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Abstract. Thousands of pavement images are collected by road authorities daily for condition monitoring surveys. 

These images typically have intensity variations and texture non-uniformities making their segmentation 

challenging. The automated segmentation of such pavement images is crucial for accurate, thorough and expedited 

health monitoring of roads. In the pavement monitoring area, well known texture descriptors such as gray-level co-

occurrence matrices and local binary patterns are often used for surface segmentation and identification. These, 

despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws 

texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to 

partition the feature space,  limiting the human subjectivity in the process. Data classification, hence image 

segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well 

with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both 

MATLAB and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly 

showing the advantages of the proposed method. Furthermore, the OpenCV based segmentation shows a 100% 

increase in processing speed when compared to the fastest algorithm available in literature.   
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1 Introduction 

The total length of paved and unpaved roads, in the world is about 64 million kilometers, 

according to a 2013 estimate [1]. The proportion of paved roads is constantly on the increase, 

mainly due to infrastructure development in the developing countries, and around 65 % of the 

total road network is paved according to a 2009 estimate of the World Bank [2]. Using the two 
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data sources, it is safe to say that at least 40 million kilometers of the current world’s roads are 

paved. Highway-related construction in Europe involves $110 billion of public money alone 

yearly, whereas it costs the US government $80 billion annually [3]. In addition to this, there is a 

considerable amount of private investment as well.  

With the ever increasing economic activity all around the world, the burden on the transportation 

infrastructures is continually on the rise. While rural areas possess the possibility of expanding 

their traffic handling capacity - either by performing pavement widening or creating parallel 

routes - the urban and semi-urban settings present a real problem for expansion. Meanwhile, the 

urban roads also have to handle constantly increasing traffic volumes.  

Condition surveys are vital for pavement deterioration monitoring, hence for the maintenance of 

a healthy road network. These assessments, performed manually in the first part or 20
th

 century, 

have seen considerable amount automation in the last few decades due to the millions of 

kilometers of roads needing inspection [1-3]. The automation of the surveys has not only enabled 

the upkeep of the growing road networks of the rural geographies, it has also facilitated the 

increasing frequency at which the urban roads have to be monitored owing to more traffic.    



3 

 

Fig. 1 Two images from a pavement survey of Fugro Roadware. 

 

Automated pavement assessments use a wide range of sensors, such as cameras, X-rays and load 

cells, to evaluate the structural condition of roads [4]. Visual surveys, using 2D imaging cameras 

and 3D laser profilers, are very common in the transportation infrastructure management. Many 

pavement distresses, such as cracks, potholes and raveling [5], can be detected by automated 

visual surveys. Although 3D imaging systems are extensively employed to measure pavement 

distresses, 2D camera based systems provide a low-cost method to assess pavements, hence are 

incorporated into many industrial systems, e.g. ARAN7000 from Fugro Roadware and LRIS 

from Pavemetrics, Inc. This work exclusively treats the segmentation of images obtained by 2D 

industrial camera systems. Figure 1 shows two such images obtained in a survey by Fugro 

Roadware, Canada. Four distinct surface types are identified in the two images in Figure 1.  
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There are a number of pavement types; construction materials and methods vary between 

countries and even between different regions within a country. Asphalt (bituminous) and 

concrete are two of the most common pavement construction materials. Asphalt pavements 

consist of aggregates held together by a binder, whereas concrete roads are made up of cement, 

aggregates and sand. Different pavement material bases give rise to different types of pavement 

distresses, in general [5]. In addition, conditions evaluating distress severity, such as treatment or 

failure thresholds, are tightly coupled to the base material and the method of construction of a 

pavement. This dependency mainly arises from different strengths and failure mechanisms 

associated with the materials and methods of different pavement types. Hence, automatically 

differentiating the underlying material type from survey images is very critical for pavement 

monitoring and analysis. The automated differentiation of various surfaces is known as 

segmentation in image processing, where a collection of pixels with similar properties are 

assigned a common label [6]. Image segmentation can be extended, with some level of human 

intervention, to detect various objects in the pavement images, such as a concrete surface, white 

markers, grass, etc (this process is known as image classification).   

