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Abstract

The thermoacoustic heat engine (TAHE) is a type of prime mover that converts thermal power to acoustic
power. It is composed of two heat exchangers (the devices heat source and sink), some kind of porous
medium where the conversion of power takes place and a tube that houses the acoustic wave produced. Its
simple design and the fact that it is one of a few prime movers that do not require moving parts make such
a device an attractive alternative for many practical applications. The acoustic power produced by the
TAHE can be used to generate electricity, drive a heat pump or a refrigeration system. Although the
geometry of the TAHE is simple, the behavior of the engine is complex with 30+ design parameters that
affect the performance of the device; therefore, designing such a device remains a significant challenge. In
this work, a radical design methodology using reinforcement learning (RL) is employed for the design and
optimization of a TAHE for the first time. Reinforcement learning is a machine learning technique that
allows optimization by specifying ‘good” and ‘bad” behavior using a simple reward scheme r. Although its
framework is simple, it has proved to be a very powerful tool in solving a wide range of complex decision-
making/optimization problems. The RL technique employed by the agent in this work is known as
Q-learning. Preliminary results have shown the potential of the RL technique to solve this type of complex
design problem, as the RL agent was able to figure out the correct configuration of components that
would create positive acoustic power output. The learning agent was able to create a design that yielded an
acoustic power output of 643.31 W with a thermal efficiency of 3.29%. It is eventually hoped that with
increased understanding of the design problem, in terms of the RL framework, it will be possible to
ultimately create an autonomous RL agent for the design and optimization of complex TAHEs with
minimal predefined conditions/restrictions.
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process of biscuit baking results in a certain quantity of gas
mixture in the baking oven to be removed, using an extractor

1.1 Background problem
In recent years, there has been a renewed interest in sustainable
energy technologies, due to new legislation, continued depend-
ency on fossil fuels and concerns of the negative impact on the
environment. One such application of sustainable energy tech-
nologies is in manufacturing processes, which result in waste
heat, such as chlorine production in the chemical industry, alu-
minum melting in the materials industry and baking in the food
industry [1].

In this particular work, the utilization of waste heat in the food
manufacturing baking process is considered. The manufacturing
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fan where it is expelled into the atmosphere in an exhaust gas
flue. It is this waste heat from the expelled gas mixture that we
are attempting to exploit.

When considering various sustainable energy technologies to
design for the application of waste heat recovery in food manu-
facturing, it is necessary to consider various issues: (1) the geo-
metric limitations of installing such a system in a factory; (2)
effective utilization of low-temperature waste heat and (3) the cost
of installation and maintenance. As a result of all these considera-
tions, the thermoacoustic heat engine (TAHE) was proposed as a
heat recovery technology for this particular application. A TAHE
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is a type of prime mover that converts thermal power to acoustic
power (a type of mechanical power). Unlike other heat recovery
technologies for low-temperature waste heat utilization (i.e.,
Organic Rankine cycle, Kalina cycle), TAHEs have been known to
be designed as small as 650 mm in length and 220 mm in height
[2], thus providing greater flexibility with regard to where it can
be installed into a pre-existing system. Other advantages include
‘no moving parts, no exotic materials, and no close tolerances or
critical dimensions [3], making it an attractive heat recovery tech-
nology for the food-manufacturing industry, as it will require low
initial investment and low maintenance. It can also be used to
drive a heat pump, refrigeration system or for electricity gener-
ation using a transducer.

The TAHE at its most simplistic is composed of two heat
exchangers that is the interface between the heat source and sink
and the working fluid, some kind of porous medium where the
conversion of energy takes place and a tube that houses the acous-
tic power produced as shown in Figure 1. The key mechanism for
energy conversion from thermal to acoustic is the thermoacoustic
effect, occurring in the TAHE when certain conditions are satis-
fied. A compressible fluid is used as the working fluid within the
engine, which in most cases is an inert gas such as helium.
Acoustic waves occur naturally as a result of a temperature gradi-
ent across the stack as heat transfer occurs between the compress-
ible fluid and a solid boundary (stack). The transfer of thermal
energy to and from the compressible fluid and the stack creates
local changes of pressure and velocity in the working fluid. When
there is the correct pressure—velocity phasing, acoustic oscillations
appear spontaneously creating an acoustic wave. Depending on
the pressure—velocity phasing, either a standing wave or a travel-
ing wave is created.

