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Abstract 

Mobile wireless communication technology is a fast developing field and every day new 

mobile communication techniques and means are becoming available. In this thesis multi-

view video (MVV) is also refers to as 3D video. Thus, the 3D video signals through wireless 

communication are shaping telecommunication industry and academia. However, wireless 

channels are prone to high level of bit and burst errors that largely deteriorate the quality of 

service (QoS). Noise along the wireless transmission path can introduce distortion or make a 

compressed bitstream lose vital information. The error caused by noise progressively spread 

to subsequent frames and among multiple views due to prediction. This error may compel the 

receiver to pause momentarily and wait for the subsequent INTRA picture to continue 

decoding. The pausing of video stream affects the user's Quality of Experience (QoE).  

Thus, an error resilience strategy is needed to protect the compressed bitstream against 

transmission errors. This thesis focuses on error resilience Adaptive Intra Refresh (AIR) 

technique. The AIR method is developed to make the compressed 3D video more robust to 

channel errors. The process involves periodic injection of Intra-coded macroblocks in a cyclic 

pattern using H.264/AVC standard. The algorithm takes into account individual features in 

each macroblock and the feedback information sent by the decoder about the channel 

condition in order to generate an MVV-AIR map. MVV-AIR map generation regulates the 

order of packets arrival and identifies the motion activities in each macroblock. Based on the 

level of motion activity contained in each macroblock, the MVV-AIR map classifies frames 

as high or low motion macroblocks.  

A proxy MVV-AIR transcoder is used to validate the efficiency of the generated MVV-AIR 

map. The MVV-AIR transcoding algorithm uses spatial and views downscaling scheme to 

convert from MVV to single view. Various experimental results indicate that the proposed 

error resilient MVV-AIR transcoder technique effectively improves the quality of 

reconstructed 3D video in wireless networks. A comparison of MVV-AIR transcoder 

algorithm with some traditional error resilience techniques demonstrates that MVV-AIR 

algorithm performs better in an error prone channel. Results of simulation revealed 

significant improvements in both objective and subjective qualities. No additional 

computational complexity emanates from the scheme while the QoS and QoE requirements 

are still fully met. 
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 Author’s Contributions 

 Multi-view video communication over a wireless network is the focus of this 

research. The research particularly concentrates on the design of Adaptive Intra 

Refresh (AIR) error control strategy for multi-view video communication over a noisy 

channel. The AIR error resilience scheme based on cyclic Intra refresh is employed to 

mitigate error propagation. The process involves inserting intra-coded macroblock 

features to a compressed multi-view video. The Intra-frames are the most important 

frames in a group of picture (GOP) as they do not refer to the information in the 

previously encoded frames. Thus, periodic insertion of Intra-coded macroblocks 

would refresh the corrupted frames in GOP. The crux of the matter is that the MVV 

encoder evaluates the compressed stream and detects those macroblock portions with 

a higher level of motion activity. These high motion portions of macroblocks are 

therefore more vulnerable to transmission errors. To determine the high motion 

macroblocks, the well-known sum of the absolute difference (SAD) and the 

predetermined threshold is employed to evaluate the activity of individual 

macroblocks. A table of motion affected macroblocks known as MVV-AIR refresh 

map is generated. 

 The author conducted a subjective quality assessment of 3D video streams encoded 

with H.264/AVC. The subjective video quality assessment was carried out to evaluate 

and rate the quality of 3D video sequences transmitted using a two-way 

communication channel. Some groups of people referred to as the assessors of the 

subjective test were volunteers drawn from Brunel University, London and Nigerian 

Defence Academy, Kaduna. The participants consist of literate and semi-literate in the 

multimedia communication field and therefore have the capacity to understand some 

technical information. The reliable statistical data gathered from the experiments was 

used to analyse end-user quality of experience (QoE).  

 The developed MVV-AIR refresh map generation algorithm accompanies major 

changes in each macroblock. As a result of these constant changes in macroblocks the 

MVV-AIR refresh map need to be updated based to conform to the changes in the 

activity of the scene. Consequently, the MVV-AIR map is employed to insert Intra-
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coded macroblock in order to clean corrupted frames in a GOP and halt transmission 

error propagation. 

 The author modified the required program code to generate the MVV-AIR map that 

enables the insertion of Intra-coded macroblocks to prevent compressed bitstream 

from spatiotemporal error propagation. To maintain a high performed algorithm an 

intensive simulations and experiments was conducted to validate the efficiency of the 

MVV-AIR algorithm. The results demonstrated that the MVV-AIR outperforms the 

other error resilience such as Flexible Macroblock Ordering (FMO). 

 The author has diligently generated the necessary algorithm for MVV-AIR 

transcoding in order to validate the MVV-AIR generated map. The transcoding from 

multi-view to single view video would afford the decoding of compressed 3D video 

bitstreams on 2D video decoders such as the laptop and personal digital assistants 

(PDAs). The new MVV-AIR transcoding algorithm was tested under different noise 

channel environment. Furthermore, simulations was persistently performed over error 

prone networks with a view of identifying means of reducing interoperability between 

different devices.  

 This thesis is composed of six chapters; the author has prepared and written all the six 

chapters. The author has arranged the final thesis in a logical order of thought to 

introduce readers to current trends in error resilience 3D video mobile communication 

technologies. After several consultation with the supervisors the author final produce 

the thesis. In addition to the work presented in the manuscript, the author has 
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Chapter 1 

Introduction 

 

In this chapter, we introduce the entire thesis. Section 1.1 provides useful information about 

multi-view video communication over noisy channels. The problem this thesis addresses is 

highlighted in Section 1.2. Section 1.3 presents the aim and objectives of the research. 

Sections 1.4 – 1.7 discuss significance, scope, contribution and the thesis organization. The 

chapter is finally summarized in Section 1.8. 

1.1 Background and Motivation 

The proliferation of smartphones with a wide ensemble of applications and services is paving 

the way for mobile 3D video communication [1-3]. The rapid change brought about by the 

wireless smartphones, and 3D video technology has had a significant effect on the way 

people communicate worldwide. Moreover, today’s smartphones are embedded with multiple 

cameras, microphone, accelerometer, digital compass, gyroscope and global positioning 

system (GPS). These collective device features facilitate seamless exchange of 3D video 

information across a wide variety of domains, such as social networks, safety, environmental 

monitoring, healthcare, and transportation [4, 5]. The smartphone coupled with free services 

such as YouTube or Skype provides every end-user with the capability to produce, cast and 

share audio-visual information in a way that emulates a studio or a media production 

environment. 

Also, there has been tremendous increase in mobile multi-view video conferencing, movies 

CCTV monitoring and tele-medicine [6-8]. The Skype Technology report, confirmed that 3D 

video calls have evolved and the 3D video call applications surpass watching a streaming 

video from the Internet. Moreover, the 3D video presents an impressive sense of realism as 

compared to the 2D video. To this end, a number of people buy smartphone and television 

that have 3D image capabilities [9, 10]. There are two major reasons why 3D video 

communication is better than other forms of communication. The first reason is because 

video messages are far more engaging than text messages. Accordingly, 3D video 

communication is more natural than traditional 2D video. Second, 3D video can offer 

information that is more authentic, accurate and precise than a long email. Thus, many 
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organizations and agencies support 3D video communications to ascertain the accuracy of 

object shape, texture, size and location. Evidently, multi-view video used in C4I (command, 

control, communication, computer and intelligence) enabled accurate identification of 

criminals and specific targets. Consequently, combat communication for Global War on 

Terror (GWOT) exploit 3D video for superior situational awareness [11-13]. Furthermore, 

one area where 3D video is making an impact, though not for the first time, is in 3D video 

gaming. However, a dearth in the 3D video media content production of game is affecting 

widespread of 3D video games.   

The emergence of two-way fourth generation (4G) network with mobile Internet enables 3D 

video streaming on laptops and smartphones. The currently deployed 4G supported by 

Worldwide Interoperability for Microwave Access (WiMax) and Long Term Evolution 

(LTE) offer much wider wireless network coverage than the fixed line Internet service.  

However, the fifth generation (5G) technology that is about to be unveiled will usher a new 

era of Gigabyte wireless system which would facilitate the use of 3D-capable smartphones 

and hence Internet of Thing (IoT) would become a reality [14-16]. In spite of all these 

technological advancement, the presence of channel errors and limitations in bandwidth mar 

the efficient transmission of compressed video over wireless networks. As a result 

compressed video bitstream are continuously altered or lost along the transmission path due 

to noise and interference. For example, a bit error that strikes current frames often propagates 

to subsequent frames and among multiple views owing to prediction techniques employed in 

video compression [17-19]. The information loss in a GOP structure invokes the receiver to 

wait momentarily for the next INTRA frame before the content continues decoding. This 

situation places extra pressure on the perceptual video quality which affects the end-user's 

Quality of Experience (QoE) [20-22].  

Nowadays, mobile communication devices are fitted with multiple radio interfaces that 

enable them to access diverse asymmetric networking platforms, but, not all portable devices 

are equipped with 3D video decoders. Portable communication gargets like laptop cannot 

decode multi-view video coded (MVC) bitstreams. Therefore, lack of interoperability 

between different devices and different networking protocols is limiting the diffusion of 

mobile 3D video interactive services. As such, it is incumbent upon industries and academia 

to take the initiative of repurpose 3D video content for delivery over different wireless 

channels to varied mobile devices is needed. Video Transcoding is one such mechanism that 

assures format conversion and meeting targeted recipient capabilities [23-28]. In this thesis, 
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we focus on a multi-view video Adaptive Intra Refresh (MVV-AIR) error-resilience 

transcoder based on H.264/AVC codec. The main goal is to disseminate high-quality 3D 

video information across the various communication channels using all available bandwidths 

[29, 30]. The video proxy MVV-AIR transcoder operates at a central point, the algorithm 

uses spatial and view downscaling system.  Figure 1.1 depicts the distribution scenario block 

diagram of the MVV-AIR transcoder. The robust AIR error resilience transcoding technique 

will suppress the effect of transmission errors [31-33]. 

 
Figure 1.1: MVV-AIR Transcoding Scenario 

The MVV-AIR transcoder gateway is located between a low resolution network and a 

relatively high resolution network. The cascaded transcoder can adaptively scales down the 

compressed 3D video bitstream to a 2D video format. Thus, adding AIR error resilience 

features to our proposed MVV transcoder will enable robust conversion of 3D video to 2D 

video. To ensure robustness error resilience is introduced to the bitstream at a tail end of the 

transcoder [34, 35].  

The primary concern is how to delivery 3D video over a wireless network with efficient uses 

of bandwidth in order to meet the end-user quality perception. There are a wide variety of 

factors that affect the end-user perception of video quality. One such factor that can cause a 

decline in video quality occurs when a signal is faced with uncertainty and myriads of 

network problems. This is referred to as quality of service (QoS). Consequently, the ability of 

a network to provider service with reduced jitter or average packet delivery delay may result 

in high QoE. In the light of the preceding, we conduct a subject quality assessment in order to 
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evaluate the QoE of a transmitted 3D video over wireless network. The subjective assessment 

survey was based on ITU-T subjective quality assessment technique. The survey was an 

investigation combining both primary and secondary methods of data collection. In the case 

of primary method, a survey structured questionnaire was designed by the author. The 

bespoke questionnaire captures the necessary data required for the evaluation. Interviews 

were also conducted with the male and female volunteers drawn from Brunel University, 

London and Nigerian Defence Academy, Kaduna. The participants consist of literate and 

semi-literate in the multimedia communication field, and therefore they have the capacity to 

understand some technical information. The subjective test involves rating end-user’s opinion 

on transmitted 3D video under two conditions namely noise free and noisy channel 

environment.  

1.2 Statement of the Problem 

Multi-view video communication is facing problems of massive video data, different multi-

view video coding (MVC) formats, transmission errors propagation and interoperability 

between different networks and devices. Figure 1.2 illustrates the end-to-end delivery of 3D 

video. The problems associated to each block are highlighted in the following subparagraphs 

below.  

 

Figure 1.2: End-to-end 3D Video Delivery  
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(1)    Massive video data generated by multiple cameras. In the 3D video communication 

system, multiple video cameras capture a scene simultaneously from diverse angles. The 

multiple cameras generate massive 3D video data to be conveyed from one point to another.  

This massive data contains a lot of redundancies in time, space and view [36, 37]. 

(2)     Different content representation Standard. The digital video compression plays a key 

role in 3D video communication. To further improve wireless communication, many 

industries employ video compression standards for video coding. These are MPEG-1, 

MPEG-2, MPEG-4, H.261, H.263, H.264/MPEG-4 Advanced Video Coding (AVC) and 

H.265/HEVC [36-44]. It is pertinent to note that even though different video compression 

standards rely on the same core techniques to encode a raw video stream, there is still a 

considerable difference between them regarding both syntax and structure. Although the goal 

of these standards is to provide interoperability between different manufacturers, promote a 

technology and reduce costs, the problems of interoperability within the standards still exist. 

(3)    Transmission Error Propagation. Transmission error propagation is one of the striking 

problems in wireless communication. The telecommunications world today features a variety 

of wireless access network technologies with different bandwidth limitation, network latency, 

jitter and packet loss etc. These differences make seamless 3D video transmission among 

different network platforms difficult. Furthermore, wireless environment are flaw with noise 

that causes random bit errors, long burst error and packet loss. As a result of these errors, the 

video quality of compressed 3D videos transmitted over wireless channel/network is severely 

affected [17, 20, 21, 45, 46]. For example, when a single bit error strikes the current frame, 

the error propagates to subsequent frames and among multiple views. This is because of 

conventional prediction coding techniques employed in standard video compression. The 

effect of transmission error leads to information loss in the frame. Loss of information results 

to synchronization problem between the receiver and the encoder. The lack of 

synchronization causes the receiver to pause video playback until the arrival of the next 

INTRA picture. These and other related problems gave rise to perceptual video quality 

degradation which impairs viewer’s QoE.  

(4)    Interoperability between different networks and devices. There are a variety of wireless 

access network with various specification protocols in the telecommunications world today 

[47, 48]. Due to lack of interoperability and compatibility, content of video information 

originally captured and compressed with a particular syntax may experience restriction in 

access or implementation in other devices [49-53]. This accounted for the most prominent 
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reason why mobile devices such as laptop cannot decode compressed 3D video contents. The 

unwholesome development prompted Telecommunication industries and academia to 

institute various research techniques with a view to proffering a better solution to the 

shortcomings. 

It is against this background that we present our primary research questions as follows: 

a. What is the nature and state of error resilience and video transcoding over the wireless 

network?  

b. What are the implications of the MVV-AIR transcoding algorithm over the quality 

and computational complexity of the 3D video communication? 

c. How does H.264/AVC to H.264/AVC transcoder perform based on MVV-AIR 

motion vector information re-uses? 

d. What strategies should be applied to suppress the effects of the transmission error 

propagation and sustain MVV-AIR transcoding? 

1.3 Aim and Objectives 

The aim of this study is to mitigate transmission error propagation using AIR error resilience 

technique.  The specific objectives are: 

a. To explore the concept of AIR error resilience multi-view video transcoding in 

support of 3D video communication over the wireless network. 

b. To examine the implications and challenges of converting the H.264/AVC to 

H.264/AVC MVV-AIR transcoder. 

c. To present the performance of MVV-AIR transcoder using motion vector information 

re-use in H.264/AVC to H.264/AVC transcoder.  

d. To proffer strategies that will suppress the impact of transmission error propagation 

for sustainable 3D to 2D video transcoding over wireless networks. 

e. To develop 3D video subjective quality assessment model using QoE term to capture 

subjective feedback. 

1.4 Significance of the Research 

The key advantage of this study is that it addresses perhaps the most topical issue in 

multimedia communication today, which is that of mobile multi-view video transmission 
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over diverse networks. The thesis is expected to be of great significance for the 

telecommunication industries in three ways. Firstly, the research will articulate strategies to 

tackle the problem of devices interoperability. The MVV-AIR addresses both the device and 

network interoperability problem. As a result of this high-quality 3D video can be made 

viewable to 2D video devices. Secondly, the research fills a gap in knowledge and stimulates 

further study on multi-view video error resilience compression. Thirdly, this research also 

contributes to knowledge and serves as reference material for researchers in the field of video 

transcoding and error resilience. 

1.5 The Thesis Scope  

The field of error resilient and video transcoding scheme is very broad. This research is 

limited to developing robust multi-view video communication over wirelesses networks using 

AIR error resilience technique. The research is versatile in nature and involves the 

applications of MVV-AIR error resilience transcoding. Thus, the main research work was 

implemented in a four-step approach. Figure 1.3 provides a broad overview of the step by 

step scope and framework applied in this thesis.   

1.5.1 A Survey of Literature 

Normally, literature review is the first step in an academic study. In this thesis, the literature 

defines and discusses the three major issues that are central to this research. These three 

issues are the concepts of wireless communication, error resilience and video transcoding.  

1.5.2 Multi-view Video Quality Assessment 

Quality assessment for subjective evaluation of multi-view video plays a significant role in 

determining user’s perception of the transmitted video [54]. A subjective video quality survey 

was conducted to assess the end-user’s perception of the transmitted 3D video. The subjective 

test focuses on the technical factors that influence QoE. The QoE is a wider term that 

captures user experience and delight of the delivered service [55].  
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Figure 1.3 Scope and Methodology 
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1.5.3 Interactive Error Resilience 

The study exploits interactive AIR error resilience technique to mitigate error propagation. 

An AIR error resilience tool requires feedback communication link between the encoder and 

the decoder. The feedback link would be employed by the decoder sent to the encoder the 

variation of the channel condition and the number of macroblocks corrupted by error using 

the feedback channel [56]. The encoder operates by first updating the MVV-AIR map and 

thereafter inserting intra-coded macroblocks to halts the error propagation. 

1.5.4 Cascaded 3D video Transcoding 

This thesis considers a cascade transcoder that has the following properties: 

 The decoder end of the transcoder receives an incoming bitstream and decodes it 

using Variable Length Decoder (VLD) algorithm. 

 The decoded video frame is passed into quantizer for inverse quantization. The 

quantized coefficients are inversely transformed using Inverse Discrete Coefficient 

Cosine Transform (IDCT) process.  

 A copy of the IDCT coefficients employs motion compensation of reference frame for 

enhanced entropy coding [37, 57]. 

1.5.5 The 3D Video Broadcast and Streaming Applications 

The proposed MVV-AIR transcoding algorithm was further validated using SIRANNON. 

Network protocols including HTTP and RTP can be simulated with the Sirannon software 

[39]. The simulation with Sirannon software was conducted to evaluate the effect 

channel/network errors to compressed bitstream [58].  

1.6 Thesis Organization 

The thesis is organized into six chapters. Three of the chapters address pertinent issues on 

video quality assessment, error resilience and video transcoding. However, this chapter has 

provided useful information about 3D video communication over wireless networks and 

highlighted the problem statement. Chapter two of this thesis reviews three main issues that 

are central to this study. These are wireless communication, error resilience, and video 

transcoding. The review of the basic concept and key issues was specifically based on multi-

view video communication over wireless networks.  



