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Localized boundary-domain singular integral
equations of Dirichlet problem for self-adjoint
second-order strongly elliptic PDE systems
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The paper deals with the three-dimensional Dirichlet boundary value problem (BVP) for a second-order strongly ellip-
tic self-adjoint system of partial differential equations in the divergence form with variable coefficients and develops
the integral potential method based on a localized parametrix. Using Green’s representation formula and properties of
the localized layer and volume potentials, we reduce the Dirichlet BVP to a system of localized boundary-domain inte-
gral equations. The equivalence between the Dirichlet BVP and the corresponding localized boundary-domain integral
equation system is studied. We establish that the obtained localized boundary-domain integral operator belongs to
the Boutet de Monvel algebra. With the help of the Wiener–Hopf factorization method, we investigate corresponding
Fredholm properties and prove invertibility of the localized operator in appropriate Sobolev (Bessel potential) spaces.
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1. Introduction

We consider the Dirichlet boundary value problem (BVP) for a second-order strongly elliptic self-adjoint system of partial differen-
tial equations in the divergence form with variable coefficients and develop the generalized integral potential method based on a
localized parametrix.

The BVP treated in the paper is well investigated in the literature by the variational method and also by the classical integral potential
method, when the corresponding fundamental solution is available in explicit form (e.g. [1–3]) or when at least its properties are known
to be good enough (see, e.g. [4, 5] and references therein).

Our goal here is to develop a localized integral potential method for general second-order strongly elliptic self-adjoint systems of
partial differential equations with variable coefficients. We show that a solution of the problem can be represented by explicit localized
parametrix-based potentials and that the corresponding localized boundary-domain integral operator (LBDIO) is invertible, which is
important for analysis of convergence and stability of localized boundary-domain integral equation (LBDIE)-based numerical methods
for PDEs (e.g. [6–13]).

Using Green’s representation formula and properties of the localized layer and volume potentials, we reduce the Dirichlet BVP
to a system of LBDIEs. First, we establish the equivalence between the original BVP and the corresponding LBDIE system, which
appeared to be quite non-trivial task and plays a crucial role in our analysis. Afterwards, we establish that the LBDIO of the sys-
tem belongs to the Boutet de Monvel operator algebra. Employing the Vishik–Eskin theory, based on the Wiener–Hopf factorization
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method, we investigate corresponding Fredholm properties and prove invertibility of the localized operator in appropriate Sobolev
(Bessel potential) spaces.

In the references [14–20], the traditional and localised boundary-domain integral equation methods have been developed for the
case of scalar elliptic second-order partial differential equations with variable coefficients, and here, we extend the LBDIE method to
PDE systems.

2. Boundary value problem and parametrix-based operators

2.1. Formulation of the boundary value problems and localized Green’s third identity

Consider a uniformly strongly elliptic second-order self-adjoint matrix partial differential operator
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where @x D .@1, @2, @3/, @j D @xj D @=@xj , apq
kj D aqp

jk D akq
pj 2 C1, j, k, p, q D 1, 2, 3. Here and in what follows, the Einstein summation by

repeated indices from 1 to 3 is assumed if not otherwise stated.
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kj are real and the quadratic form apq
kj .x/ �kp �qj is uniformly positive definite with respect to sym-

metric variables �kp D �pk 2 R, which implies that the principal homogeneous symbol of the operator A.x, @x/ with opposite sign,
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is uniformly positive definite, which for the real symmetric coefficients apq
kj means there are positive constants
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2j�j2 8 x 2 R3, 8 � 2 R3, 8 � 2 C3. (2.2)

Here, a � b :D a>b :D
P3

jD1 ajbj is the bilinear product of two-column vectors a, b 2 C3.
Further, let � D �C be a bounded domain in R3 with a simply connected boundary @� D S 2 C1, � D � [ S. Throughout the

paper, n D .n1, n2, n3/ denotes the unit normal vector to S directed outward the domain�. Set�� :D R3 n�.
By Hr.�/ D Hr

2.�/ and Hr.S/ D Hr
2.S/, r 2 R, we denote the Bessel potential spaces on a domain � and on a closed manifold

S without boundary, while D.R3/ and D.�/ stand for C1 functions with compact support in R3 and in �, respectively, and S.R3/

denotes the Schwartz space of rapidly decreasing functions in R3. Recall that H0.�/ D L2.�/ is a space of square integrable functions
in�. For a vector u D .u1, u2, u3/

>, the inclusion u D .u1, u2, u3/
> 2 Hr means that each component uj belongs to the space Hr .

Let us denote by �Cu and ��u the traces of u on S from the interior and exterior of�C, respectively.
We also need the following subspace of H1.�/, see, for example, [21],

H1, 0.�; A/ :D
n
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> 2 H1.�/ : Au 2 H0.�/

o
. (2.3)

The Dirichlet BVP reads as follows:
Find a vector function u D .u1, u2, u3/

> 2 H1, 0.�, A/ satisfying the differential equation

Au D f in � (2.4)

and the Dirichlet boundary condition

�Cu D '0 on S, (2.5)

where '0 D .'01 ,'02 ,'03/
> 2 H1=2.S/ and f D .f1, f2, f3/

> 2 H0.�/ are given vector functions. Equation (2.4) is understood in the
distributional sense, while the Dirichlet boundary condition (2.5) is understood in the usual trace sense.

The classical co-normal derivative operators, T˙, associated with the differential operator A.x, @x/, are well defined in terms of the
gradient traces on the boundary S for a sufficiently smooth vector function v, say v 2 H2.�/, as follows:h
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i

p
:D apq
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˙@xj vq.x/, x 2 S, p D 1, 2, 3. (2.6)

The co-normal derivative operator defined in (2.6) can be extended by continuity to the space H1, 0.�; A/. The extension is inspired
by Green’s first identity (cf. [3, 21, 22]) as follows:
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. By ��1, we denote a (non-unique) continuous linear extension operator acting from
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1
2 .S/ into H1.R3/. The restrictions of ��1 on�C and�� are the right inverse operators to the corresponding trace operators �C and

��. Clearly, definition (2.7) does not depend on the extension operator.
Moreover, by [21, Lemma 3.4], and [3, Lemma 4.3], for any v 2 H1,0.�; A/ and u 2 H1.�/ the first Green identity holds in the formD

TCv , �Cu
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Remark 2.1
From condition (2.2), it follows that the quadratic form E.u.x/, u.x// rewritten as

E.u.x/, u.x// D apq
kj .x/ "qj.x/ "pk.x/

where

"qj.x/ D
�
@juq.x/C @quj.x/

	
=2,

is positive definite in the symmetric variables "qj . Therefore, Green’s first identity (2.8) and Korn’s inequality along with the Lax–Milgram
lemma imply that the Dirichlet BVP (2.4)–(2.5) is uniquely solvable in the space H1, 0.�; A/ (e.g. [1–3, 23]).

2.2. Parametrix-based operators and integral identities

As it has already been mentioned, our goal here is to develop the LBDIE method for the Dirichlet BVP (2.4)–(2.5).
Let F�.x/ :D �1=Œ 4� jxj � denote the scalar fundamental solution of the Laplace operator,	 D @2

1C@
2
2C@

2
3. Let us define a localized

matrix parametrix for the the matrix operator I	 as

P.x/ � P�.x/ :D P�.x/ I D 
.x/ F�.x/ I D �

.x/

4� jxj
I (2.9)

where P�.x/ � P��.x/ :D 
.x/ F�.x/ is a scalar function of the vector argument x, I is the unit 3 � 3 matrix and 
 is a localizing
function (Appendix A)


 2 Xk
C , k � 3, with 
.0/ D 1, (2.10)

Throughout the paper, we assume that condition (2.10) is satisfied if not otherwise stated. Note that the function 
 can have a compact
support, which is useful for numerical implementations, but generally this is not necessary, and the class Xk

C
include also the functions

not compactly supported but sufficiently fast decreasing at infinity, see [24] and Appendix A for details.
For sufficiently smooth vector functions u and v, say u, v 2 C2.�/, there holds Green’s second identityZ
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i
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Denote by B.y, "/ a ball centred at point y, with radius " > 0, and let†.y, "/ :D @B.y, "/. Let us take as v.x/, successively, the columns
of the matrix P.x � y/, where y is an arbitrarily fixed interior point in �, and write the identity (2.11) for the region �" :D � n B.y, "/
with " > 0 such that B.y, "/ � �. Keeping in mind that P>.x � y/ D P.x � y/ and ŒA.x, @x/P.x � y/�> D ŒA.x, @x/P.x � y/�, we arrive at
the equality,Z
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The normal vector on†.y, "/ is directed inward�".
Let the operator N defined as

N u.y/ :D v.p.

