

Hsp72 mRNA transcription, and Sweat Adaptations are greater post Heat Acclimation in Trained vs. Untrained individuals

Oliver R. Gibson^{1,2} Lee Taylor^{3,4} Peter W. Watt² Neil S. Maxwell²

¹ Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, UK.
 ² Centre for Sport and Exercise Science and Medicine (SESaME), University of Brighton, UK.
 ³ ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Qatar.
 ⁴ School of Sport, Exercise and Health Sciences. Loughborough University, Loughborough, UK.

21st annual Congress of the EUROPEAN COLLEGE OF SPORT SCIENCE CROSSING BORDERS THROUGH SPORT SCIENCE 6st- 9st July 2016, Vienna - Austria

Hosted by the Centre for Sport Science and University Sports, University of Vienna

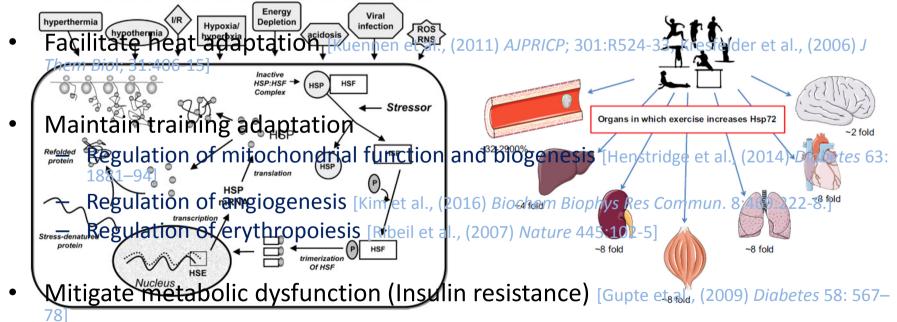
@iamolivergibson

Heat Acclimation (HA)

- Intervention to improve ability to tolerate heat stress
- Four classic markers of HA [Sawka (2011) Comp Physiol. 1(4) 1883-928]
 - \downarrow Core temperature (-0.2 ± 0.1 °C)
 - \downarrow Heart rate (-5 ± 5 b.min⁻¹)
 - ↑ Sweat rate (23 ± 38%)
 - \uparrow Performance/capacity (21 ± 28%)

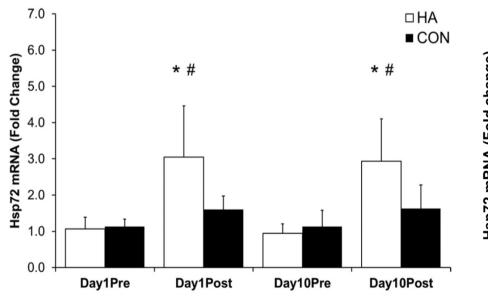
[Tyler et al., (2016) Sports Medicine. 1-26]

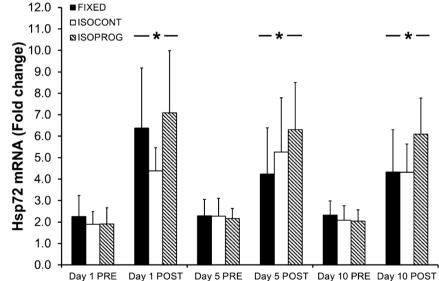
• Novel marker [Lee at al., (2015) SJMSS. 10.1111/sms.12621]



↑ cellular tolerance via Heat shock proteins

Heat Shock Proteins (HSP)


- Augment in response to stress [Kregel (2002) J Appl Physiol 92: 2177–2186]
 - Oxidative, cytokine, muscular, thermal
- Present in multiple tissue sites [Henstridge et al., (2016) J Appl Physiol 120: 683–691]
- Most important HSP70 family (HSPA1A; HSP72)
- Protection of vital organs [Amorim et al. (2015) Temperature; 2:499-505; Ely et al. Temperature 2:51-2]
 - Maintaining intestinal epithelial tight junction barriers. Increasing resistance to gutassociated endotoxin translocation. Reducing systemic inflammatory response
 Physiological signals that activate HSP70 expression