 

 

10 

 

Chapter three presents a subjective quality assessment of 3D video streams encoded with 

H.264/AVC. The chapter highlights the roles of QoS and QoE in end-to-end multi-view 

video communication setting. Before addressing the variable considered in the research and 

the procedures adapted for sourcing data, research design requirements was presented. The 

experiment for validation of the collated data was presented based on ITU-R 

recommendation. Finally, the data obtained is then used to answer the research question and 

test the hypotheses.  

Chapter four describes Adaptive Intra Refresh (AIR) error resilience technique we have 

developed for multi-view video delivery over noisy networks. The chapter briefly reviews 

error resilience and H.264/AVC compression. Then, we proceed to describe the impact of 

transmission error propagation on the compressed 3D video bitstream. Step by step procedure 

on generation of MVV-AIR map was presented before considering the analysis of 

experiments and simulations results. 

Chapter five describes multi-view video Adaptive Intra Refresh (MVV-AIR) transcoding 

technique that we have developed. The MVV-AIR transcoder process involves variable 

conversion using the H.264/AVC standard. The chapter states the technical issues relate to 

our proposed MVV-AIR transcoding. Then, the chapter outlines the techniques used in 

implementing high quality less complex MVV-AIR transcoder. Experiments and simulations 

set-up as well as results obtained are all discussed. Finally, conclusion remarks are presented 

and future work in Chapter six is explained. 

1.7 Summary 

Chapter one briefly introduces the basic concept and layout of the thesis. The chapter 

presents the role of multi-view video communication over heterogeneous networks. We than 

highlights the degree problems facing 3D video communication including massive video 

data, error propagation and interoperability between diverse devices. Furthermore, we stated 

the aims and objectives of the research. Furthermore, the chapter presented the scope covered 

by the research and summarises the contributions to knowledge made by this research work. 
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Chapter 2 

A Literature Review 

 

This chapter reviews the three main issues that are central to this research. These are 

wireless communication, error resilience, and video transcoding. The review of these key 

features is in relation with the efficient transmission of 3D video over wireless networks.  

2.1 Background 

A thorough review of relevant literature was carried out to gain insight into related studies in 

order to fill some identified gaps in the field of multi-view video delivery over wireless 

channels. The literature review was presented under the following sub themes: concept of 

wireless communication, the phenomenon of error resilience, video transcoding, gap in 

literature and summary of literature review. 

The last year of the 20
th

 Century and first decade of the 21
st
 was a period of great mobile 

wireless telecommunication innovation around the world [16, 47, 59, 60]. During this time, 

the world has seen an exponential growth of wireless communication technology. Wireless 

Internet access and many wireless service providers have flourished and enjoyed high 

success. However, there have also been records of failures in wireless communication as 

well, for example, the crumpling of the first generation of LANs, Iridium satellite system and 

Metricom [61] due to compatibility problems.  

History is dotted with examples which indicate that the first wireless channels were 

developed during the pre-industrial age [62-64]. These early wireless systems were successful 

in the transmission of information over line-of-sight. According to [61] the first wireless 

communication technology turned out to be the Morse code signal transmission over a 

century ago.  

Misra et al., [59], Nugaliyadde el at. [65] and Skocir in [66] stated that a long time ago the 

mobile wireless industry put considerable effort into systematic research to enhance the QoS 

and QoE for the benefit of users. Thus, wireless communications today support nearly every 

aspect of our daily lives. The breakthrough and extensive traffic increase in mobile wireless 

communication is happening on all fronts specifically, in personal, local and wide area 

networks technology [67-70].  
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Figure 2.1shows Cisco Visual Network Index (VNI) for mobile communication data traffic 

forecast of 2015 to 2020 [71-73]. These findings broadly indicate dramatic growth in wireless 

communication using smart devices. These findings are consistent with Cisco previous 

prediction of mobile data traffic which is projected to increase eight-fold by 2020. The Cisco 

findings suggest that mobile 3D video communication will growth rapidly.  Furthermore, the 

smartphone operation in future network may able people to be connected with the world 

anytime and anywhere.  

 

Figure 2.1: CISCO VNI Mobile 2016 [74] 

The wireless communication employs the use of microwaves, satellite, radio, infrared, 

Bluetooth and Wi-Fi to transport multimedia information from one location to another [75-

78]. From the first generation (1G) to 4G, the mobile telecommunications has seen some 

improvements along the line with an improved performance [79-83]. To this end, Xu et al., 

[84] and Chen el al [85], stated that fear of the rising tides of mobile wireless communication, 

big data, and 3D video require faster and more efficient wireless networks. Li el al., [70] and 

Gani el al., [86], envisaged that the future deployment of 5th, 6th and 7th generations of 

wireless networks would enhance the capability of high-quality wireless video services. The 

primary goal of future wireless networks is to provide reliable mobile communication link 

between people. 
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Asymmetric and symmetric communication environments are among the biggest outstanding 

challenge in 3D video wireless communication. In an asymmetric communication 

environment, channel characteristics differ in one direction as compared to another direction. 

In wireless networks, the bandwidth limitation encountered by different service providers 

affects the efficient delivery of 3D video.  However, in the symmetric communication 

environment, the problem may be less acute as the channel characteristics are similar in both 

directions. 

Conversely, drawing from empirical studies in [87-89], the authors stressed that compressed 

video bitstream transmitted over asymmetric wireless network experience massive packet 

losses. Consequently, wireless communication service is inherently interrupted by congestion 

in network, natural and manmade noise disturbances which results in packet loss. These 

packets loss during transmission are critically affect end-user QoE. The author in [90-92] 

losses of packet information and transmission bit error are attributes that affect quality of 

decoded video at the receiver. However, the emergence of a set of new wireless technologies 

such as 802.11ac, LTE-A and smart spectrum reuse has considerably eased packet 

information loss in wireless network [93, 94]. In this light, the authors in [2, 80, 95, 96] 

reiterate that the employment of terabit systems in wireless communication has improved 

bandwidth capacity of wireless link thereby reducing information loss due to channel errors. 

Information loss occurs because of poor network condition, hence efficient QoS is imperative 

in providing a crystal clear 3D video across an end-to-end communication [97-100]. 

2.2 Concept of Wireless Communication 

Wireless communication is a term used in telecommunications in which electromagnetic 

waves carry signal over some part of, or the entirety of, the communication path. There are 

quite a few definitions of wireless communication, though they all necessarily mean the same 

thing. The word wireless in the dictionary means “having no wires” [47, 101, 102]. One of 

the prevailing definitions according to computer network researchers is that,  

“Wireless networks are any connection between two or more points by 

radio waves and or microwaves to maintain communications” [103].   

The geographical distance between two points for wireless communication can be a few 

meters for example a television remote control. The distance can also be far like the case of 

radio communications in free-space. Figure 2.2 shows the basic 3D video wireless 

communication system that consists of multiple video cameras capturing a scene 
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simultaneously from different viewpoints [17, 20, 29, 37 and 104]. In order to deliver MVV 

data from video source to a remote destination, there are sets of MVV processing, 

transmission, storage and display technologies introduced by ITU that guide the 3D video 

wireless communication process. A critical look at these processes reveals that several factors 

have been identified as being responsible for 3D video communication.  A communication 

system fraught with noisy channel can only produce error corrupted bitstream at the receiver. 

Thus, wireless communication medium degrades the quality of transmitted video stream. 

Every contributor to discussion on the topic of wireless communication caution quality trade-

off in strong terms. 

 

Figure 2.2: Concept of 3D Video Wireless Communication 

The wireless communication methods use radio waves to convey data between devices that 

are geographically far apart. A literature research reveals that wireless communication can be 

grouped into two classes. The classes are fixed wireless and mobile/portable wireless 

communication [5, 70, 103, 105-109]. The fixed wireless system hooks devices through 

dedicated modems equipment. While the use of wireless devices or systems on the move 

describe portable wireless communication. The following are some of today’s wireless 

communication equipment [110]: 

 Smartphones: used for personal and business portable/mobile communication. 
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 Global Positioning System (GPS): used for navigation to find location anywhere on 

earth. 

 Cordless wireless accessories: these include wireless keyboards, mouse and printers 

that are wirelessly connected to a computer. 

 Cordless wireless telephone sets. 

 Wireless home-entertainment system: A good example is the TV channel control.  

 Wireless remote access garage door. 

 Two-way wireless radios. Military, civilian commercial radio, marine and Amateur 

intensively make use of these type of radios. 

 Satellite television using wireless links.  

 Wireless LANs or local area networks: This is a key communication system that 

provides reliability business using a computer. 

Wireless communication is critical in the lives of people throughout the world [111] and their 

absence can result in creating a social nuisance. According to [63, 112, 113], the transmission 

of multimedia information over a wireless network can be realized using PAN (Personal Area 

Network), Local Area Network (LAN) and Metropolitan Area Network (MAN). Other types 

of wireless communication to industries and researchers include infra-red (IR), satellite, 

Bluetooth, broadcast radio-frequency, microwave, Wi-Fi, Zigbee, cordless telephones, GPS, 

etc. The existing wireless networks deployed are the 4G networks, Bluetooth and Wi-Fi 

technologies [114]. 

Furthermore, the recent migration to the digital broadcasting system by the International 

Telecommunication Union (ITU) has brought to light a new phenomenon for integration of 

fixed and mobile video transmission worldwide [55, 115 and 116]. The universal transition 

from analog to digital broadcasting has now been implemented in many countries (see Figure 

2.3). The digital terrestrial television broadcasting (DTTB) and mobile television 

broadcasting (MTB) particularly favour the delivery of 3D video content [117, 118].  
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Figure 2.3: Status of Digital Television Broadcast [119] 

2.3 Mobile Cellular Networks 

The cellular telephone system has perhaps been the most successful application of mobile 

wireless networks. According to [120, 121]  a cellular radio network distribute information 

over land for a fixed-location. These fixed-locations are referred to as cells; collection of cells 

can provide wireless radio coverage to a large geographical region. These cell wireless radio 

service enable mobile user equipment (UE) to communicate with another far distance UE 

[122, 123]. The most important advantages of mobile cellular communication networks that 

have made them accepted worldwide are flexibility (wirelessness), ease of use and durability. 

Despite these benefits, cellular networks are faced with compatibility issue and privacy 

protection. 

The study in [124] appears to support the argument that on the face of the advancement in 

mobile communication technology, the cellular communications also face a significant 

challenge. For example, cellular network has to locate a given UE wherever it is among 

billions of globally dispersed mobile terminals. Locating a particular UE is not a simple task 

likes wise routing a call to the UE as it moves with a speed of up to 100 Km/hr.  

Gani el al., [86] examine the set of resources for traditional cellular technologies. These 

resources include the Global System for Mobile (GSM) Communication, General Packet 

Radio Service (GPRS), Universal Mobile Telecommunication System (UMTS), 3GSM and 

Code Division Multiple Access (CDMA). 
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It is estimated that the GSM communication began in the early 1980s [125-127]. Before this 

period, there has been a rapid expansion of analog cellular telephone systems in many 

countries in Europe. Though, each of the Europe state developed different cellular system, the 

difference in syntax leads to interoperability problem [128]. To address this interoperability 

issues, Conference of European Posts and Telecommunications (CEPT) in 1982 established a 

working group that developed the GSM. Figure 2.4 shows the progressive development of the 

cellular phone communication as summarized by Ofcom [129] . According to [130], the 

rapidity in GSM phone development was based on the desire to meet up with high speech 

quality, low-cost handheld terminals and international roaming compatibility. The author in 

[131], viewed the GSM services as a platform for transmitting video. The combination of 

GSM with time division multiple access (TDMA) and frequency division multiple access 

(FDMA) technologies increases the availability of more channels. Gohil el al, [132], and 

Madhavapeddy el al, [133] pointed out that GSM has the capability for international roaming 

which promotes the desire to convey videos worldwide.  

 

Figure 2.4: Evaluation of Mobile Phone Communication [124] 

There is a considerable body of research which suggests the use of GPRS (general packet 

radio service) to enhanced cellular network [134]. In [31], Dogon el al, described the GPRS 

as the most promising and attractive solution to mobile video wireless communication. The 

authors emphasize that GPRS technology provides access for mobile GSM communications 

and time-division multiple access (TDMA) users. In [135], the author stated that GPRS 
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fosters the migration toward third-generation (3G) networks. The 3G networks allow for the 

provision of Internet protocol data services for integrated voice and data applications [135]. 

The GPRS facilitation enables a variety of services to the mobile wireless subscriber. The 

authors of [134] categorized merits of GPRS mobile services into three types namely 

mobility, immediacy and localization. Thus, communication on the move and when needed 

can be offered to GPRS mobile subscribers. 

Again, Patil et al. [136] referred UMTS (Universal Mobile Telecommunication System) as a 

3G mobile wireless communications system. According to [127], the UMTS has far reaching 

implications for broadband services and mobile communications development. The UMTS 

could preserve the credibility of networks because it facilitates delivery of pictures, graphics, 

and video information. Different researchers have identified the implication of UMTS to 

video sharing. For instance, Tripathi et al. [121] identifies UMTS as a video data sharing 

medium that extend the capabilities of 2G, GSM/GPRS and Code Division Multiple Access 

(CDMA) technology. Consequently, UMTS and 2G standards have made possible access of 

portable video sharing with picture-phone functionality and Internet video server [67].  

The currently deployed 4G network technology has transformed the world into mobility and 

networking era, in which almost all end-user communication devices operate on wireless 

networks. The 4G technology fits well into the 3D video communications, providing major 

bandwidth improvement and numerous new features that facilitate delivery of high-volume 

data.  However, the deployment of 3D video will still face a challenge regarding bandwidth 

and computational capability of the wireless mobile equipment. Notwithstanding, the 3D 

video data volume at the receiver endpoint will be multiple of a single view of 2D system, 

and hence, the 3D video computational capability requirement will be high.  

Unlike the 3G the 4G network is a key factor in improving the video communication over 

Internet networks [137]. According to [138] the goal of 4G wireless systems in broad 

coverage areas was to provide data service at 144kbps to 384kbps. These services include 

supplementing wireless access for multimedia services of mixed voice, video and data 

streams. Besides, the authors in [64] noted that IMT-2000 (International Mobile 

Telecommunications-2000), CDMA2000 from America, WCDMA from Europe and TD-

SCDMA from China provide adequate wireless network for enforcement of cellular 

communication [48].  
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The QoS support is essential for multimedia multi-user sessions like video streaming services 

[16]. It is important to appreciate that when too many packets are in the network awaiting 

transmission, the 3G performance degrades in such a way that damages the QoS. This 

situation is referred by [22] as congestion. However, congestion should have no effect on the 

number of packets sent into the network that was within the capacity of the system. But, as 

traffic increases beyond the network capacity, the network gets congested which enhances the 

delay in transmission throughout the network. A study by [43] suggests that flow control is 

required to minimize congestion. This flow control technique increases delay and packet loss 

that are not the desirable QoS parameters.  Singh et al. addressed congestion control in [139]. 

In this scheme, a new data user can be rejected, admitted as an active user or queued in a 

finite buffer at the base station (BS) depending on the status of the network. A pricing based 

congestion control approach is proposed by Hui et al. in [140]. The objective of this scheme 

is to maximize the effectiveness of wireless resources.  

In [115], the performance of services of the widespread deployed WCDMA was investigated. 

The study include monitored web surfing over wireless networks and file transfer 

transmission. A look at the literature research on the suggested wireless cellular networks 

shows that all stakeholders in wireless network have different roles to play. The GSM, GPRS, 

UMTS, 4G and the future 5G have to play their roles of providing dynamic information 

access. Coulibaly et al., [141, 141] add that the lack of integration can lead to severe 

personalized video quality degradations. According to [142], the 4G networks can integrate 

several wireless network radio accesses and enhance QoS for fixed Internet service. This kind 

of integration combines multiple radio access interfaces and seamless roaming capabilities as 

the user move from one part of the world to another [143]. 

2.4 The 3D Video over Future Networks 

The future networks (FNs) are networks that are beyond next generation network (NGN). 

With the future systems, we shall see person-to-person and person-to-group 3D video 

communication with acute high resolution. However, many challenges are facing the wireless 

application of the emerging future networks. These challenges cover all aspects of wireless 

system design. According to [143], the FNs are in the deployments phase state and expected 

to enjoy early realization around 2020 [14]. The future networks would enable people to use 

3D video simply in everyday workflow. Xichun et al. [144] distinguishes 5G, 6G, and 7G as 
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the future networks that will provide services, capabilities and facilities far exceeding those 

achievable with existing technologies.  

According to Cisco [145], the 5G network would in the future provide robust and high-

quality performance wireless communication. The future 5G network will support 3D video 

call and a countless emerging variety of applications. Liu et at. [2], stated that the 5G will 

follow the footsteps of 4G and 3G, supported by existing networks such as IPv6, OFDM, 

UWB, MC-CDMA and Network-LMDS. Prof Rahim Tafazolli stated that "5G will be a 

dramatic overhaul and harmonization of the radio spectrum" [146]. That means the 5G 

deployment will be the moment for connecting future smart cities, remote health centres, 

future driverless cars and the Internet of Things (IoT). The IoT would allow people and 

machine-to-machine (M2M) to hook up and communicate anytime and anyplace. Misra at al. 

[59] gives the different perceptions of IoT. He opines that IoT are perceived by media experts 

as network that controlled remotely objects across existing communication network 

infrastructure. For industries, IoT operation with 5G network technology is an opportunity for 

integration of physical world through algorithm using computer systems. 

The 5G handheld phones (see Figure 2.5) would offer improved efficiency and provide 

features for connectivity service between M2M [80]. This development means that a client 

can also connect their 5G technology smartphone with other communication devices such as 

Laptop to get broadband internet access. Singh et al., [139] described various aspects of 5G 

features to include a camera, video recording, large telephone memory, high dialing speed, 

audio player and much more we cannot begin to imagine. 

 

Figure 2.5: Mobile Devices [141, 142] 
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The future networks architecture is designed to accommodate a broad range of mobile 

network requirements, especially bandwidth, latency, resilience, and coverage. Thus, another 

significant challenge is to provide end-to-end network and cloud infrastructure slices over the 

same physical infrastructure. A critical issue is how to protect a very delicate 3D video 

portion of multimedia against hostile multipath fading environments. To comply with 

narrowband channel requirements, 3D video needs to be highly encoded. High multi-view 

video compression would make the bitstream more vulnerable to transmission noise. 

According to Orange et al. [147], two concepts need to be considered to become a reality in 

future networks expected to be deployed by 2020/5. Firstly, mobility in populated area will 

constitute a problem to future. Secondly, various future networks subsystems and interfaces 

need to be inspired by modern operating system architectures, and software concepts. 

2.5 Bit Errors and 3D Video Quality 

Transmission of compressed 3D video signal is performed using electromagnetic radiation. 

Video signal like radio waves, x-ray, ultraviolet, and visible light belongs to the 

electromagnetic radiation family. Figure 2.6 shows classification radio frequency spectrum 

used for video transmission. Since inception, electromagnetic signal propagation through a 

wireless channel has been experiencing random fluctuations in time especially if there are 

noise or shape movement that can cause reflection and attenuation [63, 103, 148, 149]. One 

of the prime causes of poor video quality reception is error propagation originating from 

noise or interference during the wireless transmission. Noisy nature and bit-error- rate 

characterized wireless channels, and bursty errors affect compressed bitstream [51, 150-152].  

