailing the questions, topics in which they were categorised, 

number of attempts, facility, i.e. mean score between all respondents, and 

discrimination, i.e. correlation between each individual question score and the 

individual’s overall test score. 

Two months after sitting the invigilated test session, students in MA2920 

sat their final examinations for the module; this was a paper-based examination. 

As per university procedures, the lecturer assessed the examinations and the 

papers were then clerically checked, usually by Ph.D. students or other lecturers 

within the department. After these procedures were completed, the papers were 

individually analysed and were compared to previous final examination papers for 

the same module to determine if students who attempted the online questions 

progressed in their learning and understanding of the module better than those 

students who had not had access to the online questions at the time. 

Comparisons were made possible due to the fact that previous final examination 

papers for MA2920 were similar in structure and questioning to the final 

examination paper sat by the students who had been exposed to the online 

assessment material in graph theory. 

The first analysis, conducted in 2008, involved students from the Brunel 

University mathematics module, MA2920. Students completed two sets of 

practice tests, namely a “visual test” using graphs and a “logical test” using 

adjacency matrices, prior to sitting an invigilated test, which combined graphs 

and adjacency matrices in each question. The analysis will determine if the 

designed questions have the potential to be effective in the assessment and 

learning of graph theory, but they will also highlight any patterns that may cause 

a significant change in overall assessment scores. An analysis of the students’ 

final examination results will also help to determine if they have performed better 

as a result of using the online software. 

 

6.1.1 Statistical Analyses 

 

Each online test is analysed independently, investigating the specific 

answers students gave for each question to determine the effectiveness of the 
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pre-chosen distracters. A further analysis looks at discrimination values to 

determine the effectiveness of the question in relation to the overall assessment. 

Additional analyses will investigate comparable questions for significant 

differences in assessment scores based on various characteristics, such as 

question style (e.g. direct question or word problem), type (e.g. multiple-choice, 

numeric input, etc.), and presentation (e.g. use of graphs or adjacency matrices). 

For the two practice tests, an additional analysis of correlations will 

explore the effectiveness of the assessments from one practice test to the next. A 

similar analysis will be reviewed for the invigilated test, but keeping in mind that 

the number of attempts at the invigilated test was limited to five attempts. 

To analyse questions further, each set of identical questions for each topic 

were evaluated together using a two-factor ANOVA test without replication55, 

which implies that there are no possible interactions between the independent 

factors of student outcomes and the question designs. This experiment design is 

used to determine if there are significant effects between elements in either factor 

and further analysis is performed when this is the case. However, note that much 

has already been discussed in relation to distracters using the quantitative 

analysis already performed in previous sections. This factor should have 

numerous differences throughout and this is verified using the two-factor model.  

If differences occur between the question designs, then further testing will 

be needed to determine for which combinations of factors these differences 

appear. To do this, student t-testing56 is performed. However, because the 

quantitative data collected is matched to the student outcomes, any t-testing to 

be performed must be a paired, two-sample test for means. The one-tailed and 

two-tailed effects for all paired comparisons are determined at the 0.05   level 

of significance. 

To test for significance using ANOVA, there are two methods that can be 

employed, but to describe these methods involves the following definitions57: 

 

Def. 6.1 In a statistical model, the F-ratio is the ratio of the mean square 

value for a source to the mean square value for the calculated error. 
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Def. 6.2 In statistics, the F-distribution is a distribution of two independent, 

chi-squared random variables, say 2

u  and 2

v , with u and v 

degrees of freedom respectively. The ratio to determine a critical 

value for this distribution at a given level of significance, say α, is 

given by the equation,  

 

2

, 2

u

u v

v

uF

v




 . 

 

Def. 6.3 In statistics, the P-value is the probability that a given statistic can 

be used to determine the conclusion to a given experiment for any 

level of significance. 

 

The methods are now explained: 

First, set up a statistical experiment with a null hypothesis, H0. Based off 

the null hypothesis, create an alternative hypothesis, H1, that is mathematically 

opposing H0. The analysis of variance (ANOVA) or a t-test can then be used. 

Upon determining all of the quantitative results, use the following57 to determine 

the appropriate conclusion: 

 

1. Determine the experimental value for the analysis and compare it with 

the critical value for the distribution at the 𝛼 = 0.05 level of significance. 

If the experimental value is greater than the critical value, then the null 

hypothesis is rejected and the alternative hypothesis is therefore 

accepted; otherwise, the null hypothesis is not rejected. Note that the 

statements, “The null hypothesis is not rejected” and “The null 

hypothesis is accepted” are not mathematically equivalent and 

therefore, it is not possible to say that “H0 is accepted” by way of the 

experiment. 

2. Determine the P-value. If it is lower than the set value for α, then the 

null hypothesis is rejected. If the P-value is higher than the set value 

for  , then the null hypothesis is not rejected. 
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For the tests that are performed on the quantitative results from the graph 

theory trials, the following hypotheses are formed: 

 

0 1 2 8: o o oH       

1H : At least one of the means of the outcomes differs from the others. 

 

0 1 2 3 4: q q q qH        

1H : At least one of the means of the question styles differs from the others. 

 

To test comparisons using t-testing56, the critical values for the one-tailed 

and two-tailed, paired, two-sample t-tests are performed at the   level of 

significance using Microsoft Excel, along with the t statistic. The reason for 

choosing the paired, two-sample t-tests is because the data collected in each 

topic correspond to each distracter uniquely in comparison with other distracters 

and therefore, whenever comparing question styles, data must remain paired. 

To perform the t-test, the mean, variance, and number of observations for 

each item in the comparison are required. Once determined, the experimental 

value for the distribution is calculated using the formula58,  

 

0
dS

n

d
t  , 

where d  is the sample mean of the differences between each pairing, dS  is the 

sample standard deviation of the differences, and n is the number of 

observations. From this, a comparison is then performed with an expected value 

using n – 1 degrees of freedom and an appropriate degree of certainty (i.e. using 

α). However, this degree of certainty depends on the nature of the trial. If a one-

tailed test is performed, then the hypotheses could be 
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1 1 2
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:

H
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 or 

0 1 2
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:

:

H
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
, 
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depending on the directionality expected. For either set of hypotheses, α remains 

as 0.05 and the tests are to determine if 0 , 1nt t    and 0 , 1nt t   respectively; if 

so, then H0 is rejected. However, if a two-tailed test is performed, then the 

hypotheses are  

 

0 1 2

1 1 2

:

:

H

H

 

 




, 

 

where the value of α is cut in half to represent the equal possibilities of the 

distribution drifting to either side and the test is to determine if 
2

0 , 1n
t t 
 ; if so, 

then H0 is rejected. 

Additionally, it should be noted that any t-testing performed has the risk of 

creating an experimental error, as explained in these definitions57,59: 

 

Def. 6.4 In a statistical experiment, if the null hypothesis is rejected, but it is 

actually true, then it is said a Type I error has occurred. The 

probability of such an event occurring is denoted using the Greek 

letter, α, and can be referred to as the significance level for an 

experiment. 

 

Def. 6.5 In statistics, the familywise error rate (FER) or experimental 

error rate (EER) is the probability of committing a Type I error in 

performing a set of experiments. If n experiments are performed, 

each with a significance level, α, then the probability of an error 

occurring is given by the equation,  1 1
n

P    , where n is the 

number of comparisons performed. 

 

The more comparisons that have to be made, the larger the EER can 

become. Because of this, it becomes more likely that one Type I error will be 

made, at least, when conducting t-tests. Therefore, when analysing the 

quantitative analysis of the questions and the answers selected, it is important to 

note the number of t-tests needed. 
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Questions in the analyses combine practice questions with the test 

questions to check for significant differences and what effects they could have on 

the promotion of learning in graph theory. 

 

6.2 Methodology for 2008 – 2014 Analyses 

 

From 2008 to 2014, introductory graph theory questions designed using 

Mathletics27 were tested on students enrolled in Brunel University’s MA0422: 

Discrete & Decision Mathematics43 module. All sessions were for practicing 

purposes only, as arranged by the lecturer with all questions evaluated so that 

each student would score one mark if correct and zero marks if incorrect. Results 

were summarised by the system software and formatted into spreadsheets, 

detailing the questions, topics in which they were categorised, number of 

attempts, facility, i.e. mean score between all respondents, and discrimination, 

i.e. correlation between each individual question score and the individual’s overall 

test score. 

When someone attempts to answer a question using a multi-step process, 

it is possible to make a mistake at any step in the process, causing the submitted 

answer to be incorrect. It can be reasonably assumed that the more steps that 

exist in the method by which a question is answered, the less likely it is for the 

submitted answer to be correct. However, this may not be the only factor: 

Prerequisite knowledge may play a role, causing a question requiring only a few 

steps in solving to be more difficult than an easier question without the need for 

prerequisite knowledge requiring more steps in solving. It would be very helpful 

when designing online, objective questions to understand these factors better in 

order to produce more efficient questioning with appropriately detailed feedback; 

this can help students to learn from their attempts in a practice-based 

environment in order to better understand the learning material in preparation for 

invigilated assessments. Therefore, the objective is to determine what, if 

anything, caused the facility values for some questions to be higher than others 

and to implement an approach by which we can better design online, objective 

questions in the future. 
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6.2.1 Statistical Analyses  

 

During the investigation of the data, it was revealed that there was a 

significant variation in questions being analysed between the 2008 – 2011 

academic years and the 2011 – 2014 academic years:  

 

 12 questions on Prim’s and Kruskal’s algorithms were presented to 

students from 2011 – 2014. 

 The topic of edge sets removed questions involving digraphs from 

2011 – 2014. 

 Multiple questions were prepared on the topic of degree from 2011 

– 2014, using previously designed questions on degree, indegree, 

and outdegree, but isolating possible realisations to ensure that 

different realisations would be tested each time. 

 There were no questions on simple and connected graphs from 

2011 – 2014. 

 There were no questions on bipartite graphs from 2011 – 2014. 

 

To ensure a fair analysis of the data, two groupings were formed with two 

separate analyses conducted. Any questions that appeared in both academic 

year groups were extracted so that results from one academic year group would 

not affect analysis in the other academic year group. Also, it was noted that the 

question topic changed for some questions; because this did not have any effect 

on the questions presented and because of the significance of the academic year 

groupings, the topic category was ignored in the analysis. The focus for the 

analysis was on the facility and discrimination of questions to identify which 

questions were more challenging or discriminating. The following chapters seek 

to explain the results on the basis of understanding why some questions were 

more challenging to answer as opposed to other questions. 

 Each question could be identified by multiple characteristics, i.e. topic, 

question type, and use of graphs compared to use of adjacency matrices; 

however, the objective is to determine if facility and discrimination are affected by 

the number of reasonable steps required to solve a problem. Therefore, it was 
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important to compare all questions as a collective unit. Also, summary data for all 

questions from each academic year group is provided for facility to show overall 

mean scores for each academic year. 

 Since all questions were marked with either zero or one, standard 

deviation of scores would only be representative of the proportion of correct 

answers given, which can be easily noted from the facility value. Therefore, 

standard deviation is not considered in the analysis of these questions. 

Discrimination values are presented for each academic year in which questions 

were made available and attempted online. Also, these questions were 

conducted in “practice conditions”, implying students were not obliged to 

complete all questions in the assessment, nor did the assessments necessarily 

have to go through all questions in each sitting. Therefore, overall discrimination 

values do not appear in the analysis; however, each academic year’s question 

discrimination values do appear as they were made available through the 

statistical analysis provided by the software after each academic year’s testing. 

 Since all questions were evaluated with scores of either 0 or 1, statistical 

tests were conducted to test the differences between proportions using a normal 

distribution. Let 𝜇𝑖
𝛼 be the proportion of correct answers for question set 𝑖. One-

tailed tests were set with a significance level of 𝛼 = 0.05 (𝑍𝑐𝑟𝑖𝑡 = ±1.645). Any 

values, 𝑍𝑡𝑒𝑠𝑡  ∋ 𝑍𝑡𝑒𝑠𝑡 > |𝑍𝑐𝑟𝑖𝑡|, would result in a rejection of the null hypothesis, 

𝐻0, and an acceptance of the alternative hypothesis, 𝐻1, depending on the value 

of 𝑍𝑡𝑒𝑠𝑡. The null and alternative hypotheses for these statistical tests are given 

as follows: 

 

𝐻0: 𝜇1
𝛼 = 𝜇2

𝛼

𝐻1: 𝜇1
𝛼 < 𝜇2

𝛼

(if 𝑍𝑡𝑒𝑠𝑡 < −1.645)

 or 

𝐻0: 𝜇1
𝛼 = 𝜇2

𝛼

𝐻1: 𝜇1
𝛼 > 𝜇2

𝛼

(if 𝑍𝑡𝑒𝑠𝑡 > 1.645)

  

 

To determine what makes one question have a higher facility over another 

question, we need to first group similar questions together so that a valuable 

comparison can be made between them. When viewing these groups, we need 

to look at the specific characteristics that make them different, e.g. question type, 

question topic, comparable features in similar questions. From viewing these 

characteristics, we can have an understanding as to the number of steps that 
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should be required to answer the question correctly and, furthermore, they will be 

useful in identifying any relevant differences in student understanding. If, 

however, it is not clear what characteristics made a question seemingly more 

challenging than another question, then it can be concluded that there is no clear 

evidence to conclude how this occurred. This, however, will all occur generally 

from two perspectives: the year-by-year analysis will look at any significant 

patterns between academic years with different cohorts of students and the 

overall facility values will look at a general analysis of the results for all three 

academic years combined, as if all students were part of the same cohort. 
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Chapter 7 Analysis of Advanced 
Graph Theory 
Questions using 
Mathletics 

 

 

7.1 Hypotheses 
 

In the 2007 – 2008 assessments, students were allowed to re-attempt 

questions as often as they wished in a practice environment with two test sets 

having been designed for questions involving adjacency matrices and questions 

involving graphs; later, in the invigilated assessment, students were given up to 

three attempts to answer questions from a test set that included questions 

involving both graphs and adjacency matrices. Since students repeatedly 

attempted similar tests, it is hoped that they will learn from any previous mistakes 

made in order to improve in future attempts; therefore, it is being hypothesized 

that the correlation matrix will show that the test-retest coefficients representing 

correlations from one test to the next test will be positive. 

For these assessments, it was preferred for questions to have a facility of 

0.5 and a discrimination of 1; however, this cannot be expected throughout, 

especially in a finite number of attempts. Where questions have lower facility 

values, positive discriminations will still be encouraging as this will indicate these 

questions had some academic value to overall assessments; alternatively, 

questions with high facility values and low discrimination values may not be so 

worthwhile in overall assessments. Therefore, it is being hypothesized for each 

question analysed that facilities will be ideally close to a value of 0.5, but 

regardless of the facility, discrimination values will remain significantly positive. 

When analysing answers students gave to questions, it is ideal for 

students to give correct answers and therefore, the number of times a distracter 

is chosen ought to remain small. However, it is still expected that in attempts, 

students will eventually select an incorrect answer. Additionally, as explained 

earlier, some consideration towards the creation of distracters has been made so 

that they are not obviously incorrect. Therefore, it is being hypothesized that the 
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proportion of distracters chosen remains small, yet is still significant enough to 

have been selected by students during their attempts. 

As noted earlier, in practice sessions, students were given two test sets to 

review, one involving questions using graphs and the other involving questions 

using adjacency matrices. With a subject that includes visual and numerical 

elements separately, it may be possible that students performed better in one set 

of tests versus the other. Additionally, since the invigilated test involved questions 

using both adjacency matrices and graphs, students who practised the earlier 

tests should have been able to work suitably well with both question styles. 

However, it may not be expected that one question style dominates the other as 

different topics may provide more advantageous opportunities to use one of the 

two question styles. Therefore, it is being hypothesized that there will be 

significant differences between question styles in comparison, but knowing that 

this will vary from one topic to the next. 

 

7.2 Quantitative Analysis of Results Before the Invigilated Test 

Session for Visual Components 

 

The quantitative results determined in this section look at the series of 

questions that focused on the visual components of the topics in graph theory. 

Adjacency matrices were not used in any of these questions, but rather just 

graphs. The data retrieved reflects upon the students’ performance and abilities 

to handle this material. 

 

7.2.1 Discrimination and Other Quantitative Results 
 

There were eight questions given in the visual question set for graph 

theory. Details of each question and their respective, quantitative results are 

given in Table 7.1. 

Six of the eight questions were multiple-choice (MC) and two were 

responsive, numeric input (RNI).  

 

 



127 
 

Question description 
Question 

Type 

Times 

answered 

Max. 

score 

Mean 

score 

Standard 

deviation 

of score 

Facility Correlation 

Find the simple and 

connected graph 
MC 320 1 0.787 0.41 0.787 0.343 

Bipartite graph search MC 301 3 1.987 1.337 0.662 0.436 
Find the non-

Hamiltonian cycle 
MC 285 3 1.253 1.482 0.418 0.437 

Find the Eulerian cycle MC 269 5 3.208 2.35 0.642 0.623 

Find the planar graph MC 255 5 1.686 2.369 0.337 0.555 
Number of spanning 

trees (with branches) 
RNI 80 6 0.388 1.326 0.065 0.437 

Number of spanning 

trees using graphs 
RNI 68 4 0.75 1.53 0.188 0.455 

Find the correct 

spanning tree 
MC 69 3 1.275 1.293 0.425 0.37 

Table 7.1 Table of quantitative results from practice questions looking only at graphs. 

 

 

7.2.2 Finding the Simple and Connected Graph 
 

The question asking to find the simple and connected graph among a list 

of candidate solutions generated the results shown in Table 7.2. 

320 attempts were performed on this question. The facility for this question 

was 0.787, implying that many students found this question to be somewhat 

easy. The index of discrimination, noted as correlation in Table 7.1 and given as 

0.343, shows that this question somewhat helped to measure the same skills as 

the test overall. 78.75% of the students who attempted this question answered it 

correctly, further suggesting the simplicity of this question. The diminished 

numbers of students who triggered the given distracters additionally illustrates 

the simplicity of this question. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 252 78.75% 

Loops around one vertex. 11 3.44% 

Loops around a pair of 

vertices. 
0   

Unconnected. 14 4.38% 

Loops (almost) 

everywhere. 
9 2.81% 

None Of These 23 7.19% 

Did Not Know 11 3.44% 

Not Answered 0   

Table 7.2 Table of responses given by students for the MC question asking to find the 
simple and connected graph. 
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7.2.3 Finding the Bipartite Graph 
 

The question asking to find the bipartite graph among a list of candidate 

solutions generated the results shown in Table 7.3. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 179 59.47% 

Not complete 26 8.64% 

Not bipartite 42 13.95% 

Complete graph 9 2.99% 

Wheel graphs 23 7.64% 

None Of These 14 4.65% 

Did Not Know 8 2.66% 

Not Answered 0   

Table 7.3 Table of responses given by students for the MC question asking to find the 
bipartite graph. 

 

301 attempts were performed on this question. The facility for this question 

was 0.662, implying that many students found this question to be somewhat 

easy. The index of discrimination, given as 0.436, shows that this question 

somewhat helped to measure the same skills as the test overall. 59.47% of the 

students who attempted this question answered it correctly, further suggesting 

the likelihood of simplicity for this question. However, 13.95% of the respondents 

triggered the “not bipartite” distracter and 8.64% triggered the “not complete” 

distracter when attempting this question. The question is given so that although 

the vertices appear in a cyclic formation, the two disjoint subsets that make the 

bipartite graph are formed by a random selection of vertices to appear in each 

set. Therefore, it is likely that students may have been deceived when deciding to 

choose either of these distracters. 

 

7.2.4 Finding the non-Hamiltonian Graph 
 

The question asking to find a graph that was non-Hamiltonian among a list 

of candidate solutions generated the results shown in Table 7.4. 

285 attempts were performed on this question. The facility for this question 

was 0.418, implying that some students, although not a majority, found this 

question to be easy. The index of discrimination, given as 0.437, shows that this 
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question somewhat helped to measure the same skills as the test overall. It is 

interesting to note, though, that 19.30% of the respondents triggered the 

distracter regarding the degree of every vertex. This distracter is based upon the 

theorem60 that any loop-free graph with more than three vertices and with 

deg 𝑥 ≥
𝑛

2
, ∀𝑥 ∈ 𝑉 must have a Hamiltonian cycle. This distracter warranted a 

partial credit of one mark for the question. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 119 41.75% 

Hamiltonian and Eulerian cycles 23 8.07% 

Loop-free graph with 3V  , where   2
deg nx  , 

x V   55 19.30% 

Loop-free, undirected graph with 3V   and 

1
2

2

n
E

 
  
 

 

26 9.12% 

Wheel graph 27 9.47% 

None Of These 22 7.72% 

Did Not Know 13 4.56% 

Not Answered 0   

Table 7.4 Table of responses given by students for the MC question asking to find the 
graph that is not Hamiltonian. 

 

7.2.5 Finding the Eulerian Graph 
 

The question asking to find a graph that was Eulerian among a list of 

candidate solutions generated the results shown in Table 7.5. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 166 61.71% 

Almost a cycle, but the two ends are not 

connected 11 4.09% 

Two cycles connected by one edge. 22 8.18% 

Edge added to an already Eulerian cycle. 42 15.61% 

Two unconnected subgraphs. 5 1.86% 

None Of These 19 7.06% 

Did Not Know 4 1.49% 

Not Answered 0  

Table 7.5 Table of students’ for the MC question asking to find the Eulerian graph. 
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269 attempts were performed on this question. The facility was 0.642, 

implying that a good number of students found this question to be easy. The 

index of discrimination, given as 0.623, shows that this question helped well to 

measure the same skills as the test overall. Additionally, it can be argued that this 

question is a somewhat good indicator for determining how well students 

performed overall in their attempts. It is interesting to note, though, that 15.61% 

of the respondents triggered the distracter regarding an edge being connected to 

what would otherwise have been an Eulerian cycle. This distracter was an 

unlikely candidate for being such a good distracter as students only needed to 

determine if the graph was connected and if the degree of each vertex was even; 

the addition of one edge would easily cause two of the vertices to have an odd 

degree and so, this distracter should easily be caught by students. Nonetheless, 

42 students were caught triggering it and so, it is worth further consideration as a 

distracter. 

 

7.2.6 Finding the Planar Graph 
 

The question asking to find a graph that was planar among a list of 

candidate solutions generated the results shown in Table 7.6. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 86 33.73% 

K5 subgraph 24 9.41% 

K3,3 subgraph 38 14.90% 

Both subgraphs included 31 12.16% 

Complete graph minus one 

edge 23 9.02% 

None Of These 28 10.98% 

Did Not Know 25 9.80% 

Not Answered 0   

Table 7.6 Table of responses given by students for the MC question asking to find the 
planar graph. 

 

255 attempts were performed on this question. The facility for this question 

was 0.337, implying that a smaller portion of students, compared to the previous 

question, found this question to be easy. Again, notice that the percentage of 

students who answered this question correctly is equivalent to the facility, but this 

could simply be coincidental to the spread of the incorrect answers chosen. The 
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index of discrimination, given as 0.555, shows that this question helped well to 

measure the same skills as the test overall. It is interesting to note, though, that 

all of the distracters, along with the response, “Did Not Know”, were each 

triggered by relatively equivalent percentages of students. It is actually surprising 

that 23 students out of 255 actually triggered the distracter of a complete graph, 

minus one edge. This question always selects a minimum of eight edges, so any 

such graph would obviously have the K5 and K3,3 subgraphs. However, it is 

welcoming to see that a fair number of students who did not know the correct 

answer actually admitted it by selecting “Did Not Know”. 

 

7.2.7 Spanning Trees 
 

7.2.7.1 Determining the Number of Spanning Trees when 
Branches are Given 

 

The first RNI question in the set, which asks to determine the number of 

spanning trees in a graph given a set of subgraphs as branches, generated the 

results shown in Table 7.7. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 4 4.60% 

Wrong 0   

Multiplied numbers of spanning trees in subgraphs by their 

corresponding numbers of copies. 0   

Initial matrix calculation was opposite of what it should have been. 0   

Calculated determinants of adjacency matrices for each subgraph. 7 8.05% 

Calculated determinants of adjacency matrices for each subgraph, 

then multiplied numbers of spanning trees in subgraphs by their 

corresponding numbers of copies. 0   

Not Answered 76 87.36% 

Table 7.7 Table of responses given by students for the RNI question asking to determine 
the number of spanning trees in a graph given a set of subgraphs, along with 
their respective numbers of copies within the graph. 

 

It is important to note that only 80 attempts were performed on this 

question when over 250 attempts were made on the previous questions. The 

reason for this is because the setup for each attempt involved selecting one of 

three spanning trees questions to be selected for the student to trial; the other 

two questions appear in the next subsections. The facility for this question was 
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0.065, implying that virtually nobody answered this question correctly, which can 

obviously be noted in Table 7.7, where it notes that 87.36% of students did not 

answer the question at all. Clearly, students did not feel comfortable approaching 

this question. However, it should also be noted that this question was created 

based upon the fact that a similar question has appeared in the final 

examinations for MA2920 in the past four years. Therefore, students should have 

made more valuable efforts in attempting this question.  

The index of discrimination, given as 0.437, shows that this question 

helped to measure the same skills as the test overall. Although 87.36% of the 

students who saw this question did not attempt it, 63.64% of those who did 

attempt it triggered the distracter that is created by multiplying the number of 

copies of a subgraph by the number of spanning trees in it. Based on simple 

combinatorics, the correct answer involves calculating the number of spanning 

trees of a subgraph to the exponent of the number of copies of that subgraph and 

then multiplying each of the results together. This distracter was created based 

upon the viewing of exam results for MA2920 in previous years; more details 

about the previous exam results are given later in this unit. 

 

7.2.7.2 Determining the Number of Spanning Trees in a Graph 
 

The second RNI question in the set, which asks to determine the number 

of spanning trees in a graph, generated the results shown in Table 7.8. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 12 17.14% 

Wrong 0   

All values in the matrix were kept positive before continuing with 

the calculations. 0   

Calculated the determinant of the difference of the degree matrix 

and the adjacency matrix. 3 4.29% 

Calculated the absolute value of a cofactor of the adjacency 

matrix. 3 4.29% 

Not Answered 52 74.29% 

Table 7.8 Table of responses given by students for the RNI question asking to determine 
the number of spanning trees in a given graph. 
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It is important to note that only 68 attempts were performed on this 

question when over 250 attempts were made on the previous questions. Again, 

the reason for this is because the setup for each attempt involved selecting one 

of three spanning trees questions to be selected for the student to trial. The 

facility for this question was 0.188, implying that not many people answered this 

question correctly, which can obviously be noted in Table 7.8, where it notes that 

74.29% of students did not answer the question at all. Although this question is 

not directly based upon a question from previous exams, the material is similar to 

what does appear and so, students should have made a more valuable effort in 

attempting this question. 

The index of discrimination, given as 0.455, shows that this question 

helped well to measure the same skills as the test overall. Although 74.29% of 

the students who saw this question did not attempt it, 20% of those who did 

attempt it triggered the distracter that is created by calculating the determinant of 

the difference of the degree matrix and the adjacency matrix; this result is always 

zero61 and so, even though the graph appeared on the screen and even though it 

should have been obvious that there would be multiple spanning trees, students 

still gave zero as their answer. An equal number of students chose the distracter 

created by calculating the absolute value of a cofactor of the adjacency matrix. 

When students attempted this question, the only way they could trigger this 

distracter would have been to take the (1,1)-cofactor of the adjacency matrix. 

However, since then, the code behind the question has allowed for other 

diagonal cofactors to be selected; this is because these values will usually be 

larger than other values in the matrix involving the difference of the degree and 

adjacency matrices. 

 

7.2.7.3 Finding a Proper Spanning Tree for a Particular Graph 
 

The last question in the set, a MC question that asks to find a proper 

spanning tree for a given graph, generated the results shown in Table 7.9. 

69 attempts were performed on this question. The facility for this question 

was 0.425, implying that a good number of students answered this question 
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correctly. The index of discrimination, given as 0.37, shows that this question 

helped somewhat well to measure the same skills as the test overall. 

It is interesting to note the distracters here, as well. 14.08% of the 

respondents chose the distracter that has a cycle embedded within it. Obviously, 

if the question is asking to find a spanning tree, then surely this answer would not 

be selected by many students, but nonetheless, this has occurred. The distracter, 

“Disconnected subtrees”, refers to a disconnected subgraph that is formed by a 

random selection of edges that appear in the graph, but do not create a 

connected spanning tree. Connectedness is important for obtaining a spanning 

tree and so, it is worth noting that nearly 10% of the respondents used this 

distracter. Most importantly, though, is the distracter of a spanning tree that does 

not appear in the given graph. This distracter was created to see if students are 

paying enough attention when attempting these questions. Unfortunately, 26.76% 

of those who responded to this question triggered this distracter and so, it can be 

noted that a fair number of students do not pay close enough attention to the 

question and to the possible answers given. However, this distracter is clearly 

helpful for catching students doing similar things in future attempts. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 23 32.39% 

Cycle created. 10 14.08% 

Not connected. 4 5.63% 

It is a tree, but it does not correspond to the 

graph. 19 26.76% 

Disconnected subtrees. 7 9.86% 

None Of These 0   

Did Not Know 6 8.45% 

Not Answered 2 2.82% 

Table 7.9 Table of responses given by students for the MC question asking to find a 
spanning tree for a given graph. 

 

7.3 Quantitative Analysis of Results Before the Invigilated Test 

Session for Logical and Mathematical Components 

 

The quantitative results determined in this section look at the series of 

questions that focused on the logical / mathematical components of the topics in 

graph theory. Graphs were not used as the primary focus for any of these 
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questions, but rather adjacency matrices. The data retrieved reflects upon the 

students’ performance and abilities to handle this material. 

 

7.3.1 Discrimination and Other Quantitative Results 
 

Question description Question 

Type 

Times 

answered 

Maximum 

score 

Mean 

score 

Standard 

deviation 

of score 

Facility Correlation 

Find the simple connected 

graph given the adjacency 

matrices 

MC 328 1 0.677 0.468 0.677 0.417 

Bipartite adjacency matrix 

search 
MC 151 1 0.523 0.501 0.523 0.475 

Number of vertices in a 

partition of a bipartite 

graph 

NI 155 1 0.587 0.494 0.587 0.431 

Find the non-Hamiltonian 

cycles using adjacency 

matrices 

MC 287 3 0.794 1.326 0.265 0.547 

Find the correct Eulerian 

cycle in an adjacency 

matrix 

MC 293 5 2.672 2.41 0.534 0.686 

Find the planar adjacency 

matrix 
MC 126 6 2.19 2.685 0.365 0.709 

Which combination of 

properties does not yield a 

planar graph 

MC 139 2 2 0 1 -1 

Number of spanning trees 

(with branches) using 

adjacency matrices 

RNI 76 6 0.276 1.04 0.046 0.286 

Number of spanning trees 

using adjacency matrices 
RNI 78 4 1.269 1.8 0.317 0.592 

Spanning trees using 

adjacency matrices 
MC 76 3 0.816 1.262 0.272 0.42 

Table 7.10 Table of quantitative results from practice questions looking only at adjacency 
matrices. 

 

Eight questions were given in the visual question set for graph theory. 

Details of each question and their respective, quantitative results are given in 

Table 7.10. 

In the logical / mathematical question set, there are ten questions: seven 

are MC questions, one is a NI question, and two are RNI questions. Two 

additional questions in this question set include a NI question asking to find the 

number of vertices in either the larger or the smaller partition of a bipartite graph, 

as well as a MC question asking to determine which paired quantities of edges 

and vertices do not yield a planar graph. 
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7.3.2 Finding the Simple and Connected Adjacency Matrix 
 

The question asked to find the simple and connected adjacency matrix 

among a list of candidate solutions and generated the results shown in Table 

7.11. 

328 attempts were performed on this question. The facility for this question 

was 0.677, implying that many students found this question to be somewhat 

easy. The index of discrimination, given as 0.417, shows that this question 

somewhat helped to measure the same skills as the test overall. 2
3
 of the 

students who attempted this question answered it correctly, further suggesting 

the simplicity of this question.  

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 222 66.67% 

Loops around one vertex. 29 8.71% 

Loops around a pair of 

vertices. 0   

Unconnected. 17 5.11% 

Loops (almost) everywhere. 9 2.70% 

None Of These 25 7.51% 

Did Not Know 26 7.81% 

Not Answered 5 1.50% 

Table 7.11 Table of responses given by students for the MC question asking to find the 
adjacency matrix corresponding to a simple and connected graph. 

 

7.3.3 Bipartite Graphs 
 

7.3.3.1 Finding the Bipartite Adjacency Matrix 
 

The question was one of two looking at bipartite graphs. The MC question 

asked to find the adjacency matrix corresponding to a bipartite graph among a list 

of candidate solutions and the generated results are shown in Table 7.12. 

151 attempts were performed on this question. The facility for this question 

was 0.523, implying that this was a relatively fair question for students to answer 

as it is close to the optimal value of 0.5. The index of discrimination, given as 

0.475, shows that this question somewhat helped to measure the same skills as 

the test overall. Just over half of the students who attempted this question 

answered it correctly, further suggesting the simplicity of this question.  



137 
 

 

Outcome 

name 

Times 

answered 

Percentage 

of times 

answered 

Correct 79 50.97% 

Not 

complete 10 6.45% 

Not 

bipartite. 6 3.87% 

Complete 

graph 11 7.10% 

Wheel 

graphs. 15 9.68% 

None Of 

These 30 19.35% 

Did Not 

Know 0   

Not 

Answered 4 2.58% 

Table 7.12 Table of responses given by students for the MC question asking to find an 
adjacency matrix corresponding to a bipartite graph. 

 

The chosen distracters are triggered relatively well, but the option, “None 

of These”, was more popular with 19.35% of students incorrectly selecting this as 

the answer. This suggests that the correct answer is well hidden among the 

choices, which is very helpful since this question would otherwise be even easier 

for students to answer. 

 

7.3.3.2 The Number of Vertices in a Partition of a Bipartite 
Adjacency Matrix 

 

The NI question looking at bipartite graphs asked to determine the number 

of vertices in a specific partition of the adjacency matrix corresponding to a 

bipartite graph. The results generated can be seen in Table 7.13. 

 

Outcome name 

Times 

answered 

Percentage of 

times 

answered 

Correct 91 57.96% 

Wrong 64 40.76% 

Not 

Answered 2 1.27% 

Table 7.13 Table of responses given for NI question asking to find the number of vertices in 
a partition of an adjacency matrix corresponding to a bipartite graph. 
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155 attempts were performed on this question. The facility for this question 

was 0.587, implying that this was a relatively fair question for students to answer. 