It was said earlier that certain distresses are found only in specific pavement types, e.g. asphaltic 

or concrete. In addition, detection algorithms are distress-specific. Given these facts, if the 

homogenous regions in the images can be classified, the detection algorithms for such distresses 

can efficiently limit their search to the precise areas identified, saving computational effort. The 

computational savings will be enormous considering that millions of kilometers of roads are 

imaged every year. Moreover, distresses that span a considerable area of the pavement, like 

potholes and raveling, present the possibility of direct detection with region segmentation and 

identification. For example, potholes that usually have a rubble-like material will be segmented 
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as a unique region by the procedure, making its direct detection, and possibly, measurement 

feasible. Another advantage of segmenting different pavement types is that it will lead to 

detecting the wear of individual surfaces, which is a measure of the quality of pavement. 

Furthermore, a pavement image segmentation procedure can also assess structurally non-

important defects such as worn-off white line markings. In this regard, the maintenance of 

pavement markings constituted a $2 billion industry in the US in 2007 [7], making their 

assessment key. Since pavement markers are supposed to have well defined geometries, like 

straight lines, arrows, and numbers painted in constant thickness lines, a pavement image 

segmentation scheme can be extended to evaluate their condition as well.  

As hundreds of kilometers of roads are surveyed every day, the volume of acquired imagery is 

very large. This necessitates the application of a fast algorithm for the segmentation, and 

preferably classification, procedure. In this paper, Laws texture energy measures [8] are utilized 

to generate features in order to segment and classify pavement images obtained by a road 

monitoring system. An unsupervised data partitioning algorithm, called k-means clustering 

(a.k.a. C-means clustering), is used on a number representative images to identify the feature 

values corresponding to various surfaces in the images [9]. Subsequently, another technique, 

known as the k-nearest neighbors algorithm, is employed to classify any new images.   

2 Literature Review 

2.1 Image Segmentation 

Image segmentation is essentially the process where objects are separated from the background 

and from one another [10]. For pavement images there is no background, in general, unless the 

imaging system also captures the ground, grass, etc at the side of the roads. In addition, there are 
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no objects with definitive shapes in these images. Hence, the target here is to identify different 

homogeneous regions in the image, such as different pavement material, line markings and 

defects. In addition, any other surfaces types, such as gravel and grass that belong to the non-

paved areas may also appear in images and thus have to be clearly segmented and identified.  

A number of methods are used to segment images. Thresholding, edge-based methods and  

region growing techniques are some of the commonly used procedures [11]. Particular 

techniques exist for color images [12].  The list of all employed texture segmentation techniques 

is exhaustive.  A region based approach using texture properties is exploited in this paper. 

Among the number of approaches used for region based segmentation [13], the current method 

uses a predetermined size of smaller regions to calculate texture properties leading to the 

identification of different surfaces. 

2.2 Texture Analysis 

Texture is defined as “something consisting of mutually related elements”, leading to the 

consideration of a group of pixels than a single pixel [10]. The fundamental collection of pixels 

intensities that represent the surface of an entity are known as a texture primitive or texture 

element. The underlying idea of texture analysis is that by identifying texture primitives, the 

underlying surface can be distinguished or identified.  Statistical, structural, model based and 

transform approaches are available for texture segmentation [14]. Gray level co-occurrence 

matrices (GLCMs) are the most commonly used statistical texture features. Wavelets and Gabor 

are also some of the transforms frequently employed to differentiate textures. Fractal and 

stochastic analysis fall under the category of model based texture discrimination methods [15]. 

Laws texture energy measures is a statistical technique [8]. The list of analysis methods is 
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exhaustive. For an extensive treatment of texture analysis methods, refer to a review such as that 

of Materka and Strzelecki [14]. 

2.3 Pavement Image Segmentation 

Although pavement monitoring involves imaging millions of kilometers of roads every year, 

there has not been  much effort on automated image analysis to segment different road regions. 

Pavement crack detection has been the main concentration of the research community [16]. In 

another detailed work [17], many texture descriptors, including Laws feature energy measures, 

have been experimented with to detect pavement distresses and wear directly but it only  treats 

images acquired under very controlled conditions with uniform image intensities across the 

images. However, the paper does not consider image segmentation [17]. In relation to pavement 

segmentation, Kapur entropy has been applied to segment aggregates from the binder layer under 

laboratory conditions, without giving much emphasis to identifying different surfaces 

encountered in real roads [18]. Pavement markings have been specifically segmented in other 

works, using edge pairing and neural networks [19], using Laws features in conjunction with 

Gabor filter [20] and edge detection with beamlets [21]. However, none of the three works do 

consider segmenting different regions of pavement images uniquely.  

