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ABSTRACT 

Supply chain optimization is one of the key components for the effective management 
of a company with a complex manufacturing process and distribution network. 
Companies with a global presence in particular are motivated to optimize their 
distribution plans in order to keep their operating costs low and competitive. Changing 
condition in the global market and volatile energy prices increase the need for an 
automatic decision and optimization tool. 
In recent years, many techniques and applications have been proposed to address the 
problem of supply chain optimization. However, such techniques are often too problem-
specific or too knowledge-intensive to be implemented as in-expensive, and easy-to-use 
computer system. The effort required to implement an optimization system for a new 
instance of the problem appears to be quite significant. The development process 
necessitates the involvement of expert personnel and the level of automation is low. The 
aim of this project is to develop a set of strategies capable of increasing the level of 
automation when developing a new optimization system. An increased level of 
automation is achieved by focusing on three areas: multi-objective optimization, 
optimization algorithm usability, and optimization model design.  
A literature review highlighted the great level of interest for the problem of multi-
objective optimization in the research community. However, the review emphasized a 
lack of standardization in the area and insufficient understanding of the relationship 
between multi-objective strategies and problems. Experts in the area of optimization and 
artificial intelligence are interested in improving the usability of the most recent 
optimization algorithms. They stated the concern that the large number of variants and 
parameters, which characterizes such algorithms, affect their potential applicability in 
real-world environments. Such characteristics are seen as the root cause for the low 
success of the most recent optimization algorithms in industrial applications. Crucial 
task for the development of an optimization system is the design of the optimization 
model. Such task is one of the most complex in the development process, however, it is 
still performed mostly manually. The importance and the complexity of the task 
strongly suggest the development of tools to aid the design of optimization models.  
In order to address such challenges, first the problem of multi-objective optimization is 
considered and the most widely adopted techniques to solve it are identified. Such 
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techniques are analyzed and described in details to increase the level of standardization 
in the area. Empirical evidences are highlighted to suggest what type of relationship 
exists between strategies and problem instances. Regarding the optimization algorithm, 
a classification method is proposed to improve its usability and computational 
requirement by automatically tuning one of its key parameters, the termination 
condition. The algorithm understands the problem complexity and automatically assigns 
the best termination condition to minimize runtime. The runtime of the optimization 
system has been reduced by more than 60%. Arguably, the usability of the algorithm 
has been improved as well, as one of the key configuration tasks can now be completed 
automatically. Finally, a system is presented to aid the definition of the optimization 
model through regression analysis. The purpose of the method is to gather as much 
knowledge about the problem as possible so that the task of the optimization model 
definition requires a lower user involvement. The application of the proposed algorithm 
is estimated that could have saved almost 1000 man-weeks to complete the project. 
The developed strategies have been applied to the problem of Caterpillar’s global 
supply chain optimization. This thesis describes also the process of developing an 
optimization system for Caterpillar and highlights the challenges and research 
opportunities identified while undertaking this work. This thesis describes the 
optimization model designed for Caterpillar’s supply chain and the implementation 
details of the Ant Colony System, the algorithm selected to optimize the supply chain. 
The system is now used to design the distribution plans of more than 7,000 products. 
The system improved Caterpillar’s marginal profit on such products by a factor of 4.6% 
on average. 
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1 INTRODUCTION 
Companies with complex supply chains are being forced to reconsider their operations 
and transportation network designs in light of elevated and unpredictable operating 
costs.  Transportation costs in particular are affected by the recent volatility in energy 
prices. As such costs rises are increasingly becoming a significant factor in the strategic 
planning and decision making processes for product sourcing. In addition to improving 
their overall profitability, companies must also strive to ensure that their supply chain 
networks are resilient to unexpected disruptions, whilst at the same time maintaining 
high service levels. 

 
Figure 1.1 - Global transportation system. 
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The domain of the work presented in this thesis is global supply chain optimization. The 
project consists of the development of a set of strategies to increase the level of 
automation when developing a new optimization system. Specifically, three areas of this 
problem have been addressed: 

1. Identification of general strategies for the problem of multi-objective 
optimization. 

2. Improvement of the usability of the optimization algorithm. 
3. Development of an algorithm to automatically design the optimization model. 

The developed strategies have been applied when implementing an optimization system 
to solve Caterpillar’s global supply chain optimization problem. All developed 
techniques have been tested on data provided by the logistics department of Caterpillar. 
This thesis is structure as follows. Section 1.1 outlines the main motivations for this 
work. Section 1.2 states the objectives that the project aimed to accomplish. Sections 
1.3 and 1.4 highlight the contribution to the knowledge and the list of achievements of 
this project. Chapter 2 presents a literature review of the problem of supply chain 
optimization. A general description of the problem is first provided. Then the most 
adopted and successful methods to address it are reported. Throughout the review, 
research works and surveys are referenced as they offer more in-depth analysis to 
specific aspects of the problem. The purpose of the chapter is to highlight the limitations 
and research opportunities that emerge from such methods. Chapter 3 addresses the task 
of the optimization model definition and describes in details the model designed for 
representing Caterpillar’s global supply chain. The chapter shows how the limitations 
and opportunities discussed in chapter 2 have been addressed while designing 
Caterpillar’s model. The chapter continues with the description of the implemented 
optimization algorithm and establishes its effectiveness. Due to the potential high 
complexity of the Caterpillar’s scenario, several constraints have been encountered on 
the algorithms and technologies that could be implemented and deployed in the long 
term. The optimization algorithm adopted is the Ant Colony System (ACS), a meta-
heuristic algorithm from the area of artificial intelligence. 
Chapters 4, 5, and 6 describe the strategies to increase the level of automation. 
Specifically, chapter 4 addresses the problem of multi-objective optimization. Chapter 5 
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proposes an algorithm capable of automatically tuning one of the most influential 
parameters of the optimization: the termination condition. Chapter 6 presents an idea for 
the development of an algorithm that is able of automatically design the optimization 
model, given readily available information and data. 
Chapter 7 draws the conclusions of this work and suggests some possible future work. 
The systems presented in the following chapters have been deployed into the production 
environment of Caterpillar. At the time of writing, the process is employed to design 
distribution plans of over 7,000 products. The optimization system increased 
Caterpillar’s marginal profit on such products by 4.6% on average. 

1.1 Motivations 
In the last few decades, many different aspects of the problem of supply chain 
optimization have been addressed both from a research and from an industrial stand 
point. Nevertheless, there is still high friction when implementing a new optimization 
system. The main tasks when developing an optimization system are: 

1. Data collection and preparation. 
2. Optimization model definition. 
3. Optimization algorithm selection and implementation. 
4. Optimization parameters configuration. 
5. Results analysis and implementation. 

Figure 1.2 shows the process of implementing an optimization system. The input of the 
process is logistics data and knowledge of the logistics operations and business 
characteristics, and the output a distribution plan. The figure also depicts the 
organization of the thesis. 
Almost all of the previously listed tasks are still performed manually. It is necessary to 
involve personnel expert in very different areas. For instance, when defining the 
optimization model, it is needed to involve personnel with a good understanding of the 
logistics operation of the company. They must also have experience in designing 
mathematical models and know how to describe logistics operations with a 
mathematical formulation. 
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Even following the example of the work done on an application similar to the problem 
at hand is typically not enough. The most common techniques to address optimization 
problem are characterized by many variants and parameters. Very often a new 
application requires a specialized combination of algorithm variants and parameters. 
As anticipated, three areas have been identified as challenging when developing an 
optimization system. The three areas are as follows: 

1. Multi-objective optimization. 
2. Optimization algorithm implementation and parameters tuning. 
3. Optimization model definition. 

During the literature review, the topic of multi-objective optimization has been 
identified as being of particular interest to the research community, but also lacking a 
general definition of the problem domain and the necessary techniques to address it. The 
use of multi-objective supply chain optimization has led to a more accurate and realistic 
solution in comparison to scenarios where only a single objective is considered. From a 
review of the state of the art in multi-objective optimization, four generic strategies have 
appeared to be the most common ones. They are referred to as goal synthesis, 
superposition, incremental solving and exploration. From the literature, the preferred 
approach lies in the combination of goals into a single optimization model (a.k.a. goal 
synthesis). Despite its popularity as a multi-objective optimization method and in the 
context of the current problem domain, the experimental results achieved by this 
method resulted in poor quality solutions when compared to the other strategies. This 
was particularly noticeable in the case of the superposition method, which significantly 
outperformed goal synthesis. Such experimental results suggest that the relationship 
between multi-objective optimization strategies and the type of problem where they are 
more likely to succeed is still unknown. Given a problem instance, it is difficult to 
predict what would be the most promising method to solve it. 
Regarding the second point about the optimization algorithm, a version of the Ant 
Colony System (ACS) has been implemented. The ACS is a well-known bio-inspired 
optimization algorithm, which has been successfully applied to several NP-hard 
optimization problems, including supply chain optimization. As for many of the 
optimization techniques from the area of artificial intelligence, the ACS is also known 
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for its large number of variants and parameters. Such large number of parameters that 
need to be configured significantly reduce the algorithm usability. The termination 
condition is one of the key parameters of the ACS. It is also a parameter that is often 
neglected in research work. Meta-heuristics experts claim that a general termination 
criterion does not exist for most of such methods. In practice, some rules of thumb are 
adopted to set the termination conditions. Rules of thumb may be effective in practice. 
However, they reduce the usability of the algorithm. Personnel with experience in such 
rules of thumb need to be involved when implementing and maintaining the algorithm. 
Moreover, if the instances on which the algorithm is applied change, the termination 
condition cannot be automatically adapted. In order to address such issue, first, a 
definite procedure to evaluate improvement should be design. Then, a set of termination 
conditions can be implemented based on this metric for improvement. Ideally, a 
formalization of improvement measurements and termination conditions should allow 
automatic setting of them. 
Finally, the task of optimization model definition is a crucial one, which encapsulate 
many areas of expertise. Despite the large number of applications that exist in the 
literature, designing the model for a new supply chain optimization problem is still very 
time consuming and resources intensive. The typical process for defining a model 
consists of either hiring simulation engineers and building internal simulation teams, or 
contract consultants. Time and resources are invested so that the team can become 
familiar with the logistics operations. After a while, the team produces a model than 
needs to be evaluated and tested. The model is likely to be inaccurate or overly 
simplified after the first step of development. More iterations of development and 
evaluation are likely to be required to create a model of satisfactory quality and 
accuracy. What the literature is lacking are general-purpose models and tools to aid the 
definition and specialize such models. All supply chain contexts should have some 
degree of similarity. There should be information that is common throughout all of them 
and data that should be easily available. Formalizing such information allows the 
definition of general-purpose models and tools capable of instantiate them with a reduce 
personnel interaction. 
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Figure 1.2 – Visual representation of the process of implementing an optimization 
system. The inputs of the process are logistics data and knowledge of the logistics 
operations and business characteristics. The major tasks are the definition of the 
optimization model and the implementation of the optimization algorithm. The 
graph also shows the thesis organization. Each task addressed in this work is 
highlighted in blue and the chapters where they are covered are indicated. 

1.2 Aim and Objectives 
The work presented in this thesis aims to develop a set of strategies capable of 
increasing the level of automation when implementing a new optimization system. The 
application of such strategies should reduce the expert interaction required. In order to 
accomplish this objective, three areas have been investigated and they are as follows: 

1. Multi-objective optimization (MOO). 
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2. Automatic termination condition tuning to improve usability of the optimization 
algorithm. 

3. Optimization model design. 
The objectives in the three areas are respectively: 

1. To provide standardization in the area of MOO. Standardization may be 
achieved by the identification of the most promising strategy to solve the 
problem of supply chain optimization when a multi-objective perspective is 
taken. The performance of such strategies is analyzed on the test case problems 
of this work. Such analysis is aimed to provide more understanding on the 
relationship between MOO strategies and problem instances. 

2. To propose algorithms capable of improving the usability of the optimization 
algorithm. Usability may be improved by developing systems to automatically 
handle the many parameters of the typical optimization algorithms. The work in 
this area is particularly focused on the automatic tuning of the termination 
condition. More concretely, the current objective is to define evaluation metrics 
to measure improvement during the search for the optimal solution. Such 
evaluation metrics allow to formalize termination conditions and develop 
algorithms to automatically tune them given an instance of the problem. 

3. To formalize information easily-available in an applied context of supply chain 
optimization. The objective then consists of taking advantage of such 
information to develop automatic tools to aid the design of an optimization 
model. The algorithm result of this activity should produce a good 
approximation of a manually-designed optimization model. The requirement for 
expert personnel interaction should be reduced overall. 

The strategies developed to reach such objectives should work when applied in a real-
world context. As previously discussed, Caterpillar’s global supply chain has been 
selected as test case. An additional aim of this project is that the developed methods 
should provide meaningful benefits to the application of Caterpillar’s optimization 
problem. 



Chapter 1: Introduction 

 

Marco Veluscek   31 
 

The following sections summarize how these objectives have been accomplished and 
what has been achieved throughout this project. 

1.3 Contribution to the Knowledge 
Contributions to the knowledge in this thesis are focused on the three areas listed above. 
Analysis, strategies, and algorithms have been designed to achieve the objectives in this 
three areas. To summarize, the main contributions are as follows: 

1. In order to provide standardization in the area of MOO, four generic strategies 
have been identified and explained with thorough details. This work is described 
in chapter 4. For referencing purposes, they have been named as goal synthesis, 
superposition, incremental solving and exploration. Seven instances of these 
four strategies have been implemented and tested on three test cases of the 
problem of supply chain optimization. The superposition strategy has been 
found to be the best performing one on the given test cases. An introductory 
analysis has been provided to increase the understanding of the properties of the 
four strategies. Empirical evidences have been highlighted that suggest what 
type of relationship exists between strategies and problem instances. This work 
will serve as a reference on multi-objective methods for real-world ‘industrial’ 
supply chain optimization problems 

2. In order to improve usability of the optimization algorithm, a method to 
automatically tune the termination condition has been proposed. This work is 
described in chapter 5. The purpose of the method is to predict the best 
termination iteration for an unseen instance by analyzing the performance of the 
optimization process across solved instances. A fitness landscape analysis is 
used to understand the behavior of the optimizer on all given instances. A 
comprehensive set of features are presented to characterize instances of the 
transportation network optimization problem. This set of features are associated 
with the results of the fitness landscape analysis through a machine learning-
based approach, so that the behavior of the optimization algorithm may be 
predicted before the optimization starts and the termination iteration may be set 
accordingly. The proposed system has been tested on three instances of the 
problem of supply chain optimization. The proposed method has drastically 
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reduced the computational times required by the optimization algorithm in 
finding high quality solutions. Arguably, the usability of the algorithm has been 
improved as well, as one of the key configuration tasks can now be completed 
automatically. 

3. In order to reduce the effort when designing an optimization model, the 
development of tools to aid during the completion of this task has been 
discussed. This work is described in chapter 6. A scenario is illustrated where a 
supply chain is being managed manually, but there is an intent to applying an 
optimization system. In such a scenario, information on the supply chain already 
exists in the form of distribution plans implemented in the past. An algorithm is 
proposed to “mine” the knowledge available in such solutions and automatically 
design an optimization model. A regression analysis has been employed to 
approximate the function representing the supply chain model. The 
approximated function is then implemented within the optimization process to 
evaluate potential solutions. The regression analysis yielded quite promising 
results: the approximated functions in all the tested scenarios appear to be very 
close to the original model. However, the overall optimization process produced 
solutions of unexpected lower quality. This discrepancy is currently being 
investigated. The proposed system is described in chapter 6 because the 
approach has the potential to significantly improve the development of 
optimization process. The intent is to suggest the development of techniques to 
aid the design task. 

1.4 List of Publications and Project Achievements 
Most of the contributions presented in this thesis are based on published or patented 
material. The model and the optimization algorithm described in chapter 3 are covered 
by the following patent applications: 

 T. Grichnik, T. Aguilar, K. Jasti, S. Vamaraju, C. Nikolopoulos, A. Byerly, T. 
Kalganova, M. Veluscek, and P. Broomhead (Filing Date: 27/03/2015) Method 
and System for Managing Supply Chain Network with Multiple Supply Layers, 
CAT Ref. No.: 08350.1735-00000 (14-1941). Provisional Patent Application. 
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 T. Kalganova, T. Grichnik, A. Ogunbanwo, A. Williamson, M. Veluscek, R. 
Izsak, P. Broomhead (Filing Date: 15/10/2013) Hybrid Supply Chain Modelling, 
Optimisation and Presentation, CAT Ref.: 13-0770. Provisional Patent 
Application. 

 T. Kalganova, T. Grichnik, A. Ogunbanwo, A. Williamson, M. Veluscek, R. 
Izsak, P. Broomhead (Filing Date: 15/03/2014) Supply Chain Network 
Modeling Using an Evolutionary Strategy, CAT Ref.: 14-0155. Provisional 
Patent Application. 

The analysis hinted in chapter 2 regarding the network complexity of the work 
developed in the last decade for supply chain optimization is published in [1]: 

 A. Ogunbanwo, A. Williamson, M. Veluscek, R. Izsak, T. Kalganova, P. 
Broomhead. “Transportation Network Optimization, Encyclopedia of Business 
Analytics and Optimization.” Encyclopedia of Business Analytics and 
Optimization (1st Edition 2014), John Wang, IGI Global. DOI: 10.4018/978-1-
4666-5202-6. ISBN: 9781466652026. 

The multi-objective methods summarized in chapter 4 have been published in [2]: 
 Marco Veluscek, Tatiana Kalganova, Peter Broomhead, Anthony Grichnik. 

“Composite Goal Methods for Transportation Network Optimization.” Expert 
System with Applications, Volume 42, Issue 8, 15 May 2015, Pages 3852–3867. 
DOI:10.1016/j.eswa.2014.12.017. 

The methods have been used to deploy a multi-goal optimization system for 
Caterpillar’s problem. The system is described in the following patent application:  

 T. Grichnik, C. Nikolopoulos, A. Byerly, E. Hill, B. Kelly, T. Kalganova, M. 
Veluscek, P. Broomhead (Filing Date: 15/05/2014) Supply Network 
Optimization Method and System for Multiple Objectives, CAT Ref.: 08350 
1265 (13-1756). Provisional Patent Application. 

Chapter 5 is based on the work in [3]: 
 M. Veluscek, T. Kalganova, P. Broomhead. “Improving Ant Colony 

Optimization Performance through Prediction of Best Termination Condition.” 
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Industrial Technology (ICIT), 2015 IEEE International Conference, Pages 2394-
2402, 17-19 March 2015, DOI: 10.1109/ICIT.2015.7125451. ieeexplore.ieee.org 

The main datasets utilized throughout this work have been published on the free online 
repository Figshare (figshare.com). The main datasets are: 

1. The original dataset from Caterpillar published in [4] for a medium-size 
excavator. The distribution network consists of 200 dealerships locations, 40 
production facilities and assembly points, and 68 shipping ports. The 
connections between nodes in the network are determined by real-world 
transportation routes. The demand and capacity is from a twelve months period 
from January 2015 to December 2015. 

2. Dataset generated according to an uniform distribution published in [5]. The 
demand figures, the production capacities, the transportation times and costs and 
the sale prices have been randomly generated according to a normal distribution 
with the same mean and standard deviation as in the original dataset. 

3. Dataset generated according to a random distribution published in [6]. The 
demand figures, the production capacities, the transportation times and costs and 
the sale prices are randomly generated in an interval between 0 and an upper 
limit which is a random increase over the maximum value in the original data, 
according to a negative exponential distribution. 

4. Extended dataset generated according to an uniform distribution published in 
[7]. The demand figures, the production capacities, the transportation times and 
costs and the sale prices have been randomly generated according to a normal 
distribution with the same mean and standard deviation as in the original dataset. 
This dataset has been extended with 9 more years of demand distributions. The 
additional 9 years have been created with the same random problem generator. 
The purpose of the dataset is to provide more instances of the problem (e.g. this 
dataset has been adopted in a machine learning context and it was necessary to 
have a larger and more comprehensive training set.). The dataset may be 
interpreted as containing 10 years of demand for one product or the demand 
figures of 10 similar products. 
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In March 2016, the project team won the Chairman’s Innovation Award 2016. The 
Chairman’s Innovation Award is an annual competition at Caterpillar. The goal of the 
competition is to award the team that delivers the most innovative technologies that 
impact the business results. 
In June 2014, the author of this thesis has been awarded 3rd prize for best presentation at 
ResCon 2014, the annual research conference held in Brunel University. The Brunel 
University student conference aims to bring together research students from all subject 
areas to showcase the high caliber of research across the University. The presentations 
are evaluated by a committee of experts in the respective subject areas. 
In June 2013, the author of this thesis presented a poster at ResCon 2013, the annual 
research conference held in Brunel University. The poster reached the top ten of best 
posters. 
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2 STATE OF THE ART: SUPPLY 
CHAIN OPTIMIZATION 

The current chapter presents a general introduction to the problem of Supply Chain 
Optimization, or, as sometime referred to, the problem of Transportation Network 
Optimization. The chapter starts with a general definition of the problem of supply 
chain optimization, and provides several examples and references to the most relevant 
work in this area (section 2.1). The chapter continues with a description of the most 
common methods to address the optimization problem (section 2.2). Section 2.2 starts 
with a mathematical formulation of the problem. Sections from 2.2.1 to 2.2.4 provide a 
general overview of the most common approaches from the fields of mathematical 
programming, operational research, and artificial intelligence. In particular, the sections 
are limited to a brief description of the concepts. For more detailed discussions, surveys 
and literature reviews are referenced for the respective arguments. 

2.1 Supply Chain Optimization 
A supply chain or distribution network is a dynamic, stochastic and complex system 
that can be modelled as an entity containing a set of manufacturers, distribution centres 
and target customers [8]. Transportation models play an important role in logistics and 
supply chain management. Manufacturing enterprises are typically organized into 
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networks of manufacturing and distribution centres that acquire raw material, process it 
into finished goods and distribute those goods to end customers [9]. Cross-docking 
facilities are often utilized during the transportation of finished goods from source to 
destination whereby products and materials move through distribution centres without 
being stored. Goods are consolidated at cross-docking facilities to minimize operational 
costs [10]. 

 
Figure 2.1 - Graphical representation of a supply chain as a network, where nodes 
࢏ࡲࡼ  are the production facilities, ࢐ࡼࡿ  are the shipping ports, and ࢑ࡰ  are the 
dealerships. The connections between nodes indicate the presence of a 
transportation link. 
At the highest level, a supply chain is comprised of two basic, integrated processes: the 
Production Planning and Inventory Control Process, and the Distribution and Logistics 
Process [11]. Figure 2.1 shows a simple example of supply chain represented as a 
network. In the case of Figure 2.1, the nodes labelled ܲܨ௜ represent production facilities, 
ܵ ௝ܲ are shipping ports, and ܦ௞ are the customers or dealerships. Production capacities 
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and costs associated with each production facility allow integrating the process of 
production planning into the supply chain representation. Inventory typically is placed 
at the location of the production facilities and shipping ports. The distribution and 
logistics process consists of choosing paths on the network between production facilities 
and dealerships for sending products to the customers. 
Optimizing a transportation network involves several competing factors, such as facility 
location, demand allocation, route and production planning [12]. Minimizing cost of 
logistics operations is not the sole objective of such optimizations, but may also include 
factors important to route planning such as minimizing total route distance, time, and 
environmental impact as well as maximizing profit, and network resilience to unplanned 
disruptions. Given such wide range of decision variables, the problem of transportation 
network optimization is known to be a difficult and complex problem to solve [13] [14]. 
The most frequently addressed objectives are the minimization of 
transportation/distribution cost and time. Minimizing cost aims to reduce total 
transportation costs, and therefore, increase profit. Minimizing time aims to reduce the 
total time required to transport finished goods from manufacturers to customers. A 
faster distribution plan usually entails a reduced need for inventory and often a higher 
service level. Cost and time are seen as the two most important measures in the 
optimization of transportation networks [15]; as such it’s not surprising that they are the 
most frequently reported objectives in the literature. 
Anghinofi et al. [16] analyzed a supply chain for the transportation of fruit and 
vegetables to satisfy the demand of a general market. The study deals with operational 
planning of freight transportation operations in an intermodal network. Freight 
transportation plays a key role in the economy of any country. In the context of supply 
chain and especially when dealing with long-haul transportation, intermodal 
transportation refers to the movement of goods in a network by exploiting different 
transportation modes. In the problem addressed in [16], the goods are moved in special 
refrigerated containers on either trains or trucks. Similar work has been presented by 
Boudahri et al. [17] for the transportation of meat products. The work is particularly 
focused on product quality and safety, and health regulations. High distribution 
standards do not only affect the agri-foods sector. In Zhang et al. [12], a distribution 
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network optimization including structure type, facility location and demand allocation 
was designed for a compound fertilizer supply chain. The market of compound fertilizer 
is client driven and the scientific and rational optimization design of the distribution 
network is an extremely important approach to make clients more satisfied and 
enterprises more competitive [12]. 
As natural resources continue to be depleted, environmental impact is also becoming a 
more important optimization objective. Manufacturing industries are being obliged to 
continuously improve their networks in order to reduce environmental waste [18]. Yeh 
et al. [19] introduced a green criteria to select the supplier partner, which involves four 
objectives such as cost, time, product quality and green appraisal score. In many 
countries, to address environmental damage and resource wastage issues, manufacturers 
are required to take the responsibility for the whole process of product life cycle, 
especially for recycling and reuse treatment of waste products. Du et al. [20] presented a 
closed-loop supply chain which considers the remanufacturing process and becomes a 
more effective way for coordinating development of economy and environment. 
Many of the existing approaches which address environmental issues take a multi-
objective optimization approach, combining several (possibly competing) objectives 
while optimizing the supply chain network. In general, multiple performance measures 
have to be taken into account simultaneously to properly design a supply chain and its 
operations [21]. Supply chain decisions are much more complex than treating them as 
single-objective optimization problems [21]. Many single-goal metrics are by definition 
in conflict with each other. A simple example is provided in Aslam et al. [21] as 
follows: 

A short average lead time means the total time a product stored in the 
system is short, which means customer orders can be fulfilled within a 
shorter time and thus leverages the overall performance of the supply chain. 
A low Work-In-Progress (WIP) means the cost spent on transportation and 
inventory is lowered and thus is also highly desired. Therefore, to a decision 
maker, an ideal configuration is the one that maximizes delivery service 
level while simultaneously minimizing lead time and WIP. 
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[…] Modeling a system using traditional optimization techniques in which 
one optimizes a single objective or a single weight-based objective to 
combine multiple objectives would very likely lead to misleading results in a 
dynamic system such as a supply chain. 

In a general Multi-Objective Optimization (MOO) problem, there exists no single best 
solution with respect to all objectives; a solution might be optimal in one objective but 
worst in the other objectives [21]. Usually, a set of non-dominated solutions is presented 
to the decision maker. The set of such solutions is called the set of Pareto-optimal 
solutions. A solution is defined as non-dominated (or Pareto optimal), if any 
improvement of one objective function results in a degrading of the value of some other 
objective function. If no additional ranking policy is provided, all non-dominated 
solutions are considered to be of equivalent quality. Figure 2.2 depicts the search space 
of a bi-objective optimization problem. The solutions belonging to the Pareto-optimal 
set are highlighted in red, the remaining dominated solutions in green. 

 
Figure 2.2 – Visualization of the search space of a bi-objective optimization 
problem. A solution is defined as Pareto optimal (or non-dominated), if any 
improvement regarding the first objective results in a degrading of the value of the 
second objective. The Pareto optimal solutions are highlighted in red, the 
dominated solutions in green. 
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A detailed discussion about multi-objective optimization is presented in chapter 4. 
Many methods have been proposed for multi-goal optimization in general, and for 
supply chain optimization specifically. Most of such methods, however, are very 
specific to either the problem or the optimization algorithm used. An example is the 
well-known Non-dominated Sorting Genetic Algorithm-II (NSGA-II) multi-objective 
optimization algorithm from Deb et al. [22]. NSGA-II is an improvement of a multi-
objective evolutionary algorithm (MOEA), which has been proven to find a much better 
spread of solutions and has better convergence near the true Pareto-optimal front [22] 
than previously defined MOEAs. Despite its popularity and its success, the principles of 
NSGA-II may be difficult to apply in a context where, for instance, constraints on the 
optimization algorithm do not allow the employment of an evolutionary strategy. 
The work presented in chapter 4 presents a classification of general multi-objective 
methods, independent from the problem or the optimization algorithm. The analysis 
provides a starting point for the selection and development of multi-goal solutions in 
real-world “industrial” applications. 
In addition to the study of multi-objective optimization for supply chains, the study of 
creating resilient networks has grown in popularity in recent years [23]. The resilience 
of a transportation network can be expressed in terms of its ability to maintain 
operations and connectedness when faced with losses in structure or function, such as 
the unavailability of a manufacturer or route closures [24]. Transportation network 
disruptions can result in longer lead-times, a reduction in the ability to meet customer 
demand and increased operating costs. Building a resilient transportation network may 
result in increased flexibility and decrease the likelihood of node outages, but such 
functionality is often at the expense of increased operational costs.  
Zhao et al. [24] proposed new network resilience metrics to measure the effects of 
disruptions on a military logistic network. The resilience is measured against both 
random and targeted disruptions, with particular focus on the case when disruptions are 
unknown. Previous research has revealed that the topology of the network has a great 
impact on its resilience [24]. However, the authors found little research to support this, 
and therefore, their study take a topological perspective for resilience metric definition. 
The new metric is based on the assumption that roles and function of nodes in a supply 



Global Supply Chain Optimization: a Machine Learning Perspective to Improve Caterpillar’s Logistics 
Operations 

 

42  July 2016 
 

network are heterogeneous, i.e. different types of nodes play different roles – an 
assumption often neglected by most research work. The authors developed a taxonomy 
to represent the different types of nodes, and two critical resilience metrics: availability 
and connectivity. Availability shows whether nodes in the supply network can get the 
supplies that they need to maintain normal operations. Typically, connectivity measures 
the size of the largest connected component. The authors extend such metric and 
consider the size of the largest functional subnetwork instead. The subnetwork is 
defined according to the topology of different nodes function. 
While addressing the problem of resilience modelling for manufacturing enterprises, 
Holloway et al. [23] also found that a highly heterogeneous network is close to the 
optimal design. Disruptions on a manufacturing supply network are typically related to 
loss of capacity, loss of inventory, or significant change in demand. The significance of 
disruption is measured in degree of severity and duration. The authors in [23] identified 
two ways of achieving resilience: operational redundancy and inventory redundancy. 
The first consists of allocating sufficient additional capacity or having a different set of 
operations able to produce the same final product using independent resources. The 
second resides in allocating enough inventory to address the loss of capacity. However, 
retaining large inventory is often scorned at by many manufacturing companies. 
Jiang et al. [25] and Ip [26] analyzed the resilience of a meat-food supply chain and an 
aircraft servicing and maintenance logistic network respectively. Again, the authors 
found that a network with redundant resources has the ability to recover more quickly to 
potential disruptions. Both in [25] and [26], a multi-supplier/multi-sourcing network 
model is discussed where several suppliers are available for selection. 

2.2 Optimization Methods 
Advanced analytical methods from the area of Operations Research may be applied to 
find the best distribution plan among all feasible plans of a supply chain. Typically, 
such analytical methods require the problem to be expressed in mathematical terms. The 
most common approach consists of defining a Mixed Integer Programming (MIP) 
model to describe the optimization problem. The main components of a MIP model are: 

 A set of decision variables. 
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 The objective function to be either minimized or maximized. 
 A set of constraints over the decisions variables. 

The optimal or near-optimal solution may be then found via the application of exact 
optimization algorithms such as the Simplex algorithm designed for linear programming 
problems, or iterative methods such as the gradient descent for non-linear programming, 
or heuristics to provide approximated solutions to large-scale problem in a reasonable 
amount of time. 
A basic example of MIP model for the supply chain optimization problem is as follows: 

 ݉݅݊ ∑ ∑ ܿ௜௝ݔ௜௝௠௝ୀଵ௡௜ୀଵ   Objective function (2.1) 

.ݏ  .ݐ :   ∑ ≥ ௜௝ݔ  ௜ܵ௠௝ୀଵ   ∀݅ ∈ [0, ݊]. Capacity constraints (2.2) 

            ∑ ௜௝ݔ = ௝௡௜ୀଵܦ    ∀݆ ∈ [0, ݉]. Demand constraints (2.3) 

ݔ  ∈ ℕା௡×௠,  ܿ ∈ ℝା௡×௠,  ܵ ∈ ℝା௡ , ܦ  ∈ ℝା௠  Domains (2.4) 

where, ݉ ∈ ℕା is the number of manufacturers, ݊ ∈ ℕା is the number of dealers with 
demand, ௜ܵ is the production capacity at manufacturer ݅ ∈ [0, ௝ܦ ,[݅  is the demand from 
dealer ݆ ∈ [0, ௜௝ݔ  ,[݉  is the number of units transported from manufacturer ݅ to dealer ݆, 
ܿ௜௝ is the cost of sending ݔ௜௝ units of product from manufacturer ݅ to dealer ݆. The above 
MIP model is from Dantzig 1963, chapter 3.3 [27] and ݔ ∈ ℕା௡×௠ is the set of decision 
variables, eq. (2.1) is the objective function of the problem, eq. (2.2) and (2.3) are the 
constraints and eq. (2.4) the domains. All possible routes of the supply chain are 
represented by the variables ࢞ and a transportation cost ܿ is associated with each route. 
The goal is minimizing the total transportation cost by deciding on which route and how 
much product to send from a production facility to a customer. The solution is 
acceptable only if the total amount of product shipped from a manufacturer is not more 
than its capacity and all customers receive the exact amount of product requested. 
ݔ ∈ ℕା௡×௠  is the set of all possible routes in the network between each production 
source to each dealer. Given a network configuration as shown in Figure 2.1, all 
possible routes must be listed in order to represent the problem with the model in 
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equations (2.1)-(2.4). The process of listing all the available routes may be 
computationally expensive. In the case of a four-layer network, the worst case 
complexity is the number of nodes in one layer multiplied by the number of nodes in 
each remaining layer – ܱ(݊ × ݌ × ݌ × ݉)  where ݌  ∈ ℕା  is the number of shipping 
ports. 
The problem of supply chain optimization may be seen as a specialization of the 
minimum-cost flow problem, a well-known optimization problem model, where the 
goal is to find a feasible flow of minimum cost in a network with capacity constraints 
and edge costs [28]. Let ܦ = (ܸ,  be an oriented graph, where V is the set of vertexes (ܧ
of the graph, and E the set of edges. Let be ݊ = |ܸ| , and ݉ =  For such graph, it is .|ܧ|
given the costs ܿ௘ for each edge ݁ ∈ ݁ ௘ for each edgeݑ the capacities ,ܧ ∈  and the ,ܧ
demands ܾ௩ for each node ݒ ∈ ܸ. An admissible flow (or pseudo-flow) in D is a vector 
௘ݔ ௘∈஺ such that(௘ݔ) ≥ 0, ݒ ௘, and, for eachݑ ௘ is not greater than the capacityݔ ∈ ܸ, the 
flow on the incoming edges minus the outgoing flow is exactly the demand ܾ௩. The 
flow ݔ௘ on the edge e has a cost of ܿ௘ݔ௘. The goal of the minimum-cost flow problem is 
to find an admissible flow with the minimum overall cost. Equations from (2.5) to (2.7) 
define the linear programming model for the minimum-cost flow optimization problem. 
Such a model may represent a supply chain optimization problem where the supply 
network is defined as in Figure 2.1. Bevilacqua et al. [29] discussed in details a multi-
goal optimization model for a distribution network where the number of layers is not set 
a priori. The model in [29] extends the one defined in (2.5)-(2.7). 
 min ∑ ܿ௩௪ݔ௩௪(௩,௪)∈ா    Objective function (2.5) 

 ∑ ௪௩௪:(௪,௩)∈ாݔ − ∑ ௩௪௪:(௩,௪)∈ாݔ  = ܾ௩  ݒ ∈ ܸ. Flow constraints (2.6) 

௩௪ݔ  ∈ ℕା, 0 ≤ ௩௪ݔ ≤ ,௩௪ݑ ܿ௩௪ ∈ ℝା, ܾ௩ ∈
ℕା  

,ݒ)∀ (ݓ ∈  Domains and .ܧ
capacity constraints (2.7) 

Both models defined by equations (2.1)-(2.4) and (2.5)-(2.7) are classified as pure-
integer programming models, as the decision variables are non-negative integers. It is 
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well known that a binary integer programming model is NP-hard [30]. Thus, because 
every integer programming model can be written as a binary integer programming 
model by transforming one to the other in polynomial time [30], any integer 
programming model including the problem addressed in this research is also NP-hard. 
What characterized any NP-hard problem is that it is impossible to predict whether a 
solution can be computed in less than exponential time. Finding an optimal or near 
optimal solution can be computationally expensive [24]. Approximate algorithms are 
often employed to solve NP-hard optimization problems as they can often find high 
quality solution in a reasonable amount of time. 
Since 1946-1947, when George B. Dantzig developed a general linear programming 
formulation to be used for planning problems by the US Air Force, many models for 
supply chain optimization have been proposed. Vidal et al. [31] identified a 
classification of this body of research into three categories: buyer-vendor coordination, 
production-distribution coordination, and inventory-distribution coordination. 
Moreover, the authors distinguished three level of planning depending on the time 
horizon: strategic if the time horizon considered is more than one year, operational for 
short-term decisions, and tactical, which falls in between. A comprehensive strategic 
problem consists of determining: 

 the number, location, capacity, and type of manufacturing plants and warehouses 
to use; 

 the set of suppliers to select; 
 the transportation channels to use; 
 the amount of raw materials and products to produce and ship among suppliers, 

plants, warehouses, and customers; 
 the amount of raw materials, intermediate products, and finished goods to hold 

at various locations in inventory. 
With some consideration and the proper assumptions, the model defined by equations 
(2.1)-(2.4) may arguably represent all the strategic problems summarized above. 
Deciding which route ݔ௜௝  to ship product through inherently determines also the 
manufacturing plants and warehouses to use, the capacity to allocate, and the 
transportation mode. Similarly, if ݔ௜௝ connects a supplier to the production facility or 
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warehouse, the model represents the problem of supplier selection. The amount of raw 
materials and products to produce and ship is given by the solution vectors – the values 
assigned to the variables ݔ௜௝ . A comprehensive example of a binary-integer 
programming model for a three-tier supply chain is given in Musa et al. [30]. The three 
tiers in the network represent the set of external supplier, the set of cross-docking 
facilities, and the customers. The objective is to minimize the total transportation cost. 
If the set of routes ݔ includes also routes to new potential sites, the model in (2.1)-(2.4) 
describes a problem of new locations selection and supply network expansion. The cost 
coefficients ܿ would include the setup costs for installing a new production facility or 
warehouse. Ko et al. [32] presented a binary-integer model which considers the problem 
of new potential sites allocation. The model actually describes a dynamic integrated 
forward/reverse supply network. A logistics network is defined as reverse, if returns 
policy and repairs operations are also considered in the optimization. The simultaneous 
consideration of forward and reverse flow is quite important when improving the 
customers’ experience. 
The problem of inventory placement is one of the most challenging in the area of supply 
chain optimization, and it has many interpretations. Typically, the amount of inventory 
placed at specific location is based on predictions of customer demand, and its evolution 
over time. The amount of inventory allocated to guarantee a minimum service level is 
known as safety stock [33]. Safety stock is a buffer, which assures the availability of 
excess product in the case the consumer demand exceeds the expectation. Two different 
types of inventory, which significantly affect the transportation times and costs, are 
cycle stock and in-transit inventory. Cycle stock is often defined as the inventory used 
to satisfy the customer demand in a given time window and making the shipment 
process less time-consuming. In-transit inventory is the en-route goods, the amount of 
product “trapped” in transition from one node of the supply chain to the next.  
The amount of time that product must be held as cycle stock inventory depends on the 
promised time of delivery. If the travel time from the beginning of the supply chain to 
the customer is greater that the promise time, inventory must be allocated on a node 
(e.g. warehouse, or distribution center) closer to the customer. Altiparmak et al. [34] 
defined a programming model which considers the delivery time and the maximum 
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allowable delivery time. The difference between travel time and promise time defines 
the amount of time inventory has to be held to a given location. The optimization occurs 
on the product quantity. The cost of cycle stock inventory is a function of the quantity 
and duration for which product must be stored. 
When optimizing safety stock inventory, the decision variable is usually the rate of 
replenishment of the inventory in a given location. The objective is to minimize the 
expected lost sales due to stock-outs, and simultaneously inventory holding cost. The 
demand is modelled through a statistical distribution and the expected value is 
considered. Nozick et al. [33] presented a model of a multi-product two-echelon 
inventory optimization problem. Both the demand and stock-out probability are 
modelled with a Poisson distribution. Nozick et al. [33] used the results of the inventory 
optimization to address a problem of location selection of distribution centers. This type 
of decision rule on inventory allocation allows the safety stock inventory costs for each 
potential distribution center to be estimated and factored into a fixed-cost facility 
location model [33]. 
Sadeghi et al. [35] provide another example of model for safety stock optimization. The 
aim in [35] is to find the order size, replenishment frequency of the retailers, and the 
routing tour to maximize the production system reliability of a supply chain consisting 
of a single vendor and multiple retailers. 
Vidal et al. [31] focused their review on strategic production-distribution MIP models, 
distinguishing between local and global logistics systems. Global supply chains are 
inherently more challenging to manage in an international scenario, the flow of cash and 
the flow of information are more important and difficult to coordinate than they are in a 
single-country environment. The inclusion of different taxes and duties, differential 
exchange rates, trade barriers, transfer prices, and duty drawbacks is fundamental for a 
model to more accurately represent the real system. In addition, sources of uncertainty 
and qualitative factors, such as government stability and general infrastructure of a 
particular country, are critical issues for the strategic design of a global supply chain 
[31]. 
During the last decades of the twentieth centuries, many industries witnessed a market 
globalization and the need for expanding their supply network arose. Meixell et al. [36] 
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selected 18 major research articles from a set of more than a hundred publications on 
the subject of global supply chain management. From the review in [36], the main 
decision variables for global supply networks appear to be: 

 Facility selection; 
 Production/shipment quantities; 
 Supplier selection. 
 Placement of inventory. 