The index of discrimination, given as 0.431, shows that this question somewhat 

helped to measure the same skills as the test overall. About 58% of students who 

attempted this question answered it correctly, further suggesting the simplicity of 

this question. This question was only worth one mark and feedback provided did 

not require responsive input.  

In total, 306 attempts were made at questions involving adjacency 

matrices corresponding to bipartite graphs. The facilities suggested the questions 

were fair to students, although not easy. The indices of discrimination suggested 

in each case that the questions somewhat helped to measure the same skills as 

the test overall. Both questions are seen as being valuable to this question set. 

 

7.3.4 Finding the non-Hamiltonian Adjacency Matrix 
 

This question asked to find the adjacency matrix that did not correspond to 

a Hamiltonian graph. The results generated can be seen in Table 7.14. 

287 attempts were performed on this question. The facility for this question 

was 0.265, implying that this question was somewhat difficult for students to 

answer. However, the index of discrimination, given as 0.547, shows that this 

question helped well to measure the same skills as the test overall.  

 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 76 26.30% 

Hamiltonian and Eulerian cycles 41 14.19% 

Loop-free graph with 3V  , where   2
deg nx  , 

x V   53 18.34% 

Loop-free, undirected graph with 3V   and 

1
2

2

n
E

 
  
 

 

33 11.42% 

Wheel graph 17 5.88% 

None Of These 22 7.61% 

Did Not Know 45 15.57% 

Not Answered 2 0.69% 

Table 7.14 Table of responses given by students for the NI question asking to find the 
adjacency matrix that does not correspond to a Hamiltonian graph. 
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Each of the chosen distracters was significant in catching students making 

errors. The distracter, “Hamiltonian and Eulerian cycles”, was surprisingly good 

as it was triggered 14.19% of the time. However, this distracter should have been 

obviously seen as being Hamiltonian as it is essentially a cycle graph. It is 

possible that students may have misread the question, thinking they were 

expected to find a Hamiltonian graph, but it is equally possible that students may 

have rushed through this question only to see the feedback. The distracter, 

“Loop-free graph with 3V  , wheredeg 𝑥 ≥
𝑛

2
, ∀𝑥 ∈ 𝑉”, was triggered 18.34% of 

the time, suggesting that it is a valuable distracter for this question. The 

response, “Did Not Know”, was triggered 15.57% of the time, which is surprising, 

but very good to see as it shows students are willing to admit they are not 

confident about selecting any particular answer, including “None of These”. 

 

7.3.5 Finding the Eulerian Adjacency Matrix 
 

This question asked to find the adjacency matrix that corresponded to an 

Eulerian graph. The results generated can be seen in Table 7.15. 

293 attempts were performed on this question. The facility for this question 

was 0.534, implying that this was a fair question for students to answer. The 

index of discrimination, given as 0.686, shows that this question helped very well 

to measure the same skills as the test overall.  

 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 144 48.32% 

Almost a cycle, but the two ends are not 

connected 21 7.05% 

Two cycles connected by one edge. 20 6.71% 

Edge added to an already Eulerian cycle. 20 6.71% 

Two unconnected subgraphs. 16 5.37% 

None Of These 49 16.44% 

Did Not Know 23 7.72% 

Not Answered 5 1.68% 

Table 7.15 Table of responses given by students for the question asking to find the 
adjacency matrix corresponding to an Eulerian graph. 
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Unlike the visual question, the distracter, “Edge added to an already 

Eulerian cycle” was not triggered as often. Due to the logical / mathematical 

nature of this problem, students may have been able to better detect that two 

vertices each had odd degree, causing the corresponding graph to be non-

Eulerian. However, the percentage of students who triggered the distracter, “Two 

unconnected subgraphs”, nearly tripled, which could suggest they were not 

paying enough attention to the nature of the corresponding graph, but rather just 

the vertex degrees in each adjacency matrix.  

Again, it is surprising to see such a large percentage of students selecting 

“Did Not Know” as although this did happen with some students, the percentages 

for selecting this within the logical / mathematical question set have increased. 

 

7.3.6 Planar Graphs 
 

7.3.6.1 Finding an Adjacency Matrix Corresponding to a Planar 
Graph 

 

There were two MC questions that looked at planar graphs. The first 

question asked to find the adjacency matrix that corresponded to a planar graph. 

The results generated can be seen in Table 7.16. 

126 attempts were performed on this question. The facility for this question 

was 0.365, implying that this was somewhat difficult for students to answer, yet 

not extremely difficult. The index of discrimination is 0.709, which shows that this 

question helped tremendously to measure the same skills as the test overall.  

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 41 31.78% 

K5 subgraph 9 6.98% 

K3,3 subgraph 14 10.85% 

Both subgraphs included 9 6.98% 

Complete graph minus one 

edge 8 6.20% 

None Of These 15 11.63% 

Did Not Know 30 23.26% 

Not Answered 3 2.33% 

Table 7.16 Table of responses given by students for the NI question asking to find the 
number of vertices in a partition of an adjacency matrix corresponding to a 
bipartite graph. 
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Similar to the “visual” clone of this question, percentages of distracters 

triggered are somewhat similar. However, there is one exception with the 

response, “Did Not Know”, where over 23% of students who saw this question 

selected this answer.  

 

7.3.6.2 Finding Which Combination of Properties Does Not 
Correspond to a Planar Graph 

 

The second question asked to find the adjacency matrix that corresponded 

to a planar graph. The results generated can be seen in Table 7.17. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 139 98.58% 

Wrong answer 1 0   

Wrong answer 2 0   

Wrong answer 3 0   

Wrong answer 4 0   

None of these 0   

Did Not Know 0   

Not Answered 2 1.42% 

Table 7.17 Table of responses given by students for the question asking to determine for 
which combination of properties the corresponding graph would definitely be non-
planar. 

 

139 attempts were performed on this question and all of them answered 

the question correctly, causing the facility to be 1. The index of discrimination for 

this question is -2, suggesting that this question was not useful in measuring the 

same skills as the test overall. Therefore, this question should only be used in 

practice mode and never used for an online, invigilated assessment.  

 

7.3.7 Spanning Trees 
 

7.3.7.1 Determining the Number of Spanning Trees when 
Branches are Given as Adjacency Matrices 

 

There were three questions in the logical / mathematical question set that 

looked at spanning trees; two of these are RNI questions and one is a MC 



142 
 

question. The first question asked to determine the number of spanning trees that 

are in a graph given a set of subgraphs as branches and appearing as adjacency 

matrices. The results generated are shown in Table 7.18. 

QuestionMark’s statistical results state that 76 attempts were made for this 

question, but clearly only 9 attempts were actually performed. The facility for this 

question was 0.046, implying that very few students were able to answer it at all. 

The index of discrimination, given as 0.286, shows that this question only helped 

partially to measure the same skills as the test overall. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 2 2.11% 

Wrong 0   

Multiplied numbers of spanning trees in subgraphs by their 

corresponding numbers of copies. 1 1.05% 

Initial matrix calculation was opposite of what it should have 

been. 0   

Calculated determinants of adjacency matrices for each 

subgraph. 6 6.32% 

Calculated determinants of adjacency matrices for each 

subgraph, then multiplied numbers of spanning trees in 

subgraphs by their corresponding numbers of copies. 0   

Not Answered 86 90.53% 

Table 7.18 Table of responses given by students for the question asking to determine the 
number of spanning trees in a graph given a set of subgraphs as adjacency 
matrices, along with their respective numbers of copies within the graph. 

 

Similar to the visual question set, an overwhelming number of students 

chose not to answer this question at all, when they should have made some 

effort in attempting it. This question is important for students to attempt as it 

shows the importance of dealing with calculations within graph theory and so, 

more emphasis should be placed on this question. 

 

7.3.7.2 Determining the Number of Spanning Trees of a Graph, 
Given Its Adjacency Matrix 

 

The second question asked to determine the number of spanning trees 

that are in a graph, given its adjacency matrices. The results generated are 

shown in Table 7.19. 

QuestionMark’s statistical results state that 78 attempts were made for this 

question, but clearly only 33 attempts were actually performed. The facility for 
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this question was 0.317, implying that although the question was difficult, a good 

number of students were able to answer the question. The index of 

discrimination, given as 0.592, shows that this question helped well to measure 

the same skills as the test overall.  

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 23 27.71% 

Wrong 0   

All values in the matrix were kept 

positive before continuing with the 

calculations. 0   

Calculated the determinant of the 

difference of the degree matrix and the 

adjacency matrix. 7 8.43% 

Calculated the absolute value of a 

cofactor of the adjacency matrix. 3 3.61% 

Not Answered 50 60.24% 

Table 7.19 Table of responses given by students for the question asking to determine the 
number of spanning trees in a graph given its adjacency matrix. 

 

Similar to the visual question set, an overwhelming number of students 

chose not to answer this question at all. This question is important for students to 

attempt as it shows the importance of dealing with calculations within graph 

theory and so, more emphasis should be placed on this question. Similar to the 

visual question set, the distracter that is created by calculating the determinant of 

the difference of the degree matrix and the adjacency matrix was chosen by a 

number of students. However, it is less obvious to note this in the logical / 

mathematical question set as the graph does not readily appear. Therefore, in 

this case, choosing this result is not as obviously incorrect to the student, even 

though it should be expected that the corresponding graph, in most cases, will be 

connected. 

As noted with the visual question set, the distracter created by calculating 

the absolute value of a cofactor of the adjacency matrix could only have been 

triggered during these attempts if a student takes the (1,1)-cofactor of the 

adjacency matrix. Similar to the question in the visual question set, the code 

behind this question has since allowed for other diagonal factors to be selected. 
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7.3.7.3 Finding a Proper Spanning Tree for a Graph, Given the 
Corresponding Adjacency Matrices 

 

The third question asked to find a spanning tree that corresponded to a 

given graph; the graph and all MC options were given as adjacency matrices. 

The results generated are shown in Table 7.20. 76 attempts were performed for 

this question. The facility for this question was 0.272, implying that although the 

question was difficult, some students were able to answer the question correctly. 

The index of discrimination was 0.42, showing that this question helped to 

measure the same skills as the test overall. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 18 23.08% 

Cycle created. 7 8.97% 

Not connected. 9 11.54% 

It is a tree, but it does not correspond to the graph 8 10.26% 

Disconnected subtrees. 4 5.13% 

None Of These 6 7.69% 

Did Not Know 24 30.77% 

Not Answered 2 2.56% 

Table 7.20 Table of responses given by students for the question asking to determine the 
spanning tree for a particular graph. 

 

The results obtained for this question are very different to the cloned, 

“visual” question. In the visual question, nearly 27% of students selected the 

distracter that corresponds to a spanning tree for a different graph. However, in 

this question, only 10.26% of students triggered this distracter. Additionally, the 

number of those who selected the response, “Did Not Know”, spiked from 8.45% 

in the visual question to 30.77% in the logical / mathematical question. One 

reason for this is that it is possible students are not first converting adjacency 

matrices to graphs before solving these problems, thus causing all questions in 

this set to become more difficult. By first performing the conversion, students may 

be able to transform a logical / mathematical problem into a visual problem and 

then, using this, can answer the question more effectively. 
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7.4 Quantitative Analysis of Results for the Invigilated Test 

Session 
 

Question descriptio Type 
Times 

shown 

Max 

score 

Mean 

score 
Facility Correlation 

Bipartite graph / adjacency matrix 

search 
MC 166 2 1.548 0.774 0.431 

Find the correct Eulerian cycle in a 

graph or adjacency matrix (Indirect) 
MC 82 3 1.915 0.638 0.596 

Find the correct Eulerian cycle in a 

graph or adjacency matrix (Direct) 
MC 79 3 2.203 0.734 0.449 

Hamiltonian cycles for graphs and 

adjacency matrices (Indirect) 
MC 71 3 1.775 0.592 0.487 

Hamiltonian cycles for graphs and 

adjacency matrices (Direct) 
MC 89 3 2.056 0.685 0.412 

Find the planar graph or adjacency 

matrix (Maze) 
MC 65 5 2.015 0.403 0.705 

Find the planar graph or adjacency 

matrix (Student Teachers) 
MC 43 5 2.05 0.41 0.743 

Find the planar graph or adjacency 

matrix (Direct) 
MC 52 5 2.288 0.458 0.755 

Find the simple connected graph 

given the graphs or adjacency 

matrices (Direct) 
MC 94 1 0.798 0.798 0.435 

Find the simple connected graph 

given the graphs or adjacency 

matrices (Indirect) 
MC 79 1 0.835 0.835 0.167 

Number of spanning trees (with 

branches) using graphs or 

adjacency matrices 
RNI 23 6 0.522 0.087 0.596 

Spanning trees using adjacency 

matrices for a graph (Link Between 

Towns) 
MC 10 3 0.5 0.167 0.04 

Spanning trees using adjacency 

matrices for a graph (Business 

Departments) 
MC 21 3 0.857 0.286 0.132 

Spanning trees using adjacency 

matrices for a graph (Direct) 
MC 20 3 1.3 0.433 0.574 

Spanning trees using graphs for an 

adjacency matrix (Direct) 
MC 20 3 1.5 0.5 0.598 

Spanning trees using graphs for an 

adjacency matrix (Corporate 

Business) 
MC 20 3 1.632 0.544 0.517 

Spanning trees using graphs for an 

adjacency matrix (University 

Student Services) 
MC 11 3 1.636 0.545 0.669 

Spanning trees using graphs for an 

adjacency matrix (Link Between 

Towns) 
MC 17 3 1.647 0.549 0.479 

Spanning trees using adjacency 

matrices for a graph (University 

Student Services) 
MC 13 3 2 0.667 0.622 

Table 7.21 Table of quantitative results from practice questions looking only at adjacency 
matrices. 

 

The quantitative results in this section look at the series of questions for an 

invigilated test session in graph theory. Each question combined graphs and 

adjacency matrices, compelling students to use visual and logical / mathematical 
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intelligences in order to answer questions. A maximum of five attempts were 

given during this session and students had fifty-five minutes to complete the test. 

 

7.4.1 Discrimination and Other Quantitative Results 
 

There were 19 questions given in the invigilated test session, which 

composed of contextualised and decontextualised questions being asked 

separately. However, for each topic, one question is selected randomly and is 

given to a student to answer. Therefore, each test composed of six questions in 

six topics. Additionally, all questions included graphs and adjacency matrices 

throughout, thus forcing the student to use visual and logical / mathematical 

intelligences in order to solve all problems. 

The following sections will cover these questions in clusters, depending on 

the relevant material being tested. Comparisons of the question types and 

scenarios are explained throughout, detailing possible similarities and differences 

with identical questions appearing in either the visual or logical / mathematical 

practice questions. 

 

7.4.2 Simple and Connected Graphs 
 

This topic looked at finding a simple and connected graph or adjacency 

matrix among a list of candidates. The results obtained from trialling the 

questions in this topic are found in Table 7.22. 

 141 attempts were made on these questions. Facilities for both scenarios 

are very high with 0.798 and 0.835 given to direct question and problem solving 

question categories respectively. However, discrimination values were 0.435 and 

0.167 respectively; this could imply the problem solving question was less helpful 

in testing the same skills as the test overall.  

For both questions, the distracter, “Loops around a pair of vertices” was 

never selected by students, although all other distracters were selected. This is 

somewhat surprising as although students are aware to avoid loops, they still 

managed to be caught by loops around a vertex; this was also the case for the 

practice attempts. 
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Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Times 

answered 

Percentage 

of times 

answered 

Correct 75 79.79% 66 83.54% 

Loops around one vertex 4 4.26% 3 3.80% 

Loops around a pair of 

vertices 0   0   

Unconnected 3 3.19% 5 6.33% 

Loops (almost) 

everywhere. 3 3.19% 2 2.53% 

None Of These 9 9.57% 3 3.80% 

Did Not Know 0   0   

Not Answered 0   0   

Table 7.22 Table of responses given by students who answered questions looking at simple 
and connected graphs during the invigilated, online assessment. Columns two 
and three look at direct questions and columns four and five look at problem 
solving questions. 

 

7.4.3 Bipartite Graphs 
 

This topic looked at finding a bipartite graph or adjacency matrix among a 

list of candidates. The results from trialling this question are found in Table 7.23. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 123 74.10% 

Not complete 11 6.63% 

Not bipartite. 11 6.63% 

Complete graph 4 2.41% 

Wheel graphs. 7 4.22% 

None Of These 10 6.02% 

Did Not Know 0   

Not Answered 0   

Table 7.23 Table of responses given by students who answered questions looking at 
bipartite graphs during the invigilated, online assessment.  

 

A total of 166 attempts were made on the topic of bipartite graphs. The 

facility for this question was 0.774, which suggests students were easily able to 

determine the correct graph. The index of discrimination is 0.431, implying that 

the question helped somewhat to test the same skills as the assessment overall. 

Attempts were made every time this question was viewed. This is 

especially good to see as students either responded with “Did Not Know” or they 

did not answer the question at all during the practice attempts. Therefore, it 

appears as though some confidence was given to students in attempting this 

question on the test. 
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7.4.4 Hamiltonian Graphs 
 

This topic looked at finding a non-Hamiltonian graph or adjacency matrix 

among a list of candidates. The results obtained from trialling the questions in 

this topic are found in Table 7.24. A total of 160 attempts were made on the topic 

of bipartite graphs. The facilities for this question were 0.685 for the direct 

question and 0.592 for the problem solving question, which suggest students 

were able to determine how to solve this problem regardless of the question 

wording. The indices of discrimination are 0.412 for the direct question and 0.487 

for the problem solving question, implying that the question helped well to test the 

same skills as the assessment overall. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Times 

answered 

Percentage 

of times 

answered 

Correct 61 68.54% 42 59.15% 

Hamiltonian and Eulerian cycles 3 3.37% 4 5.63% 

Loop-free graph with 3V  , where 

  2
deg nx  , x V   

6 6.74% 6 8.45% 

Loop-free, undirected graph with 3V   

and 
1

2
2

n
E

 
  
 

 

3 3.37% 4 5.63% 

Wheel Graph 3 3.37% 5 7.04% 

None Of These 3 14.61% 9 12.68% 

Did Not Know 0   1 1.41% 

Not Answered 0   0  

Table 7.24 Table of responses given by students who answered questions looking at 
Hamiltonian graphs during the invigilated, online assessment. Columns two and 
three look at direct questions and columns four and five look at problem solving 
questions. 

 

Attempts were made every time this question was viewed. This is 

especially good to see as students either responded with “Did Not Know” or they 

did not answer the question at all during the practice attempts. Therefore, it 

appears as though some confidence was given to students in attempting this 

question on the test. 
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7.4.5 Eulerian Graphs 
 

This topic looked at finding an Eulerian graph or adjacency matrix among 

a list of candidates. The results obtained from trialling the questions in this topic 

are found in Table 7.25. 

A total of 161 attempts were made on the topic of bipartite graphs. The 

facilities for this question were 0.734 for the direct question and 0.638 for the 

problem solving question, which suggest students were able to determine how to 

solve this problem regardless of the question wording. The indices of 

discrimination are 0.449 for the direct question and 0.596 for the problem solving 

question, implying that the question helped well to test the same skills as the 

assessment overall. 

For the problem solving question style, three attempts resulted with 

students either admitting they did not know the answer or simply refusing to 

answer the question. Additionally, there is a significant percentage of students for 

either question style who selected the distracter that involves an edge added to a 

graph that was initially Eulerian. This provides further evidence to suggest this 

distracter is useful for catching students making errors in this topic.  

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Times 

answered 

Percentage 

of times 

answered 

Correct 54 68.35% 47 56.63% 

Almost a cycle, but the two ends are not 

connected 2 2.53% 2 2.41% 

Two cycles connected by one edge. 2 2.53% 7 8.43% 

Edge added to an already Eulerian cycle. 10 12.66% 9 10.84% 

Two unconnected subgraphs. 3 3.80% 3 3.61% 

None Of These 8 10.13% 12 14.46% 

Did Not Know 0   2 2.41% 

Not Answered 0   1 1.20% 

Table 7.25 Table of responses given by students who answered questions looking at 
Eulerian graphs during the invigilated, online assessment. Columns two and 
three look at direct questions and columns four and five look at problem solving 
questions. 

 

7.4.6 Planar Graphs 
 

This topic looked at finding a planar graph or adjacency matrix among a 

list of candidates. The results obtained from trialling the questions in this topic are 

found in Table 7.26. 
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A total of 157 attempts were made on the topic of planar graphs. The 

facilities for this question were 0.458 for the direct question, 0.403 for the maze 

scenario, and 0.41 for the student teachers scenario. This suggests that students 

were able to cope with the different question wordings, but also that they found 

the direct question to be slightly easier. The indices of discrimination are 0.755 

for the direct question, 0.705 for the maze scenario, and 0.743 for the student 

teachers scenario, implying that the question helped well to test the same skills 

as the assessment overall, but again, also implies that the direct question style 

was more helpful in assessing students. 

 

Outcome name 

Times 

(direct) 

answered 

Percentage 

of times 

answered 

Times 

(maze) 

answered 

Percentage 

of times 

answered 

Times 

(student 

teachers) 

answered 

Percentage 

of times 

answered 

Correct 23 44.23% 26 40% 16 37.21% 

K5 subgraph 6 11.54% 4 6.15% 4 9.30% 

K3,3 subgraph 7 13.46% 18 27.69% 3 6.98% 

Both subgraphs 

included 4 7.69% 4 6.15% 6 13.95% 

Complete graph 

minus one edge 5 9.62% 1 1.54% 5 11.63% 

None Of These 3 5.77% 11 16.92% 4 9.30% 

Did Not Know 4 7.69% 1 1.54% 2 4.65% 

Not Answered 0   0   3 6.98% 

Table 7.26 Table of responses given by students who answered questions looking at planar 
graphs during the invigilated, online assessment. Columns two and three look at 
direct questions, columns four and five look at problem solving questions using a 
maze scenario, and columns six and seven look at problem solving questions 
using a student teachers scenario. 

 

Ten attempts made at this question had students either not answering the 

question or admitting they did not know the answer to the question. Also, a 

significant percentage of students selected the distracters that had only one of 

the two key subgraphs included. A significant number of students answering the 

student teachers scenario questions used the distracter including both 

subgraphs. These distracters can therefore be seen as useful for this question. 

Surprisingly, though, a significant number of students also triggered the distracter 

that consisted of a complete graph minus one edge. Therefore, it can also be 

considered useful in catching students making errors. 
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7.4.7 Spanning Trees 
 

7.4.7.1 The Number of Spanning Trees when Branches are 
Given 

 

This topic looked at determining the number of spanning trees that exist in 

a graph, given its branches. The results obtained from trialling the question in this 

topic are found in Table 7.27. 

This question was randomly selected amongst a selection of nine 

questions, of which this was the only RNI question. The facility for this question 

was 0.087, implying that students still found this question to be incredibly difficult, 

even though they had the chance to trial it beforehand. The index of 

discrimination, however, is 0.596, implying that the question helped very well to 

test the same skills as the assessment overall. 

 

Outcome name 

Times 

answered 

Percentage 

of times 

answered 

Correct 2 8.70% 

Wrong 0   

Multiplied numbers of spanning trees in subgraphs by their 

corresponding numbers of copies. 0  

Initial matrix calculation was opposite of what it should have 

been. 0   

Calculated determinants of adjacency matrices for each 

subgraph. 0  

Calculated determinants of adjacency matrices for each 

subgraph, then multiplied numbers of spanning trees in 

subgraphs by their corresponding numbers of copies. 0   

Not Answered 21 91.30% 

Table 7.27 Table of responses given by students who answered questions looking at 
determining the number of spanning trees in a graph, given the branches of the 
graph. 

 

As noted in the practice tests, a significant number of students refused to 

answer this question. Most students were simply unwilling to answer the RNI 

questions in either the practice sets or the invigilated test session, but it is this 

question in particular that normally appears on the final examinations they 

perform at the end of the academic year. Therefore, more emphasis needs to be 

placed on RNI questions within graph theory so that students could be compelled 

to answer such questions in the future. 



152 
 

 

7.4.7.2 MC Questions on Spanning Trees 
 

This topic looked at finding a spanning tree that corresponded to a 

particular graph or adjacency matrix. The results obtained from trialling the 

questions in this topic are found in Table 7.28. 

 

Outcome 

name 

Times 

(1A) 

given 

Percentage 

of times 

answered 

Times 

(1B) 

given 

Percentage 

of times 

answered 

Times 

(1C) 

given 

Percentage 

of times 

answered 

Times 

(1D) 

given 

Percentage 

of times 

answered 

Correct 4 19.05% 8 40% 1 10% 8 61.54% 

Cycle 

created 1 4.76% 2 10% 2 20% 2 15.38% 

Not 

connected 3 14.29% 3 15% 1 10% 0   

It is a tree, 

but it does 

not 

correspond 

to the graph 6 28.57% 2 10% 2 20% 2 15.38% 

Disconnected 

subtrees 2 9.52% 4 20% 3 30% 0   

None Of 

These 5 23.81% 1 5% 0   1 7.69% 

Did Not 

Know 0   0   1 10% 0   

Not 

Answered 0   0   0   0   

         

Outcome 

name 

Times 

(2A) 

given 

Percentage 

of times 

answered 

Times 

(2B) 

given 

Percentage 

of times 

answered 

Times 

(2C) 

given 

Percentage 

of times 

answered 

Times 

(2D) 

given 

Percentage 

of times 

answered 

Correct 9 45% 10 50% 9 52.94% 5 45.45% 

Cycle 

created 3 15% 4 20% 1 5.88% 2 18.18% 

Not 

connected 0   0   2 11.76% 0   

It is a tree, 

but it does 

not 

correspond 

to the graph 4 20% 0   1 5.88% 3 27.27% 

Disconnected 

subtrees 1 5% 1 5% 1 5.88% 0   

None Of 

These 2 10% 4 20% 2 11.76% 1 9.09% 

Did Not 

Know 0   1 5% 1 5.88% 0   

Not 

Answered 1 5% 0   0   0   

LEGEND 1 Adjacency matrices for a graph A Business Departments 

 2 Graphs for an adjacency matrix B Direct Question 

   C Links Between Towns 

   D University Student Services 

Table 7.28 Table of responses given by students who answered MC questions looking at 
finding a spanning tree for a particular graph or adjacency matrix. All results are 
shown for each scenario and combination of graphs and adjacency matrices. A 
legend is provided. 
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The facilities and indices of discrimination for these questions were 

generally good, with the exceptions of two questions, namely: 

 

 Finding a spanning tree using adjacency matrices and given a 

graph, using the business departments scenario 

 Finding a spanning tree using adjacency matrices and given a 

graph, using the link between towns scenario 

 

For these two scenarios, the facilities were 0.286 and 0.167 respectively, 

which imply that students have found these questions to be somewhat harder. It 

is possible that students may not have been able to comprehend the scenario 

well enough to understand what it was asking. However, it is also possible that 

although they did well in other questions where adjacency matrices were given 

as MC options, students may have simply found it more difficult to look at 

adjacency matrices as MC options rather than graphs; this is especially evident 

by the fact that facilities were generally higher overall between option types using 

the same scenarios. Additionally, the indices of discrimination for these scenarios 

are 0.132 and 0.04, suggesting that they did not help to assess the same skills as 

the test overall. It is worth noting that of the four questions involving graphs as 

MC options, it was with these two scenarios that the lowest indices of 

discrimination were recorded, although both were still relatively high. 

A strongly significant number of students selected the distracter involving 

a spanning tree for another graph during the test, which again implies they may 

not have been reading the question properly. However, it is also worth noting that 

depending on the scenario and question style, either a significant number of 

students or no students at all triggered the distracter that involves a disconnected 

subgraph. The selection of this distracter occurred more often in questions where 

adjacency matrices were given as MC options.  

 

7.5 Comparisons of Facilities and Indices of Discrimination 

 

Another method for determining the effectiveness of the questions trialled 

is to compare the facilities with the indices of discrimination for all of the 
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questions attempted. By comparing facilities with their corresponding indices of 

discrimination, it is possible to find outliers, which may provide further evidence to 

suggest particular levels of effectiveness of questions trialled. 

Before comparing, it should be noted that since the practice question 

asking to determine for which combination of properties a planar graph is not 

formed generated a facility of 1 and an index of discrimination of -2, this would 

clearly appear as an outlier for any comparison performed. Also, it has already 

been noted that this question has not helped students to learn the course 

material better. Therefore, the facility and index of discrimination for this question 

will appear removed from any analysis performed in this section. 

The first graph, shown in Figure 7.1, shows the comparisons of the graph 

theory questions presented based on their question style. First, recall that the test 

questions all contained visual and logical / mathematical components. Therefore, 

when analysing these results, it is worth comparing the visual with the logical / 

mathematical, but then to compare both together with the test questions. 

 

 

Figure 7.1 Scatter plot of facilities versus corresponding indices of discrimination for 
attempted Mathletics questions on graph theory, separated by their question 
styles. 

 

When viewing the visual questions and also the logical / mathematical 

questions, it appears that there are multiple clusters in each case. For the logical 

/ mathematical questions, these clusters appear somewhat closer to each other 
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than the visual questions, but nonetheless, the distinction of two separate 

clusters is somewhat clear, along with one outlier. The outlier in the case of the 

logical / mathematical questions refers to the logical / mathematical RNI question 

asking to determine the number of spanning trees in a graph given the branches 

of the graph. Recall that the majority of students refused to answer this question 

and so, this outlier can be justified on this account. If more students were willing 

to attempt this problem, then a more accurate comparison could be made with 

respect to this particular question. For all logical / mathematical questions aside 

from the outlier, the indices of discrimination remain above 0.4, which is 

encouraging as this shows significance of the questions in relation to the material 

taught in the course / module. 

The visual questions vary greatly in facility, but remain within a small 

range of indices of discrimination, ranging from just under 0.4 to just over 0.6. 

This is still encouraging to see, but the varied facility values helps to create three 

clusters. The leftmost cluster refers to the two RNI questions on spanning trees. 

Since there were only the two visual RNI questions on this topic, this shows that 

students may find it difficult to engage with a “visually written” question and then 

solve it using logical / mathematical skills. The middle cluster refers to MC 

questions on Hamiltonian graphs, planar graphs, and spanning trees. This is, 

perhaps the fairest cluster in the set as the facilities in each case are near 0.5, 

which is considered an optimal location for teachers to set their questions. The 

indices of discrimination for each of these questions also show that the questions 

are indeed significant as part of the overall test. The rightmost cluster refers to 

MC questions on simple and connected graphs, bipartite graphs, and Eulerian 

graphs. These results show that although the questions are significant as part of 

the overall assessment, students nonetheless find the questions easy to answer 

correctly.  

The test questions all seem to be clustered well, with four exceptions. 

Three of the questions, all of whom have outliers on the left side of the graph in 

Figure 7.1, refer to various questions on spanning trees. Students must consider 

this topic to be difficult and so, either refuse to attempt the questions, as is 

normally the case with any RNI questions, or give a poor attempt in the case of 

any MC questions given. However, the fourth outlier, which appears on the far 

right side of the graph, refers to the problem solving question on simple and 
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connected graphs. The facility suggests that students find the question easy to 

answer correctly, but the index of discrimination is low, which suggests that it is 

not helping much as part of the overall assessment. Therefore, it should be worth 

looking at both questions on simple and connected graphs, i.e. not just the 

question that generated this outlier result, to see how to make it more effective as 

part of the overall assessment. 

So far, it has been noted that RNI questions, questions on spanning trees, 

and questions on simple and connected graphs may have some problems in 

terms of their effectiveness as part of an overall assessment. To explore this 

further, it helps to regroup the data points based on the question topics and 

types. The graph shown in Figure 7.2 shows a scatter plot of the facilities and 

indices of discrimination for the graph theory questions based upon the topics 

presented.  

As noted earlier, the questions on simple and connected graphs all appear 

to have high facilities, which suggest that students found these questions easy to 

answer correctly. With one exception, which was noted earlier, all of the indices 

of discrimination for this topic appear around 0.4, which suggest there is some 

benefit to this topic as part of the overall assessment.  

The questions on bipartite graphs all appear to be aligned well, each with 

indices of discrimination between 0.4 and 0.5. As expected, the facilities for these 

questions are high and so, students find this topic to be somewhat easy to 

understand. Nonetheless, with a reasonable range of indices of discrimination 

and a decent spread of data, it is likely that these questions are already 

significant and beneficial to the assessment. 

The questions on Hamiltonian cycles all appear to have indices of 

discrimination hovering around 0.5, which is encouraging. However, the facilities 

for these questions differ greatly. This could suggest that the question styles had 

a significant effect on students as they may have found it difficult to understand 

what was being asked of them in some of the questions. However, upon further 

inspection, it is noted that the left two points refer to the practice test questions 

and the right two points refer to the invigilated test questions. Therefore, it is 

likely that the practice questions played a significant role in helping students to 

understand this topic better in order to perform better on the invigilated test. 
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The questions on Eulerian cycles have high facilities, but also have very 

high indices of discrimination. This suggests that the questions are easy to 

answer correctly, but that they are also very significant as part of the overall 

assessment. As such, it is worth keeping these questions as they are for future 

considerations in other assessments. 

The questions on planar graphs all have facilities between 0.3 and 0.5, 

which is reasonably good. Three of the four questions appear in one cluster, with 

an outlier appearing with an index of discrimination of 0.555. This outlier refers to 

the visual practice question given to students, which is very interesting to note as 

it was expected students would find this question to be easier to solve than the 

logical / mathematical question. However, the other three questions all have 

indices of discrimination larger than 0.7. Nonetheless, it may be suggested that 

all four questions are assessing well the same skills as the test overall. 

 

 

Figure 7.2 Scatter plot of facilities versus corresponding indices of discrimination for 
Mathletics questions on graph theory, separated by their question topics. 

 

The questions on spanning trees, however, provide a much different story 

as students appeared to find them more challenging. It is quite surprising, 

though, that the facilities range from 0.046 to 0.667. Similarly, the indices of 

discrimination range from 0.04 to 0.669. Therefore, it is difficult to determine the 
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effectiveness of this topic as part of the overall assessment. However, a further 

analysis can be performed by analysing only the facilities and indices of 

discrimination of these questions based on additional information about these 

questions. 