Z
�
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"!0

Z
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be the Cauchy principal value singular integral operator, which is well defined if the limit in the right-hand side exists. The similar
operator with integration over the whole space R3 is denoted as

N u.y/ :D v.p.

Z
R3
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Note that
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1
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where ıkj is the Kronecker delta, and ı. � / is the Dirac distribution, the left-hand side in (2.15) is also understood in the distributional
sense, while the second summand in the right-hand side is a Cauchy-integrable function. Therefore, in view of (2.9) and taking into
account that 
.0/ D 1, we can write the following equality in the distributional sense
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Clearly, the entries of the matrix functions R.x, y/ and R.1/.x, y/ possess weak singularities of type O.jx � yj�2/ as x ! y.
Denote by VE the extension operator by zero from� onto��. From the definitions (2.13) and (2.14), it is evident that

.N u/ .y/ D
�

NVEu


.y/ for y 2 �, u 2 Hr.�/, r � 0. (2.22)

The definition of N can be extended to smaller r as

.N u/ .y/ :D
�
NeEru

	
.y/ for y 2 �, u 2 Hr.�/, �1=2 < r < 1=2, (2.23)

whereeEr : Hr.�/ ! eHr.�/ is the extension operator, uniquely defined for �1=2 < r < 1=2, see, for example, [22, Theorem 2.16]. For
0 � r < 1=2,eEr D VE, and thus, the expressions (2.22) and (2.23) coincide for such r.

From decomposition (2.18), it follows that (e.g. [25], [1, Theorem 8.6.1]) if 
 2 Xk with integer k � 2, then

r
�
N D r

�
N VE : Hr.�/! Hr.�/, 0 � r, (2.24)

r
�
N D r

�
NeEr : Hr.�/! Hr.�/, �1=2 < r < 1=2, (2.25)

are bounded because the principal homogeneous symbol of N is rational ((4.2) in Section 4), and the operators with the kernel functions
either R.x, y/ or R1.x, y/ map Hr.�/ into HrC1.�/ (cf. [24, Theorem 5.4]). Here and throughout the paper, r

�
denotes the restriction

operator to�.
Further, by direct calculations one can easily verify that
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Z
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u.y/ D ˇ.y/ u.y/, (2.27)

where†1 is a unit sphere, � D .�1, �2, �3/ 2 †1 and ˇ is defined by (2.17).
Passing to the limit in (2.12) as "! 0 and using relations (2.13), (2.26), and (2.27), we obtain

ˇ.y/ u.y/CN u.y/ � V.TCu/.y/CW.�Cu/.y/ D P .Au/ .y/, y 2 �, (2.28)

where N is a localized singular integral operator given by (2.13), while V , W and P are the localized vector single layer, double layer
and Newtonian volume potentials,

Vg.y/ :D �

Z
S

P.x � y/ g.x/ dSx , (2.29)

Wg.y/ :D �

Z
S
Œ T.x, @x/ P.x � y/ � g.x/ dSx , (2.30)

Ph.y/ :D

Z
�

P.x � y/ h.x/ dx. (2.31)
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Here, the densities g and h are three-dimensional vector functions. Introducing the following localized scalar Newtonian
volume potential

P�h0.y/ :D

Z
�

P�.x � y/ h0.x/ dx (2.32)

with h0 being a scalar density function, we evidently obtain,

ŒPh.y/�p D P�hp.y/, p D 1, 3,

for any vector function h D .h1, h2, h3/
>.

We will also need the localized vector Newtonian volume potential similar to (2.31) but with integration over the whole space R3,

Ph.y/ :D

Z
R3

P.x � y/ h.x/ dx. (2.33)

Mapping properties of potentials (2.29)–(2.33) are investigated in [15, 24] and provided in Appendix B.
We refer to relation (2.28) as Green’s third identity. Because of the density ofD.�/ in H1, 0.�; A/ ([22, Theorem 3.12]) and the mapping

properties of the potentials, Green’s third identity (2.28) is valid also for u 2 H1, 0.�; A/. In this case, the co-normal derivative TCu
is understood in the sense of definition (2.7). In particular, (2.28) holds true for solutions of the previously formulated Dirichlet BVP
(2.4)–(2.5).

On the other hand, applying the first Green identity (2.8) on�" to u 2 H1.�/ and to P.x � y/, as v.x/, and taking the limit as "! 0,
one can easily derive another, more general form of the third Green identity,

ˇ.y/ u.y/CN u.y/CW.�Cu/.y/ D Q u.y/, 8 y 2 �, (2.34)

where for the p-th component of the vector Q u.y/, we have

ŒQ u.y/�p :D �

Z
�

apq
kl .x/

@P�.x � y/

@xk

@uq.x/

@xl
dx D @k P�

�
apq

kl @luq

	
.y/ , 8 y 2 �. (2.35)

Using the properties of localized potentials described in Appendix B (Theorems B.1 and B.4) and taking the trace of Equation (2.28)
on S, we arrive at the relation for u 2 H1, 0.�C; A/,

NCu � V.TCu/C .ˇ � �/ �CuCW.�Cu/ D PC .Au/ on S, (2.36)

where the localized boundary integral operators V and W are generated by the localized single and double layer potentials and are
defined in (B1) and (B2), the matrix� is defined by (B17), while

NC :D �CN , PC :D �CP .

Now, we prove the following technical lemma.

Lemma 2.2
Let 
 2 X3, f 2 H0.�/, F 2 H1,0.�,	/,  2 H�

1
2 .S/, and ' 2 H

1
2 .S/. Moreover, let u 2 H1.�/ and the following equation hold

ˇ.y/u.y/CNu.y/ � V .y/CW'.y/ D F.y/C Pf .y/, y 2 �. (2.37)

Then, u 2 H1,0.�, A/.

Proof
Note that by Theorem B.1, Pf 2 H2.�/ for arbitrary f 2 H0.�/, while by Theorem B.2, the inclusions V , W' 2 H1,0.�,	/ hold for
arbitrary  2 H�

1
2 .S/ and ' 2 H

1
2 .S/. In view of the relations (2.34)–(2.35), Equation (2.37) can be rewritten component-wise as

@k P�
�

apq
kl @luq

	
.y/ D Fp.y/C P�fp.y/C ŒV .y/�p � ŒW.' � �

Cu/.y/�p, y 2 � p D 1, 3. (2.38)

By Theorems B.1 and B.2, it follows that the right-hand side function in the equality belongs to the space

H1,0.�,	/ :D fv 2 H1.�/ : 	v 2 H0.�/g ,

because �Cu 2 H
1
2 .S/, and therefore

@k P�
�

apq
kl @luq

	
2 H1,0.�,	/ . (2.39)

We have
	x P�.x � y/ D ı.x � y/C R�.x � y/, (2.40)
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where

R�.x � y/ :D �
1

4�



	
.x � y/

jx � yj
C 2

@ 
.x � y/

@xl

@

@xl

1

jx � yj

�
. (2.41)

Clearly, R�.x � y/ D O.jx � yj�2/ as x ! y and by (2.40) and (2.41), one can establish that for arbitrary scalar test function � 2 D.�/,
there holds the relation (e.g. [26])

	P��.y/ D �.y/CR��.y/, y 2 �, (2.42)

where

R��.y/ :D

Z
�

R�.x � y/ �.x/ dx. (2.43)

Evidently (2.42) remains true also for � 2 H0.�/, because D.�/ is dense in H0.�/. It is easy to see that [24]

R� : H0.�/! H1.�/ . (2.44)

Consequently,

	
�
@k P�

�
apq

kl @luq

	
.y/
�
D @k

�
	y P�

�
apq

kl @luq

	
.y/
�
D @k

�
apq

kl .y/ @luq.y/
�
C @k R�.apq

kl @luq/.y/

D ŒA u.y/�p C @k R�.apq
kl @luq/.y/ , y 2 � .

(2.45)

Hence, the embedding Au 2 H0.�/ follows from (2.38) due to (2.39) and (2.44).

Actually, the continuity of operator in (2.44) and identity (2.45) in the proof of Lemma 2.2 imply by (2.34) the following assertion.

Corollary 2.3
If 
 2 X3, then the following operator is bounded,

ˇ CN : H1,0.�, A/! H1,0.�,	/ .