The performance of management operations is mostly measured as: 
 Maximize after-tax/operating profit; 
 Minimize production/material/labour/transportation/utility costs; 
 Robustness and value of flexibility across pre-defined scenarios; 
 Maximize utility for manufacturers and retailers. 

Supply networks are also characterized by the degrees of integration and accuracy in 
representing the business environment. Factors to measure degrees of integrations are: 

 Supply chain level; 
 Use of Bill of Materials (BOM); 
 Coordination of decision. 

Typically, transportation costs are the largest contributors for the total logistics costs in 
global supply networks and the integration of freight transportation function is one of 
the most studied issues in the scientific logistics literature. Bravo et al. [37] investigated 
the management of freight transport costs in supply chain optimization models. The 
authors analyzed two groups of papers from high-ranking journals. The first group of 
papers spans from 2009 to 2012 to analyze current trends. The second one provides a 
perspective of the historical behavior and comprises papers from 1974 to 2008. Both 
groups of papers have been analyzed against a novel taxonomy, whose main aspects are: 
model characteristics, decision variables, objective functions, product details and 
transportation modes. Model characteristics consist of network and chain configuration, 
modelling approach, degree of supply chain integration and level of uncertainty. The 
supply chain configuration is quite heterogeneous in all considered papers; nevertheless, 
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it is always a graph of at least two layers, where the nodes are a subset of Supplier, 
Plant, Distribution Centre, Retailer and Customer selected in such order. The most 
widely modelling approach is the design of a mixed integer-programming model. The 
preference is slightly in favor of linear models instead of non-linear and the main 
objective strategy is cost minimization. In practice, it is desirable to perform trade-off 
analysis between different types of objectives, e.g. finding the solution that both 
minimize transportation cost and maximize service level. It is also common to have 
uncertainty in real-world data that may be handled with stochastic variables. Despite 
their importance in practical applications, multi-goal and stochastic models due to their 
intrinsic higher computational complexity have not been addressed properly in the past 
decades. According to the taxonomy in [37], location selection, the amount of product 
to be shipped on a given route, and inventory placement are the most considered 
decision variables. Cost minimization is the preferred strategy in optimization 
processes, and it is typically preferred over customer service level maximization. 
Service level is often measured as percentage of demand satisfaction and inventory 
replenishment policies or safety stocks. Both metrics impact the transportation function 
as the former forces the distribution function to find the most efficient ways to prevent 
any type of non-fulfillment, and the availability of inventory depends on the 
effectiveness of the replenishment strategy from the sources. In recent papers, more 
attention has been paid to service time (i.e. time windows when delivery has to be 
made) with occasionally including parameters such as types of vehicle, loading and 
unloading times, and limited transportation capacity. On the contrary, very few studies 
have been pursued involving physical characteristics of the product (e.g. volume and 
weight), and microeconomics considerations. The type of market may influence the 
price point of products, and therefore plays an important role when the objective is 
profit maximization. Moreover, very few studies explicitly deal with fuel consumption, 
topography of the roads and COଶ emissions. 
A summary of the trends and shortcomings emerging from the body of research 
reviewed in [37] is as follows: 

1. The objective of cost minimization is often preferred over profit maximization. 
2. Transportation costs are effectively represented through cost per unit to be 

shipped and cost per unit distance. 
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3. From the literature, transportation costs appear to be in direct conflict with in-
transit inventory, shipment size, and the number of locations to be opened. Such 
conflicts indirectly affect multi-echelon inventory, service level, transportation 
times, and economies of scale in production. Despite the level of consensus for 
the above mentioned relationships, the in-transit inventory is often neglected 
when modelling supply chains. 

4. Employing outsourced vehicle fleets increased the importance of factors such as 
product characteristics and route attributes when defining freight transportation 
rate, factors which are often omitted in mathematical models. 

5. In a scenario where demand is stochastic, the overall profit of the organization 
will also be stochastic. Even if uncertainty of demand is modelled, the 
minimization of costs scenario does not provide insights for the case of 
extremely low demand. A substantial demand decrease would certainly affect 
the profit and the organization would be significantly affected by a cost 
minimization strategy. 

Chapter 3 depicts the model of Caterpillar’s global supply chain. Points from 1 to 4 
have been considered in the definition of the model and addressed. The uncertainty of 
the demand has not been directly addressed. Several possible demand scenarios are 
generated by Caterpillar before the optimization process starts. Each scenario is then 
solved independently. Having available several distinct computing platforms, this 
approach allows avoiding the overhead due to a stochastic computation. Moreover, the 
results of the distinct scenarios may be presented separately to the managers or decision 
makers, who can perform a what-if analysis. 
Regarding point 1, both an objective function for cost minimization and profit 
maximization are considered. The transportation costs are a function of cost per unit 
shipped and cost per distance (point 2), and the in-transit inventory is included in the 
transportation cost calculation (point 3). Finally, all the main physical and financial 
characteristics of the products and components have been factored in the model. Energy 
consumption and average travel time, combined with transportation mode, provide 
indirect information on routes characteristics. As suggested by the authors in [37], time 
arguably provides more information than distance. If the vehicle speed is low, this may 
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suggest some type of road congestion and might result in an increase in fuel 
consumption and an increase in the opportunity cost of the in-transit inventory [37]. 
The following sections (from 2.2.1 to 2.2.4) describe the most adopted optimization 
techniques found in the literature to solve the problem of supply chain optimization. 
The methods are: 

1. Exact optimization algorithms based on linear programming. 
2. Approximated methods or heuristics. 
3. Meta-heuristics. 
4. Hyper-heuristics. 

Ogunbanwo et al. [1] analyzed the most relevant work in the area of supply chain 
optimization applied to real business environment, developed in the last decade. The 
authors listed the objective functions considered in each analyzed paper, and the method 
employed for optimization. As the analysis in [1] is part of the work presented, the list 
is reported in Table 2.1. In the table, LP refers to any exact optimization algorithm 
which is based on a linear programming representation of the problem. BB stands for 
Branch and Bound, HE for Heuristic, ES for Evolutionary Strategy, ACO for Ant 
Colony Optimization, and PSO for Particle Swarm Optimization. The objective 
functions identified in the considered works are: minimization of travel distance, 
transportation time and cost, and environmental impacts, and maximization of 
resilience, service level, and product quality. 
Wherever the information is available, Ogunbanwo et al. [1] measured the complexity 
of the supply network developed. In graph theory, there are several ways to measure the 
complexity of a graph or network. They are usually based on either the length of whole 
network, the length of the shortest path, the number of cycles in the graph, or its level of 
connectivity. The beta index and the number of cycles measures have been selected as 
measure of complexity. The beta index takes into account the level of connectivity of a 
graph, and requires knowing the number of both nodes and edges. Let ݁ be the number 
of edge in a graph, and let ݒ be the number of vertex in the same graph, the beta index is 
defined as ߚ =  ௘

௩ . The number of cycles is based on the maximum number of 
independent cycles in a graph, and it requires to know the number of nodes, links, and 
sub-graphs. Let ݌ be the number of sub-graph, the number of cycles measure is defined 
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as ݑ = ݁ − ݒ +  Table 2.2 reports the value for these measures for the works where it .݌
was possible to extract the information needed. The same metrics have been used to 
measure the complexity of Caterpillar’s network. The results are reported in chapter 3. 
Table 2.1 – List of papers analyzed in Ogunbanwo et al. [1]. The methods 
employed to optimize the problem and the objective functions considered are 
reported for each work investigated. LP stands for exact optimization algorithm 
based on linear programming. BB stands for Branch and Bound, HE for Heuristic, 
ES for Evolutionary Strategy, ACO for Ant Colony Optimization, and PSO for 
Particle Swarm Optimization. The objective functions identified in the considered 
works are: minimization of travel distance, transportation time and cost, and 
environmental impacts, and maximization of resilience, service level, and product 
quality. 

Author, year 
 

Algorithms 

Objective(s) 

Distance Cost Resilience Time Service 
level 

Product 
quality 

Environmental 
issues 

Xiang et al, 2012 [38] ACO        
Bevilacqua et al, 

2012 [29] ES        

Che, 2012 [39] PSO        
Sadjady et al, 2012 

[40] LP        

Zhao et al, 2011 [24] PSO        
Boudahri et al, 2011 

[17] LP        

Huang et al, 2011 
[41] PSO        

Utama et al, 2011 
[42] ACO        

Anghinolfi et al, 
2011 [16] IP and ACO        

Yeh et al, 2011 [19] ES        
Georgiadis et al, 

2011 [43] BB        
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Zhao et al, 2011 [44] PSO        
Musa et al, 2010 

[30] ACO        

Han et al, 2010 [45] ACO        
Chen et al, 2010 [46] ES        

Chang, 2010 [47] ES        
Ghoseiri et al, 2010 

[48] ACO        

Che et al, 2010 [49] ES        
Wang, 2009 [50] ACO        

Jiang et al, 2009 [25] ES        
Ding et al, 2009 [8] ES        
Lin et al, 2009 [51] ES        

Chan et al, 2009 [52] ACO        
Bidhandi et al, 2009 

[53] LP        

Du et al, 2009 [20] LP        
Lau et al, 2009 [54] ES        
Lin et al, 2008 [55] ACO        

Wen et al, 2008 [14] PSO        
Qin et al, 2008 [56] PSO        
Huang et al, 2008 

[57] PSO        

Farahani et al, 2008 
[58] ES        

Caldeira et al, 2007 
[59] ACO        

Fu et al, 2007 [60] ACO        
Wang , 2009 [50] ACO        

Chen et al, 2007 [61] LP        
Altiparmak et al, 

2006 [34] ES        

Ding et al, 2004 [62] ES        
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Ji et al, 2005 [63] ES        
Pimentel et al, 2013 

[64] HE        

 
Table 2.2 – Supply network complexity analysis. LP stands for exact optimization 
algorithm based on liner programming. BB stands for Branch and Bound, HE for 
Heuristic, ES for Evolutionary Strategy, ACO for Ant Colony Optimization, and 
PSO for Particle Swarm Optimization. Let ࢋ be the number of edge in a graph, and let 
࢜ be the number of vertex in the same graph, the beta index is defined as ࢼ = ࢋ 

࢜. Let ࢖ be 
the number of sub-graph, the number of cycles measure is defined as ࢛ = ࢋ − ࢜ +  .࢖
Source of the analysis is A. Ogunbanwo et al. [1]. 

Author, Year Algorithm
s 

No. of 
Nodes 

No. of 
Edges 

No. of Sub-
graph Beta-index No. of 

Cycles 

Yu, 2005 [65] ACO 2300 3200 61 1.39130434
8 961 

Ko et al, 2007 [32] ES 28 46 1 1.64285714
3 19 

Lin et al, 2009 [51] ES 35 210 1 6 176 
Wang et al, 2011 [66] ES 14 91 1 6.5 78 

Hosseinzadeh et al, 2012 
[67] ES 15 44 1 2.93333333

3 30 

Zhao et al, 2011 [44] PSO 1000 1815 1 1.815 816 

Huang et al, 2011 [41] BB 14 40 1 2.85714285
7 27 

Jiang et al, 2009 [25] ES 20 64 1 3.2 45 
Wang, 2009 [50] ES 6 9 1 1.5 4 

Sadjady et al, 2012 [40] LP 150 3600 1 24 3451 
Bevilacqua et al, 2012 [29] ES 9 18 1 2 10 

Chang, 2010 [47] ES 80 120000 1 1500 119921 
Ghoseiri et al, 2010 [48] ACO 4000 61783 1 15.44575 57784 

Wang , 2007 [50] ACO 14 39 1 2.78571428
6 26 
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2.2.1 Linear Programming 
As defined by Dantzig in [27], liner programming is concerned with describing the 
interrelations of the components of a system. The linear programming approach is to 
consider a system as decomposable into a number of elementary functions, the 
activities. Each activity is associated with a quantity called activity level. Acting on the 
activities level affects the value of the objective function. For instance, the activities of a 
transportation optimization problem are the actions of shipping from a production 
facility to a customer. Representing the set of activities often results in a system of 
linear inequalities and equations; when this is so, it is called a linear programming 
model. 

 
Figure 2.3 – Classification of programming problems from Dantzig [27]. 
Figure 2.3 shows a basic classification of possible programming problems. This session 
focuses on methods for solving linear programming problems. Occasionally, nonlinear 
problems may be solved too by the same techniques, if the system of constraints defines 
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a convex set: a nonlinear convex programming problem may be reduced to a linear one. 
With proper transformations and assumptions, certain probabilistic problems may also 
be reduced to exact linear programming problems. 
To be classified as a linear programming model, the system must possess certain 
properties of proportionality, non-negativity, and additivity. The system satisfies the 
property of proportionality if a change in a decision variable results in a proportional 
change in the variable’s contribution to the system. Negative quantities of variables are 
not possible and the value of the system is equal to the sum of the contributions of the 
value of each variable. 
The basic form for the problem of linear programming consists of finding values for a 
set of non-negative variables that satisfy a system of linear equations and minimize an 
objective function. Developed in 1947 by George Dantzig, the simplex algorithm is one 
of the most popular methods to solve linear programming problems and possibly the 
most implemented by commercial solutions. An additional requirement for the 
application of the simplex method is that the linear program is expressed in standard 
form. The standard form of a linear program is as follows: 
 max ்ܿ ∙  (2.8)   ݔ

.ݏ  .ݐ : ݔܣ   ≤ ܾ  Feasible region (2.9) 

௜ݔ  ≥ 0 ∀݅ ∈ [0, ݊]. Non-negativity 
constraints 

(2.10) 

with ݔ ∈ ℝ௡  being the vector of decision variables, and ܿ ∈ ℝ௡  the cost coefficients. 
The matrix ܣ ∈ ℝ௠×௡  and the vector ܾ ∈ ℝ௠  together define the set of feasible 
solutions. Any linear program may be converted into one in standard form. From a 
geometric perspective, eq. (2.9) and (2.10) define a convex polytope. A convex 
polytope is a polytope which satisfies the property of a convex set. A set is said to be 
convex if, for every pair of points in the set, all the points in the segment joining the 
pair are also part of the set. It can be proved that if the convex polytope is bounded, then 
the optimal solution is at least one of its vertices. The simplex algorithm consists of 
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iteratively visiting all the vertices of the polytope until the optimal solution is found. 
Figure 2.4 depicts the feasible region of a simple bi-dimensional linear program and the 
steps of the simplex algorithm to find the optimal solution. For details and the 
mathematical proofs of the properties of the simplex algorithm refer to [27]. 

 
Figure 2.4 – Bi-dimensional linear program with ࢌ being the objective function. 
The yellow arrows show the steps of the simplex algorithm while searching for the 
optimal solution. 
The simplex method has been shown to be remarkably efficient in many real-world 
applications. Efficiency tests on random problems showed that the algorithm solve most 
problems in a cubic number of steps. It has been proved however that the worst case 
complexity of the algorithm is exponential in the number of variables. Nevertheless, the 
algorithm is still applicable to real-life problems by accepting solutions for which the 
quality is within a pre-determined distance from the optimum. According to Cordeau et 
al. [68], data estimates are prone to errors and therefore solving real-world problems to 
optimality is usually not meaningful. 
The most used commercial implementations of the simplex algorithm are IBM CPLEX 
[69], and LINGO [70]. A free and open source alternative from GNU is GLPK [71]. 
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Alternatives to the simplex method are special-purpose exact techniques such as branch-
and-bound, branch-and-cut, column generation, and decomposition methods [72]. 
Realistically sized problems often result in models with a large number of variables and 
constraints. When it is not practical to solve a problem to optimality, heuristic methods 
may be engaged and the most popular ones are: Lagrangian relaxation, linear 
programming based heuristics and metaheuristics [72]. 
Sadjady et al. [40] designed a mixed integer linear programming model to solve a two-
echelon multi-commodity supply chain network problem, which has been solved using 
LINGO [70]. The same tool has been applied by Boudahri et al. [17] to optimize a 
supply chain for agri-foods products. It is worth noticing that the authors decomposed 
the entire problem into two sub problems, and each sub problem was solved in a 
sequential manner, to get the final solution. Exact methods can be flexible, and solve 
complex problem. Georgiadis et al. [43] proposed a detailed mathematical formulation 
for the problem of designing supply chain networks comprising multiproduct 
production facilities with shared production resources, warehouses, distribution centers 
and customer zones and operating under time varying demand uncertainty. They 
captured uncertainty in terms of a number of likely scenarios possible to materialize 
during the lifetime of the network. The problem was formulated as a mixed-integer 
linear programming problem and was solved to global optimality using standard branch-
and-bound techniques. 

2.2.2 Heuristics 
Although, it is desirable to have the theoretical certainty that the solution found is also 
the optimal one, exact methods are not always applicable. As discussed in section 2.2.1, 
simplex-based methods require the problem model to satisfy certain properties. 
Moreover, for specific types of problems, the runtime complexity could be exponential 
in the number of variables. Even for methods which are not based on the simplex 
algorithm, the dimensionality of real-world problems might make their application 
impractical. 
It is worth mentioning that, when developing a new optimization application, it is a 
good practice to always attempt to design the problem model as a linear program. The 
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process of designing the linear program is itself a powerful analysis tool which is likely 
to highlight many aspects of the problem. Moreover, the increasing power of computing 
hardware and efficiency of solvers might make it a practical solution. 
Nevertheless, when it is not possible or is impractical to apply exact methods, finding 
approximate solutions may be a good tradeoff, if the solution is close enough to the 
optimal and the time/resource required to find it, is reasonable. Heuristic techniques are 
approaches which implement practical methods to solve optimization problems. 
Typically, there is no mathematical proof that the optimal solution will be found, but the 
methods are expected to work well in practice. Heuristics take advantage of specific 
properties of the problem, and knowledge acquired from past experience. 
In real-world applications specifically, finding approximated high-quality solutions in a 
reasonable time is sufficient, due to some intrinsic characteristics of real-world 
situations, such as: 

 In real domains, most of the key parameters are unknown, and they are usually 
approximated. Therefore, the application of an exact method is likely to find a 
non-optimal solution anyway, but requiring more time and resources. 

 Sometimes, the goal of analysts might be of finding a possible solution in a very 
short time, with the purpose of evaluating the situation. This is the case of a 
Decision Support System (DSS). A DSS is a computer-based information 
system used to support business or organizational decision-making activities. 
These systems often rely on optimization algorithms and help to make decisions, 
which may be rapidly changing and not easily specified in advance. 

 Optimization algorithms are often applied in real-time contexts, in which a good 
solution is needed in matter of few seconds. 

Pimentel et al. [64] developed a mathematical model for the stochastic capacity 
planning and dynamic network design problem. In [64], the network configuration is 
dynamic and the facility location decisions, the network design, and the capacity 
allocation are addressed simultaneously in an integrated framework. Such integration 
scales up the complexity of the problem. The authors proposed a Lagrangian heuristic to 
determine reasonable bounds in a fair amount of time. The basic idea is to relax a subset 
of constraints in order to derive a Lagrangian problem which should be easier to solve 
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and whose optimal value provides a bound on the optimal solution of the original 
problem [64]. 
For the majority of combinatorial optimization problems, it is possible to design a 
specific heuristic to leverage specific properties of the problem and the knowledge 
acquired from past experience. As a matter of fact, an optimization algorithm very often 
is simply the set of steps which are manually performed to find a solution. The quality 
of the solution produced by heuristics strongly depends on the level of experience used 
to design the procedure. 
In the last couple of decades, both academics and practitioners have grown an interest in 
approaches based on general heuristics. These approaches are applicable to many 
different kind of problems and they usually have similar if not better performance than 
specific heuristics, in terms of both quality of the solution and time required to find it. 
Approaches based on general heuristic may be categorized as: 

 Constructive heuristics: build the solution in an iterative fashion. They start 
from the empty set, and add an element at each iteration. Usually, the element to 
add is chosen based on a local optimality criterion. Greedy algorithms are 
constructive heuristics. 

 Meta-heuristics: general methods which are completely independent from the 
application domain. These methods define components and their interactions. 
The components must be specialized for the specific problems. The most well-
known meta-heuristics are: Local Search, Simulated Annealing, Tabu Search, 
Variable Neighborhood Search, Greedy Randomized Adaptive Search 
Techniques, Genetic Algorithms, Scatter Search, Ant Colony Optimization, 
Swarm Optimization, Neural Network, etc. 

 Approximated algorithms: heuristic methods which assure a minimum level of 
performance, i.e. it is possible to formally prove that the computed solution 
would never be worse than the optimal (unknown) solution for more than a fixed 
percentage (which most of the times is quite high). 

 Hyper-heuristics: methods based on Artificial Intelligence and Machine 
Learning techniques, which are able to discover optimization methods, and 
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automatically adapt them to several problems. The search is performed in the 
heuristics space, not in the solution one. 

2.2.3 Meta-Heuristics 
Meta-heuristics are search algorithms which combine basic heuristic methods in higher 
level frameworks aiming at efficiently and effectively exploring the search space [73]. 
Blum et al. [73] collected some definitions of meta-heuristics from the most prominent 
research in the area of combinatorial optimization. To summarize the analysis in [73], a 
meta-heuristic is a high-level iterative process which guides and modifies the operations 
of subordinate heuristics. The resulting strategy efficiently produces high-quality 
solutions and may be applied to a wide set of different problems. Meta-heuristics 
typically are non-deterministic as they rely on probabilistic decisions during the search. 
Moreover, they incorporate mechanisms to avoid local minima and getting trapped in 
confined areas of the search space. Nowadays, more advanced meta-heuristics employ 
memory mechanisms and use the knowledge acquired to guide the search. 
The specific details of meta-heuristics may vary significantly from one to another; 
however, two steps are always implemented and dynamically balanced: diversification 
and intensification. As defined in [73], diversification generally refers to the exploration 
of the search space, whereas intensification consists of exploiting the accumulated 
knowledge of the search space. The balance between diversification and intensification 
as mentioned above is important, on one side to quickly identify regions in the search 
space with high quality solutions and on the other side not to waste too much time in 
regions of the search space which are either already explored or which are unlikely to 
provide high quality solutions [73]. 
Blum et al. [73] summarized the main classifications of meta-heuristics. The 
classifications depend on the viewpoint or characteristic selected and they are as 
follows: 

 Nature-inspired vs. non-nature – Classification based on the origins of the 
algorithm. Examples of nature-inspired algorithms are the Evolutionary Strategy 
and the Ant Colony Optimization. Non-nature inspired algorithms are Tabu 
Search and Iterated Local Search. 
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 Population-based vs. single point search – Classification based on the number 
of solutions used at the same time. Methods which use only one solution 
describe a trajectory in the search space. Population-based meta-heuristics 
describe the evolution of a set of points in the search space. 

 Dynamic vs. static objective function – One method to escape from local minima 
is to modifying the search landscape by altering the objective function with the 
new information collected during the search. A meta-heuristic that implements 
this mechanism is Guided Local Search. 

 One vs. various neighbourhood structures – Some meta-heuristics swap between 
fitness landscapes in order to increase the chance of diversify the search. 

 Memory-usage vs. memory-less methods – A key aspect of meta-heuristics is the 
use they make of the search history. Some algorithms employ memory 
mechanisms in order to make better either short or long term decisions. Methods 
which do not remember the search history decide on the next action only based 
on the current state and, in a sense, they perform a Markov process. 

Blum et al. [73] identified the population-based vs. single point search classification to 
be one allowing a more significant description and comparison of the algorithms. 
Moreover, many new meta-heuristics have been developed by integrating single point 
search algorithms with population-based ones (see Blum et at. 2011 [74]). 
The following sections provide a general overview of the best known meta-heuristics 
with a particular focus on the Ant Colony Optimization algorithm, which is the main 
optimization method used in the present work. 
A. Local Search 
As defined in [73], the Local Search meta-heuristic is a single-trajectory search method 
where each move is only performed if the resulting solution is better than the current 
one. The algorithm is also known as iterative improvement and it stops as soon as a 
local minimum is found. Since the algorithm has no mechanism to recognize and avoid 
local minima, the performance is usually quite unsatisfactory. As a result, in literature, 
several techniques have been developed to allow meta-heuristics avoid local minima. 
They typically consist in improving the termination conditions such that the search is 
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not terminated when simply a local minimum is found, but rather, for instance, restarted 
from a random location of the search space. As shown in chapter 5, termination 
conditions play a critical role in the effectiveness of a meta-heuristic-based optimization 
system. 

B. Simulated Annealing 
Blum et al. [73] identify Simulated Annealing being the oldest among the meta-
heuristics and one of the first to explicitly tackling the problem of local minima. The 
fundamental idea is to allow moves resulting in solutions of worse quality than the 
current one. In order to assure the search terminates in a finite amount of moves, the 
probability of worsening moves is reduced over time. The algorithm is inspired by the 
annealing process of metal and glass where the temperature is gradually reduced until 
reaching a low energy state. The temperature represents the probability of worsening 
moves and it is computed following the Boltzmann distribution. In practice, the search 
process consists of two strategies: random walk and iterative improvement. At the 
beginning, when the temperature is still high, random moves are more likely and the 
bias towards improvement is low. As the temperature is reduced, less random moves are 
accepted and the algorithm behaves more like a local search.  
The cooling schedule is crucial to the effectiveness and efficiency of the algorithm. It 
has been proven that a logarithmic schedule allows the search to converge to the global 
optimum. When implemented however in real-world scenarios, such a schedule is too 
slow and a lower runtime is preferred over convergence guarantee. In practice, cooling 
schedule and initial temperature are adapted to the problem instance, since a strong 
relationship exists between such parameters and the search landscape. 

C. Tabu Search 
Tabu Search is a meta-heuristic based on Local Search which is capable of avoiding 
local minima by systematically employing memory methods. The history of the search 
is kept in a tabu list which is a list of the most recently visited solutions. The 
neighbourhood of the current solution is thus restricted to the solutions that do not 
belong to the tabu list [73]. The use of a tabu list prevents the search from returning to 
recently visited solutions; therefore it prevents from endless cycling and forces the 
search to accept even up-hill moves [73]. The length of the tabu list is the key parameter 
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of the algorithm. A long tabu list will force the search process to explore larger regions 
of the search space as the number of solutions which are forbidden to revisit is high. On 
the contrary, a small tabu list will follow the search and be focused in a concentrated 
area of the search space. Blum et al. [73] review methods to dynamically manage the 
length of the tabu list and the information stored in it.  
D. Evolutionary Strategy 
Evolutionary Strategy (ES) is a meta-heuristic inspired by evolutionary theories of 
natural selections and genetics. The theory of evolution by natural selection formulated 
by Charles Darwin in “Origin of Species” in 1859, states that only the elements of a 
population that are the fittest to their environment will live and reproduce, passing on 
their genetic information. Any mutation that makes an individual better suited for its 
environment will be inherited by the new generation. After a few generations, the new 
population will be well adopted to live in the environment and the individuals will have 
the most chance of survival. 
Evolutionary Strategy is a computational model which implements the key ideas of the 
theory of evolution. In the context of optimization, a feasible solution to the problem 
would be an element of the population. Mutation operators would change aspects of the 
solution and only the most promising ones will be combined to produce a new 
“generation” of feasible solutions which should be closer to the optimal one. 
The first step when applying an ES to an optimization problem is to define the elements 
of the population and their genetic makeup (i.e. the information store by the genes of the 
individual). As in biology, the value of genes within a subject will affect the 
characteristics of the individual and therefore impact on the solution to the problem. In 
the case of a supply chain, as investigated in this study, the genes may represent the 
nodes of the transportation network, i.e. the manufacturing facilities, the shipping ports, 
and the dealers that constitute the network. The genes then are grouped together based 
on the individual they belong to. An element of the population represents a full solution 
to the problem under investigation. In the case of supply chains, the units of the 
population represent the entire path travelled by all the shipped goods of the proposed 
solution; in the context of the problem under investigation this refers to the production 
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facilities, the dealerships through which they are sold and all the sea ports they pass 
through when travelling across the network. As said, the algorithm starts with a 
population, a set of feasible starting solutions. Typically, such solutions are generated 
randomly or by some simple heuristic. Some of the individuals from the initial 
population will be more fit to the environment than others. According to the theory of 
evolution and natural selection, the fittest elements will survive, reproduce and therefore 
spread their genetic heritage. Usually ES algorithms use operators called recombination 
or crossover to recombine two or more individuals to produce the next generation of 
population [73]. The “fitness” of each individual is determined by the calculation of a 
fitness value. The fitness value is defined as the quality a solution has with respect to 
the objective function of the optimization problem and the amount of infeasibility. The 
generation of infeasible solutions can be handled in one of two ways: either constraints 
are incorporated in the algorithm such that infeasible solutions are not possible, or a 
penalty can be applied to the fitness value to account for the level of infeasibility. Once 
the fitness of each individual is determined, the new population is generated from the 
fittest solutions, with newer, more fit elements replacing the less fit ones in the 
population. 
The process is repeated and at each iteration the “fittest” individuals are saved and 
reproduced from until such time as the termination criteria are satisfied. The termination 
criterion is determined by the designer when the ES algorithm is implemented, and 
traditionally uses one the following conditions: 

 An upper limit on number of generations has been met. 
 An upper limit on number of evaluations of fitness has been reached. 
 The probability of achieving significant improvement in the next generation is 

negligible. 
The first 2 criteria require prior knowledge about the problem domain and how the 
algorithm will perform, whereas the third criterion is dynamic and is a function of the 
algorithm used. This option is the more commonly used of the three described. The first 
two may appear to be the simpler, but the algorithm designer needs to understand the 
algorithms convergence characteristics in order to determine how many generations 
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must be completed before the cost of computation is no longer offset by the generation 
of a more optimal solution. 
The third criterion is based on the actual convergence of the solutions produced by the 
algorithm and once they have converged to an ‘optimal’ solution the algorithm 
terminates. For example, iteration can be terminated when the same solution has been 
found for ‘n’ previous iterations. 
The most simple diversification strategy for ES is to use a mutation operator [73]. 
Typically, the mutation operator consists of applying a small random permutation to an 
individual, introducing some noise. In order to avoid premature convergence towards 
sub-optimal solutions, maintaining the population diversity high is the key strategy [73]. 
Several studies have concentrated on preserving this population diversity throughout the 
evolutionary process by modifying the mutation step size in order to transverse from a 
local optimal solution to the global optimum [75]. 
The basic definition of ES does not include an intensification step. Nevertheless, it has 
been proved that applying a step of intensification (e.g. local search – ESs which 
implement local search are also called Memetic Algorithms) is quite beneficial in many 
applications [73]. Exploring the search space helps to quickly identify promising areas. 
The mathematical models that may take into account several perspectives 
simultaneously are quite complicated; it is often difficult or even impossible to build 
linear models equivalent to the non-linear ones. In such scenario, MILP methods are not 
always applicable, without introducing simplifications or assumptions. On the other 
hand, evolutionary strategies can deal with non-linear problems, and it is possible to 
apply them to multi-objective problems. Yeh et al. [19] developed a multi-objective 
evolutionary strategy to solve their problem of green supply chain optimization. The 
authors showed how a large number of Pareto-optimal (see Figure 2.2 for an example 
and definition of Pareto-optimal solution) solutions have been generated in a reasonable 
amount of time. 
Ding et al. [8] addressed the design of production-distribution networks including both 
supply chain configuration and related operational decisions such as order splitting, 
transportation allocation and inventory control. The goal is to find the best compromise 
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between cost and customer service level, and, for that, the authors developed a 
simulation framework based on multi-objective evolutionary strategy (MOES). 
Bevilacqua et al. [29] developed a multi-objective evolutionary strategy based on a real-
valued chromosome that may be applied to the case of constrained nonlinear function, a 
case where it is usually not easy to apply exact methods. The authors analyzed the 
results of their algorithm with regard to the results produced by an exact ILP method 
applied on a linear approximation of the problem. They found that the ILP method 
produce a downwards rounded estimate of the optimal performance, while the MOES 
approach found an upwards rounded estimate. 
Evolutionary algorithms have been shown to be also flexible. Chang et al. [47] proposed 
a combination of co-evolutionary mode with constraint-satisfaction mode to narrow 
down the possible solutions, hence reduce the space to explore. The co-evolutionary 
mode can adjust evaluation constraints dynamically to match a complex reality. Another 
example is in Che et al. [49], where the addressed problem is an optimization of build-
to-order supply chain plans. The chosen evaluation criteria are namely costs, delivery 
time, and quality. The defined models are non-linear and define complex spaces. In 
[49], the authors were able to increase the quality of the Pareto-optimal solutions, by 
revision of crossover and mutation operators. 

E. Ant Colony Optimization 
The Ant Colony Optimization (ACO) algorithm is a meta-heuristic inspired by the 
social behavior of ants finding the shortest paths from their nest (colony) to a food 
source [30]. Proposed by Dorigo et al. [76] in 1996, it is an approach to stochastic 
combinatorial optimization [76]. Ants have the ability to find food sources using the 
shortest paths emanating from their nest. Whilst making their way to a food source ants 
deposit a chemical marker (pheromone), which affects the probability that other ants 
searching for food will follow the same path. The more ants that pass down a particular 
path, greater the quantity of pheromone deposited. The strength of this marker increases 
the probability that other ants will travel along the same path [77]. The deposited 
pheromone also evaporates as a function of time; the degradation rate is faster on longer 
paths than on shorter ones. Consequently, after a number of tours to and from the nest, 
there is a higher concentration of pheromone on shorter paths than on the longer ones. 
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Figure 2.5 depicts an example of ants finding the shortest path around an obstacle when 
foraging for food. 

 
Figure 2.5 - Example of ants finding the shortest path around an obstacle when 
foraging for food. The source of the picture is [76]. 
In ACO, artificial ants work as simple computer agents within a network to 
probabilistically build solutions that exploit two types of information to guide their 
movement [76]: 

1. Heuristic information on the problem being solved, which provides a greedy 
constructive heuristic. 

2. Artificial pheromone trail information, which mimics real pheromones deposited 
by ants. This changes dynamically over time and is based on the number of tours 
undertaken by the ants. 