 

Figure 2.6:  Classification of Radio Spectrum [112, 153] 
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Vetro et al. [20, 150, 154] maintain that when compressed bitstream is sent over a radio 

channel, bit errors due to multi-path effects, shadow and interference can corrupt the data. 

The authors also observed that a limited number of data channels leads to high throughput 

variations which introduce errors to compressed bitstream. The authors opine that random bit 

errors as a result of the imperfection of physical channel may result in bit inversion, insertion 

or deletion in the bitstream. Furthermore, a bit error in a frame can spread in time and space. 

Lack of synchronization occurs between the decoder and the encoder due to bit error [150, 

155-158]. The synchronization risks are greater in multi-view video schemes because the 

errors propagate in time, space and among views [159]. The preceding has thrown more light 

on the concept of bit error; therefore, error detection is another idea that needs to be 

considered.  

The source coding algorithm hardly detects a transmission error. Error detection is a decoder 

function typically performed on a block of data at the receiver end. Buchowiez et al. [160] 

stated that the decoder detects errors or decides to process what is assumed to be incorrect 

data. According to them, an erroneous bitstream can be decoded and displayed at the 

receiver. This display may have severed quality degradation. According to [20], a bit error in 

the channel is equivalent to a packet loss in the packet network. Thus, if a video decoder 

decides not to drop erroneous packets, the reconstructed information may experience 

annoying artifacts. 

The foregoing shows that different writers have perceived bits and packet error in various 

ways although the different views are identical. It is clear from different views that packet 

losses are said to occur in packet networks such as ATM or the Internet [56, 161-163]. 

According to [164], short time system failure happens due to erasure errors in transmission 

systems and burst error (in storage). However, the effect of busty types of errors is much 

more destructive than packet loss due to the bit errors. Authors in [155, 165-167] observed 

that bit errors can be considered as packet losses at the decoder when the receiver could 

handle the introduced bit error, 

In [168], the authors noted other indices such as size and location of the error in a frame as a 

factor that can cause synchronization failure between decoder and encoder. They observed 

that packet loss affecting a small size of a video frame can result in the loss of complete video 

frame(s) due to compression. Consequently, the decoder can conceal an error that occurs in a 

limited location. The authors in [169] argued that loss of many video frames may occur as a 
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result of burst error fashion in some networks. This bursty error may have different size and 

occupy a different location within a frame. Figure 2.7 show an example of the effect of busty 

errors on a selected Ballroom sequence. Kolker while supporting the view of Liang [170]  

opines that a better approach to dealing with busty error is by temporal frame interpolation. 

The figure shows severe quality degradation with bitrate loss of 1%, 2% and 5%. 

 

 

Figure 2.7:  Effect of Busty Error  
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Another research, presented in [166] and [171], focuses on loss affecting the entire frame 

header. Bit errors occurring in the header data create the worst type of error damage 

compared to the kinds of errors mentioned above. When an error takes place in the header 

data, the decoder completely loses the track of the encoder and in turn discards a whole video 

frame.  

2.6 3D video Acquisition and Display 

A video data is acquired using a video camera, and multiple video cameras are employed for 

3D video data acquisition [41]. According to [172-174], the John Logie Baird video camera is 

one of the earliest cameras used for a motion picture. Nowadays, mid-range of professional 

video cameras is exclusively used for television and other work (except movies). Multi-video 

cameras could be used for two modes. The first is for real-time coverage, where the cameras 

are employed for live television, security and industrial operations. Secondly, video cameras 

are applied for further processing especially in professional television production which 

combine a camera and a VCR or other recording device in one unit. Another area of the 

MVV camera is on Closed-Circuit Television (CCTV) for security, surveillance and 

monitoring purposes. Webcams are used to stream a live feed to a computer. Camera Phone- 

most mobile phones are incorporated with video cameras. Special camera system used on 

board a satellite , space probe, robotic, medical services etc. A multi-view video is typically 

obtained from a set of synchronized cameras, which are capturing the same scene. Figure 2.8 

show an example of cameras used in multi-view system. 

                              

 

Figure 2.8: MVV Acquisition 
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Hashimoto et al. [10] stated that in its infancy, 3D video communication process was an 

ephemeral medium that was developed for a specific purpose. However, with the aid of stereo 

camera rigs, 3D video display was made public for commercial use. Although the potential 

applications of 3D video communication are many, there are several challenges to be 

overcome. One such challenge is that 3D video content requires specialized viewing glasses 

to be visualized. Figure 2.9 shows children enjoying watching 3D video with specialized 

viewing glasses. This has imposed some restrictions, such as viewing zones and the selected 

number of views [175-180]. These challenges need to be overcome before 3D video 

communication become widespread truly harnessed. Though there have been researches on 

the horizon that can allow 3D images to be viewed without special glasses, for now, they are 

not entirely developed.  

 

 

Figure 2.9: Watching 3D Video with Glasses 

Regarding availability and viewing development, the 1980s can be described as the golden 

ages of 3D video communication [149, 181]. However, people have to plan their schedules so 

that they could be available to watch 3D video shows at some designated 3D video cinema 

using 3D video glasses. Gradually, the viewership's of 3D video is now expanding since 

MVV can be made available on programmable video recorders, such as the digital video 

recorder, smartphones, etc [182], so people could watch programs their convenience. 
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Additionally, many television service providers offer a set of 3D video applications on 

demand to be viewed at any time. Similarly, both mobile phone networks and the Internet 

providers have fared too well in the aspect of delivering 3D video streams. There is already a 

fair amount of 3D Internet TV available, either live or as downloadable programs on 

YouTube [183]. Because YouTube is vast and uncharted, the authors can make no claims of 

comprehensiveness. The number of clips streamed on YouTube stretches to the sublime of 

about 1.2 billion videos a day, to enable people with Internet connection to watch a clip each 

day [184, 185]. 

Changnon et al. [185, 186] viewed that the next generation multimedia applications will be 

interactive 3D video that can be adapted to network conditions. This is because nowadays 

people now cast and share audio-visual information in a way that emulates a studio or a 

media production environment. Some of the 3D video display is shown in Figure 2.10. The 

3D video representation, including holographic (light field), volumetric, geometric (3-D mesh 

models), and stereoscopic/ multi-view 3-D video are the most widely used at the moment. 

 

Figure 2.10: 3D Video Display 
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2.7 Concept of Error Resilience 

In this section, we review error resilience strategies. The first developed algorithms on error 

resilience sought to solve the requirement of transmitting 2D video over a wireless channel. 

Error resilience is conceptualized as anything that is done at the encoder stage to make 

compressed bitstream robust to transmission errors [17]. 

There are numerous types of error resilience algorithms employed to prevent compressed 

bitstream. Meyers et al. [17], stated that error resilience involves effecting some significant 

changes in the compressed bitstream to render the bitstream more robust to error prone 

networks. They also observed that in conveying video data from one point to another over 

wireless channels would require error resilience to suppress the effect of noise. The effect of 

noise to compress video is severe quality degradation at the receiver [187]. Consequently, 

error resilience encoding and decoding schemes is an important feature to suppress 

transmission errors.  

According to [25, 154, 155, 157, 188-197], the most effective action to reduce the effect of 

transmission error is through retransmission of erroneous packets. However, the delay 

introduced by retransmission using Automatic Repeat Request (ARQ) may not be suitable for 

video delivery in a real-time application. Thus, a literature research reveals that error 

resilience techniques can be grouped into three categories. The categories are an encoder, 

decoder and feedback-based error resilience. 

Figure 2.11 shows graphically how error resilience at the encoder can adversely reduce the 

effect of transmission error. However, encoder error resilience introduces extra redundancy 

bit. According to [149], error resilience at the encoder is less efficient compared to that 

conducted at the decoder. Thus, encoder based error resilience algorithms need to minimize 

introducing redundancy and computational complexity. 

According to [169, 198] the decoder error concealment is used to hide the error.  Kung et al.  

[199] stated that the I-frame error concealment method employs edge detection and 

directional interpolation to recover both smooth and edge areas efficiently. They also show 

that P-frame error concealment method can be used to error tracking and dynamic mode 

weighting. Thus, different decoder error resilience mode can conceals a pixel as a weighted 

sum of candidate pixels that are reconstructed. In [154, 200], feedback error resilience 
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employ a separate link to enable the encoder interact with the decoder and Adaptive Intra 

Refresh is an example of interactive error resilience.  

 

Figure 2.11: Error Resilience Method 

2.7.1 Adaptive Intra Refresh 

Cajote et al. [190] defines Adaptive Intra Refresh as error resilience tool used in MPEG-4 and 

H.264/AVC video coding standards to mitigate temporal error propagation. According to 

[201, 202], an initial Intra refresh method was established based on end-to-end rate-distortion 

model. This model takes into account several aspects of human vision such as intensity, 

colour, and orientation to perform Intra/inter mode decision. 

Dogon et al. [31], discuss the potentials of using Intra-coded macroblock for efficient 

suppression of transmission error propagation. They pointed out that encoding the erroneous 

macroblock in the motion area using intra-coding mode is beneficial in recovering corrupted 

motion information quickly. 

According to [166, 203-206], the authors pointed out that there are many Intra refresh 

methods used directly or indirectly to suppress propagation of errors. Chen et al. [191] on his 

part considers complete Intra refresh of a picture frame as the most efficient error resilience 

method. However, these techniques introduce delay. A literature research in [29, 30, 89, 166, 

190, 201, 203, 205, 207-211] categories Intra refresh into many types. The categories are 

periodic Intra refresh, random Intra refresh and cyclic Intra refresh. Other End-to-End Rate 

Distortion Model (E2ERD model)-based Intra refresh, motion information-based Intra refresh 

and feedback-based refresh.  
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Jiang et al. [208] identify periodic insertion of intra-coded macroblocks as the primary means 

of AIR methods. They further state that E2ERD intra refresh method as a solid error 

resilience technique which mitigates spatiotemporal error propagation. The author in [212] 

indicated that for real time video streaming, periodic I-frames are used at a point of joining 

the broadcast stream. According to [28], reliable and efficient video communication over the 

error-prone network can be provided with GDR intra-refresh macroblocks. They confirmed 

that Intra refresh halt error propagation in a GOP. Thus, Intra refresh is needed for speedy 

passage and reception of video information transmitted over wireless networks. 

The author of [213] stated that randomized insertion of intra-coded macroblock facilitated the 

exchange of video information.  However, they observed that a random pattern might lead to 

duplication of intra-coded macroblocks in successive pictures.  The author in [207] supported 

this assertion by stating that randomized insertion of the intra-coded macroblock is a 

substitute for a cyclic intra-coded line of macroblocks and other visually pleasing pattern. 

Shu et al. [214] noted that feedback channel helped towards realizing full insertion of intra-

coded macroblocks. Through the feedback channel, the decoder notifies the encoder about 

error corrupted macroblocks and the condition of the channel. Ali et al. [215] suggested that 

calculated macroblocks method can be employed in the absence of any feedback channel. In 

this process, each macroblock is examined, and the macroblocks that have a high motion 

activity are intra-coded.  

2.7.2 Data Partitioning 

As earlier stated, error resilience as a whole has different techniques, and these techniques 

have different effect and level of performance. However, all error resilience techniques are 

designed to overcome the error propagation in a compressed video bitstream. Error resilience 

data partitioning is a technique that supports unequal error protection during video 

transmission.  

Zhang et al. [216, 217] consider data partitioning as a method of separating out information 

in a compressed bit-stream according to its overall contribution to video reconstruction. They 

also identify the potential of slice level data partition using Network Abstraction Layer units 

(NALUs) [216, 217]. In this approach, video data is partitioned into three partitions. These 

are partition A, B, and C. The partitioning is based on a decreasing level of sensitivity to 

errors. Figure 2.12 illustrates a data partitioning. The partitioning is meant to allow the most 
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sensitive data in slice A, for instance, to be given preferential treatment over data in other 

partitions.  

 

Figure 2.12: Data Partitioning into Partitions A, B, and C [196] 

Ibrahim et al. [218] maintain that multi-layer data partitioning (MLDP) can produce another 

partitioning layer in the multi-view video bitstream for each frame. They also demonstrated 

that multi-layer data partitioning enhance the robustness of compressed bitstream against 

channel errors. Figure 2.13 shows the general architecture of multi-layer data partitioning.  

Figure 2.14 shows MLDP that adopts a video slice restructures mechanism. Kumar et al. 

[219] demonstrated that partition A consists of highly sensitive information such as the data 

information of the header. This part is further subdivided into partition A1consisits of view-

1/frame-1 motion and header information. Likewise, frame -2/view-2 header and motion 

information are contained in partition A2.  
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Figure 2.13: General Architecture of Data Partitioning [198] 

Similarity, partition B is split into three sub-parts B0, B1 and B2. These sub-parts carry 

residual data information of intra-coded macroblocks. Finally, partition C is broken into C0, 

C1 and C2. Partition C0 is empty and the rest information about self-referencing as well as 

prediction frames. 

 

Figure 2.14: Multi-Layer Data Partitioning Restructures a Video Slice 

Figure 2.15 shows the performance evaluation of the multi-layered data partitioning for 

ballroom sequence was better than the H.264 DP technique [219]. 
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Figure 2.15: Performance Evaluation of the Multi-layered Data Partitioning [198] 

2.7.3 Multiple Description Coding 

Before conceptualizing Multiple Description Coding (MDC) techniques, it is necessary to 

define the term MDC. Norkin et al. [220] describe MDC as a coding method for 

communicating different source encoded description over an unreliable channel. Another 

fundamental concept of MDC is referred to as an error resilience technique use to combat 

errors by removing the base layer noise free assumption. Figure 2.16 shows a simple MDC 

scenario with three receivers and two channels. The reconstructed video is achieved by 

computing the outputs of decoder1, 0 and 2 (D1, D0 and D2). 

Vaishampayan et al. [221] proposed the first MDC. Their coder used scalar quantizers and 

consists of JPEG coder extension. They observed that sending the descriptions from the 

source to the destination in different packets significantly enhances the quality of the decoded 

video.   The authors in [222-229] apply orthogonally and other general transforms to develop 

MDC extension. They also identify that adding redundancy immediately after the stage of 

transform improves the efficiency of compressed bitstream transmitted over the lossy 

communication channel. 
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Figure 2.16: Simple MDC Framework [200] 

2.7.4 Reversible Variable Length Coding 

Takashima et al. [230] view variable length codes as importance error resilience technique 

that needs to be employed in order to get an efficient transmission of compressed video over 

lossy networks. Chung et al. [231] regarded RVLCs as emerging video coding standards that 

can effectively enhance error resilience capabilities in a wireless networks. Similarly, 

Jiangtao et al. [232] considers RVLCs as the process through which image coding in a JPEG 

are transmitted over noisy environment. They observed that RVLC offer significant 

improvements in PSNR during transmission over wireless channel. 

Wen et al. [233] gives the different perception of a symmetric RVLC. They demonstrated that 

RVLC error resilience can be achieved by using palindrome codewords. The palindrome 

codes are identical to the reverse reading of the codeword itself. Table 2.1 illustrates the 

symmetric and asymmetric RVLCs constructed using Huffman codes. This is just an example 

of five systems, but the table could be extended to more symbols. 

Table 2.1: Symmetric and Asymmetric RVLCs Huffaman Codes 

Symbol Pro Huffman Symmetric Asymmetric 

A 

B 

C 

D 

E 

 

033 

030 

018 

010 

0.09 

00 

01 

11 

100 

101 

00 

11 

010 

101 

0110 

00 

0 

10 

111 

11011 

 l(C) 2.19 2.46 2.37 
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2.7.5 Flexible Macroblock Ordering 

Lambert et al. [234] view Flexible macroblock ordering (FMO) as an error resilience 

technique that groups macroblocks and transmits over a noisy channel. It is also regarded as a 

flexible way to confine errors into a certain part of a frame thereby protecting the other part. 

Figure 2.17 shows different techniques of FMO, the objective behind these various methods 

is to avoid error accumulation by equally scattering all possible errors to the whole frame.  

 

Figure 2.17: Different Techniques of FMO 

Similarly, Baccichet et al. [235] consider FMO as source coding tool through which slices 

contain macroblocks are used to ensure interoperability. Their goal is to avoid packet error 

spreading through a frame in a GOP. Dhondt [236, 237] et al. gives the different perceptions 

of FMO instated of using a scattered pattern they combine nearby macroblocks together in 

one slice. This technique is useful in transmitting video data over lossy networks  

The foregoing assertions imply that FMO apply a uniform working process for the different 

techniques. Cajote et al. [238] observed that FMO randomizes the data before transmission. 
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They further noted that if a packet is lost the errors are distributed arbitrarily over the frame. 

As the entire frame is not corrupted part of the frame can be used to conceal lost content. 

2.7.6 Video Coding Standards 

Advancement in multi-view video compression (MVC) technology has changed the way 3D 

video are transmitted over wireless networks and stored on a disc. According to Sadka [17], 

the emerging MVC techniques have led to the delivery of high-resolution 3D video content to 

a large number of users through wireless and wired Internet video broadcasting and 

streaming. Sagir et al. [90] stated that with the development a high number of 3D video 

coding standards, 3D video applications such as 3D video conferences, HD 3D TV broadcast, 

HD DVD storage and Blu-ray storage have been dramatically increased. In [239], the author 

stated that, the goal of MVC is to reduce the large video representation of the multi-view 

video sequence while preserving its quality. Thus, efficient reduction of multi-view video 

content is necessary to satisfy the different constraints imposed by decoding devices and 

transmission networks. 

Gao et al, [214] viewed the MVC techniques as powerful tool that proves efficient reduction 

of raw multi-view video data to a level more practical for storage and transmission. They 

stated that uncompressed multi-view video contains a lot of redundancy which is a waste of 

bandwidth. Thus, either lossless or lossy compression is required. In lossless compression, 

the original pixel values are completely restored after decompression [240]. Lossy 

compression possesses loss of some data information hindering complete restoration of the 

data; it also results in the introduction of distortion artefacts in the video [220]. This 

distortion may or may not be visible, depending on the compression factor and the efficiency 

of the compression. 

Le Gall et al. [241] and Merkle et al.[41] categorized video compression techniques into intra 

coding or inter coding. They stated that Intra coding exploits spatial redundancy in each 

frame in the video signal. Whereas inter coding exploits spatial and temporal redundancy 

between successive frames. The exploitation of these compression techniques has only been 

made possible through the development of the well-known ITU-T and ISO/IEC video coding 

standards that sufficiently reduce the size of video content for a particular application. 