The graph appearing in Figure 7.3 shows the facilities and indices of 

discrimination for the different scenarios and question types for the questions on 

spanning trees. For five of the scenarios or question types, the variations of the 

questions appear not to change the overall results much. However, for the 

business departments scenario and the links between towns scenario, there is a 

sharp difference between the results of one variant and the results of the other 

variant. In both cases, it was with the questions involving adjacency matrices as 

options that the lower facilities and indices of discrimination appeared. Since the 

results for the questions with graphs appearing as options produced reasonable 

results, it may be suggested that the variants with adjacency matrices as options 

created a significant difficulty for students when attempting these problems. 

 

 

Figure 7.3 Scatter plot of facilities versus corresponding indices of discrimination for 
Mathletics questions on spanning trees, separated by their scenarios and types. 

 

Additionally, by looking at the smallest of each pair in terms of facility, it 

can be noted that the logical / mathematical questions were generally seen as 

more difficult to answer. There is one exception with the university students 

services scenario, but the comparison of the two data points show close results 
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for facility and index of discrimination in comparison to the other pairs. In addition 

to the observation of students’ unwillingness to respond to the RNI questions, it 

may be concluded that students find it difficult to comprehend and apply course / 

module material in graph theory in relation to logical / mathematical intelligences. 

 

 

Figure 7.4 Scatter plot of facilities versus corresponding indices of discrimination for 
Mathletics questions on graph theory, separated by their question types. 

 

The last graph, presented in Figure 7.4, shows the facilities and indices of 

discrimination for the graph theory questions based on their question types. It can 

be noted that the numeric input questions, with one exception, were more difficult 

for students to attempt than MC questions. Recall that most students refused to 

attempt the RNI questions on spanning trees and therefore, this is reflected 

within these results. The outlier for the numeric input questions refers to the NI 

question given for bipartite graphs in the logical / mathematical practice question 

set, whereas all other questions were RNI questions on spanning trees. 

Therefore, this outlier is not surprising to notice. The MC questions, however, 

appear to be well clustered and with only a few outliers. Two of the outliers, 

appearing towards the bottom of the graph, both refer to MC questions on 

spanning trees involving adjacency matrices as options. However, this was 

referred to earlier as these questions involve the business departments and links 

between towns scenarios. This therefore provides further evidence to suggest 

that students are finding it difficult to link their logical / mathematical intelligences 
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to this learning material. The other outlier refers to the problem solving question 

on simple and connected graphs, which was discussed earlier.  

 

 

7.6 Quantitative, Comparative Analysis of Mathletics Questions 

using ANOVA and Student t-Tests 
 

7.6.1 Comparison of Questions Involving Simple and 

Connected Graphs 
 

A two-factor, ANOVA experiment without replication was performed to 

determine if differences existed between different outcomes or if differences 

existed between different question styles for the questions performed on simple 

and connected graphs. The results appear in Table 7.29. 

Using P-values, it can be easily determined that there are significant 

differences in the means for the different outcomes. However, this should be 

somewhat expected since each distracter is likely to have some motivation 

behind students choosing it. Additionally, removing the outcomes, “Not 

answered”, “Did not know”, and “None of These”, the P-value for this source 

increases only to 0.000832. However, at the 5%   level of significance, there 

is not enough evidence to reject H0 for the different question styles. Therefore, 

we can conclude that may be possible for there to be some commonality in 

answering the different question styles for the questions given on simple and 

connected graphs. This implies that students may have been successfully able to 

distinguish between the different question styles in order to master this topic. 

 

Source SS df MS F P-value F crit 

Outcomes 75548.38 7 10792.63 10.10821 1.65x10
-5 

2.487578 

Question 

Styles 7224.625 3 2408.208 2.255493 0.111651 3.072467 

Error 22421.88 21 1067.708    

       

Total 105194.9 31         

Table 7.29 ANOVA two-factor (without replication) Table for the practice and test questions 
involving simple and connected graphs and using Microsoft Excel. 
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7.6.2 Comparison of Questions Involving Bipartite Graphs 
 

A two-factor, ANOVA experiment without replication was performed to 

determine if differences existed between different outcomes or if differences 

existed between different question styles for the questions performed on bipartite 

graphs. The results appear in Table 7.30. 

 

Source of 

Variation SS df MS F P-value F crit 

Outcomes 36029.17 7 5147.024 15.2534 

1.46x10
-

5 
2.764199 

Question Styles 1652.583 2 826.2917 2.448747 0.12248 3.738892 

Error 4724.083 14 337.4345    

       

Total 42405.83 23         

Table 7.30 ANOVA two-factor (without replication) Table for the practice and test questions 
involving bipartite graphs and using Microsoft Excel. 

 

Using the P-values, it can be easily determined that there are significant 

differences in the means for the different outcomes. Additionally, removing the 

outcomes, “Not answered”, “Did not know”, and “None of These”, the P-value for 

this source increases only to 0.000437. However, at the 5%   level of 

significance, there is not enough evidence to reject H0 for the different question 

styles. Therefore, we can conclude that it is possible for there to be some 

commonality in answering the different question styles for the questions given on 

bipartite graphs. This implies that students may have been successfully able to 

distinguish between the different question styles in order to master this topic. 

 

7.6.3 Comparison of Questions Involving Hamiltonian Graphs 
 

A two-factor, ANOVA experiment without replication was performed to 

determine if differences existed between different outcomes or if differences 

existed between different question styles for the questions performed on 

Hamiltonian graphs. The results appear in Table 7.31. 

Using the P-values, it can be easily determined that there are significant 

differences in the means for the different outcomes. Additionally, removing the 

outcomes, “Not answered”, “Did not know”, and “None of These”, the P-value for 

this source increases only to 0.000437. However, at the 5%   level of 
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significance, there is also enough evidence to reject H0 for the different question 

styles. Therefore, there is also a significant effect on the question styles 

implemented. 

 

Source SS df MS F P-value F crit 

Outcome 13950.38 7 1992.911 11.44059 6.36x10
-6 

2.487578 

Question 

Style 5377.375 3 1792.458 10.28987 0.000226 3.072467 

Error 3658.125 21 174.1964    

       

Total 22985.88 31         

Table 7.31 ANOVA two-factor (without replication) Table for the practice and test questions 
involving Hamiltonian graphs and using Microsoft Excel. 

  

Since there is a significant effect on the question styles, it is important to 

determine for which question styles these differences appeared. To do this, a 

series of t-tests are performed. The results for all t-tests appear in Table 7.32. 

This experiment involves six comparisons. Therefore, 

61 0.95 0.2649EER    , which implies there is nearly a 26.5% probability of a 

Type I error occurring with at least one of these experiments. Also, this set of 

experiments caused rejections of H0 for the following comparisons: 

 

 Visual practice set vs. Direct test set 

 Visual practice set vs. Problem Solving test set 

 Logical / mathematical practice set vs. Direct test set 

 Logical / mathematical practice set vs. Problem Solving test set 

 

It is interesting to note that the rejections of H0 occur for comparisons of a 

practice question set with a test question set. This seems somewhat logical, 

though, as students were given ample time to complete the practice question 

sets and as often as they considered it necessary, whereas they only had one 

hour to attempt a maximum of five attempts of the direct and problem solving 

questions. Also, for all such cases, both the one-tailed and two-tailed tests failed 

and it may be concluded that 1 1 2:H    for 5%  . This implies that students 

did not appear to retain necessary information in the practice attempts for this 

material. 
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Practice- 

Graphs 

vs. 

Practice- 

Matrices 

vs. Test- 

Direct 

vs. Test- 

Problem 

Solving 

Mean 35.625 36.125 11.125 8.875 

Variance 1374.268 530.9821 423.2679 186.9821 

Observations 8 8 8 8 

t Statistic   -0.06463 3.5167 3.071504 

One-tailed P-value   0.475139 0.004885 0.009015 

One-tailed critical value for t   1.894579 1.894579 1.894579 

Two-tailed P-value   0.950278 0.009771 0.018029 

Two-tailed critical value for t   2.364624 2.364624 2.364624 

    
Practice- 

Matrices 

vs. Test- 

Direct 

vs. Test- 

Problem 

Solving 

Mean   36.125 11.125 8.875 

Variance   530.9821 423.2679 186.9821 

Observations   8 8 8 

t Statistic     4.098125 4.693719 

One-tailed P-value     0.002292 0.001112 

One-tailed critical value for t     1.894579 1.894579 

Two-tailed P-value     0.004584 0.002225 

Two-tailed critical value for t     2.364624 2.364624 

      Test- Direct 

vs. Test- 

Problem 

Solving 

Mean    11.125 8.875 

Variance    423.2679 186.9821 

Observations    8 8 

t Statistic      0.908475 

One-tailed P-value      0.196914 

One-tailed critical value for t      1.894579 

Two-tailed P-value      0.393829 

Two-tailed critical value for t       2.364624 

Table 7.32 Table of T distribution results for all style pairings for questions on Hamiltonian 
graphs. Results highlighted in red indicate where the null hypothesis is rejected. 

 

For the comparison of the two practice question sets and the comparison 

of the two test question sets, there is not enough evidence to conclude that there 

is a significant difference between these groups. This implies that it is possible 

students were able to distinguish between visual and logical / mathematical 

question styles, as well as between direct and problem solving question styles. 

 

7.6.4 Comparison of Questions Involving Eulerian Graphs 
 

A two-factor, ANOVA experiment without replication was performed to 

determine if differences existed between different outcomes or if differences 

existed between different question styles for the questions performed on Eulerian 

graphs. The results appear in Table 7.33. 
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Using the P-values, it can be easily determined that there are significant 

differences in the means for the different outcomes. Also, at the 5%   level of 

significance, there is also enough evidence to reject H0 for the different question 

styles. Therefore, there is also a significant effect on the question styles used. 

 

Source SS df MS F P-value F crit 

Outcomes 30574.72 7 4367.817 10.48108 1.26x10
-5 

2.487578 

Question 

Styles 5179.344 3 1726.448 4.142809 0.018724 3.072467 

Error 8751.406 21 416.7336    

       

Total 44505.47 31         

Table 7.33 ANOVA two-factor (without replication) Table for the practice and test questions 
involving Eulerian graphs and using Microsoft Excel. 

 

  
Practice- 

Graphs 

vs. Practice- 

Matrices 

vs. Test- 

Direct 

vs. Test- 

Problem 

Solving 

Mean 33.625 37.25 9.875 10.375 

Variance 3040.268 2012.5 330.9821 234.2679 

Observations 8 8 8 8 

t Statistic   -0.55677 1.806658 1.637494 

One-tailed P-value   0.297516 0.056885 0.072769 

One-tailed critical value for t   1.894579 1.894579 1.894579 

Two-tailed P-value   0.595031 0.11377 0.145539 

Two-tailed critical value for t   2.364624 2.364624 2.364624 

    
Practice- 

Matrices 

vs. Test- 

Direct 

vs. Test- 

Problem 

Solving 

Mean  37.25 9.875 10.375 

Variance  2012.5 330.9821 234.2679 

Observations  8 8 8 

t Statistic    2.815537 2.538462 

One-tailed P-value    0.012969 0.019375 

One-tailed critical value for t    1.894579 1.894579 

Two-tailed P-value    0.025939 0.038751 

Two-tailed critical value for t     2.364624 2.364624 

      Test- Direct 

vs. Test- 

Problem 

Solving 

Mean   9.875 10.375 

Variance   330.9821 234.2679 

Observations   8 8 

t Statistic     -0.38592 

One-tailed P-value     0.355508 

One-tailed critical value for t     1.894579 

Two-tailed P-value     0.711015 

Two-tailed critical value for t       2.364624 

Table 7.34 Table of T distribution results for all style pairings for questions on Eulerian 
graphs. Results highlighted in red indicate where the null hypothesis is rejected. 
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Since there is a significant effect on the question styles, it is important to 

determine for which question styles these differences appeared. To do this, a 

series of t-tests are performed. The results for all t-tests appear in Table 7.34. 

This experiment involves six comparisons. Therefore, 

61 0.95 0.2649EER    , which implies there is, at most, a 26% probability of a 

Type I error occurring with at least one of these experiments. Also, this set of 

experiments caused rejections of H0 for the following comparisons: 

 

 Logical / mathematical practice set vs. Direct test set 

 Logical / mathematical practice set vs. Problem Solving test set 

 

It is interesting to note that the rejections of H0 occur only for comparisons 

involving the logical / mathematical practice question set with either test question 

set. Also, for all such cases, both the one-tailed and two-tailed tests failed and it 

may be concluded that 1 1 2:H    for 5%  . This implies that students may 

have found it difficult to study this topic using adjacency matrices in every 

question. 

For all other comparisons, there is not enough evidence at 5%   to 

suggest that there is a difference in the means of the compared question sets. 

This could imply that students generally were able to grasp this learning material, 

provided that adjacency matrices did not appear in the questions. 

 

7.6.5 Comparison of Questions Involving Planar Graphs 
  

A two-factor, ANOVA experiment without replication was performed to 

determine if differences existed between different outcomes or if differences 

existed between different question styles for the questions performed on planar 

graphs. The results appear in Table 7.35. 

Using the P-values, it can be easily determined that there are significant 

differences in the means for the different outcomes. Also, at the 5%   level of 

significance, there is also enough evidence to reject H0 for the different question 

styles. Therefore, there is also a significant effect on the question styles used. 
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Source SS df MS F P-value F crit 

Outcomes 4152.4 7 593.2 7.221251 5.76x10
-5 

2.35926 

Question 

Styles 3907.1 4 976.775 11.89066 9.03x10
-6 

2.714076 

Error 2300.1 28 82.14643    

       

Total 10359.6 39         

Table 7.35 ANOVA two-factor (without replication) Table for the practice and test questions 
involving planar graphs and using Microsoft Excel. 

 

Since there is a significant effect on the question styles, it is important to 

determine for which question styles these differences appeared. To do this, a 

series of t-tests are performed. The results for all t-tests appear in Table 7.36. 

This experiment involves ten comparisons. Therefore, 

101 0.95 0.40EER    , which implies there is approximately a 40% probability of a 

Type I error occurring with at least one of these experiments. Also, this set of 

experiments caused rejections of H0 for the following comparisons: 

 

 Visual practice set vs. Logical / mathematical practice set 

 Visual practice set vs. Direct test set 

 Visual practice set vs. Maze scenario questions in test 

 Visual practice set vs. Student teachers scenario questions in test 

 Logical / mathematical practice set vs. Direct test set 

 Logical / mathematical practice set vs. Maze scenario questions in test 

(only for one-tailed test) 

 Logical / mathematical practice set vs. Student teachers scenario 

questions in test 

 

It is interesting to note that the rejections of H0 occur only for comparisons 

involving the practice question sets with any of the test question sets. Also, for 

almost all such cases, both the one-tailed and two-tailed tests failed and it may 

be concluded that 1 1 2:H    for 5%  . In the case of the visual practice set, 

we can conclude that students found it difficult to study the material in this topic 

when graphs appeared in the questions. However, in the case of the logical / 

mathematical practice set, it is necessary to consider its comparison with the 

maze scenario questions in the test. For the one-tailed t-test, 0 , 1nt t  , therefore, 
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we reject H0 and conclude 1 1 2:H    for 5%  . However, using the two-tailed 

t-test, 0t 
2, 1n

t 
. Therefore, it is possible for the test to “succeed” (although not to 

absolute certainty) for a value of α smaller than 5%; in fact, for 1%  , 

2
0 , 1

2.272502 2.998
n

t t 
   . 

 

  
Practice- 

Graphs 

vs. 

Practice- 

Matrices 

vs. Test- 

Direct 

vs. Test- 

Maze 

vs. Test- 

Student 

Teachers 

Mean 31.875 16.125 6.5 8.125 5.375 

Variance 598.125 165.26786 48.857143 89.553571 19.982143 

Observations 8 8 8 8 8 

t Statistic   2.8146324 4.0284711 4.008862 3.6388291 

One-tailed P-value   0.0129863 0.0025027 0.0025659 0.00415 

One-tailed critical value for t   1.8945786 1.8945786 1.8945786 1.8945786 

Two-tailed P-value   0.0259726 0.0050055 0.0051317 0.0083 

Two-tailed critical value for t   2.3646243 2.3646243 2.3646243 2.3646243 

    
Practice- 

Matrices 

vs. Test- 

Direct 

vs. Test- 

Maze 

vs. Test- 

Student 

Teachers 

Mean  16.125 6.5 8.125 5.375 

Variance  165.26786 48.857143 89.553571 19.982143 

Observations  8 8 8 8 

t Statistic    3.2087313 2.272502 2.9000011 

One-tailed P-value    0.0074421 0.0286329 0.0114929 

One-tailed critical value for t    1.8945786 1.8945786 1.8945786 

Two-tailed P-value    0.0148843 0.0572658 0.0229859 

Two-tailed critical value for t     2.3646243 2.3646243 2.3646243 

      
Test- 

Direct 

vs. Test- 

Maze 

vs. Test- 

Student 

Teachers 

Mean   6.5 8.125 5.375 

Variance   48.857143 89.553571 19.982143 

Observations   8 8 8 

t Statistic     -0.855867 0.9601829 

One-tailed P-value     0.2101998 0.1844735 

One-tailed critical value for t     1.8945786 1.8945786 

Two-tailed P-value     0.4203996 0.368947 

Two-tailed critical value for t       2.3646243 2.3646243 

       
Test- 

Maze 

vs. Test- 

Student 

Teachers 

Mean    8.125 5.375 

Variance    89.553571 19.982143 

Observations    8 8 

t Statistic      1.1103588 

One-tailed P-value      0.1517623 

One-tailed critical value for t      1.8945786 

Two-tailed P-value      0.3035245 

Two-tailed critical value for t         2.3646243 

Table 7.36 Table of T distribution results for all style pairings for questions on planar graphs. 
Results highlighted in red indicate where the null hypothesis is rejected and 
results highlighted in yellow indicate the rejection of the null hypothesis only for 
the corresponding one-tailed test. 

 

For all other comparisons, there is not enough evidence at 5%   to 

suggest that there is a difference in the means of the compared question sets. 
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This could imply that students generally were able to grasp the differences in the 

direct and problem solving question styles. 

 

7.6.6 Comparison of RNI Questions Involving Spanning Trees 
 

A two-factor, ANOVA experiment without replication was performed to 

determine if differences existed between different outcomes or if differences 

existed between different RNI question styles for the questions performed on 

spanning trees. The results appear in Table 7.37. 

Using the P-values, it can be easily determined that there are significant 

differences in the means for the different outcomes. However, there is not 

enough evidence to reject H0 for the different question styles, either; in fact, the 

P-value corresponding to the question styles is significantly large, which then 

makes one wonder if H0 could be “accepted almost to complete certainty”. 

However, it should be noted, as was done previously, that students were 

very unwilling to attempt RNI questions in graph theory, even during the 

invigilated test session, when marks were being allocated to such work. In order 

to better determine the effectiveness of this question and the implementation of 

the various question styles within it, more students will need to be tested and to 

do so requires these questions to be forced upon them in future assessments so 

that they can no longer avoid having to perform calculations in graph theory. 

 

Source SS df MS F P-value F crit 

Outcomes 3931.75 5 786.35 69.69129 0.000127 5.050329 

Question 

Styles 14.08333 1 14.08333 1.248154 0.314694 6.607891 

Error 56.41667 5 11.28333    

       

Total 4002.25 11         

Table 7.37 ANOVA two-factor (without replication) Table for the RNI practice and test 
questions involving spanning trees and using Microsoft Excel. 

  

 

7.6.7 Comparison of MC Questions Involving Spanning Trees 
 

A two-factor, ANOVA experiment without replication was performed to 

determine if differences existed between different outcomes or if differences 
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existed between different question styles for the questions performed on planar 

graphs. The results appear in Table 7.38. 

Using the P-values, it can be easily determined that there are significant 

differences in the means for the different outcomes. Also, at the 5%   level of 

significance, there is also enough evidence to reject H0 for the different question 

styles; in fact, the evidence is stronger for the question styles than it is for the 

outcomes. Therefore, there is also a significant effect on the question styles 

used. 

Since there is a significant effect on the question styles, it is important to 

determine for which question styles these differences appeared. To do this, a 

series of t-tests are performed. The results for all t-tests, along with descriptions 

of all question types and scenarios used, appear in Appendix B. 

 

Source SS df MS F P-value F crit 

Outcomes 513.0875 7 73.29821 6.492153 9.02 X 10
-6 

2.158829 

Question 

Styles 693.6125 9 77.06806 6.826055 8.86 x 10
-7 

2.032242 

Error 711.2875 63 11.29028    

       

Total 1917.988 79         

Table 7.38 ANOVA two-factor (without replication) Table for the MC practice and test 
questions involving spanning trees and using Microsoft Excel. 

 

This experiment involves forty-five comparisons. Therefore, 

451 0.95 0.90EER    , which implies there is approximately a 90% probability of 

committing a Type I error in this set of experiments. Also, this set of experiments 

caused rejections of H0 for the following comparisons: 

 

 Visual practice set vs. all test question sets and scenarios 

 Logical / mathematical practice set vs. all test question sets and 

scenarios 

 Test question given adjacency matrices as options and a graph as part 

of the question with the university student services scenario vs. test 

question given matrices as options and an adjacency matrix as part of 

the question with the business departments scenario 

 Test question given graphs as options and an adjacency matrix as part 

of the question with the business departments scenario vs. test 
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question given graphs as options and an adjacency matrix as part of 

the question with the university student services scenario 

 

It is interesting to note that the rejections of H0 occur only for comparisons 

involving the practice question sets with any of the test question sets. Also, for all 

such cases, both the one-tailed and two-tailed tests failed and it may be 

concluded that 1 1 2:H    for 5%  . However, it is worth noting that the two-

tailed test only barely failed for the practice question set vs. the test question 

given adjacency matrices as options and a graph as part of the question with the 

business departments scenario. With an EER of over 90%, it may be possible to 

suggest that any error occurring in this experiment may likely come from this 

particular comparison. For either practice question set, we can conclude that 

students found it difficult to study the material in this topic when graphs or 

adjacency matrices appeared in the questions. 

The test question that had graphs as options and an adjacency matrix as 

part of the question with the business departments scenario produced some 

interesting results of its own as the null hypothesis is rejected for both test 

questions involving the university student services scenario. In both cases, the 

experiment has shown that the business departments scenario, using graphs as 

options and an adjacency matrix as part of the question, produced greater results 

than either of the test questions using the university student services scenario. It 

is difficult to understand why this is happening and so, it is also likely that if a 

Type I error is occurring in this experiment, then it could be suggested that it is 

coming from these comparisons, especially as these are the only instances of 

rejected null hypotheses between test questions for the entire experiment. 

However, if this is not a result of a Type I error occurring, then more research will 

be needed to determine why this is happening. 
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Chapter 8 Analysis of Test Scores 
for Introductory Graph 
Theory 

 

 

8.1 Hypotheses 
 

The assessments from 2008 – 2014 were conducted in practice 

environments with foundation year students at Brunel University. The setup for all 

questions was that questions would either involve questions that could contain 

any combination of graphs and adjacency matrices; some questions included 

both elements, whereas other questions included only one of the elements. All 

questions were either assessed with scores of 1 (correct) or 0 (incorrect). 

Although this assessment strategy will have an impact on some hypothesis 

testing, comparisons of facilities and discriminations should not vary significantly. 

For hypothesis testing, determining differences in proportions of results has been 

used since the scoring system is binary. Also, because there was a significant 

change in topics assessed from 2011 – 2014, discrimination values cannot be 

carried through in an overall comparison from 2008 – 2014 and so, two separate 

analyses have been conducted. 

Looking at the facility and discrimination values, any comparisons between 

academic years are expected to remain consistent, assuming that in-class 

teaching has been consistent and the syllabus has not changed. Therefore, it is 

being hypothesized that facility and discrimination values will not be statistically 

different between academic years. Also, it is not expected that there will be a 

significant difference in question types between questions. However, it is 

expected that some question topics will be easier for students to answer than 

others. Therefore, it is being hypothesized that there will be a significant 

difference in values between topics. Furthermore, it is expected that for some 

topics, it is more advantageous to use either graphs or adjacency matrices, so it 

is being hypothesized that there will be some significant differences between 

questions involving graphs and questions involving adjacency matrices. 
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8.2 2008 – 2011 Analysis 
 

8.2.1 Summary Results 
 

Spearman rank correlation is useful to determine the relation between 

values when there may be some degree of inter-dependence between two sets. 

This is useful for the analysis of these questions as overall assessment scores 

between academic year groups with different students may vary. 

The Spearman rank correlations for the facility values from the 2008 – 

2011 data are as shown in Table 8.1: 

 

Spearman 

Rank 

Correlations 

2009 - 

2010 

2010 - 

2011 

2008 - 

2009 
0.8858 0.7438 

2009 - 

2010  
0.7446 

Table 8.1 Spearman rank correlations for 2008 – 2011. 

 

These strong, positive correlations suggest there is significant 

improvement in the results for each question from one academic year to the next 

academic year; the tables in Appendix C further show improvement through the 

difficulties of respective questions through each academic year and overall for 

these years.  

Overall difficulties for the question set ranged from 46.21% to 54.75% for 

each academic year, with an overall facility of 50.35% for the three academic 

years.  In addition, none of the questions presented had a negative discrimination 

value; discrimination values ranged from 0.195 (2009 – 2010) to 0.747 (2010 – 

2011). Overall difficulties for each question ranged from 23.45% to 71.58% 

between the three academic years. 

The comparison of facility and discrimination values from 2008 to 2011, as 

shown in Appendix C, show that, generally speaking, as the facility value 

increases, the discrimination values appear to begin converging between 0.5 and 

0.6; this especially appears to be the case for questions asked after the 2008 – 

2009 academic year. This is encouraging as it is showing that questions which 
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are easier for students to answer correctly are not resulting in lower 

discrimination values. 

 

 

Figure 8.1 Scatter diagram of index of discrimination versus facility for questions given to 
students from 2008 to 2011 in MA0422. 

  

The comparison of the question topics, as shown in Figure 8.2, shows that 

all of the bipartite graph questions were more difficult for students to answer 

correctly than almost all other questions, which the exceptions of some questions 

on degree and edge sets. Bipartite graphs do involve some prerequisite 

knowledge about graphs, which can include learning material based on all other 

topics noted in this question set (except for shortest path problems); it is worth 

noting that although the shortest path problems appear to have been answered 

more correctly by students, there were only three specific problems in the set and 

did not necessarily refer to specific algorithms; Kruskal’s and Prim’s algorithms, 

which typically refer to shortest path problems, will appear in the 2011 – 2014 

question set. 

The comparison of facility and discrimination values, based on question 

type, is provided in Figure 8.3. Numerical input questions, which varied largely in 

facility, were generally consistent in terms of discrimination values. Multiple-

choice questions appear to vary greatly throughout the question set. Word input 

questions had reasonably high discrimination values, but those that had 

displayed pop-up windows, asking students to double-check the formatting of 

their answers, appear to have significantly larger facility values, suggesting the 
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pop-up windows were helpful in increasing the number of correct answers made 

by students. 

 

 

Figure 8.2 Scatter diagram of index of discrimination versus facility for questions given to 
students from 2008 to 2011, based on question topic. 

  

 

Figure 8.3 Scatter diagram of index of discrimination versus facility for questions given to 
students from 2008 to 2011, based on question type. Xs in the chart refer to Word 
Input questions that included pop-up checks as part of the question design. 

 

Wilcoxon signed rank tests were conducted at 𝛼 = 0.05 with the null 

hypothesis stating the medians of values (either facility or discrimination values) 

between academic years are equal. There were 19 questions in each test set, the 

critical value for a two-tailed test is 46. The test statistics calculated are shown in 

Table 8.2. 
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It is important to note that the null hypothesis was rejected at the 5% level 

of significance for the two-tailed test for both tests involving the 2010 – 2011 

question set. The overall mean for facility of the 2010 – 2011 questions is higher 

than that of the other academic years, implying that students performed better 

than expected with the same questions.  

 

Facility 
2009 - 

2010 

2010 - 

2011 
Discrimination 

2009 - 

2010 

2010 - 

2011 

2008 - 

2009 
86 41 2008 - 2009 

72 55 

2009 - 

2010  
39 2009 - 2010 

 65 

Table 8.2 Test statistics for facility and discrimination values using the Wilcoxon signed 
rank test for the 2008 – 2011 question set. Results highlighted in red (with white 
text) refer to tests where the null hypothesis, i.e. the medians of the 
corresponding values (i.e. either facility values or discrimination values) are 
equal, was rejected at 𝜶 = 𝟎. 𝟎𝟓. 

 

 

8.2.2 Question Analysis 
 

8.2.2.1 Bipartite Graphs 
 

Three of the four most difficult questions for students to answer were 

bipartite graph questions, all of which were multiple-choice (MC) questions. The 

numerical input (NI) question was answered better by students, but still appears 

to have a considerably low facility. 

The first three questions are posing the same problem, i.e. which of the 

following is bipartite, but what changes is the use of graphs and adjacency 

matrices. Many characteristics of graphs are easier to see from a graph than they 

are to determine from an adjacency matrix. However, for the topic of bipartite 

graphs, it can be argued that it is equally likely to find two partite sets as the two 

sets can easily appear in a symmetric matrix, as shown in Example 8.1. 

Although a difference in facility values exists, it is relatively small and 

furthermore, the ranking of facility generally changes from one academic year to 

the next, as shown in Table 3. Therefore, it cannot be concluded that showing 

graphs and adjacency matrices has any effect on the facility of determining if a 

graph is bipartite.  
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[
 
 
 
 
 

𝐴 𝐵
𝐴 0 0
𝐵 0 0

𝐶 𝐷 𝐸
1 1 0
0 1 1

𝐶  1 0
𝐷  1 1
𝐸  0 1

0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 

 

Example 8.1 A symmetric matrix representing a bipartite graph with sets, {𝑨, 𝑩} and {𝑪, 𝑫, 𝑬}. 

 

In comparison, the NI question already tells the student that the graph in 

question is bipartite. Therefore, less effort is required as some additional 

information about the graph being viewed is provided.  Upon determining the 

number of vertices in each set, the student simply has to choose the required 

number of vertices (i.e. largest or smallest, depending on the question) and type 

this value in to answer the question correctly. 

Although the NI question was not answered well in the 2008 – 2009 

academic year, it performed better than the MC questions for the other two 

academic years and with increasing significance. Knowing that the graph in 

question is bipartite does reduce the effort involved in answering the question, 

and especially as there is only one graph involved instead of four graphs or 

adjacency matrices, this question could reasonably be answered quicker than the 

MC questions.  

The discrimination values for these questions are all positive. However, 

they vary significantly from 0.195 (2009 – 2010) to 0.702 (2010 – 2011). Although 

they each provided some positive effect to students’ overall assessment scores, 

they are not doing so with reasonably consistent values of discrimination; for 

instance, the discrimination value for the bipartite graph search MC question in 

2009 – 2010 was 0.195, whereas the discrimination value for the bipartite 

adjacency matrix search MC question in 2010 – 2011 was 0.586.  

 

8.2.2.2 Edge Set 
 

The question asking to input the edges of a given graph was challenging, 

but the similar question, which asked to input the edges of a given digraph, was 

considerably easier. The overall facility for the question involving a typical graph 

was 0.2688, whereas the overall facility for the question involving a digraph was 

0.6667. The correlations for the question involving a typical graph were also 
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considerably lower than those for the digraph, suggesting that the question 

involving the digraph resulted in an improvement in students’ overall assessment 

scores.  

With regards to these two questions, there were very specific guidelines 

for how to input answers. For any graph, 𝐴𝐵̅̅ ̅̅  and 𝐵𝐴̅̅ ̅̅  represent the same edge, so 

students were reminded to input their answers in alphabetical order. However, for 

digraphs, this was not necessary as 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐵𝐴⃗⃗⃗⃗  ⃗ are two different edges. 

Therefore, although digraphs normally require some prerequisite understanding 

of how graphs function, answering the question using standard graphs requires 

the additional step of alphabetically listing all edges. For the entire list of edges, 

this, too, had to be in alphabetical order, but this was required for both questions. 

 

8.2.2.3 Indegree and Outdegree 
 

The question on indegree and outdegree did not perform as well as the 

question asking for the degree of a typical graph. The question about indegree 

and outdegree looks specifically at digraphs as the directionality of edges 

determines unique values for these two degree values.  For the question looking 

at indegree and outdegree, the overall facility was 0.3117, but it is also worth 

noting that this is based on continually increasing difficulties from one academic 

year to the next. Also, for the 2008 – 2009 academic year, this question was 

attempted only 28 times, as opposed to 67 and 59 times in 2009 – 2010 and 

2010 – 2011 respectively. The similar question, asking to find the degree of a 

vertex of a typical graph, had an overall facility of 0.5063, but the difficulties for 

each academic year were somewhat comparable and did not continue to 

increase from one academic year to the next. For both questions, discrimination 

values were similar and were contained within a small range, with a minimum of 

0.429 and a maximum of 0.585. 

 

8.2.2.4 Degree Sequences 
 

The question asking to generate the degree sequence resulted in better 

facility values than the question on indegree or outdegree, but not as well as the 
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question asking for the degree of a vertex of a typical graph. This was a 

Responsive Word Input (RWI) question, where students would normally receive a 

pop-up window upon answering the question, asking them to double check their 

responses before clicking to submit a second time. This question only looked at 

typical graphs, so there was less prerequisite knowledge required than indegree 

and outdegree, but there are more steps required in answering this particular 

question as repeated calculations of degree are required and the answer has to 

be given in a particular format, matching all degrees in the numerical order of 

their corresponding vertices. 

As noted earlier, this question was not answered well in 2008 – 2009, 

resulting in the lowest facility value for any question. However, facility values 

increase significantly in later years, resulting in an increase of facility of 0.316 

from the 2008 – 2009 academic year to the 2010 – 2011 academic year. It is also 

important to note that the number of attempts of this question also increased 

significantly from 2008 – 2011 as attempts more than doubled from the 2008 – 

2009 academic year (38) to the 2010 – 2011 academic year (78). 

 

8.2.2.5 Shortest Distance Problems 
 

The RNI question about the shortest distance between two towns was 

answered numerous times in each academic year with more than double the 

number of attempts than any other question for respective academic years.  

Facility values were generally consistent, remaining between 0.385 (2009 – 

2010) and 0.472 (2010 – 2011). Discrimination values were generally consistent, 

remaining between 0.466 (2009 – 2010) and 0.487 (2008 – 2009), but there are 

also significantly more attempts made from one academic year to the next, 

reaching from 142 (2008 – 2009) to 192 (2009 – 2010) and then 214 (2010 – 

2011). This question is a stand-alone question as there were no other questions 

in the assessment relating to the distance between two vertices using weighted 

graphs.  
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8.2.2.6 Simple and Connected Graphs 
 

There were three questions asking to find a simple and connected graph 

amongst a list of possibilities. In a similar format to the bipartite graph MC 

questions, these three MC questions differ in terms of what is displayed, i.e. 

adjacency matrices, graphs, or a combination of both. A comparison of the 

results is provided in Table 8.3. 