Thermoacoustics is an emerging field, and previous research
has mostly concentrated on a better understanding of the behav-
ior of such devices, and effective design solutions in an attempt
to increase its efficiency. Attempts have been made in the last

two decades to realize real-life applications of thermoacoustic
devices. One example of such work is the utilization of heat from
a four-stroke automobile gasoline engine [4]. Another example
is the theoretical work carried out by the Energy Research
Centre in Netherlands on a thermoacoustic heat pump for up-
grading industrial waste heat [http://www.ecn.nl/fileadmin/ecn/
units/eei/Onderzoeksclusters/Restwarmtebenutting/b-07-007.pdf ].
Attempts have also been made to design efficient thermoacoustic
electricity generators. In these systems, some kind of transducer
is coupled with the TAHE to convert acoustic power to electric
power. Various designs have explored different methods of trans-
duction, such as piezoelectric [5], magnetohydrodynamic trans-
ducers [6] and linear alternators [7] with varying degrees of
acoustic-to-electric transduction efficiency (the ratio of electric
power output to the acoustic power input) and cost. Thus, previ-
ous research conveys the wide range of potential applications of
the TAHE.

Although this technology has great potential, there are several
main drawbacks that currently hinder the technology from com-
mercialization.

(1) Complex behavior of the TAHE with >30 design para-
meters that affect the performance of the device has meant
that attempts to optimize these numerous design para-
meters for a specific application remain challenging. For
example, for a simple design of a TAHE with parallel plate
HXs, a parallel plate stack and a straight tube duct, there are
7 global design parameters (thermal power input, tempera-
ture difference across stack, mean operating temperature,
mean pressure, peak pressure amplitude, resonant frequency
and cross-sectional area of tube), 5 thermophysical design
parameters of the working fluid (thermal conductivity, speed
of sound, dynamic viscosity, polytropic coefficient and
thermal expansion coefficient), 3 thermophysical design
parameters each for the stack and the HXs (density, specific
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Figure 1. Design of a TAHE with parallel plate heat exchangers and stack.
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heat and thermal conductivity) and finally 4 geometrical
design parameters each for the stack and HXs (plate length,
plate center position along x-axis, plate spacing and plate
thickness); this makes a total of 33 design parameters [8].

(2) Lower efficiencies relative to other more well-established
prime movers.

(3) Lack of a complete understanding of the physical behavior
of the device.

This work focuses on the first problem, the consideration of
the complete design of such a complex energy system, the
TAHE, for the utilization of low-temperature waste heat in food
manufacturing.

In the next section, previous literature on the design and
optimization of TAHEs are presented, their limitations are
outlined, and the radical design methodology that is proposed
in this paper is introduced. In Section 2, the simulation tool of
the TAHE, the design methodology, constraints and implemen-
tation are defined. Finally, we will discuss what we have learnt so
far from the preliminary study that has been carried out.

1.2 Thermoacoustic heat engine design
Experimental work has yielded greater understanding of the
design of the TAHE in order to maximize performance [9-13].
More recently, there have been efforts to design and optimize
TAHEs computationally [14, 15]. Wetzel and Herman [8] first
proposed a systematic design and optimization algorithm of a
standing-wave thermoacoustic refrigerator that provides esti-
mates for initial design calculations. From fundamental equa-
tions of linear thermoacoustic theory describing the total power
flowing through the stack and the acoustic power produced, it
was possible to identify 19 design parameters that affect the per-
formance of the device. These can be categorized into global
parameters, material parameters and geometric parameters. This
approach was taken further by Babaei and Siddiqui [16], which
also takes into account the energy balance equation and entropy
balance to improve the optimization process. This type of sys-
tematic design methodology was employed for the optimization
of a TAHE for the application of low-temperature waste heat re-
covery in the food manufacturing baking process [17]. Although
these works start to consider how to design such a complex
energy system in a systematic way, they are still a relatively sim-
plified approach to this complex design problem. These design
methodologies start with a predefined design of the standing-
wave TAHE and modifies only certain limited aspects of its
geometry and thermophysical properties. There are other re-
search that endeavors to optimize the more complex traveling-
wave TAHE, such as the work of Ueda et al., focusing on the
regenerator aspect of the engine. This work highlights the sig-
nificant impact of certain key parameters on performance [18].
Also Karimi and Ghobanian attempted the design and optimiza-
tion of a cascade engine for low-temperature heat sources [19].
Some attempts have been made to employ artificial intelli-
gence optimization techniques in the thermoacoustic field, such

Design and optimization of a thermoacoustic heat engine

as the work described in Srikitsuwan et al. and Chaitou and
Nika [20, 21], adopting a genetic algorithm and particle swarm
optimization method, respectively. Each highlights a few key
design parameters that affect the performance of the thermoa-
coustic device for optimization. While these optimization tech-
niques do not suffer from some of the problems that classical
optimization techniques do, they do not scale well at all for pro-
blems with increasing levels of complexity, as the size of the
search space increases.