Table2.2 presented the most common video compression standards quoted in literature. 
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Table 2.2; The current Image and Video Compression Standards 

Standard Application Bit Rate 

JPEG  Continuous-tone still-image compression Variable 

H.261 Video telephony and teleconferencing over 

ISDN 

p x 64 kb/s 

MPEG-1 Video on digital storage media (CD-ROM) 1.5 Mb/s 

MPEG-2 Digital Television 2-20 Mb/s 

H.263 Video telephony over PSTN 33.6-? kb/s 

MPEG-4 Object-based coding and  interactivity Variable 

JPEG-2000 Improved still image compression Variable 

H.264/MPEG-4  Improved video compression 10’s to 100’s kb/s 

H.265/HEVC Improved video compression  

 

The MPEG-4, H.264/AVC and H.265/HEVC standard are currently the most important ones 

in the areas of MVC [242-244]. The MVC is achieved by the exploitation of a temporal and 

spatial redundancy in the multi-view video sequence [220]. The MVC is based on the hybrid 

motion compensation and transforms coding algorithm like many of its predecessors. Figure 

2.18 shows the evolution and development of the previous video coding standards. In fact, 

significant enhancements of the classic algorithm have been implemented in the H.264/AVC 

and H.265/HEVC standards to improve its coding efficiency [224]. The use of H.264/AVC 

and H.265/HEVC codec has greatly improved 3D video communicate in the modern concept 

of mobile wireless communication. For example, the H.265/HEVC, been the news video 

compression standard provides large bit-rate reductions (up to 50%) over its predecessor 

H.264/AVC [42, 188] 

According to [246] intra and inter coding are the essential coordinate establish as part of the 

MVC strategy. The intra coding is exploited to reduce the overall bitrate of the spatial 

redundancy. Spatial redundancy is the redundancy between adjacent pixels in one frame. 

Each frame typically goes through three stages in intra coding; transformation, quantization 

and entropy coding as shown in Figure 2.19. Referring to the figure the source data frame 

images are now split on a section of 8 x 8 pixels called macroblocks. In the transformation 

stage, a frame is transformed into another domain using a wavelet transform like Karhunen-

Loeve transform (KLT), discrete cosine transform (DCT) or some other kind of transform. In 
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the transformation domain, the pixels are represented by less correlated coefficients. As 

correlation essentially is redundant information, the transformation stage reduces the 

bandwidth of the signal without losing information [247]. Moreover, most of the energy in 

the frame is low frequent information and will be concentrated in a small subset of 

coefficients. Also, the eye is more sensitive to low frequencies than high frequencies [248]. 

 

 

Figure 2.18: Development of video coding standards [245] 

Following the transformation stage is the quantization stage. The precision of the coefficients 

is reduced, but in such a way that the frame is minimally degraded. Quantization preserves 

more of the precision in the low-frequency coefficients than the high-frequency coefficients 

[171]. In [16 and 220], the authors stated that quantization is a many-to-one process and has 

two important consequences: First, the raw video data can be compress even more for high 

efficiency. Second, the process is irreversible. Therefore, in the entropy stage, even more, 

redundancy is removed by exploiting some representation levels from the quantization stage. 

For example, normal levels can be 36 coded with fewer bits than less normal levels. This 

way, the overall bitrate is reduced. Huffman Coding and Arithmetic coding are the most 

common entropy coding techniques 
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Figure 2.19: DCT based Spatial Compression 

 

2.8 Concept of Video Transcoding 

The conceptual clarification of the video transcoding is necessary for the reader to gain a 

better insight into the rationale behind this concept against its usage in different contexts. 

Linguistically the word ‘transcoding’ is Latin combining ‘trans’ which is a prefix that means 

"across, over, beyond” with ‘coding’ [102]. Technically it means convert, translate, 

transform, transfer, etc [17].  

Aparicio et al. [249] view video transcoding as the technique used to converts a video file 

from one format to another in order, to make videos viewable on different platforms and 

devices. One transcoding scenario is encountered when the target device does not support the 

video format generated by the source. Another scenario consists of the situation whereby the 

video of origin and target destination have asymmetric capacity; hence, the rate of the 

original video stream will have to be reduced (transcoded) so that the receiver node can 

accommodated it. This definition discussed mainly video aspect of the transcoder. Through 

transcoder, a company logo can appropriately be inserted into compressed video bitstreams 

by TV telecasting industry for the purpose of advertising [250]. 

Panusopone et al. [251] consider logo insertion in transcoding as the process that requires 

different operation from the traditional transcoding scheme. They opine that the output of 

conventional video transcoder generates similar content of the input bit-stream. Therefore, 

there are uniform coding parameters between the input and output.  
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In the communication media technology, ‘video transcoding’ means the act of transforming a 

compressed video format into another compressed format [26]. Figure 2.20 shows that a 

video transcoder can change one or combination of bit-rate, frame rate, frame resolution, and 

coding syntax [252].  

 

Figure 2.20: Video Transcoding 

Keesman et al. [253] show that a cascaded transcoder which consists of decoder/encoder can 

be used to enhance interoperability between different communication system. They argued 

that cascaded transcoder employ motion vectors information re-used to execute the changes 

of input bitstream to the required target bitstream. 

Xin et al. [32] give the different perceptions of video transcoding. They identify video 

transcoding as the physical process of converting compressed bitstream from one format to 

another format. Consequently, considering the foregone definitions, this thesis views video 

transcoding as the act of converting compressed bitstream of one standard onto the other 

without the need for any further decoding and re-encoding process. 

Deneke et al. [254] noted that transcoder function by down scaling the bit-rate of the source 

to meet the bit-rate capability of the target. Lawan et al. [29] assert that for a transcoder to 

provide higher video quality at the receiver, certain conditions must be met. In using bit rate 

conversion, other factors may be included. For example, in a modest bitrate reduction, the 

same parameters of source input information can be reused without much compression 

efficiency loss. However, reduction of higher bit-rate may lead to partial loss of texture and 

image details owing to compression. 

Grajek et al. [255] presented their work which specified issues related to spatial resolution 

transcoding generated from a block-based encoding paradigm. In this case, spatial resolution 

reduced multiple motions and Intra prediction modes to obtain fast video conversion. 

However, this process is not a straightforward task due to the potential inconsistent trend of 
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input methods. Hence, custom algorithms are required to perform this conversion without 

introducing a significant quality or speed penalty.  

Winger et al. [256] presented an approach on how to integrate temporal resolution through 

transcoding. The first thing the author did was to define video transcoding as the temporal 

resolution reduction. They observed that to change the resolution of the video some of the 

frames need to be dropped. By the frame dropping, low resolution device can decode video 

encoded with the high-resolution frame. Thus, the performance was based on 2D videos only. 

2.9 Summary 

The literature reviewed reveals that wireless communication, error resilience and video 

transcoding are important factors for efficient 3D video communication. Different authors 

consider mobile 3D video communication as a process that involves video information 

conversion into electrical signal for transmission over wireless networks. The review mainly 

focusses on wireless communication particularly the existing 4G mobile networks.   

Many authors and researchers have identifies the feature network platform such as 5G 

networks as suitable for 3D video communication. The full service of 5G network is expected 

around the year 2020. The 5G is designed to cater for mix bandwidth data path. The 5G 

networks can supply mobile internet to users at anywhere, anyhow and anytime. The future 

5G mobile communications will exploit high frequency above 6 GHz. This could support a 

variety of new applications such as holographic projections and 3D medical imaging. The 5G 

mobile would deliver data at 10 to 50 Gbit/s speeds faster than today’s average 4G download 

speed of 15 Mbit/s.  

The literature review further reveals that error resilience techniques have serious implications 

for 3D video transport over unreliable wireless networks. Error resilience provision has 

become necessary within multimedia source coding. The error resilience is equally important 

in video transcoding. Robust video transcoding would enhance reliable and efficient 

interoperability of diverse communication equipment using different networking platforms. 
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Chapter 3 

3D Video Quality Assessment  

This chapter describes subjective quality assessment of 3D video encoded with H.264/AVC. 

After a brief introduction, Section 3.2 presents a review of related work. Technical issues on 

QoE versus QoS are discussed in Section 3.3. Statistical system analysis technique is 

presented in Section 3.4. Section 3.5 focuses on the research design. Section 3.6 discussed on 

data presentation. Section 3.7 highlights test of hypothesis. The chapter is summarized in 

Section 3.8.  

3.1 Introduction 

Nowadays, mobile 3D video communication is becoming widely available. The quality of 

mobile 3D video communication needs to be maintained at accepted ITU standard. To 

maintain an acceptable quality level, a reliable video quality evaluation test is necessary. 

Video quality can be evaluated using either subjective assessment or objective measurement. 

This chapter focuses on subjective video quality assessment of a transmitted multi-view video 

over error-free and noisy channels. 

The subjective video quality evaluation of transmitted 3D video involves the use of human 

assessors. The assessors view a transmitted video clip and provide their opinion on the QoE. 

The human visual quality evaluation test is extended to pictures quality, perceived depth, and 

visual comfort. In the light of the foregoing, we carry out an experimental survey on 

subjective 3D video quality assessment. The survey involves male and female volunteers 

drawn from Brunel University London, UK and Nigerian Defence Academy, Kaduna. The 

participants are literate and semi-literate in the multimedia communication field, and 

therefore, they have the capacity to judge the QoE of transmitted video.  

Figure 3.1 shows the setup of a two-way 3D video wireless communication link used in the 

conduct of the experiment. The setup process follows the ITU guidelines for subjective video 

quality test [55, 115]. The sending of the 3D video from the source to the display was done 

over wireless communication channel. First, compressed multi-view video is conveyed over 

error-free network and the content is viewed using 3D video glasses. Secondly, the same 

content is sent over the error-prone network and the same assessor watches the content. After 

that, the participants answer question from the bespoken questionnaires.   
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Figure 3.1: 3D videos communication link was set up in UK and Nigeria 

The goal of this chapter, therefore, is to examine the results of the subjective video quality 

assessment survey of a 3D video communication over the wireless channel. The data that 

support the submission of the survey were obtained from primary and secondary sources.  

Information was also obtained from an interview conducted with some of the participants as 

well as the use of ITU reports. 

3.2 Related Work 

To some researchers, subjective video quality assessment is perceived as something 

abnormal, dysfunctional and therefore detestable. To others, subjective quality assessment is 

a fact of life and could be a precursor to positive changes. Different people are bound to 

experience one form of quality of experience (QoE) or the other. What makes a QoE of a 

video communication an ideal polity is the extent to which the subjective interests of the end-

users are constructively managed. According to [54, 257] the most desirable way to evaluate 

video quality is through the conduct of subjective test using the standardized procedure. 

Barkowsky et al. [258] noted that instinctive video quality assessment needs to rely on the 

subjective Mean Opinion Score (MOS) of the end-users. Umar et al. [259], compare methods 

of coding stereoscopic video for two image sequences. They used MOS for the subjective 
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video quality assessment to evaluate which of the compression methods produces the better 

result. Zeger et al. [260] observed that for comparison of stereo images, subjective 

assessment should employ the use of MOS of the reconstructed left and right images. 

Osberger et al. [261] state that, widely used, PSNR does not correlate well with viewer’s 

opinion when assessing standard; therefore, subjective video quality assessment is the most 

appropriate. Wang et al. [262] consider video quality assessment using root mean square 

(RMS) and PSNR. They stated that these actions are simple calculations of pixel difference 

and provide no information about the end user’s opinion on the video quality degradation. 

They demonstrated that PSNR alone cannot meaningfully be applied to measure perceptual 

distortion. Hence, subjective video quality evaluation is preferred QoE method.  

3.3 QoS and QoE 

Due to the increasing requirement for portable 3D video communication over wireless 

networks, the roles played by both QoS and QoE are important subject. Figure 3.2 presents 

the relationship between QoS and QoE in an end-to-end multi-view video communication 

system. 

 

Figure 3.2: QoS versus OoE 

3.3.1 Quality of Service 

“Quality of service” (QoS) defines the ability of the network to provide a service at certain 

significance level. QoS is a standard set up by ITU [263, 264] that focus towards network 

performance between the transmitter and the receiver. Network impairment metrics such as, 
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throughput (bandwidth), packet loss, jitter and packet delay affects QoS. Thus, the QoS is the 

efficiency of network services providers to deliver reliabile service. QoS is therefore 

considered to be the primary building block for reaching QoE.  

3.3.2 Quality of Experience 

“Quality of Experience” (QoE) is a broad term used to capture user’s experience or delight of 

the delivered service [265]. User experience is determined based on more than a just error-

free video stream with high quality. Aspects like availability, economy, contextual 

information, user’s personality and state-of-mind also determine QoE. QoE can be considered 

as an end-user subjective feedback on the degree of delight of service.    

3.3.3 Factors Affecting QoE 

There are several factors that affect QoE. Figure 3.3 categorized these factors into two 

namely: technical and psychological factors. The technical factors that influence QoE include 

QoS, compression format representation, and the sensitivity of the devices software. The 

psychological factors that influence QoE include the way people feel during the time of 

watching the displayed video. The environmental impact and the expectation of end-user are 

all psychical issue that can affect the end-users delight. 

To achieve a satisfactory level of 3D video communication and meet the end-user QoE 

expectations, the following need to be considered: 

a. 3D video communication should be properly engineered based on reliable network 

with sizing capacity and adequate security. 

b. Mobile 3D video compression algorithm should be robust with low latency. 

c. Adequate bandwidth usage to handle traffic and overlay peak video traffic. 

d. Use of QoS mechanism is fundamental in delivering high QoE. 

e. Constant monitoring and maintenance. 
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Figure 3.3: Factors Influencing QoE 

3.4 Research Design 

Systems Analysis Technique (SAT) is the research method adopted for analyzing the data 

collected from the survey conducted on QoE of a 3D video communication. This technique 

entails the application of both quantitative and systematic analysis in evaluating the QoE.  

According to Bozeman [266], the System Analysis Technique is simply the use of 

quantitative techniques in decision-making.  In our context, SAT method is employed to 

evaluate the pictures quality, perceived depth, and visual comfort of the 3D video end-to-end 

communication. With the SAT method we relate the independent and dependent variables. 

Variables such as 3D video quality satisfaction, user experience, preferences, comfort, depth 

presences, etc. were obtained and compared.  

3.4.1 Identification of Variables 

There are two variables in this research. The variables are QoE and QoS. The independent 

variable is QoS while the dependent variable is QoE. This implies that QoS operations have a 
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relationship with total QoE. Consequently, changes in QoS influence the QoE operations. 

This study postulates the following null and alternative hypotheses.  

 

H0: QoE has total or partial influence by deviation from the natural properties of QoS.   

H1: QoE is influenced by the effect of QoS.  

 

The hypothesis was tested using simple Chi-Square statistical tool. The Chi-Square 

inferential statistical tool is expressed mathematically as [267]: 

 

X2 =
(O−E)2

E
      

 

Where O is equal to the observed frequency, E means expected frequency. And X
2 

is the Chi-

Square. 

3.4.2 Area of Survey 

The areas of study were Brunel University, London and Nigerian Defence Academy, Kaduna.  

These two locations gave a fair geographic representation of different network impairments 

that influence QoS. Additionally, the end-user expectations of the QoE at the two different 

locations are not the same. 

3.4.3 Sources of Data 

The subjective quality assessment utilizes two sources of data for this research work, namely, 

primary sources and secondary sources. The questionnaires and oral interviews constitute 

primary sources. Secondary sources of data for this research include reports and bulletins 

from ITU-T Recommendation BT.500, EPFL image and video database. Others are MOS for 

video sequences, objective quality assessment (OQA), and PSNR. The ITU-R BT. 2021 

recommendation for the evaluation of 3D-TVs prescribes that the assessor should be asked to 

score three factors separately, i.e. picture quality, perceived depth, and visual comfort.  

3.4.4 Method of Data Collection 

The method of data collection was based on phase. In the first phase, the participants were 

made to watch the display of the 3D video transmitted over perfect channel and error prone 

networks in relaxed environments using stereoscopic shutter glasses. The reconstructed 3D 

video was displayed on a laptop computer with a screen 1152 x 900 pixels resolution. Other 

……. (3.1) 
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important parameters include 0.8 rad horizontal FOV, optical path length is 320 mm and 60 

Hz operating frequency.  

After watching the transmitted video clips, in the second phase the assessors rated the quality 

of the displayed videos by completing a questionnaire. The Questionnaires were used to 

obtain the data. The questionnaires were designed in a manner as to get realistic responses 

from the respondents. Each issue in the questionnaire has a 5-point Likert Scale namely, 

strongly agrees, agree, uncertain, disagree and strongly disagree. The Likert Scale is used to 

assess the strength/intensity of QoE. A sample of the survey questionnaire is at Appendix C. 

Besides the use of the questionnaires as an instrument of data collection, the researcher also 

holds face to face oral and personal interviews. The interviews were structured to acquire 

more valued information from the wealth of experience of the participants.  This discussion 

provided a more relax environment for validating relevant data.  The empirical data obtained 

from the questionnaires was organized in tables. The data collected were sorted accord to the 

variables, and a table of MOS was developed using SPSS. The MOS data view and variable 

views are illustrated in Tables 3.1 and Table 3.2 respectively. 

 

Table 3.1: Variables View of the MOS 
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Table 3.2: Data Set and Variable View in SPSS 

 

 

3.4.5 Validation 

The tools used in this study are valid because they are the most acceptable medium of data 

collection in scientific research. The instrument was also considered appropriate for the study 

after several criticisms and corrections by experts.  

The questionnaire gave the respondents the opportunity to make informed choices in their 

responses. Furthermore, the questions raised in the questionnaire were simple, clear and 

required direct answers. Consequently, the responses were spontaneous rather than 

mechanical. 
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The secondary data source also enabled the researcher to access information already 

generated by experts on the subject. However, some information obtained from oral 

interviews was considered less reliable because some respondents avoided making 

categorical statements that could be quoted. 

3.4.6 Weakness of study 

The major weakness of the research work was the inability of the researcher to cover more 

areas during the research work.  The sampled population was restricted to Brunel University 

Uxbridge London and Nigerian Defence Academy, Kaduna environs. Though, this could not 

be said to have affected the validity of the research. Also, all the 280 assessors were adults, 

amounting to a return rate of about 89.3 percent.  Additionally, out of the 240 persons 

randomly approached for interview or comments, only 121, representing about 50.4 percent, 

were accepted. In the light of this, the data presented are truly adequate sample for a research 

study of this nature.  These weaknesses did not negate the outcome of the research. 

Another major problem encountered during the study was that some of the participants were 

reserved. Many of them claimed not to be technically qualified to provide critical information 

that would have helped the high technical study of this nature. This is right bearing in mind 

that there were still technical issues that may require the opinion of experts in media 

communication. This, therefore, forced the researcher to conduct face to face interview and 

free complete some aspect of secondary data.  

3.5 Data Presentation 

This Section focuses on the presentation of collated data and the variables considered in the 

research. The data on the subjective opinion scores is analyzed for the purpose of answering 

the research questions and testing of the hypotheses. Numerical data obtained was presented 

in tables, while bar and pie charts were used to illustrate the data to enhance comprehension 

and interpretation.  The data expressed in percentages was rounded off to the nearest whole 

number to simplify calculations. The population size was considered adequate for 

generalization. 
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3.5.1 Respondent’s Profile - Distribution by Age Group 

Table 3.3 shows the distribution of respondents by age group categorization. The age 

categories covered from 20 years to 80 years. Assessors above 80 years and below 17 years 

were not qualified for the test.  

