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Abstract

The CMS collaboration is preparing a major upgrade of its detector, so it can operate during the
high luminosity run of the LHC from 2026. The upgraded tracker electronics will reconstruct the
trajectories of charged particles within a latency of a few microseconds, so that they can be used by
the level-1 trigger. An emulation framework, CIDAF, has been developed to provide a reference for a
proposed FPGA-based implementation of this track finder, which employs a Time-Multiplexed (TM)
technique for data processing.
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II. TRACKS AT TRIGGER LEVEL-1

The CMS trigger system is responsible for reducing the

rate of data saved to permanent storage from the rate at which

proton bunch collisions take place down to rates which are

acceptable for the computing infrastructure. This is achieved

by cascading two distinct trigger systems with different ar-

chitectures: a fast Level 1 (L1) trigger, implemented using a

combination of custom, radiation-hard, on-detector ASICs and

off-detector FPGAs, and a High Level Trigger implemented

in software, running on a farm of commercial-off-the-shelf

computers, which benefits from the flexibility and increased

sophistication offered by the software implementation. In this

paper we focus on the former of the two trigger systems.

While the L1 input event rate corresponds to the collision

rate of 40 MHz and is fixed by the LHC machine parameters,

the maximum event output rate of the L1 trigger is set by the

input capabilities of the HLT, and for the Phase-2 L1 trigger

the requirement is 500 kHz for 140 pile-up collision conditions

and 750 kHz for 200 pile-up collision conditions [2]. A trigger

decision on whether an event should be accepted into the HLT

has to happen within 12.5 µs [2].

Using track information at L1 can add a significant

improvement to the performance of the trigger, making it

more selective and reducing the triggering rate. For this reason,

CMS intends to reconstruct tracks at L1 and make them

available to the trigger [2]. An example of this improvement

can be seen from the simulations shown in Fig. 2, where

rates for muon triggers not employing track information

decrease slowly as a function of the muon pT thresholds,

making rates difficult to control, whereas rate reductions are

effectively achieved in the case of triggers employing L1

track matching to the muons. This improvement is particularly

significant in the forward region, corresponding to regions

of higher pseudorapidity |η| in the CMS coordinate system [1].

Track reconstruction at L1 [3] will use data from the

upgraded outer tracker [2], where the latter will be composed

of double-layer silicon detectors. The layers are separated by

a small distance of the order of a few mm, in a configuration

known as ”pT -module” [4]. In this setup, the two layers are

read out by the same front-end ASIC making possible to

correlate pairs of hits, where one hit is measured in one layer

and the other is measured in the opposite one.

The pT -module configuration allows to get a rough estimate

of the pT of the candidate track associated to a pair of hits,

from the separation in φ of the two hits. This is done by

exploiting, as a result of the Lorentz force acting on the

charged particle, the relationship between the track transverse

momentum, the angle of impact on the detector, the radial

distance of the latter from the origin of tracks and the intensity

of the magnetic field in the tracking volume, which is parallel

to the z axis in the CMS reference frame.

Only pairs of hits in opposite layers, whose relative posi-

tions are compatible with a charged particle, originating from

the center of the detector and having a pT larger than a

preset threshold (in this case 2 − 3 GeV/c), are streamed

off-detector to the L1 track reconstruction electronics. Pairs

Fig. 2. Comparison of expected trigger rates at 140 pile-up collisions
for single muons, as a function of the muon pT trigger threshold, for
pseudorapidity |η| < 1.1 (full dots) and 1.1 < |η| < 2.4. The rates for
a trigger using only muon chamber information are shown in red, while the
rates for muons matched to L1 tracks are shown in black. Data from simulation
[2].

passing the threshold are denominated ”stubs”. Hits not

passing the mentioned selection, instead, are streamed off-

detector only upon receiving a L1 trigger signal. The pT -

module arrangement suppresses low-pT tracks – which make

up the bulk of tracks produced in a collision – bringing down

to an acceptable value the requirements in terms of output

bandwidth to the L1 track reconstruction electronics and of

corresponding processing power.

III. HOUGH TRANSFORM TRACK FINDER

We focus on a proposed implementation [5][6] of a track

reconstruction system using a Hough Transform [7] for finding

the tracks. A hardware demonstrator [8] is currently being built

to prove the feasibility of the concept and to study its behavior

with simulated events. This hardware demonstrator is built

from MP7 cards [9][10], which are generic stream processor

MicroTCA cards based on a Xilinx Virtex-7 XC7VX690T

FPGA, coupled to 72 input and 72 output 10.3125 Gb/s

optical links. A single Virtex-7 cannot contain the whole track

finding processor logic, therefore the demonstrator uses a num-

ber of MP7 cards, each implementing a part of the algorithm,

daisy chained via the optical links. It is expected that future

FPGA technology will allow us to fit one entire track finding

processor in one single chip. The Hough Transform method

is briefly described below.