This paper describes a radical design methodology using RL.
This machine learning technique allows optimization by specify-
ing ‘good’ and ‘bad’ behavior using a simple reward scheme r,
and thereby attaining the desired goal rather than having to ex-
plicitly define an objective function like the genetic algorithm. It
is able to learn by interacting with an environment. In the RL
learning framework, there are two main components: the agent
who is the learner and decision maker and an environment that
changes state according to the actions taken by the agent. This
interaction is depicted in Figure 2.

The goal of the RL agent is to ultimately maximize the accu-
mulation of reward, through a sequence of actions over the long
run [23]. Although the learning framework is a simple one, it
has proved to be a very powerful tool in solving a wide variety of
complex decision-making/optimization problems. For example,
it has been used to autonomously learn to play complex games
[24] and is also used for control applications [25]. Although RL
has not been widely applied to design problems, it is a powerful
tool that can handle vast search spaces, optimizing a goal through
sampling. Also RL can be used where an analytic solution is not
available or where an environment can only be understood by
interacting with it, which is why it has been successfully employed
for complex problems and why it is used as a design tool in this
particular instance.

This work differs greatly from previous research that has
attempted to design and optimize TAHEs, because it does not
start with a basic design of the TAHE that merely changes
certain parameter values. The RL agent must start from knowing
nothing of the environment and figure out from its interaction
with the modeling tool, the configuration of the device that
yields ‘good’ behavior (i.e., positive acoustic power output). As
there is no previous literature regarding the design of an energy
system using RL, the focus of this work is to understand how to
effectively define the design problem in terms of the RL frame-
work, which in itself greatly affects the outcome. As a benchmark
for the results obtained using RL, these will be compared with
the results described in Mumith et al. [17].

Agent

state, s, reward, 1, action,a;

N "
Environment

I
1

! Se1
I | —

Figure 2. The agent—environment interaction in RL [22].
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2 METHODS

2.1 Simulation of environment

The environment in this particular RL problem is DeltaEC [26],
a simulation code that provides information regarding the per-
formance of thermoacoustic equipment. This modeling tool has
been adopted because it is widely used in research to aid in the
design of thermoacoustic devices, to achieve desired perform-
ance. It also allows simple actions to be made in order to modify
the design, due to the fact that it is represented by a series of seg-
ments, such as duct, stack and heat exchanger.

The numerical integration method that is employed to calculate
output values integrates in one-spatial dimension using a low-
amplitude, ‘acoustic’ approximation and sinusoidal dependence
[26]. The wave equation without viscous or thermal-hysteresis
losses is as follows:

=0 (1)

This second-order equation can be considered as two first-order
equations with respect to pressure p; and volume flow rate Uy:

d iwpy,
dla)c1 - A U (2)
dU iwA
1 G)

These are the most basic and fundamental equations required to
find the pressure and volume flow rate of the system as a func-
tion of x. DeltaEC uses more complex equations based on
Equations 2 and 3, which account for acoustic power dissipation
in ducts, and uses varying equations for different segments to
suit local conditions.

Acoustic power (also known as the work flux) generated in a
TAHE is related to the work done by a differential volume of
fluid dx dy dz as it expands from dx dy dz to dx dy dz 4+ dV, and
the work is pdV. The acoustic power is simply the time-averaged
product of p; and U; as shown below:

E= %Re[Pl Ul (4)

Equations 2 and 3 are integrated and are used to calculate the
acoustic power according to Equation 4, at a particular location
in the engine along the x-axis. As Equations 2 and 3 depend on
the type of segment, the acoustic power produced at a particular
location in the engine also depends on the type of segment that
is being described at that location.