The Ant System was the first ant algorithm proposed by Dorigo et al. 1996 [76]. 
Algorithmic variants have emerged since the early days of the initial research into ACO, 
which have resulted in performance improvements in comparison with the original 
algorithm. These variants include the Ant Colony System [78], the Max-Min Ant 
System [79], the Rank-based Ant System [80] and the Elitist Ant System [76]. 
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The Ant System (AS) was initially applied to the Travelling Salesman Problem (TSP) 
[78], but has been used to solve other combinatorial problems such as the Quadratic 
Assignment Problem [81] and the Job-Shop Scheduling problem [76]. For a connected 
and undirected graph with n vertices (nodes) and e edges, ants generate a complete tour 
by choosing nodes using a probabilistic state transition rule. Once every ant has created 
their tour a global pheromone update is applied. A fraction of the pheromone evaporates 
on all edges, and each ant deposits an amount of pheromone on the edges as part of its 
tour in proportion to the quality of the tour. Edges which belong to better quality tours 
will receive greater pheromone. 
There are three ways in which a pheromone trail can be updated in the AS algorithm. 
Trails can be categorized as belonging to one of three types: ant-density, ant-quantity, 
and ant-cycle [76] [82]. In ant-density, the pheromone quantity ܳ is deposited on the 
edge (ݎ,  whenever an ant moves from node r to node s. In ant-quantity, ants deposit a (ݏ
pheromone quantity ܳ over the distance (ݎ,  while building a solution. However, in (ݏ
ant-cycle ants deposit pheromone only after they have constructed a complete tour. 
Experiments have shown that the performance of ant-cycle is superior to that of the 
other two pheromone depositing methods based on the quality of their tour. 
The Ant System achieved good results for small TSP problems, finding optimal or near-
optimal solutions for up to 30 cities [78]. However, for larger problems the AS 
algorithm tends to achieve sub-optimal solutions, and in terms of computation time it is 
inefficient when solving such problems. The Elitist Ant System was the first 
improvement of the Ant System; the solution of the global best ant has more “weight” 
in contributing to the pheromone trails than any other ant. Over the years several 
extensions and improvements over AS have emerged, such as the Ant Colony System 
[83]. 
The Ant Colony System (ACS) was introduced by Dorigo et al., 1997 [78] and differs 
from the Ant System in 3 ways: (i) the state transition rule provides a direct way to 
achieve a balance between exploration of new edges and exploitation of a priori and 
accumulated knowledge about the problem, (ii) the global pheromone updating rule is 
only applied to edges that belong to the best ant tour, and (iii) while ants are 
constructing a solution a local pheromone updating rule (a.k.a. the local updating rule) 
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is applied. Informally, in the ACS ݉ ants are initially positioned on ݊ cities chosen 
according to some initialization rule (e.g. randomly). Each ant builds a tour (i.e. a 
feasible solution to the TSP) by repeatedly applying a stochastic greedy rule (in this 
case, the state transition rule). While constructing its tour an ant also modifies the 
amount of pheromone on the visited edges by applying the local updating rule. Once all 
ants have completed their tour, the amount of pheromone on the edges is modified again 
by applying the global updating rule. As was the case in the Ant System, ants are guided 
in building their tours by both heuristic information (they prefer to choose short edges) 
and by pheromone information. An edge with a high amount of pheromone is taken as a 
very desirable choice. The pheromone updating rules are designed with a tendency to 
deposit more pheromone on edges that should be visited by future ants [78]. 
Similarly to the evolutionary approach, ant colony optimization strategies are able to 
generate high quality solutions with a quite reduced computational effort, when 
compared to traditional ILP methods. Anghinolfi et al. [16] solved randomly-generated 
single-objective optimization problems with both ILP- and ACO-based approaches, and 
produced a statistically valid test set to prove the above idea. The solutions found by 
ACO are on average worse only by a factor of 1% with a computational time that is 
more than 50% faster. These results suggest the use of the ACO algorithm for large 
instances when acceptable sub-optimal results are needed in a short time, otherwise the 
proposed IP model can be exploited to generate higher quality solutions [16]. Similar 
results can be found for multi-objectives problems, as shown in Ghoseiri et al. [48]. 
In the original form, the ant colony optimization finds only one path (from the nest to 
the food). To successfully apply it to the transportation network problem, it is required 
to improve for multi-source and multi-destination cases. Musa et al. [30] proposed such 
an improvement to solve a problem of cross-docking network optimization. In the 
transportation problem of cross-docking network, loads are transferred from origins 
(suppliers) to destinations (retailers) through cross-docking facilities, without storing 
them in a distribution center (DC). The purpose is to reduce warehouses to purely trans-
shipment centers where receiving and shipping are its only functions, and therefore, 
reduce the transportation and inventory costs. The network in [30] is comprised of three 
layers: suppliers, DC, and retailers, and a complete ant tour is represented by a bi-



Chapter 2: State of the Art: Supply Chain Optimization 

 

Marco Veluscek   71 
 

dimensional matrix from each supplier to each retailer. The value in a cell indicates 
whether to sending the load directly or transit it through a DC. At each iteration, the ant 
finds the least costly shipment routes from all suppliers to all retailers, and it updates the 
matrix accordingly. For large problem instances (where the goal was switched from 
finding the optimal solution to finding a feasible lower bound and a time limit was 
implemented), the algorithm proposed in [30] often outperformed Branch-and-Bound of 
the LINGO solver. 
Modifications on the ant colony algorithm allows it to be applied to multi-objective 
optimization problems as well. Utama et al. [42] proposed an implementation of the 
ACS for optimizing a palm oil based bioenergy supply chain. In such application, 
product quality, environmental factors, and service level are key performance 
measurements of the supply chain and they have been considered as single objectives of 
the problem. In addition, the authors have also considered minimization of distance and 
costs. The authors in [42] designed a set of fuzzy rules to assign a weight to the single 
objectives. 
When dealing with dangerous goods, only considering one traditional objective in 
routing planning, such as the shortest route or the lowest cost, is no longer sufficient 
[38]. Xiang et al. [38] developed a multi-objective model for the route planning of 
dangerous goods. The performance measurements considered as single goal are total 
travelling time, accident probability and population exposure risk. The most commonly 
used method is to present relative importance as weighting factors for these objectives, 
and to produce a single value to evaluate solutions [38]. However, although this method 
is easy to use, one of the biggest drawbacks is that numerically quantifying the weights 
is a difficult task [38]. The authors in [38] implemented a variant of the ACS to search 
for Pareto solutions. The multi-goal objective function is based on the MINMAX 
method presented in Balling et al. [84]. At each optimization iteration, each single 
objective value is compared with the one of all visited solutions. The goal becomes 
maximizing the improvement of all single objective values. If all objectives of one 
solution are worse than those of another one, the value of the new objective function is 
always less than or equal to 1. On the contrary, if the value is always more than 1, this 
solution is a non-dominated one. A non-dominated solution belongs to the Pareto 
frontier or set of Pareto solutions. 
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F. Particle Swarm Optimization 
Particle Swarm Optimization (PSO) was first introduced as a method for optimization 
of continuous nonlinear functions by Kennedy et al. [85]. The method was discovered 
through simulation of a simplified social model used to interpret and understand the 
movement of organisms in bird flocks or fish schools. The particle swarm optimizer 
began as a simulation of a simplified social milieu where agents were thought of as 
collision-proof birds. At each iteration a loop in the algorithm determines for each agent 
which other agent was its nearest neighbour, then assigned that agent’s velocity to the 
agent in focus. Essentially this simple rule created a synchrony of movement. A random 
perturbation of the velocity of a given element was introduced in order to avoid the 
swarm settling down on an anonymous, unchanging direction. Moreover, the 
optimization function provides a force which guides the swarm to the best position 
found by one member. Velocity is dynamically adjusted based on the direction the 
element is moving relative to the position of the best known solution. Similarly to the 
Evolutionary Strategy or the Ant Colony Optimization, the algorithm focused the search 
in promising portions of the search space, and a stochastic component guarantees the 
avoidance of local minima. 
As for the ES and ACO, the particle swarm optimization algorithm has been adapted 
and successfully applied to many supply chain optimization problems. Huang et al. [41] 
presented a variation of PSO to solve a resilience optimization problem of a four-party 
logistics (4PL) network. A 4PL network is a more robust design than the more common 
3PL. The components of a 3PL supply chain are as usual suppliers, intermediate 
facilities or distribution centres, and demand zones. Let us assume that original facilities 
or 3PLs become unavailable due to natural disaster or human factors. In this case, new 
facilities or 3PLs must serve instead, resulting in an increment in costs for 
transportation and processing which can be regarded as the “loss”. A 4PL design 
defines redundancy connections between elements in the network, and redundant 
resources. The potential for loss reduction caused by disruption is greater in a 4PL 
design. In the PSO implementation of [41], an element of the swarm is a list of utilized 
network links and represents a complete solution. The probability of disruptive events is 
estimated and the cost of the system when disruption occurs is compared with the cost 
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of the system under nominal conditions. The overall objective is to minimize the total 
cost both under nominal and under disruptions scenarios. 
Che et al. [39] proposed a PSO variation to optimize the production and distribution 
planning of a multi-echelon supply chain based on more than one objective. The authors 
in [39] integrated cost and time criteria, and simultaneously considered multiple 
products, production loss, transportation loss, quantity discount, production capacity, 
and starting-operation quantity. The PSO proposed in [39] introduces a novel problem-
specific heuristic to implement the disturbance mechanism. 
Zhao et al. [44] defined a hybrid PSO approach for the optimization problem of an agri-
food supply chain. In the context of agri-food production and distribution, reducing the 
production and transportation costs is critical, as limited shelf life, demand and price 
variability of agri-food products significantly increase the complexity of managing such 
a supply chain. Due to the NP-hardness of such type of problems and the large sized 
problems in the real world, meta-heuristics alone may require a significant 
computational effort to reach high quality solutions [44]. The authors in [44] extended 
the PSO algorithm with a local search mechanism to enhance the exploration strategy of 
the optimizer. As a result, the proposed algorithm finds high quality solutions much 
faster. 

2.2.4 Hyper-Heuristics 
A key drawback of current (meta-)heuristics is that state-of-the-art approaches for real-
world problems tend to represent bespoke problem-specific methods which are 
expensive to develop and maintain [86]. Search techniques and meta-heuristic methods 
in particular have been proven successful when applied to real-world optimization 
problems, however, it is still difficult to apply them to new problems or instances of 
similar problems. Many state-of-the-art meta-heuristic developments are too problem-
specific or too knowledge-intensive to be implemented in inexpensive, easy-to-use 
computational systems [87]. Difficulties related to meta-heuristics implementation arise 
mainly from the significant range of parameter or algorithm choices involved when 
using this type of approach and the lack of guidance on how to select them [86]. In 
addition, the scientific community’s level of understanding of why different heuristics 
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work effectively (or not) in different situations does not facilitate simple choices of 
which approach to use in which situation [86]. 
Hyper-heuristic is an emerging methodology in search and optimization which has been 
developed with the goal of developing algorithms that are more general and easily 
applicable to a wide range of problem domains. Hyper-heuristics take on the challenge 
of automating the design and tuning of heuristics methods to solve hard computational 
search problems. The most recent definition is from Burke et al. [86]: a search method 
or learning mechanism for selecting or generating heuristics to solve computational 
search problems. 

 
Figure 2.6 – Hyper-heuristics classification from E. Burke et al. [88]. 
Hyper-heuristics raise the level of generality at which optimization systems can operate 
and they are typically based on a set of low-level, easy-to-implement heuristics. Meta-
heuristics act on the solution space, whereas hyper-heuristics act on the methods space. 
Burke et al. [86] in 2013 surveyed the state of the art of hyper-heuristics and identified 
three high-level properties of such methods: 

1. A hyper-heuristic is a higher level heuristic that manage a set of low-level 
heuristics. 
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2. It searches for a good method to solve the problem rather than for a good 
solution. 

3. And it uses only limited problem-specific information. 
The last property is considered to be the crucial one when designing a hyper-heuristic. 
These type of methods often use machine learning techniques to learn from and adapt to 
the currently addressed problem or instance. The typical classification is: heuristic 
selection and heuristic generation. A hyper-heuristic is classified as heuristic selection 
when the method mainly consists of choosing the most promising heuristic from a pre-
determined set. Heuristic generation-based methods select components of existing 
heuristics to build a new one. 
Zheng et al. [89] addressed the problem of emergency railway transportation planning. 
In disaster relief operations, huge amounts of relief supplies need to be transported from 
a variety of supply centers to the disaster-affected areas in a timely and effective 
manner, in order to alleviate the suffering and damage as much as possible [89]. Having 
advantages such as high capacity, less dependence on weather conditions, punctuality, 
and safety, railway transportation is particularly suitable for large-scale and long-
distance freight transportation. The efficiency of emergency railway transportation has a 
great impact on the success of disaster relief operations. Zheng et al. [89] applied 
several state-of-the-art evolutionary algorithms to a variety of problem instances, but the 
solutions found were not satisfactory. The authors integrated a set of individual 
heuristics operators into a hyper-heuristic framework. The developed optimization 
process performs a stochastic search on the low-level heuristics by using feedback on 
their performance. The hyper-heuristic methods defined in [89] consists of the selection 
of evolutionary operators to be applied during the optimization process. At the 
beginning, the operators are selected randomly. The performance of the operators is 
recorded during the search and their probability of being applied is changed 
accordingly. After a few iterations, the evolutionary algorithm will utilize those 
operators which seems to be more suited to the given problem instance. This approach 
resulted in a higher overall performance on different instances. 
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2.2.5 Parameters Tuning 
Most of the algorithms for tackling computationally hard optimization problems 
described in the sections above depend on a number of parameters which influence their 
behaviour [90]. The performance of such parametrized algorithms depends strongly on 
the particular values of the numerical and categorical parameters, and the appropriate 
setting of these parameters is itself a difficult optimization problem [90]. Meta-
heuristics specifically are characterized by a large number of parameters. According to 
Birattari [91], a meta-heuristic is not properly an algorithm but rather a set of concepts 
that serve as guidelines for tackling an optimization problem. It is convenient to look at 
a meta-heuristic as at an algorithmic template that needs to be instantiated to yield a 
fully functioning algorithm [91]. The importance of tuning is generally recognized by 
the research community. However, in the vast majority of the cases, meta-heuristics are 
tuned by hand in a trial-and-error procedure guided by some rules of thumb [91]. 
According to Birattari [91], the trial-and-error approach presents many drawbacks, two 
of the most noticeable being: 

1. In the context of large-scale industrial applications, a trial-and-error approach is 
extremely time consuming, labour-intensive, and requires the attention of a 
skilled practitioner, somebody well acquainted with the optimization algorithm. 

2. In the context of research applications, such approach may very well invalidate 
any conclusions drawn from the experimental comparison of different 
algorithms. 

Birattari [91] presented a detailed analysis of the research work which specifically 
address the problem of tuning meta-heuristics. The authors in [91] highlighted three 
major limitations that most of the work referred share, these are as follows: 

1. Most of the studies about meta-heuristics tuning lacked a clear definition of the 
tuning problem itself. 

2. Most researches fail to notice that tuning has always to be conceived with 
respect to a specific class of instances. 

3. Finally, the lack of a precise statement on which specific figure of merit the 
tuning process is expected to optimize. 
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Birattari [91] designed an algorithm for the automated configuration of parameters 
which overcome these limitations, called F-Race. The defined algorithm belongs to the 
class of racing approaches from the area of machine learning. The basic idea is to 
streamline the evaluation of the candidate parameter configurations and to drop during 
the evaluation process those that appear less promising. Intuitively, less configurations 
are tested than for a brute force approach, and, therefore, the computational complexity 
of the algorithm is lower. The algorithm relies on the definition of a process to generate 
a stream of configurations and a metric to evaluate the expected performance of a 
candidate configuration using a finite number of experiments. 
Birattari et al. [90] presented an extension of F-Race, capable of handling continuous 
parameters, named I/F-Race. Both of F-Race and I/F-Race are offline-tuning 
algorithms, as they produce one parameter configuration per problem set and apply it to 
each problem instance. The problem of online tuning is quite different from the offline 
variant, and it is typically based on some machine learning technique, often belonging 
to the reinforcement learning literature [91]. The key idea is to dynamically adapt a 
subset of the parameters of the optimization algorithm while performing the 
optimization itself. Online tuning allows the optimization process to be more flexible 
and better handle problem instances which differs significantly from each other. Such 
an approach is particularly suited to solving large and complex instances. Despite online 
tuning not being the main topic of the work in [91], Birattari [91] presented an analysis 
of the most relevant work for the topic of online tuning. 
One of the key parameter of meta-heuristics is the termination condition. Depending on 
the definition, the termination condition may be represented as a discreet, continuous, or 
categorical parameter. While analysing the literature for the problems of automatic 
parameter tuning and optimal termination condition configuration, a lack of 
consideration for the latter problem emerged. According to related research, even work 
focused on parameter tuning rarely attempts to address or include the termination 
condition in their list of parameters. As a matter of fact, Dorigo et al. [92] reported that, 
for all meta-heuristics, there is no general termination criterion, and, in practice, a 
number of rules of thumb are employed. 
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The work presented in chapter 5 introduces a simple method to automatically set the 
termination condition of the ant colony optimization algorithm. As for F-Race [91] and 
I/F-Race [90], the algorithm is based on a supervised learning approach and requires a 
training set. However, the method differs from the approach presented in [90] and in 
[91] as a configuration is assigned to each problem instance independently. The 
termination condition considered is the optimal amount of iteration of the search 
process. A significant advantage of the algorithm presented in chapter 5 is the low 
overhead required in the training step. Each run of the optimization during the training 
step takes a nominal amount of iteration (e.g. one thousand iterations). Knowledge and 
characteristics of the problem instance are gathered during the search. If a similar 
instance occurs and strong evidence exists that the number of iterations can be reduced 
is present, then the termination condition is set accordingly for the new instance. During 
the training step, there is no need to run the search multiple times on the same instance 
to test different configurations. As a result, the training step can be performed as fast as 
a nominal optimization, and experimental results show that the optimization process is 
significantly faster when solving new unseen instances. 
Of course, the algorithm presented in chapter 5 relies on the definition of the 
termination condition. As future work, the same ideas and principles could be applied to 
other parameters. 

2.3 Summary 
This chapter presented a general description of the problem of supply chain 
optimization and an overview of the optimization techniques most commonly 
employed. Throughout the chapter, references to research works and surveys that offer 
more in-depth analysis to specific aspects of the problem have been provided. 
Moreover, the limitations and research opportunities that emerge from such works have 
been highlighted and how they have been addressed in the present work has been 
described. 
Regarding the design of supply chain models for optimization, a noticeable trend 
consists of selecting cost minimization as a performance measure of the supply chain 
over profit maximization. This limits the effectiveness of the optimization process as the 
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perspective of cost minimization is often too narrow and many key aspects of the supply 
chain are not considered. Similarly, in-transit inventory and transportation mode 
characteristics are often neglected when modelling supply chains.  
When designing the model of Caterpillar’s supply chain, these undesirable trends and 
limitations have been taken into consideration. The following chapter, chapter 3, depicts 
the model for Caterpillar’s supply chain and works as an example on how to address 
and overcome such shortcomings. 
The current chapter also began with a discussion about multi-objective optimization. A 
more comprehensive analysis is presented in chapter 4. During the literature review, it 
appeared that most of the methods to solve the problem of multi-objective supply chain 
optimization are very specific to either the problem or to the optimization algorithm. In 
order to apply a multi-goal analysis to Caterpillar’s supply chain, it is needed an 
understand of what the general-purpose options were and how they would perform on 
Caterpillar’s specific instance. Chapter 4 is the result of this investigation. 
Despite the problem of supply chain optimization being well established, the review 
highlighted how many different aspects and variations characterized practical 
applications. Defining the model of a real-world supply chain is still a non-trivial task 
that the application of the general theory does not completely solve. Practical 
knowledge and experience of the specific business is still required to identify its key 
characteristics, and an understanding of the mathematical formalism is necessary to 
model them. Similarly, the state-of-the-art algorithms for real-world supply chain 
optimization tend to be expensive to develop and maintain, as they tend to be problem 
specific. Chapters 5 and 6 discuss the work done with the high-level goal of increasing 
the automatization of the supply chain optimization process. Specifically, chapter 5 
defines a method to automatically set and optimize the termination condition of the 
optimization algorithm. The method not only improves the performance of the 
algorithm, but also reduces the effort necessary to apply the algorithm to the specific 
problem. Chapter 6 introduces a system to assist in designing the optimization model 
via the application of a data mining approach. 
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3 CATERPILLAR’S SUPPLY 
CHAIN 

 
Caterpillar Inc. is the world leader in manufacture of construction and mining 
equipment, diesel and natural gas engines, industrial gas turbines and diesel-electric 
locomotives. The current revenue of Caterpillar is of the order of tens of billions and 
they sell products and parts via a worldwide dealer network. Caterpillar sells more than 
3 million products and 700,000 parts in more than 20 countries around the world every 
year. They operate with more than 3,000 suppliers and 3,000 dealerships and their 
logistics operations alone are worth more than 60 million dollars per year. 
The supply chain of Caterpillar is made of two key echelons: (i) the manufacturing and 
distribution to assembly points of components or parts, and (ii) the shipment of final 
products or machines to the dealerships. Both echelons are a four-layer network as 
shown in Figure 2.1. The first tier in the supply network for parts consists of the set of 
component factories. The second and third tiers are respectively outbound and inbound 
shipping ports. The last tier represents the product manufacturers and assembly points. 
The second key echelon of Caterpillar’s supply chain starts from the tier of machine 
assembly points. The following two tiers are again outbound and inbound shipping ports 
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and the nodes in the last tier represents the dealerships and customers. Figure 3.1 shows 
a graphical representation of Caterpillar’s supply chain based on the two echelons. 

 
Figure 3.1 - Graphical representation of Caterpillar's supply chain. 
The preferred transportation modes at Caterpillar are trucks and freighter ships. 
Occasionally, some products or parts are shipped on planes and trains. Machines are 
moved on flatbeds when on land and shipped on what is called “roll-on-roll-off” (RoRo) 
freighter ships when shipping across the ocean. If the size and weight allow it, 
components are grouped and shipped together in vans on land and containers on 
freights. Caterpillar is one of the largest freight movers in the world. They do not own 
the fleet of freights; however, they retain a significant leverage on the fleet owners and 
usually negotiate transportation pricing based on current demand and future 
commitment. Containerized freights are typically faster and less costly than roll-on-roll-
off ships. Experiments are in progress to model the possibility of disassembling a 
machine at an outbound port and then ship it inside a container. Based on preliminary 
analysis, it is likely that the reduced transportation time and cost of such mode of 
transport may make up for the additional cost and time of disassembling and 
reassembling the machine at the ports. 
The links in the supply network which connect component manufacturers and shipping 
ports are connections on land where components are moved via trucks. Similarly, the 
links between receiving ports and assembly points, between assembly points and ports, 
and ports and dealers are on land. Moreover, if component factories, assembly points, 
and dealerships are located on the same continent or region a direct land link is present, 
which allows products to avoid going through the shipping ports. 
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The nodes and connections of Caterpillar’s network originated from a division of the 
regions Caterpillar operates in as shown in Figure 3.2. The Earth surface has been 
divided into hexagons of the same size. Hexagons containing locations involved in the 
supply process have been marked with key identifiers. For instance, in Figure 3.2 
hexagons with a yellow identifier represents factory locations, light blue identifiers code 
the location of shipping ports. The purpose of such division was to reduce the level of 
details when building Caterpillar’s model and abstract from scenarios which are not 
particularly meaningful when taking a global perspective. They provided a standard size 
for the hexagons, facilities which fall into the same hexagon are modelled as one node 
in the network representation and transportation aspects between such facilities are not 
considered in the optimization process. 

 
Figure 3.2 - Representation of Caterpillar's Distribution Network. 
The production facilities for both components and complete products have an associated 
maximum production capacity and a unit-based production cost. Factories where 
machines are assembled from a set of components also have an estimated assembly time 
for each type of machine and the variability expected on it. In the business of 
manufacturing large and complex objects, factories are typically expensive to build and 
operate. Retooling a factory to produce a different product is a significant investment 
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and even shutting down factories may impact the viability of the company. All factories 
in the supply chain have an operating cost also referred to as period cost, which is 
independent from the quantity of product produced as long as the factory remains the 
property of the company. 
Links between the nodes have an associated transportation cost which is at least a 
function of the distance and time required to travel across the link. Many more factors 
affect the transportation costs, e.g. energy price, inventory costs and international trade 
factors. Sections 3.2.1, 3.2.2, 3.2.3, and 3.2.4 present a detail model for these additional 
factors. 
Caterpillar’s preferred sales model is through dealerships. Each product has a price tag 
which may change based on the region in which the dealership is located (e.g. the same 
products sold in North America have a different price to Asia). 
The performance measures of greatest interest to Caterpillar’s Logistics division are 
profit, transportation/inventory time and resilience. Contrary to the trends highlighted in 
section 2.2, maximization of profit is preferred over cost minimization. Profit 
maximization is the most comprehensive measure as it not only accounts for 
transportation cost, but also considers sale prices, inventory costs, international trade 
factors and more. Of even higher significance is the goal of resilience maximization. A 
resilient supply network is a network that is not susceptible to possible disruptive 
events. Disruptive events for a supply chain are for instance the loss of a factory or a 
shipping port due to some natural disaster which struck an area or the loss of connection 
links between nodes due to a fault in service from a transportation company (e.g. the 
ships or the trucks on one route brake down, or employees go on strike). If the resilience 
level of the supply chain is high, it is likely that its performance would not be 
significantly affected in the case of a disruptive event (e.g. the profit loss would be 
low). Sections 3.1, 3.2, and 3.3 define the mathematical models used to optimize 
Caterpillar’s Supply Chain according to the performance measures of travel time, profit, 
and resilience respectively. 
Section 3.4 introduces the simple simulation system that has been implemented to 
model the uncertainty of the transportation costs. Section 3.5 describes the optimization 
algorithm employed, the Ant Colony Optimization, and discusses implementation 
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details. Finally, section 3.6 depicts the results of the experiments performed to test the 
optimization process. 

3.1 Transportation Time Minimization 
Transportation time is quite significant when optimizing a supply chain as it is typically 
proportional to costs, inventory requirements and service level. Links that take longer to 
cross have higher transportation costs and make more challenging to retain a high 
service level. In order to meet the customer demand at the requested time, the schedule 
of production must account for the time required to travel across the supply chain. 
Longer times means transportation constraints have higher impact on the production 
schedule. Inventory must be placed appropriately on the network such that customers 
demand can be met in time.  
Modelling transportation time minimization is quite straight forward as it does not 
require significant knowledge of the mechanics of the supply chain. Such a model was 
the first one implemented for Caterpillar’s supply chain. Starting from the model 
described by equations from (2.1) to (2.4), the information required are the locations of 
production sources, shipping ports and dealerships to compute the transportation times 
for each possible route in the network. The result is a set ݀ ∈ ℝ௡×௠ of times which 
define the cost coefficients of the objective function. Equations (3.1), (3.2), (3.3), and 
(3.4) define the model for the minimization of transportation time. 

 ݉݅݊ ∑ ∑ ݀௜௝ݔ௜௝௠௝ୀଵ௡௜ୀଵ    (3.1) 

.ݏ  .ݐ :   ∑ ≥ ௜௝ݔ  ௜ܵ௠௝ୀଵ   ∀݅ ∈ [0, ݊]. Capacity constraints (3.2) 

            ∑ ௜௝ݔ = ௝௡௜ୀଵܦ    ∀݆ ∈ [0, ݉]. Demand constraints (3.3) 

ݔ  ∈ ℝା௡×௠,  ܿ ∈ ℝା௡×௠,  ܵ ∈ ℝା௡ , ܦ  ∈ ℝା௠  Domains (3.4) 
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3.2 Profit Maximization 
Profit is the most comprehensive measure for understanding the performance of a 
supply chain from a business stand point. Improving the efficiency of the distribution 
plan or reducing the costs of the production process will result in an increased profit. 
Considering more dimensions of the supply chain, the optimization of a profit 
maximization model will result in a more realistic solution of greater significance to the 
managers. For instance, it is reasonable to depict a situation where the closest 
production facility to a dealership is significantly more expensive than one located 
further away. Lower production costs might compensate for the higher transportation 
costs. Such a scenario is even more likely if production and transportation commitment 
discounts are in place. Moreover, on the international marketplace, difference in 
government regulations and taxations could make it more compelling to manufacture 
and ship the product outside the country location of the dealership. Typically, such 
regulations affect the sale price and production cost. A model considering only 
transportation costs would be blind to this scenario. 
Caterpillar’s model for profit maximization includes the following factors: 

 Sale prices at the dealership. 
 Production costs and assembly costs. 
 Production facilities operational costs (period cost). 
 Inventory costs per unit of product and time to be held. 
 Energy costs based on the mode of transports. 
 International trade factors (tariff costs). 

All above mentioned costs are per unit of product, with the exception of period costs 
which are per operational factory. Equations (3.5), (3.6), (3.7), and (3.8) define the 
model for profit maximization. ݌ݏ ∈ ℝ௠ is the set of sale prices for each dealership ݆, 
ܿ݌ ∈ ℝ௡ is the set of costs associated to each production facility ݅, and ܿݐ ∈ ℝ௡×௠ is the 
set of transportation costs for each route in the supply chain from manufacturer ݅ to 
dealership ݆. Production costs, assembly costs, and period costs are added into ܿ݌. Sale 
prices are weighted on tariff costs in ݌ݏ. And, finally, inventory, energy costs, and 
discount for commitment are included in the transportation cost calculation ܿݐ. 
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ݔܽ݉  ∑ ∑ ௝݌ݏ) − ௜ܿ݌) + ௜௝))௠௝ୀଵ௡௜ୀଵܿݐ ∙  ௜௝   (3.5)ݔ

.ݏ  .ݐ :   ∑ ≥ ௜௝ݔ  ௜ܵ௠௝ୀଵ   ∀݅ ∈ [0, ݊]. Capacity constraints (3.6) 

            ∑ ௜௝ݔ = ௝௡௜ୀଵܦ    ∀݆ ∈ [0, ݉]. Demand constraints (3.7) 

ݔ  ∈ ℝା௡×௠, ݌ݏ ∈ ℝା௠, ܿ݌ ∈ ℝା௡ , ܿݐ ∈
ℝା௡×௠,  ܵ ∈ ℝା௡ , ܦ  ∈ ℝା௠  Domains (3.8) 

3.2.1 Energy Costs 
The typical distribution plan for Caterpillar would span one year of demand. Usually, 
distribution plans are outlined for each product separately. The energy price changes 
quite significantly over the course of one year and it is extremely difficult to predict. 
Therefore, the optimization process must be flexible to accommodate such high level of 
variability. 
The nominal energy cost when the distribution plan is delineated is from the grade of 
crude oil pricing given by the West Texas Intermediate benchmark. For the next 12 
months, a prediction system is used to adjust and compensate possible energy price 
variations. The result of a Poisson distribution is taken over the expected value of 
energy cost for each of the following months. Figure 3.3 shows the result of the 
projection for the years 2013 and 2014. Equation (3.9) define the energy price ܧ for a 
given month (0)ܧ .ݐ is the initial month, and ݖ is the percentile value for the Poisson 
distribution. ߪாభ  is the standard deviation defining the negative confidence interval of 
the prediction, and ݏ is the “exchange” parameter to obtain the standard deviation for 
the positive confidence interval ߪாమ = ݏ ∗ ாభߪ . Transportation costs in the objective 
function ܿݐ௜௝ are multiplied by the energy price (ݐ)ܧ in any given month. 

(ݐ)ܧ  = (0)ܧ ∗ ݁௭∗௦ఙಶభට ௧ଵଶ (3.9) 
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Figure 3.3 - Energy cost projection from West Texas Intermediate (WTI) Crude 
Oil Price 

3.2.2 Lane Commitment Discount 
As one of the largest ocean freight movers in the world, Caterpillar is able to negotiate 
transportation prices with the fleet owners based on current demand and future 
commitments. Most of the fleet owners grant Caterpillar discounts on transportation 
costs if they commit to a good portion of the upcoming year to purchase their service 
and ship product on the same ocean lane. In order for a distribution plan to be 
meaningful, such discounts must be considered in the profit calculation. Discount rates 
may vary based on the service provider; however, they are typically a function of the 
time of commitment and unit of product. Equation (3.10) outlines the model to 
approximate the discount mechanism, given the link between two ports ܵ ௞ܲ and ܵ ௟ܲ, the 
month ݐ  for which the discount is calculated, and the year to which the calculated 
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distribution plan belongs. ܶ is the duration of the commitment in months, ݉ physical 
characteristics of the product shipped (e.g. cubic volume of a machine), ݇ the minimum 
lane usage price (in US dollars), and ݒ is the amount of product committed. (ݐ)ܧ is the 
energy price for the month ݐ as defined by eq. (3.9). The parameters ߚ ,ߙ, and ߛ tune the 
weight of commitment on the cost calculation and describes the sensitivity to different 
aspects of the model: specifically, ߙ describes the sensitivity to commitment, ߛ to the 
volume, and ߚ to something in between consistency and volume.  
 in the optimization problem (3.5)-(3.8). The ݔ is the value of the decision variable ݒ
resulting objective function becomes cubic in ݔ and the optimization process not only 
needs to search in the space for possible ways to ship products from factories to 
customers, but also for how long to commit to a set of port-to-port links. A new 
dimension is added to the problem and the optimizer must keep track of the lane usage 
across twelve distribution plans. 

(ݐ)ௌ௉ೖௌ௉೗ܥܱ = ቌߙ ൬12 − ܶ
12 ൰

ଶ
+ ߚ ൬12 − ܶ

12 ൰ ݉ ∙ ݒ + γ(݉ ∙ ଶ(ݒ + ݇ + ቍ(ݐ)ܧ ∙ ݉ ∙  (3.10) ݒ

Table 3.1 summarizes the parameters used for the calculation of the lane commitment 
discount. 
Table 3.1 – Parameters for the lane commitment discount calculation. 

Parameter Symbols Parameter Meanings Values 
 Sensitivity to commitment 14.33457  ߙ
 Cross sensitivity between consistency and volume 0  ߚ
 Sensitivity to volume -2.39E-04  ߛ
݇  Minimum lane usage 9.35 
݉  Physical characteristics of the product (cubic volume of a machine) 90 

3.2.3 Inventory Calculation 
Correct placement of inventory is fundamental to retaining a high service level and 
mitigate the risk of shortfalls. Inventory used to meet the customer demand within a 
time window is called Cycle Stock; the inventory to overcome shortfalls and operate the 
business according to the plan is called Safety Stock. Keeping inventory however 
entails an additional cost to the distribution plan. The current optimization process at 
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Caterpillar models only cycle stock. The time interval for which inventory must be held 
at any given point in the network is determined based on the service level set for the 
distribution plan and the time required for products to be shipped from production 
facilities to dealerships. Service level is a function of promised time, which defines the 
time window when the customer is expecting to receive the order. A high service level 
means a good percentage of orders have been delivered on time. 
Given a promised time ݐ݌ ∈ ℕା, which is usually measured in days, inventory is needed 
if the time required to travel from the production facility to the dealership is greater than 
the promised time. Inventory may be kept at the production facilities, at the shipping 
ports and at the dealerships. In order to minimize the costs, the inventory should be 
stored as close to the manufacturers as possible. The costs of inventory are from the 
cycle stock (the inventory kept at the nodes in the supply chain) and from the product 
“trapped” in transit on the network. 
Given the path defined by the nodes ܲܨ௜, ܲܨ௞, ܵ ௟ܲ, ܵ ௠ܲ, and ܦ௝  on the supply network 
as shown in Figure 3.1, let ܨܲ)ݐݐ௜, ,௞ܨܲ)ݐݐ ,(௞ܨܲ ܵ ௟ܲ), ݐݐ(ܵ ௟ܲ , ܵ ௠ܲ), and ݐݐ(ܵ ௠ܲ,  ௝) beܦ
the transportation times required to travel from one node to the other. The path has a 
direct link between component factory ܲܨ௜  and assembly point ܲܨ௞ . There are five 
possible locations where to hold inventory, which are the five nodes in the path. The 
inventory must be close enough to ܦ௝  in order to meet the promised time, and has to be 
as close to the production facility ܲܨ௜  as possible in order to reduce the cost. The 
amount of inventory in days may be determined starting from the end of the path ܦ௝  and 
moving backwards towards ܲܨ௜. If the promise time is greater than ݐݐ(ܵ ௠ܲ,  ௝) then noܦ
inventory is required on ܦ௝  as the demand can be met on time shipping from ܵ ௠ܲ. On 
the contrary, if ݐ݌ < ܵ)ݐݐ  ௠ܲ, (௝ܦ  then the days of inventory required on ܦ௝  are 
൫ܵݐݐ ௠ܲ, ௝൯ܦ −  The process can be repeated while moving towards the beginning of .ݐ݌
the path with the caveat that the inventory time possibly already allocated must be 
subtracted from the total transit time. For instance, moving on to ܵ ௟ܲ, the total transit 
time now is ݐݐ(ܵ ௟ܲ , ܵ ௠ܲ) + ܵ)ݐݐ ௠ܲ, (௝ܦ . If ݐ݌ ≥ ܵ)ݐݐ ௟ܲ , ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ, ௝൯ܦ −  (௝ܦ)݀݅
then no inventory is needed on ܵ ௠ܲ , where ݅݀(ܦ௃)  is the possible inventory days 
computed in the previous step. Otherwise, if ݐ݌ < ܵ)ݐݐ ௟ܲ, ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ , ௝൯ܦ −  (௝ܦ)݀݅
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then the inventory days required on ܵ ௠ܲ is ݐݐ൫ܵ ௠ܲ, ௝൯ܦ − ݅݀൫ܦ௝൯ −  Algorithm 3.1 .ݐ݌
summarizes the steps to compute the required inventory days for a given path in 
Caterpillar’s supply chain. 
Figure 3.4 and Figure 3.5 summarize the algorithm to compute the required inventory 
days with two flowcharts. Figure 3.5 describes a subroutine utilized in the flowchart in 
Figure 3.4. The purpose of the flowcharts is to describe the idea of the algorithm. All 
the actual calculations and details are defined in Algorithm 3.1. 
 

 
Figure 3.4 – Flowchart for the algorithm to compute the required inventory days. 
The subroutine for the inventory calculation on a given location is in Figure 3.5. 
 



