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Abstract Ki-67 and RepoMan have key roles during mitotic exit. Previously, we showed that Ki-

67 organizes the mitotic chromosome periphery and recruits protein phosphatase 1 (PP1) to

chromatin at anaphase onset, in a similar manner as RepoMan (Booth et al., 2014). Here we show

how Ki-67 and RepoMan form mitotic exit phosphatases by recruiting PP1, how they distinguish

between distinct PP1 isoforms and how the assembly of these two holoenzymes are dynamically

regulated by Aurora B kinase during mitosis. Unexpectedly, our data also reveal that Ki-67 and

RepoMan bind PP1 using an identical, yet novel mechanism, interacting with a PP1 pocket that is

engaged only by these two PP1 regulators. These findings not only show how two distinct mitotic

exit phosphatases are recruited to their substrates, but also provide immediate opportunities for

the design of novel cancer therapeutics that selectively target the Ki-67:PP1 and RepoMan:PP1

holoenzymes.

DOI: 10.7554/eLife.16539.001

Introduction
Mitotic exit comprises a complex series of events that includes sister chromatid segregation, mitotic

spindle disassembly, nuclear-envelope re-assembly and chromosome decondensation

(Wurzenberger and Gerlich, 2011). How these events are coordinated during mitotic exit is still an

open question. The emerging picture is that exiting mitosis requires the specific engagement and acti-

vation of protein phosphatases, including ser/thr phosphatase protein phosphatase 1 (PP1)

(Funabiki and Wynne, 2013; Rosenberg et al., 2011). While PP1 exhibits broad specificity, it acts in a

highly specific manner by forming stable complexes, known as holoenzymes, with a host of regulatory

proteins that direct PP1 activity towards specific substrates and localize PP1 to specific regions of the

cell (Hendrickx et al., 2009; Bollen et al., 2010; Peti et al., 2013; Peti and Page, 2015; Choy et al.,

2014; O’Connell et al., 2012). A detailed understanding of how key PP1 regulators bind and direct

PP1 activity during distinct stages of the cell cycle is still largely missing.

Ki-67 is widely used as a prognostic marker for many cancers (Dowsett et al., 2011; Lin et al.,

2016; Sobecki et al., 2016), yet for decades, its molecular function remained largely unknown.

Recently, it was shown that one role of Ki-67 is to function as a ‘DNA surfactant’, preventing individ-

ual chromosomes from collapsing into a single chromatin mass upon nuclear envelope disassembly

by binding directly to the surface of chromatin (Cuylen et al., 2016). A second recently discovered
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function is that it binds and regulates the activity of PP1 during mitosis using the canonical PP1 RVxF

small linear motif (SLiM) (Booth et al., 2014). The only other protein that exhibits any sequence simi-

larity with Ki-67 near its RVxF motif is RepoMan (recruits PP1g onto mitotic chromatin at anaphase,

also known as cell division cycle associated 2, CDCA2), a nuclear-specific protein that was discovered

for its ability to specifically recruit PP1g to chromosomes at anaphase onset and, like Ki-67, is upre-

gulated in many cancers (Trinkle-Mulcahy et al., 2006; Vagnarelli, 2014). During mitotic exit, PP1,

in particular PP1g (PP1 isoforms include PP1a, PP1b, PP1g and PP1g2; � 85% identity between iso-

forms), is essential for histone dephosphorylation, nuclear-envelope reassembly and chromatin

remodeling (Qian et al., 2011; Vagnarelli et al., 2006; Wurzenberger et al., 2012; Qian et al.,

2013; Vagnarelli et al., 2011). These PP1g-specific processes are mediated largely by the Ki-67:

PP1g and RepoMan:PP1g holoenzymes. Two key unresolved questions are how do these regulators

assemble mitotic phosphatases and how are these interactions dynamically regulated in both space

and time? Answers to these questions will provide novel opportunities for the development of Ki-67:

PP1 and RepoMan:PP1 specific therapeutics for cancer. In this report, we demonstrate how Ki-67

and RepoMan form mitotic exit phosphatases, how they distinguish between distinct PP1 isoforms

and how the assembly of these two holoenzymes is dynamically regulated by Aurora B kinase during

mitosis.

Results

The Ki-67 and RepoMan PP1 interaction domain
Ki-67 (3256 aa) and RepoMan (1023 aa) bind PP1g to form isoform-specific holoenzymes

(Booth et al., 2014; Trinkle-Mulcahy et al., 2006). Previously, we showed that these proteins

exhibit sequence similarity in only a very short region, of about 40 residues (Figure 1A)

(Booth et al., 2014). This region includes the canonical RVxF SLiM that is critical for PP1 binding

(505RVSF508, Ki-67; 392RVTF395, RepoMan; more than 70% of PP1 regulators contain the RVxF SLiM)

(Trinkle-Mulcahy et al., 2006; Vagnarelli et al., 2011). Because recent efforts to understand how

PP1 activity is directed by its >200 distinct regulators has revealed that residues outside the RVxF

motif are also essential for PP1 holoenzyme formation and function (Peti et al., 2013;

O’Connell et al., 2012; Terrak et al., 2004), we reasoned that this entire region was critical for PP1

binding. Using isothermal titration calorimetry (ITC), we showed that Ki-67496-536 and RepoMan383-

423 bind PP1g7–323 with a 1:1 stoichiometry and with nearly equivalent affinities (Figure 1B, left; Fig-

ure 1—figure supplement 1; KD = 193 ± 16 nM and 133 ± 5 nM; respectively; all ITC experiments

are summarized in Table 1). We also showed that extending this domain does not enhance binding

(Table 1). Finally, NMR spectroscopy experiments with RepoMan confirmed that all residues in this

conserved region interact with PP1 (Figure 1—figure supplements 2,3). Together, these data sug-

gest that Ki-67496-536 and RepoMan383-423 bind PP1 using identical mechanisms and that this con-

served region, which extends beyond the RVxF SLiM, constitutes the full PP1 interaction domain.