The segments that can be chosen by the agent during the
design of the TAHE are those that are also used in Mumith et al.
[17], the DUCT segment is the geometric container that houses
the acoustic wave, the STKSLAB segment is a stack composed of
parallel plates and the HX segment is a heat exchanger, also
composed of parallel plates.
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2.2 The RL problem

2.2.1 States, actions and rewards

The interaction between the environment and agent occurs in
discrete time steps known as episodes (can also be described as
an interaction). At each episode, the environment starts in state
s» the agent takes an action a,, a reward r,,; is given and the
state of the environment changes to s, ;. How the states and
actions are represented in terms of the RL framework greatly
affects the success of the solution produced by the agent and the
computational complexity of the problem. Therefore, these have
been kept as simple as possible in this preliminary study.

The states are based on the work described in Mumith et al.
[17], which was able to achieve ~1 kW of acoustic power output
after optimization. The acoustic power output is divided into
three possible states. First, the undesirable state (=Negative),
where negative power output occurs (when the engine absorbs
acoustic power), then the Low state where positive acoustic
power is created but less than 1 kW and finally the desirable state
(=High), which is what we are really interested in. The condi-
tions for each state are summarized below:

State, S = {high, low, negative}

High if Wy, > 1kW acoustic power output (forQ, =
19kWand T = 278K)

Low if 0 < Wy < 1kW for 19 kW thermal power input
(for Q,, = 19kWand T, = 278 K) Negative if Wou < 0 for
19 kW thermal power input ( for Q;, = 19 kW and T = 278 K)

As a result of the defined state s,, the agent makes a decision of
what the next action is depending on how it learns and explores
the search space. The actions that can be taken resemble the
design process that is carried out in the simulation tool DeltaEC.

Action, A = {delete segment, add segment, increase param-
eter value, decrease parameter value}

When the reward is allocated and the magnitude of the
reward will have a significant effect on what the RL agent learns.
Therefore, we have chosen a reward scheme that we believe will
encourage the agent, to create a design that surpasses the per-
formance of the TAHE that is described in Mumith et al. [17].
We have assigned the greatest reward if it can achieve an acoustic
power output greater than 1 kW. In RL, negative values can be
assigned to discourage unwanted behavior; therefore, a reward
of —50 has been chosen whenever the RL agent observes a nega-
tive acoustic power output value. A relatively low reward is
assigned whenever the environment is at a Low state Wou < 1KW.
This is another way to implicitly encourage the agent to choose
actions that can yield Wou > 1kW. Naturally, the greatest reward
is assigned to the desirable state, High, when Wou > 1kW. The
magnitude of the rewards assigned to the each state represents the
level of desirability to be in that particular state.

Reward, R (high) = 450

Reward, R (low) = +5

Reward, R (negative) = —50

The history of the interaction between the environment and
agent can be considered a sequence of state-action rewards:

(Sty @ry Teg1, Seqts Argts T2y St42, Aegd - - -).

9T0Z ‘0z AInC uo A1sleAlun unig e /Biosfeunolpioxo1|(iy/:dny woiy papeojumoq


http://ijlct.oxfordjournals.org/

For each episode, we have the information:
(Se@r, Test, Sev1).

Therefore, the agent learns from its historical interaction with
the environment and so ultimately attempts to maximize the
sum of expected rewards.

R =t + Y12 + Vres + oo+ Vren (5)

where k is the number of interactions in which a reward was
received from the environment to the agent, and 7 is the dis-
count rate that provides weighting to future expected rewards
(0 <y <1).If yis 0, then the agent’s objective is to only maxi-
mize the immediate reward, but as vy increases toward the value
1, the objective is shifted to consider future rewards more
strongly as the agent becomes more farsighted. Finally, when
v =1 all future rewards are considered equally [22, 23].

2.2.2 Q-Learning

The way in which the RL agent learns and explores the environ-
ment (i.e., DeltaEC) is at the heart of this machine learning tech-
nique. Most RL algorithms are based on estimating value
functions, which estimates how good a decision is (i.e., which
action to take) depending on the current state of the environment,
in terms of expected rewards. For each state-action pair, an esti-
mated action-value function Q(s,, a,) is calculated and updated
every time s, = s and a, = a. In this particular problem, there are
18 possible actions that can be taken by the RL agent (3 segments
can be added/deleted and 6 parameter values can be increased/
decreased) and 3 states. Therefore, there are altogether 54
state-action pairs for which the estimated action-value function
must be calculated. In this current work, these data are stored and
retrieved from a lookup table, but this very quickly becomes im-
practical as the number of states and actions increases.