Table 3.3: Distribution of Respondents by Age Category 

Serial Age Group No of Respondents Percentage 

1. 20-25 46 16 

2. 26-30 58 21 

3. 31-35 68 24 

4. 36-40 19 7 

5. 41-45 24 9 

6. 46-50  14 5 

7. 51-56 11 4 

8. 60-65 22 8 

9. 66-70 10 3 

10. 71-80 6 2 

11. 81 and above 2 1 

 Total  280 100 

 

Figure 3.4 shows the percentage distribution of respondents by age group categorization. The 

bar chart demonstrates that young people between 20-35 years participate in the survey. With 

people of 31-35 years age category topping with 70%.  
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Figure 3.4: Bar Chart Showing Distribution of Respondents by Age Category 

3.5.2 Distribution by Gender 

Table 3.4 shows the distribution of the respondents by gender. Out of the 280 respondents, 

110 were male while 170 were female.   

 

Table 3.4: Gender Distribution of Respondents  

Serial Gender Number of Respondents Percentage 

1. Male 110 39 

2. Female 170 61 

 Total 280 100 

 

Figure 3.5 shows that 39% of the participants were male and 61% were female.  This ratio is 

considered suitable for evaluating QoE of the transmitted 3D video over the wireless 

network. 
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Figure 3.5: Pie chart showing distribution of respondents by gender 

3.5.3 Distribution by Length of Watching Video 

Table 3.5 shows the distribution of the respondents by length of watching video. From the 

Table, 81 out of 280 respondents have long time record of watching video by either watching 

TV or movie films. Only 42 people out of 280 assessors have five years record experience of 

watching video. 

Table 3.5: Distribution of Respondents by Length of Watching Video 

Serial Length of Watching Video 

(Yrs) 

No of Respondents Percentage 

1. Below 5 42 15 

2. 6-10 52 18 

3. 11-15 60 21 

4. 16-20 81 30 

5. 21 and above 45 16 

 Total 280 100 

 

Graphically, Figure 3.6 shows that about 15 percent of the 280 participants have experience 

watched video for approximately five years. Similarly, 18 percent representing 45 

respondents have experience of watched video from 6 to 10 years. Also, 60 of the 

interviewees have wealth of experience in watching video for up to 15 years while 81 have 

watched for 15 to 20 years. The remaining 21 respondents have watched for 21 years and 

above. From the differences in participant’s length of watching a video, it is believed that the 

unique desires and needs of watching 3D video have been fairly covered.  



 

 

53 

 

 

Figure 3.6: Distribution of Respondents by Length of Watching Video 

 

3.5.4 Impact of QoS and QoE 

One major question asked in the questionnaire tries to find out from the participants the 

impact of QoS and QoE.  The questions included whether the quality of the 3D video clip 

received and watched is equitable? The response recorded indicates that the participants were 

satisfied with 3D video as compared to 2D video. Table 3.6 shows the response on how fair 

the participants received the transmitted 3D video.   

Table 3.6: Response on Fairness of 3D video  

Serial Variable No of Respondents Percentage 

1. Strongly agree 56 20 

2. Agree 168 60 

3. Undecided 14 5 

4. Disagree 28 10 

5. Strongly Disagree 14 5 

 Total 280 100 

 

It was observed from Figure 3.7 that 60% agreed that the quality of the 3D video clip they 

watched was equitable while 10% disagreed. There was 5% that was undecided.  From the 

statistics, it can be deduced that the 3D video clip transmitted was well reconstructed. Hence, 
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the algorithm for the MVV-AIR method adapted in delivering 3D video over wireless 

networks satisfied both the QoS and QoE requirements.  

 

Figure 3.7: Response on 3D Video Receive is Equitable 

 

On the issue of compressed 3D video transmission, it was observed from Figure 3.8, that only 

40% agreed that they were satisfied with the quality of the compressed 3D video. Similarly, 

45% responded otherwise. To this end, some of the respondents were interviewed to explain 

the reason of their disagreement. The responses from the majority of those interviewed focus 

on size of the display screen of laptop. They believe that the picture could have been clearer 

if displayed on a big screen with higher resolution. 

Furthermore, some participants were not comfortable wearing glasses. However, we observed 

wearing of 3D glasses has no direct impact on the QoE. This finding correlate with that of 

Wur et al. [268] which demonstrate that wearing 3D glasses has no negative impact upon the 

perceived quality. Moreover, the majority of those who expressed dissatisfaction are not used 

to watching 3D video. QoE is heavily related to QoS. Even though QoS attempts to 

objectively measure service parameters such as packet loss and throughput, the QoS is in 

most time not related to viewers. Thus, subjective evaluation permits end users the latitude to 

expound their opinion on QoE. 
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Figure 3.8: 3D Video Quality 

3.5.5 Effect of Watching 3D Video with Glasses 

Table 3.7 shows the data related to the number of participants who responded to the effects of 

watching 3D video with viewing glasses. 

Table 3.7: Response on Wearing 3D Video Glasses 

Serial Variable No of Respondents Percentage 

1. Strongly agree 26 9 

2. Agree 56 20 

3. Undecided 20 7 

4. Disagree 164 59 

5. Strongly Disagree 14 5 

 Total 280 100 

 

From Figure 3.9, it could be seen that 59% responded negatively that there is no discomfort 

in using 3D glasses. Similarly, the interview conducted confirmed that there is no side effect 

after using the glasses. The findings corroborate Spector’s explanation that 3D video glasses 

do not introduce discomfort; rather it assists in delivering a high quality 3D video experience 

to the viewer. Without the 3D video glasses, the 3D video effect would not be noticed rather 
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a double image would appear throughout the entire video time. The 3D video display device 

works by separating the light into two separate polarized filters. Each filter specifically 

designed to accommodate the vision capability of left and right eye. Without the glasses both 

images appear to both eyes and look blurry or like a double image (depending on the 

separation of those images at the time).  

 

Figure 3.9: Effect of Watching 3D Video with Glasses 

From the test we have carried out, there was no reported case of participant’s complaint about 

headaches during or after viewing the 3D video clip. Therefore, the problems of discomfort 

associated with wearing 3D viewing glasses can be attributed to other issues such as viewer’s 

position. For example, a viewer watching video may experience parallax and mismatch of the 

image particularly when there is frequent movement head. The resulting effect may cause 

discomfort to the viewer.  

3.6 Test of Hypothesis 

Test of hypothesis was carried out using the chi-square. The chi-square test is widely used in 

economics, cryptography, engineering, biology, and many other research areas. The chi-

squared test is used to obtain the significant difference between the observed frequencies and 

the expected frequencies.  
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In our test, we consider the issue of testing the hypothesis H0 that the QoS and QoE obey the 

uniform distribution. The problem is of interest is evaluating QoE of a transmitted multi-view 

video over noise-free environment and error-prone wireless network. Table 3.8 shows the 

result of data computed for male and female participants as relate to agreed and disagree 

response. 

Table 3.8: Incident Table 

Category of Participants  Agreed Disagreed Total 

Male 132 68 200 

Female 98 66 164 

Total 230 134 364 

 

Using the Chi square (X
2
) statistical method.  

H0– QoS satisfaction does not enhance QoE efficiency. 

H1 – QoS satisfaction enhances QoE efficiency.  

The observed frequencies (O) are categorized into male and female. From the Incident Table 

3.8 above, the observed frequencies for male that agreed with the statements in the 

questionnaire are 132 while those that disagreed are 68. Also, 98 female agreed with the 

statement while 66 disagreed. The expected frequencies (E) for each value are calculated and 

tabulated in Table 3.9. Table 3.10 presented the summary of the chi-square computation. 

 

 

Table 3.9: Expected Frequency Calculation 

Serial Category of 

Respondents 

Agreed Disagreed Total 

1. Male 200 x 230 = 126.37 

             364 

200 x 134 = 73.62 

          364 

 

2. Female 164 x 230 = 103.62 

             364 

164 x 134 = 60.37 

          364 

 

 Total    
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Table 3.10: Chi-Square Summary Table 

Data Type O E O-E (O-E)
2 

(O-E)
 2 

E 

Agreed Male 132 126.37 5.63 31.70 0.25 

Disagreed Male 68 73.62 -5.62 31.58 0.42 

Agreed Female 98 103.63 -5.63 31.70 0.31 

Disagreed 

Female 

66 60.37 5.63 31.70 0.53 

     Total                                                                                      1.51 

 

From Table 3.10, the value for chi squared would be determined using alpha (α) as 0.05.  To 

test the hypothesis the following Decision Rule is employed: 

 

Accept H0   if      𝑋2 < 1.51 

Reject H1  if       𝑋2 > 1.51 

 

The latitude and degree of freedom (df) [267] is calculated by multiplying the number of 

rows minus 1 by the number of columns minus 1. This expressed mathematically in equation 

(2) below. 

(𝑑𝑓) = (𝑟 − 1)(𝑐 − 1) :   

where:  r = row and c = column.  

 

Since our table is 2x2, it implies that   (df) = (2-1) x (2-1) = 1 x 1 = 1. The  (𝛼) = 0.05. is 

chosen to be the level of confidence. The testing statistics is carried out using the Chi square 

expression in equation (3).  The summation of males and female participants that agree and 

disagree is computes. 

𝑋2 = ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

Testing statistics:   



E

)EO(
X

2
2      

 

Where,  ‘O’  represent observed values, ‘E’- expected values. 

 

 

𝑋2 = ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

……. (3.2) 

……. (3.3) 
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𝑋2 = ∑
(132 − 126.37)2

126.37
+

(68 − 73.62)2

73.62
+

(98 − 103.63)2

103.63
+

(66 − 60.37)2

60.37
 

 

 

𝑋2 = 0.25 + 0.42 + 0.31 + 0.53 = 1.51 

 

From the Table 3-11 of critical values, the probability of a large value of x
2
 for the critical 

chi-square statistic value for alpha 0.05 (95% confidence level) with 1 degree of freedom is 

3.84. 

Table 3-11: Percentage Points of the Chi-Square Distribution 
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Decision: 

Since Chi-squared (X
2
) > 1.51  

Therefore, H0 is rejected and H1 is accepted. 

This implies that there is a difference between the performance of video transmission with 

enhanced QoS and those who are not control and monitored. Thus, enhanced QoS improves 

QoE efficiency. 

3.7 Summary 

This chapter has presented a subjective quality assessment method to appraise the human 

perception on transmitted 3D video with regards to QoS and QoE. The study used qualitative 

subjective test through participatory observation of 3D video. The research involved an 

evaluation and analysis of data collated on the quality of reconstructed multi-view video 

transmitted over wireless channels. A total of 280 respondents were made to watch 3D video 

clip and complete questionnaires. The study population was made up of 110 male and 170 

female. It was discovered that most participant’s response correlated strongly with the overall 

perception that QoS significantly affects QoE. The data was collected from both primary and 

secondary sources using questionnaires, interview and analysis of document. Data were 

obtained from review of documents, questionnaires and interview of participants. A SPSS 

data profoma was used to collate data on quality of 3D video transmitted over wireless 

network. Chi-square method of analysis was used to test the significance or otherwise of the 

hypothesis.The experiment for validation of the collated data was presentation based on ITU-

R recommendation. The data obtained is then used to answer the research question and 

testing of the hypotheses. The statistical results demonstrated the correlation of 3D video with 

human perception across contents. We used Systems Analysis Technique to validate the 

MOS generated from the Brunel University London UK and Nigerian Defence Academy, 

Kaduna, Nigeria. One major limitation is our in ability to use structural similarity (SSIM) 

index to predict the perceived 3D video picture quality.  

 

 

 

 

 



 

 

61 

 

Chapter 4 

Adaptive Intra Refresh 

This chapter describes Adaptive Intra Refresh (AIR) error resilience compression technique 

for 3D video transmission over wireless networks that we have developed. We start in Section 

4.1 with a brief introduction. Section 4.2 presents a review of H.264/AVC video coding. 

Section 4.3 examines the impact of transmission error propagation on the compressed 3D 

video bitstream. Then we proceed in Section 4.4 to describe how to generate adaptive intra 

refresh map. Section 4.5 demonstrates the periodic insertion of Intra-coded cyclic line 

macroblocks. Section 4.6 presents error detection method. Section 4.7 covers experiments 

and discussions. Finally, Section 4.8 summarizes the chapter.  

4.1 Introduction 

The use of Internet and mobile wireless communication has affected the daily life of people 

worldwide. Cisco has asserted that five billion people employ mobile video communication 

technologies for their everyday activities [74]. The current wireless networks technologies 

usher in growth for multi-view video content to mobile devices. However, effects noise has 

bedevilled transmission of multi-view video over the noisy channel. The errors due to noise 

on the compressed 3D video bitstream severely degrade perceptual video quality at the 

receiver. Therefore, a guaranteed QoS is required for the successful mobile 3D video 

communication systems. In the light of this, to achieve a robust and resilient 3D video 

transmission over wireless network error control strategy is necessary.   

Error resilience mechanism is one of the error control strategies that can make compressed 

bitstream more robust to a transmission noise. Figure 4.1 illustrates error resilient 3D video 

communication system. The diagram presents a breakdown of the journey for raw multi-view 

video from the source to destination. The raw video data is compressed by error resilient 3D 

video encoder in order to remove redundancy and facilitate easy transport of the bitstream 

through the limited bandwidth. Although error resilient coding helped in making the 

bitstream more resilient to a transmission error, it is observed that predictive compression is 

the cause of spatiotemporal error propagation. This is because the removed data creates a 

vacancy place within the bitstream which bits and burst channel errors easily occupied. 
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Consequently, Adaptive Intra Refresh (AIR) coding technique is required in the encoder to 

make coded bitstream resist transmission network error. 

 

Figure 4.1: Error resilient 3D video communication system 

The AIR error resilience process is an interactive error resilience mechanism which is support 

by feedback channel that connect the encoder with the decoder. Through the feedback 

channel, the encoder collects information of the channel condition. The keynote of the AIR 

process is the generation of Intra refresh map which is achieved by using the databased 

obtained on the channel condition and the variations of active macroblock. The generated 

refresh map table allows direct periodic insertion of Intra-coded macroblocks into group of 

picture (GOP). As the motion actives and changes in channel condition increases, the 

generated refresh map table is instantly updated. This chapter therefore, briefly describes AIR 

error resilience process and presents the simulation results of the developed MVV-AIR 

algorithm. It is expected that the MVV-AIR error resilience algorithm will enhance 3D video 

communication over noisy channel. 

4.2 Overview of AIR Error Resilience 

Some video compression standards exploit error resilience tool to enhance the robustness of 

the compressed bitstream. In H.264/AVC standard error resilience refers to mechanisms in 

the encoder used to boost the capability of the compressed bitstream to repel channel errors. 

In the encoder, the error resilience tool is mainly found in the video coding layer (VCL) 
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[269]. Figure 4.2 illustrates various macroblock-level error resilience tools introduced to 

improve transmission of compressed video over wireless communication channels. The 

diagram also shows different types of Intra refresh error resilience at macroblock levels. In 

this research, we consider the interactive cyclic multi-view video Adaptive Intra Refresh 

(MVV-AIR) error control scheme. 

 

 

Figure 4.2: Some Macroblock-Level Error Resilience 

Most of this macroblock error resilience has been discussed in chapter two therefore brief 

highlight is provided for selected few. The cyclic MVV-AIR algorithm is an interactive error 

resilience technique which uses the feedback channel technique to link decoder with the 

encoder. The decoder via the feedback link informs the encoder about the channel condition 

and the number of macroblocks that are corrupted by errors. With this information, the 

encoder updates the established MVV-AIR refresh map and inserts Intra-coded macroblocks 

for the subsequent transmission. 

According to [270, 271] arbitrary slice ordering (ASO) is an efficient macroblock level error 

resilience that eliminate decoding delay. Wiegand et al. [272] stated that ASO allows the 

decoding order of slices independently of the other slice of the picture. Vetro et al [50] urged 

that redundant slices provide spatially distinct resynchronization points within the video data 

for a single frame. They further observed that slice reduction is achieved by introducing a 

slice header, which contains syntactical and semantical resynchronization information.  
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4.3 H.264/AVC Video Coding 

H.264/AVC is a powerful video coding standard that finds a broad range of applications in 

today’s wireless communication system. The use of H.264/AVC is apparent in multi-view 

video communication. A good example of this use is found in the broadcast and streaming of 

3D video. The H.264/AVC encoder offers a unique combination of two layer application. 

These layer applications are the video coding layer (VCL) and network abstraction layer 

(NAL). Figure 4.3 illustrates the two core compression layer features in both encoder and 

decoder [36]. The VCL represents the video content while the NAL contain vital information 

such as header data. Of particular importance is the data header information which is used to 

link various types of networks.  

 

 

Figure 4.3: H.264/AVC Conceptual Layer 

Consequently, coded multi-view video data is represented as an integer or byte in the NAL 

unit. In the H.264/AVC, the first byte of each NAL unit is represented by NAL unit header 
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and indicates the type of data in the NAL unit [35]. Figure 4.4 shows there is a different 

degree of the parameter in the NAL unit block. For smooth operation, the NAL units are 

virtually sub-divided into VCL and non-VCL NAL units. The VCL of the NAL unit 

comprises data of valuable information on the video picture. Similarly, the non-VCL of the 

NAL units predominantly use picture parameter set (PPS), Supplemental Enhancement 

Information (SEI) and a sequence parameter set (SPS) to contain additional informs.  

 

 

Figure 4.4: VCL and NAL Layers 

In the same manner, the H.264/AVC codec is also able to sort a video sequence into various 

groups of pictures (GOP). The GOP is usually a set of consecutive 3 to 15 frames. This 

connective frames can be reconstructed without reference to other frames. Figure 4.5 shows 

an example of 9-frame GOP which can be used for three camera views. Owing to the great 

importance of a GOP to video compression, a GOP can contain all I-frames, I and P pictures 

frames only and I, P, and B frames.   
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Figure 4.5: MVC Structure with a GOP 

 

Each of the I, P and B-frames components contributes to the function of GOP in a different 

way. The I, P and B-frames collective effort is characterized as follows: 

 I - frame (Intra-coded frame): Coded independently without referring to other frames.   

 P - frame (predictive-coded frame): Coded using the reference to a previous 

information of reference frame (either I or P). The size is usually about 1/3rd of an I-

frame. The P-frame uses motion compensation prediction from previous I or P frame.  

 B - frame (bi-directional predictive coded frame). The B-frame is coded by using both 

future and previous reference frames (either P or I). The size of B-frame is usually 

about 1/6th of an I-frame. 

The H.264/AVC encoder has the capability of creating bitsream that links thousand and 

millions of H.264/AVC decoders. Figure 4.6 shows the electronic information system process 

that involves motion estimation, transform, quantization and entropy coding in generating 

H.264/AVC bitstream.  
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Figure 4.6: DCT based Spatial Compression 

The first step in the H.264/AVC prediction cycle is to sort the macroblock into either Intra or 

Inter prediction level. The Intra-frame encoding takes advantage of spatial redundancy. The 

process involves the use of video filter to reduce spatial redundancy at chrominance plane. 

Similarly, the inter prediction involves temporal prediction using forward and or backward 

interpolation. 

The next step is the discrete cosine transform (DCT) that converts spatial disparity into 

frequency variation. The quantization process follows the DCT. The quantization reduces the 

higher frequency components of the DCT coefficient to zero. The final process is entropy 

encoding, here the video stream are generated.  