Hsp72 mRNA & Heat Acclimation

- Greater \uparrow in Hsp72 mRNA HA vs CON
- No difference in Hsp72 mRNA with different HA protocols

Gibson et al., (2015) J Appl Phys. 19, 889-899 Gibson et al., (2015) SJMSS. 25, 259-268

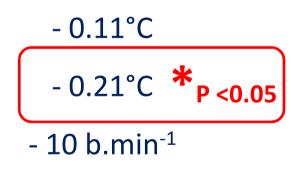

Effect of "fitness" on Heat Acclimation

- 10 sessions
- 60 min HA

- 4.8 km.h⁻¹
- 3-7%

- 30% R.H.
 - **Highly Fit** 60 mL.kg⁻¹.min⁻¹

- Δ Resting T_{rec}
- Δ Exercising T_{rec}
 - Δ End HR
 - Δ Sweat Rate


???

- 0.17°C

Moderately Fit

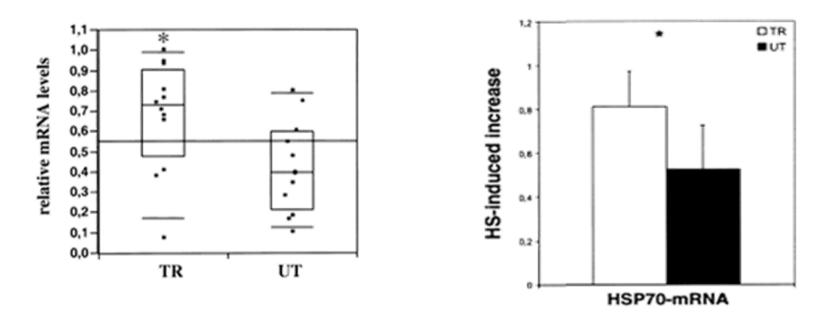
46 mL.kg⁻¹.min⁻¹

- 0.17°C
- 7 b.min⁻¹
- +0.21 %BM

Brunel

University London

+0.35 %BM


Cheung and McLellan (1998) J Appl Phys 84:1731-1739,

HSP72 and training status

Trained = 个 basal
 Hsp72 mRNA

 Trained = 个 transcription of Hsp72 mRNA with *in vitro* heat stress

Fehrenbach et al., (2000) J Appl Phys 89 704 - 710

<u>Aim</u>

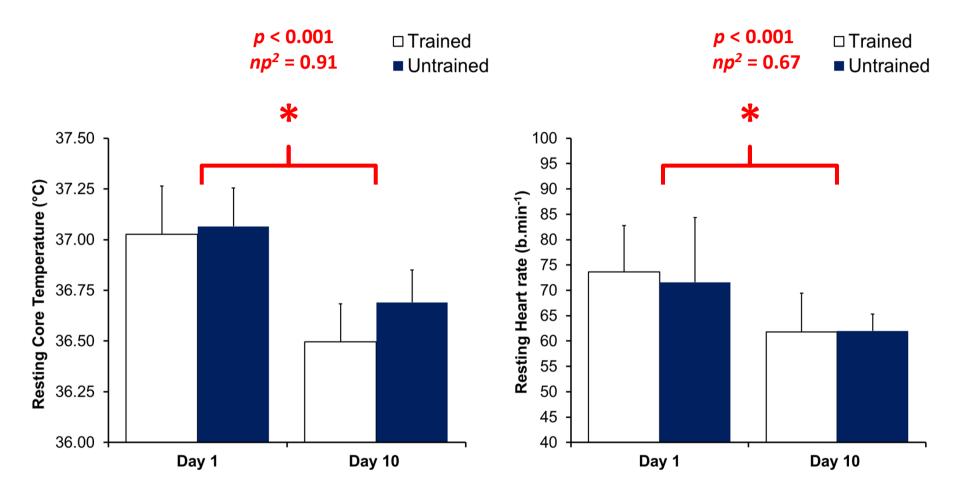
Determine differences in...