Few other works have considered the segmentation of different road surfaces. 3D stereo images 

have been used to classify 9 different road surface types under laboratory conditions [22]. 

However, 3D images usually contain richer information when compared to 2D intensity images, 

in general, hence the surface classification is easier with the former. 3D imagers also have the 

advantage of not being affected by shadows, intensity variations in their fields of view. The 

laboratory conditions also provide very stable lighting conditions, in general, setting up an ideal 

scenario for analysis. In a similar work, images of pavement, taken under two different lighting 
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conditions, known as dual light inspection, have been to identify various surfaces and distress 

types [23]. However, imaging the same road area, under two different lighting conditions, from 

the same vantage point is practically difficult to achieve from a mobile inspection platform. As 

such, this technique does not appear to be feasible for industrial scale monitoring.   Multi-

resolution GLCMs have been used in conjunction with a hierarchical process for surface 

classification [24]. GLCM have been used with self-organizing map to segment two pavements 

consisting of different sized aggregates [25].  A multitude of features, including GLCM, local 

binary patterns, and Fourier components are employed with a support-vector machine to classify 

10 different types of pavements [26]. In an extensive reporting, they also report on the 

processing overheads; for a 255x255 pixels image, their algorithm with the best classification 

performance takes about 125 ms to segment [26].  

For a domain that must be among the top few in terms of the amount of images collected for 

analysis, and given the fact that very fast analysis is necessary to conclude on the condition of 

the pavement, very few research studies exist for pavement image segmentation. Moreover, most 

of the works, as seen earlier, are centered on GLCM, not the fastest texture discrimination 

technique available, as seen later in this paper. 

3 Theory 

This section explains some of the image processing and classification techniques on which the 

current paper is based. 

3.1 Adaptive Histogram Equalization 

For industrial images acquired under natural or in not-so-well controlled lighting conditions, 

some form of pre-processing is necessary. For the left image in Figure 1, one can easily see that 
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in the bands belonging to single exposure photographs, which are stitched together to form the 

whole image, intensity variations are found from top to bottom along the transverse direction of 

the road. The top part and the side areas of the image slices are generally darker in intensity and 

do not have enough contrast. Contrast limited adaptive histogram equalization (CLAHE) that 

operates on small image regions, is used to enhance the contrast throughout the images [27]. 

3.2 Feature generation: Laws Texture Energy Measures 

Laws texture feature measures were introduced, in the early 80s, as a fast texture analysis 

technique [8].  Laws proposed 3x3, 5x5, and 7x7 convolution masks for texture discrimination. 

The mask size of 5x5 is used in this work. The Laws masks, 2D kernels, are constructed out of a 

set of one-dimensional kernels of five elements. These kernels, based on primitive geometric 

features found in images, are given below. 

                     L5 (Level)    =  [  1   4   6   4   1]   

                     E5 (Edge)     =  [ -1  -2  0   2   1] 

                      S5 (Spot)     =  [ -1   0  2   0  -1] 

                       R5(Ripple)   =  [  1  -4  6  -4   1]                        (1)                   

 

Using these are four kernels, 16 masks of 5x5 sizes are formed: L5L5, L5E5, L5S5, L5R5, E5L5, 

E5E5, E5S5, E5R5, S5L5, S5E5, S5S5, S5R5, R5L5, R5E5, R5S5 and R5R5. For example, 

L5S5 is formed as follows.   
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                                                    (2) 

Based on the 16 generated Laws masks, nine masks are derived, where some of the similar 

masks are averaged to obtain a single mask. They are: L5E5/E5L5, L5S5/S5L5, L5R5/R5L5, 

E5E5, E5S5/S5E5, E5R5/R5E5, S5S5, S5R5/R5S5, and R5R5, respectively [28].  

The histogram equalized images are then convolved with the 9 masks as defined earlier. For each 

mask, the convolved image is split into square tiles of size n. The value for n is varied as 

described in the RESULTS section. For an image tile, the average energy is estimated using the 

following formula. 