The discovery of a novel PP1 interaction SLiM, the KiR-SLiM
The Ki-67/RepoMan residues C-terminal to the canonical RVxF motif are not present in any other

PP1 regulator whose holoenzyme structure is known, suggesting these regulators bind PP1 using a

novel mechanism. To identify this mechanism, we determined the crystal structures of the Ki-67496-

536:PP1g7–308 and RepoMan383-423:PP1g7–308 holoenzymes complexes to 2.0 Å and 1.3 Å, respectively

(Figure 1C,D; Figure 1—source data 1). As predicted by the ITC and NMR studies, Ki-67 and Repo-

Man bind PP1 using an identical mechanism. Namely, Ki-67 and RepoMan form a classical b-hairpin

on the top of PP1 that extends from the PP1 RVxF binding pocket towards the PP1 N-terminus and

then back again (Figure 1D; ~2600 Å of buried surface area). The structures also show that two

established PP1-specific SLiMs—the RVxF-SLiM (Egloff et al., 1997), 505RVSF508Ki-67/
392RVTF395RM

and the FF-SLiM (O’Connell et al., 2012), 515EL516Ki-67/
402EV403

RM —bind directly to PP1 in the

RVxF and FF binding pockets (Figure 1D). However, as predicted, the Ki-67/RepoMan residues

C-terminal to these SLiMs (aa 517–535/404–422) also bind PP1 and do so in a manner never

observed for any other PP1 regulator (Figure 1D,E). Residues F517Ki-67/F404RM and P523Ki-67/

A410RM are anchored to PP1g via two hydrophobic pockets while multiple residues in Ki-67/Repo-

Man bind the side chains of R74PP1, Y78PP1 and Q294PP1 via polar and salt bridge interactions. This
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Figure 1. The RepoMan:PP1 holoenzyme complex. (A) Cartoon depicting Ki-67 and RepoMan domains. The only region of homology between the two

proteins is indicated in blue. The sequences corresponding to the homologous regions are shown below, with conserved residues highlighted in grey.

Ki-67 residues that interact directly with PP1 are underlined. The sequences corresponding to the RVxF and FF SLiMs (blue highlight) and the newly

discovered KiR-SLiM (orange) are shown. (B) left, binding isotherm of Ki-67496-536 with PP1g7–323 (KD, 193 ± 16 nM; the KD of the corresponding domain

of RepoMan383-423 with PP1g7–323 is 133 ± 16 nM); right, binding isotherm of the DKiR-SLIM, RepoMan383-404, with PP1g7–323 (KD, 661 ± 160 nM). (C)

Crystal structure of the Ki-67:PP1g holoenzyme. PP1g is in grey and Ki-67496-536 is in pink with the 2Fo–Fc electron density map contoured at 1s (2.0 Å);

no electron density was observed for Ki-67 residues 496–503 (pink dotted line) and 536. PP1 residues in green correspond to PP1 secondary structure

elements helix A’, loop 1 and helix B. (D) Close-up of the Ki-67 (pink) and RepoMan (blue) interaction with PP1. Ki-67 residues 503–516 and RepoMan

residues 390–403 bind the PP1 RVxF and FF binding pockets (cyan surface; the Ki-67 and RepoMan RVxF and FF SLiM residues are labeled and in

italics). Ki-67 residues 517–535 and RepoMan residues 404–422 bind the newly defined KiR-SLiM binding pocket (beige surface). The black dotted line

highlights the area shown in E. (E) The hydrophobic and polar interactions between Ki-67 (pink sticks) and PP1g (grey sticks; surface). Hydrogen bonds

and salt bridge interactions are indicated by dotted lines with the interacting residues labeled. (F) HMMER-derived sequence logo of the Ki-67/

RepoMan PP1 binding domain, with the KiR-SLIM highlighted in beige (hydrophobic residues, black; acidic residues, red; basic residues blue; glycine/

serine/threonine, green; asparagine/glutamine, pink).

DOI: 10.7554/eLife.16539.002

The following source data and figure supplements are available for figure 1:

Source data 1. Data collection and refinement statistics.

DOI: 10.7554/eLife.16539.003

Figure supplement 1. Isothermal titration calorimetry of Ki-67 and RepoMan with PP1.

Figure 1 continued on next page
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orders PP1g L1 (Figure 1C), a loop that is generally more dynamic in most free PP1 and PP1 holoen-

zyme structures as evidenced by its higher B-factors and less well-defined electron density. Although

F517Ki-67/F404RM are the most buried residues in both complexes, mutating this residue to an ala-

nine does not negatively affect RepoMan function (Figure 1—figure supplement 4).

Because these residues are critical for binding (removing them decreases the affinity ~five-fold;

Figure 1B, right), we termed this novel PP1 interaction SLiM the KiR-SLiM (Ki-67-RepoMan SLiM).

The general KiR-SLiM motif, FDxxLP(P/A)N(T/S)PL(R/K)(R/K)Gx(T/S)P was determined using HMMER

(Figure 1F) (Finn et al., 2015). Critically, a subsequent search of the UniProtK/Swiss-Prot database

(de Castro et al., 2006) using the most degenerate version of the KiR-SLiM identified only Ki-67 and

RepoMan proteins. This demonstrates that, unexpectedly, only these two PP1 regulators likely use

the KiR-SLiM interaction surface on PP1.