The entropy coding includes the employ run length coding or Huffman encoding to generate 

the coded bitstream. Thus, in order to prevent over/underflow of the data, error resilience 

MVC the process in H.264/AVC requires detail planning, co-ordination and execution.  

4.4 Impact of Transmission Error Propagation 

Wireless communication has transformed society and made the world a smaller place. More 

recently, smartphones have turned traditional TV broadcast into two-way conversations by 

providing instant video connections over a long distance. The emergence of 4G LTE, Wifi 

and other wireless technologies has brought wireless communication across all facets of daily 

human life. However, information sharing over a wireless network is affected by a 

transmission error. Transmission error is said to occur when the received data do not conform 
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with the encoded data. In the channel, loss of data can be caused by fading, multi-path, bit 

error, burst error, and packet lose.  

Transmission error is the root cause of severe quality degradation of reconstructed video at 

the decoder. Figure 4.7 illustrates how a bit error changes the codes in a bitstream. The effect 

of bursty errors in variable length codes (VLC) could result in loses of synchronization 

between the source and destination devices. Consequently, lack of synchronization between 

the decoder and the encoder could lead to incorrect video reconstruction [50, 273-276]. The 

worst case scenario is when the channel error corrupts the header of a transmitted frame. In 

this type of case the decoder may seize to operate. 

 

Figure 4.7: Effect of Channel Errors in a Bitstream 

Due to the nature of father and child dependency in MVC, an error that occurs in B-frame or 

P-frame many spread temporally through the same camera views as well as to the adjacent 

frame in the other camera views. Figure 4.8 shows a typical example of transmission error 

propagation in a single view, which can be used whenever it is necessary to deliver 2D video 

data between two points.  
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Figure 4.8: Error propagation in a Single View 

Let us consider a case with three camera views in a GOP as shown in Figure 4.9.  Suppose a 

transmission error hits B-frame at location N+1. The error spreads to frames (N+2), (N+3) up 

to end of the GOP. The errors as it spread engulf more number of macroblocks in both time 

and space. The pattern of the error propagation depends on the type of frame and view.  

It is pertinent to note that, the B-frames are not good candidate for other frames prediction as 

such an error in a B-frame is expected to be restricted within that frame. However, in practice 

bursty errors affecting B-frames can trigger temporal error propagation in time, space and 

views. The effect of these errors is a severe quality degradation of the reconstructed video.  
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Figure 4.9: Error Propagation in Space, Time and Views 

For our AIR algorithm we need to know precisely the locations of each macroblock that is 

affected by error. The recognition of the site of each macroblock in a frame is necessary as 

motion object in a scene can quickly change position. Figure 4.10 demonstrates an example 

of identifying the exact macroblock corrupted by error. From the diagram, it is observed that 

the initial error hits macroblock number 4 of frame N in view-1; at the (N+1)
th

 frame, the 

error occupies macroblock 13 and 14 and continues spreading in time and space.  The 

consequence of this unprecedented error propagation is the adverse effect of perceptual video 

quality at the receiver which leads to decreases the user QoE at the receiver end.  
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Figure 4.10: Locations of Macroblocks Affected by Error  

4.5 Generation of Adaptive Intra Refresh Map 

The generation of MVV-AIR refresh map can be understood by first considering the elements 

involved in the implementation of the MVV-AIR algorithm. Figure 4.11 shows the 

configuration of the three elements involved in design and implementation of MVV-AIR. 

Each element contributes in different ways; however, all components possess the following 

generic capabilities. 
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Figure 4.11: MVV-AIR Component Configurations 

 

 H.264/AVC encoder: The encoder main function is to carry out application of 

compression algorithm. It often uses the baseline algorithm as a key tool in tackling 

the challenges of MVV-AIR map generation. The baseline algorithm has three 

stages: A Discrete Cosine Transform (DCT) stage, a quantization stage and a binary 

entropy encoding stage [277-279]. The encoder prepares robust compressed bitstream 

to be transmitted over error-prone networks.  

 Transmission: This is the medium over which compressed 3D video is conveyed 

from one geographical location to another. In the communication medium, 

transmission errors such as bits and a random burst of errors as well as packet losses 

are almost inevitable, particularly over noisy channels. 

 H.264/AVC decoder: The decoder carries out decompression algorithm at the 

destination. It employs error concealments mechanism to hide errors or message the 

encoder via a feedback link indicating corrupted macroblocks. [240, 247, 271, 280]. 

 

The concept of MVV-AIR map refresh table generation is illustrated in Figure 4.12 below. 

The process involved three blocks namely encoder action, decision layer and table updating. 



 

 

73 

 

 

Figure 4.12: Architecture of MVV-AIR Map 

a. Encoder action. The raw MVV data and information about channel variation are 

input into the encoder. The MVV-AIR map generation scheme begins in the encoder by 

tracing the high motion region of an incoming frame. The encoder operational capability to 

identify the motion activities of each macroblock is enshrined in the H.264/AVC codec. The 

H.264/AVC encoder adjusts the order of packets arrival and assigns priority to the high 

motion macroblock to be encoded first. These high motion macroblocks are packetized and 

mapped into a high motion. Then the lower motion macroblocks packets are encoded and 

mapped into low priority queue. It is important to identify the motion area because the 

transmission error normally hangs on the high motion regions of the compressed bitstream 

[27]. There are various methods proposed in the literature for identifying high motion regions 

in a frame [90]. 

The motion tracking method takes note of the existence of temporal redundancy in 

consecutive multi-view video frames. The fact is that not all the objects in a scene captured 

by video camera frames are in motion. Some content such as a background remains static and 

never changes position during a significant portion of the video sequence duration. Figure 
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4.13 show an example where the physical static building block that serves as background 

picture requires no coding refreshment. However, the objects in motion such as dancing team, 

moving cars that are circled in white may require parodic Intra-coding. Hence, tracing the 

macroblock with high motion is based movement of objects within that frame.  

 

Figure 4.13: The Regions of Increasing Motion 

Another method of tracing the high motion macroblock is the rate distortion control 

mechanism. The rate distortion methods exploit the sum of absolute differences (SAD) to 

facilitate motion energy detection. 

b. Decision Layer. The decision layer takes note of the existence of temporal 

redundancy in consecutive MVV frames. The decision process is best carried out by 

comparing the motion vector of each macroblock with pre-determined threshold. The set 

threshold value compares the similarity metrics of the macroblocks to decide if there was 

high motion or not. The decision block use sum of absolute difference (SAD) to exploits the 

relation between motion and texture within a scene. Figure 4.14 shows flow chart of MVV-

decision process. The threshold parameters used in the flow chart are expressed in the well-

known Lagrangian cost function (J) equation [52-54]. 

J = D + λ(R +C)                …….. (4.1) 

Where D is the variation of difference macroblocks with minimum distortion, R is the coding 

rate and C is the complexity constraints [54-56]. The distortion rate and computational 
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complexity are linked to Lagrangian parameter depicted by λ symbol for appropriate 

weighting. 

 

Figure 4.14: Flow chart of MVV-AIR map 

Evidently, an example of a variation in motion computed with a pre-set threshold over the 

standard ‘Vassar’ sequence is shown in Figure 4.15. Referring to this figure, it is clear that 

the peak of the car movements happens around the middle of the sequence. Therefore, the 

MBs in the middle of the frame belong to a region of high motion activity.  

  

 

 

 

 

 

 

 

Figure 4.15: Variation in level of motion activity within the ‘Vassar’ sequence 

Row destruction method is another method that is used to trace high motion. Figure 4.16 

shows an example of a row based distribution method for (640 x 480) Ballroom sequence. 

The table comprises of rows of P and B inter-prediction macroblocks. The use of the table 

allow for the easy identification of each macroblock in a frame. For example, in the diagram 
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below the yellow area depicts B-frame high motion region. Through for a static object with a 

motion, for example, a newscaster reading new, the movement is only confined to the mouth 

area. In this case row destruction method will not be suitable tool.  

 

 

Figure 4.16: Variation in level of motion activity within the ‘Vassar’ sequence 

 

c. Table updating. There is an expectation that database of the MVV-AIR map will 

continuously be updated. This is because the bit rate variation in both the MVV data and 

channel continue to change over time. These bit rate variation as result of motion in the scene 

and the variations of the communication channel condition necessitate the update of the 

refresh map. Accurate calculation of the high motion macroblock threshold is crucial in the 

process of generating MVV-AIR map.  The use of a pre-determined threshold to decide on 

the actual location of the macroblock with high motion in a frame is commonly employed in 

various algorithms. The process involves setting a threshold predetermined value and 

comparing this predetermined value with the similarity metrics of the macroblocks. The 

presence of a high motion macroblock is decided if the corresponding motion vector (MV) is 

greater than the preset threshold. Consider the frame in Figure 4.17, if the motion vector 
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exceeds the threshold value (T) it implies high motion. This is mathematically represented as 

follows [282]: 

 

 

Figure 4.17: Motion Vector Comparison 

 

                1 high motion 

                                   MV(x,y) > T                                                    …….. (4.2)  

                0 no motion 

 

Where, MV represent the motion vector, (x,y) are the horizontal and vertical coordinate 

respectively, and T is the predetermined threshold. 

The (x,y) coordinate of a particular macroblock indicate high motion or low motion. If 

 𝑥 = 0 𝑎𝑛𝑑 𝑦 = 0, this indicates no motion. Conversely, when 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 0, this implies 

that there is high motion. Also,  𝑥 = 0 𝑎𝑛𝑑 𝑦 = 1, this implies that there is high motion. 

The choice of threshold values is largely attributed to a multiplicity of activities within the 

frame. The value of the predetermined threshold can also affect the rate at which Intra refresh 

macroblock is to be inserted in the MVV-AIR coding. Also selection of large values of the 

predetermined threshold may lead to the accumulation of errors. Thus, the best way to select 

the appropriate threshold value is through the conduct a series of experiments.  
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Table 4.1 illustrates results of an experiment and the residual value of macroblocks in frame 

10 of the “Ballroom” sequence. In this case, the motion is measured by the residual of 

macroblocks. Macroblocks with motion level equal to zero imply that the macroblocks 

belong to the background of the frame. Likewise, high motion macroblocks belong to the 

region of interesting (ROI) of the frame space. We can see that the order of high motion 

macroblocks and low motion macroblocks are interlaced. Thus, the order of packets arriving 

at the high priority macroblock queue and the low priority macroblock queue is following the 

motion activity. 

Table 4.1: Macroblocks Residual Value for Ballroom Sequence 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 461 938 476 0 0 0 0 

0 0 0 0 345 345 771 789 0 0 0 

0 0 0 4 567 222 1020 567 0 0 0 

0 0 0 0 890 33 356 892 0 0 0 

0 0 0 345 987 89 123 205 0 00 0 

0 4 45 5 332 446 456 45 21 34 0 

0 0 450 567 34 77 765 800 56 567 0 

0 123 78 692 455 67 56 342 234 67 0 

 

To adjust the order of arriving packets, we adjust the order of encoding macroblocks in a 

frame by using open MVV-AIR map. Table 4.2 shows an example of changing encoding 

order. Accordingly, macroblocks with high motion (pink macroblocks) are encoded first. 

After that, the low motion macroblocks (white macroblocks) are encoded. Thus, the high 

importance packets will be mapped into the high priority queue first. The low importance 

packets are mapped into the low priority queue.  
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Table 4.2: High Motion Macroblock after Reordering for Ballroom Sequence 

122 324 788 56 778 980 560 430 420 550 89 

462 801 73 100 461 938 476 69 673 503 52 

972 98 908 467 345 345 771 789 904 307 813 

7 9 80 767 567 222 1120 567 320 98 530 

156 1054 90 678 890 0 0 0 0 0 0 

332 943 390 141 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

 

An example of a perfectly generated MVV-AIR map table of a ballroom dance with winding 

movement is illustrated in Figure 4.18. In the beginning, all the refresh map entry for the 

present macroblocks is zero coded. Then, a new updated map is constructed for the incoming 

GOP. As soon as motion activity is detected within the GOP, the threshold value is used to 

computers identifies the new high motion macroblock and subsequently the MVV-AIR map 

is updated. Figure 4.18 illustrate the first update for a single view and Figure 4.19 shows an 

example for three camera views. A more elaborated generated MVV-AIR map is shown in 

Appendix D. 
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Figure 4.18 Example of MVV-AIR map Update for a single view 

 

 

Figure 4.19: Example for MVV-AIR Map Update for three camera views 
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4.6 Periodic Insertion of Cyclic Line 

The cyclic insertion of intra-coded lines of macroblocks within successive temporally 

predicted frames in GOP mitigates spatiotemporal error propagation. In our approach, a GOP 

is chosen from the sequence to be Intra refreshed. Figure 4-20 demonstrates how the cyclic 

Intra-coded macroblock are periodically inserted to refresh an erroneous GOP consisting of 

three camera views (view1, view2 and view3). In the example shown in Figure 4.20 the error 

is not confined to a particular frame in the GOP. Therefore, a cyclic pattern of refreshing the 

entire GOP is applied. The process involves moving the Intra-coded macroblocks in 

descending order pattern from top to bottom.  The algorithm calculates macroblocks of each 

frame, for instance for Ballroom sequence (640 x 480), one (16 x 16) frame is equivalent to 

(40 x 30) macroblocks.  Therefore, refreshing a (640 x 480) picture 30 times, the whole 1200 

macroblocks of a frame can be clear from any error. Thus, the primary role of the cyclic Intra 

refresh is to erase temporal error propagation that arises from channel noise. The cyclic 

insertion of the Intra-coded macroblocks mitigates error in the GOP without introducing any 

additional bitrate and computation complexity. 

 

 

Figure 4.20: Cyclic Periodic Insertion of Intra Coded Macroblock Lines 
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4.7 Error Detection 

Error in bitstream can be characterized as a contextual error, illegal code word error and error 

as a result of code being out of range. Error detection is a critical process in MVV-AIR error 

resilience technique. The ability of a MVV decoder to detect error can provide a passive 

MVV-AIR Intra- coding.  

The error detection process is initiated from the encoder, because the encoder often adds 

extra redundant bits during the encoding process. As bitstream is received by the decoder, the 

error detection block verifies whether the received bitstream is correct or not. The decoder 

verify the correctness or otherwise of the received bitstream by subtracting the added 

redundant bits. This mathematical computation is simply carry out by error coding techniques 

such as parity check, cyclic redundancy check, checksum and repetition codes.   

In some cases, a decoder can fail to detect error instantly. For example in Figure 4.21 the 

error slice contain at the position b can be described by three intervals. In the portion between 

(a - b), the slice is correctly decoded. An error occurs at the position b, hence, the error 

portion between b and c is undetected until the position c. This part is handled incorrectly by 

the decoder. Starting from the position c, until the end of the slice d, the decoder can conceal 

the detected error. 

 

Figure 4.21: Error Detection 

In a situation where the decoder cannot conceal the error, the decoder informs the encoder 

about the erroneous macroblock(s) via a feedback channel. Thus, erroneous packer can be 

completely dropped by the decoder or the decoder can take another action of further send the 

information of erroneous packets to the encoder. The encoder uses this information to update 

the MVV-AIR refresh map.  

4.8 Experiments and Discussions 

Having fitted a MVV-AIR error resilience scheme, this section presents the performance 

evaluation of the cutting edge algorithm. The algorithm was validated over error-free and 
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noisy channel environment. Subsection 4.8.1 presents results of the simulation conducted. 

Subsection 4.8.2 analyzes and discusses the results. Finally, Subsection 4.8.3 presents the 

subjective performance. 

4.8.1 Simulations 

The primary purpose of the proposed MVV-AIR error resilience algorithm is to win control 

of error propagation. We carried out simulations to test and validate the algorithm. The 

simulations were conducted with a H.264/AVC JMVC encoder and decoder system. The 

simulations framework is illustrated in Figure 4.22. In our experiments, three views of the 

sequences "Ballroom”, “Exit” and "Vassar" were configured. The configuration files 

parameters in JMVC are employed.  

The tests for three camera views were run sequentially in the JMVC encoder. The encoder 

consecutively treats each camera view. Furthermore, JMVC assembler tool accordingly sort 

the compressed bitstreams for transmission or storage. In our simulation, four error resilience 

methods are implemented and the result was compared. The four methods are namely: 

random Intra refresh (RIR), Flexible Macroblock Ordering (FMO), non-error resilience 

(NER) and MVV-AIR. We compared the performance of MVV-AIR map for Ballroom, 

Vassar, and Exit sequences for 300 frames at 30 frames/second frame rate.  

 

Figure 4.22: H.264/AVC video over Wireless Network Simulation Frame work 
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It should be noted that all principles of a communication system from the source to the 

destination were applied in the simulation. However, the compressed bitstreams for the non-

error resilience (NER) were directly transmitted to the channel without employing an error 

resilience scheme.  

In testing the validity of MVV-AIR refresh algorithm, macroblocks with high motion were 

considered to be vulnerable to errors due to nature of MVC. Therefore, for the purpose of 

comparison other error resilience techniques such as random Intra refresh (RIR) [202], 

Flexible Macroblock Ordering (FMO) [234] and the H.264/AVC MVV-AIR were employed. 

Table 4.3 shows a summary of some relevant encoding parameters used. 

Table 4.3: Configuration Coding Parameters of MVV-AIR   

Serial No Parameter Specification Remarks 

1. Input file Ballroom, Exit ,and 

Vassar 

640 x 480 

2. Resolution 640 x 480  

3. Frame rate 30Hz  

4. Frame encoded 200  

5. Quantization parameter 

(QP) 

25, 27,29, 31,32,33  

6. Mean macroblocks 1 Adaptively 

selected 

7. GOP size 12  

8. Intra period 12  

9. Number of Reference 

frame 

2 I and P 

10. Number of views 3  

4.8.2 Analysis and Discussions 

The performance of MVV-AIR, NER, RIR and FMO are evaluated under noisy networking 

environment. The compressed bitstreams are transmitted over a noisy channel of 5%, 10%, 

15% and 20% packet loss. Additionally, a packet loss in a GOP is viewed to be like loss of 

one complete video frame. Consequently, error control strategy in the form of concealment to 
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hide error is employed in FMO, NER and RIR techniques. The error concealment is in the 

form frame copy and motion interpolation methods aim to hide the error.  

Figure 4.23 the illustrate performance of the sequence Ballroom under different network 

condition. The information given in the graph shows the performance of the four techniques 

for a percentage packet loss from 5% to 20%. NER outperforms the MVV-AIR under 5% 

PLR. But for above 5% PLR the MVV-AIR performs significantly better than the rest of the 

techniques.   

Although the performance of NER starts with a higher PSNR value, performance sharply 

dropped to 22 dB at 20 percent PLR. This better performance of NER at zero packet loss is 

because the NER, unlike other techniques, does not employ error concealment coding 

schemes to hide errors.  