                            (3) 

where I is the tile image. In his original work, Laws proposed a pixel based energy calculation, 

where for each pixel, a square region around it was used to estimate the energy corresponding to 

the pixel [8]. Then a pixel based image segmentation was performed. In contrast, a region based 

(i.e. over a squared tile) energy estimation is used here, reducing the resolution of segmentation. 

This window based method help speed up the processing. 

3.3 Training Data Clustering: k-Means Algorithm 

Being a popular data clustering method, the k-means algorithm partitions a collection of n data 

vectors xj, with j = 1,…,n, into k clusters Gi, with i = 1,…,k [9]. The algorithm determines a 

cluster center  for each group Gi by minimizing the inter-cluster sum of squares J, defined in 

terms of the Euclidean distance, as given in Equation (4) below.   
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     (4) 

Where, Ji is the cost function within cluster Gi. Instead of the Euclidean distance, any other 

general distance measure such as Hamming and cosine can also be used between xj and ci [9].  

The partitioned clusters are usually denoted by a k x n membership matrix U, whose elements uij 

are 1 if the cluster Gi contains the j
th

 data vector and 0 otherwise.  It must be noted that data 

clustering by the k-means algorithm, which is an unsupervised procedure. In this work, training 

data is clustered by the k-means algorithm. 

3.4 Data Classification: k-Nearest Neighbor Algorithm 

k-Nearest Neighbor (k-NN) search is a data classification algorithm. This assumes no prior 

knowledge about the distribution of data [29]. It comes under the category of lazy learning 

algorithms, hence one of the slow classification schemes.  For a query (i.e. data) that must be 

classified, and given a set of labelled data points with class information, the k-NN algorithm 

searches for the k nearest data points, for example in an Euclidean sense. Other distance 

measures such as Chebyshev and Minkowski are also used. Once the k nearest neighbors are 

known, the algorithm determines the predominant class among the neighbors and assigns the 

same class to the query data. 
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Fig. 2 Algorithm 

 

4 Implementation 

The images used in this work are obtained from Fugro Roadware, Canada. Fugro Roadware used 

its Pave2D system to obtain the images [30]. The Pave2D system consists of two monochrome 

cameras synchronized with two strobe lights and the setup is an add-on to Fugro Roadware’s 

ARAN mobile pavement survey system. The cameras have synchronized high-speed shutters, 

ensuring sharp images without blur at high vehicle speeds. The strobe lights provide artificial 

lighting much higher in intensity than natural sunlight. The strobe lights that are optimally 

angled to take care of the curvature of roads across the width, ensure a good level of evenness in 
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intensity in the images obtained. The images obtained by the cameras are stitched by the Pave2D 

system in real-time. In total, 500 images, each of which have 2428 x 4916 pixels, are used in the 

study. An image represents approximately an area of 4.2 x 8.5 m
2
 of pavement surface. Hence, 

the resolution of the images is roughly 1.7 mm per pixel.  

The algorithm is programmed in MATLAB R2011b. Another equivalent algorithm is also coded 

in C++ with Visual Studio 2013 using the OpenCV library functions. The algorithm is 

prototyped in MATLAB, due to its shorter development time. Once the algorithm is finalized in 

MATLAB, it is also translated into C++. The final algorithm is shown in Figure 2. 

 

Fig. 3 Original image, left, and after adaptive histogram equalization. 

Training is performed with 48 images that are selected to represent the different surface types 

encountered in the set of 500 images. Initially the images are histogram equalized with the 

adapthisteq function of MATLAB. In OpenCV, a CLAHE object is created and used for the 
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purpose. The training images are then convolved with the 9 Laws texture energy masks. 

Although in some works local smoothing is applied to the image before it is convolved with the 

9 Laws masks [31], for road images used in this work it is found that the discriminating power of 

the masks are lost by smoothing.  In OpenCV, custom masks are designed for the Laws filter and 

the library function filter2D is used. The convolved images are then split into tiles and the 

average energy of the tiles are calculated. Hence, for each image tile in the original image, there 

will be 9 average energies from each of the Laws masks. This results in a 9 dimensional feature 

space. 