Figure 1 continued

DOI: 10.7554/eLife.16539.004

Figure supplement 2. The PP1 binding domain of RepoMan is an intrinsically disordered protein (IDP).

DOI: 10.7554/eLife.16539.005

Figure supplement 3. Identification of the RepoMan minimal PP1 binding domain.

DOI: 10.7554/eLife.16539.006

Figure supplement 4. RepoMan F404A variant (RepoManFA) behaves like wt RepoMan (RepoManwt) in cells.

DOI: 10.7554/eLife.16539.007

Table 1. Isothermal titration calorimetry (ITC) measurements.

Titrant PP1 KD (nM) repeats

Ki-67496–536

wt a7-330 779 ± 142 3

wt g7-323 193 ± 16 2

wt a7-330
Q20R 199 ± 46 3

wt g7-323
R20Q 2239 ± 124 3

S507D g7-323 4706 ± 228 2

RepoMan303–515

wt g7-323 77 ± 12 4

RepoMan348–450

wt g7-323 124 ± 6 4

T394D g7-323 3895 ± 265 3

RepoMan383–441

wt g7-323 117 ± 10 3

RepoMan383–423

wt a7-330 778 ± 65 4

wt g7-323 133 ± 5 3

wt g7-308 123 ± 24 4

wt a7-330
Q20R 267 ± 28 3

wt g7-323
R20Q 683 ± 91 3

wt a7-330
Q20R/R23K 232 ± 26 4

RepoMan383–404

wt g7-323 661 ± 160 3

DOI: 10.7554/eLife.16539.008
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The specific recruitment of PP1g by Ki-67 and RepoMan
How PP1 regulators selectively recruit specific PP1 isoforms to distinct substrates remains an impor-

tant, open question. PP1 has three isoforms—a, b and g—that differ primarily in the last ~30 residues

of their C-termini; because of this, it has been generally assumed that regulators that bind preferen-

tially to one isoform interact directly with the C-terminus (Takagi et al., 2014). In vivo, Ki-67 and

RepoMan bind specifically to the b- and g-isoforms, but not the a-isoform, of PP1 (Booth et al.,

2014; Trinkle-Mulcahy et al., 2006; Vagnarelli et al., 2011). As PP1g is recruited more efficiently

than PP1b (Booth et al., 2014), we focused our study on the PP1a and PP1g isoforms. We confirmed

this in vitro using ITC, which showed that the affinity of both Ki-67496-536 and RepoMan383-423 for

PP1a7–330 is ~four–six-fold weaker than for PP1g7–323 (Table 1, Figure 1—figure supplement 1). To

elucidate the molecular basis of isoform selectivity, we first tested the role of the PP1g C-terminal

residues. Deleting the last 15 residues of PP1g had no impact on binding (Table 1, Figure 1—figure

supplement 1). We then tested if RepoMan binds PP1a differently by determining the structure of

the RepoMan383-441:PP1a7–300 holoenzyme (2.6 Å; Figure 1—source data 1). The structures are

identical (backbone RMSD = 0.22 Å), demonstrating that the isoform selectivity is due to one or

more of the six amino acid differences in the PP1 catalytic domain (residues 7–300). Only two of

these differing residues are located near the Ki-67/RepoMan:PP1 interface, Arg20/Gln20 (g/a) and

Lys23/Arg23 (g/a; Figure 2A). We generated variants of both isoforms in which one or both of these

residues were mutated to that of the other (PP1gR20Q, PP1gR20Q/K23R and PP1aQ20R) and determined

their affinities for Ki-67496-536 and RepoMan383-423 using ITC (Figure 2B; Table 1; Figure 1—figure

supplement 1). The change of only a single amino acid, R20/Q20, switches PP1g into a ‘PP1a’-like

isoform (PP1gR20Q; KD = 2239 ± 124 nM; ten fold weaker binding) and PP1a into a ‘PP1g’-like iso-

form (PP1aQ20R; KD = 199 ± 46 nM; similar binding to that of PP1g). Although R20 does not interact

with Ki-67 or RepoMan directly, it confers selectively through its interactions with PP1 which order

the L1 loop. Namely, the Arg20 sidechain forms a salt bridge with PP1 residue Glu77 and makes a

planar stacking interaction (cation/p interaction) with Phe81. Neither interaction is possible with

Q20, as the side chain is both uncharged and too short. Thus, only in PP1g is this pocket ordered

and readily available for binding, which allows for the isoform specific interaction of Ki-

67 and RepoMan.

To confirm that PP1a and PP1g residue 20 defines isoform specificity in vivo, we used immunoflu-

orescence microscopy. Transiently expressed GFP-PP1g was enriched at anaphase chromosomes

(Figure 2C,D; Figure 2—figure supplement 1). In contrast, GFP-PP1a showed a more diffuse distri-

bution. Changing this single residue in either PP1g (PP1gR20Q) or PP1a (PP1aQ20R) reversed this

localization (Figure 2C,D; Figure 2—figure supplement 1). To confirm that the observed isoform

specificity was due to a direct interaction between Ki-67/RepoMan and PP1, we used GFP-Trap and

tethering experiments. GFP-traps showed that GFP-PP1g and GFP-PP1aQ20R bind endogenous Ki-67

in prometaphase-arrested cells, while GFP-PP1a and GFP-PP1gR20Q bind much more weakly

(Figure 2E). Similar GFP-traps showed that GFP-PP1g, GFP-PP1b and GFP-PP1aQ20R bind both

endogenous and ectopically expressed RepoMan in prometaphase-arrested cells, while GFP-PP1a,

GFP-PP1gR20Q and GFP-PP1bR19Q bind much more weakly (Figure 2—figure supplement 1).