The value function learning technique used in this work is
known as Q-Learning, which directly approximates the optimal
action-value function. It is an RL technique that can learn by
simply sampling the state space and does not require a complete
probability distribution over the actions to all states.

Q (St; at) — Q (Stv at)
+alra+y mSX(StJrla a)—Q (s, a)]  (6)
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where a(0 < a <1) is the learning rate (also known as step
size), which determines the weighting given to newly acquired
information compared with previous information, and thus
allows the RL agent to account for changes in the nonstationary
environment (i.e., the DeltaEC model) as time passes [24]. The
learning rate and discount rate are two main parameters that de-
termine how the RL agent learns and makes decisions. A
summary of the Q-learning algorithm is shown in Figure 3.

The agent must not only exploit the latest information by
choosing the next action based on the optimal action-value
function Q*(s, a) = max Q(s, a) but must also explore the
search space of potential TAHE designs and parameter values,
for actions that could potentially result in long-term future
rewards (i.e., maximal performance of the TAHE). A simple way
to do this is to adopt an e-greedy method, which uses a simple
tuning parameter 0 < & < 1, where ¢ is the probability that a
random action will be chosen and 1 — & is the probability that a
greedy action, i.e., one that maximizes Q(s, a), will be chosen at
a particular time [22].

The conditions of the RL problem have been set as follows:

(1) Discount rate, y = 0.99.

(2) Learning rate, a = 0.1.

(3) Exploration parameter, € = 0, 0.2.

(4) All Q(s, a) values are initialized at 0.

(5) Equiprobable random policy employed (all actions are
equally likely).

2.3 Design constraints
Unlike when an RL agent interacts for example with a game,
which tells it when it makes an illegal move, in this case the en-
vironment (DeltaEC) cannot tell the agent if an illegal move is
carried out (i.e., physically impossible parameter values). Hence,
parameter values are restricted beforehand to a range of values
that allow physically meaningful results, shown in Table 1. As this
is a comparison between the works described in Mumith et al.
[17], certain parameter values are kept the same. The range of
values shown in Table 1 is based on previous research [8]. If an
action chosen by RL agent would result in the model going
beyond the design constraints, then another action is chosen.

Any TAHE requires at the very least four components in order
to function; a stack, two heat exchangers and a solid container.

Initialize Q (s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):

Take action a, observer, s’

s«s;
Until s is terminal

Choose a from s using policy derived from Q (e.g. € -greedy)

Q(s,a) « Q(s,a) + a[r+y Maxy(s',a") —Q(s,a) ]

Figure 3. Q-learning algorithm [13].
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Table 1. Design parameters

Design parameters Value/range +
BEGIN segment
1 Mean pressure 1.00-3.00 0.1
Mean P, P, (MPa)
2 Resonant frequency a/2Ax, Calculated
Freq, f; (Hz) where a is the speed of sound (m/s) and Ax,
is the total length of the engine (m)
43.38-548.25
3 Mean temperature 423 n/a
Beg, T,,, (K)
4 Pressure amplitude DR x P, 0.005
Ipl |p1] (Pa) 0.005-0.06
5 Phase of pressure amplitude 90 n/a
Ph(p), (°)
6 Velocity amplitude 0 n/a
[U], |Uy| (m?/s)
7 Phase of velocity amplitude 0 n/a
Ph(U), ()
8 Gas (type) Helium—argon mixture n/a
9 nL, X, 0.0-1.0 0.05
SURFACE segment
10 Cross-sectional area, A (m?) 0.005 n/a
DUCT segment
11 Cross-sectional area, A (m?) 0.005 n/a
12 Perimeter, IT (m) 0.194-0.614 Calculated according
to cross-sectional area
13 Length, Axgye (m) 0.50—3.00 0.1
14 Surface roughness 5x107* n/a
STKSLAB segment
15 Total cross-sectional area 0.005 n/a
16 Porosity 0.8 n/a
(Blockage ratio, BRgack)
17 Length, Ax,q (m) 0.10-0.25 0.01
18 Half plates spacing, y, (m) o n/a
19 Half thickness of solid plate, / (m) Lplate = yo(1 — BR)/BR = yy/4 Calculated
20 Plate material, Solidg,e. Stainless steel n/a
HX segment
21 Total cross-sectional area 0.005 n/a
22 Porosity 0.4 n/a
(Blockage ratio, BRyx)
23 Length, Axyx (m) 0.02-0.06 0.005
24 Half plates spacing, y, (m) Oy n/a
25 HeatIn, Q;, (kW) 19.0 n/a
(Thermal power input)
26 Heatln, Qou[ (kW) Set as guess in DeltaEC n/a
(Thermal power output)
27 Solid T, T4 (K) 278 n/a
(Temperature of plates of ambient heat exchanger) Set as target
28 Solid material, Solidyx Copper n/a