In the region of CMS occupied by the silicon tracker the

magnetic field is uniform and normal to the rφ plane, so

charged particles describe circular trajectories in this plane.

For tracks having a transverse momentum in the range of

interest (pT > 3 GeV) the arc described by the trajectory

in the tracker volume has a small deviation from a straight

line, so the following approximation is valid:

φT ≃ φstub − C · (q/pT ) ∗ (rstub − T ) (1)

where q/pT is the charge-to-transverse momentum ratio of

the track, C is a constant proportional to the magnetic field
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Fig. 3. An illustration of the Hough transform histogram, showing lines
corresponding to 5 stubs crossing in the bins highlighted in red, where
candidate tracks are found.

~B, φstub and rstub are the azimuthal angle and radius from the

origin of the stub (i.e. the proton bunch collision point in the

rφ plane), T is a reference radius (in our case T = 58 cm) and

φT is the azimuthal angle at which the track would cross the

reference circle at radius T . This relationship can be rewritten

by choosing rT = rstub − T to get Eqn. 2:

c = φstub −m ∗ rT (2)

where m is proportional to q/pT and c is equal to φT . It

is possible then to represent each stub (Hough Transform) as

a line described by this linear relation in the (m, c) plane. A

collection of stubs consistent with a single track yields lines

that cross at a single point in the (m, c) plane.

In the track finder, a histogram in the (m, c) plane counts

the number of stubs in each bin consistent with the pT estimate

from the dual layer of the tracker pT module. The latter

consistency check is referred to as “bend filtering” and reduces

the number of fake tracks found by the histogram. A candidate

track is found in a (m, c) bin when it contains 5 or more stubs

from different layers of the tracker, as shown in Fig. 3. The

cut at 5 layers is a compromise between the number of tracker

layers producing stubs when traversed by a track (there are 6

layers in the barrel region and 5 endcap disks on each side)

and the rate of false positives.

Three firmware architectures have been proposed to imple-

ment the Hough Transform histogram:

• A systolic array, where each cell of the array represents

a cell in the histogram and performs the calculation

independently from other cells.

• A pipelined design, where the calculation of all the pos-

sible (m, c) pairs for each stub is performed in advance,

and then used as an address to fill the cells of the

histogram.

• An architecture (the “daisy-chained” design) sharing

commonalities with the other two, where columns of the

histogram perform the calculation from the result of the

previous one and pass stubs to the next column, such that

the columns are arranged in a pipelined daisy chain.

All three firmwares are built from the composition of

multiple instances of a limited number of basic blocks. Since

an emulator is needed to study the expected behavior of each

firmware, an emulation framework that enables the composi-

tion of several emulated firmware blocks was developed. This

framework, written in C++ language, has been named CIDAF,

which stands for CIrcuit DAta Flow and is being presented for

the first time in this manuscript.

In the context of the track reconstructor system demonstra-

tor, emulators developed using CIDAF are now complement-

ing the previously existing emulators of the Hough Transform

track finder, which were implemented in CMSSW (the latter is

the analysis software used by the CMS experiment), by adding

the capability of studying the firmware state at each clock

cycle and replicating the exact firmware behavior specified

in the firmware VHDL source, such as in the case of buffer

overflows.

IV. THE CIDAF EMULATION FRAMEWORK

CIDAF is based on a C++ library that provides facilities

to help the composition of individual instances of emulated

blocks, taking care of the clocking of the blocks to evolve

their internal state and the transfer of data between blocks.

It is currently built using CMake [11], as this build system

is flexible, available on a variety of platforms and supported

by many IDEs. Development and testing is currently being

performed under Linux x86 64 (gcc 4.7 and later, clang 3.2

and later) and Mac OSX (clang 3.2 and later).

CIDAF is independent from other packages apart from

CMake and BOOST – the latter of the two being kept as a

dependence to give the possibility to use it in future revisions.

The reduced dependence from other packages allows it to

be easily included in other applications such as detector and

trigger simulations. Preliminary tests showed that CMSSW can

be linked against CIDAF and can run an instance of a dummy

emulator in its main process.

A. Component Clocking

The Clockable abstract base class describes the interface

that a class emulating a component needs to define in order to

be clocked by the CIDAF clocking system, this consists of one

method named Tick(). The latter specifies what a component

should do to evolve its internal state upon receiving a clock

tick. Clockable also has facilities to register and unregister to

clocks, which are described below.

The Clock class contains a set of pointers to Clockable

objects that have been registered into it, and calls their Tick()

method when its own Tick() method is called. There can be an

arbitrary number of clocks in CIDAF, giving full flexibility if

a particular clocking order of the components is required by

the emulated design.

CIDAF’s clock system allows a clock-accurate emulation

of the behavior of a firmware, a feature that has been demon-

strated while emulating the Hough Transform track finder (see

below).