Similarly, tethering experiments showed that a GFP:LacI fusion of Ki-67301-700 wt or RepoMan wt

results in the recruitment of co-expressed RFP-PP1g to a LacO array that is integrated at a single

locus in DT40 chicken cells. In contrast, RFP-PP1gR20Q fails to localize, demonstrating it no longer

binds Ki-67 and RepoMan (Figure 2F,G, Figure 2—figure supplement 2). Remarkably, the R20Q

mutation abolishes PP1g localization as effectively as mutating the canonical RVxF motif in RepoMan

to RATA. Together, these data reveal that the isoform specificity of Ki-67 and RepoMan is not

defined by residues in the PP1 C-terminus, but instead by a single residue in the PP1 catalytic

domain, R20/Q20 (g/a). This is a fundamental result, as it demonstrates that regulator-specific iso-

form selectively is not only achieved through interactions with the C-terminus, but also through inter-

actions with the structured catalytic domain.

Dynamic regulation of PP1g recruitment to chromosomes by Aurora B
Kinase
Unlike PP1a, the localization of PP1g changes dramatically during mitosis, with the bulk of PP1g

relocalizing to chromosomes at anaphase onset. This relocalization is dependent on its ability to
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Figure 2. Ki-67/RepoMan isoform specificity is defined by PP1 residue 20. (A) Overlay of PP1 from the Ki-67496-536:PP1g7–308 (magenta:yellow),

RepoMan383-423:PP1g7–308 (blue:orange) and RepoMan383-423:PP1a7–300 (lavender:pink) complexes. R20 (PP1g), Q20 (PP1a), E77 (PP1a/PP1g ) and F81

(PP1a/PP1g ) are shown as sticks. (B) Cartoon illustrating the PP1 variants generated for this study; colored as in A. The resulting KD values of Ki-67 and

RepoMan titrated with the different PP1 variants are shown. (C) Subcellular distributions of GFP-PP1 fusions. HeLa cells were transfected with the

Figure 2 continued on next page
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bind effectively to Ki-67 and RepoMan (Figure 2C, Figure 2—figure supplement 2) (Trinkle-

Mulcahy et al., 2003; Trinkle-Mulcahy et al., 2001) and is regulated by phosphorylation

(Figure 3A) (Vagnarelli et al., 2006; Qian et al., 2013; Vagnarelli et al., 2011; Qian et al., 2015).

For example, RepoMan S400, T412 and T419 are phosphorylated by CDK1-cyclin B

(Vagnarelli et al., 2011; Qian et al., 2015). Mutating these residues to phosphomimetics inhibits

PP1g binding, as evidenced by the inability of EGFP-RepoMan3D to pull-down PP1g from non-syn-

chronized HEK293T cells [see Figure 3F in Qian et al. (2015)] and an inability of RFP-PP1g to local-

ize to the LacO locus when co-expressed with GFP:LacI-RepoMan3D (Figure 3B). Notably, the

identity of the kinase that phosphorylates the S507Ki-67 and T394RM sites, both of which have been

identified in proteomic screens (Dephoure et al., 2008; Nousiainen et al., 2006), has remained elu-

sive. Because Aurora B kinase is redistributed from centromeres to the spindle midzone at anaphase

onset and because the S507Ki-67 and T394RM sequences match canonical Aurora B kinase phosphory-

lation motifs (Kettenbach et al., 2011), we reasoned that these residues are phosphorylated by

Aurora B kinase. Using in vitro phosphorylation assays coupled with NMR spectroscopy and mass

spectrometry, we showed that both S507Ki-67 and T394RM (Figure 3C, Figure 3—figure supplement

1) are phosphorylated directly by Aurora B kinase. Furthermore, mutating S507Ki-67 and T394RM to a

phosphorylation mimetic (Ki-67496-536
S507D/RepoMan348-450

T394D) profoundly weakens their interac-

tions with PP1 (~25-30-fold reduction in affinity; Table 1). Finally, the expression of GFP-LacI-Repo-

ManT394D results in a significant reduction of the recruitment of RFP-PP1g to the LacO locus

(Figure 3B), i.e., to a level that is nearly identical to that observed for GFP-LacI-RepoManRATA and

GFP-LacI-RepoMan3D. These data demonstrate that phosphorylation by Aurora B kinase in (pro)

metaphase inhibits PP1g binding to Ki-67 and RepoMan and, as a consequence, significantly contrib-

utes to prevent their premature recruitment to chromosomes.

Conclusion
Our study builds on previous work to reveal how two mitotic exit phosphatases (Ki-67:PP1 and Repo-

Man:PP1) are assembled and recruited to their cellular targets, how they selectively bind the g-iso-

form of PP1 and how the assembly of these holoenzymes is controlled by Aurora B kinase

phosphorylation. These are key advances as, until this work, there was essentially no molecular data

on mitotic phosphatase assembly and function. Our data now explains why the phosphorylation of

RepoMan at three distinct sites (S400, S412 and S419) by Cdk1 inhibits PP1 binding (Qian et al.,

2015). Namely, it is similar to the mechanism by which Aurora B kinase inhibits Ki-67:PP1 and Repo-

Man:PP1 holoenzyme formation. All three residues, like the Aurora B targets S507Ki-67 and T394RM,

are part of the PP1 interaction motif and their phosphorylation blocks the interaction with PP1,

which, in turn, prevents the premature targeting of PP1 to chromatin. This regulation of holoenzyme

assembly is critical as the premature targeting of PP1 to chromosomes leads to an increase in chro-

mosome misalignment and a weakened spindle assembly checkpoint (Qian et al., 2015). In contrast,

the expression of a PP1-binding mutant of RepoMan in HeLa cells results in extensive cell death,