- Physiological markers (resting core temperature, resting heart rate, sweat rate) between trained and untrained individuals in response to 10 days of isothermic HA
 - Hypothesis: Equality of physiological adaptations between trained and untrained
- Transcription of Hsp72 mRNA between trained and untrained individuals in response to 10 days of isothermic HA
 - Hypothesis: Greater increase in Hsp72 mRNA during in vivo HA intervention in trained

Participants and Method

- Upper and lower quartile of participants (ranked by VO_{2peak}) from two previous experiments
 - Gibson et al., (2015) SJMSS.
 25(1), 259-268
 - Gibson et al., (2015) J Appl Phys. 19 (8), 889-899
- Preliminary testing (VO_{2peak} and anthropometry)
- Ten days of isothermic HA $T_{rec} \ge 38.5^{\circ}C$ (40°C/40%)
 - Pre session

Resting T_{rec}, HR, NBM, Hsp72 mRNA


• Post session NBM, Hsp72 mRNA Brunel University London

Untrained (UT; n = 6)

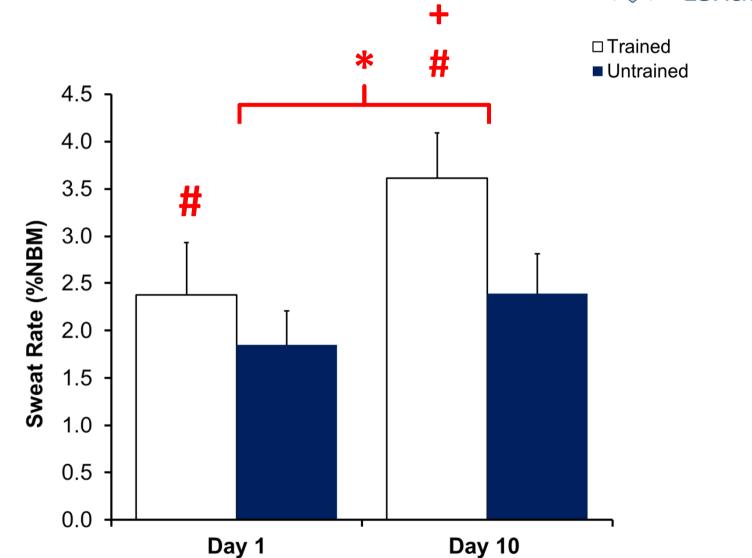
Trained (T; n = 6)

Results - Core temperature and Heart rate

Discussion – Core temperature and Heart rate

• Equality of adaptation between T and UT in agreement with previous work [Cheung and McLellan (1998) JAP 84:1731-1739]

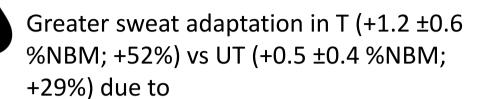
Rest T_{rec} [T = -0.5 ±0.2°C; UT = -0.4 ±0.2°C]


 Regulation of heat balance at POAH via afferent feedback improved irrespective of training status

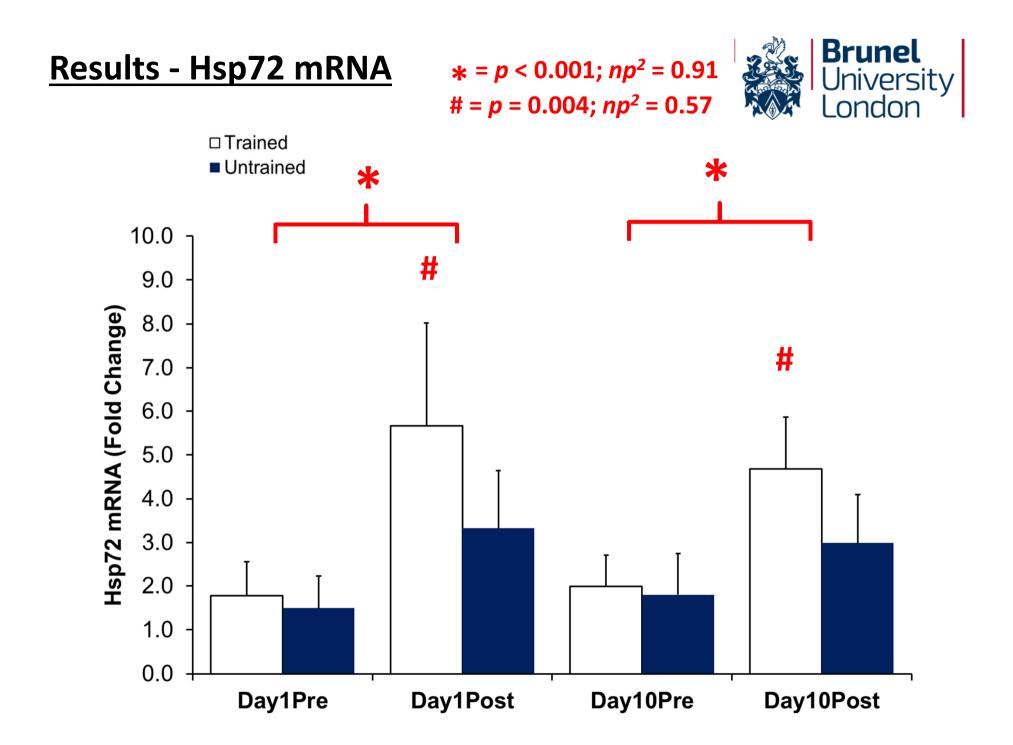
Rest HR [T = $-12 \pm 4 \text{ b.min}^{-1}$; UT = $-11 \pm 12 \text{ b.min}^{-1}$]