3. Localized boundary-domain integral equation formulation of the Dirichlet problem and
the equivalence theorem

Let u 2 H1,0.�, A/ be a solution to the Dirichlet BVP (2.4)–(2.5) with '0 2 H
1
2 .S/ and f 2 H0.�/. As we have derived earlier, there holds

relations (2.28) and (2.36), which now can be rewritten in the form

.ˇ CN /u � V D Pf �W'0 in �, (3.1)

NCu � V D PCf � .ˇ � �/ '0 �W'0 on S, (3.2)

where :D TCu 2 H�
1
2 .S/ and� is defined by (B17). One can consider these relations as an LBDIE system with respect to the unknown

vector functions u and  . Now, we prove the following equivalence theorem.

Theorem 3.1
Let 
 2 X3

C
,'0 2 H

1
2 .S/ and f 2 H0.�/.

(i) If a vector function u 2 H1, 0.�, A/ solves the Dirichlet BVP (2.4)–(2.5), then the solution is unique and the pair .u, / 2 H1, 0.�, A/�
H�

1
2 .S/with

 D TCu , (3.3)

solves the LBDIE system (3.1)–(3.2).
(ii) Vice versa, if a pair .u, / 2 H1, 0.�, A/ � H�

1
2 .S/ solves the LBDIE system (3.1)–(3.2), then the solution is unique and the vector

function u solves the Dirichlet BVP (2.4)–(2.5), and relation (3.3) holds.

Proof
(i) The first part of the theorem is trivial and directly follows form the relations (2.28), (2.36), (3.3) and Remark 2.1.

(ii) Now, let a pair .u, / 2 H1, 0.�, A/�H�
1
2 .S/ solve the LBDIE system (3.1)–(3.2). Taking the trace of (3.1) on S and comparing it with

(3.2), we get

�Cu D '0 on S. (3.4)

Further, because u 2 H1, 0.�, A/, we can write Green’s third identity (2.28), which in view of (3.4) can be rewritten as

.ˇ CN /u � V.TCu/ D P .Au/ �W'0 in �. (3.5)

From (3.1) and (3.5), it follows that

V.TCu �  /C P .Au � f / D 0 in �. (3.6)
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Hence, by Lemma 6.3 in [24], we have

Au D f in � and TCu D  on S.

Thus, u solves the Dirichlet BVP (2.4)–(2.5) and Equation (3.3) holds.
The uniqueness of solution to the LBDIE system (3.1)–(3.2) in the space H1, 0.�, A/ � H�

1
2 .S/ directly follows from the previously

proved equivalence result and the uniqueness theorem for the Dirichlet problem (2.4)–(2.5) (Remark 2.1).

4. Symbols and invertibility of a domain operator in the half-space

In what follows in our analysis, we need the explicit expression of the principal homogeneous symbol matrix S.N /.y, �/ of the singular
integral operator N , which due to (2.13), (2.14) and (2.18) reads as

ŒS.N /.y, �/�pq D ŒS.N/.y, �/�pq D Fz!�

"
�v.p.

apq
kl .y/

4�

@2

@zk @zl

1

jzj

#
D �

apq
kl .y/

4�
Fz!�

�
v.p.

@2

@zk @zl

1

jzj

�

D �
apq

kl .y/

4�
Fz!�

�
4� ıkl

3
ı.z/C

@2

@zk @zl

1

jzj

�
D �ˇpq.y/ � apq

kl .y/.�i �k/.�i �l/ Fz!�

�
1

4�jzj

�
D

Apq.y, �/

j�j2
� ˇpq.y/ , y 2 �, � 2 R3,

(4.1)

where

Apq.y, �/ D apq
kl .y/ �k �l , p, q D 1, 2, 3,

while the Fourier transform operator F is defined as

Fg.�/ D Fz!� Œg.z/� D

Z
R3

g.z/ ei z�� dz.

Here, we have applied that Fz!�

�
.4�jzj/�1

�
D j�j�2 (e.g. [27]).

As we see, the entries of principal homogeneous symbol matrix S.N /.y, �/ of the operator N are even rational homogeneous
functions in � of order 0. It can easily be verified that both the characteristic function of the singular kernel in (2.18) and the symbol
(4.1) satisfy the Tricomi condition, that is, their integral averages over the unit sphere vanish (cf. [26]).

Relation (4.1) implies that the principal homogeneous symbols of the singular integral operators N and ˇ C N read as

S.N/.y, �/ D j�j�2A.y, �/ � ˇ 8 y 2 �, 8 � 2 R3 n f0g, (4.2)

S.ˇ C N/.y, �/ D j�j�2A.y, �/ 8 y 2 �, 8 � 2 R3 n f0g. (4.3)

Because of (2.2), the symbol matrix (4.3) is positive definite,

ŒS.ˇ C N/.y, �/ �� � N� D j�j�2 N� � A.y, �/ � � c1 j�j
2 8 y 2 �, 8 � 2 R3 n f0g, 8 � 2 C3,

where c1 is the same positive constant as in (2.2).
Denote

B :D ˇ C N.

By (4.3), the principal homogeneous symbol matrix of the operator B reads as

S.B/.y, �/ D j�j�2A.y, �/ for y 2 �, � 2 R3 n f0g, (4.4)

is an even rational homogeneous matrix function of order 0 in � and due to (2.2) it is positive definite,

ŒS.B/.y, �/�� � N� � c1 j�j
2 for all y 2 �, � 2 R3 n f0g and � 2 C3.

Consequently, B is a strongly elliptic pseudo-differential operator of zero order (i.e. Cauchy-type singular integral operator) and the
partial indices of factorization of the symbol (4.4) equal to zero (cf. [28–30]).

We need some auxiliary assertions in our further analysis. To formulate them, let Qy 2 S D @� be some fixed point and consider the

frozen symbol S. QB/.Qy, �/ � S. QB/.�/, where QB denotes the operator B written in chosen local co-ordinate system. Further, letbQB denote
the pseudo-differential operator with the symbol

bS. QB/.� 0 , �3/ :D S. QB/
�
.1C j�

0

j/!, �3



, where ! D

�
0

j�
0
j
, � D .� 0, �3/, � 0 D .�1, �2/.
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Then, the frozen principal homogeneous symbol matrix S. QB/.�/ is also the principal homogeneous symbol matrix of the operatorbQB. It can be factorized with respect to the variable �3 as

S. QB/.�/ D S
.�/

. QB/.�/ S
.C/

. QB/.�/, (4.5)

where

S
.˙/

. QB/.�/ D
1

‚
.˙/
.�
0 , �3/

QA
.˙/

.�
0

, �3/. (4.6)

Here, ‚
.˙/
.�
0
, �3/ :D �3 ˙ ij�

0
j are the ‘plus’ and ‘minus’ factors of the symbol ‚.�/ :D j�j2, and QA

.˙/
.�
0
, �3/ are the ‘plus’ and ‘minus’

polynomial matrix factors of the first order in �3 of the positive definite polynomial symbol matrix QA.�
0
, �3/ � QA.ey, �

0
, �3/ corresponding

to the frozen differential operator A.Qy, @x/ at the point Qy 2 S [31–33], that is,

QA.�
0

, �3/ D QA
.�/

.�
0

, �3/ QA
.C/

.�
0

, �3/ (4.7)

with det QA
.C/
.� 0, �/ ¤ 0 for Im� > 0 and det QA

.�/
.� 0, �/ ¤ 0 for Im� < 0. Moreover, the entries of the matrices QA

.˙/
.�
0
, �3/ are

homogeneous functions in � D .� 0, �3/ of order 1.
Denote, by a

.˙/
.� 0/, the coefficients at �3

3 in the determinants det QA
.˙/
.� 0, �3/. Evidently,

a
.�/

.� 0/ a
.C/

.� 0/ D det QA.0, 0, 1/ > 0 for � 0 ¤ 0. (4.8)

It is easy to see that the factor matrices QA
.˙/
.� 0, �3/ have the following structure:�h

QA
.˙/

.� 0, �3/
i�1

�
ij

D
1

det QA.˙/.� 0, �3/
p
.˙/

ij
.� 0, �3/, i, j D 1, 2, 3,

where p
.˙/

ij
.� 0, �3/ are the co-factors of the matrix QA

.˙/
.� 0, �3/, which can be written in the form

p
.˙/

ij
.� 0, �3/ D c

.˙/

ij
.� 0/ �2

3 C b
.˙/

ij
.� 0/ �3 C d

.˙/

ij
.� 0/. (4.9)

Here, c
.˙/

ij
, b

.˙/

ij
and d

.˙/

ij
, i, j D 1, 2, 3, are homogeneous functions in � 0 of order 0, 1 and 2, respectively.