Chapter 3: Caterpillar’s Supply Chain 

 

Marco Veluscek   91 
 

 
Figure 3.5 – Flowchart for the algorithm to compute the required days of 
inventory on a given location of the supply chain. The exact number of days for 
inventory is defined in Algorithm 3.1. 
Algorithm for Inventory Days calculation 
Require: Promise time ݐ݌ ∈ ℕା. Path in the supply network defined by the nodes ܲܨ௜, 
ܵ ,௞ܨܲ ௟ܲ , ܵ ௠ܲ, and ܦ௝ . Transportation times between consecutive nodes ܨܲ)ݐݐ௜ ,  ,(௞ܨܲ
௞ܨܲ)ݐݐ , ܵ ௟ܲ), ݐݐ(ܵ ௟ܲ, ܵ ௠ܲ), and ݐݐ(ܵ ௠ܲ,  .(௝ܦ
1. if ݐ݌ ≥ ܵ)ݐݐ  ௠ܲ, ௝ܦ ௝) ⊳ Inventory days atܦ  
2. then ݅݀൫ܦ௝൯ ← 0 
3. else ݅݀൫ܦ௝൯ ← ൫ܵݐݐ ௠ܲ, ௝൯ܦ −  ݐ݌
4. if ݐ݌ ≥ ܵ)ݐݐ  ௟ܲ , ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ, ௝൯ܦ − ܵ Inventory days at ⊲ (௝ܦ)݀݅ ௠ܲ 
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5. then ݅݀(ܵ ௠ܲ) ← 0 
6. else ݅݀(ܵ ௠ܲ) ← ܵ)ݐݐ ௟ܲ , ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ, ௝൯ܦ − (௝ܦ)݀݅  −  ݐ݌
7. if ݐ݌ ≥ ,௞ܨܲ)ݐݐ ܵ ௟ܲ) + ܵ)ݐݐ  ௟ܲ , ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ, ௝൯ܦ − ݅݀(ܵ ௠ܲ) ⊳ Inventory days at 

ܵ ௟ܲ 
8. then ݅݀(ܵ ௟ܲ) ← 0 
9. else ݅݀(ܵ ௟ܲ) ← ,௞ܨܲ)ݐݐ ܵ ௟ܲ) + ܵ)ݐݐ  ௟ܲ , ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ, ௝൯ܦ − ݅݀(ܵ ௠ܲ)  −  ݐ݌
10. if ݐ݌ ≥ ,௜ܨܲ)ݐݐ (௞ܨܲ + ,௞ܨܲ)ݐݐ ܵ ௟ܲ) + ܵ)ݐݐ  ௟ܲ , ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ, ௝൯ܦ − ݅݀(ܵ ௟ܲ)  ⊳

 Inventory days at ܲܨ௞ 
11. then ݅݀(ܲܨ௞) ← 0 
12. else ݅݀(ܲܨ௞) ← ,௜ܨܲ)ݐݐ (௞ܨܲ + ,௞ܨܲ)ݐݐ ܵ ௟ܲ) + ܵ)ݐݐ  ௟ܲ , ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ, ௝൯ܦ −

݅݀(ܵ ௟ܲ) −  ݐ݌
13. if ݐ݌ ≥ ,௜ܨܲ)ݐݐ  (௞ܨܲ + ,௞ܨܲ)ݐݐ ܵ ௟ܲ) + ܵ)ݐݐ  ௟ܲ , ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ, ௝൯ܦ − (௞ܨܲ)݀݅  ⊳

 Inventory days at ܲܨ௜ 
14. then ݅݀(ܲܨ௜) ← 0 
15. else ݅݀(ܲܨ௜) ← ௜ܨܲ)ݐݐ , (௞ܨܲ + ௞ܨܲ)ݐݐ , ܵ ௟ܲ) + ܵ)ݐݐ  ௟ܲ , ܵ ௠ܲ) + ൫ܵݐݐ ௠ܲ, ௝൯ܦ −

(௞ܨܲ)݀݅  −  ݐ݌
return ݅݀(ܲܨ௜), ,(௞ܨܲ)݀݅ ݅݀(ܵ ௟ܲ), ݅݀(ܵ ௠ܲ),  (௝ܦ)݀݅
Algorithm 3.1 – Pseudo code for calculation of inventory days required. 
The days of inventory must then be converted into monetary value in order to be 
considered in the profit calculation. The cost of inventory is proportional to the 
transportation cost and the production cost per unit of product. The cost at each location 
is also weighted on the minimum acceptable rate of return, or hurdle rate. In this 
domain, hurdle rate is used as a synonym for cost of capital. Algorithm 3.2 shows the 
main components for computing the inventory carrying cost on one path. Let 
൫ܿݐ ௜ܰ, ௝ܰ൯ ∈ ℝ be the transportation cost for shipping one unit of product from node ௜ܰ 
to node ௝ܰ, and ܿ݌௞ ∈ ℝ be the production cost at manufacturer ݇. Let ݅ܿ( ௜ܰ) ∈ ℝ be 
the inventory holding cost at node ௜ܰ , and ݅ܿ൫ ௜ܰ, ௝ܰ൯ ∈ ℝ  be the cost of inventory 
“trapped” between nodes ௜ܰ and ௝ܰ. Let ℎݎ ∈ ℝ be the hurdle rate. 
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Algorithm for Inventory Costs calculation 
Require: Path in the supply network defined by the nodes ܲܨ௜, ܲܨ௞, ܵ ௟ܲ, ܵ ௠ܲ, and ܦ௝ . 
Transportation costs between consecutive nodes ܨܲ)ܿݐ௜, (௞ܨܲ ,௞ܨܲ)ܿݐ , ܵ ௟ܲ) , 
ܵ)ܿݐ ௟ܲ , ܵ ௠ܲ), and ܿݐ(ܵ ௠ܲ,  ,(௞ܨܲ)݀݅ ,(௜ܨܲ)݀݅ ௝). Inventory days at the network nodesܦ
݅݀(ܵ ௟ܲ), ݅݀(ܵ ௠ܲ), and ݅݀(ܦ௝). Production costs ܿ݌௜, and ܿ݌௞. The hurdle rate ℎݎ. 
1. ⊳ Inventory holding costs on nodes 
(௜ܨܲ)ܿ݅ .2 ← ௜ܿ݌ ∙ ℎݎ ∙  (௜ܨܲ)݀݅
(௞ܨܲ)ܿ݅ .3 ← ௜ܿ݌) + ௜ܨܲ)ܿݐ , (௞ܨܲ + (௞ܿ݌ ∙ ℎݎ ∙  (௞ܨܲ)݀݅
4. ݅ܿ(ܵ ௟ܲ) ← ൫ܿ݌௜ + ,௜ܨܲ)ܿݐ (௞ܨܲ + ௞ܿ݌ + ,௞ܨܲ)ܿݐ ܵ ௟ܲ)൯ ∙ ℎݎ ∙ ݅݀(ܵ ௟ܲ) 
5. ݅ܿ(ܵ ௠ܲ) ← ൫ܿ݌௜ + ,௜ܨܲ)ܿݐ (௞ܨܲ + ௞ܿ݌ + ,௞ܨܲ)ܿݐ ܵ ௟ܲ) + ܵ)ܿݐ ௟ܲ , ܵ ௠ܲ)൯ ∙ ℎݎ ∙

݅݀(ܵ ௠ܲ) 
(௝ܦ)ܿ݅ .6 ← ቀܿ݌௜ + ௜ܨܲ)ܿݐ , (௞ܨܲ + ௞ܿ݌ + ,௞ܨܲ)ܿݐ ܵ ௟ܲ) + ܵ)ܿݐ ௟ܲ, ܵ ௠ܲ) +

൫ܵܿݐ ௠ܲ , ௝൯ቁܦ ∙ ℎݎ ∙  (௝ܦ)݀݅
7. ⊳ Inventory carrying costs on links 
,௜ܨܲ)ܿ݅ .8 (௞ܨܲ ← ௜ܿ݌ ∙ ℎݎ ∙ ௜ܨܲ)݀݅ ,  (௞ܨܲ
,௞ܨܲ)ܿ݅ .9 ܵ ௟ܲ) ← ௜ܿ݌) + ,௜ܨܲ)ܿݐ (௞ܨܲ + (௞ܿ݌ ∙ ℎݎ ∙ ௞ܨܲ)݀݅ , ܵ ௟ܲ) 
10. ݅ܿ(ܵ ௟ܲ , ܵ ௠ܲ) ← ൫ܿ݌௜ + ,௜ܨܲ)ܿݐ (௞ܨܲ + ௞ܿ݌ + ,௞ܨܲ)ܿݐ ܵ ௟ܲ)൯ ∙ ℎݎ ∙ ݅݀(ܵ ௟ܲ , ܵ ௠ܲ) 
11. ݅ܿ(ܵ ௠ܲ, (௝ܦ ← ൫ܿ݌௜ + ௜ܨܲ)ܿݐ , (௞ܨܲ + ௞ܿ݌ + ,௞ܨܲ)ܿݐ ܵ ௟ܲ) + ܵ)ܿݐ ௟ܲ, ܵ ௠ܲ)൯ ∙ ℎݎ ∙

݅݀(ܵ ௠ܲ,  (௝ܦ
return ݅ܿ(ܲܨ௜) (௞ܨܲ)ܿ݅ , , ݅ܿ(ܵ ௟ܲ) , ݅ܿ(ܵ ௠ܲ) (௝ܦ)ܿ݅ , ,௜ܨܲ)ܿ݅ , (௞ܨܲ ௞ܨܲ)ܿ݅ , , ܵ ௟ܲ) , 
݅ܿ(ܵ ௟ܲ , ܵ ௠ܲ), ݅ܿ(ܵ ௠ܲ,  .(௝ܦ
Algorithm 3.2 – Pseudo code for inventory costs calculation given the days of 
inventory. 

3.2.4 International Trade Factors 
Operating in an international market scenario both for selling and manufacturing, 
Caterpillar’s logistics operations are affected significantly by international trade 
policies. International trade policies are instruments that national governments may use 
to regulate globalization effects. Typically, governments set tariffs and trade barriers on 
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import goods to protect the local marketplace, domestic employment standards, and 
customers. Since tariff is a tax, the local government will see increased revenue on 
import goods, and domestic industries will benefit from a reduction in competition. 
However, additional tax means an increase in sale price; therefore, customers and 
foreign companies are likely to be negatively affected. Foreign companies may 
occasionally avoid high import taxation by opening a production or assembly centre 
within that country. 
Caterpillar’s logistics division maintain a map of tariff levels between countries where 
their production facilities and dealerships are located. Each value between pairs of 
different countries determines the percentage of sale revenue to be paid as tax to the 
local government per unit of product sold. In the model for profit maximization, the 
total sale is therefore reduced by the amount of tariff applied. 

3.3 Resilience Maximization 
One interpretation for the problem of resilience maximization consists of measuring the 
potential loss occurring in case where a disruptive event incapacitates a node or a link in 
the supply chain network. The risk or the value of the loss may be mitigated by 
minimizing the volume going through each node and link. The ideal scenario consists of 
all products being shipped as evenly as possible on all nodes and links. The average 
quantity of product going through one element in the network should be low, and the 
standard deviation as close to zero as possible. No component of the network will 
handle most or all of the volume shipped, and, at any given point, if such element 
becomes non-operational, only the smallest amount of product as possible will be lost. 
The optimization model becomes minimizing the percentage of total demand that passes 
through the “busiest” node or edge on the network, such that under disruption, only a 
small part of the monthly demand is affected. Given a complete distribution plan, the 
network resilience is the maximum of four terms: the percentage volume “trapped” at 
the dealerships, at the production facilities and assembly points, at the shipping ports, 
and at the transportation lane. 
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Let ݒ( ௜ܰ) ∈ ℕା  and ݒ൫ ௜ܰ, ௝ܰ൯ ∈ ℕା  be the volume of product travelling through the 
node ௜ܰ  and the link connecting the nodes ௜ܰ  and ௝ܰ  respectively, for a given 
distribution plan. Let ܫ ∈ ℕା ܬ , ∈ ℕା , and ܮ ∈ ℕା  be the number of manufacturing 
facilities, the number of dealerships, and the number of shipping ports respectively. Let 
݊ ∈ ℕା be the number of nodes in the network. The four components for the resilience 
calculation are defined as in eq. (3.11), (3.12), (3.13), and (3.14). 
The resilience for the ݅-th manufacturer is defined as follows: 

 ߱௜ = (௜ܨܲ)ݒ
∑ ூ௞ୀ଴(௞ܨܲ)ݒ

 (3.11) 

The resilience of the ݆-th dealership is: 

 ௝߱ = (௝ܦ)ݒ
∑ ௃௞ୀ଴(௞ܦ)ݒ

 (3.12) 

The resilience of the ݈-th shipping port is: 

 ߱௟ = ܵ)ݒ ௝ܲ)
∑ ܵ)ݒ ௞ܲ)௅௞ୀ଴

 (3.13) 

The resilience of the transportation lane between nodes ௜ܰ and ௝ܰ is: 

 ߱௜௝ = )ݒ ௜ܰ, ௝ܰ)
∑ ∑ )ݒ ௞ܰ, ܰ௠)௡௞ୀ଴௡௠ୀ଴

 (3.14) 

The total resilience level of the distribution plan is the maximum of (3.11), (3.12), 
(3.13), and (3.14). In the present form, the problem is a minimization one, as the goal is 
to minimize the percentage volume going through the busiest element in the supply 
chain network. The busiest element in the supply chain is defined by equation (3.15). 

,൫߱௜ݔܽ݉  ௝߱, ߱௟, ߱௜௝൯ (3.15) 

The resilience level of the network is the opposite of the busiest node. For instance, if 
the busiest node has 98% of the traffic, according to Caterpillar’s definition the network 
is only 2% resilient. This can be achieved by taking as an objective function one minus 
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equation (3.17). Equation (3.16) defines the final objective function for the problem of 
resilience maximization. 

 max ቀ1 − ,൫߱௜ݔܽ݉ ௝߱, ߱௟ , ߱௜௝൯ቁ (3.16) 

The monetary value for the potential loss may be derived by weighting the resilience 
level of the busiest element with the total cost of the products going through such 
element. Such resilience representation has the advantage that resilience-weighted costs 
can be accurately represented. Product held at the dealership is more expensive that the 
same product before it has been shipped from the production facility, as the 
transportation cost weighs in the product total cost when it arrives at the dealership. The 
model represents the fact that the product cost is directly proportional to its position on 
the supply chain network. 

3.4 Simulation of Transportation Costs 
In the context of supply chains, simulation allows to reproduce and test different 
decision-making alternatives on more possible foreseeable scenarios, in order to 
ascertain in advance the level of optimality and robustness of a given strategy [93]. 
Trends such as globalization, heavy reliance on transportation and communication 
infrastructures, and lean manufacturing have led to an increase in the vulnerability of 
supply networks [94]. While having a large, complex supply chain may make a 
company more susceptible to disruptions, it can also act as an advantage if the network 
is utilized to mitigate those disruptions [95]. Typically, companies are concerned with 
maintaining very high level of customer service, even if disruption occurs. A simulation 
model allows to realistically test various customer behaviours in cases of disruptive 
events while evaluating the trade-off between service level and product availability 
(inventory investments drive the marginal profit) [95]. Risk profiles for the locations 
and connections in the supply chain are usually developed using Monte Carlo 
simulation, and the flow of material and network interactions are modelled using 
discrete-event simulation [95]. 
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In the context of global supply chains, collection and exchange of information is critical 
and is often a challenge. In particular, Caterpillar has low control on the transportation 
costs, as it is not the owner of the network. Wrong or inaccurate information on 
transportation prices may affect the validity of the solution produced by the 
optimization process. In order to reduce the uncertainty, a simple simulation system has 
been implemented. A Monte Carlo simulation based on a triangular distribution is used 
to generate an expected value for the transportation costs. A triangular distribution is 
chosen because it is particularly suited to populations where the relationship between 
variables is known, but data is limited. The probability density function of the triangular 
distribution is:  

(ݔ)ܲ  =  ቐ
ଶ(௫ି௔)

(௕ି௔)(௖ି௔) ܽ ݎ݋݂ ≤ ݔ ≤ ܿ
ଶ(௕ି௫)

(௕ି௔)(௕ି௖) ܿ ݎ݋݂ < ݔ ≤ ܾ, (3.17) 

which is based on the knowledge of minimum ܽ, maximum ܾ, and a likely value (mode) 
ܿ, and ݔ is in the range ݔ ∈ [ܽ, ܾ]. The distribution function is: 

(ݔ)ܦ  =  ቐ
(௫ି௔)మ

(௕ି௔)(௖ି௔) ܽ ݎ݋݂ ≤ ݔ ≤ ܿ
1 − (௕ି௫)మ

(௕ି௔)(௕ି௖) ܿ ݎ݋݂ < ݔ ≤ ܾ, (3.18) 

A simulation step consists of generating a random number ݑ according to the uniform 
distribution (3.18) in the interval [0,1]. The random variate ݔ  defined in (3.19) is a 
triangular distribution. 

ݔ  = ቊ ܽ + ඥݑ(ܾ − ܽ)(ܿ − ܽ) 0 ݎ݋݂ < ݑ < ݂(ܿ)
ܾ − ඥ(1 − ܾ)(ݑ − ܽ)(ܾ −) (ܿ)݂ ݎ݋݂ ≤ ݑ < 1, (3.19) 

where ݂(ܿ) =  (ܿ − ܽ) (ܾ − ܽ)⁄ . Figure 3.6 depicts the plot of the probability density 
function and of the cumulative distribution function. 
The expected value of the transportation costs is generated according to (3.19). The 
actual transportation cost may be selected according to the percentile. Varying the 
percentile changes the scale of the costs in the studied scenario. Lower percentile means 
that the costs are supposed to be less than the expected value; therefore, the scenario is 
more optimistic.  Higher percentile defines a scenario where it is more difficult to 
achieve high marginal profit. 
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A similar system is used to analyse different inventory scenarios as well. The amount of 
inventory days required varies with the target service level. Higher service level 
requires maintaining higher product availability. The inventory days may be generated 
with the same Monte Carlo simulation. The percentile corresponds to the targeted 
service level. 

 
Figure 3.6 – Probability density function and cumulative distribution function of 
the triangular distribution. 
Table 3.2 depicts the parameters used for the Monte Carlo simulation. The variance is 
used to determine the minimum and maximum variation allowed, namely ܽ and ܾ from 
equations (3.17)-(3.19). 
Table 3.2 – Parameters for the Monte Carlo simulation on transportation costs and 
inventory levels. The variance is used to determine the minimum and maximum 
variation allowed, namely ࢇ and ࢈ from equations (3.17)-(3.19). 

Parameter Value 
Number of simulations 10,000.00 
Variance 10% 
Percentile (service level) 95% 

3.5 Ant Colony Optimization for Caterpillar’s Supply Chain 
The models described in the previous sections are not all linear. The model for lane 
commitment discount makes the objective function for the problem of profit 
maximization a polynomial function of degree 3. The objective function for the problem 
of resilience maximization essentially consists of taking the maximum of the minimum 
of four sets. Such function is non-linear. Depending on the functions, it is possible to 
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reduce a non-linear function to a linear one. Typically, the dimensionality of the 
function domain is increased (i.e. the number of input variables) and the function is 
projected onto a linear space. If the optimization model is a system of linear equations, 
linear programming techniques can be employed as optimization algorithm. The details, 
the advantages, and the disadvantages of linear programming are discussed in section 
2.2.1. For the problem of Caterpillar’s supply chain, the opted optimization algorithm is 
a meta-heuristic approach. The industrial partner of this project required that the 
optimization process would be as flexible as possible on the long term and would 
handle well increasing complexity. Given such requirement and the non-linearity of 
some of the models, a meta-heuristic appeared to be the most promising approach. The 
meta-heuristic algorithm implemented is the Ant Colony System (ACS) as defined in 
[78]. The ACS definition requires the implementation of three rules or strategies: 

1. The state transition rule to drive the search of the ants. 
2. The global pheromone updating rule to focus the search on the most promising 

solution space portion. 
3. The local pheromone updating rule to force the ants to explore a larger portion 

of the solution space. 
Informally, the ACS implementation works as follows: a colony releases a set number 
of ants. Each ant builds a complete distribution plan, if it can find one. The ants are 
guided in the search by both the heuristic information and by the pheromone level. The 
rules for pheromone update are designed such that ants choose routes that are more 
desirable (e.g. more inexpensive). While search for the solution, the ant uses the state 
transition rule to decide whether to choose the best next route or to select a random one. 
The ant also modifies the amount of pheromone on visited routes by applying the local 
pheromone update rule, increasing the amount of pheromone on such routes. Following 
ants are most likely to select routes with a low amount of pheromone and they will 
avoid already visited routes. Once all the ants have completed the search, the colony 
compares the solutions and increases the pheromone only on the routes belonging to the 
best solution found so far. The colony releases the ants again and repeats the process for 
a set number of iterations. 



Global Supply Chain Optimization: a Machine Learning Perspective to Improve Caterpillar’s Logistics 
Operations 

 

100  July 2016 
 

Let us recall that ݉ ∈ ℕା is the number of manufacturers and  ݊ ∈ ℕା is the number of 
dealership locations in the network. Let ݅ ∈ [0, ݉] be a production facility and ݆ ∈ [0, ݊] 
a dealer. Given the ant ݇ , the probability distribution with which the ant ݇  at the 
production source ݅ move to the dealer ݆ is defined as follows: 

,݅)௞݌  ݆) = ቐ
[ఛ(௜,௝)]ಉ∙[ఎ(௜,௝)]ഁ

∑ [ఛ(௜,௝)]ಉ∙[ఎ(௜,௝)]ഁೠ∈಻ೖ(೔) ݏ ݂݅           ∈ ݁ݏ݅ݓݎℎ݁ݐ݋                                                   ܱ    (݅)௞ܬ
  , (3.20) 

where ߬(݅, ݆) is the pheromone value deposited on route (݅, ݆), and ߟ(݅, ݆) is the heuristic 
information. ܬ௞(݅) is the set of neighboring nodes that remain to be visited by ant k at 
node ݅, ߙ > 0 is a parameter which determines the relative importance of pheromone 
information, and ߚ > 0  is a parameter which determines the relative importance of 
heuristic information. 
From the probability distribution given in equation (3.20), the state transition rule is: 

ݏ  =  ൞
ୟ୰୥ ୫ୟ୶
௨∈௃ೖ(௜) ൛[߬(݅, ݆)]஑ ∙ ,݅)ߟ] ݆)]ఉൟ             ݂݅ ݍ ≤ ݊݋݅ݐܽݎ݋݈݌ݔ݁ ݀݁ݏܾܽ݅                                                 ܵ      ଴ݍ 

, (3.21) 

where ݍ is a random number uniformly distributed in [0, 1], ݍ଴  is a parameter (0 ≤
଴ݍ ≤ 1) indicating the relative weighting of exploitation versus exploration, and ܵ is a 
random variable selected according to the probability distribution given in (3.20). 
Only the ant that produced the best solution within the same iteration deposits 
pheromone. Let ܥ(݇) be a measure of ant ݇'s solution based on the objective function. 
Let ߩ be the pheromone decay parameter in the range: 0 < ߩ < 1 . Given the best 
solution found so far ݒ∗, the global pheromone updating rule is defined as follows: 

 ߬(݅, ݆) = (1 − (ߩ ∙ ߬(݅, ݆) + ߩ ∙ Δ߬(݅, ݆), (3.22) 
where ߬߂௞(݅, ݆) is defined as: 

,݅)௞߬߂  ݆) = ቄܥ(݇) ݂݅ (݅, ݆) ∈ ∗ݒ
0 ݁ݏ݅ݓݎℎ݁ݐ݋ . (3.23) 
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As an ant constructs a tour, the pheromone level on visited edges is changed by 
applying the local pheromone updating rule: 

 ߬(݅, ݆) = (1 − (ߩ ∙ ߬(݅, ݆) + ߩ ∙ ߬଴, (3.24) 
where ߩ is the pheromone decay parameter in the range: 0 < ߩ < 1 and ߬଴ is the initial 
pheromone level. The effect of the local update is to decrease the pheromone level on 
visited edges which make them less desirable to subsequent ants. This increases the 
exploration of the search space within iterations [83]. Without this decrease, the 
majority of ants would search within a narrow neighborhood of the best previous tour, 
which is likely to result in a sub-optimal solution [78]. 
Table 3.3 summarizes the parameters in the definition above and set the values used in 
all numerical experiments, unless stated otherwise. The configuration of parameters 
below is from [78]. Other configurations have been randomly generated and tested 
before the deployment of the system. However, the configuration from [78] resulted to 
be the best performing one for all the experiments. 
Table 3.3 - Ant Colony System set of parameters for all tested problem instances. 
These parameters are from [78]. 

Parameter Value 
Number of Ants 20 
Maximum N° of Iterations 1,000 
Pheromone Evaporation Rate (ߩ) 0.1 
Weight on Pheromone Information (ߙ) 1 
Weight on Heuristic Information (ߚ) 20 
Exploitation to Exploration Ratio (ܳ0) 0.9 

3.5.1 Vogel’s Approximation Method of Allocation 
Vogel’s Approximation Method of Allocation (VAM) is a heuristic method for solving 
the transportation problem [96]. It deals with determining a cost plan for transporting a 
single unit from several sources to a number of end customers. VAM is based on the 
concept of a penalty cost, which is defined as the difference between the lowest and 
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next lowest cost cell in a row or column of a cost matrix describing the alternatives for 
each source-demand solution [97]. Cost can be interpreted as the transportation cost, 
distance traveled or the time required to transport a unit from a supplier to a customer. 
The general principles of VAM are embedded within the ACS implementation to 
determine better starting solutions for the transportation network optimization problem. 
The process has been implemented as follows: 

1. For each dealer, the shortest/cheapest route to each manufacturer is computed. 
2. The difference between the shortest/cheapest route to one manufacturer and the 

next shortest/cheapest route to another manufacturer is calculated as the penalty 
cost. 

3. Ants build feasible solutions by firstly assigning dealers with higher penalty 
costs to manufacturers with shorter/cheaper routes as a mean of optimizing the 
objective function. 

3.5.2  Parallel Implementation 
When facing complex optimization problems, parallel computing techniques are usually 
applied to improve their efficiency, allowing population-based metaheuristics to achieve 
high quality results in reasonable execution times, even when tackling hard-to-solve 
optimization problems [98]. Dorigo et al. [92] first suggested the application of parallel 
computing techniques to enhance both the ACO search and its computational efficiency. 
Parallel implementations of ACO algorithms have become popular in the last decade in 
order to improve the efficiency. By splitting the population into several processing 
elements, parallel implementations of metaheuristics allow reaching high quality results 
in a reasonable execution time, even when facing hard-to-solve optimization problems 
[98]. The classic proposals of parallel ACOs focused on traditional supercomputers and 
clusters of workstations. Nowadays, the novel emergent parallel computing 
architectures such as multicore processors, graphics processing units (GPUs), and grid 
environments provide new opportunities to apply parallel computing techniques to 
improve the ACO search results and to lower the required computation times [98]. 
Pedemonte et al. [98] presented a survey of the current state-of-the-art of parallel ACO 
implementations and introduced a new taxonomy to classify the parallel models. The 
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authors used two main criteria related to the population organization to discriminate the 
categories in the taxonomy: the number of colonies and the cooperation. The taxonomy 
clusters the parallelization strategies into the following five categories: 

1. Master-slave model. This category applies a hierarchical parallel model, where 
a master process manages the global information (i.e. pheromone matrix, best-
so-far solution, etc.) and it also controls a group of slave processes that perform 
subordinated tasks. The model includes three level of granularity: coarse, 
medium, and fine grain. The granularity level defines the type of operations 
delegated to the slave agent. At the highest level, the tasks of the slave may 
correspond to one or more ants, and they comprise building, improving and/or 
evaluating one or more full solutions, and communicating back the result to the 
master. At the lowest level, the slave processes single components used to 
construct solutions, and frequent communication between the master and the 
slaves is usually required. The slave never solves the problem to its entirety. 

2. Cellular model. The search space is structured in small neighbourhoods, and a 
different colony is assigned the task of finding the optimal solution in its 
neighbourhood. 

3. Parallel independent runs model. A set of colonies explore the solutions space 
simultaneously and the search processes are executed on a set of processor. The 
executions are completely independent and the colonies have no interaction with 
one another. 

4. Multi-colony model. A set of colonies explore the solution space 
simultaneously, each one using their own pheromone matrix. The colonies 
periodically cooperate and exchange information. 

5. Hybrid model. This category includes those proposals that feature 
characteristics from more than one parallel model. 

The most common metrics to measure the performance of parallel algorithms are the 
speedup and the computational efficiency. The speedup evaluates how much faster a 
parallel algorithm is than a corresponding sequential algorithm. The computational 
efficiency is the normalized value of the speedup, regarding the number of processors 
used to execute a parallel algorithm. Let ଵܶ  be the execution time of the sequential 
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algorithm and ௠ܶ  be the execution time of the parallel version using ݉  processors. 
Equations (3.25) and (3.26) define the speedup and the efficiency respectively. 

 ܵ௠ = ଵܶ
௠ܶ

, (3.25) 

௠ܧ  = ܵ௠
݉ . (3.26) 

When ܵ௠ < ݉ the speedup is said to be sublinear. The speedup is linear when ܵ௠ = ݉, 
and superlinear when ܵ௠ > ݉. The ideal case for a parallel algorithm is to achieve 
linear speedup, although the most common situation is to achieve sublinear speedup 
values due to the times required to communicate and synchronize the parallel processes 
[98]. 
The ACO implementation for solving Caterpillar’s supply chain optimization problem 
belongs to the third category: parallel independent runs model. A set of colonies using 
different parameters are concurrently executed on a set of processors. When all colonies 
have met their termination conditions, all found solutions are compared to each other, 
and the best one is kept. The parallel implementation has been developed with OpenMP 
[99] and the C++ latest standard. The parallel model implemented introduces very low 
overhead as all colonies run independently and no concurrent communication is 
required, and it is very flexible with respect to the number of cores available. The 
system has been deployed both on standard workstations and a high performance 
computing platform. The number of cores on the standard workstations varies from 4 to 
8. A node on the high performance computing platform has 128 cores. 

3.6 Experiments 
The model and optimization algorithms described above have been tested on a dataset 
provided by Caterpillar for a medium size excavator, and two randomly generated 
datasets. The transportation network is shared by all three datasets and consists of 200 
dealerships locations, 40 production facilities and assembly points, and 68 shipping 
ports. The connections between nodes in the network are determined by real-world 
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transportation routes. The demand and capacity in Caterpillar’s problem is from a 
twelve months period from January 2015 to December 2015. The medium size 
excavator has been broken down into ten main components. Caterpillar’s products are 
typically made of tens of thousands of components which are produced and shipped 
from all around the world. However, most of those components are inexpensive and do 
not significantly contribute to the cost of the machine. Frequently, about 20% of the 
components affect approximatively 80% of the total cost of the machine. Modelling 
thousands of components would significantly increase the overall complexity of the 
system, not just the optimization process, but also the processes for data collection and 
results interpretation. The ten symbolic components described in the dataset are: 

1. Main engine; 
2. Front bucket; 
3. Hydraulic system and motor for travel operations; 
4. Hydraulic system and motor for bucket operations; 
5. Main pumps for the hydraulic system; 
6. Main valves for the hydraulic system; 
7. Cylinders for boom, stick and bucket movements; 
8. Operator station – cab group; 
9. Undercarriage – track group; 
10. Main structures – lower and upper frames. 

The results of the optimization of this dataset are reported in Table 3.5. The units for the 
rows and columns reporting the objective values have been purposely omitted due to 
commercial sensitivity of such data. Table 3.8 and Table 3.11 depict the results of the 
optimization for the two randomly generated problems. In both instances, the number of 
dealers, production facilities and shipping ports is the same as in the original problem; it 
is only the demand figures, the production capacities, the transportation times and costs 
and the sale prices that have been randomly generated. In the first problem, the figures 
have been generated according to a normal distribution with the same mean and 
standard deviation as in the original dataset (e.g. the demand figures have the same 
mean and standard deviation as those found in the original problem). The figures for the 
second problem are randomly generated in an interval between 0 and an upper limit 
which is a random increase over the maximum value in the original data, according to a 
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negative exponential distribution. The three datasets have been published on Figshare 
(figshare.com), an online digital repository. The original Caterpillar’s dataset is 
published in [4]. The dataset generated according to a uniform distribution is in [5] and 
the last dataset is in [6]. Table 3.4 depicts the main characteristics of the three datasets. 
The analysis on network complexity is presented in Table 2.2, and is also applied to the 
considered problems. The comparison between the analysis presented in Table 2.2 and 
the problems addressed in this work is reported in Figure 3.7. 
Table 3.4 – Analysis of the network complexity of the 3 datasets employed for the 
experiments presented in this chapter. The complexity analysis has been defined in 
section 2.2. The results may be compared with the values in Table 2.2. 

 

No. of Nodes No. of Edges 
No. of Sub-Graphs 

Beta-index No. of Cycles Total Demand 
Total Components Capacity 

Total Machine Capacity 
Dataset [4] 2,945.00 135,111.00 1.00 45.88 132,167.00 1,129.00 2,899,971.00 1,425.00 

Dataset [5] 2,945.00 135,111.00 1.00 45.88 132,167.00 1,593.00 2,899,971.00 1,694.00 

Dataset [6] 2,945.00 135,111.00 1.00 45.88 132,167.00 20,093.00 2,899,971.00 21,369.00 
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Figure 3.7 - Average complexity of transportation network problems addressed in 
the last decade. Features considered in measuring the problem complexity are 
number of nodes in the transportation network, number of edges, number of sub-
graphs, and length of the whole network, the number of cycles in the graph and its 
level of connectivity.  The value for 2013 indicates the complexity of the problem 
addressed in this work. Source of the analysis is Ogunbanwo et al. [1]. 
All the single experiments reported in Table 3.5, Table 3.8, and Table 3.11 are the 
results of the average over 10 runs of the optimization for the given objective and 
parameter configuration. The standard deviation has been reported as well. All tests 
have been performed on a Linux server, with an AMD Opteron 6140 800 MHz 16 core 
processor and 64 GB of RAM. To demonstrate the effectiveness of the optimization 
algorithm, four groups of runs of the optimization have been carried out with four 
different objective functions: profit maximization, transportation time minimization, 
transportation costs minimization, and resilience level maximization. The four solutions 
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have been measured against the remaining three objective functions. The best solution 
for a given goal is expected to be produced when an objective function is directly used 
in the optimization.  
Table 3.6 and Table 3.7 measure respectively the percentage difference and percentage 
error between such measurements of a given solution. The percentage difference is 
defined as ࢊ = |࢞૚ି࢞૛|

ቀ࢞૚శ࢞૛૛ ቁ  where ࢞૚  and ࢞૛  are the two measurements to compare. The 
percentage error is ࢋ = |࢞૛ି࢞૚|

࢞૚ . The percentage difference is often used to compare 
values pertaining to the same property or characteristic and both values are calculated 
using different methods. The percentage error is used to compare a given measurement 
to the known or accepted value. Table 3.9 and Table 3.10 report the same analysis for 
the first randomly generated problem ([5]), Table 3.12 and Table 3.13 for the second 
random problem ([6]). 
Table 3.5 – Results of the optimization performed on the dataset in [4]. Each 
experiment is the result of the average over 10 runs of the optimization for the 
given objective and parameter configuration. The standard deviation is reported 
alongside each result. Performance measures for the optimization are 
maximization of profit, transportation time and costs minimization, and network 
resilience maximization. The four distribution plans produced are measured 
against the remaining objectives. The runtimes of the experiments are based on a 
Linux server, with an AMD Opteron 6140 800 MHz 16 cores processor and 64 GB 
of RAM. 
  Profit Transportation Time (s) Transportation Cost Resilience (%) Running Time (s) 
Profit (max) 101,247,174.47 529,809.91 9,544,245.33 93.7500% 59 
Standard Deviation 18,496.27 74.45 18,577.35 0.0000% 0.894427191 
Transportation Time (min) 63,119,932.77 99,831.49 3,222,379.73 95.5682% 42.3 
Standard Deviation 38,799.17 491.19 2,553.32 0.2425% 0.640312424 
Transportation Cost (min) 63,077,829.61 101,021.18 3,174,611.82 93.6364% 45.7 
Standard Deviation 2,616.81 377.88 50.79 0.1515% 0.640312424 
Resilience (max) 63,231,835.10 103,392.81 3,220,912.33 98.8636% 43.1 
Standard Deviation 17,466.77 621.99  983.24 1.2591% 0.3 
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Table 3.6 - Percentage difference between each pair of performance measure 
reported in Table 3.5. Given two performance measures ࢞૚  and ࢞૛  of a 
distribution plan, the percentage difference is defined as ࢊ = |࢞૚ି࢞૛|

ቀ࢞૚శ࢞૛૛ ቁ. 

Percentage Difference Profit Time Cost Resilience 
Profit 0 1.36578826 1.001604694 0.053097345 
Transportation Time 0.463927879 0 0.014934491 0.033898305 
Transportation Cost 0.464559184 0.01184639 0 0.054309327 
Resilience 0.46225156 0.035048125 0.014479036 0 

 
Table 3.7 - Percentage error between each pair of performance measure reported 
in Table 3.5. Given two performance measures ࢞૚ and ࢞૛ of a distribution plan, 
the percentage error is defined as ࢋ = |࢞૛ି࢞૚|

࢞૚ . 

Percentage Error Profit Time Cost Resilience 
Profit 0 4.307041877 2.006429093 0.051724138 
Transportation Time 0.376575859 0 0.01504685 0.033333333 
Transportation Cost 0.376991704 0.011916976 0 0.052873563 
Resilience 0.37547062 0.035673266 0.014584621 0 
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Table 3.8 - Results of the optimization performed on the dataset in [5]. Each 
experiment is the result of the average over 10 runs of the optimization for the 
given objective and parameter configuration. The standard deviation is reported 
alongside each result. Performance measures for the optimization are 
maximization of profit, transportation time and costs minimization, and network 
resilience maximization. The four distribution plans produced are measured 
against the remaining objectives. The runtimes of the experiments are based on a 
Linux server, with an AMD Opteron 6140 800MHz 16 cores processor and 64 GB 
of RAM. 