The data of the 48 training images are clustered using the k-means algorithm. The function 

kmeans of MATLAB is used for this purpose; an OpenCV function of the same name executes 

the C++ code. The k-means function is also passed with the anticipated number of classes in the 

data. The class data of the normal paved surface will be predominant when compared with other 

classes such as lane markings. Hence, there could be more chances of the existence of many 

near-identical feature instances and this will slow down the k-NN process unnecessarily. To 

avoid the overhead, the size of the clustered class containing the least amount of samples is 

chosen as the size for all other classes as well; a random selection is used to select the fewer 

class samples. 

The segmentation phase consists of generating the 9 features for the tiles of each image, and then 

comparing the values with the k-means clustering data, by the k-nearest neighbor search and 

finding out which cluster points are close to it. Function knnsearch and object KNearest are 

employed in MATLAB and OpenCV, respectively, to search for closest neighbors. In this work, 

5 nearest neighbors of a given data point are considered to determine its class. The code also 
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plots the class segmentation of the incoming images in different colors. Figure 2 shows the 

flowchart of the processes involved. 

5 Results 

 

A pavement image and its adaptive histogram equalized images are shown in Figure 3. The 

image is split into 32 x16 tiles, in the vertical and horizontal directions respectively for histogram 

equalization. Figure 3 illustrates the higher consistency achieved after histogram equalization. 

However, the stripes that are in the original images, resulting from the stitching of single 

exposure camera acquisitions, are still visible in the adaptive histogram equalized image on the 

right in Figure 3. 

 

Fig. 4 Two original images and class segmentations with 3, 5 and 8 class number k-means clustering arranged along 

columns (window size: 20 x 20 pixels) 
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Fig. 5 Two tested images and their underlying pavement surfaces 

The images processed by the CLAHE algorithm are convolved with the 9 Laws masks. Different 

tile sizes, n, are experimented with for feature generation. Window sizes of less than 30 x 30 

pixels are found to be effective, mainly due to the presence of thin lines, such as crack sealings, 

as shown in Figure 1. A manual inspection of 500 images from Fugro showed that there could be 

around 8 distinct classes of surfaces. Different number of classes are tested for the k-means-

clustering of the feature data of the 48 training images.  
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Figure 4 shows the segmentation achieved for two tested images with the class sizes of 3, 5, and 

8 together with the original image. The classes are given different colors and the classified tiles, 

out of k-NN search, are plotted with a border of 5 pixels in the respective class color. According 

to Figure 4, the 2
nd

 column of images, which result from the 3-classes k-means clustering, the 

class of surfaces shown in green color refer to a regular road surface, in the figure above, and to 

parts of crack sealing in the image directly below. This creates confusion. The 8-class, k-means 

clustering allocates too many classes to a single pavement surface, as shown in the last column 

of detections in Figure 4. Hence, the 5-class clustering shown in the third column of images in 

Figure 4 is chosen for classification, even though it sometimes allocates two different classes to 

what appears like the same surface. The dual allocation could be mainly due to the texture 

variations, which may be emanating from the higher wear and tear on the wheel tracks. 

The two images classified have different underlying pavement surfaces as shown in the exploded 

view in Figure 5. The image on the left has a concrete type pavement surface, whereas the image 

on the left is of asphalt. The surface on the left in Figure 5 is the dual classes denoted by blue, 

predominantly, and dark gray colors in the top detection of the third column of Figure 4. The 

class shown in the red color border is at the edge between two single exposure images that are 

stitched together. The asphalt surface, shown on the right in Figure 5, is detected and shown in 

pink and dark gray colors, hence two classes, as given in the bottom picture of the third column 

of Figure 4. There has to be a method to distinguish the mixed two classes, for both type of 

surfaces, and detect the underlying surfaces as a homogenous, final detection. This makes post-

processing a necessity.    
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5.1 Post Processing 

The class denoted by dark gray color is found among both type of road surfaces, i.e. pink – 

asphalt or blue - concrete, shown in the exploded views in Figure 5.  This misdetection is 

eliminated by considering smaller regions of the image. Every image on which class 

segmentation is performed is divided into rectangular areas by an 8 x 2 grid (i.e. vertical x 

horizontal). For every rectangular area a comparison is performed to determine if the detections 

are predominantly asphalt (pink) or concrete (blue). Then, the dark gray colored class windows 

are replaced with the larger of the two classes.  