 
Table 8.3  Comparison of MC questions asking to find a simple and connected graph. 

 

Unlike the question on bipartite graphs, visualisation in this question is 

very important as it should be easier to see a graph not containing loops or being 

disconnected rather than determining it through an adjacency matrix. From these 

results, this appears to generally be the case, although for the 2008 – 2009 

academic year, students performed slightly better with the adjacency matrices 

questions. Discrimination values vary, but for 2008 – 2009 and 2009 – 2010, the 

discrimination values for the graphs questions is lower than at least one of the 

other respective discrimination values for each academic year, whereas in 2010 

– 2011, the discrimination value for the graphs questions is higher than the other 

two discrimination values; however, for 2010 – 2011, discrimination values do not 

vary as much as they do in the other academic years. 

 

8.2.2.7 Adjacency Matrices 
 

The next two questions ask to match a graph to a corresponding 

adjacency matrix or vice versa. The question asking to find a matching adjacency 

QUESTION 2008 – 2009 2009 – 2010 2010 – 2011 OVERALL 

Fac. = Facility 

Dis. = Discrimination 
Fac. Dis. Fac. Dis. Fac. Dis. Facility 

Find the simple 

connected graph given 

the adjacency 

matrices; RandMC 

0.685 0.609 0.544 0.396 0.53 0.49 0.5727 

Find the simple 

connected graph given 

the graphs or 

adjacency matrices; 

RandMC 

0.583 0.425 0.508 0.619 0.676 0.468 0.5926 

Find the simple 

connected graph given 

the graphs; RandMC 

0.643 0.218 0.612 0.48 0.766 0.545 0.6897 
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matrix proved to be only somewhat more difficult, with an overall facility of 0.6311 

compared to 0.7150 for the question asking to find a matching graph. 

 

QUESTION 2008 – 2009 2009 - 2010 2010 - 2011 

# = Number of attempts 

Fac. = Facility 

Dis. = Discrimination 

# Fac. Dis. # Fac. Dis. # Fac. Dis. 

Given graph, find 

matching adjacency 

matrix; MC 

46 0.609 0.595 87 0.54 0.543 47 0.728 0.415 

Given adjacency matrix, 

find matching graph; MC 
48 0.708 0.512 73 0.795 0.542 58 0.646 0.479 

Table 8.4 Comparison of MC questions asking to match a graph to an adjacency matrix or 
vice versa. 

 

The lowest and highest facility values both appear in the 2009 – 2010 

academic year, with 0.54 for finding the matching adjacency matrix and 0.795 for 

finding the matching graph. In 2008 – 2009, although the question asking to find 

the matching graph has a higher mean facility value, the difference between it 

and the corresponding facility value for finding the matching adjacency matrix is 

significantly less than that from 2009 – 2010; furthermore, facility values swap 

rank in 2010 – 2011, showing a higher facility value for finding the matching 

adjacency matrix.  There are also significantly more attempts made in 2009 – 

2010 in comparison to any of the other academic years, which may have some 

representative effect on the presented facility values.  Also, although not much 

less than some other facility values, the facility value of 0.54 for finding the 

matching adjacency matrix (2009 – 2010) does appear to be an anomaly in some 

way in that this question had the most attempts made, yet has a discrimination 

value consistent with many other discrimination values present. Discrimination 

values throughout are generally consistent, ranging from 0.512 (2008 – 2009) to 

0.728 (2010 – 2011). 

The last question looks at an adjacency matrix for a given graph, asking 

students to input the location of an error in the matrix. This question is similar to 

the MC questions, but is an RWI question with a check so that students verify 

that the formatting of their answers matches the required format for assessing 

their answers objectively. Students are aware in the question that there is a fault 

with the corresponding adjacency matrix, so the question asks them to find it.  

This question performed generally well, although there is an anomaly in 

the facility value for 2009 – 2010 (0.508), compared to 2008 – 2008 (0.73) and 
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2010 – 2011 (0.768). Discrimination values are consistent with a range of 0.037 

between all three academic year groups. The MC question asking to find the 

matching graph, given the adjacency matrix, had a higher overall facility, with a 

difference of 0.0336. However, the facility values for 2008 – 2009 and 2010 – 

2011 are higher for the RWI question; the reason for the MC question having a 

higher facility value is due to the anomaly in 2009 – 2010, which caused a 

significant change of rank between the difficulties of the two questions. 

 

8.2.2.8 Vertex Sets 
 

The next two questions ask to look at a given graph and to input the 

vertices of the graph. The difference between the questions is that there are 

disconnected vertices in one of the graphs with no edges connecting it to other 

vertices. The objective of these questions was to determine if students would not 

input the disconnected vertices in their answers, even though they belong to the 

graphs.  The results are shown in Table 8.5. 

The overall facility for the question that had disconnected vertices was 

0.6596 and the overall facility for the question without disconnected vertices was 

0.7158. Generally speaking, the question without disconnected vertices achieved 

better facility values, but similar to the question on simple and connected graphs, 

there is an issue with the 2009 – 2010 academic year; in this case, the question 

with disconnected vertices had a larger facility.  The difference in facility values is 

not necessarily significant as it is only in the 2008 – 2009 academic year that the 

facility values differ by more than 0.100. The question without disconnected 

vertices had the highest overall facility of any question overall for 2008 – 2011. 

 

QUESTION 2008 – 2009 2009 – 2010 2010 – 2011 

# = Number of attempts 

Fac. = Facility 

Dis. = Discrimination 

# Fac. Dis. # Fac. Dis. # Fac. Dis. 

Given graph, input 

vertices (with 

disconnected vertices); 

WI+check 

25 0.52 0.476 13 0.765 0.508 26 0.657 0.689 

Given graph, input 

vertices; WI+check 
19 0.632 0.372 12 0.719 0.55 23 0.75 0.386 

Table 8.5 Comparison of WI + Check questions asking to input the vertices of a given 
graph. 
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The discrimination values for these two questions generally show that the 

question with disconnected vertices had a stronger effect on students’ overall 

assessment scores than the question without disconnected vertices. With the 

exception of 2009 – 2010, the discrimination values for the question with 

disconnected vertices is either 0.104 (2008 – 2009) or 0.303 (2010 – 2011) 

higher than the discrimination values for the question without disconnected 

vertices in respective academic years.  The discrimination values for 2009 – 2010 

are similar, with a difference of 0.042. 

The question asking to calculate the sum of entries of an adjacency matrix 

had good results. Its facility values have a range of 0.100, suggesting some 

consistency, and discrimination values are more significantly consistent, having a 

range of only 0.015.  A continuously increasing number of students attempted 

this question from one academic year to the next, going from 49 (2008 – 2009) to 

74 (2010 – 2011). Exactly 2
3
 of the students answered this question correctly from 

2008 – 2011 and it is the question related to degree that has the best overall 

facility; the question related to degree with the second best overall facility is the 

NI question asking to determine the degree of a vertex of a graph (0.5063).  

 

8.2.3 Hypothesis Testing 
 

8.2.3.1 Test for Difference in Proportions Within Topics 
 

Hypothesis testing was carried out on comparable questions within each 

topic. The results are shown in Table 8.6. 

The analysis shows that students found it easier to answer adjacency 

matrix questions when the adjacency matrix was given and they had to determine 

the matching graph. Students found that it was easier to answer the question on 

edge sets that involved the digraph rather than the graph.  

The simple and connected graphs questions showed that the use of 

graphs made it more difficult for students to answer correctly than when 

adjacency matrices were used, but the use of graphs made questions easier to 

answer than those questions that had both graphs and adjacency matrices 

included. However, the null hypothesis could not be rejected for the difference in 

proportions between adjacency matrices and the combination of graphs and 
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adjacency matrices, which appears to contradict the logic of the other two 

hypothesis tests. Therefore, it is possible that a Type I error may be involved, 

even with 𝐸𝐸𝑅 = 0.0975. 

 

Topic  Issue Z 

Adjacency Matrices 
Given graph vs. Given adjacency 

matrix 
-1.8366 

Bipartite Graphs Adjacency Matrix vs. Graph -0.4825 

Bipartite Graphs Adjacency Matrix vs. Combination -0.2179 

Bipartite Graphs Adjacency Matrix vs. Combination -0.7261 

Degree No available questions 

Shortest Distance No available questions 

Edge Sets Graph vs. Digraph -5.2083 

Simple & Connected 

Graphs 

Graphs vs. Adjacency Matrices 
-2.5051 

Simple & Connected 

Graphs 

Adjacency Matrices vs. 

Combination 
-0.4098 

Simple & Connected 

Graphs 

Graphs vs. Combination 
2.0041 

Vertex Sets  0.8339 

Table 8.6 List of 𝒁𝒕𝒆𝒔𝒕 values for hypothesis testing of questions within topics for questions 
tested from 2008 - 2011. Values highlighted in red show a rejection of the one-
tailed test in favour of 𝑯𝟏: 𝝁𝟏

𝜶 < 𝝁𝟐
𝜶. Values highlighted in blue show a rejection of 

the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏
𝜶 > 𝝁𝟐

𝜶. 

 

8.2.3.2 Test for Difference in Proportions Between Topics 

 

Test values for the comparisons between topics (using comparable 

questions) is shown in Table 8.7. In this table, it is evident that the adjacency 

matrix and vertex sets questions were significantly easier to answer than all 

questions, except questions on vertex sets, for which no definite conclusion can 

be made. Questions on bipartite graphs were significantly more difficult for 

students to answer than any other topic; this was an expected result because 

there is some prerequisite knowledge about graphs required in order to answer 

questions on this topic. Questions on shortest distance were the next most 

difficult for students to answer correctly, with bipartite graphs questions being 

more difficult and questions on degree not being significantly different enough to 

draw a conclusion, but questions on degree were comparatively difficult to all 

other topics. Questions on edge sets were easier for students to answer 

correctly, although no conclusion could be drawn when compared to questions 

on simple & connected graphs. 
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Topic 2 →

Topic 1 ↓
 

Bipartite 

Graphs 
Degree 

Shortest 

Distance 

Edge 

Sets 

Simple & 

Connected 

Graphs 

Vertex 

Sets 

Adjacency 

Matrices 
13.8088 7.6523 8.6385 1.8427 2.1037 -0.3544 

Bipartite   -6.7465 -5.1251 
-

6.8248 
-11.8225 

-

10.1000 

Degree     1.3928 
-

2.6513 
-5.5290 -5.4521 

Shortest 

Distance 
      

-

3.4372 
-6.6161 -6.2714 

Edge Sets         -0.5759 -1.7978 

Simple & 

Connected 

Graphs 

          -1.7659 

Table 8.7 List of 𝒁𝒕𝒆𝒔𝒕 values for hypothesis testing of questions between topics for 
questions tested between 2008 - 2011. Values highlighted in red show a rejection 
of the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏

𝜶 < 𝝁𝟐
𝜶. Values highlighted in blue show a 

rejection of the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏
𝜶 > 𝝁𝟐

𝜶. 

  

8.2.3.3 Test for Difference in Proportions Between Question 
Types 

 

Test values for the comparisons between question types for the entire 

data set are given in Table 8.8. 

Word input questions with checks included (WI + Check) were easier for 

students to answer correctly than all other questions; these questions, however, 

the topics for these questions were adjacency matrices, edge sets, and vertex 

sets, which were the three question topics that had significantly higher facility 

values, as was shown in Table 8.7. Nonetheless, these questions had 

significantly better facilities than the (Responsive) Numeric/Word Input (NI/RNI; 

WI/RWI) questions, which could partially result from asking students to ensure 

their answers were written in the correct format.  

 

Type 2 →

Type 1 ↓
 NI/RNI WI/RWI WI+Check 

MC 4.1679 4.4585 -3.5205 

NI/RNI   2.4231 -6.5692 

WI/RWI     -6.1546 

Table 8.8 List of 𝒁𝒕𝒆𝒔𝒕 values for hypothesis testing of questions between question types for 
questions tested between 2008 - 2011. Values highlighted in red show a rejection 
of the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏

𝜶 < 𝝁𝟐
𝜶. Values highlighted in blue show a 

rejection of the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏
𝜶 > 𝝁𝟐

𝜶. 
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Multiple-choice (MC) questions were significantly easier to answer 

correctly; the topics for these questions were simple & connected graphs, 

adjacency matrices, and bipartite graphs. The topic facilities varied when 

compared to each other, so it is possible that question type has played a 

significant role.  

 

8.3 2011 – 2014 Analysis 
 

8.3.1 Summary Results 
 

The Spearman rank correlations for the 2011 – 2014 data are as shown in 

Table 8.9. 

These strong, positive correlations suggest there is significant consistency 

in the results for each question from one academic year to the next academic 

year; the tables in Appendix C further show question consistency through the 

difficulties of respective questions through each academic year and overall for 

the three academic years.  

Overall difficulties for the question set ranged from 47.35% to 57.33% for 

each academic year, with an overall facility of 53.72% for the three academic 

years.  In addition, none of the questions presented had a negative discrimination 

value; discrimination values ranged from 0.029 (2012 - 2013) to 0.824 (2011 – 

2012). Overall difficulties for each question ranged from 18.92% to 83.87% 

between the three academic years. 

 

Spearman 

Rank 

Correlations 
2012 – 2013 2013 – 2014 

2011 – 

2012 
0.8060 0.7044 

2012 – 

2013  
0.8596 

Table 8.9 Spearman rank correlations for 2011 – 2014. 

 

The overall difficulties for the question set in each academic year from 

2011 - 2014 are consistent with the overall difficulties for the question set in each 
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academic year from 2008 – 2011. However, there is a larger range of overall 

difficulties for each question, increasing from 0.4813 to 0.6495. Furthermore, 

there are some worrying discrimination values, with some values reaching as low 

as 0.029.  

The numbers of attempted questions between the two sets is comparable, 

with 3,412 total attempts made between 2008 – 2011 and 3,358 total attempts 

made between 2011 – 2014.  

One major change in this question set is the replacement of questions 

relating to bipartite graphs for questions relating to minimum spanning tree 

algorithms, namely Prim’s algorithm and Kruskal’s algorithm. There were four 

questions relating to bipartite graphs, but there are twelve questions relating to 

minimum spanning trees, with six questions dedicated to each of the two named 

algorithms. 

 

 

Figure 8.4 Scatter diagram of index of discrimination versus facility for questions given to 
students from 2008 to 2011 in MA0422. 

 

Also interesting to note is that the correlation between overall facility 

values for each set correlate positively with the number of questions attempted in 

each academic year; this differs from the 2008 – 2011 assessments, where an 

increase in the number of attempted questions did not necessarily provide a 

higher facility. This could suggest students were generally able to learn from their 

mistakes in previous attempts in order to perform better, at least in comparison to 

the 2008 – 2011 data. 
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Figure 8.4 shows the facility and discrimination values for the questions 

presented from 2011 to 2014. Questions that have facility values ranging from 

approximately 0.3 to 0.7 have more consistent discrimination values than those 

which have other discrimination values. There are some questions with lower 

facility and discrimination values and some questions with very high facility 

values, but significantly low discrimination values; these lower discrimination 

values are concerning as the questions are less useful in the learning and 

assessment taking place within the module. 

 

 

Figure 8.5 Scatter diagram of index of discrimination versus facility for questions given to 
students from 2008 to 2011, based on question topic. 

 

Figure 8.5 shows the facility and discrimination values based on question 

topics. The questions on adjacency matrices were answered well, with 

consistently high facility and discrimination values. Questions on degree varied 

significantly and the topics within the category of degree which had larger facility 

values and lower discrimination values varied also between outdegree and 

degree sequence questions. Questions on edge and vertex sets were consistent 

in facility and discrimination values. The shortest path problems vary significantly 

in discrimination values, but were generally more difficult for students to answer 

than the other topics; similar to the topic of bipartite graphs, this is most likely due 

to the fact that prerequisite knowledge is necessary in understanding how the 

algorithms work, but in the case of algorithms and due to the marking scheme set 
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up for these questions, one mistake in the algorithmic process would have likely 

resulted in an incorrect solution and thus, a mark of zero awarded for the entire 

question. In comparison to the shortest path problems, the most significant 

difference is in the discrimination values as they are less consistent than the 

2008 – 2011 questions on shortest path problems. It is worth noting that all 

shortest path problems created from 2011 – 2014 were Word Input (WI) 

questions without checks. 

 

 

Figure 8.6 Scatter diagram of index of discrimination versus facility for questions given to 
students from 2008 to 2011, based on question type. 

 

 The comparison of facility and discrimination values based on question 

type, is shown in Figure 8.6. There was just one multiple-choice question about 

adjacency matrices. Numerical input questions generally held facility values from 

0.2 to 0.7 and discrimination values between 0.25 and 0.75, with the exception of 

the question on outdegree, which had higher facility values, but significantly lower 

discrimination values. All of the Prim’s and Kruskal’s algorithms questions were 

WI questions, along with various other questions on degree sequences. In 

comparison, just like the 2008 – 2011 questions showed, those questions with 

pop-up windows asking students to double check the formatting of their answers 

resulted in higher facility values; these questions also had less variation of 

discrimination values. 
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8.3.2 Question Analysis 
 

8.3.2.1 Minimum Spanning Trees 

 

The first set of questions explores two specific algorithms for determining 

the minimum spanning tree of a graph, i.e. Prim’s Algorithm and Kruskal’s 

Algorithm. These questions were designed by Zaczek44 and used as part of the 

new online practice assessment, reflecting upon an addition to the syllabus that 

took place in 2011. There are 12 questions in total on these two algorithms.  

Table 8.10 shows the analysis of these specific questions. 

These questions generally appear with the lowest overall difficulties for all 

questions asked between 2011 – 2014; the only exceptions are questions 

relating to indegree, outdegree, and degree of a symmetric matrix. However, the 

overall facility values is significantly varied with a range of 0.3407. The ranking of 

facility values is provided in Table 12. 

There are some varied numbers of attempts with these questions, 

although not necessarily significant as there is a large selection of questions from 

the same topics. It does not appear that one algorithm was found to be more 

challenging than another as the facility values are higher for Kruskal’s algorithm 

at various times and are higher for Prim’s algorithm at other times for comparable 

questions within the set. Also, it does not appear that the number of vertices had 

any particular effect on student results as graphs using 7 vertices appear to have 

varied rankings of facility values throughout the set, compared to graphs using 5 

or 6 vertices.  

There is clearly a variation in the correlations for the 2013 – 2014 

academic year in relation to the other academic year groups; however, it does 

correlate well with the overall facility rankings for 2011 – 2014, as did the other 

academic year groups. Although the correlations are all positive, it is clear from 

the original data the questions do not generally rank in the same position during 

each academic year.  

The questions asking for the minimum spanning tree of a graph generally 

had the lowest facility, although this was mixed with the questions asking about a 

particular edge within the algorithmic process. Facility values for these questions 



190 
 

are not affected either by the type of algorithm used or the number of vertices 

involved. Facility values significantly improve for all four questions from the 2011 

– 2012 academic year to the 2012 – 2013 academic year and are somewhat 

consistent between the 2012 – 2013 and 2013 – 2014 academic years, although 

some variation does exist for the questions whose graphs have 7 vertices. 

Discrimination values are significantly positive throughout, ranging from 0.408 

(2013 – 2014) to 0.781 (2012 – 2013). 

 

 
Table 8.10 Analysis of Prim’s and Kruskal’s algorithms questions. 

 

The four questions asking if an edge was added, rejected, or not 

considered had significantly different facility and discrimination values throughout 

the analysis.  Two questions have discrimination values less than 0.100, namely 

the question for a 7-vertex graph using Prim’s algorithm (0.09; 2013 – 2014) and 

the question for a 7-vertex graph using Kruskal’s algorithm (0.098; 2011 – 2012). 

The discrimination values for these two questions in other academic years vary 

greatly, reaching values as high as 0.647 for Prim’s algorithm (2012 – 2013) and 

Question description 
2011 - 
2012 

2012 - 
2013 

2013 - 
2014 

 OVERALL 

Fac. = Facility 

Dis. = Discrimination 
Fac. Dis. Fac. Dis. Fac. Dis. Facility 

what is the minimum spanning tree_5-6 
vertices_Kruskal; WI 0.172 0.687 0.333 0.781 0.333 0.408 0.2885 

what is the minimum spanning tree_7 
vertices_Kruskal; WI 0.2 0.638 0.25 0.625 0.406 0.576 0.2963 

was AB edge added/rejected/not considered 
and at what step_5-6 vertices_Kruskal; WI 

0.296 0.594 0.423 0.658 0.275 0.392 0.3226 

was AB edge added/rejected/not considered 
and at what step_7 vertices_Kruskal; WI 

0.174 0.098 0.32 0.651 0.483 0.699 0.3377 

which is the n'th edge of the minimum 
spanning tree_7 vertices_Kruskal; WI 

0.5 0.703 0.448 0.528 0.3 0.692 0.4286 

which is the n'th edge of the minimum 
spanning tree_5-6 vertices_Kruskal; WI 

0.524 0.265 0.5 0.671 0.3 0.738 0.4478 

what is the minimum spanning tree_7 
vertices_Prim; WI 

0.152 0.435 0.281 0.671 0.152 0.651 0.1892 

was AB edge added/rejected/not considered 
and at what step_7 vertices_Prim's algorithm; 
WI 

0.196 0.334 0.242 0.647 0.139 0.09 0.1913 

was AB edge added/rejected/not considered 
and at what step_5-6 vertices_Prim's 
algorithm; WI 

0.234 0.393 0.344 0.428 0.167 0.451 0.2477 

what is the minimum spanning tree_5-6 
vertices_Prim's algorithm; WI 

0.2 0.447 0.345 0.639 0.31 0.732 0.2903 

which is the n'th edge of the minimum 
spanning tree_7 vertices_Prim's algorithm; WI 0.452 0.492 0.25 0.554 0.256 0.612 0.3248 

which is the n'th edge of the minimum 
spanning tree_5-6 vertices_Prim's algorithm; 
WI 

0.55 0.53 0.516 0.553 0.522 0.576 0.5299 
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0.699 for Kruskal’s algorithm (2013 – 2014). These two questions also vary 

greatly in overall facility, with values of 0.1913 using Prim’s algorithm and 0.3377 

using Kruskal’s algorithm. For all four questions, the range of facility is 0.344 and 

the range of discrimination values is 0.609, with the minimum and maximum 

values for both statistics coming from the same two questions for 7-vertex graphs 

and both occurring in the 2013 – 2014 academic year. 

The four questions asking if an edge was added, rejected, or not 

considered require students to implement the algorithms fully, similar to the 

questions asking for the minimum spanning tree. However, with these four 

questions in particular, students then have to backtrack through their work to 

answer a more specific question. The number of steps involved in the method for 

answering these questions is therefore the same as the number of steps involved 

in the method for answering the questions that ask for the minimum spanning 

tree. 

The last set of four questions asks students to determine the nth edge to 

be added in either algorithmic process. These questions have generally higher 

overall facility values, ranging from 0.3248 to 0.5299. The facility values for three 

of these questions appear to have reduced from 2011 – 2012 values; the 

exception is the question using a graph of 5 – 6 vertices and Prim’s algorithm, 

which has consistently good facility values with a range of only 0.034 from 2011 – 

2014. The discrimination values are significantly positive, but with one anomaly, 

namely the question using a graph of 5 – 6 vertices and Kruskal’s algorithm 

(2011 – 2012), which has a discrimination value of 0.265.  

 

8.3.2.2 Degree 

 

8.3.2.2.1 Indegree and Outdegree 

 

The next five questions look at degree, indegree and outdegree. Unlike 

the 2008 – 2011 question on both topics, five separate questions were designed 

for 2011 – 2014, exploring each type of vertex degree in different ways. There 

are two questions on each of indegree and outdegree, but they are essentially 

identical, i.e. the elements of each question are the same throughout. However, 
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there is one catch in the terminology, namely that a network matrix for a digraph 

has the weights attached, whereas the adjacency matrix would have the number 

of edges counted. 

 

QUESTION 2011 - 2012 2012 - 2013 2013 - 2014 

OVERALL 

FACILITY Fac. = Facility 

Dis. = Discrimination 
Fac. Dis. Fac. Dis. Fac. Dis. 

indegree of the vertex of 

the network matrix of a 

digraph; NI 

0.214 0.468 0.222 0.715 0.345 0.255 0.2787 

outdegree of the vertex of 

the network matrix of a 

digraph; NI 

0.273 0.527 0.429 0.402 0.357 0.407 0.3585 

degree of the vertex of 

the network matrix 

(symmetric graph); NI 

0.25 0.313 0.5 0.675 0.583 0.557 0.4630 

indegree of the vertex of 

the adjacency matrix; NI 
0.25 0.569 0.591 0.75 0.652 0.571 0.5439 

outdegree of the vertex of 

the adjacency matrix; NI 
0.438 0.626 0.842 0.029 0.786 0.053 0.6939 

Table 8.11 Comparison of NI question on indegree and outdegree from 2011 – 2014. 

 

The questions involving a network matrix involve an extra step in that 

students are not to count the numbers they see, but rather calculate the sum of 

non-zero entries they see. It is clear that this has had some effect on students’ 

attempts, especially as the appearance of both questions has caused many 

students to not consider the extra step in their efforts.  However, there may be an 

issue in the wording itself: the “network matrix of a digraph” and “adjacency 

matrix” could be similar in meaning for any question on indegree and outdegree. 

A network matrix typically does not include the weights of the edges, but network 

matrices do exist where the weights are included. Therefore, the wording has 

been shown to be the issue in this question and hence, no valid conclusions can 

be made about why students performed better on some questions on degree, 

indegree and outdegree than on other similar questions. 

 

8.3.2.2.2 Degree Sequences   

 

The next set of questions looks at degree sequences. Similar to the topic 

of indegree and outdegree, there is a significant range of facility values for the 

eight questions presented in this topic. The detailed analysis is provided in Table 

8.12. 
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QUESTION 2011 - 2012 2012 - 2013 2013 - 2014 

Overall 

Fac. 
Fac. = Facility 

Dis. = Discrimination 
Fac. Dis. Fac. Dis. Fac. Dis. 

degree sequence of the 

simple, disconnected 

adjacency matrix; WI 

0.688 0.62 
0.61

9 
0.554 0.412 0.787 0.5741 

degree sequence of the 

graph (with multi edges 

and loops); WI 

0.538 0.366 
0.68

8 
0.315 0.5 0.378 0.5778 

degree sequence of the 

adjacency matrix (with 

multi edges); WI 

0.471 0.575 
0.64

7 
0.455 0.85 0.608 0.6667 

degree sequence of the 

adjacency m. w/ multi 

edges and loops; WI 

0.692 0.499 0.75 0.063 0.667 0.665 0.7073 

degree sequence of  

simple disconnected 

graph WI 

0.533 0.514 0.81 0.607 0.778 0.114 0.7111 

degree sequence of the 

adjacency matrix 

(simple, connected 

graph); WI 

0.6 0.824 0.7 0.812 0.759 0.59 0.7119 

degree sequence of the 

graph (with multi edges); 

WI 

0.5 0.648 0.8 0.526 0.783 0.727 0.7193 

degree sequence of the 

graph (simple, 

connected graph); WI 

0.778 0.689 
0.69

6 
0.734 0.72 0.224 0.7193 

Table 8.12 Comparison of degree sequence questions from 2011 – 2014. 

 

Facility values are generally good throughout, ranging from 0.412 (2013 – 

2014) to 0.85 (2013 – 2014).  The discrimination values, however, are concerning 

as there are some significantly low discrimination values present, namely 0.063 

(2012 – 2013) and 0.114 (2013 – 2014); these low discrimination values 

appeared one time in each of two academic years and for two different questions, 

but otherwise, the discrimination values were very good for these two questions 

and for each academic year.  

Two of these questions, namely those using a simple, disconnected 

adjacency matrix and a graph with multi-edges and loops, appear to have been 

more difficult than the other six questions, all of which appear as a group (with 

one question on outdegree placed in the middle of the group) with high overall 

facility values for the 2011 – 2014 assessments. However, the two more difficult 

questions differ in terms of the information provided in answering the questions; 

there is either a graph or an adjacency matrix and the properties change from 

simple and disconnected to multi-edges and loops. Two questions on simple and 
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connected graphs and adjacency matrices exist in the set and performed better 

than the other questions, although one question involving multi-edges did 

perform better than that using the simple and connected adjacency matrix. The 

analysis of this data shows that there is clearly no significant difference in facility 

between the various characteristics that define these questions uniquely. 

 

8.3.2.3 Vertex Sets 

 

There are two questions involving vertex sets. One question uses a 

disconnected graph and the other uses a connected graph. These two questions 

are identical to questions asked in the 2008 – 2011 data set. However, unlike the 

2008 – 2011 data set, the data for 2011 – 2014 provides more conclusive 

evidence that the question involving the connected graph was answered more 

correctly than the question involving the disconnected graph. Results are shown 

in Table 8.13. 

The facility values for these two questions range from 0.554 (2013 – 2014) 

to 0.859 (2012 – 2013). The discrimination values range from 0.417 (2013 – 

2014) to 0.757 (2011 – 2012). Therefore, these questions performed generally 

well. However, the three lowest discrimination values all appear for the question 

involving the connected graph and in decreasing order from 2011 – 2014; in a 

similar fashion, the three discrimination values for the question involving the 

disconnected graph continued decreasing from 2011 – 2014.  

 

QUESTION 2011 - 2012 2012 - 2013 2013 - 2014 
Overall 

Fac. 
Fac. = Facility 

Dis. = Discrimination 
Fac. Dis. Fac. Dis. Fac. Dis. 

Given disconnected 

graph_input vertex 

set; WI+check 

0.591 0.757 0.675 0.702 0.554 0.627 0.6158 

Given connected 

graph_input vertex 

set; WI+check 

0.797 0.518 0.859 0.476 0.852 0.417 0.8387 

Table 8.13 Comparison of vertex set questions from 2011 - 2014 

 

Unlike the 2008 – 2011 data set, the facility values for each academic year 

were lower for the disconnected graph question than those for the connected 

graph question; also, the discrimination values for each academic year were 

higher for the disconnected graph question than those for the connected graph 
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question. This shows that in the 2011 – 2014 data set, there was clearly an 

impact on the additional step required in answering the questions, i.e. 

determining if disconnected vertices belong to the vertex set of a graph. 

 

8.3.2.4 Edge Sets 

 

QUESTION 2011 - 2012 2012 - 2013 2013 - 2014 
Overall 

Fac. 
Fac. = Facility 

Dis. = Discrimination 
Fac. Dis. Fac. Dis. Fac. Dis. 

Given simple, 

connected 

graph_input edge set; 

WI+check 

0.62 0.657 0.618 0.67 0.625 0.611 0.6205 

Given graph with 

loops_input edge set; 

WI+check 

0.604 0.778 0.658 0.632 0.691 0.498 0.6548 

Table 8.14 Comparison of edge set questions from 2011 – 2014. 

 

The next two questions involve edge sets. One question uses simple, 

connected graphs, whereas the other question includes loops in the graph. 

Interestingly, the question involving graphs with loops had a higher facility value 

overall than the question involving a simple and connected graph. However, 

these two questions appear close in the overall rankings for the questions in the 

2011 – 2014 question set; the question involving simple and connected graphs 

had an overall facility of 0.6205, whereas the question involving the graph with 

loops had an overall facility of 0.6548. It is also worth noting, though, that 31 

more attempts were made for the question involving the graph with loops, which 

is significant as only 166 attempts were made on the question involving the 

simple and connected graph between 2011 and 2014. Results are shown in 

Table 8.14. 

 

8.3.2.5 Adjacency Matrices 

 

The last two questions from the 2011 – 2014 question set investigate 

students’ understanding of adjacency matrices. These two questions are very 

different in that there is a multiple-choice (MC) question and a responsive word 

input (with a check; RWI) question. The MC question provides a graph and asks 

students to find the matching adjacency matrix, whereas the RWI question 
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provides a graph and the corresponding adjacency matrix before asking students 

what mistake was made within the adjacency matrix.  

 

QUESTION 2011 - 2012 2012 - 2013 2013 - 2014 
Overall 

Fac. 
Fac. = Facility 

Dis. = Discrimination 
Fac. Dis. Fac. Dis. Fac. Dis. 

Given graph, find 

matching adjacency 

matrix; MC 
0.614 0.639 0.657 0.459 0.64 0.556 0.6400 

What is wrong with 

the adjacency matrix; 

RWI+check 
0.684 0.653 0.686 0.654 0.816 0.629 0.7346 

Table 8.15 Comparison of adjacency matrix questions from 2011 – 2014. 

 

The results are very interesting as it is showing that the MC question did 

not perform as well as the RWI question. However, recall that the setup of MC 

questions is such that the correct answer is sometimes “None of these”; this 

means that if students go through all four possibilities and cannot find a mistake 

in any of them, then they should select “None of these”. To search for an error in 

four adjacency matrices is time consuming, so to not find an error in any of them 

may cause a sense of doubt in the minds of some students. However, with the 

RWI question, there is less time consumption as it is already known that an error 

exists within the single adjacency matrix provided and students are simply being 

asked to find it within that one adjacency matrix. Students clearly performed 

better with the RWI question and were more engaged with the question, 

attempting it more than the MC question. 

However, these results are comparable to the 2008 – 2011 questions on 

the same topic; the MC question had an overall facility of 0.6311 from 2008 – 

2011, compared to 0.6400 from 2011 – 2014, and the RWI question had an 

overall facility of 0.6814 from 2008 – 2011, compared to 0.7346 from 2011 – 

2014, with 169 more attempts made. From 2008 – 2011, 21 more students 

attempted the MC question, but 23 more students attempted the RWI question 

from 2011 – 2014. Also note that there was an additional question in the 2008 – 

2011 question set, asking to match a graph to a given adjacency graph, which 

had a higher overall facility than the other two questions from the 2008 – 2011 

question set; however, also note that its facility value of 0.7150 is still lower than 

the 0.7346 facility value obtained for the RWI question in the 2011 – 2014 

question set. 
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8.3.3 Hypothesis Testing 
 

8.3.3.1 Test for Difference in Proportions Within Topics 

 

Hypothesis testing was carried out on comparable questions within each 

topic. The results are shown in Table 8.16.  

  

 Topic Issue Z 

Adjacency Matrices No available questions 

Degree: Indegree vs. 