  Profit Transportation Time (s) Transportation Cost Resilience (%) Running Time (s) 
Profit (max) 145,774,697.02  810,379.35  19,498,373.65  94.1288% 81.5 
Standard Deviation 22,766.40  540.14 36,492.18  0.0000% 0.5 
Transportation Time (min) 91,383,160.69  144,411.85  4,440,285.50  95.5682% 42.3 
Standard Deviation 74,114.77  1,054.73  4,375.83  0.2425% 0.458257569 
Transportation Cost (min) 91,299,308.82  145,683.05  4,433,667.42  93.5985% 45 
Standard Deviation 3,099.76  408.12  33.01  0.1136% 0.447213595 
Resilience (max) 91,583,318.45  150,875.64  4,490,177.08  98.8636% 42.7 
Standard Deviation 21,741.70  688.33  720.15  1.2591% 0.458257569 
 
Table 3.9 - Percentage difference between each pair of performance measure 
reported in Table 3.8. Given two performance measures ࢞૚  and ࢞૛  of a 
distribution plan, the percentage difference is defined as ࢊ = |࢞૚ି࢞૛|

ቀ࢞૚శ࢞૛૛ ቁ. 
Percentage Difference Profit Time Cost Resilience 
Profit 0 1.39500134 1.258957076 0.049067713 
Transportation Time 0.458694785 0 0.001491574 0.033898305 
Transportation Cost 0.459564413 0.008764042 0 0.054713639 
Resilience 0.456621433 0.043779641 0.012664867 0 
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Table 3.10 - Percentage error between each pair of performance measure reported 
in Table 3.8. Given two performance measures ࢞૚ and ࢞૛ of a distribution plan, 
the percentage error is defined as ࢋ = |࢞૛ି࢞૚|

࢞૚ . 

Percentage Error Profit Time Cost Resilience 
Profit 0 4.611584891 3.397797983 4.7893% 
Transportation Time 0.373120558 0 0.001492687 0.033333333 
Transportation Cost 0.373695774 0.008802615 0 0.053256705 
Resilience 0.371747496 0.044759416 0.012745578 0 
 
Table 3.11 - Results of the optimization performed on the dataset in [6]. Each 
experiment is the result of the average over 10 runs of the optimization for the 
given objective and parameter configuration. The standard deviation is reported 
alongside each result. Performance measures for the optimization are 
maximization of profit, transportation time and costs minimization, and network 
resilience maximization. The four distribution plans produced are measured 
against the remaining objectives. The runtimes of the experiments are based on a 
Linux server, with an AMD Opteron 6140 800MHz 16 cores processor and 64 GB 
of RAM. 
  Profit Transportation Time (s) Transportation Cost Resilience (%) Running Time (s) 
Profit (max) 859,562,297.85  10,518,862.90  417,732,276.52  94.5076% 104.5 
Standard Deviation 1,106,300.99  12,458.76  1,719,479.11  0.2934% 1.5 
Transportation Time (min) 410,217,795.38  2,335,651.42  134,270,885.96  99.2424% 80.3 
Standard Deviation 2,765,770.35  15,287.62  1,055,933.06  0.4791% 0.458257569 
Transportation Cost (min) 430,072,213.94  2,559,278.28  128,819,951.87  95.5303% 85.2 
Standard Deviation 901,755.32  14,431.10  400,214.36  0.0928% 0.4 
Resilience (max) 419,856,111.17  2,759,706.46  141,709,089.55  99.2424% 81.7 
Standard Deviation 5,073,481.34  39,583.02  1,316,285.25  0.8299% 0.458257569 
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Table 3.12 - Percentage difference between each pair of performance measure 
reported in Table 3.11. Given two performance measures ࢞૚  and ࢞૛  of a 
distribution plan, the percentage difference is defined as ࢊ = |࢞૚ି࢞૛|

ቀ࢞૚శ࢞૛૛ ቁ. 

Percentage Difference Profit Time Cost Resilience 
Profit 0 1.273204304 1.057217626 0.048875855 
Transportation Time 0.707751688 0 0.041437658 2.01701E-13 
Transportation Cost 0.666064811 0.091370816 0 0.038117464 
Resilience 0.687353228 0.166447596 0.095288385 0 
 
Table 3.13 - Percentage error between each pair of performance measure reported 
in Table 3.11. Given two performance measures ࢞૚ and ࢞૛ of a distribution plan, 
the percentage error is defined as ࢋ = |࢞૛ି࢞૚|

࢞૚ . 

Percentage Error Profit Time Cost Resilience 
Profit 0 3.503609916 2.242760694 0.047709924 
Transportation Time 0.522759669 0 0.042314362 2.01701E-13 
Transportation Cost 0.49966138 0.095744964 0 0.03740458 
Resilience 0.511546618 0.181557501 0.100055446 0 

 
Figure 3.8 shows the costs breakdown for the solution of the problem of profit 
maximization. The values are reported as fractions of the total revenue. As shown, for 
the original Caterpillar’s problem, the solution achieved a profit of 8% over the revenue 
for the considered year. The last series in the plot is the average of the components 
costs. The production cost is by far the factor that most affect the profit. Considering 
that the optimizer may choose between many routes but only few production sources, 
such result suggests the optimization algorithm is quite effective in making the right 
choices. It is worth noticing the international trade costs affect significantly the overall 
profit and have a higher impact than the inventory costs. Figure 3.9 and Figure 3.10 
report the costs breakdown for the profit maximization experiments for the two 
randomly generated datasets, [5] and [6] respectively. 
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Figure 3.8 - Costs breakdown for the profit calculation reported in Table 3.5. The 
overall profit and costs are represented as percentage of the total sale. ࡼ stands for 
profit, ࡯ࡼ  for production cost, ࡸ࡯ࢀ  for transportation costs over land, ࡻ࡯ࢀ  for 
transportation costs over ocean, ࡯ࡵ for inventory costs, and ࡯ࢀࡵ for international 
tariff costs. The costs analyzed are from the distribution plan produced when 
optimizing for profit maximization. The achieved profit is over 8% of the total sale 
revenue and the largest cost is from machine production. International tariff cost 
is also quite significant. 
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Figure 3.9 - Costs breakdown for the profit calculation reported in Table 3.8. The 
overall profit and costs are represented as percentage of the total sale. ࡼ stands for 
profit, ࡯ࡼ  for production cost, ࡸ࡯ࢀ  for transportation costs over land, ࡻ࡯ࢀ  for 
transportation costs over ocean, ࡯ࡵ for inventory costs, and ࡯ࢀࡵ for international 
tariff costs. The costs analyzed are from the distribution plan produced when 
optimizing for profit maximization. The achieved profit is slightly over 30% of the 
total sale revenue and the largest cost is from the production cost. 
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Figure 3.10 - Costs breakdown for the profit calculation reported in Table 3.11. 
The overall profit and costs are represented as percentage of the total sale. ࡼ 
stands for profit, ࡯ࡼ for production cost, ࡸ࡯ࢀ for transportation costs over land, 
ࡻ࡯ࢀ  for transportation costs over ocean, ࡯ࡵ  for inventory costs, and ࡯ࢀࡵ  for 
international tariff costs. The costs analyzed are from the distribution plan 
produced when optimizing for profit maximization. The achieved profit is over 
20% of the total sale revenue and the largest cost is from the production cost. 
The improvements of the parallel implementation are shown in Table 3.14. The 
runtimes show the result of the average of 10 runs on a Linux server. The values 
indicated as ܵ௠ and ܧ௠ are the speedup and the computational efficiency respectively 
defined by equations (3.25) and (3.26). The speedup evaluates how much faster a 
parallel algorithm is than a corresponding sequential algorithm. The computational 
efficiency is the normalized value of the speedup, regarding the number of processors 
used to execute a parallel algorithm. The gain improvement for 1,000 iterations on 16 
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cores was a 80% reduction of the runtime consistently for all the goals and datasets. The 
problem of profit maximization has a higher requirement of runtime. This is explained 
by the fact that the production cost of the suppliers is involved in the performance 
calculation. The decision is now finding the most inexpensive route to the supplier with 
the lowest production cost. Given the suppliers limited capacity, the order of the 
dealerships with which the capacity is allocated significantly affect the quality of the 
solution. 
The optimization system presented in the current chapter has been deployed in 
Caterpillar’s production environment. At the time of writing, the system is being used to 
design distribution plans for more than 7,000 products. Most of such distribution plans 
are less expensive than the ones implemented previous to the utilization of this system. 
Specifically, they have reduced transportation and inventory costs. Overall, the system 
improved Caterpillar’s marginal profit on such products of a factor of 4.6% on average. 
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Table 3.14 - Average speedups of the ACS with OpenMP multi-core 
implementation. The runtimes are based on 10 experiments run on a Linux server, 
with an AMD Opteron 6140 800 MHz 16 cores processor and 64 GB of RAM. The 
parameters are as in Table 3.3. The values indicated as ࢓ࡿ and ࢓ࡱ are the speedup 
and the computational efficiency respectively. The speedup evaluates how much 
faster a parallel algorithm is than a corresponding sequential algorithm. The 
computational efficiency is the normalized value of the speedup, regarding the 
number of processors used to execute a parallel algorithm. Equations (3.25) and 
(3.26) define the speedup and the efficiency respectively. 

    Transportation Time (s) Transportation Cost (s) Profit (s) Resilience (s) 
Dataset [4] AVG 1 core 215.05879 245.3068875 300.7726 245.325001 

 
STD 1 core 1.78951109 3.178486019 3.744533 1.33965912 

 
AVG 16 cores 42.3 45.7 59 43.1 

 
STD 16 cores 0.64031242 0.640312424 0.894427 0.3 

 
 5.69199538 5.09784 5.367765591 5.08413214 ࢓ࡿ

 0.35574971 0.318615 0.335485349 0.31775826 ࢓ࡱ  
Dataset [5] AVG 1 core 214.308642 244.8488318 298.6202 244.53973 

 
STD 1 core 1.84355266 2.822339254 3.41482 1.6310094 

 
AV 16 cores 42.3 45 81.5 42.7 

 
STD 16 cores 0.45825757 0.447213595 0.5 0.45825757 

 
 5.72692577 3.664052 5.441085151 5.06639816 ࢓ࡿ

 0.35793286 0.229003 0.340067822 0.31664989 ࢓ࡱ  
Dataset [6] AVG 1 core 405.423752 471.0532426 554.313 453.850783 

 
STD 1 core 3.91480429 5.346803807 4.800868 2.48547111 

 
AVG 16 cores 80.3 85.2 104.5 81.7 

 
STD 16 cores 0.45825757 0.4 1.5 0.45825757 

 
 5.55508914 5.304431 5.528793927 5.04886366 ࢓ࡿ

 
 0.34719307 0.331527 0.34554962 0.31555398 ࢓ࡱ

3.7 Summary 
This chapter introduced a detailed description of the problem of supply chain 
optimization for Caterpillar. The chapter started with a general description of 
Caterpillar’s Global Supply Chain for a medium sized excavator. Three mathematical 
models based on three performance metrics were presented to clearly define the 
optimization problems. The definition of the models addresses most of the shortcomings 
highlighted in chapter 3 and work as a reference for real-world global supply chain. 
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The chapter continues with a description of the simulation system used to analyse 
different scenarios of transportation cost and inventory levels. The costs and inventory 
levels are generated according to a Monte Carlo simulation with a triangular 
distribution. 
 The optimization algorithm chosen is the Ant Colony System and the theoretical 
characteristics as well as the implementation details are discussed in the current chapter. 
A heuristic method named Vogel’s Approximation has been employed to improve the 
initialization of the algorithm. To reduce the runtime requirements of the optimization, a 
parallel variant of the Ant Colony System has been implemented through the 
multiprocessing platform OpenMP. 
The last section of the chapter summarizes the main experiments run to test the 
optimization system. The tested performance measures for the optimization are 
maximization of profit, transportation time and costs minimization, and network 
resilience maximization. The four distribution plans produced were measured against 
the remaining objectives to demonstrate the effectiveness of the optimization process. 
The solutions of the profit maximization problem have been broken down to better 
display the behaviour of the algorithm on the most comprehensive model. 
In the last set of experiments, the running times of the single-core implementation have 
been compared against the parallel version of the ACS. 
The discussed optimization system is now used to design the distribution plans of more 
than 7,000 products at Caterpillar. The system improved Caterpillar’s marginal profit on 
such products of a factor of 4.6% on average. 
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4 COMPOSITE GOAL 
METHODS FOR SUPPLY 
CHAIN OPTIMIZATION 

This chapter is based on the results published in [2]. 
 
When optimizing transportation networks, several criteria can be used as the 
optimization goal, such as the shortest distance traveled, minimum inventory, minimum 
transportation cost and highest network resilience. In the case of industry based 
applications, it is often advantageous to simultaneously consider several of these goals 
with a view to developing a model that more accurately represents the operation of the 
actual business. Defining a mathematical model that incorporates the perspective of 
more than one criterion in itself is not a simple task and often involves the definition of 
complex non-linear models. Moreover, the goals of such criteria may well be mutually 
exclusive and result in the definition of a multi-goal model that is not or not always 
achievable in practice. 
A simple way to handle the multi-objective optimization problem is to construct a 
composite objective function that is the weighted sum of the conflicting objectives [21]. 
In the literature this technique is also referred to as the preference-based strategy and is 
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the approach most often adopted in academic studies. The preference-based strategy is a 
trade-off that reduces a multi-goal approach to a single-goal optimization problem. 
However, in reality as a solution this trade-off has proved to be very sensitive to the 
relative preferences assigned to the goals [21] and in practice it is difficult for 
practitioners, even those  familiar with the problem domain to precisely and accurately 
select such weightings [100]. 
The current chapter identifies the principal alternative methods for use in multi-
objective optimization when applied to the solution of real-world supply chain 
optimization problems. The aim of this work is to identify and test those multi-objective 
optimization techniques that better address the complexities of Caterpillar’s operating 
environment. 
In the following sections, four generic strategies are described, which are used to 
optimize multi-goal problem scenarios and formally present seven implementations of 
these strategies. The methods have been designed and implemented with a view to 
solving the supply chain optimization problem reported in chapter 3.  
In sections 4.1 and 4.2 the background to this work is presented and previous work on 
multi-goal optimization is introduced. In section 4.3 the methods used to combine 
single-goal optimization problems are formally described. In section 4.4 the outcome of 
the numerical experiments undertaken to verify and test the effectiveness of the 
proposed methods are outlined. 

4.1 Motivations and Related Work 
A robust solution to the multi-goal optimization problem is of particular interest to real-
world applications where several optimization objectives are commonly involved. 
Multi-goal problems usually do not have a single ‘best’ solution, but are characterized 
by a set of solutions that are superior to others when considering all objectives [101]. 
This set is referred to as the Pareto set or as the non-dominated solution [101]. This 
multiplicity of solutions can be explained by the fact that individual objectives are often 
in conflict [101]. For example, Altiparmak et al. [34] defined three objectives for the 
transportation network optimization problem: the total cost, the total satisfied customer 
demand and the equity of the capacity utilization ratio for each production source. The 
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authors then implement a genetic algorithm to find the set of Pareto-optimal solutions. 
A similar example is presented in Yagmahan et al. [102] for the flow shop scheduling 
problem. The multi-objective function in this instance consists of minimizing the 
distance between the values of all the single-objective functions. 
According to the following review it appears that most of the solutions proposed for 
multi-objective optimization problems are either specific to the kind of problem or to 
the kind of technique used to determine the optimal solution. In general, four generic 
solution strategies are used to solve multi-objective optimization problems. 
The first strategy is called Goal Synthesis and requires the definition of a mathematical 
model which includes all the single-goal problems. This category is also referred to as 
the  preference-based strategy [21]. The model defines one search space which is a sub-
space of the intersection of the single-goal problem search spaces. The best composite 
solution is then sought on this space along one path. The solution found is feasible for 
each single-goal problem separately, but it is not necessarily the optimal one. Applying 
this strategy is no different from solving any other optimization problem: firstly, a 
mathematical model is defined and then an optimal solution is sought using an 
appropriate optimization algorithm. However, there is no guarantee that the intersection 
of the single-goal problems exists or that the definition of such a multi-goal model is 
even possible. 
The second strategy is called Superposition and in contrast to the previous method does 
not require the definition of a multi-objective problem model. Firstly, a solution is 
computed for each of the single-goal problems and then a combination of them are 
taken as the multi-goal solution. The applicability of this strategy relies on the definition 
of a combination operator. Again it is possible that the combination of the single-goal 
solutions is empty and a feasible solution does not exist. Das et al. [103] designed a 
method based on this strategy to solve generic non-linear multi-objective optimization 
problems. 
The third strategy is called Incremental Solving. Here each single-goal problem is 
solved sequentially in accordance with a predefined order, and the starting exploration 
point of the ݅-th problem is the solution or stopping point of the (݅ − 1)-th problem. The 
solution for the multi-goal problem depends on the order used to solve the single-goal 
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problems. Boudahri et al. [17] adopted this strategy to optimize an agricultural products 
supply chain. 
The final strategy is called Exploration and is based on a ‘brute force’ approach. Firstly, 
a large number of feasible solutions are generated for each single-goal problem and then 
the multi-goal solution is taken as the solution that represents the ‘best’ compromise for 
the set of single-goal problems. Applying this strategy should always lead to a solution, 
provided a feasible solution exists for at least one of the single-goal problems. In 
common with many brute force approaches the cost of producing a quality solution is 
computational expensive. Bevilacqua et al. [29] adopted this strategy to solve a generic 
distribution network and employed a genetic algorithm to improve the generation of 
solutions. 
Figure 4.1 shows a visual representation of these four general strategies from the 
perspective of the search space and optimization steps. 

 
Figure 4.1 – Visual representation of the four general strategies described in this 
work for the problem of multi-objective optimization. 
Aslam et al. [21] and Ogunbanwo et al. [1] provide extensive reviews of the work 
undertaken for the problem of transportation network optimization. The works 
presented in such reviews have been analyzed and categorized based on the reported 
methods with respect to those developed to solve multi-objective optimization 
problems. Table 4.1 and Figure 4.2 show the results of that analysis. It is possible to 
notice that in recent years the Goal Synthesis strategy is the dominant method used. 
Nevertheless, despite its popularity this work will show that it may not necessarily be 
the best choice when solving real-world supply chain optimization problems. 
As will be discussed in the following sections, the method used in this work to solve the 
current specific real-world optimization problem is the Ant Colony System algorithm 
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[78]. Garcia-Martinez et al. [104] analyzed several ant colony optimization variants for 
multi-goal optimization and presented a taxonomy for them. The authors also performed 
an empirical analysis for the traveling salesman problem and compared their results 
with two other well-known multi-objective genetic algorithms. It is worth noting that a 
prerequisite of such analysis is to define a multi-goal model to generate the Pareto 
optimal frontier. Once again, the authors proposed a model that simultaneously 
considers all optimization goals (i.e. goal synthesis). This indicates a preference for the 
goal synthesis strategy over the use of alternatives. 
Table 4.1 - Objectives investigated and strategies used in existing approaches for 
solving several multi-objective optimization problems in the area of operations 
research. SCO is supply chain optimization, MO is multi-objective, GS is goal 
synthesis, EX is exploration, IS is incremental solving, SP is superposition, and ACO 
is ant colony optimization. 

Author (year) Multi-objective 
method 

Description 

Altiparmak et al., 2006,  [34] GS SCO for minimum transit time and minimum transportation 
costs 

Bevilacqua et al., 2012, [29] EX SCO for minimum transit time and minimum transportation 
costs 

Boudahri et al., 2011, [17] IS SCO for minimum travelled distance and minimum 
transportation costs 

Cardona-Valdes et al., 2011, [105] GS SCO for minimum transit time and minimum transportation 
costs 

Che Z. et al., 2010, [49] GS SCO for minimum transit time, minimum transportation costs, 
and maximum product quality 

Che Z., 2012, [39] GS SCO for minimum transit time and minimum transportation 
costs 

Chen C. et al., 2007, [61] GS SCO for minimum transit time and minimum transportation 
costs 

Cintron et al., 2010, [106] GS SCO for minimum travelled distance, minimum transportation 
costs, maximum service level, and maximum product quality 

Ding et al. 2004, [62] GS SCO for minimum transit time and minimum transportation 
costs 

Ding et al., 2009, [8] GS SCO for maximum service level and minimum transportation 
costs 
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Ghoseiri et al., 2010, [48] GS SCO for minimum travelled distance and minimum 
transportation costs 

Huang et al., 2011, [41] GS SCO for minimum transportation costs and maximum network 
resilience 

Kamali et al., 2011, [107] GS SCO for minimum transportation costs and maximum service 
level 

Liang, 2008, [108] GS SCO for minimum travelled distance, minimum transit time, 
and minimum transportation costs 

Lin et al., 2008, [55] GS SCO for minimum transit time, minimum transportation costs, 
and maximum service level 

Sadjady et al., 2012, [40] GS SCO for minimum travelled distance, minimum transportation 
costs, and minimum transit time 

Utama et al., 2011, [42] GS SCO for minimum travelled distance, minimum transportation 
costs, maximum service level, maximum product quality, and 
minimum environmental impact 

Wang, 2009, [50] GS SCO for minimum transportation costs and maximum network 
resilience 

Yeh et al., 2011, [19] GS SCO for minimum transportation costs, minimum transit time, 
minimum environmental impact, and maximum product 
quality 

Chen et al., 2004, [109] GS SCO for minimum transportation costs, maximum service level, 
and maximum network resilience 

Sabri et al., 2000, [110] IS SCO for minimum travelled distance, minimum transportation 
costs, maximum network resilience, maximum service level 
and maximum product quality 

Joines et al., 2002, [111] GS SCO for minimum transportation costs and maximum service 
level 

Wang et al., 2011, [112] GS SCO for minimum transportation costs and minimum 
environmental impact 

Torabi et al., 2008, [113] GS SCO for minimum transportation costs and maximum product 
quality 

Amid et al., 2011, [114] GS Multi-goal supplier selection optimization 
Wang et al., 2004, [115] GS + SP Multi-goal supplier selection optimization. GS is used to have a 

MO model and SP to determine the weights 
Weber et al. 1993, [116] GS Multi-goal supplier selection optimization 
Liu et al., 2000, [117] GS Multi-goal supplier selection optimization with goal synthesis 

for combination of 23 goals / factors 
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Kumar et al., 2004, [118] GS Multi-goal supplier selection optimization 
Leung et al., 2007, [119] GS Trade-off between robustness and effectiveness of solution for 

multi-site production planning optimization problem 
Yildiz et al., 2009, [120] EX Hybrid hill climbing optimization for manufacturing 

optimization with goals of minimizing the mass of the brake 
and minimizing the stopping time 

Chaharsooghi et al., 2008, [121] GS + EX Efficient multi-goal ACO for multi-objective resource allocation 
problem. GS is used to have a MO model and EX to efficiently 
explore the Pareto optimal frontier 

McMullen et al. 2006, [122] GS + EX Assembly line balancing optimization for the goals of crew size 
optimization, system utilization, jobs scheduling, and system 
design costs. GS is used to have a MO model and EX to 
efficiently explore the Pareto optimal frontier 

Das et al., 1998, [103] SP New multi-purpose method for generating the Pareto optimal 
points 

 

 
Figure 4.2 - Summary of the multi-objective strategies presented in Table 1 for 
solving multi-objective transportation network optimization problems. 
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4.2 Multi-objective Supply Chain Optimization Definition 
A supply chain optimization problem may be expressed in terms of a minimization 
objective function, a set of variables and a set of constraints over these variables, 
regardless of the goal type (functions having to be maximized may be multiplied by 
−1). Given a vector of variables ݔ ∈ ℝ௡  and a vector of cost coefficients ܿ ∈ ℝ௡ , a 
supply chain optimization problem may be defined as: 

∗ݒ  =  min ݔܣ|ݔ்ܿ}  = ܾ ∧ ݔ ≥ 0}, (4.1) 
where ܣ ∈ ℝ௠×௡ is a matrix of coefficients, ܾ ∈ ℝ௠ is a vector of coefficients and ݒ∗ ∈
ℝ௡ is a vector of assignments for the variables ݔ such that the value of the objective 
function ்ܿݔ is minimum. The matrix ܣ and the vector ܾ define the constraints over the 
decision variables ݔ and define the problem search space. Therefore, a supply chain 
optimization problem is defined by the tuple ݌݈ ≔ ,ݔ) ܿ, ,ܣ ܾ, (ݒ . A multi-goal 
optimization problem is a set of tuples representing single-goal optimization problems: 

,ݔ)ܲܮ  ,ܣ ܾ) = ൛(ݔ, ܿ, ,ܣ ܾ, ܿ∃ห(ݒ ∈ ℝ|௫| ∧ ݒ∃ ∈ ℝ|௫|ൟ, (4.2) 
where the vector of variables ݔ ∈ ℝ௡ and the set of coefficients ܣ and ܾ are the same 
for all the single-goal problems. 
Let us recall that the variables ݔ define the number of products to send on a given 
network route. The coefficients ܿ  usually depend on the goal and are typically 
information associated with a given route on the network (e.g. having to optimize for 
minimum transportation cost, ܿ௜ ∈ ܿ is the cost to send products via route ݅). Typically, 
the constraints defined by ܣ and ܾ are the constraints placed on production capacity and 
customer demand. The solution ݒ is a distribution plan for the network. 

4.3 Composite Goal Methods 
Seven different means to solve the multi-objective optimization problem are now 
presented and described. These methods are a formalization of the four generic 
strategies described above in section 4.1. 



Chapter 4: Composite Goal Methods for Supply Chain Optimization 

 

Marco Veluscek   127 
 

Given a vector of variables ݔ ∈ ℝ௡, a vector of coefficients ܾ ∈ ℝ௠ and a coefficient 
matrix ܣ ∈ ℝ௠×௡ , let ܵ ≔ ,ݔ) ,ܣ ܾ)  be the tuple defining the problem search space. 
Recall from equation (4.2) that ݔ)ܲܮ, ,ܣ ܾ) is the set of single-goal problems or the 
multi-goal optimization problem to be solved. The set ܲܮ is defined in section 4.2. For 
simplicity, whenever there is no ambiguity, ܲܮ  has to be viewed as a synonym for 
,ݔ)ܲܮ ,ܣ ܾ). 
Let us define the projection operators on the search space ܵ and on a given optimization 
problem ݈݌ ∈ (ܵ)௫ߨ as ܲܮ = (ܵ)஺ߨ ,ݔ = (ܵ)௕ߨ ,ܣ = (݌݈)௖ߨ ,ܾ = ܿ and ߨ௩(݈݌) =  .ݒ
In order to improve readability, whenever there is no ambiguity, ܣ ,ݔ and ܾ is written 
instead of ߨ௫(ܵ), ߨ஺(ܵ) and ߨ௕(ܵ) respectively. Similarly, ܿ௝and ݒ௝  is written instead 
of ߨ௖൫݈݌௝൯ and ߨ௩൫݈݌௝൯. 
The proposed methods require a function to solve the optimization problem. Here the 
Ant Colony Optimization algorithm described in section 3.5 above is used. The methods 
defined below in 4.3.1 to 4.3.6 are completely independent of this choice. The method 
defined in 4.3.7 is a specialization of the Ant Colony Optimization algorithm for solving 
multi-goal problems and it is used solely for the purpose of comparison. 
Let ܵܥܣ be the function representing the ant colony solver 

:ܵܥܣ  ܲܮ → ℝ௡, 
↦ ݌݈  (4.3) ,ݒ

where ݈݌ ∈ ܲܮ  is the optimization problem to be solved and ݒ  ∈ ℝ௡  is a feasible 
solution to the problem ݈݌. 
In several of the methods described below, a reduction function is employed to narrow 
the problem search space, given a partial solution. Given an optimization problem ݈݌௝ ∈
 :the reduction function is defined as ,ܲܮ

 
:݀݁ݎ ℝ௡ → ℝ௠, 
௝ݒ ↦ ܾ − ܣ ∙ ௝ݒ . (4.4) 
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Application of the reduction function has the effect of reducing the production capacity 
and the customer demand by the amount of product already sent through the network. 
The performance of a solution is the value of the objective function and is defined as the 
sum of the values of the vector ݒ  weighted by the cost coefficients ܿ . Given an 
optimization problem ݈݌௝ ∈  be the function that measures the performance of a ݌ let ,ܲܮ
solution: 

 
:݌ ℝ௡ × ℝ௡ → ℝ, 

௝ݒ , ܿ௝ ↦ ෍ ௜௝ݒ ∙ ܿ௜௝
௡

௜ୀଵ
 (4.5) 

4.3.1 ∆-Unification (DU) 
The first method is based on the goal synthesis strategy. The first step consists of 
finding a solution for each single-goal problem. This provides an estimation of the 
optimal solution for each of the single-goal problem. A new optimization problem is 
then defined, whose goal is to minimize the difference between the current solution and 
the worst performing single-goal solution. Let ݋ ௗ݂௜௙௙ be the objective function of such a 
problem: 

݋  ௗ݂௜௙௙(ݔ) = min௟௣ೕ∈௅௉(|݌൫ݒ௝ , ܿ௝൯ − ,ݔ൫݌ ܿ௝൯|/ݒ)݌௝ , ܿ௝)), (4.6) 

where ݔ are the variables of the optimization problem. 
The new optimization problem is defined as: 

ௗ௜௙௙݌݈  ≔  min  ൛݋ ௗ݂௜௙௙(ݔ)หݔܣ = ܾ ∧ ݔ ≥ 0}. (4.7) 

Solving the optimization problem ݈݌ௗ௜௙௙ causes the solver to walk through the solution 
space along the intersection of the solution surfaces. Algorithm 4.1 shows the pseudo 
code for the above procedure. 
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Algorithm “ઢ-Unification” 
Require: Set of optimization problems ܲܮ, Problem space ܵ 
1. for all ݈݌௝ ∈  do ⊳ Solve each single-goal problem ܲܮ
௝ݒ     .2 ←  (௝݌݈)ܵܥܣ
3. end for 
4. ⊳ An estimation of the optimal solution for each single-goal problem is established 
୼ݒ .5 ←  ௗ௜௙௙൯݌൫݈ܵܥܣ
return ݒ୼ 
Algorithm 4.1 - Pseudo code for the procedure Δ-Unification 

4.3.2 Weighted Frontier Walk (WFW) 
The second method is also based on the goal synthesis strategy and involves the 
definition of a multi-goal problem whose objective function consists of a weighted 
combination of the single-goal problems. Let ݓ ∈ ℝ|௅௉| be a vector of weights, where 
each weight is associated with a single-goal problem of the set ܲܮ. Let ݋ ௪݂௙௪ be the 
objective function of such a problem: 

݋  ௪݂௙௪(ݔ) = min௟௣ೕ∈௅௉(ݓ௝ ∙ ௝ݒ൫݌| , ܿ௝൯ − ,ݔ൫݌ ܿ௝൯|/ݒ)݌௝ , ܿ௝)). (4.8) 
The objective function ݋ ௪݂௙௪  is similar to the objective function defined for the ߂-
Unification method in section 4.3.1. In scenarios where the weights ݓ are all equal, then 
this method is equivalent to the ߂-Unification method described in the previous section 
(see 4.3.1).  
The new multi-goal optimization problem is defined as: 

௪௙௪݌݈  ≔  min  ൛݋ ௪݂௙௪(ݔ)หݔܣ = ܾ ∧ ݔ ≥ 0}. (4.9) 
Algorithm 4.2 shows the pseudo code for the above procedure. 
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Algorithm “Weighted Frontier Walk” 
Require: Set of optimization problems ܲܮ, Problem space ܵ, Vector of weights ݓ 
1. for all ݈݌௝ ∈  do ⊳Solve each single-goal problem ܲܮ
௝ݒ     .2 ←  (௝݌݈)ܵܥܣ
3. end for 
4. ⊳ An estimation of the optimal solution for each single-goal problem is established 
௪௙௪ݒ .5 ←  (௪௙௪݌݈)ܵܥܣ
return ݒ௪௙௪ 
Algorithm 4.2 - Pseudo code for the procedure Weighted Frontier Walk 

4.3.3 Iterative Superposition (IS) 
The third method is based on the idea of superposition. A complete solution is first 
required for each of the single-goal problems and then the solution to the multi-goal 
problem is taken as combination of them. The combination is computed as the 
minimum intersection of the distribution plans. Let ݒ௜௡௧ be the result of the minimum 
intersection of the distribution plans. Each element ݒ௜௜௡௧ ∈  :௜௡௧ is defined asݒ

௜௜௡௧ݒ  =  min௟௣ೕ∈௅௉(ݒ௜௝). (4.10) 
The vector result of the minimum intersection is then used to reduce the problem space 
of each single-goal problem, by applying the reduction function defined above in 
equation (4.10). 
It is unlikely that the first solution will satisfy all the required demands. As such the 
solution for the multi-goal problem is initialized as a vector of zeros of dimension |ݔ| =
௠௚ݒ ,݊ = ૙௡, and the intersection is added at each step ݒ௠௚ = ௠௚ݒ +    .௜௡௧ݒ
The procedure is repeated until such time as the demands are satisfied; a solution in the 
reduced space is computed for each single-goal problem, and the solution to the multi-
goal problem is once again the minimum intersection. The pseudo code for this 
procedure is shown in Algorithm 4.3. 
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During the first step of the procedure, a complete solution is found for each single-goal 
problem. The solution to the multi-goal problem is then generated from the individual 
single-goal problem solutions. Uniformly from each single-goal solution ݒ௝, iteratively 
the best elements of ݒ௝ are taken and added to the multi-goal solution ݒ௠௚, until such 
time as all demands are satisfied. It should be noted that the possibility exists such that 
the intersection of the solutions is empty i.e. ݒ௜௡௧ = ૙; in such instances the reduction 
function will not modify the search space and the procedure itself may not converge. 
Algorithm “Iterative Superposition” 
Require: Set of optimization problems ܲܮ, Problem space ܵ 
1. ⊳ Initialize multi-goal solution to zero 
௠௚ݒ .2 ← ૙௡ 
3. repeat 
4.     for all ݈݌௝ ∈  do ⊳Solve each single-goal problem ܲܮ
௝ݒ         .5 ←  (௝݌݈)ܵܥܣ
6.     end for 
7.     ⊳ Compute solutions intersection 
8.     for all ݒ௜௝ ∈  ௝ doݒ
௜௜௡௧ݒ         .9 ←  min௟௣ೕ∈௅௉(ݒ௜௝) 
10.     end for 
11.     ⊳ Reduce the problem space 
12.     ܾ ←  ௜௡௧൯ݒ൫݀݁ݎ
13.     ⊳ Add the intersection to the multi-goal solution  
௠௚ݒ     .14 ← ௠௚ݒ +   ௜௡௧ݒ
15.     if ݒ௜௡௧ = ૙ then ⊳ The intersection is null  
16.         Complete ݒ௠௚ with the best elements from ݒ௝ ௝݌݈∀  ∈  ܲܮ
17.     end if 
18. until all demands are satisfied 
19. return ݒ௠௚ 
Algorithm 4.3 - Pseudo code for the procedure Iterative Superposition 
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4.3.4 Incremental Solving via Tuning (IT) 
The fourth method is based on the incremental solving strategy. The procedure starts by 
solving one of the single-goal problems and then iteratively adjusts the solution to 
increase its performance according to the remaining single-goal problems. The solution 
is adjusted by eliminating elements, the ܺ  elements that have the greatest negative 
impact on the current problem solution are eliminated, where ܺ ∈ ℝ and ܺ ≤  Once .|ݔ|
every single-goal problem has been considered, the problem space is reduced and the 
process is repeated until such time as all demands are satisfied. 
Let ݊݅ be the function used to find an element in a given vector ݒ ∈ ℝ௡ that has the 
greatest negative impact on the performance of a given optimization problem ݈݌ ∈  .ܲܮ

 
݊݅: ℝ௡ × ܲܮ → ℕା, 

,ݒ ↦ ݌݈ argmax௜∈[଴,|௩|] ݒ)݌ − ൫ܫ|௩| ⋅ ,௜൯[଴,|௩|],௜ݒ  (4.11) .((݌݈)௖ߨ

The pseudo code for this procedure is shown in Algorithm 4.4. 
The method requires that a single-goal optimization problem is set as the starting point 
and the results are dependent on the order in which single-goal problems are solved. It 
follows that the procedure should be run on all possible single-goal problem orderings 
as part of a complete analysis. 
Algorithm “Incremental Solving via Tuning” 
Require: Set of optimization problems ܲܮ, Problem space ܵ, Number of elements to 
neglect ܺ, Starting optimization problem ݈݌௝ ∈  ܲܮ
1. ⊳ Initialize multi-goal solution to zero 
௠௚ݒ .2 ← ૙௡ 
3. repeat 
௝ݒ     .4 ←  ௝൯݌൫݈ܵܥܣ
5.     ⊳ Adjust the solution by removing the ܺ elements with greatest negative impact 

on the remaining single-goal problems 
6.     for ݅ ← 0 to ܺ ⁄|ܲܮ|) − 1) do 
7.         for all ݈݌௞ ∈ ܲܮ ∖  ௝ do݌݈
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௡௜൫௩ೕ,௟௣ೖ൯ݒ             .8
௝ ← 0 

9.          end for 
10.     end for 
11.     ܾ ←  ௝൯ݒ൫݀݁ݎ
௠௚ݒ     .12 ← ௠௚ݒ +   ௝ݒ
13. until all demands are satisfied 
14. return ݒ௠௚ 
Algorithm 4.4 - Pseudo code for the procedure Incremental Solving via Tuning 

4.3.5 Incremental Solving via Retention (IR) 
The fifth method is based on the incremental solving strategy and in reality is a 
variation on the Incremental Solving via Tuning method described in the section 4.3.4. 
Again the procedure consists of solving each single-goal problem in sequence, but on 
this occasion rather than eliminating the elements with the greatest negative impact on 
the performance of the remaining problems, on this occasion the ܻ elements that have 
contributed the most to the performance of the current problem are retained, where ܻ ∈
ℝ and ܻ ≤  .|ݔ|
Let ℎ݅ be the function used to find the element of a given vector ݒ ∈ ℝ௡ that has the 
greatest positive impact on the performance of the given optimization problem ݈݌ ∈  .ܲܮ

 
ℎ݅: ℝ௡ × ܲܮ → ℕା, 

,ݒ ↦ ݌݈ argmax௜∈[଴,|௩|] ௜ݒ) ∙  ௜). (4.12)((݌݈)௖ߨ)