From the previously mentioned, it follows that the entries of the factor-symbol matrices b
.˙/

kj .!, r, �3/ :D S
.˙/

kj .
QB/.� 0, �3/, k, j D 1, 2, 3,

with ! D � 0=j� 0j and r D j� 0j, satisfy the following relations:

@lb
.˙/

kj .!, 0,�1/

@rl
D .�1/l

@lb
.˙/

kj .!, 0,C1/

@rl
, l D 0, 1, 2, : : : (4.10)

These relations imply that the entries of the matrices S
.˙/
. QB/.� 0, �3/ belong to the class of symbols D0 introduced in [27], Ch. III, 
 10,

S
.˙/

. QB/.� 0, �3/ 2 D0. (4.11)

Denote by…˙ the Cauchy-type integral operators

…˙h.�/ :D ˙
i

2�
lim

t!0C

Z C1
�1

h.� 0, �3/ d�3

�3 ˙ i t � �3
, (4.12)

which are well defined at any � 2 R3 for a bounded smooth function h.� 0, �/ satisfying the relation h.� 0, �3/ D O.1 C j�3j/
�� with

some � > 0.

Let VEC be the extension operator by zero from R3
C

onto the whole space R3 and rC :D r
R3
C

: Hs.R3/ ! Hs.R3
C
/ be the restriction

operator to the half-space R3
C

. First, we prove the following assertion.

Lemma 4.1
Let s � 0 and 
 2 Xk

C
with integer k � 2. The operator

rC
bQBVEC : Hs.R3

C/! Hs.R3
C/

is invertible.
Moreover, for f 2 Hs.R3

C
/, the unique solution of the equation

rC
bQBVECu D f (4.13)
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for u 2 Hs.R3
C
/ can be represented in the form u D rCuC, where

uC D VEu D F�1



ŒbS.C/

.eB/��1…C
�
ŒbS.�/

.eB/��1F.f�/
��

,

and f� 2 Hs.R3/ is an extension of f 2 Hs.R3
C
/ (i.e. rCf� D f ) such that kf�kHs.R3/ D kfkHs.R3

C/
.

Proof
First, we show that if f 2 H0.R3

C
/, then Equation (4.13) is uniquely solvable in the space H0.R3

C
/. Let u 2 H0.R3

C
/ be a solution of this

equation, and let us denote

u� :D f� �
bQBuC, (4.14)

where uC :D VECu 2 QH0.R3
C
/ and f� 2 H0.R3/ is an arbitrary extension of f 2 H0.R3

C
/ onto R3

C
such that kf�kH0.R3/ D kfkH0.R3

C/
.

Because f� 2 H0.R3/ andbQBuC 2 H0.R3/, we have u� 2 H0.R3/. In addition, u� 2 QH0.R3
�/.

The Fourier transform of (4.14) leads to the following relation

bS. QB/.�/F.uC/C F.u�/.�/ D F.f�/.�/. (4.15)

Because of (4.5), we have the following factorization

bS. QB/.� 0 , �3/ D bS.�/

. QB/.�
0

, �3/ bS.C/

. QB/.�
0

, �3/, (4.16)

where bS.˙/

. QB/.�
0
, �3/ D S

.˙/
. QB/

�
.1C j�

0
j/!, �3



with ! D �

0

j�
0
j
. Substituting (4.16) into (4.15) and multiplying both sides by

ŒbS.�/

. QB/��1, we get

bS.C/

. QB/.�/F.uC/.�/C
�bS.�/

. QB/.�/

��1

F.u�/.�/ D
�bS.�/

. QB/.�//

��1

F.f�/.�/. (4.17)

Introduce the notations

vC.x/ D F�1
�!x

�bS.C/

. QB/.�/F.uC/.�/
�

, (4.18)

v�.x/ D F�1
�!x

�
ŒbS.�/

. QB/.�/��1 F.u�/.�/
�

, (4.19)

g.x/ D F�1
�!x

�
ŒbS.�/

. QB/.�/��1 F.f�/.�/
�

. (4.20)

Then, we can conclude that ([27], Theorem 4.4 and Lemmas 20.2, 20.5)

vC 2 QH
0.R3
C/, v� 2 QH

0.R3
�/, g 2 H0.R3/, (4.21)

because the degrees of homogeneity of S
.C/
. QB/.�/ and S

.�/
. QB/.�/ equal to 0.

In terms of notations (4.18)–(4.20), Equation (4.17) acquires the form

F.vC/.�/C F.v�/.�/ D F.g/.�/. (4.22)

In accordance with Lemma 5.4 in [27], we conclude that the representation of the vector function F.g/.�/ in the form (4.22) is unique
in view of inclusions (4.21), which in turn leads to the following relations:

F.vC/ D …CF.g/, F.v�/ D …�F.g/. (4.23)

Now, from (4.18), (4.20) and the first equation in (4.23), it follows that uC 2 QH0.R3
C
/ is representable in the form

uC D F�1

(
ŒbS.C/

. QB/��1…C

 �bS.�/

. QB/

��1

F.f�/
!)

. (4.24)

Evidently, for the solution u 2 H0.R3
C
/ of Equation (4.13), then we get the following representation

u D rCF�1

(
ŒbS.C/

. QB/��1…C

 �bS.�/

. QB/

��1

F.f�/
!)

. (4.25)
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Note that the representation (4.25) does not depend on the choice of the extension f�. Indeed, let f�1 2 H0.R3/ be another extension
of f 2 H0.R3

C
/, that is, rCf�1 D f . Because f� D f� � f�1 2 QH0.R3

�/, it follows that ([27], Theorem 4.4, Lemmas 20.2 and 20.5)

F�1

 �bS.�/

. QB/

��1

F.f�/
!
2 QH0.R3

�/,

while

…C

(�bS.�/

. QB/

��1

F.f�/
)
D F

(
�CF�1

 �bS.�/

. QB/

��1

F.f�/
!)
D 0

(cf. [27], Lemma 5.2). Here, �C denotes the multiplication operator by the Heaviside step function �.x3/ that is equal to 1 for x3 > 0 and
vanishes for x3 < 0. Therefore,

…C

 �bS.�/

. QB/

��1

F.f�/
!
D …C

 �bS.�/

. QB/

��1

F.f�1/

!
and the claim follows. If, in particular, f D 0, then f� D 0, and hence, u D 0 by virtue of (4.24). Thus, Equation 4.13 possesses at most
one solution in the space H0.R3

C
/.

Further, we show that the function

u D rCF�1

(�bS.C/

. QB/

��1

…C

 �bS.�/

. QB/

��1

F.f�/
!)

(4.26)

is a solution of Equation (4.13) for any f 2 H0.R3
C
/. To this end, let us first note that for the vector function under the restriction operator

in (4.26), the following embedding holds

F�1

(�bS.C/

. QB/

��1

…C

 �bS.�/

. QB/

��1

F.f�/
!)
2 QH0.R3

C/. (4.27)

Indeed, by Lemma 5.2 in [27], we have

F�1

(�bS.C/

. QB/

��1

…C

 �bS.�/

. QB/

��1

F.f�/
!)
D F�1

(�bS.C/

. QB/

��1

F
"
�CF�1

 �bS.�/

. QB/

��1

F.f�/
!#)

and (4.27) follows from Theorem 4.4, Lemmas 20.2 and 20.5 in [27]. From (4.26) and (4.27), we obtain

uC :D VECu D F�1

(�bS.C/

. QB/

��1

…C

 �bS.�/

. QB/

��1

F.f�/
!)

. (4.28)

By the relation

…C

 �bS.�/

. QB/

��1

F.f�/
!
D

�bS.�/

. QB/

��1

F.f�/ �…�
 �bS.�/

. QB/

��1

F.f�/
!

(cf. Lemma 5.4 in [27]), we get from equality (4.28),

bS. QB/F.uC/ D bS.�/

. QB/…C
 �bS.�/

. QB/

��1

F.f�/
!
D F.f�/ � bS.�/

. QB/…�
 �bS.�/

. QB/

��1

F.f�/
!

.

Because

F�1

(bS.�/

. QB/…�
 �bS.�/

. QB/

��1

F.f�/
!)
2 QH0.R3

�/,

(cf. [27], Theorems 4.4, 5.1, Lemmas 20.2, 20.5 ), we easily derive

rC
bQB uC D rC.f�/ � rCF�1

(bS.�/

. QB/…�
 �bS.�/

. QB/

��1

F.f�/
!)
D rC.f�/ D f ,

that is, the vector function (4.26) solves Equation (4.13) and belongs to the space H0.R3
C
/ for f 2 H0.R3

C
/.