 

Fig. 6 Two tested images and their final segmentations. 
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The final detections for the pavement images shown in Figure 4 are given in Figure 6. In Figure 

6, the white lines belong to the class plotted in green. The crack fillings (the irregular, wavy, 

black lines in the middle of the saved surface) and darker surfaces are generally detected as red, 

with lighter shades given in blue color (that of concrete pavement). This covers all the classes of 

the detection algorithm. Figure 7 shows two worst detections with their original images. In the 

first detection, due to the nature of the post-processing operation, one window in the 8 x 2 grid is 

detected to have the class concrete, predominantly, even though the road surface is asphaltic. A 

similar, but worst case scenario in the bottom images in Figure 7, where most of the rad area is 

detected as concrete due to post-processing, whereas the original detections have predominantly 

pink colored tiles (i.e. the asphalt class), in the middle of the image mixed with dark gray tiles. 

However, these worst scenario detections, among the total images are found to be few. 

6 Discussion 

Although k-means clustering is performed with 5 classes, due to the ambiguous nature of the 

class represented in dark gray color, only 4 classes remain after the post-processing. Table I 

provides the precision and accuracy achieved for randomly selected 31 images from the set of 

the 500 images provided by Fugro Roadware; the 48 images used for training are excluded from 

the selection. 
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Fig. 7 Two images, their initial and post-processed detections showing the worst-case detections by the scheme 

Table 1 Precision and recall values for surface classes. 

Class 

Percentage valuesa 

Precision Recall 

Asphalt (pink) 99 96 

Concrete (blue) 83 95 

White lines (green) 100 82 

Crack sealing (red) 94 86 

                                                 a. Based on manual tile counting to the accuracy of ± 1% 
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The precision and recall values are calculated by counting the number of detected tiles, 

manually, and by using the following formulae. 

           

                Recall  

When compared to the precision values for the class asphalt, concrete’s precision values are 

lower due two reasons. The first is because there are many more images of asphaltic surface than 

concrete. Secondly, there are a few asphaltic surfaces that result in erroneous detections as 

shown in Figure 7, giving rise to the number of false positives, which occupy a larger proportion 

owing to the comparatively smaller true positives for the class concrete.  There have been no 

false positives for the class of white lines, leading to a precision of 100%. Many of the white line 

segments (e.g. the one in the south-east corner of the top images in Figure 7)  are not detected 

correctly, owing to the fact that they are worn out and expose the underlying material structure, 

confusing the detection. This fact is reflected in more false negatives, and consequently in 82% 

recall. Some of the crack sealing is also not prominent due to due wear, resulting in a lower 

recall of 86% when compared to the predominant classes. 

5.1 Processing Speed 

Even though the detection rates are very good, fast processing is of utmost importance for 

pavement images as explained earlier. Here, the processing overheads in both MATLAB and 

OpenCV/C++ are provides for comparison. OpenCV is usually faster and thus sets an upper limit 

on what can be achieved on a PC, in the absence of any parallel programming options. However, 

MATLAB processing times are also given as the research community extensively uses this 
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platform. The feature generation for the image size of 2428 x 4916 pixels takes approximately 

10.6 seconds, when executed from within MATLAB on a PC with an Intel Core-i7 processor at 

2.10 GHz with RAM of 8 GB. The same operation consumes about 7.2 seconds in OpenCV 

when executed on the same PC. This clearly shows the advantage of OpenCV. 

 

Fig. 8 Performance comparison of with the work of Gavilan et al. [26]  

The time of taken for the execution of k-means clustering does not have to be considered as it is 

an off-line process only performed in the training phase. The k-NN algorithm on the generated 

training data for an image that is tested consumes 6.0 seconds in MATLAB. OpenCV takes 

around 4.5 seconds for the same. Hence, the overall classification time for an image is around 

16.6 seconds in MATLAB. Whereas, an image is segmented in 11.7 seconds with OpenCV.    