A C++ class modeling the behavior of a individual firmware

component should have at least three methods. One method

emulates the asynchronous processes of the component, an-

other method emulates the synchronous processes and a third

one manages the evolution of signals whose state changes in

the synchronous process.

Each signal declared in the HDL has two corresponding

variables in the C++ code. One of these variables represents

the current state of the signal and the other one represents

the state in which the signal will be after the end of the

synchronous process. Decoupling the current and the “next”

state removes the need of finding the correct order of state

changes of the variables arising from their inter-dependence.

After the execution of the class method modeling the syn-

chronous process, a dedicated method takes care of copying

the state of the “next” variables into the “current” ones.

The described arrangement does not apply to signals whose

state change is defined in the asynchronous parts of the

HDL. In that case, the state changes of variables representing

the signals should follow the correct order of dependence

and assignments to “next” variables should be followed by

immediate commits of its value to the “current” variables.

Keeping the different treatment of variables in two separate

methods (the synchronous and the asynchronous one) makes

the source code more tidy and less error-prone.

VI. RESULTS

The output from the emulator and the output from the

Hough Transform daisy chain firmware, running on an MP7

card, have been compared for different samples of simulated

Monte Carlo events. The agreement between firmware and em-

ulation in terms of average number of tracks found per event

is shown in Table I. The small discrepancy – probably the

result of a different rounding behavior between the emulator

and the firmware in a calculation – is being investigated and

is expected to be fixed soon.

Sample avg. # tracks / event
(1000 evts each) fw emu

Muons + PU0 5.442 5.442
Muons + PU140 215.350 215.339

Top Pair + PU140 321.999 321.537
Top Pair + PU200 874.799 873.926

TABLE I
AVERAGE NUMBER OF TRACKS PER EVENT FOUND BY THE HOUGH

TRANSFORM “DAISYCHAIN” FIRMWARE RUNNING ON AN MP7 CARD AND

BY ITS EMULATION DEVELOPED USING CIDAF. THE AVERAGES ARE

SHOWN FOR MUON AND TOP PAIR SIMULATED EVENT SAMPLES IN

DIFFERENT PILE-UP COLLISION (PU) REGIMES.

In Fig. 6 the number of tracks found in different η regions

is compared in the case of the emulator and of the firmware.

Similarly, in Fig. 7 a comparison is shown for the number of

tracks found per unit of (q/pT ), and in Fig. 8 for the number

of stubs per candidate track. The plots show an almost perfect

agreement between the behavior of the firmware and that of

the emulator.

VII. SUMMARY

The importance of track reconstruction at trigger level 1 for

the Phase 2 upgrade of CMS has been introduced. One of the

proposed demonstrator implementations uses MP7 processing

cards, based on Xilinx Virtex 7 FPGAs, and employs a Hough

Transform to find candidate tracks. A hardware demonstrator

for the system is being prepared and emulators for it are

needed, in order to compare the expected behavior with the

one observed from running the firmware.

The need for a C++ emulation of the firmware behavior

prompted the development of a framework – CIDAF – sim-

plifying the development of firmware emulators. The main

features of CIDAF have been presented and the results from

an emulation of the latest, optimized, firmware for the Hough

Transform track finder have been shown. The agreement

between tracks found by the emulator and those found by

the hardware is remarkable, and proves that the emulation

represents correctly the behavior of the firmware.

Concerning future plans, CIDAF is currently being em-

ployed to write emulators for the other components of the

demonstrator chain, and it is expected that a full emulation

chain will be available by the time all the demonstrator

elements will be commissioned and ready to be tested. Ad-

ditionally, documentation for CIDAF is being prepared at the

present time, in view of a future release of its source code in

the public domain.
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Fig. 6. Comparison between firmware running on FPGA (dots) and emulation
(blue line) of the number of tracks found per pseudorapidity region for
1000 simulated events in the following samples: Single muon with 0 pile-
up collisions (top), single muon with 140 pile-up collisions (upper center), tt̄
events with 140 pile-up collisions (lower center), tt̄ events with 200 pile-up
collisions (bottom).
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Fig. 7. Comparison between firmware running on FPGA (dots) and emulation
(blue line) of the number of tracks found per unit of q/pT for 1000 simulated
events in the following samples: Single muon with 0 pile-up collisions (top),
single muon with 140 pile-up collisions (upper center), tt̄ events with 140 pile-
up collisions (lower center), tt̄ events with 200 pile-up collisions (bottom).
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Fig. 8. Comparison between firmware running on FPGA (dots) and emulation
(blue line) of the number of stubs per candidate track for 1000 simulated
events in the following samples: Single muon with pile-up collisions (top),
single muon with 140 pile-up collisions (upper center), tt̄ events with 140 pile-
up collisions (lower center), tt̄ events with 200 pile-up collisions (bottom).