 

Figure 4.23: PSNR performance for the Ballroom 

Figures 4.24 show the performance of the Ballroom sequence under free condition. From the 

diagram, the reconstructed luminance, depth and average PSNR for MVV-AIR, NER, RIR 

and FMO are plotted. It is evident from the figure that MVV-AIR has better performance 

compared to FMO. We find that the MVV-AIR method is better compression performance by 

more than 2dB PSNR.     
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Figure 4.24: PSNR performance for Ballroom 

Experiments conducted on “Exit” and “Vassar,” video sequences presented similar results as 

shown in Figures 4.25 and Figure 4-26 respectively. 

 

Figure 4.25: PSNR performance for Exit 
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Figure 4.26: PSNR performance for Vassa 

The diagram in Figure 4.27 presents the performance of Ballroom sequence with error 

distortion of 20% packet loss. The graph shows that the MVV-AIR and FMO outperform the 

RIR and NER approaches. Clearly the MVV-AIR demonstrates a much higher PSNR in the 

highly active sequences than other error resilience techniques. Here, one can notice an 

efficient performance of about 4dB gain by MVV-AIR as compared to FMO. The video 

quality of the reconstructed data at the receiver is directly proportional to the compression. 

The higher the compression, the less the quality since compression exposed the bitstream to 

channel errors. Some bit are employed to overcome data loss to the detriment of overall 

PSNR level. 
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Figure 4.27: End to end RD with 20% PLR Ballroom Sequence 

4.8.3 Subjective Performance 

While objective assessment is a useful method of evaluating compression performance, it will 

particularly be effective when subjective assessment supports it. Figure 4.28 show the 

subjective performance of some selected decoded frames from Ballroom, Exit and Vassar 

sequences under noise free environment. Furthermore, to ensure balance judgment same 

number of packets is contained in each of the video frame. 



 

 

89 

 

 

Figure 4.28: Subjective Performance of Selected Decoded Frames  

Figure 4-29 show the subjective performance of Ballroom, Exit and Vassar sequences under 

20%. From the pictures in Figure 4.29, it can easily be seen that in the MVV-AIR the 

diffusion of error arising from 20% error pattern to the video luminance and depth is rather 

slow. The subjective result indicates that the MVV-AIR algorithm is very efficient in 

handling the transmission error propagation. 
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Figure 4.29: Subjective Results with 20% Packet Loss 

 

4.9 Summary 

In this chapter, we discuss error resilience MVV-AIR technique that is designed to enhance 

the delivery of 3D video over noisy channel environment. The chapter briefly describes error 

resilience compression techniques and presented an overview on H.264/AVC. Furthermore, 

we explain in a descriptive way the challenges associated with the impact of transmission 

error to compressed 3D video. We then presented MVV-AIR strategies for mitigating 
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transmission error propagation in a 3D video communication. We start by describing the 

architectural design of generating MVV-AIR map. In the MVV-AIR method, the high motion 

macroblocks are identified, and information about the condition of the transmission channel 

are obtained.  MVV-AIR refresh map is generated by using the predetermined threshold 

value to compute the variations of high motion macroblock and channel state.  The MVV-

AIR map is used to insert cyclic line pattern of Intra-coded macroblocks to halt transmission 

error propagation. We then explained a robust and efficient cyclic AIR algorithm that is used 

to Intra refresh a GOP.  At the same time, we highlight the need to establish a balance 

between subjective visual quality and the bit rate. 

Finally, the chapter demonstrated that the proposed MVV-AIR algorithm can efficiently 

contribute in robust transport of multi-view video data over wireless networks. Above all, the 

objective and subjective rate-distortion performance evaluations of our algorithm outperform 

that of FMO, RIR and NER under noise-free and error-prone environment. 
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Chapter 5 

Multi-view Video Transcoding 

 

In this chapter, we describe a multi-view video Adaptive Intra Refresh (MVV-AIR) 

transcoding technique that we have developed. After the introduction in Section 5.1, we 

examine error resilience video transcoding methods in Sections 5.2. Then, in Section 5.3, we 

outline the video transcoding architecture. Proposed multi-view video transcoder is 

described in Section 5.4. Implantations strategies are discussed in Section 5.5. Then, roles of 

H.264/AVC in video transcoding are highlighted in Section 5.6. Section 5.7 covers 

experiment and simulation. The entire chapter is summarized in Section 5-8. 

5.1 Introduction 

The increasing use of mobile communication has raised concerns about 3D video 

communication using smartphones, laptop and PDAs. At the same time, failure of these 

portable communication devices to decode compressed multi-view video bitstream has 

dramatically reduced mobile 3D video communication. Furthermore, different content 

representation formats and network used by these mobile devices increases interoperability 

between different communications systems. Therefore, it is necessary to design a mechanism 

that can make 3D video viewable across different networking platforms and on all mobile 

devices. Multi-view video transcoding is the key technology that can affectedly convert the 

3D video encoded bitstream to single view standard using H.264/AVC standard [34]. 

Primarily, transcoding in video communication perceptive is regarded as the act of converting 

one coded signal to another. However, a summary of definitions indicates that video 

transcoding is the process in which a compressed bitstream is converted from one format to 

another [197, 253]. Depending on the target destination requirement video transcoding take 

many forms. The most common transcoding processes are as follows: 

 Different format (H.264/AVC to H.265/HEVC). 

 Different frame resolution (spatial transcoding). 

 Different frame rate (temporal transcoding). 

 Different video quality (bit-rate transcoding). 

 Additional feature (insertion of logo). 
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Thus, in a nutshell, the block diagram of Figure 5.1 illustrates a 3D video transcoder that 

operates differently from conventional video encoder.  

 

 

Figure 5.1: General Video Transcoder Block Diagram 

Compressed multi-view video bitstreams are input to the decoder end of the 3D video 

transcoder. The transcoder extracts statistical parameters and re-encodes the bitstream based 

on the target device requirement. The transcoder scales down one or more of bit-rate, frame 

rate, spatial and temporal resolution to convert 3D video to a single view video.  

Figure 5.2 shows that a variable or combinations of two or more variables can be manipulated 

to meet the requirements of the target devices. For example, a high bit-rate 3D TV program 

that is originally compressed for studio application can be transformed to 2D video with 

lower bit-rate. This is in order to meet the transmission bandwidth requirements of the 2D 

video devices. Also, the 3D video transcoder can also be used to insert logo, watermarks and 

add error resilience features. 

 

Figure 5.2: Conversion Element of Video Transcoder 
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3D video transcoding is essential for content adaptation and peer-to-peer (P-2-P) network 

over a shared communication medium [43, 283]. A straightforward 3D video transcoding 

method involves simultaneous decoding and re-encoding of the compressed bitstream. 

However, for real-time applications this process is computationally complex. Therefore, there 

is a need to exploit a mechanism such as motion information re-use that is already available 

through the compressed video bit-stream in order to speed-up the conversion and reduce 

computational complexity.  

The purpose of this chapter therefore is to present MVV-AIR transcoding with a view to 

convert compressed 3D video bitstream to 2D video devices destination. The chapter will 

cover video transcoding architectures and proposed MVV-AIR transcoder. It will also discuss 

the error resilience video transcoding as well as the implementation strategy of MVV-AIR 

transcoder. The 3D video transcoding using same H.264/AVC format will also be 

highlighted. Finally, the experiment, simulation and data analysis of MVV-AIR transcoding 

would be discussed.  

5.2 Robust Transcoding Methods 

An appreciation of the role of error resilience transcoding technique is presented in this 

section. We also review existing literature on robust video transcoding techniques. The 

challenges and process involve in robust MVV transcoding are presented. A study of related 

on robust transcoding technique indicates that error resilience entropy coding (EREC) was 

among the earliest methods [284]. In this technique incoming bitstream is rearranged in 

MPEG-2 standard without adding redundancy. The method exploits synchronization units to 

reduce the bit-rate of VLC codes. The synchronization markers decide if corrupted frame due 

to transmission errors should be dropped. However, the major pitfall is the issue of 

computational complexity. Furthermore, the performance of the technique degrades with a 

decrease of PSNR. 

According to Reyes et al. [175], a robust transcoder was proposed that employed rate-

distortion framework. However, this error resilience transcoding method does not directly 

consider periodic insertion of the intra-coded macroblock. As a result, the performance of the 

video quality of the transcoder degrades with significant random noise effect. Dogan et al. 

[31] demonstrated that AIR error resilience developed for feedback control signaling (FCS) 

can improve the robustness of video transcoding operation. Adaptive Intra Refresh technique 

was employed in this study to mitigate error propagation.  
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In [10] Cote et al. presented a transcoder with optimal error resilience insertion subject to 

optimal macroblock mode selection and resynchronization marker. Zhang et al. [285] pointed 

out that adding error resilience using pixel-level precision can increase the robustness of 

video transcoding. The method is accomplished without adding additional computational 

constraints.  

Wang et al. [286] considering a transcoder that focus on networking-level mechanisms. Their 

study proposed an ARQ proxy error resilience transcoder that operates at the gateway of a 

wireless network. The error resilience transcoder handles ARQ requests and mitigates errors 

thereby reducing retransmission delays. The transcoder process involves the use of ARQ 

proxy to resend vital information such as motion vectors. Furthermore, the technique uses to 

drop less critical packets information that contained DCT coefficients in order to enhance 

bandwidth efficiency. The missing information is detected through the request of 

retransmission via feedback channel.  

Figure 5.3 illustrates the block diagram of the proposed MVV-AIR transcoder. The newest 

technology is comprised of reconstruction motion vector block, flow control block, buffer, 

AIR error resilience and the transcoder. Before the entry of the incoming signal to the 

transcoder the noise channel might induce error into the bitstream. The flow control block 

identifies the noise distortion variation in the channel. It further analyses the data variation as 

a result of motion active in the frame. The transcoder block operation in line with AIR error 

resilience. In order to ensure robustness, the AIR error resilience generates the MVV-AIR 

refresh map. The sets threshold values influence the generation of AIR refresh map. The 

shortest credible way to update the refresh map is to compare the predetermined threshold 

with a bit-rate variation of high motion frame.  A buffer is also used to scale the motion 

information and facilitate re-used of reference motion vector. 
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Figure 5.3: Block Diagram of MVV-AIR Transcoder 

5.3 Video Transcoding Architectures 

There are essentially, three types of video transcoding architectures [17], these are: 

 Open-Loop Transcoder 

 Close-Loop (DCT Domain) Transcoder 

 Cascaded (Pixel Domain) Transcoder 

Figure 5.4 depicts the simple transcoder architecture. The transcoder block is divided into 

decoder parts and encoder parts. The incoming compressed bitstream to the transcoder is first 

decoded by the transcoder. Than the encoder part of the transcoder re-encodes the video 

sequence to match the target device requirement.  

 

Figure 5.4: Simple Transcoder Architecture 
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5.3.1 Open-Loop Transcoder 

Figure 5.5 shows an open-loop transcoder system. The input bitstream is decoded by a 

variable-length decoder (VLD). The generated coefficients are inverse-quantized coefficients 

represented in the diagram as Q1
-1

. The Q1
-1

 is added to DCT coefficients goes to the Q2. The 

VLD also obtain motion vectors information for each macroblock which is used to compute 

the target bitstream. Finally, the variable length coding (VLC) encodes the target bitstream 

which is generated with reference to the store motion vector information. The open-loop 

transcoder is suitable for bit-rate transcoding. The bit-rate transcoding consists of decreasing 

the video stream bit-rate. The bit-rate reduction mechanism can be achieved using specific 

Rate Control function.  

 

Figure 5.5: Open-loop Transcoding 

5.3.2 Close-Loop - DCT Domain Transcoder 

The DCT domain transcoder offer a simplest video transcoding process. Figure 5.6 shows the 

architectural design of the DCT domain transcoder. The information about macroblock level 

and the DCT prediction error is extracted by the VLD. A new DCT prediction value is 

constructed using DCT conversion factor. For example, conversion factors of 2 will only 

facilities 4 × 4 DCT coefficients of each 8 × 8 macroblocks to be retained. Consequently, 
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DCT coefficients with low-frequency from each block are exploited to generate the output 

video. The DCT domain transcoder is good for spatial transcoding as spatial transcoding 

involves reducing the frame resolution of the input video stream.  

 

Figure 5.6: DCT Domain Transcoding 

5.3.3 Cascade - Pixel Domain Transcoder 

Figure 5.7 shows the pixel domain or cascaded transcoder. In the cascaded method, the 

transcoder decode and re-encode the input compressed bitstream in tandem operation. This 

technique includes decoding incoming bitstrem fully and then scale down the entire data of 

the decoded sequence before re-encoding the same data again. The pixel domain technique 

involve complex frame down scaling and re-ordering of approximately 16 pixel motion re-

estimation operation. Pixel transcoding is often use in temporal transcoding by dropping 

some frames and then re-compute using new motion vectors. The new motion vectors can be 

acquired by interpolating the motion vectors of all dropped frames. Consequently, the 

prediction errors must be computed according to the new motion vector. 
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Figure 5.7: Pixel domain Transcoding 

5.3.4 Proxy Transcoder 

In practice, the most widely used video transcoder is the proxy type, where the transcoder is 

located at a central point known as the gateway. The transcoder can also be co-located with 

either a transmitter or receiver. In spite of the location, the purpose of a transcoder is to 

convert one coded signal to another with lower computational complexity and latency. 

According to [287] spatial and view downscaling algorithm is the most appropriate 

transcoding method from multi-view to a single view. This process extensively makes use of 

both reference frame and pictures motion information reuse. If the bit-rate distortion is indeed 

computed than highly compressed 3D video data should be transform into single view 2D 

video format.  

In this research work, a proxy video transcoder is used to convert 3D video from multi-view 

video to single view video. Adaptive Intra refresh error resilience is added in order to 

mitigate transmission error propagation that might occur when conveying the bitstream over a 

wireless environment. Figure 5.8 depicts the block diagram of the distribution scenario of the 

MVV-AIR transcoder. The MVV-AIR proxy transcoder is sandwiched between low 

BER/high bandwidth network and high BER/low bandwidth networks.  
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Figure 5.8: MVV-AIR Transcoding Scenario 

 

5.4 Proposed MVV-AIR Transcoder 

We proposed MVV-AIR transcoder that robustly convert compressed 3D video to single 

view video using H.264/AVC codec. In the design of the MVV-AIR transcoding algorithm, 

three camera views in a GOP setting are used. Figure 5.9 depicts the structural block diagram 

of the proposed cascaded MVV-AIR error resilience transcoder. The diagram illustrates the 

concept of video transcoding from multi-view to single view. The two rectangular areas 

represent the decoder and encoder sections of the transcoder. It is pertinent to stress that the 

decoding and encoding operation in a video transcoder follows the same decoding and 

encoding mechanism of a standard video codec. We, therefore, need only to emphasize on the 

suitable process of downscaling the data. The downscaling algorithm reduces the massive 

multi-view video data to single view by removing excess view data to form single view 

information. Similarly, vital information about the scaled data and motion vector information 

are stored in the reference picture memory (RPM) block. 
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Figure 5.9: MVV-AIR Architecture 

At robust encoder end of the transcoder, the information contained in the RPM and the 

motion compensation simultaneously re-encoded the decoded data in conformity with the 

requirement of the target device or network. For our proposed transcoder system it would 

seem reasonable to state that there is no picture drift and no additional computation 

complexity associated with conversion operation. The re-use of valuable statistical coding 

information parameters facilitates reduction of complexity and enhance the quality 

performance of the transcoded video. However, the dynamic nature of wireless channel 

which is characterised by interference, multipath and noise retransmission pattern. Random 

time variation due to mobility of communication devices also affects video communication. 

In most cases impulse noise due to transmission error severely affect compressed bitstream. 

Thus, video to support efficient multi-view video transcoding over wireless channel error 

control mechanism is essential. 

In this design, AIR error resilience is added to mitigate error propagation. The operation of 

AIR depends on two issues namely changing channel condition and macroblock motion 

activity in GOP. In the first case, channel bit-rate varies over time as compressed bitstream 

path through a different level of free space noise environment error may affect the transmitted 

signal. In the second case, bit-rate variation due to random motion in the high active 
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macroblock is likely to cause larger drift error. Therefore, AIR error resilience method added 

to the design of this transcoder can effectively restrict the spread of this kind of error.  

5.4.1 Design Objectives 

The MVV-AIR transcoding design was done in order to achieve the following objectives:  

 To provide uninterrupted flow of 3D video in real-time applications to 2D video 

mobile device.  

 To provide quality transcoded bitstream that should be comparable to the one 

obtained by direct encoding and decoding of the target stream 

 To make use of the information contained in the source bitream as much as possible 

so as to avoid introduction of additional distortion.  

 To develop high quality, low cost and low complexity transcoder. 

5.4.2 Application Requirement 

There are three major applications that video transcoder can provides these are presented in 

Table 5.1. The choice of any of this video transcoding application depends on the function 

the transcoder is expected to perform. On the one hand, video transcoding is planned to adapt 

convert the bit-rate of a high compress bitstream into low bit-rate. On the other hand, video 

transcoding is developed to allow the target bitstream adapt to the dynamic changing channel 

condition and bandwidth availability.  

Table 5.1: Video Transcoder Classification and Function 

Serial Transcoding 

Classification 

Function 

1. Heterogeneous  Interlaced and Progressive 

 Format changes between standards 

2. Homogeneous  Change of bit rate  with changing resolution 

 Adjustment of spatial resolution 

 Temporal resolution adjustment  

 Conversion from single to multi-layer 

 VBR and CBR 

3. Special   Enhanced error resilience 

 Insertion of logo and watermarking  
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5.4.3 Complexity Reduction 

In the MVV-AIR transcoding methods described here, significant computational complexity 

is reduced. The reduction in computational complexity is achieved by re-using of vital 

information. The re-use of information such as coding parameters has prompted the high bit-

rate speed performance and provides high-quality video resolution. Furthermore, re-use of 

motion vector information refinement overcome the loss of quality and drastically eliminate 

the complexity of using full motion re-estimation. According to Youn et al. [225, 258], 

reusing the motion vectors leads to imperfect transcoding results. They confirmed that 

reference information re-used eradicate disparity between prediction and residual components 

as well as minimize the use of resources.  Consequently, in this research MVV-AIR error 

resilience is added to compliment the drawback that leads to imperfection introduced by 

reuse of motion vectors. 

5.5 Implementation 

As highlighted at the beginning of this thesis, implementing a robust video transcoding is a 

key technology that permits interoperability of multi-view video content among diverse 

networks. A wireless environment characterized by interference, additive noise and fading, is 

still the dominant medium of communication today. Therefore, successfully implementation 

of MVV-AIR transcoder application in the wireless environment requires a low delay, less 

sophisticated and robust system. Implementation of the MVV-AIR transcoder for wireless 

communication considers the use of motion information re-used in the H.264/AVC standard.  

Figure 5.10 shows a cascaded MVV-AIR transcoder modified to use motion information re-

used and provide the desired target result. The process involves decoding the incoming 

compressed 3D video bitstream as well as scaling it down to meet the characteristic of the 

target single view video. The technique exploits only variable length decoder (VLD) and 

inverse quantization to control the target output bit-rate dynamically. We assume that the 

MVV-AIR transcoder will operate with compressed bitstream that is transmitted over 

constant bit-rate (CBR) communication channel.   
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Figure 5.10: Proposed MVV-AIR transcoder scheme 

The MVV-AIR transcoder is developed to robustly incorporate motion information re-use 

and offer full decoding and encoding operation with unattended processing of incoming 

bitstreams. Consequently, the encoder part of the MVV-AIR transcoder obtained information 

about motion vector from the data based stored in reference picture memory (RPM). 