The pseudo code for this procedure is shown in Algorithm 4.5. 
Algorithm “Incremental Solving via Retention” 
Require: Set of optimization problems ܲܮ, Problem space ܵ, Number of elements to 
retain ܻ 
1. ⊳ Initialize multi-goal solution to zero 
௠௚ݒ .2 ← ૙௡ 
3. ⊳ Initialize counter of remaining elements that may be retained 
ݎ .4 ← ݊ 
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5. repeat 
6.     for all ݈݌௝ ∈  do ⊳ Sequentially solve for each single-goal problem ܲܮ
௝ݒ         .7 ←  ௝൯݌൫݈ܵܥܣ
8.         if ݎ ≤ ܻ then ⊳ All elements have to be retained 
9.             return ݒ௠௚ +  ௝ݒ
10.         end if 
11.         ⊳ Adjust the solution by retaining the Y elements with greatest positive impact 

on the current single-goal problem 
௞ݒ         .12 ← ૙௡ 
13.         for ݅ ← 0 to ܻ do 
௛௜(௩ೕି௩ೖ,௟௣ೕ)௞ݒ             .14 ← ௛௜൫௩ೕି௩ೖ,௟௣ೕ൯ݒ 

௝  
15.         end for 
ݎ         .16 ← ݎ − ܻ 
17.         ܾ ←  (௞ݒ)݀݁ݎ
௠௚ݒ         .18 ← ௠௚ݒ +   ௞ݒ
19.     end for 
20. until all demands are satisfied 
21. return ݒ௠௚ 
Algorithm 4.5 - Pseudo code for the procedure Incremental Solving via Retention 

4.3.6 Taguchi QLF-based Approach 
The idea behind the sixth method originates from the theory of Robust Engineering and 
Taguchi’s Quality Loss Function (QLF) [123] and can be classified as a goal synthesis 
based strategy. Taguchi’s quality loss function encodes a penalty term for deviations 
from a particular target. Here let ܮ be a loss function for each single-goal problem ݈݌ ∈
 :in the form of ,ܲܮ

 
:௟௣ܮ ℝ → ℝ, 

↦ ′ݐ ′ݐ) ݇ −  ,ଶ(ݐ
(4.13) 
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where ݐ ∈ ℝ  is the value of the target solution for the problem ݈݌ ′ݐ , ∈ ℝ  is the 
evaluation for another proposed design and ݇ ∈ ܴ is the loss coefficient in terms of 
deviation from the target metric. The function computes the penalty, the loss for 
deviating from the target. Given an optimization problem ݈݌ ∈  is an ݐ the value of ,ܲܮ
estimation of the optimum solution to the problem, which may be computed by 
applying the Ant Colony Solver ܵܥܣ: 

ݐ  = ,(݌݈)ܵܥܣ൫݌  ൯. (4.14)(݌݈)௖ߨ
It results a new multi-goal optimization problem based on the loss function ܮ. Let ݋ ௤݂௟௙ 
be the objective function of such a problem: 

݋  ௤݂௟௙(ݔ) = ෍ ,ݔ)݌)௟௣ೕܮ (((௝݌݈)௖ߨ
௟௣ೕ∈௅௉

. (4.15) 

The new multi-goal problem consists of minimizing the total deviation loss from the 
best known solutions of the single-goal problems: 
௤௟௙݌݈  ≔  min  ൛݋ ௤݂௟௙(ݔ)หݔܣ = ܾ ∧ ݔ ≥ 0}. (4.16) 
The pseudo code for this procedure is shown in Algorithm 4.6. 
Algorithm “Taguchi QLF-based Approach” 
Require: Set of optimization problems ܲܮ, Problem space ܵ 
1. for all ݈݌௝ ∈  do ⊳Solve each single-goal problem ܲܮ
௝ݒ     .2 ←  (௝݌݈)ܵܥܣ
3. end for 
4. ⊳ An estimation of the optimal solution for each single-goal problem is established 
௤௟௙ݒ .5 ←  (௤௟௙݌݈)ܵܥܣ
6. return ݒ௤௟௙ 
Algorithm 4.6 - Pseudo code for the procedure Taguchi QLF-based Approach 

4.3.7 ACO-specific Multi-Goal Method 
The last and final method differs from those previously described in that it is specific to 
the Ant Colony Optimization algorithm; the main idea here is to improve the global 
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pheromone updating strategy in order to simultaneously consider more than one goal. 
Given a solution generated by the solver, the level of pheromone deposited is increased 
in accordance with the performance improvement in each single-goal problem. A 
generated solution receives a full pheromone update if and only if it is an improved 
solution for each of the single-goal problems. The method may be classified as 
belonging to the goal synthesis category, despite the fact that it does not formally 
involve the definition of a multi-goal problem. This classification as goal synthesis is 
justified on the basis that the method employs exploration of the search space by taking 
into account more than one goal at a time as it walks along the intersection of the single-
goal problem spaces. 
As stated in Dorigo et al. [78], the original global pheromone rule is defined  as follow: 
,ݎ)߬  (ݏ = (1 − (ߩ ∙ ,ݎ)߬ (ݏ + ߩ ∙ Δ߬(ݎ,  (4.17) ,(ݏ
where (ݎ, ,ݎ)߬ ,is an edge of the ant tour or a route in the network (ݏ  is the pheromone (ݏ
value deposited on the edge, ߩ  is the decay parameter ߩ ∈ [0,1] , and Δ߬(ݎ, (ݏ  is a 
measure of the improvement in the solution. 
Given a solution ݒ ∈ ܴ௡ for the problem ݈݌ ∈  be the function to measure the ߜ let ,ܲܮ
increase applied to the pheromone level: 

 
:ߜ ℝ௡ → ℝ, 

↦ ݒ  ෍ 1
|ܲܮ| ∙ ඌ ,ݒ)݌ ((݌݈)௖ߨ

,∗ݒ)݌ ඐ((݌݈)௖ߨ
௟௣∈௅௉

, (4.18) 

where ݒ∗ ∈ ℝ௡ is the best known solution for the problem ݈݌. The improved pheromone 
update strategy maybe stated as: 

,ݎ)߬  (ݏ = ൫(1 − (ߩ ∙ ,ݎ)߬ (ݏ + ߩ ∙ Δ߬(ݎ, ൯(ݏ ∙  (4.19) .(ݒ)ߜ
Let ܵܥܣ௠௢ be the variant of the Ant Colony Optimization algorithm based on such a 
global pheromone update strategy. 
The pseudo code for this procedure is shown in Algorithm 4.7. 
The procedure requires selecting a single-goal problem ݈݌௞ ∈ ܲܮ  to be used by the 
solver as the main problem to solve. The advantage of using a single-goal problem 
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instead of defining a multi-goal one is that the procedure should find a feasible solution 
for ݈݌௞  even if the intersection of the single-goal problem search spaces is empty. 
Although it is not unreasonable to expect that the solution will be strongly influenced by 
the goal of the problem ݈݌௞. 
Algorithm “ACO-specific Multi-Goal Method” 
Require: Set of optimization problems ܲܮ, Problem space ܵ, Single-goal problem used 
by the ܥܣ ௠௢ variant ݈݌௞ ∈  ܲܮ
1. for all ݈݌௝ ∈  do ⊳Solve each single-goal problem ܲܮ
௝ݒ     .2 ←  (௝݌݈)ܵܥܣ
3. end for 
4. ⊳ An estimation of the optimal solution for each single-goal problem is established 
௠௢ݒ .5 ←  (௞݌݈)௠௢ܵܥܣ
6. return ݒ௠௢ 
Algorithm 4.7 - Pseudo code for the procedure ACO-specific Multi-Goal Method 

4.4 Experiments 
As in section 3.6, each of the proposed methods has been tested on a set of 4 single-goal 
optimization problems: for maximum profit, for minimum transportation cost, for 
minimum transportation time, and for maximum network resilience. The dataset use for 
the experiments is the one provided by Caterpillar, published in [4]. 
The single-goal problems have first been solved to define a baseline against which the 
performance of the proposed composite goal methods can be compared. The solutions 
produced by the methods have been evaluated according to the single-goal objectives. 
Table 4.2 shows the percent difference between the performance of the single-goal 
problems and the performance of the combination methods. The incremental methods 
(section 4.3.4 and 4.3.5) have been run on all the possible orders of the single-goal 
problems and the method Weighted Frontier Walk (section 4.3.2) has been run on a set 
of 16 weight combinations. The combinations of weights have been generated 
according to a Monte Carlo Sampling strategy. 
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As alluded to before, the method used to solve the optimization problems is the Ant 
Colony System algorithm as defined in section Ant Colony Optimization for 
Caterpillar’s Supply Chain. The parameters used for the test cases are reported in Table 
3.3. Table 4.2 shows the runtime results for the experiments. 
Table 4.2 - Percentage difference between single-goal problems and composite goal 
methods performances. WFW a-b-c-d stands for Weighted Frontier Walk and a, b, 
c, and d are the percentage weights assigned to the single goals. IT g1-g2-g3-g4 and 
IR g1-g2-g3-g4 stand for Incremental Solving via Tuning and Incremental Solving 
via Retention respectively and g1-g2-g3-g4 defines the order used to solve the 
single goal problems. P stands for maximum profit, T stands for minimum transit 
time, R stands for highest resilience, and C stands for minimum transportation 
cost. The combinations of weights for the WFW have been generated according to 
a Monte Carlo Sampling strategy. 

Profit (%) Time (%) Cost (%) 
Resilience 

(%) 
Running time (s) 

WFW 52-87-62-35 1.56% 156.62% 1.57% 4.89% 1008 
WFW 1-14-36-84 1.62% 173.94% 1.64% 5.05% 1022 
WFW 74-92-43-81 2.08% 191.25% 2.17% 5.05% 1022 
WFW 94-97-33-25 1.65% 159.74% 1.68% 5.22% 1008 
WFW 0-92-11-50 1.49% 165.82% 1.49% 5.24% 1022 
WFW 63-28-60-2 1.45% 166.37% 1.45% 5.37% 1022 
WFW 2-28-32-7 1.81% 180.15% 1.86% 4.42% 1022 
WFW 54-88-21-57 1.59% 159.68% 1.60% 5.06% 1008 
WFW 59-54-86-77 2.08% 149.90% 2.16% 4.09% 1022 
WFW 92-5-11-64 1.48% 164.61% 1.48% 5.20% 1022 
WFW 69-85-60-0 1.45% 156.10% 1.44% 5.20% 1022 
WFW 22-94-90-56 1.90% 175.05% 1.96% 4.70% 1022 
WFW 29-50-31-2 1.52% 175.51% 1.53% 5.11% 1022 
WFW 57-40-75-28 1.48% 177.30% 1.48% 4.83% 1008 
WFW 1-31-7-75 1.89% 164.00% 1.95% 4.56% 1022 
WFW 100-100-100-100 1.46% 160.06% 1.46% 5.22% 1022 
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Taguchi QLF 5.21% 193.63% 100.98% 4.24% 3234 
IS 37.34% 1.92% 42.28% 1.86% 616 
IT T-P-R-C 36.99% 1.56% 41.88% 1.67% 924 
IT C-R-P-T 1.01% 128.43% 1.05% 5.83% 910 
IT C-R-T-P 1.01% 128.43% 1.05% 5.83% 910 
IT C-P-R-T 1.01% 128.22% 1.05% 5.83% 910 
IT C-P-T-R 1.01% 128.22% 1.05% 5.83% 924 
IT C-T-R-P 1.01% 128.43% 1.05% 5.83% 910 
IT C-T-P-R 1.01% 128.22% 1.05% 5.83% 308 
IT R-C-P-T 49.16% 353.93% 55.72% 2.36% 308 
IT R-C-T-P 49.00% 363.48% 55.53% 2.51% 322 
IT R-P-C-T 51.56% 389.74% 58.45% 3.25% 308 
IT R-P-T-C 49.38% 359.98% 55.97% 2.90% 308 
IT R-T-C-P 50.33% 383.10% 57.06% 2.74% 308 
IT R-T-P-C 49.12% 364.35% 55.67% 2.65% 910 
IT P-C-R-T 1.04% 117.83% 1.11% 5.89% 924 
IT P-C-T-R 1.04% 117.83% 1.11% 5.89% 910 
IT P-R-C-T 1.04% 117.83% 1.11% 5.89% 910 
IT P-R-T-C 1.03% 118.73% 1.10% 5.39% 910 
IT P-T-C-R 1.03% 118.73% 1.10% 5.39% 924 
IT P-T-R-C 1.03% 118.73% 1.10% 5.39% 616 
IT T-C-R-P 36.70% 1.04% 41.55% 1.24% 630 
IT T-C-P-R 36.70% 1.04% 41.55% 1.24% 616 
IT T-R-C-P 36.70% 1.04% 41.55% 1.24% 630 
IT T-R-P-C 36.99% 1.56% 41.88% 1.67% 616 
IT T-P-C-R 36.99% 1.56% 41.88% 1.67% 5684 
IR T-P-R-C 24.86% 88.69% 28.08% 1.71% 6356 
IR C-R-P-T 9.85% 154.35% 11.00% 3.48% 6076 
IR C-R-T-P 5.13% 161.40% 5.63% 2.53% 6398 
IR C-P-R-T 7.44% 158.35% 8.26% 2.68% 6468 
IR C-P-T-R 6.81% 146.43% 7.54% 2.89% 6300 
IR C-T-R-P 10.01% 158.84% 11.19% 1.51% 6412 
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IR C-T-P-R 6.64% 146.32% 7.36% 2.80% 5236 
IR R-C-P-T 14.73% 151.08% 16.55% 3.79% 5138 
IR R-C-T-P 16.43% 150.41% 18.49% 3.04% 5208 
IR R-P-C-T 14.79% 145.78% 16.63% 3.16% 5152 
IR R-P-T-C 14.20% 135.92% 15.95% 2.76% 5096 
IR R-T-C-P 15.26% 145.97% 17.16% 3.27% 5068 
IR R-T-P-C 13.94% 157.32% 15.65% 2.87% 5544 
IR P-C-R-T 2.05% 120.04% 2.13% 4.83% 5782 
IR P-C-T-R 2.00% 119.60% 2.08% 4.75% 5418 
IR P-R-C-T 2.36% 122.07% 2.48% 4.92% 5362 
IR P-R-T-C 2.38% 119.70% 2.51% 4.73% 5544 
IR P-T-C-R 1.89% 118.72% 1.94% 4.79% 5446 
IR P-T-R-C 2.31% 118.91% 2.42% 4.52% 5754 
IR T-C-R-P 26.60% 78.76% 30.06% 1.20% 5838 
IR T-C-P-R 24.78% 65.05% 27.99% 1.15% 5558 
IR T-R-C-P 26.24% 85.80% 29.64% 1.47% 5474 
IR T-R-P-C 24.64% 88.11% 27.83% 1.48% 5810 
IR T-P-C-R 24.47% 89.50% 27.63% 1.14% 6358 
ACO-Specific 3.01% 183.73% 3.22% 5.70% 3234 
DU 1.30% 167.10% 1.28% 5.78% 840 

 
When comparing optimization methods for multi-goal problems, it is usually difficult to 
rank one approach over another in absolute terms. Ideally, the best method should 
produce a solution with the same performance as those produced when optimizing for 
each single goal, but in practice this is difficult to achieve. The results not only depend 
on the definition of the multi-goal method, but also on the properties of the single-goal 
problems. For example, problems might conflict or be mutually exclusive. 
In the case of supply chain optimization, one common denominator could be profit: 
most of the metrics such as transportation time and network resilience can be 
monetized. However, in real business environments profit alone may not always be the 
dominant factor, distribution plans that yield lower profit, but offer greater value with 
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respect to other metrics may be preferred. For instance, resilience implies risk, some 
companies are more averse to risk taking than the impact on profit alone would imply. 
Total inventory carrying costs equate to cash flow and/or funds tied up in the business 
that cannot otherwise be invested elsewhere; when trading volumes are low cash flow 
may become more important than pure profit. 
However, one possible evaluation scenario would be to calculate the relative 
performance of methods by ranking each method by goal and then combine the ranked 
position of a method on each goal by summing its position on the different goals. Table 
4.3 shows the result of the ranking procedure. 
Table 4.3 - Composite goal methods ranking. The methods have been ranked base 
on their relative performance. Lower number means a higher position in the rank, 
hence higher performance. In order to improve visualization, the cells have been 
color coded in a scale from red to green. Higher performing methods are color-
coded green, lower performing ones are color-coded red. 

  Profit Time Cost Resilience Sum Rank of sum 
IS 65 8 64 16 153 51 
IT T-P-R-C 61 5 60 12 138 31 
IT C-R-P-T 2 31 5 64 102 8 
IT C-R-T-P 2 31 5 64 102 8 
IT C-P-R-T 5 28 2 64 99 5 
IT C-P-T-R 5 28 2 64 99 5 
IT C-T-R-P 2 31 5 64 102 8 
IT C-T-P-R 5 28 2 64 99 5 
IT R-C-P-T 68 66 67 17 218 68 
IT R-C-T-P 66 68 65 18 217 67 
IT R-P-C-T 72 72 71 30 245 72 
IT R-P-T-C 69 67 68 27 231 70 
IT R-T-C-P 71 71 70 22 234 71 
IT R-T-P-C 67 69 66 20 222 69 
IT P-C-R-T 11 15 12 70 108 11 
IT P-C-T-R 11 15 12 70 108 11 
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IT P-R-C-T 11 15 12 70 108 11 
IT P-R-T-C 8 19 9 57 93 1 
IT P-T-C-R 8 19 9 57 93 1 
IT P-T-R-C 8 19 9 57 93 1 
IT T-C-R-P 58 2 57 6 123 18 
IT T-C-P-R 58 2 57 6 123 18 
IT T-R-C-P 58 2 57 6 123 18 
IT T-R-P-C 61 5 60 12 138 31 
IT T-P-C-R 61 5 60 12 138 31 
IR T-P-R-C 55 13 54 15 137 30 
IR C-R-P-T 44 43 43 32 162 57 
IR C-R-T-P 39 52 39 19 149 45 
IR C-P-R-T 43 47 42 21 153 51 
IR C-P-T-R 42 39 41 26 148 43 
IR C-T-R-P 45 48 44 11 148 43 
IR C-T-P-R 41 38 40 24 143 37 
IR R-C-P-T 48 42 47 33 170 61 
IR R-C-T-P 51 41 50 28 170 61 
IR R-P-C-T 49 36 48 29 162 57 
IR R-P-T-C 47 34 46 23 150 47 
IR R-T-C-P 50 37 49 31 167 60 
IR R-T-P-C 46 46 45 25 162 57 
IR P-C-R-T 32 25 32 43 132 28 
IR P-C-T-R 31 23 31 41 126 21 
IR P-R-C-T 36 26 36 46 144 39 
IR P-R-T-C 37 24 37 40 138 31 
IR P-T-C-R 28 18 28 42 116 15 
IR P-T-R-C 35 22 35 37 129 25 
IR T-C-R-P 57 10 56 5 128 24 
IR T-C-P-R 54 9 53 4 120 16 
IR T-R-C-P 56 11 55 9 131 27 
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IR T-R-P-C 53 12 52 10 127 22 
IR T-P-C-R 52 14 51 3 120 16 
ACO-Specific 38 63 38 62 201 64 
DU 15 57 15 63 150 47 
WFW 52-87-62-35 23 45 23 45 136 29 
WFW 1-14-36-84 25 58 25 47 155 54 
WFW 74-92-43-81 34 64 34 48 180 63 
WFW 94-97-33-25 26 50 26 54 156 55 
WFW 0-92-11-50 21 55 21 55 152 49 
WFW 63-28-60-2 17 56 17 56 146 40 
WFW 2-28-32-7 27 62 27 36 152 49 
WFW 54-88-21-57 24 49 24 49 146 40 
WFW 59-54-86-77 33 40 33 34 140 35 
WFW 92-5-11-64 20 54 20 52 146 40 
WFW 69-85-60-0 16 44 16 51 127 22 
WFW 22-94-90-56 30 59 30 39 158 56 
WFW 29-50-31-2 22 60 22 50 154 53 
WFW 57-40-75-28 19 61 19 44 143 37 
WFW 1-31-7-75 29 53 29 38 149 45 
WFW 100-100-100-100 18 51 18 53 140 35 
Taguchi QLF 40 65 72 35 212 66 

 
From Table 4.3, it is possible to observe that methods based on the incremental solving 
strategy (i.e. Incremental Solving by Tuning 4.3.4 and Incremental Solving by 
Retention 4.3.5) are positioned in the top ranking. While a ranking approach is 
appropriate in creating a discrete ordering, it does not necessarily convey information 
about the relative relationships between the experiments/goals.  
Figure 4.3 shows an alternative visual representation of the data from Table 4.2. Figure 
4.3 shows that there is no consistent difference between the methods that belong to the 
same generic strategy (as defined in section 4.1). For instance, methods based on goal 
synthesis, such as Weighted Frontier Walk, Delta-Unification, Taguchi QLF-based and 
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ACO-specific all produce distribution plans with similar performances on the single-
goal problems (i.e. very low difference for profit, slightly higher for resilience and 
higher still for time). Similarly for methods based on incremental solving strategy, such 
as Incremental Solving by Tuning and Incremental Solving by Retention have produce 
distribution plans whose performance is dependent on the order in which the single-goal 
problems have been solved. In that the first single-goal problem to be solved has 
greatest influence on the overall solution. For example, by taking the Incremental 
Solving by Tuning method and running it in the order Resilience-Time-Profit-Cost 
produces a distribution plan that is not dissimilar to the performance produced for the 
order Resilience-Profit-Time-Cost, but is completely different from that produced for 
the order Profit-Time-Resilience-Cost. 
Arguably the Iterative Superposition method is the best one. The distribution plan found 
performs well for each single-goal problem (where all the percent differences are below 
50%) and the gap that exists between single-goal performances is not as large in 
comparison to the other methods. On occasions, the Incremental Solving by Tuning and 
Incremental Solving by Retention methods produce similar results, but they exhibit the 
drawback of having a dependency on the order used to solve the single-goal problems 
and on the number of elements to be eliminated or retained. 
The methods described in this chapter have also been tested on the two randomly 
generated problems in [5] and [6]. 
Figure 4.4 and Figure 4.5 show the percent difference between the performance of the 
single-goal problems and the performance of the combination methods for the two 
randomly generated problems, [5] and [6] respectively. 
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Figure 4.3 - Visual representation of percentage difference between single-goal 
problems and composite goal methods performances for the original problem in 
[4]. 
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Figure 4.4 - Visual representation of percentage difference between single-goal 
problems and composite goal methods performances. The problem is randomly 
generated according to a normal distribution with mean and standard deviation as 
in the original dataset. The dataset is in [5]. 
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Figure 4.5 - Visual representation of percentage difference between single-goal 
problems and composite goal methods performances. The problem is randomly 
generated where the figures are an interval between 0 and an upper limit which is 
a random increase over the maximum value in the original data, according to a 
negative exponential distribution. The dataset is in [6]. 
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The Iterative Superposition method has again proved to have the best performance for 
both randomly generated problems. 

 
Figure 4.6 - Mean percentage of used paths against all available paths for all data 
sets and for all single-goal problems. The data are averaged through a period of 12 
months, which each month presents a different dealer demand. 
The network used for testing presents a very large number of possible paths. However, 
Caterpillar’s business is characterized by having a relative low monthly demand for any 
given type of product. On average, over a period of 12 months, 12% of all possible 
routes are used each month to satisfy the demand (see Figure 4.6). It is reasonable to 
expect that due to the large number of possible routes, the problem of maximizing the 
network resilience is the easiest to solve. The demand may be spread evenly on the 
network. Moreover, solution for the problems of profit maximization and transportation 
costs minimization may be expected to overlap as they involve similar economic 
aspects. This may not be the case for the problem of travelled time minimization. It is 
possible that even the most expensive production source may be chosen to satisfy a 
portion of the demand, provided the production facility is closely located in proximity 
to the dealers. Since ocean lane discounts for lanes with high shipping commitments are 



Chapter 4: Composite Goal Methods for Supply Chain Optimization 

 

Marco Veluscek   149 
 

considered, the most expensive production source is unlikely to be considered for both 
the profit maximization and costs minimization goals. The solver would choose an 
inexpensive production facility, even if its location is not the closet to the dealership, 
thereby increasing transportation cost. 
The results from running the multi-goal optimization methods on the three datasets 
confirm these expectations. All solutions had low differences with respect to resilience, 
for profit maximization and cost minimization the differences were similar. The quality 
of the solution in term of time minimization is inversely proportional to the goals for 
profit maximization and cost minimization. 
As previously discussed, the Iterative Superposition strategy was shown to be one of the 
best methods to solve a multi-objective optimization problem. Not only such strategy 
was capable of finding high quality solutions for all four goals simultaneously, but also 
it is the only strategy that is independent from the initial configuration or additional 
parameters. One of the main differences between the four multi-goal strategies relates to 
the information used to find a combined solution. The goal synthesis strategy only uses 
the heuristic information from the set of single-goal problems; the solution is a 
combination of this heuristic information. In this context, the heuristic information 
refers to the information held on the routes in the network which guides the solver in 
building the distribution plan. For instance, if the goal is to maximize the profit arising 
from a distribution plan, then the heuristic information is most likely to be the 
transportation cost for the given routes. Figure 4.7 and Figure 4.8 show the heuristic 
information matrix associated with the distribution network for the problems of cost 
minimization and travelled time minimization respectively. Figure 4.7 and Figure 4.8 
only report the heuristic information for one month and the routes represented are only 
the ones connecting active production sources and dealers. Production sources and 
dealers are said to be active if they have positive, non-zero capacity and demand for the 
given month.  
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Figure 4.7 - Heuristic information matrix for the problem of minimization of 
transportation cost for all possible routes from sources to destinations. The color 
scale goes from green as most profitable route to red as least profitable route. Gray 
routes are non-connected routes. Only active routes for the given month are 
displayed. A route is said active if the production sources and dealer has positive 
non-zero capacity and demand respectively. 

 
Figure 4.8 - Heuristic information matrix for the problem of minimization of 
travelled time for all possible routes from sources to destinations. The color scale 
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goes from green as most profitable route to red as least profitable route. Gray 
routes are non-connected routes. Only active routes for the given month are 
displayed. A route is said active if the production sources and dealer has positive 
non-zero capacity and demand respectively. 
The incremental strategy makes use of heuristic information combined with a partial 
distribution plan that is optimal for one of the single-goal problems. Figure 4.9 and 
Figure 4.10 shows a visualization of the distribution plan for the problems of cost 
minimization and travelled time minimization respectively (as for Figure 4.7 and Figure 
4.8, only active routes are shown). Recall that the incremental strategy consists of 
building a solution for one objective, retaining or removing part of it, and then solving 
the remaining part in accordance with the next objective. 

 
Figure 4.9 - Distribution plan for the problem of transportation cost minimization. 
The color scale goes from green as route with only one machine sent through, to 
red for highly used routes. Gray routes are not used. Only active routes for the 
given month are displayed. A route is said active if the production sources and 
dealer has positive non-zero capacity and demand respectively. 
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Figure 4.10 - Distribution plan for the problem of travelled time minimization. The 
color scale goes from green as route with only one machine sent through, to red for 
highly used routes. Gray routes are not used. Only active routes for the given 
month are displayed. A route is said active if the production sources and dealer has 
positive non-zero capacity and demand respectively. 
Whereas the superposition strategy makes only use of the optimal solution for each of 
the single-goal problems, the solution consists of finding the best solution for each 
single-goal problem separately, and then using the optimal distribution plans to build a 
solution for the multi-goal problem. Having the optimal solutions, then the complete 
heuristic information matrices may appear to be ‘noisy’ and it stands to reason that 
combining such solutions may for the majority of cases be the better approach. From a 
search space perspective, a strategy that works with optimal solutions as its inputs can 
be expected to produce a multi-goal solution that is closer to all single-goal ones. When 
starting from the intersection of the heuristic information matrices there is no guaranties 
that the solution which is the closest to all the single-goal ones will be the one resulting 
from the intersection of the search spaces and could be significantly different from the 
search spaces of the single-goal problems. 
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Future work may consist of a theoretical and formal analysis of the different 
characteristics and behaviors of the discussed strategies to confirm the previous 
hypothesis. 

4.5 Discussions 
The motivation and rational for undertaking this work was to highlight and provide a 
better understanding of the body of work in the literature relating to multi-goal analysis 
of transportation network optimization. Clearly from the review undertaken it was 
evident that more work could be done to enhance knowledge and foster understanding 
in certain areas of the topic. 
Firstly, the literature review of work relating to multi-goal optimization could be 
extended. While the current problem focuses on supply chain optimization, it is 
apparent that such work is applicable to and could be extended into others areas of 
operational research. This would provide an opportunity to better understand which 
multi-goal optimization methods are preferred and why. It is possible that the current 
bias towards one specific method for multi-goal optimization is the result of existing 
software availability. If the current generations of optimization tools do not provide 
implementation that address multi-goal strategies, practically it is advantageous to adopt 
the goal synthesis approach and define a multi-goal model, which may be the input to 
the optimization tool. As future work, the literature could be extended to include 
information relating to optimization tool implementations and their capabilities. 
Moreover, the methods presented here should be tested using a different optimization 
algorithm and on a differing dataset. While the Ant Colony System (ACS) is a very well 
established and accepted optimization algorithm, there remains the possibility that the 
results could be biased by undefined behaviors particular to the ACS algorithm. While 
testing the hypothesis on two randomly generated problems strengthens the result, it 
would nevertheless be interesting to test the outcomes on independent datasets, or even 
a different problem. 
Finally, a theoretical analysis of the different characteristics and behaviors that pertain 
to the discussed strategies is needed to better understand the reasons why and under 
what circumstances some strategies consistently perform better than others. 
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4.6 Summary 
The aim of this work was to identify the most promising multi-objective optimization 
techniques available for solving real-world ‘industrial’ supply chain optimization 
problems. The state of art for multi-objective optimization have been reviewed and four 
generic strategies have been identified, which are referred to as goal synthesis, 
superposition, incremental solving and exploration. Seven instances of these four 
strategies have been implemented. The preferred approach from analysis and review of 
the current literature would appear to be the construction of a model that combines 
single optimization goals. However, the experiment using goal combination methods 
produced low quality solutions in comparison to those produced by other strategies. In 
particular, the superposition strategy proved to be the most promising solution found, 
performing well across all single-goal problems and having the additional advantage 
that it is not dependent on the solution ordering or on the weightings assigned to 
individual single objectives.  
The work presented here has aided in the development of a more accurate optimization 
model for the business of the industrial partners and has helped in the identification of 
optimization methods that are capable of producing high quality distribution plans. This 
work will serve as a reference on multi-objective methods for real-world ‘industrial’ 
supply chain optimization problems. 
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5 IMPROVING ANT COLONY 
OPTIMIZATION 
PERFORMANCE THROUGH 
PREDICTION OF BEST 
TERMINATION CONDITION 

This chapter is based on the results published in [3]. 
 
In the last decade or so, meta-heuristics approaches have been successfully applied to 
many NP-hard optimization problems. These approaches are popular due to their 
adaptability and application potential across differing problem domains. They are 
known for their ability to find high-quality solutions to the most complex of 
combinatorial optimization problems. Equally, they are also known for their high 
computational complexity. As discussed in section 2.2.5, the successful application of 
meta-heuristics is also paramount to the optimal tuning of their many parameters. The 
performance of such parametrized algorithms depends strongly on the particular values 
of the parameters, and the appropriate setting of these parameters is itself a difficult 
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optimization problem [90]. The termination condition is one of the key parameter of the 
meta-heuristic approaches, a parameter which highly influences the quality of the 
solution found and the computational requirements. This work addresses the task of 
improving the runtime complexity of the Ant Colony System (ACS) when applied to a 
real-world supply chain optimization problem. The improvement is achieved by 
adopting a machine learning approach. Given an unseen problem instance, the best 
termination point for the optimization process is predicted by analyzing its behavior on 
previously solved instances which are the most similar to the current one. Figure 5.1 
shows a graphical representation of the proposed system. 

 
Figure 5.1 - Graphical representation of the proposed system for the improvement 
of the runtime performance of the Ant Colony System. 
This chapter is structured as follows: section 5.1 explains the motivations and analyze 
related work. Section 5.2 presents the fitness landscape analysis used to gather 
information on the optimizer behavior. In section 5.3 the features used to characterize 
different problem instances are defined. Two differing class definitions are presented in 
the section. Such definitions are based on knowledge from the fitness landscape analysis 
and allow the setting of a termination criterion for a given problem instance. In section 
5.4 the results of the optimization experiments carried out using the proposed method 
are analyzed. Section 5.5 draws the conclusions and discuss future research directions. 
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5.1 Motivations and Related Work 
According to Arisha et al. [124] the most frequently adopted approaches used when 
solving supply chain optimization problems are gradient-based methods, metamodel-
based methods, statistical methods and random search / metaheuristics. Arisha et al. 
[124] also discusses the limitations of traditional techniques such as linear 
programming, integer programming and mixed-integer programming when handling the 
inherent interdependencies found in the current generation of supply chain networks. A 
review conducted by Ogunbanwo et al. [1] identified a trend towards the use of meta-
heuristic approaches as the solution basis for solving transportation networks problems. 
The most common approaches include (Multi Objective) Genetic Algorithm, Ant 
Colony Optimization (ACO), and Swarm Particle Optimization. The ACS is a variation 
of the ACO and is defined in Dorigo et al. [78]. A successful application to the problem 
of transportation network optimization may be found in Musa et al. [30]. 
In the context of Ant Colony System and Meta-heuristics approaches, much work has 
been done in reducing the runtime requirements of the methods. Typically, the most 
common approaches either employ methods to reduce the search steps and arrive more 
quickly at higher quality solutions or they exploit parallelization / hardware acceleration 
techniques. Tseng et al. [125] presented a novel method to generally speed up the Ant 
Colony Optimization (ACO) for the Travelling Salesman Problem (TSP), by reducing 
redundant steps in its search. Pedemonte et al. [98] present a survey of recent advances 
in the parallel implementation of Ant Colony Optimization. This work approached the 
problem of runtime reduction by focusing on the optimal setting of termination criteria 
to minimize the runtime required for a given instance. 
According to Dorigo et al. [92], for all meta-heuristics, there is no general termination 
criterion. In practice, a number of rules of thumb have been used: the maximum CPU 
time elapsed, the maximum number of solutions generated, the percentage deviation 
from an optimum lower/upper bound, and the maximum number of iterations without 
improvement in solution quality are examples of such rules [92]. Lv et al. [126] 
analyzed recent reviews of Ant Colony Optimization applications with a view to answer 
the questions “how to evaluate improvement?” and “what are the termination 
conditions?”. However, their survey did not provide concrete answers, they found that 
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all termination criteria are described with vague phrases, such as “no improvement is 
possible”, or “termination conditions are met” [126]. More generally, Lv et al. [126] 
considered some of the earlier fundamental work on meta-heuristics without finding a 
consensus about termination criteria. More recently, Zhang et al. [127] analyzed the 
approximate termination condition for the ACO applied to TSP. They found that many 
of the termination conditions are only used in experimentation and are often too difficult 
or uneconomic for deployment in solving practical problems [127]. 
The approach taken in this work learns from the behavior of the optimization process on 
previous problem instances in setting the termination criteria. It was observed that in 
many instances the optimization algorithm finds the best solution early in its search and 
then stalls, continuing the search for many more iterations without finding a better 
solution. This phenomenon is referred to as the stalling effect, Stomeo et al. [128] state: 
“The problem of stalling effect in fitness functions is related to the non-improvement of 
the fitness values during the evolutionary process”. Figure 5.2 shows an example of the 
stalling effect. In this work, it is sought the relationship between the problem 
characteristics and the performance of the optimization process, with the intent of 
predicting how the solver will perform on a given instance and set the termination 
criteria to minimize the solver search time. 
In the course of the chapter, it is shown how this method answers the concerns raised by 
Lv et al. [126] and Zhang et al. [127]. A definite procedure to evaluate improvement is 
provided, which is adopted to set proper termination conditions. Using well-known 
machine learning algorithms for prediction and existing and open source libraries for the 
implementation, the difficulty of adoption of the proposed system is kept low, making it 
economic for deployment in real-world application. Complexity wise, both the learning 
and prediction steps do not significantly affect the performance: the learning step, which 
is required to be performed only once, is expected to be fast due to the small number of 
features involved, and including the prediction step into the optimization process will 
significantly reduce the time requirements as the termination criteria are dynamically set 
to the optimum of each instance. 
Understanding the relationship that exists between the problem instances and the 
optimization algorithm has led to improvements in the optimization process. Smith-
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miles et al. [129] used a knowledge discovery approach to seek insight into the 
relationship between the Scheduling Problem structure and the effectiveness of 
heuristics. Rules from a decision tree were used to select the best heuristic from a 
portfolio. Similar work has been undertaken in Smith-miles et al. [130] for the 
Traveling Salesman Problem. Here, it is presented a similar approach where instead of 
using the acquired knowledge to select the most promising algorithm from a portfolio, it 
is used to improve the performance of the current one. 

5.2 Fitness Landscape Analysis 
Fitness landscape analysis [131] provides a vivid metaphor of the search space as 
perceived by an optimization process [132]. Metaphors of a landscape are commonly 
used to aid the understanding of heuristic search methods when solving combinatorial 
optimization problems. Furthermore, the concept has been shown to be useful for 
understanding the behavior of combinatorial optimization algorithms, and can help in 
predicting their performance [133]. 