Figure 2 continued

indicated GFP-PP1 variants. The green fluorescence was visualized by confocal microscopy. Anaphase chromosomes were detected using Hoechst and

live imaging. (D) Quantification of the relative enrichment of PP1 variants on chromosomes in C. Average and standard deviation are shown (T-test

using Welch’s correction). (E) HEK293T cells were transfected with GFP-PP1 variants. The micrococcal-nuclease-treated cell lysates from nocodazole

arrested cells were used for GFP trapping. The traps were processed using immunoblotting. (F) Chicken DT40 cells carrying a LacO array inserted in a

single locus were transfected with GFP:LacI or GFP:LacI:Ki-67301-700
wt constructs (green) and with RFP:PP1wt or RFP:PP1R20Q (red). GFP:LacI:Ki-67301-700

wt

and RFP:PP1wt both accumulate at the LacO array, however the RFP:PP1R20Q fails to accumulate together with GFP:LacI:Ki-67wt at the locus. Scale bar 5

mm. (G) Quantification of the enrichment of PP1 at the locus from the experiment in (F) (Mann-Whitney test) between: 1) GFP:LacI/RFP:PP1wt and GFP:

LacI:Ki-67wt/RFP:PP1wt or 2) GFP:LacI:Ki-67wt/RFP:PP1wt and GFP:LacI:Ki-67wt/RFP:PP1R20Q.

DOI: 10.7554/eLife.16539.009

The following figure supplements are available for figure 2:

Figure supplement 1. RepoMan and Ki-67 isoform specificity is defined by PP1 residue 20 throughout the cell cycle.

DOI: 10.7554/eLife.16539.010

Figure supplement 2. PP1 residue 20 is also critical for tethering by RepoMan.

DOI: 10.7554/eLife.16539.011
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demonstrating the importance of the RepoMan-PP1 interaction for cell viability (Trinkle-

Mulcahy et al., 2006).

This work also expands the diversity of SLiMs used by PP1 regulators to bind PP1 and demon-

strates a novel mechanism by which isoform selectivity is achieved in PP1 holoenzymes, a question

that has been under investigation for the last 20 years. That is, Ki-67 and RepoMan selectively

assemble with PP1g because the KiR-SLiM distinguishes between a single residue in PP1: Arg20PP1g
and Gln20PP1a. Finally, since the KiR-SLiM is present in just two regulators, the newly discovered KiR-

SLiM binding pocket defines a novel surface on PP1 that is targetable for the development of drugs

that inhibit only 1% of the distinct PP1 holoenzymes in the cell (2 of ~200) (Hendrickx et al., 2009).

This is of profound interest because both Ki-67 and RepoMan are highly upregulated in multiple can-

cers (Dowsett et al., 2011; Vagnarelli, 2014). Targeting unique regulator binding pockets is a

Figure 3. Aurora B kinase phosphorylates Ki-67 S507 and RepoMan T394 to inhibit holoenzyme formation. (A) Stereo image of Ki-67 (magenta) and

RepoMan (blue) bound to PP1 (grey) with serine and threonine residues shown as sticks and labeled. The ‘x’ residues of the RVxF motifs, S507Ki-67 and

T394RM, are shown and highlighted in red. (B) Chicken DT40 cells carrying a LacO array inserted in a single locus were transfected with different GFP:

LacI:RepoMan constructs (green) and with RFP:PP1 (red) and the enrichment of PP1 at the locus was calculated. Both the CDK-1 (3D) and the Aurora B

(RVDF) phosphomimetic mutants cause a significant decrease in PP1 accumulation at the locus although less pronounced than the RATA mutant (Mann-

Whitney test). (C) Overlay of the 2D [1H,15N] HSQC spectrum of Ki-67496-536(black) and Aurora B kinase phosphorylated Ki-67496-536(red). Peaks that

correspond to S507 (black) and phosphorylated pS507 (red) are shown by an arrow.

DOI: 10.7554/eLife.16539.012

The following figure supplement is available for figure 3:

Figure supplement 1. RepoMan RVxF residue T394 is specifically phosphorylated by Aurora B kinase.

DOI: 10.7554/eLife.16539.013
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powerful approach as we recently discovered that the newly discovered LxVP SLiM substrate interac-

tion surface is a well-known drug target site in the ser/thr phosphatase Calcineurin (Grigoriu et al.,

2013). Given the diversity of unique interactions that are now being revealed between PSPs and

their plethora of regulators, it is now clear that these novel, unique protein:protein interaction sites,

especially that defined by the KiR-SLiM, provide immediate opportunities for the design of novel,

highly specific therapeutics.