Outdegree of Graphs 
Indegree vs. Outdegree -0.9143 

Degree: Indegree vs. 

Outdegree of Matrices 
Indegree vs. Outdegree -1.5812 

Degree: Indegree Graph vs. Adjacency Matrix -2.9302 

Degree: Outdegree Graph vs. Adjacency Matrix -3.3872 

Degree Sequence: 

Simple & 

Disconnected 

Graph vs. Adjacency Matrix 1.4114 

Degree Sequence: 

Multi edges and Loops 
Graph vs. Adjacency Matrix -1.2496 

Degree Sequence: 

Multi edges 
Graph vs. Adjacency Matrix 0.6013 

Degree Sequence: 

Simple & Connected 
Graph vs. Adjacency Matrix -0.0910 

Degree Sequences 
Simple & Connected vs. Multi-Edges and 

Loops 
-0.0448 

Degree Sequences Simple & Disconnected vs. Multi-Edges -0.8797 

Degree Sequences 
Simple & Disconnected vs. Simple & 

Connected 
-1.2392 

Degree Sequences Multi-Edges & Loops vs. Multi-Edges 13.6489 

Degree Sequences Multi-Edges & Loops vs. Simple & Connected -1.1477 

Degree Sequences Multi-Edges vs. Simple & Connected -0.3604 

Degree Sequences Graph vs. Adjacency Matrix 0.4942 

Edge Sets Simple & Connected vs. Graph with Loops -0.6787 

Spanning Trees Kruskal vs. Prim 1.8081 

Spanning Trees 5-6 vertices vs. 7 vertices 2.4613 

Spanning Trees Minimum Spanning Tree vs. AB Edge -0.0714 

Spanning Trees Minimum Spanning Tree vs. nth Edge -4.9587 

Spanning Trees nth Edge vs. AB Edge 4.8058 

Vertex Sets Connected vs. Disconnected 5.0083 

Table 8.16 List of 𝒁𝒕𝒆𝒔𝒕 values for hypothesis testing of questions within topics for questions 
tested from 2011 - 2014. Values highlighted in red show a rejection of the one-
tailed test in favour of 𝑯𝟏: 𝝁𝟏

𝜶 < 𝝁𝟐
𝜶. Values highlighted in blue show a rejection of 

the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏
𝜶 > 𝝁𝟐

𝜶. 

 

The analysis shows that questions on indegree and outdegree were easier 

to answer if the questions used adjacency matrices instead of graphs. However, 
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there were no significant differences in the proportions of correct answers 

between the topics of indegree and outdegree. 

 The only significant difference in proportions for questions on the topic of 

degree sequences was for the questions between multi-edges & loops and multi-

edges. Questions that included multi-edges and loops were significantly easier 

for students to answer than those that did not also have loops. However, issues 

of graphs vs. adjacency matrices were not significantly different, nor were any 

other graphical comparison; this could suggest that the use of graphs with multi-

edges and loops is a significant factor in understanding this topic. 

Most comparisons for the questions on spanning trees resulted in 

significant differences in the proportions of correct answers given. Students 

appeared to have found Kruskal’s algorithm to be easier than Prim’s algorithm. 

Also, fewer vertices in the graph resulted in higher facility values. The questions 

on finding the nth edge have larger proportions of correct answers than either of 

the other two questions, suggesting it may be an easier question for students to 

answer.  

The questions on vertex sets show that those questions involving 

connected graphs resulted in significantly higher facility values than the same 

questions using disconnected graphs. It is possible that students neglected 

disconnected vertices in answering this question. 

 

8.3.3.2 Test for Difference in Proportions Between Topics 

 

Topic 2 →

Topic 1 ↓
 Degree 

Edge 

Sets 
Kruskal Prim 

Vertex 

Sets 

Degree 

Sequences 

Adjacency 

Matrices 
4.9882 1.6452 11.8134 14.7304 -1.7456 0.4282 

Degree   -3.5289 2.3515 3.5924 -5.7964 -4.0984 

Edge Sets     8.4935 10.7095 -2.9583 -0.9404 

Kruskal       1.8081 -11.6385 -8.7897 

Prim         -14.0404 -10.8306 

Vertex 

Sets 
          1.7997 

 Table 8.17 List of 𝒁𝒕𝒆𝒔𝒕 values for hypothesis testing of questions between topics for 
questions tested between 2011 - 2014. Values highlighted in red show a rejection 
of the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏

𝜶 < 𝝁𝟐
𝜶. Values highlighted in blue show a 

rejection of the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏
𝜶 > 𝝁𝟐

𝜶. 
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Test values for the comparisons between question topics for comparable 

questions are presented in Table 8.17. 

Questions on vertex sets had significantly larger facility values than any 

other topic. Questions on Prim’s algorithm had significantly lower facility values 

than any other topic, followed by Kruskal’s algorithm. The shortest path 

algorithms questions involve multiple steps and some prerequisite understanding 

about graphs, so if a student makes a mistake somewhere in the algorithmic 

process, then it is likely (s)he will not submit a correct answer. Also, the shortest 

path algorithm questions did not have the pop-up check appearing, which may 

have factored into the lower facility values. 

The only comparisons which did not result in a rejection of the null 

hypothesis are the comparisons of questions involving degree sequences with 

either adjacency matrices or edge sets. In the 2008 – 2011 comparisons, the 

topic of degree included questions on degree and degree sequences, but there 

were also fewer questions to be compared. However, questions on degree were 

replicated for the 2011 – 2014 assessments to ensure questions on both 

indegree and outdegree appeared in the students’ tests; similarly, multiple 

replications of the questions on degree sequences were created to assess 

students further on similar questions involving different types of graphs. The 

replications of the degree sequence questions had the pop-up boxes removed, 

so they no longer had the double-checking capability. Questions on degree, 

which were NI questions, had significant higher facility values than questions on 

degree sequences, which were WI questions. 

 

8.3.3.3 Test for Difference in Proportions Between Question 
Types 

 

Test values for the comparisons between question types for the entire 

data set are given in Table 8.18. 

Again, WI + Check questions proved to have significantly higher facilities 

than other questions. However, as was the case with the 2008 – 2011 question 

set, the topics for these questions do not vary; the topics that included WI + 

Check were adjacency matrices, edge sets, and vertex sets. Therefore, it is more 
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likely that WI + Check questions were easier because of the topics they covered. 

Five WI + Check questions were in this question set. 

 

Type 2 →

Type 1 ↓
 NI/RNI WI/RWI WI+Check 

MC 4.5000 7.8486 -2.3081 

NI/RNI   1.5592 -7.6806 

WI/RWI     -15.2587 

Table 8.18 List of 𝒁𝒕𝒆𝒔𝒕 values for hypothesis testing of questions between question types for 
questions tested between 2011 - 2014. Values highlighted in red show a rejection 
of the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏

𝜶 < 𝝁𝟐
𝜶. Values highlighted in blue show a 

rejection of the one-tailed test in favour of 𝑯𝟏: 𝝁𝟏
𝜶 > 𝝁𝟐

𝜶. 

  

 Again, MC questions were easier than the NI/RNI and WI/RWI questions. 

In this question set, however, there was only one MC question on adjacency 

matrices, so it is likely that MC questions also scored better because of the topic. 

  There is no significant difference in the proportions of correct answers 

given between the NI/RNI questions and the WI/RWI questions. These question 

types represent 
25

31
 of the questions provided to students, even though 20 of these 

questions were WI/RWI questions. NI/RNI questions were only on the topics of 

indegree and outdegree, whereas the WI/RWI questions included the topics of 

shortest path algorithms (12) and degree sequences (8).  
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Chapter 9 Statistical Analysis and 
Review 

 

9.1   Introduction 
 

This chapter discusses any possible conclusions that can be raised from 

the statistics presented in chapters 6 and 7, following from the 2007 – 2014 

assessments conducted at Brunel University. Following discussions of the results, 

further discussion will investigate limitations to the research conducted and 

recommendations for future analyses. 

 

9.2   2007 – 2008 Assessment Conclusions 
 

The 2007 – 2008 assessments were designed for second-year 

undergraduate students studying mathematics at Brunel University. The course 

module was designed to focus on two subjects over the academic year, with graph 

theory being studied in the second semester. These assessments were designed 

to provide students with ample opportunities to practise using the online software 

and answering questions online in graph theory prior to sitting an invigilated, 

online assessment later. Two sets of assessments were designed, one involving 

graphs only and the other involving adjacency matrices only. Since this format was 

not repeated in later academic years, these results cannot be used reliably in 

forecasting models. 

The facility values of the visual question set attempts show significantly 

lower facility values for RNI questions than for MC questions, suggesting that RNI 

questions may be challenging for graph theory. However, both RNI questions in 

the question set relate to numbers of spanning trees involving an intermediate or 

advanced level concept, implying that these questions may have reasonably been 

more challenging because of the difficulty level of the learning material. Questions 

on Hamiltonian and Eulerian cycles, as well as planar graphs, may be challenging 

as well, but also may have been easier to answer as MC questions; nonetheless, 
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there is not enough evidence to make a sufficient conclusion regarding these 

specific topics. 

In comparison, for the logical / mathematical question set, spanning trees 

questions again received lower facilities, meaning these questions were 

challenging. However, the NI question on the number of vertices in a partition of a 

bipartite graph was answered reasonably well with a facility value of 0.587, 

implying that the question type is not significant in the design of questions, but 

rather the difficulty level of the learning material. Additionally, one question was 

answered correctly by every student, proven by a zero value for the standard 

deviation of results and a facility value of 1; the correlation value of -1 shows this 

question was not helpful in the overall assessment and therefore, has not been 

used in later assessments. 

In the invigilated test session, there were nineteen questions used, 

eighteen of which were MC questions and only one RNI question on the number of 

spanning trees in a graph. The RNI question was again challenging with a 

significantly lower facility value, and the MC questions had significantly higher 

facility values (with only one exception). However, in this case, some of the MC 

questions were questions on spanning trees; these questions, though, focussed 

on finding a spanning tree rather than calculating the total number of possible 

spanning trees available, which may have been an easier task to complete. 

Additionally, the MC question on spanning trees that had a lower facility value also 

had a low, yet still positive, correlation; this implies that this particular question did 

not fare well in this particular assessment. This MC question may be better suited 

in another assessment, particularly one which focusses well on spanning trees, 

but it does not appear to have been well suited to this assessment, which looks at 

a range of topics. 

There were no negative correlations in any of the three assessments, with 

the exception of the question noted earlier from the logical / mathematical question 

set in which every student answered the question correctly when attempted. 

Although some of the correlations are closer to having zero correlation, the fact 

almost every question has a positive correlation suggests the questions were well 
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structured for the assessments given. The questions were therefore effective for 

assessment purposes.  

 

9.3   2008 – 2014 Assessment Conclusions 
 

The 2008 – 2014 assessments were similar to each other in that all 

questions were assessed using the same scheme, namely that a correct answer is 

awarded one mark and an incorrect answer is awarded zero marks. From 2008 – 

2011, the scheme of work for the assessments was consistent, but the scheme of 

work changed in 2012, with the 2011 – 2014 assessments being consistent in their 

own right. This group of six assessments was therefore reviewed in two halves as 

the change in the scheme of work may have an effect on forecasting models. 

 

9.3.1 2008 – 2011 Assessment Results 
 

It was encouraging that the spearman rank correlations between the 

academic years’ results for 2008 – 2011 was significantly positive. However, there 

are a couple of possible dangers to having such significantly positive correlations: 

- Without further evidence, it may be wrongfully assumed that later results 

were improved on earlier results; the statistics only shows that, generally 

speaking, an increase from one academic year to the next was consistent 

throughout all questions, but it does not specify in which direction this 

occurred. 

- It may be possible that past students, still enrolled at Brunel University at 

this point, may have spoken to “current” students enrolled in the module 

about the online assessments. If this is the case, then the “current” 

students would have gone into the assessments with a better 

understanding of the assessments than previous students and thus, 

possibly were better prepared. 

Overall facilities for these academic years were consistent with 

expectations as it was hoped an overall facility of 0.5 was obtained. A majority of 
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topics also had facility values between 0.4 and 0.6, implying questions were 

individually well structured as well. There were no negative discrimination values 

in any of the assessments, implying that all questions served well in the overall 

assessments. All of these things show that the questions were well designed for 

these assessments overall. 

It was then noted through hypothesis testing that the median scores of the 

2008 – 2009 assessments were significantly different to the other assessments (at 

𝛼 = 0.05). As there were positive correlations in facility values from 2008 – 2011, it 

is likely that there was a consistent increase or decrease in overall results from 

one academic year to the next academic year. However, the overall facility values 

for each academic year do not follow a consistent pattern, going from 0.4918 to 

0.4621 to 0.5475 in order, but the numbers of attempts at questions does increase 

consistently, from 854 to 1199 to 1359 in order; this is not to suggest that the 

numbers of attempts is significant in itself, but rather that this may have had some 

effect in the analysis and comparisons. It is also worth noting that the comparisons 

of medians of discrimination values were not rejected at 𝛼 = 0.05 for any of the 

assessments from 2008 – 2011; since discrimination values were all positive 

throughout these assessments, it shows these questions were consistently well 

structured for these assessments. 

For four of the topics presented in these assessments, there were 

significant differences in mean facility values obtained. Questions on adjacency 

matrices & simple and connected graphs had significantly improved results when 

adjacency matrices were used; this is noteworthy for future assessments as 

teachers / lecturers could decide to make use of this to either provide easier 

assessments or challenge students further to better understand these topics. 

However, simple & connected graphs questions had better results when graphs 

were used instead of a combination of graphs and adjacency matrices. Having a 

combination of answer types may involve more effort on the part of the student, 

but this would need to be analysed further in future research. Additionally, edge 

sets questions were significantly better when digraphs were used. This may be 

understandable for these assessments as there were specific instructions given on 

the formatting of answers in these questions, which may have had some impact 

on the results. 
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The comparisons of topics for 2008 – 2011 showed that adjacency matrices 

questions had significantly better results than most other questions; the only 

exception was for vertex sets, where the null hypothesis could not be rejected. It 

was also shown that bipartite graphs questions had significantly lower results than 

all other topics in the question set. It was the case that for most comparisons, 

there were significant differences in facility values between topics. However, this 

ought to be expected as different topics will present different issues and problems 

for students. The structuring of questions between topics will be different and so, 

very few comparisons were expected not to have been rejected at 𝛼 = 0.05. 

Nonetheless, it is noteworthy that questions on adjacency matrices had 

significantly better results than most other topics and that questions on bipartite 

graphs had significantly lower results than all other topics because this shows an 

apparent variation in difficulty levels between the topics, which is helpful for future 

consideration by researchers and teachers / lecturers. 

In the comparisons of question types, it was encouraging to see that WI 

questions that had pop-up windows appearing proved effective. The WI + Check 

questions all had significantly better results than all other question types in all 

assessments. This shows a positive impact of the pop-up window appearing, 

getting students to double check their answers prior to officially submitting their 

responses. Any questions where the formatting of answers is important should 

have this pop-up check provided as it would be rather unfortunate for students to 

have obtained the correct answers, but then receive no marks for their efforts 

because the formatiing of their answers does not conform to the question 

standards. 

 

9.3.2 2011 – 2014 Assessment Results 
 

Again, it was encouraging to see all positive correlations between the 2011 

– 2014 assessments, but as noted earlier, this does not necessarily correspond to 

increased, continuous success from one academic year to the next academic 

year. For these assessments, the numbers of attempted questions goes from 985 

to 1235 to 1143. Overall facility values go from 0.4735 to 0.5733 to 0.5529, which 
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does not correspond necessarily to the spearman rank correlations, but are still 

good results.  

A majority of questions has discrimination values ranging from 0.4 to 0.6, 

which is encouraging, but the majority of facility values are either to the left or to 

the right of the 0.4 to 0.6 range for facility, implying that questions were either 

easier or more difficult to answer. These questions did still serve a purpose 

towards the assessments as all discriminations are positive and to some extent, 

having larger and smaller facility values does balance out, but it would be 

preferable for future considerations to have facility values focussed in the 0.4 to 

0.6 range. 

Questions on shortest paths were understandably more challenging as 

facility values were lower for these questions than other questions. The topic of 

shortest paths is more challenging than all other topics presented and the facility 

values of all other questions were significantly higher, thus possibly explaining the 

fluctuations in facility values whilst maintaining acceptable overall facility values.  

Discrimination values varied more significantly for these assessments than 

the 2008 – 2011 assessments. With questions seemingly being either more 

challenging or less challenging, it is not surprising that discrimination values varied 

so greatly for these assessments. However, all discrimination values were 

positive, meaning that they all were effective in some measure in the assessments 

provided. 

Hypothesis testing within topics showed that there were some significant 

effects on the styles of questions presented. Questions on degree had higher 

facility values when adjacency matrices were involved; this is understandable as it 

ought to be easier to use the numbers in adjacency matrices to calculate the 

degree of a vertex. Questions on degree sequences had higher facility values 

when graphs presented had both multi-edges and loops instead of just multi-

edges; there could be a formatting issue involved as edges had to be provided in 

alphabetical order, but there is not enough information on this alone to make a 

reasonable conclusion. Questions on vertex sets had higher facility values when 

graphs were connected rather than disconnected; this is understandable as some 

students may have omitted the disconnected vertices from their answers (noting 
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that this was somewhat expected to occur). However, questions on minimal 

spanning trees were significantly different in almost every comparison. It may be 

possible that students could have confused Prim’s and Kruskal’s algorithms and it 

may be possible that the increased number of vertices allowed more opportunities 

for incorrect answers to appear. However, this does highlight significantly the 

importance of effective question design as results can be greatly altered by the 

presentation and style of a question. It is also worth noting that in the case of 

finding the “AB edge”, any edges that had identical weights to other edges may 

have impacted results due to the alphabetical formatting requirement within these 

particular questions. 

Hypothesis testing between topics showed that questions on vertex sets 

had better facilities than all other topics, followed by questions on adjacency 

matrices. Kruskal and Prim’s algorithms had significantly lower facility values than 

all other topics; these algorithms require more prerequisite knowledge than other 

topics presented and it is quite likely that this factors into the facility values. 

However, it must also be noted that there were programming issues found with the 

design of questions on Kruskal and Prim’s algorithms as formatting of answers 

was not double-checked through pop-up windows appearing, asking students to 

double-check their answers prior to submitting a second time. Statistical analyses 

indicated pop-up windows were significantly helpful in increasing facility values in 

word input questions, so these should have been included in these questions to 

avoid any potential issues from occurring.  

 

9.4 Further Considerations 
 

This section will look at additional statistical analyses that have been 

considered, but not thoroughly investigated for the purpose of this thesis. Recall 

that the objective of this thesis in terms of statistical analysis was to investigate the 

performance of the questions themselves for the purposes of online assessment 

and not to investigate the impact these questions may have on students. These 

statistical analyses explore briefly some of the statistical analyses that could be 

considered and what results can be obtained from the data already collected. 
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From the 2007 – 2008 assessments, an exploration of test-retest 

coefficients and numbers of attempts will explore the impact of attempting similar 

assessments as a means to explore assessment and learning. Additionally, other 

statistical methods will be considered and reviewed.  

From the 2008 – 2014 assessments, a time series analysis will investigate 

any trends in final examination scripts and what to expect from future cohorts of 

students in MA0422 at Brunel University. 

 

9.4.1 2007 – 2008 Assessment Considerations 
 

9.4.1.1 Final Examination Analyses 

 

The tables below show all of the quantitative results for the final 

examination scripts performed by students in MA2920: Algebra and Discrete 

Mathematics, for the 2005 to 2008 examination periods. Recall that these 

examination scripts were read to gather some additional insight into errors made 

by students in their examinations; details of noted errors appear in Appendix D. 

Quantitative data provided includes descriptive, statistical results, along with t-

testing results of various comparisons between sets of examination scripts. 

 

   2004-2005   2005-2006   2006-2007   2007-2008  

Mean 4.416667 3.4 3.564516 4.245902 

Standard Error 0.241584 0.270175 0.282226 0.202317 

Median 5 3 4 5 

Mode 6 6 6 5 
Standard 

Deviation 1.673744 2.092764 2.222249 1.580145 

Skewness -0.81468 -0.18732 -0.29687 -0.91248 

Range 5 6 6 6 

Minimum 1 0 0 0 

Maximum 6 6 6 6 

Count 48 60 62 61 

Table 9.1 Descriptive statistics for examination questions asking to determine the number 
of spanning trees of a graph with a large number of vertices. The maximum 
obtainable score for these questions was 6 marks each time. 

 

In the 2004 – 2008 final examination scripts for MA2920, two questions 

repeatedly appeared for graph theory, focusing on the calculation of a number of 
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spanning trees for a graph and vertex colouring of a graph. Table 9.1, Table 9.3, 

and Table 9.4 investigate the number of spanning trees for a graph, whereas 

Table 9.2, Table 9.5, and Table 9.6 investigate the vertex colouring of a graph. 

 

   2004-2005   2005-2006   2006-2007   2007-2008  

Mean 0.642276 0.472222 0.609091 0.348387 

Standard Error 0.041386 0.057697 0.059581 0.042216 

Median 0.666667 0.583333 0.7 0.3 

Mode 0.666667 0.833333 1 0.2 

Standard Deviation 0.264997 0.346181 0.395215 0.235047 

Skewness -0.33658 -0.25094 -0.38804 0.270676 

Range 0.833333 0.833333 1 0.8 

Minimum 0.166667 0 0 0 

Maximum 1 0.833333 1 0.8 

Count 41 36 44 31 

Table 9.2 Descriptive statistics for examination questions asking to determine the number 
of colours needed to colour a particular graph. Quantitative data presented 
reflects equivalent percentage scores for questions given.  

 

   
 2004-

2005  

vs. 2005-

2006 

 vs. 2006-

2007  

vs. 2007-

2008 

Mean 4.416667 3.4 3.564516 4.245902 

Variance 2.801418 4.379661 4.938392 2.496858 

Observations 48 60 62 61 

Degrees of freedom   106 108 98 

t Statistic   2.805121 2.293793 0.54192 

One-tailed critical value for t   1.659356 1.659085 1.660551 

Two-tailed critical value for t   1.982597 1.982173 1.984467 

     2005-2006  

 vs. 2006-

2007  

vs. 2007-

2008 

Mean   3.4 3.564516 4.245902 

Variance   4.379661 4.938392 2.496858 

Observations   60 62 61 

Degrees of freedom     120 110 

t Statistic     -0.42108 -2.50615 

One-tailed critical value for t     1.657651 1.658824 

Two-tailed critical value for t     1.97993 1.981765 

       2006-2007  

vs. 2007-

2008 

Mean     3.564516 4.245902 

Variance     4.938392 2.496858 

Observations     62 61 

Degrees of freedom       110 

t Statistic       -1.96222 

One-tailed critical value for t       1.658824 

Two-tailed critical value for t       1.981765 

Table 9.3 Table of T distribution results for all final examination pairings for the questions 
looking at the number of spanning trees of a graph of a large number of vertices. 
Results highlighted in red indicate where the null hypothesis is rejected in favour 
of 𝑯𝟏: 𝝁𝟏 > 𝝁𝟐. Results highlighted in green indicate where the null hypothesis is 

rejected in favour of 𝑯𝟏: 𝝁𝟏 < 𝝁𝟐. 
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It can be seen from the descriptive statistics that after a sharp decline in 2005, 

the mean scores for the questions on the number of spanning trees in a graph 

continued to increase, whereas the mean scores for the questions on vertex 

colouring continued to fluctuate. In the 2007 – 2008 academic year, when 

Mathletics was presented to MA2920 for the first time, the mean score for the 

question on vertex colouring decreased significantly, implying that it may be 

possible that any Mathletics questions on vertex colouring were not designed in 

line with the MA2920 syllabus. However, this will be investigated in later 

analyses. 

 The academic year comparisons of final examination results for the 

questions on the number of spanning trees in a graph show that there was a 

significant change in results between 2004 – 2005 and both 2005 – 2006 and 

2006 – 2007, specifically showing that the 2004 – 2005 results were significantly 

better than the other results. However, it is also shown that the 2005 – 2006 and 

2006 – 2007 results were significantly lower than the 2007 – 2008 results, when 

Mathletics was introduced to the cohort; this shows it may be possible that the 

implementation of Mathletics was significant in improving overall results for 

questions on the number of spanning trees to appear in a graph. 

 

   2004-2007   2007-2008  

Mean 3.747059 4.245902 

Variance 4.27292 2.496858 

Observations 170 61 

Degrees of freedom   138 

t Statistic   -1.94076 

One-tailed critical value for t   1.65597 

Two-tailed critical value for t   1.977304 

Table 9.4 Table of T distribution results for the comparison of all final examinations in 
MA2920 looking at the question regarding the number of spanning trees of a 
graph of a large number of vertices. Results highlighted in green indicate where 
the null hypothesis is rejected in favour of 𝑯𝟏: 𝝁𝟏 < 𝝁𝟐. 

 

The academic year comparisons of final examination results for questions 

on vertex colouring show a significant decrease in results in 2007 – 2008, when 

Mathletics was introduced. However, recall that there were no Mathletics 

questions on vertex colouring presented in the 2007 – 2008 assessments due to 

time constraints with the presentation of the assessments; if such questions had 
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been allowed in the assessments, then these results may have changed 

significantly.  

 

  
 2004-

2005  

vs. 2005-

2006 

 vs. 2006-

2007  

vs. 2007-

2008 

Mean 0.642276 0.472222 0.609091 0.348387 

Variance 0.070224 0.119841 0.156195 0.055247 

Observations 41 36 44 31 

Degrees of freedom   65 76 68 

t Statistic   2.394965 0.457453 4.97123 

One-tailed critical value for t   1.668636 1.665151 1.667572 

Two-tailed critical value for t   1.997138 1.991673 1.995469 

     2005-2006  

 vs. 2006-

2007  

vs. 2007-

2008 

Mean   0.472222 0.609091 0.348387 

Variance   0.119841 0.156195 0.055247 

Observations   36 44 31 

Degrees of freedom     78 62 

t Statistic     -1.65024 1.732155 

One-tailed critical value for t     1.664625 1.669804 

Two-tailed critical value for t     1.990847 1.998971 

       2006-2007  

vs. 2007-

2008 

Mean     0.609091 0.348387 

Variance     0.156195 0.055247 

Observations     44 31 

Degrees of freedom       71 

t Statistic       3.570265 

One-tailed critical value for t       1.6666 

Two-tailed critical value for t       1.993943 

Table 9.5 Table of T distribution results for all final examination pairings for the questions 
looking at the number of colours needed to colour a graph. Results highlighted in 
red indicate where the null hypothesis is rejected in favour of 𝑯𝟏: 𝝁𝟏 > 𝝁𝟐. 

 

   2004-2007  2007-2008 

Mean 0.579614 0.348387 

Variance 0.119451 0.055247 

Observations 121 31 

Degrees of freedom   67 

t Statistic   4.393881 

One-tailed critical value for t   1.667916 

Two-tailed critical value for t   1.996008 

Table 9.6 Table of T distribution results for the comparison of all final examinations in 
MA2920 prior to the introduction of CAA material in graph theory with the 2007-
2008 examination, after CAA was introduced, and looking at the question 
regarding the number of colours needed to colour a particular graph. Results 
highlighted in red indicate where the null hypothesis is rejected in favour of 
𝑯𝟏: 𝝁𝟏 > 𝝁𝟐. 

 

Unfortunately, as these assessments were never replicated and as MA2920 

was eventually discontinued, it will not be known from this research what impact 
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vertex colouring questions in Mathletics could have in other assessments; 

fortunately, though, these questions have not been deleted and future research 

could investigate this in depth to determine any benefits that may appear from 

presenting such problems to students using Mathletics. 

 

9.4.1.2 Implementing Other Statistical Methods 

 

To further investigate the validity of the results, it helps to understand what 

past, statistical research in objective, online learning and assessment has 

provided to educators and education researchers, especially in the United 

Kingdom as the original focus of the subject material came from a U.K. education 

curriculum. 

Farrell and Leung, in their work on IT education using confidence-based 

measurement62, utilise the Kolmogorov-Smirnov test for normality to check for an 

(approximately) normal distribution. However, the test fails and so, the Wilcoxon 

Signed Rank Test for non-parametric data with repeated measures is used. 

Using SPSS to generate the required data, the Wilcoxon Signed Rank Test63 

gives an associated significance level, p, which defines to what level of 

significance a null hypothesis cannot be rejected. They also employ various 

measures of correlation used in this thesis to further interpret the results. 

The Wilcoxon Signed Rank Test looks at the differences in data, but it 

investigates two observations made on the same subject each time. In 

comparison, this thesis wanted to investigate the scores of different individuals in 

their final examinations with or without the help of Mathletics. Since different 

individuals are being investigated in the experiments held, the Wilcoxon Signed 

Rank Test was not used. 

Davies63 discusses the differences in assessment between the student 

himself / herself, the student’s peers, and the tutor’s original and final marks. 

Much of this discussion relates to mark consistency and correlation only between 

peer marks. In the experiment conducted in this thesis, it would be possible to 

replace the number of peers with the number of attempts made by students. 

However, this would only show any consistency in their respective attempts and 
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instead, we are looking for significant improvement in their attempts. Therefore, 

this strategy was not employed. 

MacGillivray64 uses scatterplots to find significant, positive correlation 

between quizzes set by the lecturer and the final exam scores and the smaller, 

positive correlation between own-choice group project work and final exam 

scores. In a second example, she uses p-values to justify significant predictors of 

the assignments score for a statistical modelling course / module. However, such 

techniques have been used in this thesis and no other methods appear to be 

used. 

  In comparison, Means, Toyama, Murphy, Bakia, and Jones65 

investigated 51 empirical studies of online learning. The empirical studies 

explored had a large variance of student numbers, ranging from 16 to 1,857, and 

the range of learner ages was 31 years. Analysts used a .05   level of 

significance for testing differences. In their meta-analysis, they use retention 

rates for online and face-to-face learning, as well as a weighted mean effect 

size, Hedges’ g+, and the Q-statistic, which determines the extent to which the 

variation in effect sizes cannot be explained by the sampling error alone. 

However, Huedo-Medina, Sánchez-Meca, Marín-Martínez, and Botella66 argue 

that the Q-statistic only reports on the existence of heterogeneity in a meta-

analysis, whereas the I2 Index has been used to measure the extent to which 

heterogeneity exists and requires the Q-statistic value in its calculation. 

The discussion on the Q-statistic and the I2 index is interesting, but it 

involves the analysis of outcomes within each element to be tested. This could be 

useful if each question type was assessed in this thesis as elements, but with 

different marking schemes in each question type used as outcomes. Also, the 

outcomes do not have to be the same for each element; for example, numerical 

input questions (as an element) could explore NI, xNI, NAI, and xRNAI questions, 

whereas word input questions could explore its use in algorithms versus graph 

theory. However, since the Q-statistic uses a weighting factor and assumes a 

fixed effects model is being used, both the Q-statistic and the I2 index are not 

preferred methods to use for this research. 

Looking back at g+, we have the following equation for the weighted mean 

effect size: 
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(𝑔 +) =
𝑥1̅̅̅ − 𝑥2̅̅ ̅

√
∑ (𝑥𝑖 − 𝑥1̅̅̅)2𝑛1

𝑖=1 + ∑ (𝑥𝑗 − 𝑥2̅̅ ̅)
2𝑛2

𝑗=1

𝑛1 + 𝑛2 − 2

 

Equation 9.1 Equation for the weighted mean effect size. 

 

 g+ Result for two-tailed test Result for one-tailed test 

2004-2005 vs. 

2005-2006 

-0.529983 
1 1 2:H    accepted. 1 1 2:H    accepted. 

2004-2005 vs. 

2006-2007 

-0.425628 
1 1 2:H    accepted. 1 1 2:H    accepted. 

2004-2005 vs. 

2007-2008 

-0.105285 Fail to reject 0 1 2:H    Fail to reject 0 1 2:H    

2005-2006 vs. 

2006-2007 

0.076181 Fail to reject 0 1 2:H    Fail to reject 0 1 2:H    

2005-2006 vs. 

2007-2008 

0.456721 
1 1 2:H    accepted. 1 1 2:H    accepted. 

2006-2007 vs. 

2007-2008 

0.352916 
1 1 2:H    accepted. 1 1 2:H    accepted. 

2004-2007 vs. 

2007-2008 

0.260343 
1 1 2:H    accepted. 1 1 2:H    accepted. 

Table 9.7 Table of weighted mean effect sizes compared to t-test results for data presented 
in Section 9.4.1.1. 

 

The value of g+ is a quotient of a difference of means and the pooled 

standard deviation, spooled, of the two samples being compared; but then, since 

0pooleds   and since the effect is based primarily on the sign of the calculated 

value, the difference between the two sample means determines the end effect 

for g+. If one student were to do exceptionally well on a test, the mean score 

could increase significantly. Thus, g+ does not take the spread of the data into 

account. 

Out of interest, the value of g+ was calculated for each possible pairing 

between MA2920 final examination scripts (Recall the t-statistic used 0.05  .). 

Calculated g+ values are shown in Table 9.7. 

A strong, negative value can represent an earlier examination’s scores 

being much better than that of a later examination; similarly, a strong, positive 

value can represent a later examination’s scores being much better than that of 

an earlier examination. In the cases where g+ was close to 0, the hypothesis 

tests failed to reject the null hypothesis, as expected. Therefore, calculating g+ 



215 
 

appears to have the same effect in understanding the differences in test scores 

as the t-test results and hence, is not to be considered further in this thesis. 

 

9.4.1.3 Test-Retest Coefficients and Numbers of Attempts 

 

9.4.1.3.1 Visual Question Set Assessment Results 

 

The correlation matrix for the practice results of the visual question set are 

given in Figure 9.1. 

 

1 2 3 4 5 6 7 8 44

1 1 0.248 0.353 0.491 0.104 0.396 0.467

2 0.169 1 0.337 0.260 0.584 0.538 0.231

3 0.248 0.375 1 0.364 0.735 0.777 0.526

4 0.353 0.337 0.630 1 0.444 0.428 0.237
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Figure 9.1 Correlation matrix for attempts made by students on practice questions involving only 

graphs, along with the number of attempts made by a particular number of students in 

each case. 