In what follows, we prove that for f 2 Hs.R3
C
/ and f� 2 Hs.R3/ such that

kf�kHs.R3/ D kfkHs.R3
C/

for s � 0, (4.29)
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the vector function defined by (4.26) satisfies the inequality

kukHs.R3
C/
� C kfkHs.R3

C/
, (4.30)

and hence belongs to Hs.R3
C
/. Indeed, because (by Lemma 5.2 and Theorem 5.1 in [27])

…C.Fg/ D F.�Cg/ for all g 2 H0.R3/,

then representation (4.28) of uC can be rewritten as

uC D F�1

(�bS.C/

. QB/

��1

F
"
�CF�1

 �bS.�/

. QB/

��1

F.f�/
!#)

.

Therefore, using (4.29) and in view of (4.11), from Theorem 10.1, Lemmas 4.4, 20.2, and 20.5 in [27], we finally derive

kukHs.R3
C/
� c1

�����F�1

 �bS.�/

. QB/

��1

F.f�/
!�����

Hs.R3
C/

� c1

�����F�1

 �bS.�/

. QB/

��1

F.f�/
!�����

Hs.R3/

� c2 kf�kHs.R3/ D c2 kfkHs.R3
C/

with some positive constants c1 and c2, hence (4.30) follows.

Lemma 4.2
Let the factor matrix QA

.C/
.� 0, �/ be as in (4.7), and a

.C/
and c

.C/

ij
be as in (4.8) and (4.9), respectively. Then, the following equality holds

1

2� i

Z
��

h
QA
.C/

.� 0, �/
i�1

d� D
1

a.C/.� 0/
C
.C/

.� 0/ , (4.31)

where C
.C/
.� 0/ D

h
c
.C/

ij
.� 0/

i3

ijD1
and det

h
C
.C/
.� 0/

i
¤ 0 for � 0 ¤ 0. Here �� is a contour in the lower complex half-plane enclosing

all the roots of the polynomial det QA
.C/
.� 0, �/with respect to � .

Proof
Note that det QA

.C/
.� 0, �/ is a third order polynomial in � , while p

.C/

ij
.� 0, �/ is a second-order polynomial in � defined in (4.9).

Let �R be a circle centred at the origin and having sufficiently large radius R. By the Cauchy theorem, then we derive

1

2� i

Z
��


h
QA
.C/

.� 0, �/
i�1

�
ij

d� D
1

2� i

Z
��

p
.C/

ij
.� 0, �/

det QA.C/.� 0, �/
d� D

1

2� i

Z
�R

p
.C/

ij
.� 0, �/

det QA.C/.� 0, �/
d�

D
1

2� i

c
.C/

ij
.� 0/

a.C/.� 0/

Z
�R

1

�
d� C

Z
�R

Qij .�
0, �/ d� D

c
.C/

ij
.� 0/

a.C/.� 0/
C

Z
�R

Qij .�
0, �/ d� ,

(4.32)

where Qij .�
0, �/ D O.j� j�2/ as j� j ! 1.

It is clear that

lim
R!1

Z
�R

Qij .�
0, �/ d� D 0.

Therefore, by passing to the limit in (4.32) as R!1, we obtain

1

2� i

Z
��


h
QA
.C/

.� 0, �/
i�1

�
ij

d� D
c
.C/

ij
.� 0/

a.C/.� 0/
.

Now, we show that det
h

C
.C/
i
¤ 0. We introduce the notations

P
.C/

.� 0, �3/ D
h

p
.C/

ij
.� 0, �3/

i3

ijD1
D C

.C/

.� 0/�2
3 C B

.C/

.� 0/�3 C D
.C/

.� 0/,

where

B
.C/

.� 0/ D
h

b
.C/

ij
.� 0/

i3

ijD1
and D

.C/

.� 0/ D
h

d
.C/

ij
.� 0/

i3

ijD1
.

Because det
h
QA
.C/
.� 0, �3/

i�1
¤ 0 for � D .� 0, �3/ ¤ 0; therefore, det P

.C/
.� 0, �3/ ¤ 0 for � D .� 0, �3/ ¤ 0.

Let us introduce new coordinates r D j� 0j, ! D � 0=j� 0j and denote

P .C/

.!, r, �3/ :D P
.C/

.� 0, �3/ D P
.C/

.! r, �3/.
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Then, we have

detP .C/

.!, r, �3/ D det P
.C/

.� 0, �3/ D det
�

C
.C/

.!/�2
3 C B

.C/

.!/ �3 rC D
.C/

.!/r2


¤ 0 for all �3 ¤ 0. (4.33)

Hence,

lim
r!0

detP .C/

.!, r, �3/ D �
6
3 det C

.C/

.!/ ,

consequently det C
.C/
.!/ ¤ 0 and Lemma 4.2 is proved.

For further use, let us introduce the auxiliary operator…0 defined as

…0.g/.� 0/ :D lim
x3!0C

r
R3
C

F�1
�3!x3

�
g.� 0, �3/

�
D

1

2�
lim

x3!0C

Z C1
�1

g.� 0, �3/e
�ix3�3 d�3 D

1

2�

Z C1
�1

g.� 0, �3/ d�3 for g.� 0, �/ 2 L1.R/.

The operator …0 can be extended to the class of functions g.� 0, �3/ that are rational in �3 with the denominator not vanishing for real
non-zero � D .� 0, �3/ 2 R3 n f0g, homogeneous of order m 2 Z :D f0,˙1,˙2, : : : g in � and infinitely differentiable with respect to �
for � 0 ¤ 0. Then, one can show that (cf. Appendix C in [15] )

…0.g/.� 0/ D lim
x3!0C

rRCF
�1
�3!x3

�
g.� 0, �3/

�
D �

1

2�

Z
��

g.� 0, �/ d�, (4.34)

where rRC denotes the restriction operator onto RC D .0, C1/ with respect to x3, �� is a contour in the lower complex half-plane
in �, orientated anticlockwise and enclosing all the poles of the rational function g.� 0, �/. It is clear that if g.� 0, �/ is holomorphic in � in
the lower complex half-plane (Im � < 0/, then…0.g/.� 0/ D 0.

5. Invertibility of the Dirichlet localized boundary-domain integral operator

From Theorem 3.1, it follows that the LBDIE system (3.1)–(3.2), which has a special right-hand side, is uniquely solvable in the
space H1, 0.�, A/ � H�1=2.S/. Let us investigate the LBDIO, generated by the left-hand side expressions in (3.1)–(3.2), in appropriate
functional spaces.

The LBDIE system (3.1)–(3.2) with an arbitrary right-hand side vector functions from the space H1.�/ � H1=2.S/ can be written as

BVEu � V D F1 in �, (5.1)

NC VEu � V D F2 on S, (5.2)

where B D ˇ C N, F1 2 H1.�/ and F2 2 H1=2.S/. Let us denote by D the LBDIO generated by the left-hand side expressions in LBDIE
system (5.1)–(5.2),

D :D

"
r
�

BVE �r
�

V

NC VE �V

#
.

We would like to prove the following assertion.

Theorem 5.1
Let the localizing function 
 2 X1

C
and r > � 1

2 . Then, the operator

D : HrC1.�/ � Hr�1=2.S/! HrC1.�/ � HrC1=2.S/ (5.3)

is invertible.

We will reduce the theorem proof to several lemmas.

Lemma 5.2
Let 
 2 X1. The operator r

�
BVE : Hs.�/! Hs.�/ for s � 0 is Fredholm with zero index.

Proof
Because (4.4) is a rational function in � , we can apply the theory of pseudo-differential operators with symbol satisfying the trans-
mission conditions [25, 27–29, 34]. Now, with the help of the local principle (Lemma 23.9 in [27]) and Lemma 4.1, we deduce that
the operator

B :D r
�

B VE : Hs.�/! Hs.�/

is Fredholm for all s � 0.
To show that IndB D 0, we use that the operators B and

Bt D r
�
.ˇ C t N/VE,

© 2016 The Authors Mathematical Methods in the Applied Sciences Math. Meth. Appl. Sci. 2016
Published by John Wiley & Sons, Ltd.



O. CHKADUA, S. E. MIKHAILOV AND D. NATROSHVILI

where t 2 Œ0, 1�, are homotopic. Note that B D B1. The principal homogeneous symbol of the operator Bt has the form

S.Bt/.y, �/ D ˇ.y/C t S.N/.y, �/ D .1 � t/ˇ.y/C tS.B/.y, �/.