Therefore, a restriction of a minimum of four segments is imposed
on the model. Also the maximum number of segments allowed
was set at 8, to ensure that the model does not exhibit wildly un-
realistic physical behavior. When state is initialized, four segments
are chosen at random in no particular order. The parameter values
are also chosen at random within the range of values specified in
Table 1. All DeltaEC models require specific segments: the BEGIN
segment, which sets global parameters, the HARDEND segment
that denotes the beginning or end of a solid container and the

6 of 9 International Journal of Low-Carbon Technologies 2015, 0, 1-9

SURFACE segment, which comes before the HARDEND segment
and accounts for thermal-hysteresis dissipation [26]. These are
not included in the restrictions of the number of segments in a
model.

2.4 Implementation
The RL design problem has been modularized as shown in
Figure 4, each with its own distinct job.
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Figure 4. Various elements of the RL problem.

e Environment (DeltaEC): this is the world with which the
agent interacts. It also defines the constraints imposed on the
world that are specified in the previous section.

e Task: it handles the interaction between the agent and environ-
ment, defines the ultimate goal of the environment (i.e., out-
lines the reward scheme) and decides when an episode is over.

e Agent: the agent has its own learning component (Q-learning),
a controller that stores and retrieves Q-values from a lookup
table, and an explorative component (e-greedy method).

e Experiment: the experiment brings the environment, task and
agent together so that they interact as shown in Figure 4 to
create the RL problem.

The actions chosen by the RL agent is executed using the Python
toolkit WATSUP [27], which directly interacts with the DeltaEC
window application to find and invoke actions on controls and
menu items.

3 RESULTS AND DISCUSSION

In RL, the average reward (sum of total rewards/total number of
episodes) gives a general indication of the relative success of the
RL agent to solve a problem, the higher the average reward the
better the RL agent is deemed to have performed. In this prelim-
inary study, the number of episodes carried out was 300 when
€ = 0, 0.2. After just 50 episodes, the average reward obtained by
the RL agent when &€ = 0 is —37.9, whereas the average reward
when &€ = 0.2 is —12.6. The greatest acoustic power output that
the greedy policy (e = 0) was able to achieve from a DeltaEC
model was 69.38 W, whereas the e-greedy policy (e =0.2)
yielded a maximum of 643.31 W. In both cases, the thermal
power input of the engine that is designed is 19 kW and the
temperature difference across the stack is 145K (AT =423
K — 278 K = 145 K). Therefore, the thermal efficiency of the
TAHE that is designed in DeltaEC when the e-greedy policy is
employed is 3.29% and is ~10% of the Carnot efficiency,
whereas the thermal efficiency is 0.37% and ~1% of the Carnot
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efficiency when the greedy policy is employed. If we make a
direct comparison with results obtained from Mumith et al.
[17], while the use of the RL technique does not currently out-
perform the iterative design methodology, there are promising
signs for the future application of RL for the design and opti-
mization of energy systems, as the agent was able to correctly de-
termine the configuration of segments in DeltaEC that would
yield positive acoustic power output, through the continual
feedback after each action of its corresponding reward. Also it is
believed that greater interactions and time exploring the envir-
onment (i.e., more episodes) in future work will allow the agent
to better understand the DeltaEC environment that it is interact-
ing with, and therefore be able to better understand the com-
plexities of designing the TAHE.