 
Figure 5.2 - The stalling effect in fitness function analysis refers to the 
phenomenon where the fitness values do not improve during most of the 
optimization process. Source of the figure is Stomeo et al. [128]. 
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Given a vector of variables ݔ ∈ ℝ௡ and a vector of cost coefficients ܿ ∈ ℝ௡, let us recall 
the definition of an optimization problem as: 

∗ݒ  =  min ݔܣ|ݔ்ܿ}  = ܾ ∧ ݔ ≥ 0}, (5.1) 
where ܣ ∈ ℝ௠×௡ is a matrix of coefficients, ܾ ∈ ℝ௠ is a vector of coefficients and ݒ∗ ∈
ℝ௡ is a vector of assignments for the variables ݔ such that the value of the objective 
function ்ܿݔ is minimum. The matrix ܣ and the vector ܾ define the constraints over the 
decision variables ݔ and define the problem search space. Therefore, an optimization 
problem is defined by the tuple ݈݌ ≔ (ܿ, ,ܣ ܾ). 
The fitness landscape of an optimization problem ݈݌ is the tuple ݂݈ ≔ (ܵ, ݂, ݀), where 
,ܣ)ܵ ܾ) = ݒ} ∈ ℝ௡|ݒܣ = ܾ} is the set of all possible solutions, ݂: ℝ௡ ⟶ ℝ is the fitness 
function defined as ݂: ݒ ↦ ݒ்ܿ  and ݀: ܴ௡ × ܴ௡ ⟶ ܴ  is the distance between two 
feasible solutions. In Evolutionary Computation, for binary coded problems, the 
distance measure is usually the Hamming distance between bit strings [133]. For 
problems where the solution is a vector of real number, the Euclidean distance may be 
applied. 
Usually, the fitness landscape is interpreted as a graph ܩ = {ܸ, ܸ with vertex set {ܧ = ܵ 
and edge set ܧ = ,ݒ)} (ᇱݒ ∈ ܵ × ,ݏ)݀|ܵ (′ݏ = ݀௠௜௡ } with ݀௠௜௡  denoting the minimum 
distance between two points in the search space [133]. Such interpretation allows for 
effective analysis and visualization of the search space. However, for the purpose of this 
work, the interest lays in analyzing how the search for the optimal solution evolves over 
time and in predicting the best termination point based on instance features. Let us 
define the search process or walk on a landscape [134] as the ݐ -tuple Γ =
,଴ݒ) ,ଵݒ … ,  ௧ିଵ) being the sequence of visited solutions during the search/optimizationݒ
process. The fitness landscape analysis adopted in this work is, therefore, the sequence 
of fitness function evaluations at each iteration: 

 Φ஑ = ൫݂(ݒ଴), ,(ଵݒ)݂ … ,  ൯. (5.2)(௧ିଵݒ)݂
The performance of the search process may be measured as the number of iterations 
required to find the optimal solution.  
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Let us define the speed of the search process and its acceleration, respectively as the 
improvement of the best known solution over the first one and the rate of change in the 
speed. Given the iteration ݅ ∈ (0,  the speed of the optimization process for the tuple ,(ݐ
Φ is: 

 
:ݏ ℤା → ℝ, 

݅ ↦ (Φ(݅) − Φ(0)) ݅⁄ , (5.3) 

and the acceleration is: 

 
ܽ: ℤା → ℝ, 

݅ ↦ ൫ݏ஍(݅) − ஍(0)൯ݏ ݅⁄ . (5.4) 

Such definitions of speed and acceleration describe the rate of improvement of the best 
known solution at any given iteration. Figure 5.3 shows an example of the result of this 
analysis. 
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Figure 5.3 - Example of fitness landscape analysis as defined in Eq. (5.2) with speed 
and acceleration improvement. The definition of speed and acceleration is 
respectively in Eq. (5.3) and (5.4). 
As a variation, the fitness landscape analysis can be modified to include the topology of 
the search space by considering the mean pair-wise distance of visited solutions at any 
given iteration. The updated definition of fitness landscape analysis would be as 
follows: 

 Φஒ = ൫(0)݌, ,(1)݌ … , ݐ)݌ − 1)൯ (5.5) 
where let ݌ be the function that measure the mean pair-wise distance of the visited 
solutions: 
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p: ℤା → ℝ, 

݅ ↦ ∑ ∑ ݀൫ݒ௞, ௝൯௝∈[଴,௞)௞∈[଴,௜]ݒ
݅ ∗ (݅ − 1) 2⁄ , 

(5.6) 

and consequently the standard deviation on the pair-wise distance is: 

 

pୱୢ: ℤା → ℝ, 

݅ ↦ ඩ∑ ∑ ቀ݀൫ݒ௞, ௝൯ݒ − ቁଶ(௞ݒ)݌
௝∈[଴,௞)௞∈[଴,௜]

݅ ∗ (݅ − 1) 2⁄ , 
(5.7) 

Figure 5.4 shows an example of the modified fitness landscape analysis. The figure 
shows a significant increase in the standard deviation of the visited solutions around the 
100th iteration. It is difficult to predict the reasons of this phenomenon as the results 
depend on the optimization algorithm behavior and the search space landscape. 
However, the most likely reason for this is due to the application of random moves. 
During the first 100th iterations, the optimization algorithm mostly performed local 
searches in the neighborhood of the starting solutions. The algorithm did not perform 
any (or very few) random moves. All the solutions at this point are expected to be ferly 
close to the starting one. Around the 100th, the algorithm performed a few random 
moves. The algorithm is now searching in a different portion of the search space. This 
portion may be either far or different from the starting one. The feasible solutions found 
in this new portion are likely to be significantly different from the ones found before the 
random steps.  
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Figure 5.4 - Example of fitness landscape analysis as defined in Eq. (5.5). The solid 
line is the mean pair-wise distance of the visited solutions as defined in Eq. (5.6) 
and the dash-dot lines are the standard deviation on such mean as in Eq. (5.7). 

5.3 Features of a Supply Chain Optimization Problem 
The optimization of supply chains commonly consists of finding the best route to send 
products from a set of suppliers to a set of customers/dealers. As a generic problem, 
supply chain optimization is defined by a set of suppliers, a set of dealers and a 
distribution network. Each supplier is associated with a production capacity and cost, 
each dealer has a product demand which may vary over time and the distribution 
network is defined in terms of transportation times and costs between network nodes. 
Solutions to such problem are usually sought by the application of mathematical 
programming and artificial intelligence techniques. The model of the problem addressed 
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in this chapter is as defined in chapter 3. The optimization algorithm implemented is the 
Ant Colony System as defined in section 3.5.  
The following sections, 5.3.1 and 5.3.2, characterize features of the problem instances 
and propose two class definitions related to the solver behavior. The purpose of the 
class definitions is to provide an understanding of the complexity of a given instance by 
considering the behavior of the optimization algorithm. These class definitions allow 
the termination condition to be set according to the difficulty level of the instance. 
These are mostly related to the maximum number of iterations or to the maximum 
number of visited solutions. As described above, this work focuses on termination 
condition to address the stalling effect problem and improving the time complexity of 
the optimization process over a given set of instances. However, it is reasonable to 
assume the same principle may very well be adopted to set others parameters. Arguably, 
for example a more difficult instance might require a higher number of ants or a lower 
exploitation to exploration ratio. 

5.3.1 Problem Features 
Supply chain optimization problems usually differ in their demand, the production 
capacity and some details of the distribution network. 
The features adopted to summarize variations in demand and the production capacities 
are: 

 Percentage of active dealers. The total number of dealers is known from the 
definition of the full distribution network. Instances with more active dealers 
typically will be more difficult to solve and probably require more iterations. 

 Mean and standard deviation of the demand. Such statistics briefly summarize 
the distribution of the demand throughout the network. 

 Mean and standard deviation of the capacity. As with the demand, this feature 
describes the distribution of the capacity throughout the network. 

 Mean and standard deviation of the capacity per demand. The purpose here is to 
measure how much capacity is available on average to satisfy the demand of a 
given dealer. 
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 Ratio of total demand to total production capacity. This feature is a 
generalization of the previous one. 

The features used to describe the distribution network are: 
 The ratio of production sources to dealers. This highlights how many 

production sources are available to satisfy a given dealer’s demand. 
 The total number of connections between production sources and dealers. This 

describes the level of connectivity in the underlying network. 
 Mean and standard deviation of the values in the heuristic information matrix. 

In this context, the heuristic information refers to the information held on the 
routes in the network which guide the solver in building the distribution plan. 
For instance, if the goal is to maximizing the profit of a distribution plan, then 
the heuristic information is likely to be the transportation cost on the routes. 
Such a feature should distinguish between instances with different variations in 
transportation costs. Instances with uniformly distributed costs are likely to be 
easier to solve as small variations in the distribution plan will not fundamentally 
affect the overall profit. 

5.3.2 Class Definition 
As the intent of this work is to reduce the task of finding the best termination condition 
to a classification problem, the following class definitions need to be discrete and 
preferably of a nominal type. A discretization of the class features has been achieved by 
applying a simple clustering on their values using instances of the training set. Three 
obvious class values {݁ܽݕݏ, ,݉ݑ݅݀݁݉ ℎܽ݀ݎ} may be produced from the application of 
K-means [135] with 3 clusters. 
5.3.2.1 Fitness Function Values Through Iterations 

The first class definition is based on the fitness landscape analysis as define in Eq. 
(5.2). A smaller sample containing a sequence of fitness values is considered for 
each problem instance. The number of samples is 10% of the total number of 
iterations and the sampling rate is quadratic so that more iterations at the beginning 
of the search process are considered and hence more details are collected prior to the 
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best solution being found. These sequences are the input to the clustering step and 
the output centroid are themselves sequences of fitness values. The speed and 
acceleration of the centroid sequences are measured as in Eq. (5.3) and (5.4). Figure 
5.5 shows an example depicting the result of clustering the sequences of fitness 
function values. The termination condition is the average value of the following 
criteria: 

 The first iteration when the best solution is found, 
ቀܽ݉݃ݎ ௜∈[଴,௧)Φఈ(݅)ቁ଴. 

 The highest iteration when the speed of change falls below the average 
speed. Let ܫ be the set of iteration indexes where the speed is closer to 
the average value ܫ = ݃ݎܽ ௜∈[଴,௧)൫ݏ஍ഀ(݅) ≅ (∑ (஍ഀ(݆)௝∈[଴.௧ݏ ) ⁄ݐ ൯ . 
The iteration of termination is ܫ|ூ|. 

 The highest iteration when the acceleration falls below to the average 
acceleration. Similarly to the step above the set ܫ  is defined as ܫ =
݉݃ݎܽ ௜∈[଴,௧)൫ܽ஍ഀ(݅) ≅ (∑ ܽ஍ഀ(݆))௝∈[଴.௧) ⁄ݐ ൯  and the iteration of 
termination ܫ|ூ|. 
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Figure 5.5 - Centroids result of the clustering of the fitness function analysis based 
on the definition in Eq. (5.2). The fitness function values are normalized for 
visualization purposes. The speed and acceleration of the resulting centroids is also 
measured according to Eq. (5.3) and (5.4). 
5.3.2.2 Pair-wise Distance Between Visited Solutions 

The definition of the second class is based on the fitness landscape analysis as 
defined in Eq. (5.5). The purpose of this definition is to avoid visiting solutions that 
are the same or very close to each other. In almost all practical applications, the 
optimization process is stopped after a finite number of search operations, regardless 
of whether the optimal solution has been found or not. An approximation to the 
optimal solution is generally acceptable provided the quality is reasonably high. 
Arguably, if one of the main concerns is reducing the computational time, then one 
may be willing to accept lower quality solutions. This definition attempts to 
terminate the optimization process as soon as the difference between visited 
solutions  does not significantly improve the quality of the found solution; that is the 
tested solutions are not very different from each other and those perturbations do not 
lead to an improvement in the solution. As for the previous class definition, for each 
instance, the sequence of fitness function values is sampled according to a quadratic 
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rate. These sequences are the input to the clustering step and an example of 
centroids is shown in Figure 5.6. Again, the termination condition is the average 
value of the following criteria: 

 The first iteration when the pair-wise distance between the visited 
solutions is the highest, ቀܽܽ݉݃ݎ ௜∈[଴,௧)Φఉ(݅)ቁ଴. 

 The highest iteration when the speed of change falls below the average 
speed. The iteration of termination is ܫ|ூ| where the set ܫ is defined as 
ܫ = ܽ݉݃ݎܽ ௜∈[଴,௧) ቀݏ஍ഁ(݅) ≅ (∑ (஍ഁ(݆))௝∈[଴.௧ݏ ⁄ݐ ቁ. 

 The highest iteration when the acceleration falls below to the average 
acceleration. Similarly to the step above, the termination iteration is ܫ|ூ| 
where the set ܫ  is defined as ܫ = ܽ݉݃ݎܽ ௜∈[଴,௧) ቀܽ஍ഁ(݅) ≅
(∑ ܽ஍ഁ(݆)௝∈[଴.௧) ) ⁄ݐ ቁ. 
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Figure 5.6 - Centroids result of the clustering of the fitness landscape analysis 
based on the definition in Eq. (5.5), (5.6), and (5.7). The speed and acceleration of 
the resulting centroids is also measured. 

5.4 Numerical Experiments 
The two class definitions described in 5.3.2 have been tested on the dataset provided by 
Caterpillar published in [4]. To address the machine learning needs of this work, it has 
been adopted the data mining framework Weka [136] to implement and test several 
classification systems. The implemented classification systems are 0R, 1R, Naïve Bayes, 
Bayes Network, J48, Random Forest and SMO with a polynomial kernel of degree 3, all 
of which have been used to build a classification committee. Witten et al [137] in their 
book describe the theory and implementation details of all these algorithms. The 
algorithm 0R is often used to set a baseline for classification accuracy, as its predicted 
class is simply the most frequent one. As the amount of data available for training and 
testing is limited, the performance of each single model has been assessed through a 10-
fold cross validation scheme. In Table 5.1, the classification accuracy of the single 
models is shown. The method presented in this chapter also has been tested on the two 
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randomly generated problems in [5] and [6]. Table 5.2 shows the accuracy measures for 
the first generated problem, whereas Table 5.3 shows them for the second. 
Table 5.1 - Classification accuracy on the problem in [4] for 1000 iterations and K-
means with 3 clusters to define the class. The 0R system provides a baseline for the 
classification problem. The average and standard deviation do not include 0R. 0R 
stands for ZeroR, the baseline classifier, 1R [138] for OneR and SMO [139] for 
sequential minimum optimization, the algorithm for training support vector 
machine. 

0R 
(baseline) 
(%) 

1R 
(%) 

Naïve 
Bayes 
(%) 

Bayes 
Net (%) 

J48 
(%) 

Random 
Forest (%) 

SMO 
Poly3 
(%) 

Average 
(%) 

STD 
(%) 

Transportation 
Time          
5.3.2.1  64.7% 63.9% 63.2% 61.8% 63.9% 64.7% 63.9% 63.2% 61.8% 

5.3.2.2  76.4% 61.8% 64.6% 64.6% 65.3% 76.4% 61.8% 64.6% 64.6% 
Transportation 
Cost                   
5.3.2.1  55.6% 69.4% 72.9% 75.7% 75.7% 55.6% 69.4% 72.9% 75.7% 
5.3.2.2  63.9% 71.5% 75.0% 77.1% 76.4% 63.9% 71.5% 75.0% 77.1% 
Profit                   
5.3.2.1  45.8% 83.3% 79.2% 83.3% 91.7% 45.8% 83.3% 79.2% 83.3% 
5.3.2.2  41.7% 83.3% 75.0% 95.8% 87.5% 41.7% 83.3% 75.0% 95.8% 
Resilience                   
5.3.2.1  84.7% 86.8% 86.8% 88.2% 86.8% 84.7% 86.8% 86.8% 88.2% 
5.3.2.2  83.3% 97.2% 93.8% 93.1% 95.8% 83.3% 97.2% 93.8% 93.1% 
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Table 5.2 - Classification accuracy on the problem in [5] for 1000 iterations and K-
means with 3 clusters to define the class. The average and standard deviation do 
not include 0R. 0R stands for ZeroR, the baseline classifier, 1R [138] for OneR and 
SMO [139] for sequential minimum optimization, the algorithm for training 
support vector machine. 

0R 
(baseline) 
(%) 1R (%) 

Naïve 
Bayes 
(%) 

Bayes 
Net 
(%) 

J48 
(%) 

Random 
Forest 
(%) 

SMO 
Poly3 
(%) 

Average 
(%) 

STD 
(%) 

Transportation Time 
         

5.3.2.1  63.9% 70.1% 69.4% 50.0% 66.7% 68.8% 63.2% 64.6% 6.5% 
5.3.2.2  71.5% 69.4% 69.4% 52.8% 66.0% 73.6% 69.4% 67.5% 6.4% 
Transportation Cost                   
5.3.2.1  67.4% 73.6% 70.8% 68.8% 78.5% 76.4% 66.0% 71.6% 4.4% 
5.3.2.2  67.4% 71.5% 75.0% 72.9% 77.1% 74.3% 66.0% 72.0% 3.8% 
Profit                   
5.3.2.1  37.5% 100.0% 95.8% 95.8% 87.5% 100.0% 87.5% 94.4% 5.2% 
5.3.2.2  37.5% 100.0% 95.8% 95.8% 87.5% 100.0% 87.5% 94.4% 5.2% 
Resilience                   
5.3.2.1  91.7% 66.7% 91.7% 91.7% 91.7% 91.7% 83.3% 86.9% 8.7% 
5.3.2.2  94.4% 93.8% 95.1% 92.4% 91.7% 93.1% 95.1% 93.7% 1.3% 
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Table 5.3 - Classification accuracy on the problem in [6] for 1000 iterations and K-
means with 3 clusters to define the class. The average and standard deviation do 
not include 0R. 0R stands for ZeroR, the baseline classifier, 1R [138] for OneR and 
SMO [139] for sequential minimum optimization, the algorithm for training 
support vector machine. 
 0R 

(baseline) 
(%) 

1R 
(%) 

Naïve 
Bayes 
(%) 

Bayes 
Net 
(%) 

J48 
(%) 

Random 
Forest 
(%) 

SMO 
Poly3 
(%) 

Average 
(%) 

STD 
(%) 

Transportation Time          
5.3.2.1  70.1% 54.9% 68.1% 68.8% 74.3% 68.1% 68.8% 67.6% 5.6% 
5.3.2.2  66.7% 50.0% 70.1% 62.5% 68.1% 63.9% 64.6% 63.7% 6.1% 
Transportation Cost                   
5.3.2.1  45.1% 55.6% 61.1% 51.4% 58.3% 56.3% 45.1% 53.3% 5.8% 
5.3.2.2  48.6% 48.6% 53.5% 41.7% 52.1% 46.5% 48.6% 48.5% 3.5% 
Profit                   
5.3.2.1  62.5% 83.3% 75.0% 100.0% 87.5% 87.5% 83.3% 86.1% 7.4% 
5.3.2.2  70.8% 87.5% 87.5% 95.8% 92.0% 92.0% 92.0% 91.0% 2.9% 
Resilience                   
5.3.2.1  66.7% 66.7% 66.7% 33.3% 83.3% 66.7% 66.7% 64.3% 13.9% 
5.3.2.2  87.5% 88.2% 91.0% 86.1% 88.9% 84.0% 87.5% 87.6% 2.0% 

5.4.1 Performance Improvements 
This section compares the performance of the original optimization process with the one 
developed in this chapter and deploy it to predict the best stopping iteration for each 
given instance. The metrics for the experiment are the performance measure of the 
given objective and computation time required to find the distribution plan. Table 5.4 
show the performance improvements when the classification system is adopted to 
predict the best stopping iteration for each given instance on the problem in [4], Table 
5.5 and Table 5.6 for the problems in [5] and [6] respectively. The Δ difference in Table 
5.4, Table 5.5, and Table 5.6 for both the optimization performance and the runtime is 
calculated as ቀ|௫ೌି௫೐|

௫೐ ቁ ∗ 100, where ݔ௘ is the expected value (the result of the original 
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optimization) and ݔ௔ is the actual one (the result of the proposed algorithm). As shown 
by the experiments below, the application of both the class definitions from 5.3.2.1 and 
5.3.2.2 consistently reduced runtime of about a third or more, while the found solutions 
have no significant difference. The runtime reduction is consistent with the reduction of 
the quality of the solution. The values in Table 5.4, Table 5.5, and Table 5.6 differ from 
Table 3.5, Table 3.8, and Table 3.11 as the results presented in the latter experiments are 
based on the average over 10 runs of the optimization. 
Table 5.4 - Performance improvements when the classification system is adopted to 
predict the best stopping iteration for each given instance on the problem in [4]. 
The values for the regular optimization differ from Table 3.5 as the results 
presented in the latter experiment are based on the average over 10 runs of the 
optimization. The units for “Optimization Performance” column depend on the 
objective type. 

Optimization Performance ઢ Opt. Performance (%) Runtime (s) ઢ runtime (%) 
Transportation Time 

    
Regular opt 95,733.03 - 216.9601 - 
5.3.2.1  96,017.19 0.297% 73.38092 66.18% 
5.3.2.2  95,925.64 0.201% 75.09549 65.39% 
Transportation Cost         
Regular opt 3,173,897.62 - 251.6311 - 
5.3.2.1  3,174,502.60 0.019% 86.76324 65.52% 
5.3.2.2  3,174,251.33 0.011% 88.31299 64.90% 
Profit         
Regular opt 101,247,174.47 - 311.0951 - 
5.3.2.1  101,231,928.30 0.015% 127.2448 59.10% 
5.3.2.2  101,093,944.10 0.151% 102.0328 67.20% 
Resilience         
Regular opt 0.988636364 - 249.888 - 
5.3.2.1  0.977272727 1.149% 2.540268 98.98% 
5.3.2.2  0.984848485 0.383% 22.38805 91.04% 
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Table 5.5 - Performance improvements when the classification system is adopted to 
predict the best stopping iteration for each given instance on the problem in [5]. 
The values for the regular optimization differ from Table 3.8 as the results 
presented in the latter experiments are based on the average over 10 runs of the 
optimization. The units for “Optimization Performance” column depend on the 
objective type. 

Optimization Performance ઢ Opt. Performance (%) Runtime (s) ઢ runtime (%) 
Transportation Time 

    
Regular opt            136,987.58  - 218.9261 - 
5.3.2.1             137,526.00  0.393% 74.42885 66.00% 
5.3.2.2             137,400.50  0.301% 74.09663 66.15% 
Transportation Cost 

 
      

Regular opt         4,488,605.36  - 247.634 - 
5.3.2.1          4,494,763.13  0.137% 87.16367 64.80% 
5.3.2.2          4,495,143.24  0.146% 88.49257 64.26% 
Profit 

 
      

Regular opt    147,373,460.30  - 305.3214 - 
5.3.2.1     147,370,169.78  0.002% 114.3661 62.54% 
5.3.2.2     145,986,178.56  0.941% 107.311 64.85% 
Resilience 

 
      

Regular opt 0.992424242 - 251.8403 - 
5.3.2.1  0.977272727 1.527% 2.576935 98.98% 
5.3.2.2  0.986742424 0.573% 17.0009 93.25% 
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Table 5.6 - Performance improvements when the classification system is adopted to 
predict the best stopping iteration for each given instance on the problem in [6]. 
The values of the regular optimization differ from Table 3.11 as the results 
presented in the latter experiments are based on the average over 10 runs of the 
optimization. The units for “Optimization Performance” column depend on the 
objective type. 

Optimization Performance ઢ Opt. Performance (%) Runtime (s) ઢ runtime (%) 
Transportation Time 

    
Regular opt         2,345,846.86  - 417.1356 - 
5.3.2.1          2,456,623.74  4.722% 4.233668 98.99% 
5.3.2.2          2,453,835.26  4.603% 4.733023 98.87% 
Transportation Cost 

 
      

Regular opt    127,427,904.27  - 479.3158 - 
5.3.2.1     128,520,322.02  0.857% 158.5022 66.93% 
5.3.2.2     127,657,131.79  0.180% 163.1223 65.97% 
Profit 

 
      

Regular opt    861,800,648.54  - 560.5053 - 
5.3.2.1     860,957,855.61  0.098% 365.6538 34.76% 
5.3.2.2     859,298,923.34  0.290% 334.6041 40.30% 
Resilience 

 
      

Regular opt 0.996212121 - 470.437 - 
5.3.2.1  0.988636364 0.760% 4.812747 98.98% 
5.3.2.2  0.992424242 0.380% 5.4566 98.84% 

5.5 Summary 
The aim of this work was to make improvements in the practical time complexity for 
the Ant Colony System when applied to a real-world supply chain optimization 
problem. The starting observation was that in many instances the optimization 
algorithm finds the best solution early in its search and then stalls, effectively searching 
over many more iterations without finding a better solution. This is referred to as the 
phenomenon of stalling effect. This work postulates that if the onset of the stalling 
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effect could be predicted, then for that given instance the search can be terminated with 
the ensuing benefit that the overall optimization process might very well require less 
time to find a solution of equal or comparable quality. 
The approach presented learns from the behavior of the optimization process itself on 
past instances in setting the termination criteria. A relationship between specific 
characteristics of the problem and the performance of the optimization process is 
sought. The relationship is used to predict how the solver will perform on a given 
instance and to set the termination criteria such that the time spent by the solver in its 
search is minimized. 
A fitness landscape analysis has been performed to understand the behavior of the 
optimization process. Two class definitions have been proposed to capture the behavior 
of the process, classify the problem instances and predict the best termination iteration. 
Features not related to the optimization process have been used to characterize different 
problem instances. Several classical machine learning classification algorithms have 
been employed to learn the relationship between problem instances and termination 
classes. 
The proposed algorithm has been tested on a real-world supply chain, plus two random 
generated problems. The runtime of the Ant Colony System has been reduced to 
72.35% on average (with a standard deviation of 18.16%) in all the experiments, while 
the overall difference in the quality of the solutions was deemed acceptable. 
As future work, more features of the problem will be investigated, in order to gain a 
better understanding of the factors that make the greatest contribution to the 
performance of the optimization process. Moreover, it is needed to improve the class 
definitions or the classification system such that the found solutions to all intent and 
purposes are no difference to the original. Finally, as anticipated, a variation of this 
approach could be employed to set other parameters to their appropriate ‘best’ value. 
Future work will investigate the effectiveness of the method in setting other parameters 
and determining the impact of their relationship with the problem features. 
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6 AUTOMATIC MODEL 
DEFINITION FOR SUPPLY 
CHAIN OPTIMIZATION 

This chapter has been submitted for publication as short paper in IEEE Transactions on 
Evolutionary Computation. 
 
Optimization is one of the key components of any decision support system. It allows to 
automatically explore all possible scenarios and to discover the best one. In the context 
of supply chain management, optimization is particularly effective as it allows to 
simultaneously consider the many aspects and factors of the distribution network. The 
typical process of implementing a generic optimization system consists of three main 
tasks: data collection and preparation, model definition, and optimization algorithm 
implementation. Figure 1.2 shows the sequence of tasks necessary to deploy an 
optimization system. A key requirement in this sequence is knowledge and 
understanding of the logistics operations and experience in designing mathematical 
models. Despite the fact that many supply chain models have been proposed over the 
years, implementing such models in specific cases is still a challenging task, which 
typically is performed manually. 
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In this chapter, it is addressed the task of increasing the automatization of implementing 
an optimization system, and, specifically, the design of the optimization model. For this 
work, a scenario is envisaged where a supply chain has been in operation for quite some 
time, but an automatic optimization system is not as yet in place. The data generated by 
the management of the supply chain contains insight about the model. In particular, 
distribution plans implemented in the past may provide useful information. For instance, 
they could highlight how just a few production sources or routes are more preferable 
than others by considering the frequency of their usage in the implemented solutions. 
Regression analysis is used to “mine” such information and automatically create an 
approximate objective function. The objective function is then integrated into a general 
supply chain optimization model and used to evaluate new unseen solutions. Figure 6.1 
depicts the new process of implementing an optimization system. It is shown that this 
system produces a model that closely approximates the original one, and requires 
significantly lower effort. 
This chapter is structured as follows: section 6.1 explains the motivations and analyze 
related work. Section 6.2 presents the regression analysis used to approximate the 
optimization model starting from existing solutions. In section 6.3 the main steps of the 
system are described and it is shown how the approximated model is used during the 
optimization. Section 6.4 presents the results of the optimization experiments performed 
using the approximated model. In section 6.5 conclusions are drawn and future research 
directions are discussed. 
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Figure 6.1 – Process of implementing an optimization system highlighting the 
differences and improvements made possible by the idea introduced in this 
chapter. Specifically, in-depth knowledge of the logistics operations and the 
business is not required any longer. Moreover, the system presented in this chapter 
aids the definition of the optimization model and reduces the effort and time 
required. Given a set of manually generated historical solutions, a good 
approximation of the model is automatically generated from it. 

6.1 Motivations and Related Work 
The application of optimization processes as an aid to decision makers when analyzing 
and managing a supply chain has proven to be considerably successful in a range of 
scenarios. In the academic community, many optimization models and algorithms have 
been designed. Nevertheless, implementing and deploying a new optimization process 
is still a complex task, which requires significant knowledge of the business and 
substantial development time, effort and experience. Arguably, the three main steps that 
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must be completed sequentially in order to successfully deploy an optimization system 
are as follows: 

1. Data and detailed information about the supply chain must be collected and 
properly formatted. 

2. A formal description of the supply chain must be designed to describe the 
relationships between the main factors of the optimization problem. Typically, a 
mathematical model which consists of an optimization function, a set of decision 
variables, and a set of constraints over them are typically used. 

3. An optimization algorithm may be employed to effectively explore the search 
space defined by the optimization model and find the optimal solution to the 
problem. 

Each step requires expertise from different areas. The first step requires the cooperation 
of supply chain managers and the employees responsible for data collection and 
maintenance.  
The second step is possibly the most complex as it is necessary to have a full 
understanding of the business process and experience in designing mathematical models 
to accurately represent it. Typically, an operations research and a management 
engineering background are desirable. Cope et al. [140] investigated the challenges of 
designing models for supply chain simulation. Similarly to optimization, simulation 
requires skills and a scientific background for its implementation, which are vital for 
this methodology to deliver value to the company adopting it [140]. There are several 
practices that rely on simulation modeling for strategic and operational decision-
making. These practices require hiring simulation engineers, building internal 
simulation teams, or contract consultants. They are different in terms of budget, time to 
implement, and returns on investment [140]. Cope et al. [140] analyzed several generic 
simulation models from a wide range of decision problems. A generic model is 
applicable to a large set of problems or instances and yet is sufficiently accurate to 
distinguish between critical performance criteria. Employing a generic model eliminates 
major portions of the upfront model design process. Generic models are bug free, they 
have been code optimized for fast run times, and they can be consistently applied 
throughout the corporation [140]. A model can be constructed that is generic and 
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reusable with a reasonably small set of unique components. If properly defined, a 
reusable model is often more accurate and efficient than new models individually 
constructed for each application scenario [140]. Cope et al. [140] designed an ontology 
for the supply chain problem that includes two sets of elements: 

1. Elements to define the supply chain (e.g. production facilities, material 
flows, inventory and storage locations, etc.). 

2. Elements to describe the logic of the simulation model. 
The first set supports defining the supply chain configuration. The second set is used in 
describing the logic of the simulation. The simulation model is then automatically 
generated from the descriptions provided. 
Simulation and optimization are often used in conjunction to provide a complete 
decision support system. However, they address two quite different types of analysis, 
which answer two different questions. Simulation answers the question “what if”, 
whereas optimization the question “what is the best”. They require a different 
“information” view of the problem and, therefore, require a different model 
representation. A simulation model describes the probability and occurrence of events in 
the network. An optimization model defines the costs of the logistics operations in the 
network. The ontology designed by Cope et al. [140] may be adopted to define the 
optimization model. The first set of elements of the ontology may help support the 
definition of the supply network. The authors in particular tested the following 
scenarios: 

1. Add a warehouse or distribution center. 
2. Vary demand, add/remove customer. 
3. Modify supplier to include more detail. 
4. Add a new supplier. 
5. Vary inventory strategy. 

All the above scenarios are applicable in the definition of a supply chain optimization 
model. The ontology is used to define the supply network. However, it cannot define the 
logic of the optimization model using it. The system presented in this chapter starts 
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from a generic definition of the supply network and generates an optimization model 
from a training set of feasible distribution plans. 
Regarding the third task for the deployment of an optimization system, two broad sets 
of techniques are often employed to find the optimal solution: exact analytical methods 
and artificial intelligence search algorithms. An example of an analytical method is 
linear programming, and one for artificial intelligence searching is the Ant Colony 
System. Linear programming takes advantage of mathematical properties of the 
problem to quickly explore the search space. Linear programming methods have proven 
to be quite efficient when solving real-world optimization problems. However, they 
require the model to satisfy such mathematical properties. Designing the model such 
that these properties are satisfied is challenging and requires an understanding of 
difficult mathematical concepts. For a more detailed discussion see section 2.2.1. 
Most artificial intelligence search algorithms are advertised as being general purpose. 
However, in many scenarios, such algorithms require the implementation of specific 
heuristics in order to perform correctly. Even if no specific heuristics are required, an 
important characteristic which defines these methods is the large number of parameters 
required. Understanding and testing the most relevant parameter configurations and 
their variants may be very resource intensive. Burke et al. [87] argued that the practical 
impact of heuristic methods and other search techniques in commercial and industrial 
organizations has not been as great as might have been expected some years ago. Many 
state-of-the-art heuristics are too problem-specific or too knowledge-intensive to be 
implemented in an in-expensive, easy-to-use computer systems [87]. More recently, 
Burke et al. [86] confirmed that the successful application of search methods in real-
world computational problems is often threatened by the significant numbers of 
parameters, algorithm variants, and the lack of guidance in selecting them. 
From the previous considerations it appears that the second and third steps are affected 
by similar limitations: the lack of automatic tools to aid their implementation. The work 
presented in this chapter focus on the second step for the deployment of an optimization 
system. Specifically, the aim is to reduce the effort in designing an optimization model. 
The algorithm proposed in chapter 5 partially addresses the third step. However, the 
development of more efficient and complete set of tools could be future work. 
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6.2 Regression Analysis for Model Estimation 
Let us recall the general definition of an optimization problem is 
∗ݒ =  min ݔܣ |(ݔ)݂}  = ܾ ∧ ݔ ≥ 0}, where ݂: ℝ௡ ⟶ ℝ is the objective function and 
the system of equations ݔܣ = ܾ define the search space. An optimization problem is 
therefore described by the tuple ܱܲ ≔ (݂, ,ܣ ܾ) . The space of feasible solutions is 
,ܣ)ܵ ܾ) = ݒ} ∈ ℝ௡|ݒܣ = ܾ ∧ ݒ ≥ 0}. The optimization process may then be defined as 
a function from the optimization problem ݌݋ ∈ ܱܲ to a solution ݒ ∈ ,ܣ)ܵ ܾ) belonging 
to the solution space: ܵܥܣ: ܱܲ → ℝ௡, ݌݋ ↦  .For more details, see section 4.2 .ݒ
The definition of an objective function and the search space must closely capture the 
operational characteristics of the business for the result of the optimization to be 
meaningful. In the context of the presented system, it is assumed that an automatic 
optimization and decision support system has not as yet been implemented for a 
particular business process. As such, a formal mathematical definition of the 
optimization problem is not available. The objective function ݂  is unknown and 
outlining a detailed definition would require significant effort and the involvement of 
business experts. It is also assumed that the considered business process has been 
operated manually for some time and a set of feasible solutions are available. Let ܵܨ ≔
,ݒ)} (ݒ)݂ |(ߛ = ߛ ∧ ݒ ∈ ܵ} be the set of pairs of feasible solutions adopted in the past 
and their performance evaluation. In the context of supply chains, many businesses do 
not employ optimization systems to manage the entirety of their logistics operations. 
Decisions on how to ship products are made at a local level. It is reasonable to assume 
that if the business has sufficient history, the overall distribution plans do not violate 
any constraints, all shipping decisions are plausible and of acceptable quality. A system 
capable of quickly capturing the “good sense” intrinsic design of such manually-
generated solutions, may help reducing the time required to formally define an 
optimization model. 
The purpose of the presented system is to produce an approximation function ℎ: ℝ௡ →
ℝ of ݂ such that the error generated when ℎ is used to compute the performance of a 
solution is minimum, ߳௛ = min୦ (ݒ)݂|} − ℎ(ݒ)||ݒ ∈ {ܵܨ . Such a function ℎ  may be 
obtained through a machine learning-based approach. Equation (6.1) depicts the 
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definition of ℎ , where ݒ ∈ ℝ௡  is a feasible solution and ݉݌ ∈ ℝ  is the value of 
performance measure for the solution. 

 ℎ: ℝ௡ → ℝ, 
↦ ݒ  (6.1) ,݉݌ 

The solutions in ܵܨ are the elements of the training set. Each element in the training set 
is classified according to their performance evaluation. As the output variables belong 
to a continuous domain, a regression analysis is performed. Regression analysis is a 
statistical tool to understand and investigate the relationship between variables. For the 
problem of supply chain optimization, the input variables define the amount of product 
shipped on selected routes. The output variable is the performance of the distribution 
plan. A typical approach in carrying out a regression analysis is to use the linear 
regression method. In linear regression, the output variable is assumed to be a linear 
combination of the input parameters. Let ݔ଴ and ݔଵ be two independent input variables, 
and ݕ଴ and ݕଵ the output dependent variables, the linear regression model is defined as 
below: 

௜ݕ  = ଴ߚ + ௜ݔଵߚ + ߳, ݅ ∈ {0,1}, (6.2) 
where ߚ଴  and ߚଵare the parameters which define the relationship between input and 
output variables. ߳ is the error estimate. When applied to the problem of supply chain 
optimization, ݔ௜  are the possible routes in the network and ݕ௜  the performance of the 
distribution plan. During the learning step, the parameters ߚ௝ may be estimated using the 
least square method. The least square method consists of minimizing the difference ݁௜ =
௜ݕ − ො௜ݕ  between the values of ݕ௜  and the estimates ݕො௜ = መ଴ߚ + ௜ݔመଵߚ , where ߚመ௝  are the 
estimates for the parameters ߚ௝. Eq. (6.3) depicts the least square method:  

 min ∑ ݁௜ଶ௡௜ୀଵ . (6.3) 

For the simple case of eq. (6.2), the values of the estimates ߚመ௝ are: 

መ଴ߚ  = തݕ −  (6.4) , ݔመଵ̅ߚ
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መଵߚ  = ௜ݔ)∑ − ௜ݕ)(ݔ̅ − (തݕ
௜ݔ)∑ − ଶ(ݔ̅  , (6.5) 

where ̅ݔ and ݕത are the mean values of the respective variables. 
The resulting function ݕො௜ = መ଴ߚ + ௜ݔመଵߚ + ߳, ݅ ∈ {0,1}  of the least square method 
replaces the objective function of the supply chain optimization problem. When the 
relationship between input and output variables is not linear, alternative methods to 
linear regression and least square may be employed. Support Vector Machines (SVM) 
are often used for regression analysis. As shown in section 6.4, a SVM has been use to 
build the regression model and the types of kernel tested are: linear, polynomial of 
degree two and three, and a radial basis function. In machine learning, the Gaussian 
Process is also applied in regression analysis. In a Gaussian Process regression model, 
every input point is associated with a normally distributed random variable. Liu et al. 
[141] designed a Gaussian Process to build a surrogate model of a computationally 
expensive optimization problem. Given a small number of evaluations of the objective 
function, the authors built an approximation or a surrogate to the objective function. The 
surrogate model is less expensive to evaluate and is used to assist the evolutionary 
algorithm in finding the optimal solution to a set of test functions for optimization (e.g. 
the Ackley function [142], or the Griewank function [143]). Figure 6.2 shows a simple 
example of Gaussian Process-based regression. 
Despite being expensive to evaluate, knowing the optimization function allows the 
training set to be sampled more uniformly. A more uniform input set increases the 
effectiveness of the regression analysis and reduces the approximation error. The system 
presented in this chapter undergoes one further step: the optimization model is unknown 
and a surrogate must be built from previously designed solutions. 
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Figure 6.2 - Example of regression analysis of a continuous function. 