It is easy to see that the symbol S.Bt/.y, �/ is positive definite,

ŒS.Bt/.y, �/�� � N� D .1 � t/ Œˇ.y/ �� � N� C t ŒS.B/.y, �/�� � N� � cj�j2

for all y 2 �, � ¤ 0, � 2 C3 and t 2 Œ0, 1�, where c is some positive number.
Because S.Bt/.y, �/ is rational, even, and homogeneous of order zero in � , we conclude, as earlier, that the operator

Bt : Hs.�/! Hs.�/

is Fredholm for all s � 0 and for all t 2 Œ0, 1�. Therefore, IndBt is the same for all t 2 Œ0, 1�. On the other hand, due to the equality
B0 D r

�
I, we get

IndB D IndB1 D IndBt D IndB0 D 0.

Lemma 5.3
Let 
 2 X1. The operator D given by (5.3) is Fredholm.

Proof
To investigate Fredholm properties of the operator D, we apply the local principle (cf. e.g. [27, 35], 
 19 and 
 22). Because of this
principle, we have to show first that the operator D is locally Fredholm at an arbitrary ‘frozen’ interior point Qy 2 �, and secondly that the
so called generalized Šapiro–Lopatinskĭi condition for the operator D holds at an arbitrary ‘frozen’ boundary point Qy 2 S. To obtain the
explicit form of this condition, we proceed as follows. Let QU be a neighbourhood of a fixed point Qy 2 �, and let Q 0, Q'0 2 D. QU/ such that

supp Q 0 \ supp Q'0 ¤ ;, Qy 2 supp Q 0 \ supp Q'0,

and consider the operator Q 0D Q'0. We consider separately two possible cases, case (1): Qy 2 �, and case (2):ey 2 S.

Case (1). Ifey 2 �, then we can choose a neighbourhood QU such that QU � �. Therefore, the operator Q 0D Q'0 has the same Fredholm
properties as the operator Q 0B Q'0 (see the similar arguments in the proof of Theorem 22.1 in [27]). Then by Lemma 5.2, we
conclude that Q 0D Q'0 is a locally Fredholm operator at interior points of�.

Case (2). If Qy 2 S, then at this point we have to ‘freeze’ the operator Q 0 D Q'0, which means that we can choose a neighbourhood QU
sufficiently small such that at the local co-ordinate system with the origin at the point Qy and the third axis coinciding with the
normal vector at the point Qy 2 S, the following decomposition holds

Q 0D Q'0 D Q 0

�bQDC QKC QT
 Q'0, (5.4)

where

QK : HrC1.R3
C/ � Hr�1=2.R2/! HrC1.R3

C/ � HrC1=2.R2/

is a bounded operator with small norm, while

QT : HrC1.R3
C/ � Hr�1=2.R2/! HrC2.R3

C/ � HrC3=2.R2/

is a bounded operator. The operator

bQD :D

24 rC
bQBVE �rC

bQVbeNC VE �bQV
35

with rC D r
R3
C

, is defined in the upper half-space R3
C

and possesses the following mapping property

bQD : HrC1.R3
C/ � Hr�1=2.R2/! HrC1.R3

C/ � HrC1=2.R2/. (5.5)

The operators involved in the expression of bQD are defined as follows: for the operator QM, the operator bQM denotes the operator in Rn

.n D 2, 3/ constructed by the symbol bS. QM/.�/ D S. QM/
�
.1C j� 0j/!, �3

	
if n D 3

and bS. QM/.�/ D S. QM/
�
.1C j� 0j/!

	
if n D 2,
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where ! D �0

j�0j
, � D .� 0, �n/, � 0 D .�1, ..., �n�1/.

The generalized Šapiro–Lopatinskiĭ condition is related to the invertibility of the operator (5.5). Indeed, let us write the system

corresponding to the operator bQD:

rC
bQBVE Qu � rC

bQV Q D QF1 in R3
C , (5.6)beNC VE Qu �bQVe D QF2 on R2 , (5.7)

where QF1 2 H1.R3
C
/, QF2 2 H1=2.R2/.

Note that the operator rC
bQBVE is a singular integral operator with even rational elliptic principal homogeneous symbol. Then, due to

Lemma 4.1, the operator

rC
bQBVE : HrC1.R3

C/! HrC1.R3
C/

is invertible, we can determine Qu from Equation (5.6) and write

VE Qu D VE
h

rC
bQBVEi�1

Qf D F�1


hbS.C/

. QB/
i�1

…C
�hbS.�/

. QB/
i�1

F.Qf�/
��

, (5.8)

where Qf� D QF1� C
bQV Q is an extension of Qf D QF1 C rC

bQV Q from R3
C

to R3 preserving the function space. The symbols bS.˙/

.M/ denote

the so called ‘plus’ and ‘minus’ factors in the factorization of the symbol bS.M/with respect to the variable �3. Note that the function VE Qu
in (5.8) does not depend on the chosen extension Qf� of Qf .

Substituting (5.8) into (5.7) leads to the following pseudo-differential equation with respect to the unknown function Q :

beNCF�1


hbS.C/

. QB/
i�1

…C
�hbS.�/

. QB/
i�1

F.bQV Q /�� �bQV Q D QF on R2, (5.9)

where eF D QF2 �
beNC VE hrC

bQBVEi�1
QF1.

It is easy to see that

eNC v .Qy 0/ D
h
F�1
�!Qy

�
S.eN/.�/ F.v/.�/�i

Qy3D0C
D F�1

� 0!Qy 0
�
…0
�
S.eN/ F.v/� .� 0/� .

In view of the relation (e.g. [21, Equation (4.1)], [15, Equations (B.5)–(B.6)])

QV Q .y/ D �h� QP.� � y/, Q iS D �hQP.� � y/, �� Q iR3 D �eP.�� Q /.y/,
where the operator �� is dual to the trace operator � . When the surface S coincides with R2 D @R3

C
, then we have �� Q D e .ey0/˝ ı3

with ı3 being the one-dimensional Dirac distribution in the Qy3 direction. Then, we arrive at the equality

beNCF�1
�!Qx


hbS.C/

. QB/.�/
i�1

…C
�hbS.�/

. QB/
i�1

F.bQV Q /� .�/� .Qy 0/ D
� F�1

�0!Qy 0



…0
�bS.eN/ hbS.C/

. QB/
i�1

…C
�hbS.�/

. QB/
i�1 bS. QP/�� .� 0/Fex 0!�0 Q � .

With the help of these relations Equation (5.9) can be rewritten in the following form

F�1
�0!Qy0

�be .� 0/F. Q /.� 0/� D QF.Qy 0/ on R2, (5.10)

where be.� 0/ D e
�
.1C j� 0j/ !

	
, ! D

� 0

j� 0j
, (5.11)

with e being a homogeneous function of order�1 given by the equality

e.� 0/D�… 0


S.eN/ hS.C/

. QB/
i�1

…C
�h

S
.�/

. QB/
i�1

S. QP/

��
.� 0/ �S. QV/.� 0/, 8 � 0 ¤ 0. (5.12)

If the function det e.� 0/ is different from zero for all � 0 ¤ 0, then detbe.� 0/ ¤ 0 for all � 0 2 R2, and the corresponding pseudo-
differential operator bE : Hs.R/! HsC1.R/ for all s 2 R
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generated by the left-hand side expression in (5.10) is invertible. In particular, it follows that the system of Equation 5.6–(5.7) is uniquely
solvable with respect to .eu, Q / in the space H1.R3

C
/ � H�1=2.R2/ for arbitrary right-hand sides .QF1, QF2/ 2 H1.R3

C
/ � H1=2.R2/. Con-

sequently, the operator bQD in (5.5) is invertible, which implies that the operator (5.4) possesses a left and right regularizer. In turn, this
yields that the operator (5.3) possesses a left and right regularizer as well. Thus, the operator (5.3) is Fredholm if

det e.� 0/ ¤ 0 8 � 0 ¤ 0.