Similarly, in determining the target output bitstream, it is important to factor in the DCT 

values and inverse quantization. Motion compensation of the frequency-domain module are 

used to reduce the drift error. Second quantization is required at this stage to checkmate the 

effect of drift error. The AIR error resilience periodically inserts Intra-coded macroblock to 

mitigate spatiotemporal error propagation. Figure 5.11 shows a flow chart of the MVV-AIR 

algorithm for the selection and insertion of intra-coded macroblocks to the target. 
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Figure 5.11: Flow Chart for MVV-AIR Transcoding 

 

The H.264/AVC is universally recognized to be one of the leading video coding and 

conversion formats [288].  With the H.264/AVC an incoming compressed multi-view video 

can be converted into a single video bitstream with lower quality resolution. This is achieved 
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by exploiting re-quantization features to reduce bit-rates, frame rate, spatial and or temporal 

resolution.  

5.6 Experiments and Simulations 

In this Section, we present the MVV-AIR transcoding simulation carried out. For a fair 

comparison, we test our proposed MVV-AIR transcoder with existing approach namely 

Cascade and H.264 error resilience methods [288]. The implementation of the algorithm was 

based on H.264/AVC modified JMVC software version.  

5.6.1 Experimental Set-Up 

Three standard video sequences: Ballroom, Exit and Vassar (640 x 480) are used as the 

testing video. JMVC version 8 Reference Software is employed with QP 22, 27, 32 and 37.  

The simulation followed the common MVC test conditions standard that is defined in [38]. 

While noting the obvious vital role of the video transcoder, performance evaluation tests 

using the established standard related three camera views.  

In our experiment, we use SIRANNON wireless network simulator platform [58]. To 

evaluate actual performance of MVV-AIR code, the platform specification employed in this 

thesis is given in Appendix D.  Figure 5.12 depicts the Sirannon network modules. The 

Information Management Program Evaluation Group (Impeg) read the input bitstream data, 

and the video packetizer grouped the data into packets. The audio section is disabled. Finally, 

the data path through noise free and noisy channel environment in the real time protocol 

(RTP) and Hypertext Transfer Protocol (HTTP). In the simulation noise corrupted the video 

are by ratio varied from 5%, 10%, and 15% to 20%. The sink reconstructed the transmitted.  

Simulations were conducted 50 times and average values of bit-rate and PSNR were recorded 

for Ballroom, Vassar and Exit sequences. 
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Figure 5.12: SIRANNON Network 

5.6.2 The Ballroom Sequence 

We employ PSNR to illustrate performance in terms of quantitative quality of the decoded 

video for various techniques using Ballroom sequence in the (640 x 480). Within different 

values of threshold, different PSNR and bit-rate results of the proposed transcoder were 

obtained. For comparison purpose, we used an anchor bit allocation method that insert intra-

coded macroblocks and a fixed intra refresh rate of 20% cyclic refresh pattern. Figure 5.13 

shows plots of the average PSNR performance comparisons of the rate-distortion (RD) for 

Ballroom sequences. In the plotted graph, the MVV-AIR scheme achieves similar PSNR 

performance to the cascaded and H.264. The MVV-AIR outperform and H.264 technique 

with approximately 0.4dB.  
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Figure 5.13: Ballroom Sequence 

5.6.3 Exit Sequence 

The MVV-AIR transcoder has about 0.2dB improved in rate distortion performance using 

Exit sequence as shown in Figure 5.14. The reason for this performance relates to the limited 

selection of inter-view predictions during encoding.  

 

Figure 5.14: Rate Distortion Performance Exit 
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5.6.4 The Vassar Sequence 

Using Vassar sequence, we also compared the quantitative quality performance of the MVV-

AIR transcoders with Cascaded and H.264 at fixed value bit-rate using similar rate control 

method. Figure 5.15 show the rate-distortion performance for Vassar sequences. Apparently, 

MVV-AIR approach performs significantly better than the Cascaded and H.264 transcoder 

scheme. The comparison of reconstructed video in PNSR shows MVV-AIR has about 1.02dB 

improved performance regarding rate distortion. The highest improvements with Vassar 

sequence despite being the least motion video are due to lest insertion of intra refresh 

macroblock. 

 

Figure 5.15: Rate Distortion Performance Vassar 

Table 5.2 lists the average results in PSNR (dB) of MVV-AIR-C, Cascaded-B and H.264- A 

of different approaches for Ballroom, Exit and Vassar sequences. To explore the perceptual 

quality, we present the reconstructed video of difference packet loss rate corrupted video in 

5%, 10%, 15% and 20%. Indeed, our method MVV-AIR-C scheme significantly perform 

better PSNR gain than H.264-A and the Cascaded-B scheme 
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Table 5.2: PSNR Comparison 

Sequence Scheme 
PSNR (dB)  Packet Loss Rate 

5% 10% 15% 20% 

 

Ballroom 

 

H.264-A 31.28 31.18 30.80 30.07 

Cascaded-B 32.40 32.24 31.79 30.79 

MVV-AIR-C 33.90 33.04 32.34 31.05 

 

Exit 

 

H.264-A 30.68 30.38 30.12 30.02 

Cascaded-B 31.60 31.24 31.19 30.79 

MVV-AIR-C 32.90 32.64 31.34 31.05 

 

Vassar 

 

H.264-A 30.28 30.18 30.10 30.02 

Cascaded-B 31.57 31.23 31.09 30.79 

MVV-AIR-C 33.06 32.79 32.34 31.75 

 

In contrast, Figure 5.16 shows the average PSNR performances comparison for HTTP 

transmission using Ballroom, Exit and Vassar sequences. The MVV-AIR transcoder is more 

robust than the Cascaded and H.264 methods.  

 

Figure 5.16: Hypertext Transfer Protocol Transmission  
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Figure 5.17 show the subjective result of selected decoded frames from Ballroom, Exit and 

Vassar sequences. The video depth and luminance are exposed to packet loss rate of 5%, 15% 

and 20%. The bitstream files that are corrupted are also decoded. Apparently, the subjective 

video quality of the H.264 methods the quality is worst at 10% and 20%. In contrast, the 

MVV-AIR method has better subjective quality result than the H.264 and Cascaded method. 

The MVV-AIR transcoder can remove noise efficiently by periodic insertion of a cyclic line 

of Intra refresh macroblocks. The subjective shows that MVV-AIR transcoder does indeed 

meet end users ecpectations. 

 

Figure 5.17: Subjective Result 

Figure 5.18 shows how much operation time it takes the transcoder to deliver a packet of data 

from one selected point to another. From the figure, it is confirmed that the MVV-AIR 

technique achieves the best latency performance as compared with the Cascaded. Note that 

the MVV-AIR has less computational complexity than the Cascaded method.   
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Figure 5.18: Latency Performance 

Figure 5.19 shows the results of the error transmission and packet losses. According to this 

plotted graphs, the PSNR values for H.264 and Cascaded scheme dramatically decline with 

packet loss rate increases from 0% to 5%. However, the PSNR levels further gradually 

decrease from 5% to 20%. But, the pattern changes with the MVV-AIR because the added 

AIR error resilience mitigates the erroneous frames periodically. The PSNR of MVV-AIR 

scheme under packet loss of 5%, 10% and 20% are 3dB higher than Cascaded scheme. 

 

Figure 5.19: Internet Cascaded Test 
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5.7 Summary 

In this chapter, we have presented robust multi-view video transcoding algorithms using 

Adaptive Intra Refresh error residence schemes. The Adaptive Intra Refresh periodically 

inserts Intra-code macroblock to mitigate error propagation in the target bitstream. The first 

two sections of the chapter covered an overview of error resilience video transcoding and 

transcoding architecture. Next, we described the proposed MVV-AIR transcoder that uses 

motion information re-use to convert compressed bitstream from multi-view video format to 

single view video format. 

The experimental results demonstrated that proposed MVV-AIR transcoding schemes seeks 

out and suppress effect of noise interference on the transmission channel. Moreover, the 

MVV-AIR transcoder shows better performance over all the PLR ranges. The Cascaded 

transcoder requires more time to operate than the MVV-AIR transcoder. The proposed robust 

MVV-AIR transcoding structures can be easily applied to higher video standard such as 

H.265/HEVC. 
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Chapter 6 

Conclusions and Future Work 

 

This chapter summarizes the whole thesis and draws a conclusion. Section 6.1 covers a 

general summary. The general conclusion is presented in Section 6.2. Finally, Section 6.3 

suggestions for further future work. 

Adaptive Intra Refresh is a simple error resilience technique that allows robust transmission 

of video content over a wireless network. It is particularly useful for mobile 3D video 

communication which is a sensitive subject today. However, high level of burst and random 

bit error from wireless channel impacts on 3D video communication. The transmission error 

severely deteriorates the QoS affecting end user QoE. Therefore, an error resilience strategy 

is needed to protect the compressed bitstream from transmission errors. In particular, this 

thesis focuses on a traditional AIR error resilience scheme to make the compressed 3D video 

more robust against transmission error propagation. We introduced a simple cyclic AIR 

method in H.264/AVC to suppression spatiotemporal error propagation. The AIR algorithm 

developed takes into account each macroblock individual features to generated MVV-AIR 

map. To speed 3D video recovery from transmission error propagation high motion GOP is 

selected to be Intra-coded. We explore MVV-AIR transcoding scheme to validate the 

effectiveness of the developed MVV-AIR error resilience algorithm. The MVV-AIR 

transcoder employed motion vector information reuse to convert compressed bitstream from 

multi-view video format to a single view video. The 3D video transcoder algorithm 

developed has low computational complexity.  

6.1 General Summary 

After a brief introduction in chapter one, we presented background information by reviewing 

the three core issues that are central to this study in chapter two. The three key points are 

wireless communication, error resilience, and video transcoding. Various efforts have been 

made to write on the concept relating to wireless communication, error resilience and video 

transcoding. Most of the published research work and books reviewed covered these areas 

adequately. Some researcher also treated the relationship between error resilience and multi-

view video transcoding. This study acknowledged the work already done in this field. 

However, it went a little further to evaluate the current state of the art of AIR, Data 
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Partitioning, Multiple Descriptive Coding, flexible macroblock ordering and Reversible 

Variable Length Coding error resilience capability over wireless networks. It then looked at 

the characteristics of 4G and future 5G networks. The 5G network would establish a better 

QoS for efficient transmission of compressed 3D video bitstream. The 5G Technology will 

offer enhanced connectivity for 3D video transmission.  

In chapter three, we presented a subjective quality assessment to appraise the human 

perception with regards to QoS and QoE. The subject test was performed based on publicly 

available data collated on wireless transmission of 3D video clip. A total of 280 respondents 

from the Brunel University London UK and Nigerian Defence Academy, Kaduna, Nigeria 

were made to watch 3D video and complete questionnaires. Of the number respondents, 110 

were male, and 170 were female. It was discovered that most respondents response correlated 

strongly with the overall perception of QoS significantly affect QoE. The chapter highlights 

the subjective video requirements and expectation of end user. We explore ITU-R 

recommendation subjective guidelines and Systems Analysis Technique to validate data 

collated. The data obtained were then used to answering the research question and testing of 

the hypotheses. The statistical results demonstrated the correlation of 3D video with human 

perception across contents. One major limitation is our in the ability to use structural 

similarity (SSIM) index to predict the perceived 3D video picture quality. 

In chapter four, we designed an AIR error resilience technique for 3D video transmission 

over wireless networks. A robust and efficient cyclic AIR algorithm for GOP Intra refresh in 

H.264/AVC was presented. The objective is to mitigate the spatiotemporal error propagation 

and improve the perceptual video quality of 3D video over wireless networks. Experiments 

are conducted using H.264/AVC standard. The simulation was carried out with Sirranon 

software to validate the result obtained using H.264/AVC. Finally, the chapter demonstrated 

that the proposed MVV-AIR algorithm can efficiently contribute to the robust transport of 

multi-view video data over wireless networks. Above all, the objective and subjective rate-

distortion performance evaluations of our algorithm outperform that of FMO, RIR and NER 

under noise-free and error-prone environment. However, the major weakness of the 

methodology is the undesired increase in the bit-rate incurred. This problem has been 

overcome by employing an adaptive Intra refresh scheme. 

In chapter five, we presented the multi-view video Adaptive Intra Refresh (MVV-AIR) 

transcoding technique that we have developed. The MVV-AIR transcoder process involves 
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variable conversion using the H.264/AVC standard. The chapter states the technical issues 

relating to our proposed MVV-AIR transcoding. Then, outline the techniques for converting 

compressed bitstream from multi-view video to single view video. The experimental results 

demonstrated that proposed MVV-AIR transcoding schemes are more robust than the H.264 

and Cascaded transcoder system at high PLR rate. Moreover, the MVV-AIR transcoder 

shows better performance over all the PLR ranges. The Cascaded transcoder requires more 

time to operate than the MVV-AIR transcoder. The proposed robust MVV-AIR transcoding 

structures can be easily applied to higher video standard such as H.265/HEVC. 

6.2 General Conclusions 

The thesis proposes Adaptive Intra Refresh error resilience method for multi-view video over 

a wireless channel. The algorithm was validated through the intensive simulations that were 

carried out in chapters three and four. The performance of AIR error resilience was 

significantly better compared with FMO, RIR and NER under noise-free and error-prone 

environment.  

Similarly, the performance MVV-AIR transcoder was compared with Cascaded and 

H.264/AVC standard for both errors free and noisy environment. In spite of the significant 

performance improvement of the MVV-AIR transcoder, the simulation results indicate that 

the MVV-AIR transcoder requires much lower computational complexity than the Cascaded 

with slight loss of quality. These achievements have answers the questions this thesis set. The 

four detailed thesis questions are broken down as follows: 

a. What is the nature and state of error resilience and video transcoding over the 

wireless network?  

Error resilience and video transcoding over the wireless network has evolved from a small 

research area to great sensitive subject in the telecommunication industry and academia. 

Robust mobile 3D video communication is now vital communication and entrainment 

platform for many people. Furthermore, the emergence of smartphones with a broad range of 

applications operating on 4G networking platforms is the key success for mobile wireless 3D 

video communication.  

Moreover, video transcoding has managed to create an enabling environment for 

interoperability between diverse communication devices and network. To this end, through 
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multi-view video transcoding, mobile devices such as Laptop and PDAs can decode and 

display encoded multi-view video bitstreams.  

The future 5G wireless concept will open platform for mobile 3D video communication in 

different ways. The 5G technology will bring stronger mobile communication links; create all 

pie networks that will facilitate mobile3D video calls.  

b. What are the implications of the MVV-AIR transcoding algorithm over the quality 

and computational complexity of the 3D video communication? 

Extensive simulation and experiments on the MVV-AIR transcoding algorithm testing 

showed that the quality of transcoded bitstream does indeed meet end user expectations. 

Similarly, analysis of the MVV-AIR transcoder showed that no much computational 

complexity is involved. 

c. How does H.264/AVC to H.264/AVC transcoder perform based on MVV-AIR 

motion vector information re-uses? 

Our tests show that MVV-AIR using the same H.264/AVC at the both the 

transmitter/receiver and using motion vector information re-used does indeed meet viewer’s 

expectations. The reduction in computational complexity is achieved by re-used of vital 

information. The re-used of information such as coding parameters has prompted the high bit-

rate speed performance and provides high-quality video resolution. Furthermore, re-use of 

motion vector information refinement overcome the loss of quality and drastically eliminate 

the complexity of using full motion re-estimation. Thus, reusing the motion vectors leads to 

imperfect transcoding results. Also reduce the disparity between prediction and residual 

components as well as minimize the use of resources.   

d. What strategies should be applied to suppress the effects of the transmission error 

propagation and sustain MVV-AIR transcoding? 

Yes, the MVV-AIR can provide robust and reliable 3D video communication over wireless 

networks. The MVV-AIR performs better regarding network QoS parameters and end users 

QoE. It is, therefore, safe to say that MVV-AIR transcoder can be used for wireless 

communication without having to worry about degraded quality. 
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6.3 Future Work 

The mobile 3D video communication is rapidly becoming popular in all aspect of our daily 

life. Millions of people today carry a smartphone with myriad applications including 3D 

video. Thus, this research focused on robust mobile 3D video transmission using MVV-AIR 

error resilience scheme. However, there are still many issues on robust multi-view video 

transmission as well as multi-view video transcoding that have not been addressed. Some of 

the identified areas which will need continued improvements and further future researchers 

work is as follows: 

6.3.1 Multi- view Video Coding for Wireless Communication 

Mobile wireless communications are by any measure the most dynamic segment of the 

telecommunications industry. The existing multi-video coding (MVC) is observed to be 

lagging behind the pace of mobile 3D video communication. This is because the predictive 

nature of MVC turned to be the cause of error propagation. Therefore, there is the need to 

consider coding each of the view separately in the H.264/AVC codec and the newest 

H.265/HEVC standard. With this, only the view demanded would be transmitted as compared 

with the present system of MVC encoding and transmission methods.  

6.3.2 3D video communication over Future Internet 

We are now living in a ‘Networked Era’ where the Internet has profoundly changed every 

aspect of our daily life. Also, the popularity of the cloud computing is rapidly growing. We 

can be connected at anytime, anywhere and to anything. The Internet of Thing (IoT) will also 

afford to join all kind of virtual objects and software. With the future networking systems, we 

shall see person-to-person and person-to-group 3D video communication with acute high 

resolution. However, many challenges are facing the future network. This includes: 

 Flexible and efficient use of radio access to enable ubiquitous access to broadband mobile 

services. 

 Problem of managing real time communications and time-varying network topology. 

 The issue of Internet of Things (IoT) sub-networks integration. 

 Elimination of the barriers to broadband access. 

 Seamless QoS and QoE end to end network and service. 

 Support to high-quality media services. 
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With these problems the future 3D video transmission schemes may not work efficiently. 

Therefore, there is a need for future researches to addresses these problems. 

6.3.3 Assessment of 3D Video Quality Metrics 

Another suggestion for a future area of research is in the field assessment for 3D video 

quality metres. As we can see in chapter three there are various types of method to assess 3D 

video quality subjectively. Since the subjective test is connected to user perceived experience, 

it has some subjective feeling that can directly or indirect affect the personal judgements. 

Furthermore, since mobile 3D video communication is getting more popular, a new 

dimension of 3D video display is created. The existing subjective video quality test standards 

are not entirely dedicated to the evaluation of mobile 3D video content quality. Therefore, 

there is the need for a subjective mobile 3D video quality assessment. Future studies should 

consider mobile display 3D video resolutions of the same test sequences in the subjective 

evaluation methodologies. 

6.3.4 Transcoding H.264/AVC to H.264/AVC 

Video transcoding has ensured interoperability among systems used by different standards in 

the last few years. The H.264/AVC toH.264 transcoding convert compressed bitstream in a 

variety of ways. However, with the rapid changes of coding parameters, there is a need for 

future research to be carried out on transcoding from H.264/AVC to other codec using 

frequency domain and prediction block structures.  
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