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Abstract

In this paper, the non-fragile state estimation problem is investigated for a class of continuous neural net-

works with time-delays and nonlinear perturbations. The estimator to be designed is of a simple linear structure

without requiring the exact information of the activation functions or the time-delays, and is therefore easy to be

implemented. Furthermore, the designed estimator gains are allowed to undergo multiplicative parameter variations

within a given range and the non-fragility is guaranteed against possible implementation errors. The main purpose

of the addressed problem is to design a non-fragile state estimator for the recurrent delayed neural networks such

that the dynamics of the estimation error converges to the equilibrium asymptotically irrespective of the admissible

parameter variations with the estimator gains. By employing a combination of the Lyapunov functionals and the

matrix analysis techniques, sufficient conditions are established to ensure the existence of the desired estimators

and the explicit characterization of such estimators are then given via solving a linear matrix inequality. Finally, a

simulation example is used to illustrate the effectivenessof the proposed design method.

Index Terms

Recurrent neural networks; State estimation; Non-fragility; Time-delays; Lyapunov functional; Matrix inequal-

ity.

I. INTRODUCTION

For several decades, recurrent neural networks (RNNs) havebeen a focus of research mainly because

of their capability of learning and approximating nonlinear functions in an adaptive way. So far, a

variety of RNN architectures as well as RNN learning schemeshave been used for pattern recognition,

classification, regression and optimization problems withpractical applications in many areas such as

system identification and control, trajectory prediction,decision making and medical diagnosis [9], [13].

On the other hand, due to finite switching speed of amplifiers in electronic neural networks and finite signal
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propagation time in biological networks, the time-delays in signal transmission are often unavoidable. If

not properly taken into account, the time-delays would cause the undesirable oscillation and even the

instability. In the past 10 years or so, the time-delay phenomenon has received considerable research

attention in the dynamic analysis problems for various neural networks [6], [8], [12], [17], [33]. For

example, in [35], a kind of observer-based adaptive neural network controller has been designed for a

class of single-input single-output strict-feedback nonlinear stochastic systems with unknown time-delays.

In [26], the problem of global exponential stability of static neural networks with time delay and impulses

has been investigated by using the Lyapunov functional and the Razumikhin-type techniques.

For the successful application of neural networks, it is often a prerequisite to know the actual information

about the neuron states which can then be used for optimization or control purposes. However, due to

resource and physical limits, it is quite common that only partial information about the neuron states is

available through the network outputs especially in relatively large-scale neural networks. As such, an

imperative task is to estimate the neural states as precisely as possible via the available network outputs

[25], and the resulting state estimation problem for neuralnetworks has attracted an ever-increasing

research interest in the past decade and a rich body of literature has been published, see e.g. [3], [5], [7],

[20] and the references therein. In particular, a state estimator has been designed in [27] for discrete-time

neural networks with Markovian jumping parameters and time-varying delays. The problem of observer-

based state estimation has been studied in [15] for fuzzy neural networks (FNNs) with time-varying

structured uncertainties and time-varying delays.

In the course of controller/estimator implementation, it is often the case that the actually implemented

parameters are slightly different from the expected ones owing to various reasons such as numerical

roundoff errors, limited word length of the computer and theimprecision in analogue-digital conver-

sion. It is now a well-known fact that small even tiny variations/drifts of the estimator/filter/controller

parameters could lead to dramatic changes (e.g. performance degradation or even eventual instability) of

the overall system dynamics [2], [10], and such kind of phenomenon is referred to as the fragility. In

the past few years, the non-fragility has become an increasingly important performance index that aims

to guarantee that the desired system behavior is insensitive to the admissible implementation errors for

the controllers/estimators. For example, in [37], a non-fragile H∞ filter has been designed for a class

of discrete-time T-S fuzzy systems with both randomly occurring gain variations (ROGVs) and channel

fadings. In [28], the issue of the non-fragile robust finite-timeH∞ control has been dealt with for a class

of uncertain nonlinear stochastic Itô systems via neural network. In [4], a non-fragile procedure has been

introduced to study the problem of synchronization of neural networks with time-varying delay.

In the context of non-fragile estimation for neural networks, some initial results have been appeared

in the literature. For example, in [23], the non-fragile observer design problem has been dealt with for

neural networks with mixed time-varying delays and Markovian jumping parameters by developing a

reciprocal convex approach. Furthermore, the non-fragilestate estimation problem has been investigated

in [16] for a class of memristive neural networks with two different types of memductance functions and

uncertain time-varying delays by using the Wirtinger-typeinequality analysis. It should be pointed out

that, in [16], [23], the structure of the estimator/observer to be designed has been assumed to be similar

to that of the underlying neural network so as to facilitate the subsequent dynamics analysis. Such an
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assumption, however, implies that the time-varying delaysand the activation functions would have to be

exactly known in order to make practical sense of the estimator/observer implementation. Unfortunately,

utilization of such complex estimators/observers is pretty inconvenient as this would place great demands

on the parameter identification as well as the engineering realization. As such, a seemingly natural idea

is to develop an easy-to-implement state estimator which isof a simple structure so as to facilitate the

practical application with guaranteed estimation performance, and this constitutes the main motivation of

this paper.