Materials and methods

Cloning and expression
The coding sequences of human Ki-67496-536, RepoMan303-515, RepoMan348-450, RepoMan383-441
and RepoMan383-423 were sub-cloned from pGEX4-T3-Ki-67 (Booth et al., 2014) and pEGFP-Repo-

man (Qian et al., 2013) into the pET-M30-MBP vector containing a N-terminal his6-tag followed by

maltose binding protein (MBP) and a TEV (tobacco etch virus) protease cleavage site. Escherichia

coli BL21 (DE3) RPIL cells (Agilent; Lexington, MA) transformed with the expression vector for Ki-67

(or RepoMan) were grown at 37˚C in LB broth containing selective antibiotics. The proteins were

overexpressed by the addition of 1 mM isopropylthio-b-D-galactoside (IPTG) when the optical den-

sity (OD600) reached 1.2 and the cultures were grown for an additional 18–20 hr at 16˚C. Cells were

harvested by centrifugation (6000 xg, 12 min, 4˚C) and stored at �80˚C until purification. Ki-67S507D

and RepoManT394D mutant was generated using the QuikChange site-directed mutagenesis kit (Agi-

lent). The RepoMan383-404 peptide was synthesized and HPLC purified (>95% purity; Biosynthesis,

Inc.; Lewisville, TX). PP1g7-323
R20Q, PP1g7-323

R20QR23K and PP1a7-330
Q20R were generated using the

QuikChange site-directed mutagenesis kit (Agilent). Uniformly 15N and 15N/13C labeled Repo-

Man348-450 and 15N labeled Ki-67496-536 was produced using the same procedure except that the

cells were grown in M9 minimal medium supplemented with 15N ammonium chloride (1 g/L) and/or
13C-D-glucose (4 g/L) as the sole nitrogen and carbon sources, respectively. Cloning, expression and

purification of PP1a7–330, PP1a7–300 and PP1g7-323 was performed as previously described

(Choy et al., 2014; O’Connell et al., 2012). Cloning, expression and purification of PP1g7–308 was

performed following the methods described in Choy et al. (2014).

Protein purification
E. coli cell pellets containing Ki-67 (or RepoMan) were resuspended in ice-cold lysis buffer (50 mM

Tris pH 8.0, 0.5 M NaCl, 5 mM imidazole, 0.1% Triton X-100 containing EDTA-free protease inhibitor

tablet [SigmaAldrich; St. Louis, MO]), lysed by high-pressure cell homogenization (Avestin C3

Emulsiflex; Canada) and centrifuged (35,000 xg, 40 min, 4˚C). The supernatant was loaded onto a

HisTrap HP column (GE Healthcare; Boston, MA) pre-equilibrated with 50 mM Tris pH 8.0, 500 mM

NaCl and 5 mM imidazole (Buffer A) and was eluted using a linear gradient of Buffer B (50 mM Tris

pH 8.0, 500 mM NaCl, 500 mM imidazole). Fractions containing the protein were pooled and dia-

lyzed overnight at 4˚C (50 mM Tris pH 8.0, 500 mM NaCl) with TEV protease to cleave the His6-MBP

tag. The cleaved protein was incubated with Ni2+-NTA beads (GE Healthcare) and the flow-through

collected. The protein was then heat purified at 95˚C (600 rpm, 15 min), the supernatant collected

and concentrated and, in a final step, purified using size exclusion chromatography (SEC; Superdex

75 26/60 [GE Healthcare]) pre-equilibrated in ITC Buffer (20 mM Tris pH 8, 500 mM NaCl, 0.5 mM

TCEP, 1 mM MnCl2) or NMR Buffer (20 mM Tris-acetate pH 6.5, 150 mM NaCl, 0.5 mM TCEP). Frac-

tions were pooled, concentrated and stored at �20˚C. RepoMan constructs were purified identically.

To purify the Ki-67496-536:PP1g7–308, RepoMan383-423:PP1g7–308 and RepoMan383-441:PP1a7–300

holoenzyme complexes, a cell pellet expressing PP1g7–308 was lysed in PP1 Lysis Buffer (25 mM Tris

pH 8.0, 700 mM NaCl, 5 mM imidazole, 1 mM MnCl2, 0.01% Triton X-100), clarified by ultracentrifu-

gation and immobilized on Ni2+-NTA resin. Bound His6-PP1 was washed with PP1 Buffer A (25 mM

Tris pH 8.0, 700 mM NaCl, 5 mM imidazole, 1 mM MnCl2), followed with a stringent wash containing

10% PP1 Buffer B (25 mM Tris pH 8.0, 700 mM NaCl, 250 mM imidazole, 1 mM MnCl2) at 4˚C. The
protein was eluted using 100% PP1 Buffer B and purified using SEC pre-equilibrated in ITC Buffer

(20 mM Tris pH 8, 500 mM NaCl, 0.5 mM TCEP, 1 mM MnCl2). Peak fractions were incubated over-

night with TEV protease at 4˚C. The cleaved protein was incubated with Ni2+-NTA beads

(GE Healthcare) and the flow-through collected. The flow-through was combined with excess Ki-
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67496-536 (or RepoMan383-423, RepoMan383-441) concentrated and the complex purified using SEC

(pre-equilibrated in crystallization buffer: 20 mM Tris pH 8, 500 mM NaCl, 0.5 mM TCEP). Fractions

containing the holoenzyme complex were concentrated (RepoMan383-423:PP1g7–308, 8.4 mg/mL; Ki-

67496-536:PP1g7–308 6.4 mg/ml) and subsequently used for crystallization trials.

NMR measurements
All NMR spectra were recorded on a Bruker Avance II 500 spectrometer equipped with a TCI HCN

z-gradient cryoprobe (298 K). NMR samples were prepared in NMR buffer (20 mM Tris-acetate pH

6.5, 150 mM NaCl, 0.5 mM TCEP) containing 10% (v/v) D2O. The sequence-specific backbone

assignment for RepoMan348-450 (0.25 mM concentration) was obtained by analyzing 2D [1H,15N]

HSQC, 3D HNCA, 3D HN(CO)CA, 3D HNCACB, 3D CBCA(CO)NH and 3D (H)CC(CO)NH (tm= 12

ms) spectra. All spectra were processed using NMRPipe (Delaglio et al., 1995) and analyzed using

SPARKY (Goddard and Kneller, 2004).