For a 255 x 255 pixel image, a classification time of 125 ms has been achieved [26]. Even 

though the hardware details of the processing platform has not been provided in the work of 

Gavilan et al.[26], linearly extrapolating their processing time to the current image size of 2428 x 

4916 pixels, results in an equivalent time of 22.9 seconds. Figure 8 shows a comparison of the 

performance of the algorithm reported here with that of Gavilan et al.[26], resulting in 27.5% and 

48.9% reductions in processing time, for MATLAB and OpenCV respectively.  
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5.1 Time Taken for Feature Generation: A Realistic Comparison   

In the absence of the specifics of the processing platform used by Gavilan et al. [26], the 

comparison of processing times provided in Figure 8 does not make a fair assessment on the 

merits or demerits of the Laws filters. For a more realistic evaluation, GLCM features, as 

generated by Gavilan et al.[26], are generated to compare the improvement in feature generation 

times with Laws texture features. In addition to GLCM, Gavilan et al.[26] also used features 

such as local binary patterns with some Fourier transform parameters. However, the times to 

generate additional features are disregarded and only the core features, i.e. GLCM, are 

considered here for comparison. Hence, this evaluation here provides a conservative estimate of 

the advantages of the Laws method. MATLAB is solely used for this activity. 

Table 2 Time taken to generate features. 

Feature generation 

method 

 

Processing time (s) 
Comparison to Laws 

features  

Laws 10.6 1 

GLCM, 3-bit 684.0 64.5 

GLCM, 4-bit 686.8 64.8 

GLCM, 5-bit 765.6 72.2 

GLCM, 6-bit 1112.4 104.9 

 

GLCM requires the resampling of the intensity level of the image for which the features have to 

be generated. The resampling is performed to cut down on the processing time, as processing an 

8-bit image (the industry norm) will prolong the processing time. The disadvantage with the 

resampling is that it reduces the sharpness of the image and texture identification becomes 

difficult if the resampling is very coarse (e.g. 2 or 4 bits or intensity levels). This crucial detail of 
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intensity resampling is not reported in the work of Gavilan et al.[26]. Hence,  a number of 

reduced bit levels are evaluated here for feature generation. Four angular directions and four 

pixel distances have been used for feature generation, resulting in the final feature measures of 

homogeneity, entropy, contrast and energy [26]. For the images used in this work, a MATLAB 

program is made to estimate the features using MATLAB’s in-built function graycomatrix. The 

processing times needed to perform the calculations for different bit levels and the reduction 

achieved by the Laws method adopted in this paper are given below in Table II (data is for an 

image size 2428 x 4916 pixels). 

According to Table II, a time of 684.0 seconds achieved for the least possible bit level (best case 

scenario) translates to a time of 3700 ms, instead of the 125 ms presented in Gavilan et al.[26] 

for an image size of 255 x 255 pixels. This type of time reductions are only possible in 

embedded hardware platforms. This fact leads to the belief that the processing of Gavilan et al. 

[26] was performed on a dedicated hardware platform (e.g. an FPGA), and not on a regular PC. 

This assumption is highly likely as the paper is about an real-world road inspection system 

armed with line scan cameras, lasers and so on. Nevertheless, Table II illustrates the power of 

Laws texture energy masks over the commonly employed feature generation method of GLCM 

in terms of processing times. 

7 Conclusions and Future Work 

This work has demonstrated the use of Laws texture energy measures in conjunction with k-

means clustering and k-nearest neighbor search for the use of pavement classification in a 

minimally supervised manner. The human intervention is mainly in terms of selecting the 

number of appropriate classes of surfaces found in the set of images. On top of the precision and 

recall values in high 80-100%, the speed of processing has been increased by ~ 100% on a PC 
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when compared to the state-of-the art that probably uses dedicated processors [26] (again this 

paper provides evidence for this reasoning).  

The next stage of the project aims to implement the proposed algorithm on a PC with GPU 

(graphics processing unit) processing enabled. For k-NN search, a GPU implementation has been 

shown to run 400 times faster than the equivalent MATLAB implementation [32]. As about 35% 

of the overall processing time is consumed by the k-NN search, this implementation will at least 

bring the overall time of 16.6 seconds per image down by 30%.  As k-NN is known to be a slow 

algorithm, it makes much sense to use the parallel computing architecture of a GPU.  The feature 

generation can also be expected to become faster by the highly parallel processing of a GPU 

further reducing the time consumed. In this regard, it is planned to use the openCL 

functionalities available with the newest OpenCV versions. openCL (Open Computing 

Language) is an open source framework for writing programs on PCs making use of both their 

CPUs and GPUs, enabling highly parallel computation possible. By tapping into OpenCV’s GPU 

extensions, the final aim is to bring the processing down to a few seconds on a PC, making it 

suitable for processing the thousands of road images collected every day. 
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