In this paper, we deal with the non-fragile state estimationproblem for a class of continuous neural

networks with time-varying delays. By employing a combination of the Lyapunov functionals and the

matrix analysis techniques, sufficient conditions are established to ensure the existence of the desired

estimators and the explicit characterization of such estimators are then given via solving a linear matrix

inequality. A simulation example is used to illustrate the effectiveness of the proposed design method.

Comparing to the existing results, the novelty of this paperis mainly twofold: 1) the structure of

the non-fragile estimator is of a simple linear form that contains two constant gain matrices, thereby

facilitating the practical implementation; and 2) the estimator gains are allowed to tolerate multiplicative

parameter variations within a given range and such multiplicative form can better reflect the gain-dependent

perturbations.

Notation The notation used in this paper is fairly standard except where otherwise stated.MT represents

the transpose ofM . Rn represents then dimensional Euclidean space andRn×m is the set of alln×m

real matrices. The notationP > 0 means thatP is a real, symmetric, positive definite matrix.|x| stands

for the Euclidean norm of a vectorx. The notationdiag{A1, A2, . . . , An} stands for a block-diagonal

matrix, and∗ always denotes the symmetric block in a symmetric matrix. The notationλmax(·) shows the

maximum eigenvalue.

II. PROBLEM FORMULATION

Consider a class of delayed neural network described by:

ẋ(t) = −Cx(t) + Ag(x(t)) +Bg(x(t− h(t))) (1)

wherex(·) = [x1(·), x2(·), · · · , xn(·)]
T ∈ Rn is the neural state vector,g(x(·)) = [g1(x1(·)), g2(x2(·)),

· · · , gn(xn(·))]T ∈ Rn is the nonlinear activation function with the initial condition g(0) = 0, C =

diag{c1, c2, . . . , cn} is the positive definite diagonal matrix,A andB are the connection weight matrix

and the delayed connection weight matrix, respectively.h(t) is the time-varying delay satisfying

0 ≤ h(t) ≤ h (2)

ḣ(t) ≤ µ (3)

whereh andµ are constants.

The activation functiong(·) satisfies the following Lipschitz condition:

|g(x)− g(y)| ≤ |G(x− y)| (4)

whereG = diag{g1, g2, . . . , gn} is a known diagonal matrix.
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The measurements of the neural network are expressed as follows:

y(t) = Dx(t) + f(t, x(t)) (5)

wherey(t) ∈ Rm is the measurement output,D ∈ Rm×n is a known constant matrix.f(t, x(t)) is a neuron-

state-dependent nonlinear perturbation at the output of the network with the initial conditionf(0, 0) = 0.

f(t, x(t)) satisfies the following Lipschitz condition:

|f(t, x1)− f(t, x2)| ≤ |F (x1 − x2)| (6)

whereF = diag{f1, f2, . . . , fn} is a known constant matrix.

The full-order non-fragile state estimator is of the following form:

˙̂x(t) = (AF +∆AF )x̂(t) + (BF +∆BF )y(t) (7)

wherex̂(t) is the state estimation of the neural network,AF andBF are the gain matrices of the estimator to

be designed.∆AF and∆BF quantify the estimator gain variations satisfying the following norm-bounded

multiplicative form [11]:

∆AF = AFHAFA(t)EA (8)

∆BF = BFHBFB(t)EB (9)

whereHA, HB, EA and EB are known matrices with appropriate dimensions,FA(t) and FB(t) are

unknown matrices satisfyingF T

A
(t)FA(t) ≤ I andF T

B
(t)FB(t) ≤ I.

Remark 1:As discussed in the introduction, the non-fragile state estimation problem for time-delayed

neural networks has stirred some initial research attention. In the existing literature (e.g. [16], [23]), two

typical assumptions are that the estimator gain variation is additive and the time-delays are exactly known

due to their involvement in the estimator structure. These assumptions are, unfortunately, a bit restrictive

in practice. On one hand, a high gain tends to result in a big gain variation during the implementation,

which means that the range of the gain variations is largely dependent on the gain itself. As such, the

gain variation is usually multiplicative (rather than additive) with respect to the gains. On the other hand,

in the case that the exact identification of the time-varyingdelays is difficult, it is often desirable to

have a delay-independent estimator capable of tolerating the delay effects. Therefore, in this paper, a

novel delay-independent estimator is introduced in (7)-(9) where the multiplicative gain variations are

introduced.

For analysis convenience, we denote

η(t) =
[

xT (t) x̂T (t)
]T

, H1(η(t)) =
[

gT (x(t)) gT (x̂(t))
]T

, H2(t, η(t)) =
[

fT (t, x(t)) fT (t, x̂(t))
]T

.