Crystallization and structure determination
The Ki-67496-536:PP1g7–308 holoenzyme crystallized in 1.9 M Sodium Malonate pH 4.0 (hanging drop

vapor diffusion at 4˚C). Crystals were cryo-protected by a 60 s soak in mother liquor supplemented

with 40% glycerol and immediately flash frozen. Data for the Ki-67496-536:PP1g7–308 holoenzyme crys-

tal structure were collected to 2.0 Å at beamline 12.2 at the Stanford Synchrotron Radiation Light-

source (SSRL) at 100 K and a wavelength of 0.98 Å using a Pilatus 6M PAD detector. The Ki-67496-

536:PP1g7–308 crystal data was processed using XDS (Kabsch, 2010), Aimless (Evans and Murshu-

dov, 2013) and Truncate (French and Wilson, 1978). The data was analyzed using phenix.xtriage

and the intensity statistics suggested merohedral twinning (twin fraction of 0.48) with the space

group of P61 and twin law h, -h-k, -l. The structure was solved by molecular replacement using

Phaser (McCoy et al., 2007) as implemented in PHENIX (Zwart et al., 2008) (PDBID 5INB was used

as the search model). The model was completed using iterative rounds of refinement in PHENIX

(McCoy et al., 2007) and manual building using Coot (Emsley et al., 2010) (Ramachandran statis-

tics: 95.05% favored, 4.95% allowed). The final structure was refined in PHENIX with the twin law.

The RepoMan383-423:PP1g7–308 complex crystallized in 1 M Sodium Malonate pH 4.3 (sitting drop

vapor diffusion method at 4˚C). Crystals were cryo-protected by a 30 s soak in 1 M Sodium Malonate

pH 4 supplemented with 40% glycerol and immediately flash frozen. Data for the RepoMan383-423:

PP1g7–308 holoenzyme crystal structure were collected to 1.3 Å at the beamline 12.2 at Stanford Syn-

chrotron Radiation Lightsource (SSRL) at 100 K and a wavelength of 0.98 Å using a Pilatus 6M PAD

detector. The RepoMan383-423:PP1g7–308 crystal data were processed using XDS (Kabsch, 2010),

Aimless (Evans and Murshudov, 2013) and Truncate (French and Wilson, 1978). The structure was

solved by molecular replacement using Phaser (McCoy et al., 2007) as implemented in PHENIX

(Zwart et al., 2008) (PDB ID 1JK7 (Maynes et al., 2001) was used as the search model). A solution

was obtained in space group P6122. The model was completed using iterative rounds of refinement

in PHENIX and manual building using Coot (Emsley et al., 2010) (Ramachandran statistics: 96.3%

favored, 3.7% allowed). The RepoMan383-441:PP1a7–300 holoenzyme crystallized in 100 mM Sodium

Malonate pH 4.0, 12% PEG 3350. Crystals were cryo-protected by a 30 s soak in mother liquor sup-

plemented with 30% glycerol and immediately flash frozen. Data were collected to 2.6 Å at the

National Synchrotron Light Source (BNL) Beamline X25 at 100 K and a wavelength of 1.1 Å using

Dectris pilatus 6M detector. Data were indexed, scaled and merged using HKL2000 0.98.692i

(Otwinowski and Minor, 1997). The structure was solved by molecular replacement using Phaser as

implemented in PHENIX (PDB ID 4MOV was used as the search model (Choy et al.,

2014; McCoy et al., 2007; Zwart et al., 2008). A solution was obtained in space group P212121.

The model was completed using iterative rounds of refinement in PHENIX (McCoy et al., 2007) and

manual building using Coot (Emsley et al., 2010) (Ramachandran statistics: 95% favored, 5%

allowed).

Isothermal titration calorimetry
His6-tagged-PP1 constructs (PP1a7–330, PP1g7–308, PP1g7–323, PP1g7-323

R20Q, PP1g7-

323
R20QR23K and PP1a7-330

Q20R) used for ITC were purified as follows. PP1 was lysed and purified

using Ni2+-affinity chromatography and SEC (pre-equilibrated ITC buffer, 20 mM Tris pH 8, 500 mM
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NaCl, 0.5 mM TCEP, 1 mM MnCl2). Ki-67 or RepoMan (30 mM to 40 mM) was titrated into PP1 (3 mM

to 4 mM) using a VP-ITC micro-calorimeter at 25˚C (Malvern; United Kingdom). Data were analyzed

using NITPIC, SEDPHAT and GUSSI (Scheuermann and Brautigam, 2015; Zhao et al., 2015).

In vitro phosphorylation
Aurora Kinase B (AuKB) was expressed and purified as a GST-tagged protein as previously described

(Qian et al., 2013). In-vitro phosphorylation of Ki-67496-536 or RepoMan348-450 was achieved by incu-

bation with AuKB at a molar ratio 20:1 in phosphorylation buffer (20 mM HEPES pH 7.5, 0.5 mM

EDTA, 2 mM DTT, 20 mM MgCl2 and 10 mM ATP). The reaction was allowed to proceed for 16 hr at

30˚C. Following incubation, the protein was concentrated and purified using SEC. The phosphoryla-

tion of both Ki-67496-536 and RepoMan348-450 was confirmed using ESI-MS.

RepoSLiM identification
HMMER (Finn et al., 2015) (using the rp75 UniProt database) identified proteins with sequences

similar to the RepoMan PP1-binding domain. 107 sequences were identified, spanning a diversity of

species, from human to Xenopus. WebLogo was used to generate the resulting logo. The Uni-

ProtKB/Swiss-Prot database was then scanned using ScanProsite (de Castro et al., 2006) using the

pattern F-D-x-x-[LMK]-P-[PA]-[NSDAI]-[TSA]-P-[LIV]-[RKQC]-[RK]-G-x-[TSIAL]-[PS] to identify proteins

that contain this motif, which resulted in the identification of only Ki-67 and RepoMan proteins.