 

Since the correlation matrix is symmetric, we only need to consider the 

upper triangular set of data, i.e. all data points above the diagonal of 1s. Also, 

because the test-retest coefficient looks at the correlation between two tests, we 

only need to consider the correlations of adjacent tests in an n n  correlation 

matrix, i.e. all data points found at positions, 𝑎𝑖,(𝑖+1), where 1 ≤ 𝑖 ≤ 𝑛 − 1. The 

values highlighted in bold print in  refer to these values for which we should 

consider. In each case, the test-retest coefficients being considered are all 

positive, which suggest that each trial helped students to progress further in their 

understanding of the course/module material. Also, these values generally 

increased from the 1st attempt through to the last attempt, with only one distinct 



216 
 

exception, which all suggests that students are able to maintain abilities learned 

in previous attempts to perform even better on later attempts. 

Note that there is no correlation between a student not attempting any of 

these tests and actually performing the first attempt; this is a reasonable 

assumption as there would normally be no statistical data to compare prior to the 

first attempt. Regardless, the slope/gradient for the least squares regression line 

is positive, which helps to show that students are able to hold onto the material 

they learned in previous attempts in order to do better on later attempts. 

However, the coefficient of determination, 𝑅2 = 0.6998, also tells us that 

approximately 
7

10
 of the variability in the data can be explained in the regression 

line. Since students were allowed to trial these questions at their own leisure and 

as often as they liked and also since many students live off-campus, implying 

they have no immediate access to trial these questions, this value for the 

coefficient of determination seems reasonable under these circumstances. 

 

 

Figure 9.2 Line graph of test-retest coefficients and least squares regression line (with assumption 

that the y-intercept is equal to zero) for students’ attempts at the practice questions 

involving only graphs. 

 

It should first be noted that almost all students performed eight attempts or 

less. However, one student was very keen with practicing these questions and so, 

(s)he trialled the visual questions 44 times. Although this creates an outlier, it is 

preferable to include all students in the study due to their different abilities and 

study habits and so, the outlier is being considered. 
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9.4.1.3.2 Logical / Mathematical Question Set Assessment 

Results 

 

The correlation matrix for the practice results of the logcal / mathematical 

question set are given in Figure 9.3. 

At most eleven attempts were performed on the logical / mathematical 

practice question set for graph theory. The coefficient of determination is 0.1863. 

This data, although containing all positive values, appears to have an outlying 

value of 0.023 for the correlation between the 6th and 7th attempts; this 

significantly affects the coefficient of determination, as shown in Figure 9.4. If this 

outlying value were removed, then the coefficient of determination would more 

than double to 0.4073. 
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Figure 9.3 Correlation matrix for attempts made by students on practice questions mainly involving 

adjacency matrices, along with the number of attempts made by a particular number of 

students in each case. 

 

The correlations appear to be generally decreasing until around the 10th 

attempt, when they begin to increase considerably. As the test-retest coefficient 

was considerably larger at around this point, it suggests that the test-retest 

coefficients may correspond to an improvement in student learning rather than a 

decrease in the number of students reattempting the problems. 
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Figure 9.4 Line graph of test-retest coefficients and least squares regression line for students’ 

attempts at the practice questions mainly involving adjacency matrices. 

 

Also notice that unlike the correlation matrix in Figure 9.1, this correlation 

matrix has negative values within it. This is generally indicative of students doing 

worse between such attempts, but since these do not occur at the key diagonals, 

these will not be considered as significant. However, it is worth noting that 2
3
 of 

these negative values appear at the eighth attempts, while two other values, both 

notably closer to zero, appear at the fifth and sixth attempts. No students 

completed only eight attempts and 2
3
 of the negative correlations come from this 

attempt, which could imply that there is a great effect by not having students not 

performing a particular number of attempts at a test; but then, this surely takes 

away some responsibility from students since any studying they should be doing 

before the test may be performed during the test instead.  

 

 

9.4.1.3.3 Invigilated Test Session Results 

 

The correlation matrix for the results of the visual question set are given in 

Figure 9.5. The test-retest coefficients actually appear to decrease after 

increased attempts are made. The test-retest coefficient for the 4th – 5th tests is 

significantly improved, but this is most likely because only three students 
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completed all five attempts. However, the graphical representation of these 

coefficients, shown in Figure 9.6, shows a more positive outlook. 
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Figure 9.5 Correlation matrix for attempts made by students on test questions comprising of graphs 

and adjacency matrices in each question, along with the number of attempts made by a 

particular number of students in each case. 

 

 

Figure 9.6 Line graph of test-retest coefficients and cubic curve of best fit (with assumption that the 

y-intercept is equal to zero) for students’ attempts at the practice questions mainly 

involving adjacency matrices. 

 

The regression line for this data is positive with all data points themselves 

being positive, which suggests that students were able to improve from one test 

attempt to the next. However, the coefficient of determination, listed at 0.2806, 

suggests that only 28.06% of the variability in the data can be explained by the 

regression line. Since there are only four points involved, a cubic curve is drawn 

in Figure 9.6 using all four points with absolute accuracy. Although this curve 

gets very close to 0 at around 2.5, it remains above 0; the minimum value is 
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reached at approximately 𝑥 = 2.536 with a correlation of 0.013. In fact, from the 

point, 𝑥 = 0, which is a practically relevant starting point for this data, the 

correlation value is positive (namely 0.337) and remains positive for all positive 𝑥 

values; this further shows evidence of a progression of learning resulting in 

improved test scores from one test attempt to the next test attempt. 

Since the invigilated test session was only worth 5% of the course/module 

mark, feedback remained attached to the answer screens during the test. 

Therefore, it is possible that this helped them to continue to learn and improve 

during the test session, which then helped them to receive a better grade overall. 

 

9.4.2 2008 – 2014 Final Examination Analyses Considerations 
 

The 2007 – 2008 assessment structure was never replicated, but the 2008 

– 2014 assessment structure for online assessment use was replicated. Since all 

students enrolled in MA0422 at Brunel University had been exposed to Mathletics 

in the same way, it is worthwhile to consider a time series analysis of the 2008 – 

2014 final examination results to investigate patterns in final examination results. 

Unfortunately, due to a change in syllabus in 2012, the results cannot be 

completely reliable. However, using an expectation of a three-year continuation 

period prior to another change in syllabus, a three-period time series analysis can 

be conducted nonetheless to explore these results further. 

The chart presented in Figure 9.7 shows the three-period forecasting model 

for the 2008 – 2014 final examination results in MA0422. 

The moving means for this period only consists of four points; therefore, it is 

not too difficult for a trendline to be somewhat representative of the moving means 

values, as shown by the R2 value of 98.626%. However, since this research was 

initially conducted, data from 2015 and 2016 have updated the results to form the 

table in Figure 9.8. The updated data shows the trendline is still reasonably 

representative of the moving means values with a R2 value of 75.538%. The 

positive slopes of the trendlines indicate final examination scores are increasing 

from one academic year to the next and it is possible that this is partially due to 

the continued implementation of Mathletics in MA0422.  
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Figure 9.7 Time Series of Mean Exam Scores from 2008 – 2014. 

 

 

Figure 9.8 Time Series of Mean Exam Scores from 2008 – 2016. 

 

The numbers of students sitting MA0422 final examinations at Brunel 

University has consistently been between 80 and 120 students during these 

academic years, so the numbers of students does not have a significant impact on 

the forecasting model. However, it ought to be expected that over time, the slope 

of the trendline will continue to decrease towards zero as it cannot be expected 

that students will achieve a mean score of 100% between all members in the 

cohort. Additionally, recall that there was a significant syllabus change in 2012; 

any future syllabus changes will create possible impacts on future results and 
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each syllabus change needs to be considered in more detail for future 

consideration. Other issues, such as differences in student cohorts (e.g. ages, 

genders, learning backgrounds, admission criteria), may impact future results; 

some issues may be difficult to obtain due to ethics issues, so, although the time 

series analysis seems promising, it needs to be taken with some degree of 

caution. 

 

9.5 Research Question: Difficulty Factors in Graph Theory 

Questions 
 

This section answers the research question: 

 

Which factors, if any, can cause an objective question in graph theory to 

be more difficult than other questions in the same topic? 

 

The statistical analyses shown in Chapter 7 and Chapter 8 show that 

although there were some differences in assessment scores between questions 

involving graphs and questions involving adjacency matrices, these results were 

not consistent throughout the library of graph theory questions and therefore, it 

cannot be concluded that there are any significant differences in using graphs or 

adjacency matrices within graph theory questions. It is good that this is indeed 

the case because it will help to emphasize the importance of understanding 

graphs and adjacency matrices within the context of graph theory for questions in 

any topic within the subject. 

There was not much variety in question types in the 2007 – 2008 

analyses, but there was more in the 2008 – 2014 analyses. However, most 

differences in assessment scores appeared due to a lack of variation in the topics 

themselves. Nonetheless, it was shown that there was a significant increase in 

assessment scores between WI questions and WI + Check questions, implying 

that the use of the pop-up window was helpful in reminding students to verify 

their own answers before submitting their responses.  

In the 2007 – 2008 statistical analyses, it was evident that each question 

within a topic was significantly different. It is good that the questions within a topic 
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are significantly different as this provides a sense of variety between questions, 

which can be more appealing to a teacher or lecturer when choosing questions 

for an assessment. It was also evident that the use of word problems caused a 

significant difference in assessment scores compared to similar questions which 

were not given in any context. Although it would generally be preferable to 

remove the notion of context from questions due to the added difficulty of 

interpreting a real-world problem into a mathematical problem, this is not a 

reasonable response as it is important students understand the practicality of 

using mathematics outside the classroom. Test-retest coefficients for attempts 

made in these assessments were all positive, showing that these questions can 

be helpful in assisting students’ progress in understanding the learning material.  

The 2008 – 2014 statistical analyses both showed that all questions had 

positive discrimination values, implying that all questions provided some benefit 

to the overall assessments produced. However, for the 2011 – 2014 

assessments, more questions were closer to having a discrimination value of 

zero, implying that these questions showed no benefit to the overall 

assessments. WI+Check questions performed better than WI questions, implying 

that students benefitted from the inclusion of the pop-up windows.  

Questions from the 2008 – 2014 statistical analyses which required some 

prerequisite knowledge of graph theory topics (i.e. bipartite graphs and Kruskal’s 

& Prim’s algorithms) resulted with generally lower facility values than other 

questions. However, all questions assessed from 2008 – 2014 were scored with 

results of either 0 or 1, whereas the 2007 – 2008 questions used partial marking 

where possible. In the 2007 – 2008 statistical analyses, it was shown in Section 

7.4.1 that this distinction is not as clearly evident as discrimination values vary 

differently. This shows promise for the inclusion of partial marking within the 

assessment framework, especially for responsive questions that have carefully 

designed distracters, which can be sought and assessed to provide a means of 

partial credit where available. This, however, does not discredit the use of all-or-

none marking, as there may be valid reasons for imposing this strategy within an 

assessment (e.g. business-related assessments, where making an error could 

cause a significant loss of profit). 
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9.6   Additional Remarks about Statistical Conclusions 
 

Statistical information was used to determine whether or not a question is 

suitable within assessments. These statistical analyses are generic for any 

assessment with QMP as facility and discrimination values can be provided 

directly by QMP’s Assessment Manager. Various issues have been noted, 

including an issue with one MC question regarding the properties of a planar 

graph, which, as noted in Table 7.10, had a facility of 1, standard deviation of 0, 

and a discrimination of -1, implying that all students answered the question 

correctly and that it failed to be an effective question for the given assessment. 

Another issue that occurred was that the work produced by Zaczek, highlighted in 

Section 3.10, which included Word Input (WI) questions that did not have such 

dynamic input (i.e. fewer random parameters and no pop-up windows asking 

students to double check their work); it is suggested that low facility values in 

these questions may correspond to a lack of dynamic input and the absence of 

pop-up windows, resulting in formatting errors and unnecessary errors in 

answering questions. However, similar to hypothesis testing in statistics, where 

you cannot accept a hypothesis, but rather either reject it or “fail to reject” it, it is 

easier to determine what makes a question bad, rather  than to prove whether or 

not a question is “good”. 

It is not being suggested here that further work be conducted to determine 

what makes a question “bad” or “good”; instead, what is being suggested is a 

careful consideration of the wording and structure of a question. When 

examination boards write their examination questions for secondary mathematics, 

much careful consideration is given into the wording and presentation of questions 

so that students are provided with ample opportunities to answer questions 

correctly. With the inclusion of social media, it is easy to hear of stories of 

seemingly “bad” questions being discussed online, like the 2015 GCSE maths 

question about Hannah’s sweets67 or even the entire 2016 Core Mathematics 1 

(C1) maths paper from EdExcel68. In the case of the C1 paper, many students 

complained about the lack of whole numbers appearing on the non-calculator 

examination, but it is an expectation for students to be able to perform such 

calculations at this level without absolutely needing to use a calculator, but the 
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students’ argument was that past papers were not as difficult as this examination 

paper. Whilst conducting research at Brunel University, it was observed and 

noted, even directly by students, that students are much more likely to “study” past 

examination papers rather than actually studying the learning material taught in 

lectures; in other words, they would rather surface learn than deep learn69. 

Because of such study habits and the ever-changing curricula and syllabi in 

secondary and post-secondary education, it is necessary for questions to 

continually be modified and adapted to suit the new course structures. Therefore, 

for future consideration, it may be worth exploring, for instance, the adaptability of 

questions using random parameters in CAA or even the structure of question 

design itself within CAA. 

Changes to a syllabus are expected, but will have an effect on statistical 

analyses, especially when forecasting models are used. Time series analysis is 

not therefore recommended when analysing results from one academic year to the 

next. However, when students are allowed to attempt questions as often as 

possible in practice environments, then it may be more useful to use time series 

analysis to determine if it is possible to notice a mastery of assessment and 

learning through repeated attempts at questions. Future research and 

experimentation could explore this more in depth, ensuring that detailed data is 

collected from QuestionMark Perception during attempts. 

Additionally, the statistical analyses conducted were completed using 

Microsoft Excel. Although Excel has many features, more advanced statistical 

analysis applications, such as SPSS, may provide additional results and thus, 

provide more information leading to more detailed conclusions. At the time of 

conducting this research, such advanced software was not made available by the 

university and so, was not used. Since such software is presently more readily 

available, it may be possible for future consideration to use only more advanced 

statistical analysis software and applications to conduct similar statistical analyses. 
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Chapter 10 Conclusions 
 

 

10.1 Answering the Research Questions 

 

First, recall the research questions set to be answered in this thesis; the 

results have been paraphrased for this section, but the sections in which the 

questions have been fully answered are referenced: 

1. What question features exist that could change how students 

interact with questions? 

From Section 3.13, it was noted that relevant features can be 

implemented within questions in Mathletics dealing with graph 

theory. Existing adjacency matrix functions and new graphs 

functions, with the help of SVG graphics, provided a great range of 

questioning. Different question types helped with question design 

and word problems were used and discussed as part of question 

design. 

 

2. How can the potential of computer-aided assessment be exploited 

to set versatile and robust questions in graph theory? 

From Section 5.4, it was shown that Mathletics is helpful in creating 

an organised library of questions for graph theory. Random 

parameters included in all elements of a question, including the 

design of a graph, help to create individualised assessments. The 

structure of a graph was set up so that all vertices are equally 

spaced around a circle and embedded within an image box (or 

frame). 

 

3. Which factors, if any, can cause an objective question in graph 

theory to be more difficult than other questions in the same topic? 

From Section 9.5, it was shown that although some differences in 

assessment scores existed, they were not consistent throughout 
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and therefore, it could not be concluded that there were any 

significant differences in using graphs or adjacency matrices within 

graph theory questions. More variety appeared in the 2008 – 2014 

analyses than the 2007 – 2008 analyses, but most differences were 

due to a lack of variation in topics. The inclusion of pop-up windows 

in WI questions was shown to be useful as assessment scores 

were higher when they were included. Only one question has a 

negative facility value throughout and this question was immediately 

discarded after learning of the negative facility value. More difficult 

questions from the 2008 – 2014 assessments may have received 

lower facilities due to the all-or-none marking scheme, whereas the 

2007 – 2008 assessments included partial marking, thus resulting in 

more favourable facility values. However, all-or-none marking 

schemes could be used depending on the environment in which 

assessments are being taken (e.g. high-risk environments, such as 

business administration). 

 

 

10.2 Issues Arising from Research and Future Considerations 

Stemming from These Issues 

 

Throughout this research, various challenges have been presented, all of 

which needed to be overcome in order to progress further with the research. This 

section will review key issues that occurred and will be detailed by reflecting back 

on ideas discussed earlier in this thesis. 

 

10.2.1 Designing Random Graphs and Challenges with 

Mathletics 
 

The biggest issue in this research was designing a random graph using 

SVG in Mathletics. It was important that dynamic graphs could be created with 

variables embedded so that it provided additional flexibility to the question 
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designer when designing graphs with specific properties later; again, the issue is 

not how much more difficult graphs with more vertices would be for students to 

answer, but rather if the questions could be reasonably designed and used 

appropriately in online assessments. Creating a template function for a graph of 𝑛 

vertices with multiple variables allows the question designer to provide suitable 

flexibility in designing graphs for questions that were reasonable; however, this 

does mean that the issue of fairness lies with the question designer and so, the 

question designer needed to have some background knowledge about any 

modules for which the assessments would eventually be created. In this research, 

collaboration with the module lecturer helped to structure the design of questions 

for MA2920 and in the case of MA0422, the lecturer designed the assessments 

directly for his students.  

Regarding the structure of the graphs, points had to be plotted in various 

places, but it was ideal for the points to be equally spaced apart. Section 5.2 

details how this was resolved so that a random graph of 𝑛 vertices would appear 

on the screen. Additionally, there was an issue with using too many vertices as 

programming errors would appear. It was eventually determined that the main 

issue that caused this was the dimensions of the image box in which the graphics 

would appear. To resolve this, various formulae were used as the values of the 

dimensions in order to allow graphs of larger numbers of vertices to be generated 

if needed. Since the functions noted in Chapter 2 have been created into a graph 

theory template, they can easily be called for other purposes, including the design 

of graphs for use in questions in other subjects, such as business administration, 

economics, or engineering. However, as has been highlighted in Chapter 2, if the 

vertices of a graph need to be altered based on their location in the image box, 

then new functions would need to be created; this is not a major issue in that an 

alteration from a copy of the graph function can suffice, but the alteration needs to 

follow a formulated pattern for the placement of 𝑛 vertices, which may require 

some thought, depending on the required positioning. 

This research follows on from that conducted by Ellis29, Gill36, and 

Baruah42, who have investigated the implementation of Mathletics within other 

mathematics disciplines and modules, either within the Department of 

Mathematics or within other departments at Brunel University. Later research 
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from Zaczek44 does investigate a broadening of Mathletics for use in decision 

mathematics, but questions are not necessarily designed with as much random 

parameterisation as presented in graph theory and this should be explored 

further to better understand what challenges may occur in other topics. The 

series of templates created for Mathletics from all of this research provides 

numerous functions in multiple disciplines within mathematics, including calculus, 

statistics, linear algebra, and now graphs and decision mathematics. Templates 

provide a more general framework from which functions can then be called to 

create individual questions. However, the design of questions in Mathletics 

requires calling functions from templates and the more templates that are called, 

the longer it will take for questions to load. Some topics, such as graph theory, 

require the use of linear algebra and graphs functions, so combination templates 

have been created in such cases, but creating one general template could create 

time delays in getting questions to load effectively on the screen.  

 

 

10.2.2 Random Parameterisation 
 

A great deal of care and consideration has been taken in creating random 

parameters within questions to avoid unwelcoming situations from occurring, 

such as programming errors (e.g. dividing by zero accidentally within a lengthy 

calculation). Repeated attempts by numerous students throughout this research, 

by means of practice attempts initially, helped to uncover any errors not detected 

earlier in designing the questions and where any unfortunate occurrences 

appeared in invigilated assessments, accommodations were made so that 

students would not be penalised for these errors occurring; allowing students 

repeated attempts at invigilated assessments helped somewhat to deal with this 

situation. The strategies used to avoid errors from occurring follow from the 

previous research of Ellis29, Gill36, and Baruah42, but it still has its limitations and 

further research into avoiding these issues was not considered for this thesis. 

Future research into this can explore possibilities for avoiding errors, but with 

millions of realisations of a single question being possible, it is unrealistic at this 

stage to test every single realisation. However, looking carefully at the step-by-

step approaches used to solve problems (i.e. looking carefully at the approaches 
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used in the programming) can help to look at any issues that may occur. Reverse 

engineering of problems may also help to avoid errors, setting questions in a 

specific way to bypass problematic situations from occurring. Future 

considerations into investigating this could provide some excellent insight for 

CAA and CAL from a technological perspective. 

 

 

10.2.3 Efficacy of Assessment Versus Effects on Students 
 

It was very important that this interdisciplinary research focused on the 

questions designed for use in online assessment and did not focus on any 

element referencing students’ abilities in answering questions or how it could 

impact their learning. Questions about whether or not CAA helps students and 

who it benefits cannot be answered within the scope of this thesis as this would 

involve additional research that could be better investigated by educational 

experts. Of course, this is not to say that such questions have no value to this 

research, but it is to say that this could be better investigated through future 

research conducted either by educational experts or by more joint efforts between 

mathematics and education researchers. Some ideas have been presented in 

Section 9.4, using statistics to highlight how it could be shown that students may 

benefit from the implementation of Mathletics within their learning, but such 

experimentation needs to be conducted more thoroughly and with more structured 

assessments, providing more consistent results that can be better analysed 

together. 

 

10.2.4 Creating Suitable Distracters and Feedback 
 

Creating distracters, as shown in Chapter 4, was not necessarily difficult to 

manage. In Section 4.7, it was shown how it is possible to use past student errors 

in order to design distracters; however, it is more difficult for a third party to do this 

than a direct source. As highlighted in Chapter 1, examination boards are not 

willing to disclose examination data; this could be because this data refers to 

children under the age of 18, but similar cautions are being conducted in post-
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secondary institutions, where students are usually adults. To view such data often 

involves finding out who made the errors and this information is not easy to 

remove as it appears on the examination scripts so that it may be referenced later 

in case a student wanted to challenge his/her final grades. For future 

consideration, anyone wanting to review previous student errors to see which 

errors are appearing more frequently should preferably be involved directly in the 

assessing of any coursework for modules that cover the topics to be assessed, but 

in doing so, it is still expected that this would need to be cleared with an ethics 

committee to ensure all safeguards are considered to avoid confidential 

information from being released. 

Relating to the distracters, the provision of feedback had to be carefully 

worded. In some cases, it could be possible that students would provide an 

incorrect answer that could be obtained as a distracter, yet used a completely 

different approach to come to the same answer. With the additional randomisation 

provided in Mathletics, this removes some of the likelihood of this occurring, yet it 

is not enough on its own. Some of the questions presented involved detailed 

calculations with answers to be given to a level of accuracy. For such questions, it 

is much less likely students will give an answer that could be generated by a 

distracter without using the assumed strategy for obtaining the distracter. 

However, as was shown in Chapter 4, distracters can be carefully considered so 

that appropriate feedback may then be provided to discuss why these distracters 

provide incorrect answers and in some cases, these distracters can warrant partial 

credit as the distracters themselves were created by slight alterations of the 

correct methods for answering questions. To accomplish this with random 

parameters, though, does require formulating distracters within question codes, 

almost as additional answers to be triggered so that they can then provide their 

own feedback if triggered by a student’s response. Similar strategies regarding the 

creation of distracters and additional feedback can be used in other subjects, but 

some additional care may need to be taken since mathematics can easily take 

advantage of generic formulations of distracters and feedback, whereas other 

subjects may sometimes have less formulated distracters to use. However, it is 

worth noting that since questions designed for graph theory do make use of 

current linear algebra templates, it may be easier to test for expansion of the 
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strategies and methodologies used from this thesis in elementary algebra and 

calculus and then into statistics, especially where some advanced statistics makes 

use of calculus (e.g. continuous random variables). 

 

10.3 Limitations and Recommendations 

 

10.3.1 Technical and Programming Improvements 
 

10.3.1.1 Including Computer-Aided Learning and Issues with 
Current Versions of Questionmark Perception 

 

In Chapter 1, it was noted that this research would focus specifically on the 

creation of CAA questions in graph theory using Questionmark Perception (QMP) 

and Mathletics to provide a versatile and robust library of questions for 

assessment purposes. This research did not focus on computer-aided learning 

(CAL) as the software was primarily used as an assessment tool. However, it 

may be possible that software exists which uses CAL to help students learn more 

about graph theory. It would make for very interesting research to see how to use 

the tools shown in this thesis to develop a new CAL tool for graph theory, 

especially if randomisation and SVG graphics (or a similar graphics tool) could be 

used to individualise the learning in some way.  

However, this also leads to the current dilemma with QMP in that newer 

versions make it impossible to program randomised parameters into the coding 

of questions to suit specific needs. The older version of QMP is currently being 

used at Brunel University, but it was noted by Gwynllyw and Henderson24 that 

these changes made it so difficult for them to use QMP that they instead created 

DEWIS. To continue this kind of research in the future, it may be necessary to 

use a system like DEWIS or maths e.g. to assess and analyse questions. 

Following from previous suggestions, one good place to start would be A-

level Decision Mathematics in the U.K., which teaches graphs and networks, 

critical path analysis, and matchings as part of the module syllabus. Current 

tools, like MyMaths70, do provide some good CAL on decision mathematics, but 
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questions do not include random parameterisation, so repeated attempts will 

often involve the same questions.  

However, this then raises an issue in whether or not repeated attempts 

with the same questions reinforces learning better than repeated attempts with 

similar, yet technically different questions. It may be argued that there is more 

confidence in revisiting the same question until it is mastered before approaching 

different questions, but it may also be argued that key learning skills involved in 

answering questions are not being maintained from revisiting the same question. 

A comparable study into CAL could investigate this more thoroughly, 

investigating the process of students looking at the same question and an 

identical number, perhaps the same students, looking at similar, yet technically 

different questions to determine what impacts occur within their learning. 

 

10.3.1.2 Dealing with Distracters 

 

From Section 4.8, although distracters can be categorised, it is preferable 

to deal with distracters individually within questions as similar distracters would 

still warrant individual attention and additional feedback. However, a 

categorisation of errors may help to establish a “framework of errors” from which 

it can be better understood which types of errors are occurring more regularly. 

Errors occurring in graph theory are not necessarily different from that of other 

mathematical topics, such as statistics, calculus, linear algebra, and mechanics, 

all of which have previously been researched for Mathletics. Furthermore, where 

learning material does overlap into other fields, such as economics, business, 

and engineering, additional consideration can be provided to review the 

categorisation and frequency of errors between different groups of students. 

To investigate the appropriateness of having a framework of errors, 

previous research may be considered, but an in-depth look at created errors 

needs to be considered, which would involve looking at previous attempts on 

questions; this requires the approval of an ethics committee to begin investigating 

this. Furthermore, to look at framework design would require looking at numerous 

attempts to establish categories with some confidence. Additionally, how errors 

are to be categorised may come into dispute; for instance, a calculation error to 
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one person may be seen as a methodology error to another person and so, some 

careful planning into defining each error type is also required. 

Distracters considered for designing questions on spanning trees reviewed 

the algorithm for calculating the number of spanning trees and some properties of 

spanning trees in search for them in a graph. An analysis of past examination 

papers at Brunel University, as provided in Appendix D, provide a more detailed 

list of errors students made during examinations, but these were not observed 

until after the CAA questions were designed. The design of distracters can use 

theory to help determine what errors students may make, but it is preferable to 

have a direct look at previous student attempts to see which errors they actually 

are making in order to program these into the question coding. Although student 

errors were considered elsewhere in the design of questions and the MA2920 

examinations only had two questions on the subject of graph theory, these final 

examination papers have been helpful and so, for future consideration, a more 

thorough investigation into students’ attempts and errors should provide for more 

efficient distracters with which to provide better feedback and possibly also award 

some partial credit for the question. 

 

 

10.3.2 Development of Further Topics 
 

10.3.2.1 Covering More Topics in Graph Theory 

 

The library of questions developed does not cover all topics in graph 

theory, but rather mostly those that are taught at the post-secondary level. Other 

post-secondary institutions may teach different topics, so more questions should 

be developed within Mathletics. Additionally, networks are used in other 

disciplines, including engineering, business studies, and computer science. 

Revisiting the algorithm for producing graphs and improving it for use in topics 

related to other subjects will provide numerous additional opportunities, 

especially in the secondary sector, where the Decision Mathematics syllabi 

between the examination boards will often discuss business-related topics, such 

as critical path analysis86. Some of the created questions were not assessed and 
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analysed in this thesis, especially questions on the topics of isomorphisms and 

graph colouring. The current syllabus for MA27267 and the previous MA292043 

only briefly covered the topic of isomorphisms without formally assessing 

students’ understanding of this topic. The topic of graph colouring had not been 

taught at the time the 2007 – 2008 assessments took place, so these questions 

were not included in the assessments and analyses. Unfortunately, the 

Department of Mathematical Sciences at Brunel University has since chose not 

to assess students using Mathletics for this upper-level module and therefore, no 

testing has yet to take place. However, it would be worthwhile to find 

opportunities to make use of these questions for students to practise their 

understanding and application of this advanced topic within the subject. 

 

10.3.2.2 Secondary Mathematics 

 

For secondary mathematics, this research may prove useful for future 

consideration in decision mathematics. A-level decision mathematics investigates 

graphs and networks throughout D1 and D2. Making use of CAA may provide a 

means of interaction in class through online assessments and practice so that 

students may work more intently with different graphical structures for practical 

purposes relating to topics, such as critical path analysis and matchings. 

Examination boards investigate students’ answers to review which common 

errors were made in final examinations and discuss these in their examiners’ 

reports, but having this extra resource could provide them with opportunities to 

highlight these issues to provide students with more opportunities to avoid 

common errors and provide distracter answers; this could, in turn, be 

implemented in other mathematics modules so that students may be given better 

opportunities to perform better in their studies.  

 

10.3.2.3 Methodology for Question Design 

 

To design versatile and robust graph theory questions in CAA with 

randomised parameterisation does require some in-depth knowledge and 

understanding about the subject itself and where graph theory is typically taught 
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as a stand-alone module in post-secondary institutions, question designers must 

be knowledgeable about the content and theory of the learning material along 

with the design of questions and programming skills. The theoretical approaches 

used in the creation of questions and distracters, although helpful, was clearly not 

complete. For planar graphs, it is sufficient to simply look for 𝐾5 and 𝐾3,3 

subgraphs, but for other topics, the theories used are likely just a sample of what 

is available. Other theories may provide more opportunities for more responsive 

questions and detailed feedback within questions. 

The methodology for designing questions can have some good insight for 

designing questions in other subjects. However, it is important to remember that 

all questions must be objective, so any subjective questioning must be avoided. 

Also, the use of distracters can be helpful in other subjects, too, but formulating 

distracters in a way similar to mathematics, where formulae are used to 

generalize distracters, may prove to be rather difficult in some cases. 

To design versatile and robust graph theory questions for other disciplines, 

it is helpful for question designers to be working closely with the other disciplines, 

discussing in depth how learning material is presented, how topics are discussed, 

and what learning objectives students are expected to accomplish. Minor 

differences in learning and teaching approaches can impact how questions are 

designed, so it is very important for question designers to investigate this more 

thoroughly with other disciplines. Some universities structure their programmes 

so that each subject is taught by those best able to teach the learning material 

effectively; for instance, engineering students needing to take a module on 

differential equations would be taught by a mathematics lecturer rather than by 

an engineering lecturer. However, this is not the case in every university and this 

is unfortunate in this case as such strategies may provide more opportunities for 

interdisciplinary collaborations to promote better learning and teaching strategies 

in post-secondary environments. 

 

 

10.3.3 Improvements in Assessment Structure and Pedagogy 
 

This section looks at some educational theories which could be 

considered for future research, relating them to CAA. 
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10.3.3.1 Bloom’s Taxonomy 

 

Some basic consideration into Bloom’s Taxonomy71 was given in the 

design of questions for this thesis. Originally created by B. S. Bloom in 195672, 

this taxonomy was modified in 200273 with two sub-models, namely a Knowledge 

dimension and a Cognitive Process dimension; the Cognitive Process dimension 

of the updated design is shown in Figure 10.1.  

 

 

Figure 10.1  Revised version of Bloom’s Taxonomy (updated 2002). 

 

Recall that Smith, Wood, Coupland, and Stephenson74 suggest an 

alteration to the typical model, called the Mathematical Assessment Task 

Hierarchy (MATH); this is shown in Figure 1.2. In this figure, assessments are 

structured so that assessments may be better structured at the postsecondary 

level with questions moving from one group of questioning to another group. 

They also state that the point of their research is to investigate the nature of the 

activity within the questions, not the difficulty, as difficulty may be subjectively 

measured depending on each student’s view of understanding what is difficult. 

This model is helpful to show the importance of question design within 

postsecondary mathematics, to which the research in this thesis has been aimed. 

However, as the authors also point out themselves, their hierarchy is loose in that 
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the same questions can appear in different locations of their hierarchy depending 

on the students’ learning skills; the example they provided was in proving a 

theorem, where one student who has never seen the theorem before and proves 

it, could be demonstrating application in new situations, but being asked to do so 

again later may change the skill to factual knowledge by recalling the proof (s)he 

created earlier. Also, these terms differ from the original structure of Bloom’s 

Taxonomy, which may create some initial confusion for any teacher or lecturer 

who is already familiar with the original taxonomy. 

Research from Baruah and Hatt75 investigated the structuring of Bloom’s 

Taxonomy to determine a more effective approach for understanding question 

design, coming up with a reconstructed pyramidal model, as shown in Figure 

10.2. 

This model gives some good insight into how questions can be structured 

for different target audiences and especially for students at the postsecondary 

level; for example, designing effective questions in analysis and evaluation would 

be helpful in challenging students further in their understanding and appreciation 

of the topics tested. Most questions that have been designed in Mathletics for 

use in graph theory focus on the Student Section of Bloom’s Taxonomy, focusing 

on the understanding and application of graph theory; some questions will also 

show potential for analysis or evaluation within the question. Tags can be 

constructed within Mathletics, which will help a teacher or lecturer to design 

questions with a suitable mix of characteristics, depending on preferences.  

In CAA, the marking scheme is important in question design due to the 

possibility of including specific feedback if a particular incorrect answer is given. It 

is simple enough to allow a question to have an all-or-none marking scheme, i.e. 

a correct answer is worth one mark and an incorrect answer is worth zero marks. 