6.3 Approximated Optimization Model 
As anticipated, the goal of the system proposed in the current chapter is to aid the 
design of the optimization model. For the application of this system, it is assumed that 
the supply chain has been operational for some time. An automatic optimization system 
however is not in place. The supply chain has been managed manually, and some 
solutions or distribution plans exist and are available. For a supply chain optimization 
problem, the model describes how shipping products on selected routes affects the 
overall performance of the distribution plan. The model allows the costs of different 
routes to be compared such that the most inexpensive (according to some performance 
metric) may be utilized. Manually generated solutions may provide insights on the 
impact of using some routes. Arguably, if a path from a production source to a shipping 
port is overwhelmingly selected against many others, it is likely that shipping products 
on that lane is preferable or less costly, and it would also be part of the optimal solution. 
The proposed system consists of mining the solutions to discover such insights, if 
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present. The output is an approximation of the model which is then employed in the 
optimization step. 
The system consists of two main steps: 

1. Learning step: the approximated optimization model is defined from a training 
set of feasible solutions. 

2. Optimization step: the approximated model is used to aid the optimization. 
Figure 6.3 depicts a simple graphical representation of the system. The inputs of the 
first step are a basic definition of the supply network, and a set of feasible solutions with 
their respective evaluation. The supply network is constructed from the ontology 
defined by Cope [140]. The network consists of a set of suppliers, connected to 
distribution centers and customers’ locations. The output of the first step is the function 
ℎ as defined in the section 6.2 above (see equation (6.1)). Equations (6.6)-(6.9) define 
the new optimization model with the approximated objective function. 

 
Figure 6.3 - Graphical representation of the system for the approximation of the 
optimization model starting from manually generated distribution plans. 
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 ݉݅݊ ℎ(ݔ)  Objective function (6.6) 

.ݏ  .ݐ :   ∑ ≥ ௜௝ݔ  ௜ܵ௡௝ୀଵ   ∀݅ ∈ [0, ݉]. Capacity constraints (6.7) 

            ∑ ௜௝ݔ = ௝௡௜ୀଵܦ    ∀݆ ∈ [0, ݊]. Demand constraints (6.8) 

ݔ  ∈ ℕା௡×௠,  ܿ ∈ ℝା௡×௠,  ܵ ∈ ℝା௠, ܦ  ∈ ℝା௡   Domains (6.9) 

The input to the second step is the generated model and a possible solution built by the 
optimization algorithm. The optimization algorithm would then evaluate the solution 
with the generated model. 
If a partial definition of the optimization model is available, the proposed system may 
also be used to increase the accuracy of the optimization. The objective function would 
combine the information gathered from the manually generated solutions and the 
partially defined model. In the context of a global supply chain, it is reasonable to 
assume that basic transportation information is known. The transportation costs between 
nodes of the network are strictly related to the distance between them, and a function of 
it can be used as a reasonably good approximation. Moreover, companies undoubtedly 
have great control and awareness of their production costs and sale prices. With such 
information, defining a model using equations (2.1) to (2.4) is relatively effortless. 
Equation (6.10) depicts the objective function in such a scenario, where ݔ௜௝ ∈ ℕା is the 
route from production source ݅  to dealership ݆ ௜௝ܿݐ , ∈ ℝା  is the approximated 
transportation cost, ܿ݌௜ ∈ ℝା is the production cost, and ݌ݏ௝ ∈ ℝା is the sale price. 

 min ∑ ∑ ௝݌ݏ) − ௜ܿ݌) + ௜௝))௠௝ୀଵ௡௜ୀଵܿݐ  ∙  ௜௝, (6.10)ݔ
The model learnt from the actual solutions provides the missing information (e.g. 
inventory costs, international factors, etc.). Section 6.4 presents the results of numerical 
experiments carried out on a problem of profit maximization. Two sets of experiments 
have been conducted. In the first set, the only information used for the optimization is 
that gathered from the solutions in the training set. The second set uses a simple 
approximation of transportation costs, and actual production costs and sale prices. The 
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basic optimization model from equation (6.10) is employed to add more solutions to the 
training set. Additional solutions are generated through the Monte Carlo Sampling 
(MCS) strategy.  
The main limitations of the system are in the diversity of the solutions in the training set 
and the quality of the regression model. If ℎ does not accurately represent the search 
space, the solution produced by the optimization process are likely to be of low quality. 
However, the system is not intended to completely replace the use of a manually 
designed optimization model. The purpose is to reduce the time required to produce an 
exact optimization model, or possibly demonstrate the ability of an optimization 
algorithm on a specific problem without the need for the step of first defining the 
optimization model. 

6.4 Numerical Experiments 
The proposed system has been tested on the problem of profit maximization as 
described in section 3.2 and on two sets of experiments. The remaining optimization 
problems addressed in this work are not considered, such as transportation time/cost 
minimization, and resilience maximization. If basic transportation information (i.e. 
transportation distances/time, production costs and sale prices) are available, then 
designing the optimization models should be quite effortless. The models defined by the 
equations (3.1)-(3.4) and (3.11)-(3.14) are not very different from the standard supply 
chain optimization model in equations (2.1)-(2.4). Collecting accurate transportation 
information would be most effective way to improve the accuracy of the model. 
For the first set of experiments, the model used is only generated from the application of 
regression analysis to the training set of historical solutions. No additional information 
about the supply chain is considered. The model is as defined by equations (6.6)-(6.9). 
In the second set, the training set is extended with additional distribution plans. The 
distribution plans have been generated using a Monte Carlo Sampling (MCS) strategy. 
The function used to evaluate and classify the new solutions is defined in equation 
(6.10). 
The datasets used are again the one provided by Caterpillar and the two randomly 
generated ones. They are published in [4], [5], and [6]. These datasets have demand 
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values for one year only. The training set for the regression analysis is made up of 
solutions for 8 months of the year (i.e. 66% of the 12 months). In order to increase the 
size of the training set, a new dataset has been generated with 10 times as many months. 
The dataset may be interpreted as covering the last ten years or as ten different products. 
This dataset has been publish on figshare in [7]. 
For the regression analysis, it has been adopted the machine learning framework Weka 
[136]. Weka provides several different regression algorithm implementations. The 
tested regression algorithms are as follows: 

 Linear Regression (LR). 
 Support Vector Machine with linear kernel (SVR). 
 Support Vector Machine with polynomial kernel of degree 2 (SVR 2). 
 Support Vector Machine with polynomial kernel of degree 3 (SVR 3). 
 Support Vector Machine with a Radial Basis Function kernel (SVR RBF). 
 Gaussian Process with linear kernel (GP). 
 Gaussian Process with polynomial kernel of degree 2 (GP 2). 
 Gaussian Process with polynomial kernel of degree 3 (GP 3). 
 Gaussian Process with a Radial Basis Function kernel (GP RBF). 

The performance of such regression algorithms has been assessed through a 10-fold 
cross validation scheme.  
Table 6.1 summarizes the accuracy of the regression analysis. The regression algorithm 
used to create the approximated model is the Gaussian Process with the Radial Basis 
Function (RBF) kernel as designed by B. Liu et al. [141]. Only one algorithm has been 
selected to reduce the overhead on the runtime requirements of the optimization as low 
as possible. 
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Table 6.1 – Regression analysis accuracy. The regression algorithms are Linear 
Regression (LR), Support Vector Machine for Regression with linear kernel 
(SVR), with polynomial kernel of degree 2 (SVR 2) and 3 (SVR) and a Radial Basis 
Function kernel (SVR RBF), and a Gaussian Process with linear kernel (GP), 
polynomial kernel of degree 2 (GP 2) and 3 (GP 3), and a Radial Basis Function 
kernel (GP RBF). Each measurement is the result of a 10-fold cross validation on 
the training set. 

 

LR (%) SVR (%) SVR 2 (%) SVR 3 (%) SVR RBF (%) GP (%) GP 2 (%) GP 3 (%) GP RBF (%) 
Dataset [4] 97.94% 97.70% 95.82% 92.93% 94.74% 93.23% 94.16% 93.37% 97.96% 
Dataset [5] 97.19% 98.25% 97.23% 95.66% 94.38% 92.26% 94.43% 95.09% 98.26% 
Dataset [6] 97.98% 98.16% 97.20% 89.68% 94.85% 93.15% 95.60% 95.55% 98.38% 
Dataset [7] 98.41% 98.86% 98.84% 98.74% 94.87% 98.66% 98.70% 98.50% 98.83% 

The optimization algorithm employed is the Ant Colony System as defined in section 
3.5. The configuration used is the same as discussed in section 3.5 with the only 
exception being the number of iterations, which was increased to five thousand. More 
iterations during the colony search are allowed and a larger number of random moves 
are granted. Since the available information is less accurate, the optimization process 
should be allowed to explore a larger portion of the search space. 
Table 6.2 reports the results of the optimization performed on the four datasets. The first 
row for each dataset named MOD-CAT corresponds to the optimization of Caterpillar’s 
models as defined in chapter 3. MOD-70 refers to the simplified model for the profit 
maximization problem as defined by equation (6.10). MOD-61 stands for the model 
generated by the application of the regression analysis only on the training set as 
defined by equation (6.1). MOD-70-EXT refers to the experiments with the training set 
extended through sampling. Despite the regression being accurate, the solutions of the 
optimization from models MOD-61 and MOD-70-EXT are of lower quality than the 
original optimization. Moreover, the solutions appear to be close to the ones produce by 
the base line MOD-70. These results are currently being investigated. As future work, 
the objective is to improve the solutions produced by MOD-61 and MOD-70-EXT. for 
The Δ difference in Table 6.2 both the optimization performance and the runtime is 
calculated as ቀ|௫ೌି௫೐|

௫೐ ቁ ∗ 100, where ݔ௘ is the expected value (the result of the original 
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optimization) and ݔ௔ is the actual one (the result of the proposed algorithm). Figure 6.4 
shows the results of the regression analysis for the dataset in [4]. The regression 
algorithm used is the Gaussian Process with a Radial Basis Function as kernel. Figure 
6.5 shows the results of the regression on the extended training set created in MOD-70-
EXT. Figure 6.6 shows the results for the regression analysis for the dataset in [7]. 
Table 6.2 – Results of the optimization on the four problems. The first row for each 
dataset named MOD-CAT corresponds to the optimization of the Caterpillar’s 
models as defined in chapter 3. MOD-70 refers to the simplified model for the 
profit maximization problem defined by equation (6.10). MOD-61 stands for the 
model generated by the only application of the regression analysis on the training 
set defined by equation (6.1). MOD-70-EXT refers to the experiments with the 
training set extended through sampling. The units for “Optimization 
Performance” column depend on the objective type. 

Optimization Performance ઢ Opt. Performance (%) Runtime (s) ઢ runtime (%) 
Dataset [4] MOD-CAT 101,247,174.47 - 59.00 - 

 
MOD-70 82,182,432.18 18.830% 62 5.09% 

 
MOD-61 83,077,978.53 17.945% 1672 2733.90% 

 
MOD-70-EXT 83,945,386.77 17.089% 1838 3015.25% 

Dataset [5] MOD-CAT 147,373,460.30 - 81.5 - 

 
MOD-70 108,276,791.06 26.529% 66 19.02% 

 
MOD-61 112,098,498.83 23.936% 1681 1962.58% 

 
MOD-70-EXT 116,967,007.75 20.632% 1835 2151.53% 

Dataset [6] MOD-CAT 861,800,648.54 - 104.5 - 

 
MOD-70 582,936,900.88 32.358% 98 6.22% 

 
MOD-61 541,216,236.52 37.199% 2064 1875.12% 

 
MOD-70-EXT 574,853,463.70 33.296% 2283 2084.69% 

Dataset [7] MOD-CAT 1,867,248,467.67 - 3458 - 

 
MOD-70 1,031,973,384.32 44.733% 2394 30.77% 

 
MOD-61 961,549,461.85 48.505% 18652 439.39% 

 
MOD-70-EXT 961,892,766.28 48.486% 21520 522.33% 
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Figure 6.4 – Results of the regression on the dataset in [4]. The regression 
algorithm used to make the prediction is the Gaussian Process with a Radial Basis 
Function kernel. 

 
Figure 6.5 - Results of the regression on the dataset in [4]. The regression 
algorithm used to make the prediction is the Gaussian Process with a Radial Basis 
Function kernel. The training and test sets have been extended with the sampling 
of solutions generated with a basic supply chain optimization model. The sampling 
was performed according to Monte Carlo sampling strategy. 
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Figure 6.6 - Results of the regression on the dataset in [7]. The regression 
algorithm used to make the prediction is the Gaussian Process with a Radial Basis 
Function kernel. 
Proving the effectiveness of the proposed system in reducing the effort of designing an 
optimization model is not trivial.   



Global Supply Chain Optimization: a Machine Learning Perspective to Improve Caterpillar’s Logistics 
Operations 

 

196  July 2016 
 

Table 6.3 reports the resources required in developing the optimization system for 
Caterpillar. The requirements are measure in term of personnel involved, development 
time and man-week. The values are compared with the resources required in 
implementing the approach described in this chapter. Such data are based on the current 
project experience and might vary in other context. It is estimated that the application of 
the proposed algorithm could have saved almost 1,000 man-weeks to complete the 
project. 
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Table 6.3 – Report of the resources required to develop an optimization process. 
The requirements are measured in term of development time and personnel 
involved. The data for the regular optimization are from the current project 
experience of developing the system for Caterpillar. The data for the proposed 
system are from the development of the algorithm discussed in this chapter. 

Task Development time Personnel involved Man-week ઢ man-week 
Regular Optimization     
Data collection 6 months 2 52 weeks - 
Model definition 1.5 years 10+ 780 weeks - 
Algorithm implementation 1 years 3 156 weeks - 
Proposed System 

    
Data collection 2 weeks 2 4 weeks 48 weeks 
Training set collection 2 weeks 2 4 weeks 776 weeks 
Algorithm implementation 3 months 1 12 weeks 144 weeks 
Overall improvement 96 fewer weeks 10 fewer people 968 fewer man-weeks 

From the description above, it is possible however to imagine a general-purpose 
software system capable of taking as input a set of tables describing distribution plans 
as a training set, and the basic production information (i.e. sale prices and production 
costs). The software would implement the regression analysis, a general supply chain 
optimization model, and the Ant Colony System. Given a new set of demand, the 
software would be able to find a high quality distribution plan in a matter of minutes. 
Such software is independent of the supply chain analysed and, therefore, its application 
should be effortless and efficient. 

6.5 Summary 
The aim of this work was to reduce the effort of designing an optimization model. 
While developing the optimization system for Caterpillar’s Global Supply Chain, it 
appeared abundantly clear that there is a shortage of tools to aid in the design of an 
optimization model. The task is mostly performed manually and requires a significant 
involvement of personnel who have at least an operations research and management 
engineering background. In the last couple of decades, several models for different 
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types of supply chains have been proposed. Nevertheless, even adapting such models to 
the specific case at hand requires significant knowledge of the business and substantial 
development time, effort, and experience.  
This chapter proposes a system capable of automatically instantiating a generic supply 
chain model by “mining” the knowledge in the business data. It is assumed that the 
supply chain has been operational for some time and it has been managed manually. 
Regression analysis is used to approximate the objective function of the optimization 
model. The training data were a set of distribution plans and their performance 
measurement. The result of the regression analysis is a function from a feasible 
distribution plan to its performance value, and it may be used to evaluate new unseen 
distribution plans. 
The system has been tested on Caterpillar’s Supply Chain optimization problem. The 
Ant Colony System is used as previously defined to find near-to-optimum solutions. 
The regression analysis produced accurate objective functions. However, the 
optimization when using such objective function did not produce solutions of similar 
quality to the original ones. Generic and easy-to-retrieve information were used to build 
a basic supply chain optimization model. Such a model sets the baseline. All the 
solutions found by the proposed system are close to the baseline. Ideally, the system 
should find solutions of much higher quality. These results suggest that using a generic 
optimization model might be more effective than the system proposed. The reasons why 
the optimization step does not perform as expected are being investigated. The high 
accuracy of the regression analysis would suggest different results. The intent is to 
analyze the search space defined by the approximated model. It is necessary to perform 
a more accurate comparison between the original model and the one result of the 
regression analysis. 
As additional future work, it will be investigated the application of this system to 
different types of optimization problems to gain a better understanding of the 
effectiveness of the approach. Moreover, it would be important to formalize the kind of 
information readily available in different companies, data that could be employed to 
automate the process of model design. 
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The project industrial partners at Caterpillar expressed an interest in the system 
proposed. They suggested that such an approach could also be useful to measure the 
quality of the actual designed model. During the development process, they encountered 
a problem with the data and the information provided by other teams at Caterpillar. In 
one test case, the demand figures and sale prices available were significantly skewed 
from the real ones. They belonged to a different product than the one stated. When the 
results of the optimization were presented, they did not match the expectation of the 
team responsible for managing the product. The solutions were actually of low quality. 
The proposed system could be used to measure the accuracy of the designed model. If 
the solutions of the optimization are significantly different from the past distribution 
plans, it could mean the presence of a mistake in either the data or the model definition. 
As future work, this application will be investigated and a test case will be created. 
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7 CONCLUSIONS AND FUTURE 
WORK 

The primary aim of this work was to increase the level of automation when developing 
an optimization system. The project focused specifically on the problem of supply chain 
optimization. Three key areas have been identified where significant improvement 
could be made. A set of strategies have been developed to reduce the required expert 
interaction to complete tasks in such areas. The three main aspects of the problem that 
have been considered are as follows: 

1. Standardization of Multi-Objective Optimization techniques and investigation of 
the relationship between MOO strategies and problem instances. 

2. Improvement of the optimization algorithm usability via the definition of an 
automatic termination condition tuning strategy. 

3. Automatization of the task of optimization model design. 
The methods developed to achieve the above mentioned objectives have been adopted 
to implement an optimization system for the problem of Caterpillar’s global supply 
chain optimization. All the algorithms have been tested on datasets provided by the 
logistics department of Caterpillar. 
The following sections outline the achievements of this work. A distinction is made 
between scientific results and achievements for the company. 
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7.1 Scientific Results 
Of great interest to both research and the industrial community is multi-objective 
optimization. Multi-objective optimization allows the implementation of a more 
significant and realistic analysis. However, most proposed methods are very specific to 
either the problem at hand or to the optimization algorithm used. As for the first 
contribution of this thesis, a review of the work done in the area of multi-objective 
optimization has been presented and four general-purpose strategies identified. Such 
strategies have been described in great details. The review provides more 
standardization in the area of multi-objective optimization. Experiments have been run 
on Caterpillar’s dataset and two additional test cases. The discussion of the results 
outlines insights about the relationship between MOO strategies and problem instances. 
The analysis has aided in the development of more accurate optimization models. This 
work will serve as a reference on multi-objective methods for real-world ‘industrial’ 
supply chain optimization problems. 
A significant limitation of meta-heuristic algorithms such as the Ant Colony System is 
their large number of parameters. As for the second main contribution of this work, a 
novel algorithm has been presented to improve the usability of the Ant Colony System 
when optimizing the problem of supply chain. The proposed algorithm is based on a 
machine learning approach and consists of learning the behaviour of the optimization 
process on a set of test instances. The gathered knowledge is then used to set the best 
termination condition for an unseen instance. This approach was capable of significantly 
reducing the time required to find high quality solutions. In most experiments, the 
runtime of the optimization system has been reduced by 60% or more. The algorithm 
improves the usability of the ACS as well by automatically tuning one of its most 
important parameters. After a step of training, applying the optimization algorithm to 
different instances requires less effort as the algorithm will partially adapt to the new 
problems. This algorithm will serve as an approach to utilize machine learning-based 
approaches to improve optimization algorithms usability. 
Despite the problem of supply chain optimization being well-established, the 
development of the system for Caterpillar highlighted how much effort is still required 
to deploy an optimization system on a new instance of the problem. In the final part of 
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this work, a system is proposed to aid the design of optimization models and therefore 
reduce the effort and resources required to implement an optimization process. The 
system is again based on a machine learning approach. The objective is to automatically 
create good approximation of Caterpillar’s model, starting from available information. 
The system performs quite well, however, it is weaker than the initial analysis would 
suggest. In particular, the approximated models seem to be very close to the originals. 
However, when they are employed in the optimization, the solutions found are closer to 
the baseline rather than the target. As the baseline is from a generic supply chain model, 
it is reasonable to argue that the contribution of this new system is not meaningful. 
Nevertheless, the idea is quite promising and it was well received by the industrial 
partners. There is quite a remarkable potential for improving the automatization in 
implementing an optimization process. It has been estimated that the application of the 
proposed algorithm could have saved almost 1,000 man-weeks to complete the project. 
As the first step to address this challenge, the discrepancy between the regression 
accuracy and the optimization results is being investigated. 

7.2 Industrial Results 
A final contribution of this thesis is from an industrial stand point and it is the 
development of an optimization system for Caterpillar’s global supply chain. This thesis 
has described the process of developing the optimization system and has highlighted the 
challenges and research opportunities identified while undertaking this work. The most 
noticeable set of opportunities are concerned with the definition of the optimization 
models. It has been pointed out how most of the work proposed in this area has 
limitations and exhibits undesirable trends. Throughout the definition of Caterpillar’s 
model, it has been explained how such limitations have been addressed and overcame. 
The model for Caterpillar’s scenario may well work as a reference for real-world global 
supply chain optimization. 
The designed optimization model has been proven to accurately describe Caterpillar’s 
logistics operation and the optimization algorithm to find high quality distribution plans 
in a fairly short time. The system has been deployed into Caterpillar’s production 
environment and it is now used to design the distribution plans of more than 7,000 
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products. Some internal testing has shown that the system improves Caterpillar’s 
marginal profit on such products of a factor by 4.6% on average. 

7.3 Future Work 
Throughout this work, possible future work and research directions have been suggested 
and discussed. 
Regarding the multi-objective analysis, the bias towards one specific multi-objective 
method highlighted in the review is probably due to the availability of software. As 
future work, it would be interesting to extend the literature review into other areas of 
operational research and to include information relating to the existing optimization 
tools. Moreover, a theoretical analysis of the characteristics of the presented strategies is 
desirable. A deeper understanding is likely to expose the reasons why and under what 
circumstances some strategies should be preferred over others. 
The method proposed for improving the computational requirements of the Ant Colony 
System yielded compelling results. It would be of interest to apply the same principal to 
the automatic tuning of other parameters. Moreover, it would be useful to investigate 
more features of the problem with the goal of understanding which factors mostly affect 
the performance of the optimization process. 
Finally, more tools to aid in the design and development of the optimization processes 
should be proposed. Increasing the standardization and automatization of this task 
would be beneficial to all. For that purpose, it would be useful to formalize the different 
scenarios and the information available for the application of the concept of automatic 
model definition. 
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APPENDIX A: CATERPILLAR’S DATASET 
The following sections provide a preview of the datasets published in [4], [5], [6], and 
[7]. The main information of the datasets may be divided in the following sections: 

1. Demand figures and sales prices. 
2. Machine production details. 
3. Components production details. 
4. Transportation times and costs. 

Each section shows the main tables with their respective headers and briefly describes 
the type of information contain in them. The actual data published is formatted as XML 
files. However, in order to improve visualization and readability, the data are visualized 
as regular tables. 
The following data are reported here for visualization purposes only and may vary from 
the original datasets. For the actual data please see [4], [5], [6], and [7]. 

Demand Figures and Sales Prices 
Demand figures define the objective of the optimization. They state how much product 
must be produced and then shipped to the customers. Table 9.1 depicts the demand 
figures for a subset of dealerships for the months from January 2015 to June 2015. Sales 
prices provide information to estimate the profit of a given distribution plan. Table 9.2 
shows the sales prices for the five main regions of operation. Being a global supply 
chain, international trade factors also affect the profit of the distribution plan. In 
Caterpillar’s model, tariff costs are considered. Table 9.3 defines the percentage of sale 
price to be paid as tariff tax. 
Table 9.1 – Demand figures. 

Region Dealer Code Jan-15 Feb-15 Mar-15 Apr-15 May-15 Jun-15 
ADSD-N B010 0 5 5 12 25 18 
ADSD-N B190 3 5 13 14 25 17 
ADSD-N B030 3 5 13 14 21 19 
ADSD-N B150 3 5 13 14 18 19 
ADSD-N B160 3 5 11 14 17 20 
ADSD-N B170 4 5 10 14 17 17 
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ADSD-N B270 4 5 12 13 15 17 
ADSD-N B290 5 5 12 12 16 20 
ADSD-N B330 4 5 12 18 18 19 
ADSD-N B350 5 5 13 16 21 19 
ADSD-N B370 5 6 11 13 18 21 

 
Table 9.2 – Regional sales prices. 

Region Price 
APD 224,115 
ADSD-N 186,390 
ADSD-S 189,079 
CJL 195,116 
EAME 169,783 

 
Table 9.3 – Tariff costs (part of international trade factors). 

Demand Country Source-1 Source-2 Source-3 Source-4 
B150 USA 0.09 0.09 0.09 0.09 
B180 USA 0.05 0.05 0.05 0.05 
B170 USA 0.05 0.05 0.05 0.05 
B190 USA 0.05 0.05 0.05 0.05 
B370 USA 0 0 0 0 
B420 USA 0 0 0 0 
B37A USA 0 0 0 0 
B01C USA 0 0 0 0 
B010 USA 0.038 0.038 0.038 0.038 
D020 USA 0 0 0 0 
D070 USA 0.05 0.05 0.05 0.05 

 

Machine Production Details 
Production capabilities of a supply chain may be summarized by production capacity 
and costs. Table 9.4 shows the production costs and capacities for the main production 
factories. Production factories also have a fixed cost, which is independent from the 
amount of product actually produced. In Caterpillar’s supply chain, production facilities 
for the final product are practically assembly points, where components are put together 
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the make the machine. Table 9.5 provides the additional information of production. 
Assembly Planned Days refers to the estimate number of days required to assemble the 
given product. In order to increase resilience, the standard deviation of the assembly 
days is also considered as Variability. Fixed costs of operation of the factories are 
indicated in the rows Additional Variable Costs and Period Costs. 
Table 9.4 – Final products production costs and capacities for the active 
production factories. 

Source ID Product Cost Production Capacity 
source-6 163,786.26 1250 
source-17 117,758.26 80 
source-21 150,132.16 95 

 
Table 9.5 – Additional production factories and assembly points details. 

Source ID Source-6 Source-17 Source-21 
Assembly Planned Days 7 3 3 
Variability (d) 3 5 5 
Additional Variable Costs (per machine)  $   57,585.50   $   19,604.70   $   40,547.20  
Period Cost Basis  $ 966,268.82   $ 351,843.59   $ 400,348.01  

Components Production Details 
Production capacity and costs of components also contribute to the production 
capabilities of a supply chain. Table 9.6 and Table 9.7 list respectively the production 
costs and capacity for each component and for each production factory. In Caterpillar’s 
supply chain, a typical product is large enough that it cannot be shipped together with 
other products or parts. Components however are grouped together by physical 
characteristics and shipped into containers or trucks. Determining how to group 
components is itself an optimization problem and its solution has a significant effect on 
the transportation costs. Physical characteristics of components are fundamental for 
shipment planning. Table 9.8 summarizes the main physical characteristics of the 
components and Table 9.9 describes the preferred transportation modes for each 
component. 
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Table 9.6 – Main components production costs. 
Component ID Source-1 Source-2 Source-3 Source-4 Source-5 Source-6 

0 11,995.6 5,754.9 1,169.3 5,746.1 7,449.1 487.5 
1 971.2 384 596.1 363.6 578.2 169.1 
2 240.1 656.7 262.8 417.8 387.2 334.8 
3 15.8 14.2 23.9 16.9 10.4 5.1 
4 323.8 224.3 256.4 103 7.2 102 
5 13 8.2 12.8 5.6 12.9 1.2 
6 4.9 21.4 3.8 6.8 0.4 6.9 
7 58.4 14.8 18.7 19.4 30.5 26.4 
8 226.5 375.5 35.1 111.8 83.4 0.7 
9 311.6 131.4 172.5 73.2 22.2 47.2 

 
Table 9.7 – Main components production capacity. 

Component ID Source-1 Source-2 Source-3 Source-4 Source-5 Source-6 
0 0 0 0 0 0 75,300 
1 0 0 0 0 0 53,698 
2 0 0 0 0 0 67,210 
3 0 0 0 0 0 75,646 
4 0 0 0 0 0 72,320 
5 0 0 0 0 0 78,574 
6 0 0 0 0 0 77,181 
7 0 0 0 0 0 68,556 
8 0 0 85,362 0 0 0 
9 0 0 0 0 0 0 

 
Table 9.8 – Main components physical characteristics. 

Component ID Quantity Length (m) Width (m) Height (m) Cube (m3) Weight (kg) 
0 2 1 1 1 1 1 
1 2 1 1 1 1 1 
2 4 1 1 1 1 1 
3 5 1 1 1 1 1 
4 1 1 1 1 1 1 
5 3 1 1 1 1 1 
6 4 1 1 1 1 1 
7 1 1 1 1 1 1 
8 3 1 1 1 1 1 
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9 3 1 1 1 1 1 
 
Table 9.9 – Main components transportation mode and container shipping details. 

Component ID Cube per container Weight per container 
Ocean transportation type 

Land transportation type 
0 14 18 40ft Van 
1 6 12 40ft Van 
2 4 40 40ft Van 
3 15 5 40ft Van 
4 3 6 40ft Van 
5 30 27 40ft Van 
6 32 12 40ft Van 
7 9 9 40ft Van 
8 24 24 40ft Van 
9 18 6 40ft Van 

Transportation Times and Costs 
Transportation times and costs are typically defined as a function of transportation 
mode and route characteristics. Caterpillar’s products are moved on the supply chain via 
trucks and freighter ships. If physical characteristics of products allow it and the 
economics make sense, some parts or machines are shipped on planes and train. 
Machines are moved on flatbeds when on land and shipped on what is called “roll-on-
roll-off” (RoRo) freighter ships when shipping across the ocean. Whenever possible, 
components are grouped together and shipped in vans on land and containers on 
freights. 
Caterpillar’s global supply chain is made of 7 main layers. However, the layers that are 
used to ship components overlap with the layers for the final machines. In practice, 
there are only 4 layers for which transportation data is needed for: 

1. Direct layer from production source to dealership. 
2. Layer from production source to outbound shipping port. 
3. Layer from outbound to inbound shipping port. 
4. And layer from inbound shipping port to dealership. 
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Table 9.10, Table 9.11, Table 9.12, and Table 9.13 define the transportation times for 
the layers respectively. Table 9.14, Table 9.15, Table 9.16, and Table 9.17 describe the 
transportation costs. 
Table 9.10 – Transportation times from production source to dealership location. 

Destination Node Source-1 Source-2 Source-3 Source-4 Source-5 Source-6 
B010 4.06974 7.62162 5.22379 8.24551 4.17566 3.78236 
B190 10.854 6.42197 9.0116 8.82454 7.83565 5.75561 
B030 5.61323 7.64382 7.70041 9.85946 8.96738 3.73861 
B150 5.30468 5.64883 2.15986 7.48522 4.2821 8.66845 
B160 3.74264 10.0067 10.1218 7.94127 8.80864 3.26534 
B170 8.78881 3.47849 4.86383 1.50706 10.4481 6.49515 
B270 3.90451 7.50545 4.59451 1.59816 2.23761 10.0117 
B290 7.55878 6.42598 4.0699 1.58572 9.15707 5.77437 
B330 3.70067 4.68993 1.43263 6.91886 2.58046 3.16803 
B350 7.64162 2.55204 7.91842 3.17009 2.18223 6.32986 

 
Table 9.11 – Transportation times from production factories to outbound shipping 
ports. 

Destination Node Source-1 Source-2 Source-3 Source-4 Source-5 Source-6 
N1 3.54507 1.89881 3.46196 3.6225 4.6748 7.56861 
N2 7.92096 2.36812 2.94542 6.57457 2.72099 2.26917 
N3 7.68093 1.96888 4.5111 3.99685 7.88826 4.69922 
N4 1.55081 7.35364 4.56697 3.25239 7.52668 2.06474 
N5 6.74794 6.12468 4.86673 3.47597 6.60938 7.49959 
N6 3.01729 4.21982 8.10721 3.21914 6.44154 8.02586 
N7 -1 -1 -1 -1 -1 -1 
N8 -1 -1 -1 -1 -1 -1 
N9 -1 -1 -1 -1 -1 -1 
N10 -1 -1 -1 -1 -1 -1 

 
Table 9.12 – Transportation times from outbound to inbound shipping ports. 

Destination Node N1 N2 N3 N4 N5 N6 
N1 14.8033 102.027 166.635 33.8044 65.4118 169.687 
N2 31.5665 21.2685 105.724 154.703 32.176 16.3792 
N3 78.9419 163.614 39.6482 149.079 155.004 83.3308 
N4 20.0546 49.1769 87.5915 108.801 105.294 27.0837 
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N5 55.8399 171.998 131.226 98.9054 113.9 64.0896 
N6 11.1455 175.661 38.4701 72.723 91.5475 159.359 
N7 85.7257 52.8707 150.645 175.93 121.156 45.3769 
N8 14.5901 87.9096 8.49463 91.3213 58.6445 89.2526 
N9 38.783 129.446 98.2195 59.6631 50.3032 150.861 
N10 126.83 143.187 67.6064 62.8232 102.514 158.318 

 
Table 9.13 – Transportation times from inbound shipping ports to dealerships 
locations. 

Destination Node N1 N2 N3 N4 N5 N6 
B010 1.49727 4.93789 3.809 3.82434 2.25245 4.95817 
B190 3.03376 9.16689 5.76605 4.43143 4.13211 7.58552 
B030 4.308 3.23758 5.10043 5.0796 9.01721 5.73284 
B150 1.85051 8.9028 4.73734 4.89889 1.83582 8.1388 
B160 7.75559 5.59983 4.57858 8.53952 5.83781 4.29524 
B170 9.52327 8.40648 2.12765 9.21347 5.15428 2.56987 
B270 8.5371 4.74001 8.45189 4.98876 4.05393 6.81623 
B290 3.29554 9.4528 2.5517 6.88188 6.45237 10.3665 
B330 3.31652 5.37618 2.19659 3.78417 6.70349 5.83165 
B350 3.15408 7.05156 4.52 4.26511 8.22228 2.30685 

 
Table 9.14 – Transportation costs from production sources to dealership locations. 

Destination Node Source-1 Source-2 Source-3 Source-4 Source-5 Source-6 
B010 4525.11 2477.87 2082.75 3806.33 1230.48 3440.58 
B190 2615.84 2913.6 4567.71 3418.09 5084.96 1689.55 
B030 2140.6 3990.44 4035.01 4304.07 2536.83 3057.85 
B150 4077.7 1498.25 4240.69 842.559 5018.36 2246.05 
B160 4274.79 4203.25 1946.98 4401.34 1526.97 2453.65 
B170 4147.33 953.298 1209.04 1234.3 2499.7 4634.01 
B270 1655.93 2679.12 4810.75 4764.76 1056.84 3973.08 
B290 1803.85 3436.87 2734.25 2781.27 2319.63 1113.65 
B330 3624.87 3734.98 2266.81 3580.34 1575.27 4622.51 
B350 4684 1944.2 758.678 4030.65 2497.16 3620.19 

 
Table 9.15 – Transportation costs from production factories to outbound shipping 
ports. 
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Destination Node Source-1 Source-2 Source-3 Source-4 Source-5 Source-6 
N1 2474.16 3506.58 2936.73 2673.87 942.473 1548.29 
N2 1619.03 2601.07 1022.76 1969.34 2089.75 844.754 
N3 1107.89 2814.62 1464.58 1341.07 1731.05 1775.82 
N4 2587.27 1238.36 3139.38 3355.82 782.082 1167.48 
N5 2413.59 1471.18 3326.31 2180.23 1908.42 2562.81 
N6 2494.21 2019.89 3606.71 3251.1 817.219 2289.99 
N7 -1 -1 -1 -1 -1 -1 
N8 -1 -1 -1 -1 -1 -1 
N9 -1 -1 -1 -1 -1 -1 
N10 -1 -1 -1 -1 -1 -1 

 
Table 9.16 – Transportation costs from outbound to inbound shipping ports. 

Destination Node N1 N2 N3 N4 N5 N6 
N1 114.655 14.8262 66.2312 151.061 30.9634 137.788 
N2 148.145 58.0719 144.062 88.6322 41.3443 15.8672 
N3 28.9933 12.6543 104.017 110.15 127.973 80.5178 
N4 14.0721 113.599 24.6152 98.3273 59.2554 100.429 
N5 118.587 29.61 77.1391 61.6619 127.996 23.0622 
N6 152.009 60.9181 6.60373 123.202 121.055 130.809 
N7 36.0686 65.1575 113.201 83.6919 128.993 23.5319 
N8 115.196 19.8571 81.5588 81.8817 18.618 71.9524 
N9 12.7877 26.9961 16.7746 141.845 112.906 65.247 
N10 105.066 29.6316 76.2439 150.284 114.488 42.6324 

 
Table 9.17 – Transportation costs from inbound shipping ports to dealerships 
locations. 

Destination Node N1 N2 N3 N4 N5 N6 
B010 2610.38 2302.85 2907.72 1053.72 5015.88 4220.11 
B190 3853.59 1822.57 3767.97 4913.58 4585.84 4004.53 
B030 1451.9 3368.38 4778.63 3261.84 3303.1 4492.29 
B150 4956.82 4419.19 4374.96 3253.17 3738.6 1918.83 
B160 1209.74 2971.37 3076.7 3116.18 2011.79 4892.83 
B170 3658.2 2953.2 3663.75 1990.42 3713.24 1485.73 
B270 1853.54 1933.13 2381.86 1853.35 1001.1 771.394 
B290 3674.54 3299.5 1938.32 5032.48 1418.62 2778.26 
B330 3669.45 1742.36 1483.05 4456.75 4564.01 4756.18 
B350 4602.37 4731.03 1556 3605.13 2914.83 4338.44 
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