- Equality of PV expansion possible in T vs UT?

Results - Sweat rate adaptations


 $\# = p = 0.003; np^2 = 0.59. * = p < 0.001; np^2 = 0.82. + = p = 0.029; np^2 = 0.39.$

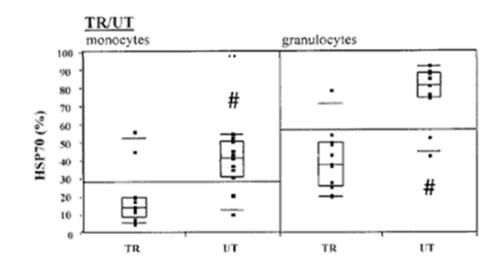
Discussion – Sweat rate adaptations



Mitchell et al,. (1976). J Appl Physiol 40, 768–778

- 个 sweat sensitivity 个 gland output 个 cutaneous vasodilation
- Determine role of training status on sweat sensitivity, cholinergic, α- & β- adrenergic, plasma ATP
- Trained individuals may become hypohydrated more quickly (E_{max} dependent).
- Future direction: Control for H_{prod} (W) and exercise duration to determine whole-body sweat rate.
 - \uparrow H_{prod} (W.kg⁻¹) = \uparrow rise in T_{rec} = \uparrow duration of ~ max sweating. [Jay and Cramer (2015) *Temperature* 2 (1) 42-43]
 - Greater duration exercising (D10 vs D1; T +16 min (47%) UT +5 min (8%))

Discussion – Hsp72 mRNA



- Greater Hsp72 mRNA increase in T (+160%) vs UT (+82%)
 - Improved transcriptional activation now shown in vivo

In vitro; Fehrenbach et al., (2000) *J Appl Phys* 89 704 – 710

• Future direction: Unknown if protein translation similar under equal endogenous criteria

Fehrenbach et al., (2000) Med Sci Sp Ex 32 (3) 592-600

Conclusions

 Isothermic HA able to induce physiological adaptations in both Trained and Untrained individuals.

T_{rec} and HR demonstrate equality (effect of v.highly trained unknown)

Sweat adaptations may demonstrate accelerated response in Trained individuals

 Greater Hsp72 mRNA increase in Trained individuals

Improved In Vivo transcriptional activation

Acknowledgements

Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, UK.

The Physiological Society

Dr Lee Taylor ASPETAR

- ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Qatar.
- School of Sport, Exercise and Health Sciences.
 Loughborough University, Loughborough, UK.

≫

A.Prof Peter Watt University of Brighton

 Centre for Sport and Exercise Science and Medicine (SESaME), University of Brighton, UK.

Dr Neil Maxwell

University of Brighton

 Centre for Sport and Exercise Science and Medicine (SESaME), University of Brighton, UK.

⊠ oliver.gibson@brunel.ac.uk