This condition is called the Šapiro–Lopatinskiĭ condition (cf. [27], Theorems 12.2 and 23.1, and also formulas (12.27) and (12.25)). Let us
show that in our case the Šapiro–Lopatinskiĭ condition holds. To this end, let us note that the principal homogeneous symbols S.eN/,
S. QB/, S. QP/ and S. QV/ of the operators N, B, P, and V in the chosen local co-ordinate system involved in formula (5.12) read as

S.eN/.�/ D j�j�2 QA.�/ � Q̌ , S. QB/.�/ D j�j�2 QA.�/, S. QP/.�/ D �j�j�2 I, S. QV/.� 0/ D 1

2j� 0j
I, � D .� 0, �3/, �

0 D .�1, �2/,

where Q̌ denotes the matrix ˇ written in chosen local co-ordinate system. Rewrite (5.12) in the form

e.� 0/ D �…0

�
S.eB/ � Q̌	 hS.C/

. QB/
i�1

…C
�h

S
.�/

. QB/
i�1

S. QP/

��
.� 0/ �S. QV/.� 0/ D e1.�

0/C e2.�
0/ �S. QV/.� 0/, (5.13)

where

e1.�
0/ D �…0



S. QB/

h
S
.C/

. QB/
i�1

…C
�h

S
.�/

. QB/
i�1

S. QP/

��
.� 0/, (5.14)

e2.�
0/ D Q̌…0


h
S
.C/

. QB/
i�1

…C
�h

S
.�/

. QB/
i�1

S. QP/

��
.� 0/, (5.15)

S. QV/.� 0/ D 1

2j� 0j
I. (5.16)

Direct calculations give

…C
�h

S
.�/

. QB/
i�1

S. QP/

�
.� 0/ D

i

2�
lim

t!0C

Z C1
�1

�h
S
.�/
. QB/
i�1

S. QP/

�
.� 0, �3/ d�3

�3 C i t � �3

D �
i

2�
lim

t!0C

Z C1
�1

h
S
.�/
. QB/
i�1

.� 0, �3/ d�3

.�3 C i t � �3/ .j� 0j2 C �
2
3/
D

i

2�
lim

t!0C

Z
��

h
S
.�/
. QB/
i�1

.� 0, �/ d�

.�3 C i t � �/ .j� 0j2 C �2/

D
i

2�
lim

t!0C

2� i
h
S
.�/
. QB/
i�1

.� 0,�ij� 0j/

.�3 C i tC ij� 0j/ 2 .�ij� 0j/
D �

i
h
S
.�/
. QB/
i�1

.� 0,�ij� 0j/

2 j� 0j‚.C/.� 0 , �3/
.

(5.17)
Now, from (5.14) with the help of (5.17), we derive

e1.�
0/ D �…0



S
.�/

. QB/S
.C/

. QB/
h
S
.C/

. QB/
i�1

…C
�h

S
.�/

. QB/
i�1

S. QP/

��
.� 0/

D �…0


S
.�/

. QB/…C
�h

S
.�/

. QB/
i�1

S. QP/

��
.� 0/ D …0

(
S
.�/
. QB/

‚
.C/

)
.� 0/

0B@ i
h
S
.�/
. QB/
i�1

.� 0,�ij� 0j/

2 j� 0j

1CA
D �

1

2 �

Z
��

S
.�/
. QB/.� 0, �/

� C ij � 0j
d�

0B@ i
h
S
.�/
. QB/
i�1

.� 0,�ij� 0j/

2 j� 0j

1CA

D �i S
.�/

. QB/.� 0,�i j� 0j/
i
h
S
.�/
. QB/
i�1

.� 0,�ij� 0j/

2 j� 0j
D

1

2 j� 0j
I.

(5.18)
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Quite similarly, from (5.15) with the help of (5.17), we get

e2.�
0/ D Q̌ …0


h
S
.C/

. QB/
i�1

…C
�h

S
.�/

. QB/
i�1

S. QP/

��
.� 0/ D � Q̌ …0

8̂<̂
:
h
S
.C/
. QB/
i�1

‚
.C/

9>=>; .� 0/
0B@ i

h
S
.�/
. QB/
i�1

.� 0,�ij� 0j/

2 j� 0j

1CA
D �

i Q̌

2 j� 0j

0B@� 1

2 �

Z
��

h
S
.C/
. QB/
i�1

.� 0, �/

� C ij � 0j
d�

1CAhS.�/

. QB/
i�1

.� 0,�ij� 0j/

D
i Q̌

4� j� 0j

Z
��

h
QA
.C/

.� 0, �/
i�1

d� .�2 i j� 0j/
h
QA
.�/

.� 0,�i j� 0j/
i�1
D i Q̌



1

2� i

Z
��

h
QA
.C/

.� 0, �/
i�1

d�

� h
QA
.�/

.� 0,�i j� 0j/
i�1

.

Therefore, due to (5.13), (5.16), (5.18) and Lemma 4.2, we have

e2.�
0/ D

i

a.C/.� 0/
Q̌ C

.C/

.� 0/ Œ QA
.�/

.� 0,�i j� 0j/��1, (5.19)

where det Q̌ ¤ 0, det C
.C/
.� 0/ ¤ 0 and det QA

.�/
.� 0,�i j� 0j/ ¤ 0 for all � 0 ¤ 0. Then, it is clear that

det e.� 0/ D �
i�

a.C/.� 0/
	3 det Q̌ det C

.C/

.� 0/detŒ QA
.�/

.� 0,�i j� 0j/��1 ¤ 0

for all � 0 ¤ 0.
Thus, we have obtained that for the operator D the Šapiro–Lopatinskiĭ condition holds. Therefore, the operator

D : HrC1.�/ � Hr�1=2.S/! HrC1.�/ � HrC1=2.S/

is Fredholm for r > � 1
2 .

Lemma 5.4
Let 
 2 X1. The operator D given by (5.3) is Fredholm with zero index.

Proof
For t 2 Œ0, 1�, let us consider the operator

Dt :D

"
r
�

Bt VE �r
�

V

t NC VE �V

#

with Bt D ˇ C t N and establish that it is homotopic to the operator D D D1. We have to check that for the operator D t the Šapiro–
Lopatinskiĭ condition is satisfied for all t 2 Œ0, 1�. Indeed, in this case the Šapiro–Lopatinskiĭ condition reads as

det et.�
0/ ¤ 0 for all � 0 ¤ 0,

where (cf. (5.12))

et.�
0/ D �…0


�
S. QBt/ � Q̌

	 h
S
.C/

. QBt/
i�1

…C
�h

S
.�/

. QBt/
i�1

S. QP/

��
.� 0/ �S. QV/.� 0/ D e.1/t .� 0/C e.2/t .� 0/ �S. QV/.� 0/ (5.20)

with

e.1/t .� 0/ D �…0


S. QBt/

h
S
.C/

. QBt/
i�1

…C
�h

S
.�/

. QBt/
i�1

S. QP/

��
.� 0/ D

1

2 j� 0j
I, (5.21)

e.2/t .� 0/ D Q̌…0

h
S
.C/

. QBt/
i�1

…C
�h

S
.�/

. QBt/
i�1

S. QP/

��
.� 0/, (5.22)

S. QV/.� 0/ D 1

2j� 0j
I. (5.23)

© 2016 The Authors Mathematical Methods in the Applied Sciences Math. Meth. Appl. Sci. 2016
Published by John Wiley & Sons, Ltd.



O. CHKADUA, S. E. MIKHAILOV AND D. NATROSHVILI

By direct calculations, we get

e.2/t .� 0/ D Q̌…0

h
S
.C/

. QBt/
i�1

…C
�h

S
.�/

. QBt/
i�1

S. QP/

��
.� 0/

D � Q̌ …0

8̂<̂
:
h
S
.C/
. QBt/

i�1

‚
.C/

9>=>; .� 0/
0B@ i

h
S
.�/
. QBt/

i�1
.� 0,�ij� 0j/

2 j� 0j

1CA
D �

i Q̌

2 j� 0j

0B@� 1

2 �

Z
��

h
S
.C/
. QBt/

i�1
.� 0, �/

� C ij � 0j
d�

1CA�S�. QBt/
��1

.� 0,�ij� 0j/

D
i Q̌

4� j� 0j

Z
��

h
QA
.C/

t .� 0, �/
i�1

d� .�2 i j� 0j/
h
QA
.�/

t .� 0,�i j� 0j/
i�1

D i Q̌
n 1

2� i

Z
��

h
QA
.C/

t .� 0, �/
i�1

d�
o h
QA
.�/

t .� 0,�i j� 0j/
i�1

,

(5.24)

where QAt.�/ D .1 � t/ j�j2 Q̌ C t QA.�/, QAt.�
0, �3/ D QA

.�/

t .� 0, �3/ QA
.C/

t .� 0, �3/ and QA
.˙/

t .� 0, �3/ are the ‘plus’ and ‘minus’ polynomial matrix
factors in �3 of the polynomial symbol matrix QAt.�

0, �3/. Because of (5.20), (5.21), (5.23), (5.24) and Lemma 4.2, we have

e.2/t .� 0/ D
i

a
.C/

t .� 0/
Q̌ C

.C/

t .� 0/
h
QA
.�/

t .� 0,�i j� 0j/
i�1

,

where C
.C/

t .� 0/ D
h

c
.C/

ij,t
.� 0/

i3

ijD1
and c

.C/

ij,t
, i, j D 1, 2, 3, are main coefficients of the co-factors p

.C/

ij,t
.� 0, �/ of the polynomial matrix

QA
.C/

t .� 0, �/ and a
.C/

the coefficient at �3 in the determinant det QA
.C/

t .� 0, �/. In addition,

det Q̌ ¤ 0, det C
.C/

t .� 0/ ¤ 0, det QA
.�/

t .� 0,�i j� 0j/ ¤ 0

for all � 0 ¤ 0 and t 2 Œ0, 1�.
Then, it is clear that

det et.�
0/ D �

i�
aCt .� 0/


3 det Q̌ det C
.C/

t .� 0/det
h
QA
.�/

t .� 0,�i j� 0j/
i�1
¤ 0

for all � 0 ¤ 0 and for all t 2 Œ0, 1�, which implies that for the operator Dt the Šapiro–Lopatinskiĭ condition is satisfied.
Therefore, the operator

Dt : HrC1.�/ � Hr�1=2.S/! HrC1.�/ � HrC1=2.S/

is Fredholm for all r > � 1
2 and for all t 2 Œ0, 1�. Consequently,

IndD D IndD1 D IndDt D IndD0 D 0.