Cell culture and RNA interference
HeLa Kyoto cells were maintained in DMEM supplemented with 10% FBS. DT40 cells carrying a sin-

gle integration of the LacO array (Vagnarelli et al., 2006) were cultured in RPMI1640 supplemented

with 10% FBS and 1% chicken serum. For RNAi treatments, HeLa cells in exponential growth were

seeded in 6 well plates with polylysine-coated glass coverslips and grown overnight. Transfections

were performed using Polyplus jetPRIME (PEQLAB; Germany) with the indicated siRNA oligos and

analyzed 48 hr later as previously described after 3 hr nocodaole arrest (Vagnarelli et al., 2006). For

the rescue experiments HeLa cells at 50% confluence were transfected with 400 ng of plasmid DNA

and 50 nM of siRNA oligonucleotides and analyzed 48 hr post-transfection after 3 hr nocodaole

arrest. Transient transfections for DT40 were conducted as previously described (Qian et al., 2013).

For quantification of the enrichment at the Laci locus, cells were fixed with paraformaldehyde 24 hr

after transfection.

Live imaging
HeLa cells were seeded in a 4-Chamber 35 mm Glass Bottom Dish with 20 mm microwell, #1 cover

glass (Cellvis) and transfected with X-tremeGENE 9 DNA Transfection Reagent (Roche) according to

manufacturer’s protocol. The DNA was stained with Hoechst 33,342 (Tocris; United Kingdom) for

live imaging. Confocal images were acquired with a Leica TCS SPE laser-scanning confocal system

mounted on a Leica DMI 4000B microscope, equipped with a Leica ACS APO 63X 1.30NA oil DIC

objective and a live-imaging chamber ensuring 37˚C and 5% CO2.

Indirect immunofluorescence and microscopy analyses
Cells were fixed in 4% PFA and processed as previously described (Rosenberg et al., 2011). 3D

data sets were acquired using a cooled CCD camera (CoolSNAP HQ2 firewire) on a wide-field micro-

scope (Eclipse Ti, NIKON) with a NA 1.45 Plan Apochromat lens. The data sets were deconvolved

with NIS-Element AR (NIKON). Three-dimensional data sets were converted to MIP in NIS-Element

AR, exported as TIFF files, and imported into Adobe Photoshop for final presentation.

Mutagenesis
RepoMan mutants were generated by GeneArt Site-Directed Mutagenesis system (Thermo Fisher

Scientific/Invitrogen; Waltham, Ma) using the plasmids GFP:RepoMan WT and GFP:RepoManT412A,

T419A and GFP:Laci:RepoMan. The following primer sequences were used:

Oligo resistant mutant:5’AAAGAGTCCGAGATGACTGACTAGTCCTGAAAGGAAGGTCTCAGCG

3’

Kumar et al. eLife 2016;5:e16539. DOI: 10.7554/eLife.16539 11 of 15

Research advance Biophysics and Structural Biology Cancer Biology

http://dx.doi.org/10.7554/eLife.16539


RepoMan 3A mutant: 5’TTGGAGAGGACTTAGCCCCGGAAGTGTTTGA3’ on GFP:RepoManT412A,

T419A oligo-resistant.

RepoMan F404A mutant: 5’TAAGCCCGGAAGTGGCTGATGAATCTTTGCC3’

GFP:RepoMan 3D: 5’TTGGAGAGGACTTAGACCCGGAAGTGTTTGA3’

GFP:Laci:RepoMan3D was generated by cloning the Laci sequence into XhoI/KpnI of GFP:

RepoMan3D

GFP:Laci:RepoManRVDF (T394D): 5’AAGAGGAAGAGAGTTGACTTTGGAGAGGACTTA3’ on GFP:

LAci:RepoMan

RFP:PP1gR20Q: 5’CGGCTGCTGGAGGTGCAAGGATCAAAACCAGGT3’

Quantification of the chromatin enrichment (prometaphase or
anaphase)
Images of prometaphases (or anaphase for the PP1g experiment) from transfected cells were

acquired, the 3D stacks were deconvolved and projected using MIP. A 10 � 10 pixel area contained

within the chromosomes was used to measure the total intensity of the signal. Three different meas-

urements per mitosis on different chromosomes and 3 different cytoplasmic areas were collected

and averaged. An area of the same size outside the cells was used to identify the background signal

in each image, and this value was subtracted from the measurement of the chromosome and cyto-

plasmic area. The GFP (or RFP for PP1g) intensity on the chromosomes was then normalized against

the cytoplasmic intensity. For quantification of PP1-binding at the LacO locus, images of interphase

transfected cells were acquired and the intensity of PP1 staining at the GFP spot was calculated rela-

tive to the average nuclear intensity. The 3-dimensional data sets obtained at the same exposure

were projected as mean intensities. A 12 � 12 pixel area containing the GFP spot was used to mea-

sure the total intensity of the signal. An area of the same size was used to identify the background

signal in each cell, and this value was subtracted from the measurement of the nuclear and spot

area. The data were analyzed using the Mann-Whitney U test.

Accession numbers
All NMR chemical shifts were deposited in the BioMagResBank (BMRB 25981). Atomic coordinates

and structure factors have been deposited in the Protein Data Bank (Ki-67:PP1g , PDBID 5J28; Repo-

Man: PP1g, PDBID 5INB; RepoMan:PP1a, PDBID 5IOH).
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