The greedy agent (& = 0) performed poorly as it would choose
actions that had optimal action-value functions, even though
these values were estimates and did not necessarily reflect their
true values at the time of the interaction between DeltaEC and the
RL agent. So for example if an action yielded a good reward, then
there was a propensity for the agent to keep choosing the same
action, particularly for the 100 or so episodes, as the RL agent
believed that it would yield optimal results for the next interaction
with DeltaEC based on the maximum g-value for a particular
state-action pair. These results show that it is imperative for any
search algorithm to thoroughly explore the search space in order
to evaluate wildly different design options, so that it can ultimately
choose an optimal design choice. The problem with the e-greedy
method was that if it chose an action at random, then all actions
were equally likely to be chosen; therefore, it is just as likely to
choose a bad action as a good one. Even though this exploration
approach allowed the RL agent to learn more about how various
actions affected the performance of the TAHE, in the short term, it
resulted in certain designs that yielded unsatisfactory performance.
It is difficult to comprehend the extent of the problem until
greater numbers of episodes are carried out. It may be that it is not
such an issue with more interactions between the environment
and agent. But it may be necessary to adopt a more sophisticated
exploration technique such as the softmax method, which deter-
mines the probability of selecting an action based on its q-value
(the higher the g-value the greater the probability that an action is
chosen), and therefore an equiprobable random policy is not
employed. Also another issue is the lack of constraints with regard
to ordering of the segments in DeltaEC. Again, as with the previ-
ous problem, it is difficult to determine how much of a problem
this will be when greater number of episodes are carried out,
otherwise it may be necessary to employ sequencing constraints,
so that the RL agent does not merely produce models that are
physically meaningless. In both of the experiments, the high state
was never observed; this may be partly to do with the number of
episodes carried out during the experiments, but this could also
be because the condition for the environment to be in a High state
may be unrealistically high. Even though great caution was taken
so that the DeltaEC model would produce physically meaningful
results, at times it was difficult to match the temperatures of the
heat exchangers to desired values due to the random way in which
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the segments were assembled, and because the upper limit of the
stack length was too high.

The results show that the structure of the design problem in
terms of the RL framework was generally successful, as the RL
agent was able to learn the correct configuration of a TAHE in
order to produce positive acoustic power output. Although
>300 episodes must be carried out to reach a definitive conclu-
sion, we believe that we have not yet exploited the full and ex-
pansive capabilities of the RL technique. The behavior of the RL
agent itself must be optimized for this particular application,
which means further comprehensive study tuning the various
learning and exploration parameters of the RL agent. Also the
way in which the design problem was defined in terms of the RL
framework must be amended to be able to manage more ad-
equately the complexities of the design problem. This can only
be understood by experimenting with the reward scheme, defini-
tions of state, etc. For example, reward can be given according to
the magnitude by which the acoustic power increases/decreases
with respect to the previous episode, rather than the state with
which it is in at the time. Also, when a greater number of epi-
sodes is carried out, it will be possible to reduce the steps by
which the parameter values are increased or decreased, so that it
is easier for the RL agent to track changes to the environment as
a result of actions taken, and learn more effectively how these
changes affect the performance of the TAHE.

4 CONCLUSIONS

The TAHE is an energy technology that can potentially be very
useful in a wide range of applications, but currently its complex
physical behavior and the many design parameters that affect its
performance means that designing such a complex energy
system is challenging. In previous research, systematic design
algorithms can only be employed in limited circumstances with
a basic design already predefined. Therefore, this paper outlines
for the first time the implementation of a radical design meth-
odology using RL, where the RL agent learns by itself from its
interaction with the DeltaEC model, good and bad behavior in
terms of acoustic power output, in order to design and optimize
a TAHE from scratch.

Preliminary results have shown the potential of the RL tech-
nique to solve this type of complex design problem, as the RL
agent was able to figure out the correct configuration of compo-
nents that would create positive acoustic power output. The learn-
ing agent was able to create a design that yielded an acoustic
power output of 643.31 W, with a thermal efficiency of 3.29%,
when the temperature difference across the stack is 145 K.

It is necessary to experiment further with various aspects of
the way the design problem has been defined in terms of the RL
framework and the learning and exploration parameters of the
RL agent, in order to fully understand how certain parameters
affect what and how the RL agent learns. It is hoped that with
increased understanding, we can eventually achieve our ultimate
goal, which is an autonomous agent for the design and
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optimization of more complex TAHEs, such as the traveling-
wave TAHE, which is inherently more efficient, but more com-
plicated to design and is currently the real attraction of TAHE re-
search. We believe that the ability of RL to effectively search vast
search spaces and to evaluate a large number of configurations
and designs of the TAHE lends itself to ultimately be able come
up with a novel design.
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