Theorem 5.1 Proof
Because by Lemma 5.4, the operator D is Fredholm with zero index, its injectivity implies the invertibility. Thus, it remains to prove that
the null space of the operator D is trivial for r > � 1

2 . Assume that U D .u, /> 2 HrC1.�/�Hr�1=2.S/ is a solution to the homogeneous
equation

DU D 0. (5.25)

The operator

D : HrC1.�/ � Hr�1=2.S/! HrC1.�/ � HrC1=2.S/

is Fredholm with index zero for all r > � 1
2 . It is well known that then there exists a left regularizer L of the operator D,

L : HrC1.�/ � HrC1=2.S/! HrC1.�/ � Hr�1=2.S/, (5.26)

such that

LD D IC T,

where T is the operator of order�1 (cf. proofs of Theorems 22.1 and 23.1 in [27]), that is,

T : HrC1.�/ � Hr�1=2.S/! HrC2.�/ � HrC1=2.S/. (5.27)
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Therefore, from (5.25), we have

LDU D UC TU D 0. (5.28)

From (5.27), we see that

TU 2 HrC2.�/ � HrC1=2.S/.

Consequently, in view of (5.28)

U D .u, /> 2 HrC2.�/ � HrC1=2.S/. (5.29)

If r � 0, this implies u 2 H1, 0.�, A/. If� 1
2 < r < 0, we iterate the earlier reasoning for U satisfying (5.29) to obtain

U D .u, /> 2 HrC3.�/ � HrC3=2.S/, (5.30)

which again implies u 2 H1, 0.�, A/. Then, we can apply the equivalence Theorem 3.1 to conclude that a solution U D .u, /> to the
homogeneous equation (5.25) is trivial, that is,

u D 0 in �,  D 0 on S.

Thus, KerD D f0g in the class HrC1.�/ � Hr�1=2.S/, and therefore, the operator

D : HrC1.�/ � Hr�1=2.S/! HrC1.�/ � HrC1=2.S/

is invertible for all r > � 1
2 .

For localizing function 
 of finite smoothness, we have the following result.

Corollary 5.5
Let a localizing function 
 2 X3

C
. Then, the operator

D : H1.�/ � H�1=2.S/! H1.�/ � H1=2.S/

is invertible.

Proof
It can be performed by word for word arguments employed in the proofs of Lemmas 5.2–5.4 and Theorem 5.1, with r D 0 and using
the mapping properties of the localized potentials for a localizing function of finite smoothness (Appendix B).

Lemma 2.2, Theorem 3.1 and Corollaries 2.3 and 5.5 imply the following assertion.

Corollary 5.6
Let a localizing function 
 2 X3

C
. Then, the operator

D : H1,0.�, A/ � H�1=2.S/! H1,0.�,	/ � H1=2.S/

is invertible.

APPENDIX A. Classes of localizing functions.

Here, we present the classes of localizing functions used in the main text (see [24] for details).

Definition 1
We say 
 2 Xk for integer k � 0 if 
.x/ D M
.jxj/, M
 2 Wk

1.0,1/ and % M
.%/ 2 L1.0,1/. We say 
 2 Xk
C

for integer k � 1 if 
 2 Xk ,

.0/ D 1 and ��.!/ > 0 for all ! 2 R, where

��.!/ :D

8̂̂<̂
:̂
O
s.!/

!
> 0 for ! 2 R n f0g,Z 1

0
% M
 .%/ d% for ! D 0,

(A1)

and O
s.!/ denotes the sine-transform of the function M


O
s.!/ :D

1Z
0

M
 .%/ sin.%!/ d%. (A2)

Evidently, we have the following imbeddings: Xk1 � Xk2 and Xk1
C
� Xk2
C

for k1 > k2. The class Xk
C

is defined in terms of the sine-
transform. The following lemma from [24] provides an easily verifiable sufficient condition for non-negative non-increasing functions
to belong to this class.
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Lemma A.2
Let k � 1. If 
 2 Xk , M
.0/ D 1, M
.%/ � 0 for all % 2 .0,1/, and M
 is a non-increasing function on Œ0,C1/, then 
 2 Xk

C
.

The following (and other) examples for 
 are presented in [24],


1k.x/ D

8<:
�

1 �
jxj

"

�k

for jxj < ",

0 for jxj � ",
(A3)


2.x/ D

8<: exp

�
jxj2

jxj2 � "2

�
for jxj < ",

0 for jxj � ",
(A4)

One can observe that 
1k 2 Xk
C

for k � 1, while 
2 2 X1
C

due to Lemma A.2.

APPENDIX B. Properties of localized potentials.

Here, we collect some assertions describing mapping properties of the localized potentials. The proofs coincide with or are similar to
the ones in [24] and [15, Appendix B] (see also [1], Chapter 8 and the references therein).

Let us introduce the boundary operators generated by the localized layer potentials associated with the localized parametrix
P.x � y/ � P�.x � y/

V g.y/ :D �

Z
S

P.x � y/ g.x/ dSx , y 2 S, (B1)

W g.y/ :D �

Z
S
Œ T.x, @x/ P.x � y/ �> g.x/ dSx , y 2 S, (B2)

W 0 g.y/ :D �

Z
S

�
T.y, @y/ P.x � y/

�
g.x/ dSx , y 2 S, (B3)

L˙g.y/ :D T˙.y, @y/Wg.y/, y 2 S. (B4)

Theorem B.1
The following operators are continuous

P : QHs.�/! HsC2,s.�;	/, �
1

2
< s <

1

2
, 
 2 X1, (B5)

: Hs.�/! HsC2,s.�;	/, �
1

2
< s <

1

2
, 
 2 X1, (B6)

: Hs.�/! H
5
2�", 1

2�".�;	/,
1

2
� s <

3

2
, 8 " 2 .0, 1/, 
 2 X2, (B7)

where	 is the Laplace operator.

Theorem B.2
The following operators are continuous

V : Hs� 3
2 .S/! Hs.R3/, s <

3

2
, if 
 2 X1, (B8)

: Hs� 3
2 .S/! Hs,s�1.�˙;	/,

1

2
< s <

3

2
, if 
 2 X2, (B9)

W : Hs� 1
2 .S/! Hs.�˙/, s <

3

2
, if 
 2 X2, (B10)

: Hs� 1
2 .S/! Hs,s�1.�˙;	/,

1

2
< s <

3

2
, if 
 2 X3. (B11)

Theorem B.3
If 
 2 Xk has a compact support and� 1

2 � s � 1
2 , then the following localized operators are continuous

V : Hs.S/! HsC 3
2 .�˙/ for k D 2, (B12)

W : HsC1.S/! HsC 3
2 .�˙/ for k D 3. (B13)
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Theorem B.4
Let  2 H�

1
2 .S/ and ' 2 H

1
2 .S/. Then the following jump relations hold on S:

�˙V D V , 
 2 X1, (B14)

�˙W' D 	�' CW', 
 2 X2, (B15)

T˙V D ˙� CW 0 , 
 2 X2, (B16)

where

�.y/ D Œ�pq.y/�3p,qD1 :D
1

2

h
apq

kj .y/ nk.y/ nj.y/
i3

p,qD1
, y 2 S, (B17)

and�.y/ is positive definite because of (2.2).

Theorem B.5
Let� 1

2 � s � 1
2 . The following operators

V : Hs.S/! HsC1.S/, 
 2 X2, (B18)

W : HsC1.S/! HsC1.S/, 
 2 X3, (B19)

W 0 : Hs.S/! Hs.S/, 
 2 X3, (B20)

L˙ : HsC1.S/! Hs.S/, 
 2 X3, (B21)

are continuous.
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