However, as a tool to also be used in CAA and especially for use in higher levels 

of mathematics, Mathletics can provide marking schemes that are better 

structured to fit in with a typical assessment scheme, analysing student answers 

in more detail. Looking at the assessment of distracters can be helpful in this 

case, but numerous distracters would require much coding and unfortunately, 

with CAA, it is currently impossible to get students to submit workings out online 

in a fashion that can be scrutinised using technology, but that is not to say it is 

impossible to provide a different marking scheme that could allow for a fairer 
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analysis of students’ answers; for instance, DEWIS uses a remarking scheme, 

where every answer a student submits is “flagged” during the evaluation 

process24. 

 

 

Figure 10.2 The Reconstructed Pyramidal Model of Bloom’s Taxonomy for Mathematics. 

 

Bloom’s Taxonomy was helpful from a background perspective in that it 

helped to write structurally sound questions that could compel students to apply 

knowledge or analyse information within questions; this was rather important to 

remember as less challenging questions may not have provided valuable 

information about the quality of question design within graph theory using 

Mathletics. However, exploring taxonomies does open numerous possibilities for 

exploring educational theories within online assessment of mathematics. 

Exploring educational theories in such depth would allow educational researchers 

opportunities to explore mathematics education using online learning and could 

provide excellent interdisciplinary opportunities between mathematicians and 

educationalists. 

 

10.3.3.2 Gardner’s Multiple Intelligences 

 

One other consideration could be Gardner’s Multiple Intelligences because 

of visual and logical / mathematical components used in graph theory. Although 

differences between questions with graphs and questions with adjacency 

matrices were not as significant throughout all assessments, if future research 
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shows that there could be more significant differences, then this could lead to 

further research into the consideration and implementation of multiple 

intelligences within question design for CAA, especially in applied subjects, such 

as business studies, economics, and engineering. For applied subjects, it would 

be worth investigating how students answer mathematical questions differently to 

other applied students and to mathematics students before continuing to explore 

the implementation of Gardner’s Multiple Intelligences; the reason for this being 

that any differences may highlight advantageous uses for some students (e.g. 

engineering students may prefer logical / mathematical questions, whereas 

economics students may prefer visual questions), which may then be 

implemented within the design of questions for these particular students. 

 

10.3.4 Considerations about Students Using Mathletics 
 

Various characteristics about students, their accessibility to the software, 

and their opinions on the use of the software, among many other things, were not 

considered as they were not necessary for the research conducted in this thesis. 

Student input could be very valuable in providing additional insight on how to 

improve Mathletics and the graph theory questions, so this should be considered 

in future research in CAA and/or CAL.  

Different groups of students may also have been able to perform better in 

their final examinations as a result of having Mathletics being made available to 

them; it would definitely be worth reviewing past examination scripts in future 

analyses so long as Mathletics is being used in a reasonable capacity as part of 

a mathematics module. The statistical analyses presented in this thesis does 

show it is possible that the implementation of Mathletics in graph theory modules 

could help improve students’ overall understanding of learning, leading to better 

assessment results in their final examinations. Data from cohorts of students who 

do not use Mathletics could be analysed prior to Mathletics being implemented 

and full-scale, long-term analyses being conducted. However, this does involve 

looking at confidential student data and results, meaning that investigating such 

data would require the approval of an ethics committee at the university. 
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10.3.5 Structure of Questions 
 

The research and analyses conducted showed that word problems had 

significantly different facility values than questions not written in a real-world 

context. Word problems in context are very important in helping students to 

understand practically the usefulness of the learning material. It was encouraging 

that question facility values were significantly different, but more research into the 

use of word problems in context in CAA may provide some further insight into 

question design, especially with the possibility of including CAA and graph theory 

into other subjects. A similar strategy to that presented in this thesis could be 

used, where similar questions could be presented, one without context and 

others in context. The results of similar questions could be compared to 

determine what factors exist in understanding how students respond to the 

different structures of questions. 

Responsive questions can provide more detailed feedback if it is assumed 

that a particular distracter has been implemented in answering a question. Not all 

questions designed in Mathletics are responsive and this is the case with the 

graph theory questions, as well. Therefore, it would be preferable for future 

research to consider modifying any non-responsive questions to responsive 

questions for the benefit of students attempting to answer them. Also, WI+Check 

questions had significantly higher facility values than WI questions for the 2008 – 

2014 assessments, as was shown in Chapter 8. Not all WI questions in the graph 

theory set have pop-up windows that alert students to double-check their 

answers; this is the case for questions on Kruskal’s and Prim’s algorithms, which 

had lower facility values. Future WI questions to be designed should have the 

available pop-up windows to remind students to double-check their own work 

prior to submitting it. 

Questions on Kruskal’s and Prim’s algorithms also had low discrimination 

values. Recall these questions used the same graph each time, but with different 

weights assigned. The lack of available randomisation within the graphs may 

have been enough to cause some students to have noted the repetition, thus 

compelling them to look for patterns in answering questions rather than using the 

proper methods to solve problems. More research is needed to optimise the 

potential of graphs when designing questions in Kruskal’s and Prim’s algorithms 
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to minimise the chances of students answering questions without using the 

relevant learning material. 

 

10.3.6 Structure of Assessment Strategy 
 

The two assessments analysed involved different assessment schemes, 

namely one with partial marking included and one with all-or-none marking 

included. The partial marking scheme appeared to provide a better 

understanding of a student’s ability to understand and apply knowledge to more 

challenging problems as a partial score could be awarded if a distracter was 

triggered. However, this is only speculative and needs more research to verify 

this claim. Also, the 2008 – 2014 assessments had to be split into two separate 

assessments as different topics were covered from 2011 onwards. The data was 

helpful, but where overlaps in questions occurred, it was still unreasonable to 

look at all six years’ worth of questions in the analyses due to discrimination 

values relating to the modified assessments. Changes are inevitable over time 

within modules, but the research conducted became more challenging as a result 

of this particular change, especially as bipartite graph questions were being 

replaced with newly designed questions on Prim’s and Kruskal’s algorithms. 

Additionally, although raw test data was retrievable for the 2007 – 2008 

assessments, they were not retrievable for the 2008 – 2014 assessments; this 

made it impossible to determine some statistical values, including test-retest 

coefficients and numbers of attempts made by which numbers of students. A 

different statistical test had to also be used for the 2008 – 2014 analysis because 

of the assessment scheme implemented by the lecturer. 

 

10.4 In Summary 

 

This research has provided a library of graph theory questions for use in 

CAA that are versatile and robust, using random parameterisation and SVG 

graphics to create numerous realisations of the same questions. Questions are 

tagged using difficulty levels to categorise questions outside of their subject 

structure, and they are also organised based on the subject structure to make 
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searching for topics easier. The use of different question types provides a good 

variety of questions to be answered. Different strategies for assessing questions 

can be implemented depending on the preferences of teachers or lecturers. 

Availability of statistical analyses provided by QuestionMark Perception allows for 

detailed information to be made readily available to teachers and lecturers to 

better understand their students’ ability to understand the learning material. The 

findings of the statistical analyses showed promise as the variety of questions, 

question types, wordings, and topics is providing excellent versatility and 

robustness. There is clearly more work to be done to improve this work further, 

but this is an encouraging and welcoming beginning to a wider range of research 

in CAA, which can stretch beyond mathematics into other disciplines. It will be 

very interesting to see what future research will bring to this subject. 
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Appendix A Content of Topics in 
Graph Theory 

 

This appendix will discuss the relevant content involved in the graph 

theory topics that were visited for the assessments created in this thesis. 

 

A.1 Degree 

   

When viewing a graph, it is obviously important to know which edges are 

connecting which vertices. Some vertices may not be connected to anything at 

all, whereas a pair of vertices may be connected to each other more than once. 

Although they seem basic to graphs in general, knowing the properties of these 

vertices is essential for understanding the nature of a graph. One concept for 

understanding this is known as the order or degree76: 

 

Def. A.1 The degree of a vertex is the number of edges joined to a vertex. 
 

Def. A.2 An adjacency matrix is an 𝒏 × 𝒏 matrix, 𝑨, which represents a 
graph of 𝒏 vertices such that each entry, 𝑨𝒊,𝒋, 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏, represents 

the number of edges joining from vertex 𝒊 to vertex 𝒋. 
  

For directed graphs, however, the concept of order is more complex 

because each edge will have a particular direction associated to it; this is detailed 

with the following definitions77: 

 

Def. A.3 The number of edges arriving at a vertex is known as the indegree. 
 
Def. A.4 The number of edges departing from a vertex is known as the 

outdegree.  
 

Def. A.5 A weighted (or network or distance) matrix is like an n n  

adjacency matrix, A, but it has values given by the weight of the 

edge rather than the number of edges for all 𝒂𝒊,𝒋, where 𝟏 ≤ 𝒊, 𝒋 ≤ 𝒏. 
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This does not cope with non-simple graphs (i.e. those with loops 

and/or multiple edges between vertices). 

 

To create objective questions from this topic, very specific details need to 

be investigated. For instance, the degree, indegree, or outdegree of a particular 

vertex may be determined. Also, the sum of values for a particular row or column 

may be asked, which could be different if a network matrix is used in the 

question. Such items can be objectively tested as there can only be one correct 

solution in each case.  

 

A.2 Adjacency Matrices 

   

Although a visual representation can be more beneficial to many students, 

especially those struggling in mathematics, the numerical representation of the 

visualization must also be made to help students progress further in this subject. 

In graph theory, the best way to achieve this is through the creation of adjacency 

matrices, which can be modified, according to particular needs, such as the 

number of connections, any connections to or from vertices. 

Adjacency matrices are very helpful in determining the nature of a graph 

through any patterns that can be seen in the matrix. For instance, if a1,3 = 0, but 

a3,1 = 1, then it is ‘obvious’ that the adjacency matrix is indicative of a directed 

graph (or digraph) as an edge is going from vertex, 3, to vertex, 1, but nothing is 

going in the opposite direction. If an adjacency matrix is symmetric, then it is very 

possible that the corresponding graph is undirected, but even this is not a 

guarantee. However, if the adjacency matrix is not symmetrical, then the 

adjacency matrix represents a digraph. 

 

 

A.3 Edge and Vertex Sets 

 

Adjacency matrices help to determine the shape and appearance of a 

graph. However, it takes the edges and the vertices to make the graph itself 
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rather than a compilation of values inside a matrix; the edges and vertices make 

the physical structure appear. Therefore, some consideration needs to be taken 

towards the individual pieces that make up these sometimes puzzling graphs. 

Vertices are the essential items to holding a graph together since they act 

as meeting points for the ends of the line segments. They can be moved in 

different ways to reshape graphs and any number of edges can connect each 

vertex. Also, different graphs have different numbers of vertices and sometimes, 

graphs with equal numbers of vertices will have different labels on the vertices, 

depending upon the application of the graphs. Therefore, there needs to be a 

way of illustrating the vertices together in a set.  

Similarly, the edges are crucial because they determine the final 

appearance of a graph, so there also needs to be a way to illustrate the edges in 

a set. The best method for doing this is to introduce set notation, which includes 

all elements of a group to be listed and contained within a curly set of 

parentheses, namely { }. When using this notation, though, students should 

practice listing all elements in a particular order, such as increasing, numeric 

order or alphabetical order. By doing this, they become more organised in the 

presentation of their work, which might help them to develop a habit of being 

more organised in other ways, too.  

 

 

A.4 Simple and Connected Graphs 

 

The previous sections dealt with the understanding of graphs and their 

individual properties. In the first section, degree was mentioned, including the key 

terms of degree, indegree, and outdegree. The second section dealt with 

adjacency matrices and how it is possible to use them to create graphs. The third 

section dealt with edges and the vertices and how to represent each separately 

as part of a graph. However, this section begins to look at the graphs as a whole 

to see what types of graphs can be created and what properties each exhibit. 

In order to understand the two main types of graphs in this section, the 

following definitions are to be implemented77:  
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Def. A.6 A path is a finite sequence of edges such that the end vertex of one 
edge in the sequence is the start vertex of the next edge in the 
sequence. 
 

Def. A.7 A simple graph is a graph with no loops.  
 

Def. A.8 A connected graph is a graph where there exists a path from any 
vertex to any other vertex. 

 

To solve questions regarding these types of graphs, basic understanding 

of the graph types is required. In a simple and connected graph, a loop between 

one or two vertices cannot exist, but cycles involving three or more vertices may 

exist. For a connected graph, each vertex must have an edge that connects to a 

different vertex and furthermore, a connected graph cannot be formed from 

disjoint graphs.  

 

 

A.5 Hamiltonian and Eulerian Cycles 

 

As noted in the previous chapter, cycles can appear in simple and 

connected graphs. However, some cycles have special characteristics that 

distinguish them from other cycles. Other interesting facts about these cycles 

involve the methods by which they were first introduced. 

Sir William Rowan Hamilton (1857) posed a problem through an “Icosian 

game” he introduced, where players had to find various paths and cycles, 

including spanning cycles, of the regular dodecahedron78. Two years prior to this, 

though, Thomas Penyngton Kirkman posed the question directly and even more 

generally than Hamilton, but it was Hamilton’s game that, although unsuccessful 

commercially, became popular mathematically and thus, the Hamilton cycle was 

introduced. 

In 1736, Euler worked on a famous problem involving the seven bridges of 

Königsberg, known today as Kaliningrad, an exclave of Russia surrounded by 

Lithuania and Poland79. The seven bridges connected four landmasses and Euler 

wanted to determine whether or not it was possible to walk over all seven bridges 

once and only once, with the walk starting and ending on the same landmass. 
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This problem became so popular that it can be coined as the birth certificate for 

graph theory and through this, the Eulerian cycle was introduced80.  

Based on these historical accounts, the following definitions can be made: 

 

Def. A.9 A Hamiltonian cycle is a cycle where every vertex is visited 
exactly once (Recall that a cycle refers to a path that ends at its 
starting vertex.).  

 

Def. A.10 A graph containing a Hamiltonian cycle is known as a Hamiltonian 
graph.  

 

Hamiltonian graphs have many properties and many theorems have been 

created involving these graphs. Some of these theorems will be mentioned later 

when discussing the generated questions. 

The following example maps out a Hamiltonian cycle within a graph. 

 

Example A.1  Find a Hamiltonian cycle within the graph shown below. 
 

 

 

Some strategy is needed in order to determine a Hamiltonian cycle within 

a graph. In this example, the best idea is to start with vertex, A, because it has 

degree, 2, and thus, the end of the Hamiltonian cycle can easily be determined. If 

starting with 𝐴𝐵⃗⃗⃗⃗  ⃗, then create a list of vertices so that each is visited only once.  

 

Solution: One possible solution is 

A B C H F G D E I A         . However, also note 

that the route, A B C H F G D E I        , is a path 

that includes all of the vertices; this is known as a Hamiltonian 

path.     □ 
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Following from a cycle joining all vertices is a cycle joining all edges. 

 

Def. A.11 An Eulerian cycle is a cycle that uses each edge of the graph 
exactly once80. 

 

Def. A.12 A graph containing an Eulerian cycle is called an Eulerian graph80.  
 

Eulerian graphs have many other terms associated with them, along with 

some algorithms for either creating Eulerian cycles or for extracting them from 

graphs. One main property of Eulerian graphs is that the degrees of every vertex 

are even; this property will be useful in understanding the design of the questions 

for this section. 

The following example maps out an Eulerian cycle within a graph. 

 

Example A.2 Find an Eulerian cycle in the graph shown below. 

 

 

 

A lot of strategy is needed in order to find an Eulerian cycle. First, choose 

a starting vertex, which is to become your end vertex later, as well. From there, 

draw a path from one vertex to another, using each edge only once. In the case 

of a loop, it may be preferred to make use of it all at once; for instance, although 

not always the best strategy, if choosing DF , then immediately use FD  as well. 

 

Solution: One possible solution is: 

A B C D F D E A F

G I I G H C E B H A

        

        
. 

□ 
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A.6 Isomorphisms 

 

The graphs generated using Mathletics all have one main property in that 

they are all formed in a cyclic pattern. However, not all graphs are drawn in this 

fashion. For example, ladder graphs are normally drawn as two rows of vertices 

with edges connecting them to form a distinctive ladder shape. Also, wheel 

graphs have an additional vertex in the centre, away from the cyclic pattern, 

which creates a more distinctive wheel shape. Obviously, though, doing this 

requires specific graphing functions for each graph, which may not be necessary. 

However, the graphs generated using Mathletics are still ladder graphs, wheel 

graphs, and so on… it’s just that the vertices have moved to different locations. 

Such graphs, where the features of corresponding vertices are similar, are known 

as isomorphisms. A formal, mathematical definition of an isomorphism is given, 

but first, it is necessary to recall the following definitions81: 

  

Def. A.13 An injection is a mapping, :F X Y , such that for all 1 2,x x X , if 

1 2( ) ( )F x F x , then 1 2x x .  

 

Def. A.14 A surjection is a mapping, :F X Y , such that for all y Y , there 

exists an x X  such that ( )F x y . 

 

Def. A.15 A bijection is a mapping, :F X Y , that is both injective and 

surjective.  
 

Using the definition of bijection, the definition80 of an isomorphism can now 

be given. 

 

Def. A.16 An isomorphism between two graphs, G and H, is a bijection of 

vertices, ( ) : G Hf V V V , and also a bijection of edges, 

( ) : G Hf E E E , such that for all , Gu v V , the set of edges, 

 ,u v Ge E , is a bijection to the set of edges,  ( ), ( )f u f v He E . 

 

Formally, for two graphs, say G1 = (V1, E1) and G2 = (V2, E2), an 

isomorphism requires a bijective mapping of vertices, 1 2:V V  , where, for any 
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two vertices, 1 2 1,x x V , there is an edge, 1 2x x , in G1 if and only if there is an 

edge, ( ) ( )x y  , in G2
82 For the problems that will be seen, the vertices in the 

mapping, G2, which correspond to the vertices in G1 will most likely not be in a 

fashionable order, such as {xn, xn-1, … , x1}. This, however, will challenge 

students further to understand the patterns within special graph types so that 

they may be able to distinguish between different graphs.  

There are six questions for this section. As with the previous section, there 

are questions based on graphs and identical questions based on adjacency 

matrices. However, in this section, special graphs are used and as such, three of 

the questions are identical to the other three questions, but are made more 

difficult by removing detailed information about the graph types.  

 

 

A.7 Bipartite Graphs 

 

 

Figure A.1 A bipartite graph with partitions,  1 , , , , ,V A B C D G H  and  2 , ,V E F I . 

 

Throughout this chapter, many properties and characteristics of graphs in 

graph theory have been mentioned, including details about vertices and edges, 

different types of special cycles within graphs, and, most recently, similarities 

between graphs through isomorphisms. Also, some different types of graphs 

have been mentioned, like simple and connected graphs, and Hamiltonian and 

Eulerian graphs, which come about by having Hamiltonian or Eulerian cycles 

respectively. In this section, another type of graph will be introduced. 
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Many graphs, as have been seen earlier in this chapter, can exhibit 

special properties. Another type of graph that does this is known as a bipartite 

graph, which is defined as follows:  

 

Def. A.17 A bipartite graph80 is a graph with vertices, V, partitioned as 

𝑽 = 𝑽𝟏 ∪ 𝑽𝟐, such that all edges are of the form, xy , where 1x V  

and 2y V . 

 

An example of such a graph is shown in Figure 3.24. 

 

A.8 Planar Graphs 

 

In the last section, questions revolving around bipartite graphs were given. 

These graphs are applicable in matching problems, such as matching different 

sources to a different number of houses (known as a utility graph)48. However, 

in this section, one particular type of bipartite graph, namely the complete, 

bipartite graph, K3,3 will be used based on a special property it holds. Similarly, a 

complete graph, known as K5, will be used based on the same property and both 

graphs will help to illustrate the key behind the next type of graph to be shown. 

 

Def. A.18 A planar graph is a graph that can be drawn in the plane with its 
edges connecting only at the vertices of the graph (i.e. no 
intersections between any two lines).48  

 

In order to determine whether such a drawing exists, though, can be quite 

difficult if the number of vertices is large. However, in 1930, Polish 

mathematician, Kasimir Kuratowski, successfully proved a theorem for 

determining the planarity of a graph, which involves looking at subsets of the 

graph in question.48  

Before stating this key theorem, a pair of definitions are first needed:  

 

Def. A.19 A subdivision of a graph, G, is a graph, say G , that can be 
obtained by adding a new vertex to the middle of edge in a subset 
of edges in G. 
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Def. A.20 Two graphs, G1 and G2, are said to be homeomorphic if there is 
an isomorphism from a subdivision of G1 to a subdivision of G2

80. 
 

Please note that all internal vertices of the paths in any subdivision, G , 

have degree, 2, since they do not intersect any other paths.  

Now, using these definitions, along with the two special graphs mentioned 

at the start of this section, Kuratowski’s Theorem can be given. 

 

Theorem A.1 A simple graph is planar if and only if it does not contain a 
subgraph that is homeomorphic to either the complete graph, K5, 
or the complete bipartite graph, K3,3

80.  
 

 

A.9 Spanning Trees 

 

a)  b)  

Figure A.2 A graph, G, as shown in (a). The graph shown in (b) is a spanning tree for G. 

 

Graphs can provide a lot of information when they are applied to 

particular, real-world situations. One essential element in many cases for such 

graphs is connectedness, but with so much information provided in one graph, it 

can be necessary to decompose the graph into a subgraph, but while still 

maintaining connectedness. A good strategy for doing this would be to create a 

subgraph that has no cycles, but is still connected. Using this strategy, two more 

definitions are used83: 

 

Def. A.21 A graph is a tree if and only if it is connected and has no cycles. 
 

Def. A.22 A spanning tree for a graph, G, is a subgraph of G that contains 
every vertex in G and is a tree. 
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The graph shown in a appears to have many potential spanning trees 

since there are numerous edges within it; in fact, there are 3,612 possible 

spanning trees in this graph. Determining the number of spanning trees, though, 

does not necessarily require any computer system to search for them, but rather 

a mathematical procedure involving some knowledge in linear algebra. The 

theorem that generalises this was created by Gustav Robert Kirchhoff84, a 

German physicist born in Königsberg, now known as Kaliningrad, Russia… and 

also known as the setting for the Euler’s famous problem on the seven bridges of 

Königsberg, as detailed in Section 3.5. Kirchhoff’s theorem can be given with 

much detail83, but is simplified for specific use within introductory linear algebra. 

However, to state the theorem, one definition80 needs to be given: 

 

Def. A.23 A degree (or valency) matrix is a diagonal matrix whose entries, 

,i ia , correspond to the degree of the ith vertex of a graph, G. 

 

Now, Kirchhoff’s theorem for determining the number of spanning trees of 

a graph, known as the Matrix Tree Theorem80, may be given. 

 

Theorem A.2 The number of distinct spanning trees of a graph, G, is the 
absolute value of any cofactor of the difference of the 
corresponding degree matrix and the corresponding adjacency 
matrix. 

 

This theorem can be used to prove that there are indeed 3,612 distinct 

spanning trees for the graph given in a. 

Some graphs have special properties that help when determining the 

number of different spanning trees there are in them. One such property involves 

the following definition85: 

 

Def. A.24 For a graph, G, a bridge is any edge such that its removal causes 
the graph to be disconnected. 

 

For a graph, G, with any number of bridges, since each bridge connects 

two disjoint subgraphs and therefore, is necessary for creating any spanning tree, 

determining the number of spanning trees in G can be reduced to first 

determining the number of spanning trees in each disjoint subgraph of G and 
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then, using combinatorics, multiplying the numbers of spanning trees in each 

subgraph together to obtain the result. An example of this is given in Example A.3. 

In this example, notice how the inclusion of a bridge significantly reduces the 

amount of work to be performed. 

 

Example A.3 Determine the number of spanning trees in the following graph: 

 
 

Solution: With the inclusion of a bridge at BF , the number of spanning 

trees to be calculated can now be simplified to determining the 

number of spanning trees in the triangle, DEF , and in the 

graph formed by the vertices, A, B, C, and G. 

 For a cycle graph, nC , the number of spanning trees is always n. 

Therefore, the number of spanning trees in DEF  is 3. 

 For the other subgraph, the matrix tree theorem can be applied: 

 The degree matrix is 

3 0 0 0

0 2 0 0

0 0 3 0

0 0 0 2

 
 
 
 
 
 

 and the adjacency matrix is

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

 
 
 
 
 
 

. Therefore, subtraction gives

3 1 1 1

1 2 1 0

1 1 3 1

1 0 1 2

   
 
 
 
   
 
  

. 

Taking the (1,1)-minor gives |
2 −1 0

−1 3 −1
0 −1 2

| = |
0 5 2

−1 3 −1
0 −1 2

| =

(−1)2+1(−1) |
5 −2

−1 2
| = 8. Therefore, the number of spanning 

trees overall in the graph is 3 × 8 = 24.   □ 
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Without noticing the bridge, determining the number of spanning trees 

would involve calculating the determinant of a 6 6 matrix, which involves much 

more work than the strategy used in Example A.3. It makes sense to make use of 

the new terminology and create questions that force students to understand how 

this terminology affects any calculations they may make. 

 

 

A.10 Minimal Spanning Trees 

 

Spanning trees are important in connecting networks (e.g. wiring in a 

house). However, it can be important to minimise the lengths of these networks 

(e.g. minimise the amount of wiring used in a house). There are two important 

algorithms which can be used to determine the minimal spanning tree for a given 

graph. 

Kruskal’s algorithm86 selects edges of least weight. If, by choosing an 

edge, a cycle is formed, then that edge is discounted and the next edge of least 

weight is considered. This process continues until the moment all vertices in the 

graph have been selected. 

Prim’s algorithm86 begins at a particular vertex and selects the edge of 

least weight connected to it. There are now two “active” vertices and the edge of 

least weight connecting either of these vertices is selected, so long as a cycle is 

not formed. This process continues with one additional active vertex each time 

until all vertices have been selected. 

 

 

A.11 Shortest Path Algorithm 

 

There is a popular saying that goes, “The shortest distance between any 

two points is a straight line.”, although the source of this saying is unknown; 

nonetheless, if you really wish to seek a proof on this, then a good suggestion 

would be to visit the proof by Blochle87. However, this is certainly not always the 

case as there tend to be “obstacles” between the two points, causing the shortest 

possible path to be elongated by means of detours. In terms of cartography, the 
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shortest distance between two points tends to involve travelling through multiple, 

different roads, all of which will likely have bends and various methods for turning 

from one road to another. 

Being able to determine the shortest distance between two points, namely 

an “origin” and a “terminal”, is important and useful in many applications, 

especially in cartography and in business. Doing this involves looking at all 

possible points in between the origin and the terminal, whether they are 

obstacles or destinations. As such, an algorithm is needed to explore all such 

combinations. 

One popular algorithm for solving this problem is Dijkstra’s algorithm88, 

which involves looking at the shortest possible distance to every vertex along the 

route to the terminal from the origin. It is a simple algorithm to learn and is known 

for being one of the most efficient algorithms for finding the minimum distance 

between a source vertex and a terminal vertex. 

 

  

Figure A.3 An example of an RNI question, asking to find the minimum distance between the 
departure city (labelled O) and the terminal city (labelled T). 

 

Def. A.25 The shortest path problem89 is a problem that looks to find the 
shortest distance between two points with various paths between 
them. 
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Example A.4 shows a method for determining the shortest distance 

between source and terminal vertices in a graph, G, such that all edges only 

move in the forward direction (e.g. EG  may exist, but GE  definitely would not 

exist.). 

 

Example A.4 Determine the shortest distance and path for the shortest path 
problem, presented in Figure A.3. 

 

Solution: To find the minimum distance from O to T, a matrix can be used. 

To produce this matrix, it is important to note the following: 

1. Determine the original distance matrix for the graph. Notice 

in this example that since there are no vertices travelling to I, the 

distance from I to T is ignored. 

2 3 9

5 8

9 6 9

3 11

5 12

3 11

10

/

O B C D E F G H I T

O

B

C

D

E

F

G

H

I N A

T

 
 

      
 
        
 

       
        
 

        
          
 

        
         
 
         
 

           

 

2. Starting at row O and moving to the right, determine the 

minimum distance to a particular vertex (i.e. the minimum value 

located in the column corresponding to a given vertex). For 

instance, the first minimum value would be for vertex, B, which is 

two. 

3. Move to row B. For each entry in row B, add the minimum 

distance travelled from O to B (which is 2) to each entry. 

Determine the minimum distance from B to an adjacent vertex 

(in this case, 7OB BE  ). Vertex B is now considered fixed. 
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2 3 9

5 2 8 2

7 10

9 6 9

3 11

5 12

3 11

10

/

O B C D E F G H I T

O

B

C

D

E

F

G

H

I N A

T

 
 

       
 

 
        
 
 

       
        
 

        
          
 

        
         
 
         
 

           

 

4. Move to the next, non-fixed vertex (which is the minimum 

value obtained in column C) and determine the minimum 

distance from C to an adjacent vertex (just like in step 3). In this 

case, we get 

3 9

5 8

7 10

9 3 6 3 9 3

12 9 12

3 11

5 12

3 11

10

/

O B C D E F G H I T

O

B

C

D

E

F

G

H

I N A

T

 
 

       
  
        
 
 

         
 
 

        
        
 

          
        
 
         
 

         
            

2

2 2
 

5. Repeat step 4 for all vertices, moving from D to T. 

 

Using the matrix in Figure A.3, we obtain the following results: 

 

5 2 8 2

10

9 3 6 3 9 3

12

3 9 11 9

12 20

5 7 12 7

12 19

3 12 11 12

10 15

25

/

O B C D E F G H I T

O

B

C

D

E

F

G

H

I N A

T




      

  

       

   

      

  
        

  
        



         
  

       

 
         

         

         

2 3 9

7

9 12

15 23


























 
  
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In this matrix, each value in bold print represents the shortest 

distance to the vertex, as noted in its corresponding column. 

Also note that since there was no path to the vertex, I, the 

distance from I to T was removed as part of the candidate 

solution.  

For this problem, the shortest distance is 23. However, using 

this, we can now also find the shortest path. The value of 23 is at 

the vertex pairing,  ,G T . Therefore, the shortest path goes to G, 

then to T. So, we look at column, G, to find the shortest distance 

to it. Following this pattern through to the origin, we obtain 

T G C O   , or, more simply, O C G T   .  □ 

 

 

A.12 Vertex Colouring 

 

One final topic to consider in this subject involves the colouring of vertices. 

The concept seems simple at first: Colour all n vertices with as few colours as 

possible. However, there is a catch: Ensure that no one colour is used on two 

vertices that are connected by an edge. Unfortunately, there is no known 

algorithm that can be used for finding an optimal colouring of a graph, but many 

procedures can give heuristic solutions (i.e. reasonably close solutions, although 

not proven to be accurate) that provide a reasonable upper bound. 

An example of how vertices may be coloured using a particular, heuristic 

algorithm is given in Example A.5.  

 

Example A.5 Starting at vertex, A, and working clockwise, determine a 

reasonable upper bound for the number of colours with which to 

colour the following graph: 
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Solution:  There are 11 vertices in this graph. Therefore, there will be, 

at most, 11 colours, say colours 1 to 11. Give each vertex an 

equivalent set of these 11 colours: 

 

 

 

1,2,3,4,5,6,7,8,9,10,11

1,2,3,4,5,6,7,8,9,10,11

1,2,3,4,5,6,7,8,9,10,11

A

B

K







 

 If we start at A, then we can choose any of the 11 colours to 

represent it. Therefore, set the smallest element (i.e. colour 1) to 

represent A. But then, because the vertices adjacent to A cannot 

receive the same colour as A received, this causes the following 

changes in the colour sets: 

 

 

 

1

2,3,4,5,6,7,8,9,10,11

1,2,3,4,5,6,7,8,9,10,11

A

B D E G I J

C F H K



     

   

 

 Next, we go to vertex B and repeat the process: Choose colour 2 

to represent it because that is the lowest available colour for it. 

Now, eliminate colour 2 from all non-fixed vertices and we 

obtain 
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 

 

 

 

 

 

1

2

1,3,4,5,6,7,8,9,10,11

2,3,4,5,6,7,8,9,10,11

1,2,3,4,5,6,7,8,9,10,11

3,4,5,6,7,8,9,10,11

A

B

C K

D E G J

F H

I





 

   

 



. 

Following from this pattern, we obtain the following solution set: 

𝐴 = 𝐶 = 𝐻 = {1}, 𝐵 = 𝐷 = 𝐹 = {2}, 𝐸 = 𝐺 = 𝐼 = {3}, 𝐽 = 𝐾 = {4}. 

□ 

 

There are many ways with which to choose the vertices that are coloured 

and when during the algorithmic process. The method used in Example A.5 is one 

method for selecting vertices. However, another method may be to select those 

vertices of highest degree first. Doing this with the same graph generates the 

colour set,  

 

𝐼 = 𝐽 = {1}, 𝐴 = 𝐶 = 𝐻 = {2}, 𝐵 = 𝐸 = 𝐺 = {3}, 𝐷 = 𝐹 = 𝐾 = {4}. 

  

In both cases for this example, the graph could be coloured with four 

colours and also, the four vertex sets were virtually equivalent in size. Also, 

vertices, A, C, and H, each of which are of degree, 6, were in one set together 

each time. However, this could just be coincidence as there is no known proof for 

defining these patterns.  

To understand the logic behind what is happening here, it helps to know 

the following definitions: 

 

Def. A.26 The chromatic number80 of a graph is the minimum number of 

colours needed to colour a graph so that no two vertices joined by 

an edge share the same colour. 

 

Def. A.27 The chromatic polynomial80 of a graph, G, is a polynomial which 

represents the colouring of G so that the number of ways to colour 

G with a particular number of colours can be determined. 

 

Additionally, the following theorems help to better understand the logic 

behind vertex colouring: 
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Theorem A.3 (Brooks’ Theorem90) For any graph, G, with n vertices, except 
for complete graphs and cycle graphs where n is odd, the upper 
limit of the chromatic number is the maximum vertex degree 
present in G. 

 

Theorem A.4 (Four Colour Theorem91) Any planar graph can be coloured 
with, at most, four colours. 

 

Also, note the chromatic numbers for the following graph types shown in 

Table A.1. 

 

Graph Type 
Chromatic Number, 

( )G  

Cycle graph, nC  
2 (if n is even) 

3 (if n is odd) 

Complete graph, nK  n 

Bipartite graph, 

 1 2 1 2, ,G V V E V V   

 

2 

Table A.1 Table of graph types with their corresponding chromatic numbers. 

 

From Example A.5 and using Theorem A.3, it could have been shown that 

the upper limit of the chromatic number is seven. However, do note that although 

the graph in Example A.5 could be coloured with fewer than five colours and that 

the complete graph, K5, requires five colours, this does not make it planar. 

According to Kuratowski’s Theorem51, a graph, G, is not planar if and only if 

either K5 or K3,3 is homeomorphic to a subgraph of G. According to Table A.1, 

 3,3 2K  . In fact, this example does have a complete, bipartite subgraph, K3,3, 

using the vertices,  1 , ,V A C H  and  2 , ,V G I J , thus making it non-planar. 

Vertex colouring has valuable uses in cartography, especially in colouring 

neighbouring regions on maps. One good exercise (for practice) would be to find 

a way to colour every country in a particular continent (i.e. preferably one of 

Africa, Asia, or Europe) with, at most, four colours.
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Appendix B T-testing Results for 
MC Question on 
Spanning Trees 

 

The tables below detail the t-test results for the MC questions on spanning 

trees. The settings are coded as follows: 

1. Adjacency matrices are given as options and a graph is initially given. 

2. Graphs are given as options and an adjacency matrix is initially given. 

A. Scenario involves business departments. 

B. A directed question is given. 

C. Scenario involves a link between towns. 

D. Scenario involves university student services. 

  

So, for example, if a listing says “Test 1D”, then the question was given 

with a graph initially, with adjacency matrices as MC options, and the indirected 

scenario chosen involved university student services. 

  
Practice- 

Graphs 

vs. 

Practice- 

Matrices 

vs. Test 

1A 

vs. Test 

1B 

vs. Test 

1C 

vs. Test 

1D 

Mean 8.875 9.75 2.625 2.5 1.25 1.625 

Variance 66.41071 55.64286 5.125 6.857143 1.071429 7.410714 

Observations 8 8 8 8 8 8 

t Statistic   -0.28103 2.369847 2.736697 2.764985 3.342271 

One-tailed critical value for t   1.894579 1.894579 1.894579 1.894579 1.894579 

Two-tailed critical value for t   2.364624 2.364624 2.364624 2.364624 2.364624 

    
vs. Test 

2A 
vs. Test 

2B 
vs. Test 

2C 
vs. Test 

2D 

Mean   2.5 2.5 2.125 1.375 

Variance   8.857143 12 8.125 3.410714 

Observations   8 8 8 8 

t Statistic   3.093142 2.595351 2.871227 3.24037 

One-tailed critical value for t   1.894579 1.894579 1.894579 1.894579 

Two-tailed critical value for t     2.36462 2.36462 2.36462 2.36462 

Table B.1 Table of T distribution results for all style pairings with the visual practice set for 
MC questions on spanning trees. Results highlighted in red indicate where the 
null hypothesis is rejected in favour of 𝑯𝟏: 𝝁𝟏 > 𝝁𝟐 and the result highlighted in 
pink indicate a narrower rejection of the null hypothesis. 
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Practice- 

Matrices 

vs. Test 

1A 

vs. Test 

1B 

vs. Test 

1C 

vs. Test 

1D 

Mean 9.75 2.625 2.5 1.25 1.625 

Variance 55.64286 5.125 6.857143 1.071429 7.410714 

Observations 8 8 8 8 8 

t Statistic   2.511024 2.777696 3.156821 3.322584 

One-tailed critical value for t   1.894579 1.894579 1.894579 1.894579 

Two-tailed critical value for t   2.364624 2.364624 2.364624 2.364624 

   

vs. Test 

2A 

vs. Test 

2B 

vs. Test 

2C 

vs. Test 

2D 

Mean  2.5 2.5 2.125 1.375 

Variance  8.857143 12 8.125 3.410714 

Observations  8 8 8 8 

t Statistic  2.7998 2.92731 3.251971 3.303718 

One-tailed critical value for t  1.894579 1.894579 1.894579 1.894579 

Two-tailed critical value for t   2.364624 2.364624 2.364624 2.364624 

Table B.2 Table of T distribution results for all style pairings with the logical / mathematical 
practice set for MC questions on spanning trees. Results highlighted in red 
indicate where the null hypothesis is rejected in favour of 𝑯𝟏: 𝝁𝟏 > 𝝁𝟐. 

 

  Test 1A 

vs. Test 

1B 

vs. Test 

1C 

vs. Test 

1D 

Mean 2.63 2.5 1.25 1.625 

Variance 5.13 6.85714 1.07143 7.41071 

Observations 8 8 8 8 

t Statistic   0.1286 1.59009 1.01835 

One-tailed critical value for t   1.8946 1.8946 1.89458 

Two-tailed critical value for t   2.3646 2.3646 2.36462 

  

vs. Test 

2A 

vs. Test 

2B 

vs. Test 

2C 

vs. Test 

2D 

Mean  2.5 2.5 2.125 1.375 

Variance  8.85714 12 8.125 3.41071 

Observations  8 8 8 8 

t Statistic  0.12864 0.09706 0.48305 1.78377 

One-tailed critical value for t  1.89458 1.89458 1.8946 1.8946 

Two-tailed critical value for t  2.3646 2.3646 2.3646 2.3646 

Table B.3 Table of T distribution results for all style pairings with the test question set 1A for 
MC questions on spanning trees.  
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Test 

1B 

vs. 

Test 

1C 

vs. 

Test 

1D 

vs. 

Test 

2A 

vs. 

Test 

2B 

vs. 

Test 

2C 

vs. 

Test 

2D 

Mean 2.5 1.25 1.625 2.5 2.5 2.125 1.375 

Variance 6.85714 1.07143 7.41071 8.85714 12 8.125 3.41071 

Observations 8 8 8 8 8 8 8 

t Statistic   1.41827 1.50716 0 0 0.75337 1.68797 

One-tailed critical 

value for t   1.89458 1.89458 1.89458 1.89458 1.89458 1.89458 

Two-tailed critical 

value for t   2.36462 2.36462 2.36462 2.36462 2.36462 2.36462 

Table B.4 Table of T distribution results for all style pairings with the test question set 1B for 
MC questions on spanning trees. 

 

  Test 1C 

vs. Test 

1D 

vs. Test 

2A 

vs. Test 

2B 

vs. Test 

2C 

vs. Test 

2D 

Mean 1.25 1.625 2.5 2.5 2.125 1.375 

Variance 1.0714286 7.4107143 8.8571429 12 8.125 3.4107143 

Observations 8 8 8 8 8 8 

t Statistic   -0.362662 -1.138550 -0.947331 -0.788990 -0.174078 

One-tailed critical 

value for t   1.8945786 1.8945786 1.8945786 1.8945786 1.8945786 

Two-tailed critical 

value for t   2.364624 2.364624 2.364624 2.364624 2.364624 

Table B.5 Table of T distribution results for all style pairings with the test question set 1C for 
MC questions on spanning trees. 

 

  Test 1D 

vs. Test 

2A 

vs. Test 

2B 

vs. Test 

2C 

vs. Test 

2D 

Mean 1.625 2.5 2.5 2.125 1.375 

Variance 7.4107143 8.8571429 12 8.125 3.4107143 

Observations 8 8 8 8 8 

t Statistic   -3.861741 -1.593970 -1.322876 0.606977 

One-tailed critical value for t   1.8945786 1.8945786 1.8945786 1.8945786 

Two-tailed critical value for t   2.3646243 2.3646243 2.3646243 2.3646243 

Table B.6 Table of T distribution results for all style pairings with the test question set 1D for 
MC questions on spanning trees. Results highlighted in red and green (one-tailed 

test, where 1 1 2:H   ) indicate where the null hypothesis is rejected. 

 

 Test 2A 

vs. Test 

2B 

vs. Test 

2C 

vs. Test 

2D 

Mean 2.5 2.5 2.125 1.375 

Variance 8.8571429 12 8.125 3.4107143 

Observations 8 8 8 8 

t Statistic   0 0.6637465 2.5528888 

One-tailed critical value for t   1.8945786 1.8945786 1.8945786 

Two-tailed critical value for t   2.3646243 2.3646243 2.3646243 

Table B.7 Table of T distribution results for all style pairings with the test question set 2A for 
MC questions on spanning trees. Results highlighted in red indicate where the 
null hypothesis is rejected in favour of 𝑯𝟏: 𝝁𝟏 > 𝝁𝟐. 
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Test 

2B 

vs. Test 

2C 

vs. Test 

2D 

Mean 2.5 2.125 1.375 

Variance 12 8.125 3.4107143 

Observations 8 8 8 

t Statistic   0.6637465 1.3502411 

One-tailed critical value for t   1.8945786 1.8945786 

Two-tailed critical value for t   2.3646243 2.3646243 

Table B.8 Table of T distribution results for all style pairings with the test question set 2B for 
MC questions on spanning trees. 

 

  

Test 

2C 

vs. Test 

2D 

Mean 2.125 1.375 

Variance 8.125 3.4107143 

Observations 8 8 

t Statistic   1.1577675 

One-tailed critical value for t   1.8945786 

Two-tailed critical value for t   2.3646243 

Table B.9 Table of T distribution results for all style pairings with the test question set 2C for 
MC questions on spanning trees. 
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Appendix C Statistical Analysis of 
Student Responses 
from 2008 to 2014 

 

The following tables show the facility and discrimination statistics for all 

questions answered by students between 2008 and 2014. 

  2008 - 2009   

Question description 
Number of 

Times 

Answered 

Facility Discrimination 

Number 

of 

Correct 

Answers 

OVERALL 

FACILITY 

Bipartite adjacency matrix search; MC 43 0.279 0.288 12 0.2345 

Bipartite graph search; MC 38 0.211 0.492 8 0.2595 

Given graph, input edges; WI+check 20 0.25 0.285 5 0.2688 

Bipartite graph / adjacency matrix 

search; MC 
36 0.278 0.385 10 0.2710 

Indegree and Outdegree; RNI 28 0.25 0.471 7 0.3117 

Number of vertices in a partite set of a 

bipartite graph; NI 
35 0.257 0.538 9 0.3418 

Generate the degree sequence; RWI 38 0.184 0.653 7 0.3486 

Shortest distance between two towns; 

RNI 
142 0.401 0.487 57 0.4234 

Determining degree; NI 47 0.511 0.429 24 0.5063 

Find the simple connected graph given 

the adjacency matrices; RandMC 
54 0.685 0.609 37 0.5727 

Find the simple connected graph given 

the graphs or adjacency matrices; 

RandMC 

60 0.583 0.425 35 0.5926 

Given graph, find matching adjacency 

matrix; MC 
46 0.609 0.595 28 0.6311 

Given graph, input vertices (with 

disconnected vertices); WI+check 
25 0.52 0.476 13 0.6596 

Given digraph, input edges; 

RWI+check 
21 0.619 0.524 13 0.6667 

Sum of entries (Introduction to 

Degree); NI 
49 0.735 0.501 36 0.6667 

What is wrong with the adjacency 

matrix; RWI+check 
63 0.73 0.622 46 0.6814 

Find the simple connected graph given 

the graphs; RandMC 
42 0.643 0.218 27 0.6897 

Given adjacency matrix, find matching 

graph; MC 
48 0.708 0.512 34 0.7150 

Given graph, input vertices; WI+check 19 0.632 0.372 12 0.7158 

OVERALL STATISTICS 854 0.4918  420 0.5035 

Table C.1 Results for 2008 – 2009 academic year, with overall facility values for 2008 – 
2011; questions are ordered based on their Overall Facility values. 

 

Facility and discrimination entries are highlighted using a variation of 

colours from green to yellow to red. Facility values range from 0 to 1 with 0 being 

in red and 1 being in green. Discrimination values range from -1 to 1, with -1 to 0 

being in red, 0.5 being in green, and 1 being in yellow. 
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  2009 - 2010   

Question description 
Number of 

Times 

Answered 

Facility Discrimination 

Number 

of 

Correct 

Answers 

OVERALL 

FACILITY 

Bipartite adjacency matrix 

search; MC 
53 0.208 0.467 11 0.2345 

Bipartite graph search; MC 42 0.214 0.195 9 0.2595 

Given graph, input edges; 

WI+check 
33 0.212 0.481 7 0.2688 

Bipartite graph / adjacency 

matrix search; MC 
54 0.259 0.318 14 0.2710 

Indegree and Outdegree; RNI 67 0.284 0.481 19 0.3117 

Number of vertices in a partite 

set of a bipartite graph; NI 
59 0.288 0.644 17 0.3418 

Generate the degree 

sequence; RWI 
59 0.254 0.607 15 0.3486 

Shortest distance between two 

towns; RNI 
192 0.385 0.466 74 0.4234 

Determining degree; NI 53 0.472 0.532 25 0.5063 

Find the simple connected 

graph given the adjacency 

matrices; RandMC 

90 0.544 0.396 49 0.5727 

Find the simple connected 

graph given the graphs or 

adjacency matrices; RandMC 

61 0.508 0.619 31 0.5926 

Given graph, find matching 

adjacency matrix; MC 
87 0.54 0.543 47 0.6311 

Given graph, input vertices 

(with disconnected vertices); 

WI+check 

34 0.765 0.508 26 0.6596 

Given digraph, input edges; 

RWI+check 
27 0.778 0.557 21 0.6667 

Sum of entries (Introduction to 

Degree); NI 
57 0.649 0.487 37 0.6667 

What is wrong with the 

adjacency matrix; RWI+check 
59 0.508 0.602 30 0.6814 

Find the simple connected 

graph given the graphs; 

RandMC 

67 0.612 0.48 41 0.6897 

Given adjacency matrix, find 

matching graph; MC 
73 0.795 0.542 58 0.7150 

Given graph, input vertices; 

WI+check 
32 0.719 0.55 23 0.7158 

OVERALL STATISTICS 1199 0.4621  554 0.5035 

Table C.2 Results for 2009 – 2010 academic year, with overall facility values for 2008 – 
2011; questions are ordered based on their Overall Facility values. 
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  2010 - 2011   

Question description 
Number 

of Times 

Answered 

Facility Discrimination 

Number 

of 

Correct 

Answers 

OVERALL 

FACILITY 

Bipartite adjacency matrix 

search; MC 
49 0.224 0.586 11 0.2345 

Bipartite graph search; MC 51 0.333 0.437 17 0.2595 

Given graph, input edges; 

WI+check 
40 0.325 0.464 13 0.2688 

Bipartite graph / adjacency 

matrix search; MC 
65 0.277 0.408 18 0.2710 

Indegree and Outdegree; RNI 59 0.373 0.585 22 0.3117 

Number of vertices in a partite 

set of a bipartite graph; NI 
64 0.438 0.702 28 0.3418 

Generate the degree 

sequence; RWI 
78 0.5 0.542 39 0.3486 

Shortest distance between two 

towns; RNI 
214 0.472 0.473 101 0.4234 

Determining degree; NI 58 0.534 0.536 31 0.5063 

Find the simple connected 

graph given the adjacency 

matrices; RandMC 

83 0.53 0.49 44 0.5727 

Find the simple connected 

graph given the graphs or 

adjacency matrices; RandMC 

68 0.676 0.468 46 0.5926 

Given graph, find matching 

adjacency matrix; MC 
92 0.728 0.415 67 0.6311 

Given graph, input vertices 

(with disconnected vertices); 

WI+check 

35 0.657 0.689 23 0.6596 

Given digraph, input edges; 

RWI+check 
30 0.6 0.747 18 0.6667 

Sum of entries (Introduction to 

Degree); NI 
74 0.635 0.486 47 0.6667 

What is wrong with the 

adjacency matrix; RWI+check 
82 0.768 0.639 63 0.6814 

Find the simple connected 

graph given the graphs; 

RandMC 

94 0.766 0.545 72 0.6897 

Given adjacency matrix, find 

matching graph; MC 
79 0.646 0.479 51 0.7150 

Given graph, input vertices; 

WI+check 
44 0.75 0.386 33 0.7158 

OVERALL STATISTICS 1359 0.5475  744 0.5035 

Table C.3 Results for 2010 – 2011 academic year, with overall facility values for 2008 – 
2011; questions are ordered based on their Overall Facility values. 
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  2011 - 2012 

OVERALL 

FACILITY 
Question description 

Number of 

Times 

Answered 

Facility Discrimination 

Number 

of 

Correct 

Answers 

minimum spanning tree 7 vertices 

Prim; WI 
46 0.152 0.435 7 0.1892 

was AB edge added rejected 

unconsidered & at what step 7 

vertices Prim; WI 

46 0.196 0.334 9 0.1913 

was AB edge added rejected 

unconsidered & at what step 5-6 

vertices Prim; WI 

47 0.234 0.393 11 0.2477 

indegree of the vertex of the 

network matrix of a digraph; NI 
14 0.214 0.468 3 0.2787 

minimum spanning tree 5-6 

vertices Kruskal; WI 
29 0.172 0.687 5 0.2885 

minimum spanning tree 5-6 

vertices Prim; WI 
40 0.2 0.447 8 0.2903 

minimum spanning tree 7 vertices 

Kruskal; WI 
25 0.2 0.638 5 0.2963 

was AB edge added rejected 

unconsidered & at what step 5-6 

vertices Kruskal; WI 

27 0.296 0.594 8 0.3226 

n’th edge minimum spanning tree 

7 vertices Prim; WI 
42 0.452 0.492 19 0.3248 

was AB edge added rejected 

unconsidered & at what step 7 

vertices Kruskal; WI 

23 0.174 0.098 4 0.3377 

outdegree of the vertex of the 

network matrix of a digraph; NI 
11 0.273 0.527 3 0.3585 

n’th edge minimum spanning tree 

7 vertices Kruskal; WI 
28 0.5 0.703 14 0.4286 

n’th edge minimum spanning tree 

5-6 vertices Kruskal; WI 
21 0.524 0.265 11 0.4478 

degree of the vertex of the 

network matrix (symmetric graph); 

NI 

12 0.25 0.313 3 0.4630 

n’th edge minimum spanning tree 

5-6 vertices Prim; WI 
40 0.55 0.53 22 0.5299 

OVERALL STATISTICS 980 0.4735   464 0.5372 

Table C.4 Some results for 2011 - 2012 academic year, with overall facility values for 2011 
– 2014; questions are ordered based on their Overall Facility values. 
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  2011 - 2012 
OVERALL 

FACILITY 
Question description 

Number 

of Times 

Answered 

Facility Discrimination 

Number 

of 

Correct 

Answers 

indegree of the vertex of the 

adjacency matrix; NI 
12 0.25 0.569 3 0.5439 

degree sequence of the 

adjacency matrix (simple, 

disconnected graph); WI 

16 0.688 0.62 11 0.5741 

degree sequence of the graph 

(with multi edges and loops); 

WI 

13 0.538 0.366 7 0.5778 

Given disconnected 

graph_input vertex set; 

WI+check 

44 0.591 0.757 26 0.6158 

Given simple, connected 

graph_input edge set; 

WI+check 

50 0.62 0.657 31 0.6205 

Given graph, find matching 

adjacency matrix; MC 
88 0.614 0.639 54 0.6400 

Given graph with loops_input 

edge set; WI+check 
53 0.604 0.778 32 0.6548 

degree sequence of the 

adjacency matrix (with multi 

edges); WI 

17 0.471 0.575 8 0.6667 

outdegree of the vertex of the 

adjacency matrix; NI 
16 0.438 0.626 7 0.6939 

degree sequence of the 

adjacency matrix (with multi 

edges and loops); WI 

13 0.692 0.499 9 0.7073 

degree sequence of the graph 

(simple, disconnected graph); 

WI 

15 0.533 0.514 8 0.7111 

degree sequence of the 

adjacency matrix (simple, 

connected graph); WI 

10 0.6 0.824 6 0.7119 

degree sequence of the graph 

(with multi edges); WI 
14 0.5 0.648 7 0.7193 

degree sequence of the graph 

(simple, connected graph); WI 
9 0.778 0.689 7 0.7193 

What is wrong with the 

adjacency matrix; RWI+check 
95 0.684 0.653 65 0.7346 

Given connected graph_input 

vertex set; WI+check 
64 0.797 0.518 51 0.8387 

OVERALL STATISTICS 980 0.4735  464 0.5372 

Table C.5 Some results for 2011 – 2012 academic year, with overall facility values for 2011 
– 2014; questions are ordered based on their Overall Facility values. 
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  2012 - 2013 

 OVERALL 

FACILITY 
Question description 

Number 

of Times 

Answered 

Facility Discrimination 

Number 

of 

Correct 

Answers 

minimum spanning tree 7 

vertices Prim; WI 
32 0.281 0.671 9 0.1892 

was AB edge added rejected 

unconsidered & at what step 7 

vertices Prim; WI 

33 0.242 0.647 8 0.1913 

was AB edge added rejected 

unconsidered & at what step 5-

6 vertices Prim; WI 

32 0.344 0.428 11 0.2477 

indegree of the vertex of the 

network matrix of a digraph; NI 
18 0.222 0.715 4 0.2787 

minimum spanning tree 5-6 

vertices Kruskal; WI 
42 0.333 0.781 14 0.2885 

minimum spanning tree 5-6 

vertices Prim; WI 
55 0.345 0.639 19 0.2903 

minimum spanning tree 7 

vertices Kruskal; WI 
24 0.25 0.625 6 0.2963 

was AB edge added rejected 

unconsidered & at what step 5-

6 vertices Kruskal; WI 

26 0.423 0.658 11 0.3226 

n’th edge minimum spanning 

tree 7 vertices Prim; WI 
36 0.25 0.554 9 0.3248 

was AB edge added rejected 

unconsidered & at what step 7 

vertices Kruskal; WI 

25 0.32 0.651 8 0.3377 

outdegree of the vertex of the 

network matrix of a digraph; NI 
14 0.429 0.402 6 0.3585 

n’th edge minimum spanning 

tree 7 vertices Kruskal; WI 
29 0.448 0.528 13 0.4286 

n’th edge minimum spanning 

tree 5-6 vertices Kruskal; WI 
26 0.5 0.671 13 0.4478 

degree of the vertex of the 

network matrix (symmetric 

graph); NI 

30 0.5 0.675 15 0.4630 

n’th edge minimum spanning 

tree 5-6 vertices Prim; WI 
31 0.516 0.553 16 0.5299 

OVERALL STATISTICS 1235 0.5733  708 0.5372 

Table C.6 Some results for 2012 – 2013 academic year, with overall facility values for 2011 – 
2014; questions are ordered based on their Overall Facility values. 
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  2012 - 2013 
 OVERALL 

FACILITY 

Question description 
Number 

of Times 

Answered 

Facility Discrimination 

Number 

of 

Correct 

Answers 

indegree of the vertex of the 

adjacency matrix; NI 
22 0.591 0.75 13 0.5439 

degree sequence of the 

adjacency matrix (simple, 

disconnected graph); WI 

21 0.619 0.554 13 0.5741 

degree sequence of the graph 

(with multi edges and loops); 

WI 

16 0.688 0.315 11 0.5778 

Given disconnected 

graph_input vertex set; 

WI+check 

77 0.675 0.702 52 0.6158 

Given simple, connected 

graph_input edge set; 

WI+check 

68 0.618 0.67 42 0.6205 

Given graph, find matching 

adjacency matrix; MC 
137 0.657 0.459 90 0.6400 

Given graph with loops_input 

edge set; WI+check 
76 0.658 0.632 50 0.6548 

degree sequence of the 

adjacency matrix (with multi 

edges); WI 

17 0.647 0.455 11 0.6667 

outdegree of the vertex of the 

adjacency matrix; NI 19 0.842 0.029 16 0.6939 

degree sequence of the 

adjacency matrix (with multi 

edges and loops); WI 

16 0.75 0.063 12 0.7073 

degree sequence of the graph 

(simple, disconnected graph); 

WI 

21 0.81 0.607 17 0.7111 

degree sequence of the 

adjacency matrix (simple, 

connected graph); WI 

20 0.7 0.812 14 0.7119 

degree sequence of the graph 

(with multi edges); WI 
20 0.8 0.526 16 0.7193 

degree sequence of the graph 

(simple, connected graph); WI 
23 0.696 0.734 16 0.7193 

What is wrong with the 

adjacency matrix; RWI+check 
137 0.686 0.654 94 0.7346 

Given connected graph_input 

vertex set; WI+check 
92 0.859 0.476 79 0.8387 

OVERALL STATISTICS 1235 0.5733  708 0.5372 

Table C.7 Some results for 2012 – 2013 academic year, with overall facility values for 2011 
– 2014; questions are ordered based on their Overall Facility values. 
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  2013 - 2014 
OVERAL

L 

FACILITY Question description 
Number of 

Times 

Answered 

Facility Discrimination 

Number 

of 

Correct 

Answers 

minimum spanning tree 7 

vertices Prim; WI 
33 0.152 0.651 5 0.1892 

was AB edge added rejected 

unconsidered & at what step 7 

vertices Prim; WI 

36 0.139 0.09 5 0.1913 

was AB edge added rejected 

unconsidered & at what step 5-

6 vertices Prim; WI 

30 0.167 0.451 5 0.2477 

indegree of the vertex of the 

network matrix of a digraph; NI 
29 0.345 0.255 10 0.2787 

minimum spanning tree 5-6 

vertices Kruskal; WI 
33 0.333 0.408 11 0.2885 

minimum spanning tree 5-6 

vertices Prim; WI 
29 0.31 0.732 9 0.2903 

minimum spanning tree 7 

vertices Kruskal; WI 
32 0.406 0.576 13 0.2963 

was AB edge added rejected 

unconsidered & at what step 5-

6 vertices Kruskal; WI 

40 0.275 0.392 11 0.3226 

n’th edge minimum spanning 

tree 7 vertices Prim; WI 
39 0.256 0.612 10 0.3248 

was AB edge added rejected 

unconsidered & at what step 7 

vertices Kruskal; WI 

29 0.483 0.699 14 0.3377 

outdegree of the vertex of the 

network matrix of a digraph; NI 
28 0.357 0.407 10 0.3585 

n’th edge minimum spanning 

tree 7 vertices Kruskal; WI 
20 0.3 0.692 6 0.4286 

n’th edge minimum spanning 

tree 5-6 vertices Kruskal; WI 
20 0.3 0.738 6 0.4478 

degree of the vertex of the 

network matrix (symmetric 

graph); NI 

12 0.583 0.557 7 0.4630 

n’th edge minimum spanning 

tree 5-6 vertices Prim; WI 
46 0.522 0.576 24 0.5299 

OVERALL STATISTICS 1143 0.5529  632 0.5372 

Table C.8 Some results for 2013 – 2014 academic year, with overall facility values for 2011 
– 2014; questions are ordered based on their Overall Facility values. 
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  2013 - 2014 
OVERALL 

FACILITY 
Question description 

Number 

of Times 

Answered 

Facility Discrimination 

Number 

of 

Correct 

Answers 

indegree of the vertex of the 

adjacency matrix; NI 
23 0.652 0.571 15 0.5439 

degree sequence of the 

adjacency matrix (simple, 

disconnected graph); WI 

17 0.412 0.787 7 0.5741 

degree sequence of the graph 

(with multi edges and loops); 

WI 

16 0.5 0.378 8 0.5778 

Given disconnected 

graph_input vertex set; 

WI+check 

56 0.554 0.627 31 0.6158 

Given simple, connected 

graph_input edge set; 

WI+check 

48 0.625 0.611 30 0.6205 

Given graph, find matching 

adjacency matrix; MC 
125 0.64 0.556 80 0.6400 

Given graph with loops_input 

edge set; WI+check 
68 0.691 0.498 47 0.6548 

degree sequence of the 

adjacency matrix (with multi 

edges); WI 

20 0.85 0.608 17 0.6667 

outdegree of the vertex of the 

adjacency matrix; NI 
14 0.786 0.053 11 0.6939 

degree sequence of the 

adjacency matrix (with multi 

edges and loops); WI 

12 0.667 0.665 8 0.7073 

degree sequence of the graph 

(simple, disconnected graph); 

WI 

9 0.778 0.114 7 0.7111 

degree sequence of the 

adjacency matrix (simple, 

connected graph); WI 

29 0.759 0.59 22 0.7119 

degree sequence of the graph 

(with multi edges); WI 
23 0.783 0.727 18 0.7193 

degree sequence of the graph 

(simple, connected graph); WI 
25 0.72 0.224 18 0.7193 

What is wrong with the 

adjacency matrix; RWI+check 
141 0.816 0.629 115 0.7346 

Given connected graph_input 

vertex set; WI+check 
61 0.852 0.417 52 0.8387 

OVERALL STATISTICS 1143 0.5529  632 0.5372 

Table C.9 Some results for 2013 – 2014 academic year, with overall facility values for 2011 
– 2014; questions are ordered based on their Overall Facility values. 
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Appendix D Analysis of Final 
Examinations for 
MA2920 

 

Tables in this section summarise errors made by 265 students when 

attempting graph theory questions in MA2920: Algebra and Discrete Mathematics 

from 2005 to 2008. There were four questions on each examination. For each 

examination, questions three and four represent questions on graph theory; 

questions one and two represent questions from another subject within the 

module and were not reviewed. Numbers of attempts made on all questions 

during MA2920 examinations are included. Correct answers are also included, 

along with errors made by the assessor(s) when marking examination scripts. 

 

  
2004-

2005 

2005-

2006 

2006-

2007 

2007-

2008 TOTAL 

Question One 8 1 1 0 10 

Question Two 2 24 23 13 62 

Question Three 11 1 0 14 26 

Question Four 21 26 18 44 109 

None 27 13 26 13 79 

TOTAL 69 65 68 84 286 

Table D.1 Table listing the numbers of students who did not perform which questions, along 
with the numbers of students who performed all questions during the MA2920 
examinations from 2005 to 2008. 

 

SPANNING TREES QUESTION 

Types of Errors Made Count Percentage 

No Attempt 26 9.8% 

Reading Question 1 0.4% 

Methodology 51 19.2% 

Accidental 3 1.1% 

Guesswork 19 7.2% 

Calculation 93 35.1% 

Lack of work shown 22 8.3% 

None 60 22.6% 

Assessor 21 7.9% 

Knowledge 1 0.4% 

Strategy 13 4.9% 

Matrix 1 0.4% 

Process 7 2.6% 

Setup 5 1.9% 

Table D.2 Categorisation of errors made in MA2920 examinations from 2005 to 2008 for 
questions investigating spanning trees. Significant results are highlighted in 
various colours. 
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VERTEX COLOURING QUESTION 

Errors Made – Vertex Colouring Question Count Percentage 
Reading question 1 0.4% 

Guesswork 10 3.8% 

Accidental 8 3.0% 

Calculation 11 4.2% 

Lack of work shown 20 7.5% 

Methodology 56 21.1% 

None 43 16.2% 

Procedural / Strategy 29 10.9% 

Not attempted 109 41.1% 

Unknown 1 0.4% 

ASSESSOR 3 1.1% 

Table D.3 Categorisation of errors in MA2920 examinations from 2005 to 2008 for 
questions investigating vertex colouring. Significant results are highlighted. 

 

Errors Made- Spanning Trees Question Count Percentage 
Added (C4) one too many times 1 0.3774% 

Created loop around a vertex; made solving difficult 1 0.3774% 

Matrix for calculations incorrect 7 2.6415% 

Broke subgraph into 2 independent sets 1 0.3774% 

Squared subgraphic portion in calculation 2 0.7547% 

Miscalculated trees of subgraph 6 2.2642% 

Did not answer question asked; wrong graph drawn 2 0.7547% 

Assumed wrong quantities of shapes 2 0.7547% 

Assumed odd vertices at tree ends 1 0.3774% 

Did not "pinch" properly 46 17.3585% 

Work shown not explicit enough 1 0.3774% 

Bad use / calculation of matrices 12 4.5283% 

Counted tree of n vertices = n (or other) subtrees 3 1.1321% 

Accidental change of value in matrix 1 0.3774% 

Did not calculate subtrees properly 12 4.5283% 

Willing to add instead of multiply 43 16.2264% 

Random guess 17 6.4151% 

Did not square 11 7 2.6415% 

Did not show all work 8 3.0189% 

Tried to find subtrees manually 5 1.8868% 

Left out portion of calculation 5 1.8868% 

Not completed 13 4.9057% 

Correct 60 22.6415% 

Assessor Error 7 2.6415% 

Tried to use vertex degrees to solve 1 0.3774% 

Used pinching method for chromatics 2 0.7547% 

Assumed T(C
4
) = T(K

4
) 1 0.3774% 

Assumed subgraph was "near complete" 1 0.3774% 

Only viewed cycles of subgraphs 1 0.3774% 

Used wrong subgraph 1 0.3774% 

Too many cofactors when solving DET(B1) 1 0.3774% 

Skipped question 30 11.3208% 

Assumed T(Treen) to be a different value 2 0.7547% 

Assumed T(K
4
) to equal some other number 3 1.1321% 

Counted too many triangles 1 0.3774% 

Squared all values when multiplying 1 0.3774% 

Table D.4 Summarisation of errors made by students in MA2920 examinations from 2005 to 
2008 while attempting to answer questions on spanning trees. Significant results 
are highlighted in various colours. 
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Errors Made- Vertex Colouring Question Count Percentage 

Assumed complete graph of (n+2) vertices 1 0.3774% 

Did not answer 2nd part of question 1 0.3774% 

Added unnecessary vertex when pinching 1 0.3774% 

Random guess 11 4.1509% 

Did not draw correct graph to solve 3 1.1321% 

Changed graph during procedure 2 0.7547% 

 3 1.1321% 

Assumed wrong graph types when branches 

included 
1 

0.3774% 

Pinching method incorrect 42 15.8491% 

Not: 2 loops around 2 vertices = 1 branch 1 0.3774% 

Deleted branches instead of key edges 1 0.3774% 

Did not use proper procedure to solve 5 1.8868% 

Did not show all work 5 1.8868% 

One subgraph had wrong polynomial 1 0.3774% 

Did not complete 14 5.2830% 

Correct 43 16.2264% 

Removed part of graph when "pinching" 7 2.6415% 

Skipped question 109 41.1321% 

Added K3 one too many times 1 0.3774% 

Calculations within pinching method incorrect 4 1.5094% 

Willing to add instead of subtract or multiply 2 0.7547% 

Assessor Error 2 0.7547% 

Work shown not explicit enough 15 5.6604% 

Assumed another strategy 4 1.5094% 

Used wrong graph 3 1.1321% 

Left out part of answer, which (s)he had found 1 0.3774% 

Work appears correct, but does not match 1 0.3774% 

Assumed K4 from a subgraph of 5 vertices 2 0.7547% 

Assumed graph was almost K5 2 0.7547% 

Thought C3 = K2 1 0.3774% 

Thought T2 = K2 1 0.3774% 

Table D.5 Summarisation of errors made by students in MA2920 examinations from 2005 to 
2008 while attempting to answer questions on vertex colouring. Significant results 
are highlighted in various colours. 
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