Combining estimator (7) with system (1)-(5), we obtain an augmented system as follows:

η̇(t) = Aη(t) + Bη(t) + CH2(t, η(t)) +DH1(η(t− h(t))) + EH1(η(t)) (10)

where

A = diag{−C,AF +∆AF}, D = diag{B, 0}, E = diag{A, 0},

B =

[

0 0

(BF +∆BF )D 0

]

, C =

[

0 0

BF +∆BF 0

]

.
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From (4) and (6), we have

HT

1 (η(t))H1(η(t)) ≤ ηT (t)ḠT Ḡη(t) (11)

HT

2 (t, η(t))H2(t, η(t)) ≤ ηT (t)F̄ T F̄ η(t) (12)

whereḠ = diag{G,G}, F̄ = diag{F, F}.

Definition 1: The augmented system (10) is said to be asymptotically stable if the following is true:

lim
t→∞

|η(t)|2 = 0. (13)

The objective of this paper is to design a non-fragile state estimator for the continuous neural network

(1) to ensure that the augmented system (10) is asymptotically stable.

III. M AIN RESULTS

In this section, we aim to investigate both the stability analysis and the estimator design problem for

neural network system (1) with measurement output (5). Before stating our main results, we introduce

the following lemma.

Lemma 1: (S-procedure) [1] LetM =MT , U andV be real matrices of appropriate dimensions with

V satisfyingV TV ≤ I, then

M + UVW +W TV TUT < 0

if and only if there exists a positive scalarǫ such that

M + ǫUUT + ǫ−1W TW < 0

or, equivalently,

Π =







M ǫU W T

ǫUT −ǫI 0

W 0 −ǫI






< 0.

The following theorem is given to ensure that the system (10)is asymptotically stable.

Theorem 1:Consider the continuous neural network (1)-(5) subject to time-varying delays, nonlinear

perturbations and gain variations. Let the estimator parametersAF andBF be given. The augmented system

(10) is asymptotically stable if there exist positive definite matricesP > 0, Q =

[

Q11 Q12

QT

12 Q22

]

> 0,

Z > 0, S > 0, matricesN =
[

NT

1 NT

2

]T

, M =
[

MT

1 MT

2

]T

, X =

[

X11 X12

XT

12 X22

]

and positive scalars

εi (i = 1, 2, 3) satisfying the following linear matrix inequality (LMI):

Φ̂ =



























Φ11 Φ12 −M1 PE +Q12 PD PC h(A+ B)TP

∗ Φ22 −M2 0 −(1− µ)Q12 0 0

∗ ∗ −S 0 0 0 0

∗ ∗ ∗ Q22 − ε1I 0 0 hETP

∗ ∗ ∗ ∗ −(1− µ)Q22 − ε2I 0 hDTP

∗ ∗ ∗ ∗ ∗ −ε3I hCTP

∗ ∗ ∗ ∗ ∗ ∗ −h(2P − Z)



























< 0 (14)



REVISION 6

Ψ1 =

[

X N

∗ Z

]

≥ 0 (15)

Ψ2 =

[

X M

∗ Z

]

≥ 0 (16)

where

Φ11 =P (A+ B) + (A+ B)TP +Q11 + S + ε1Ḡ
T Ḡ + ε3F̄

T F̄ + hX11 +N1 +NT

1 , (17)

Φ12 =hX12 −N1 +NT

2 +M1, (18)

Φ22 =− (1− µ)Q11 + ε2Ḡ
T Ḡ+ hX22 −N2 −NT

2 +M2 +MT

2 . (19)

Proof: Construct a Lyapunov functional as follows:

V (η(t)) = V1(η(t)) + V2(η(t)) + V3(η(t)) + V4(η(t)) (20)

where

V1(η(t)) =η
T (t)Pη(t),

V2(η(t)) =

t
∫

t−h(t)

[

η(s)

H1(η(s))

]T [

Q11 Q12

QT

12 Q22

][

η(s)

H1(η(s))

]

ds,

V3(η(t)) =

0
∫

−h

t
∫

t+θ

η̇T (s)Zη̇(s)dsdθ,

V4(η(t)) =

t
∫

t−h

ηT (s)Sη(s)ds.

Calculating the derivatives ofVi(η(t)) (i = 1, 2, 3, 4) in (20) along the trajectory of the system (10),

we have

V̇1(η(t)) = 2ηT (t)P η̇(t) = 2ηT (t)P [Aη(t) + Bη(t) + CH2(t, η(t)) +DH1(η(t− h(t))) + EH1(η(t))],

V̇2(η(t)) =

[

η(t)

H1(η(t))

]T [

Q11 Q12

QT

12 Q22

][

η(t)

H1(η(t))

]

−(1− ḣ(t))

[

η(t− h(t))

H1(η(t− h(t)))

]T [

Q11 Q12

QT

12 Q22

][

η(t− h(t))

H1(η(t− h(t)))

]

≤

[

η(t)

H1(η(t))

]T [

Q11 Q12

QT

12 Q22

][

η(t)

H1(η(t))

]

−(1− µ)

[

η(t− h(t))

H1(η(t− h(t)))

]T [

Q11 Q12

QT

12 Q22

][

η(t− h(t))

H1(η(t− h(t)))

]

,

V̇3(η(t)) = hη̇T (t)Zη̇(t)−

t
∫

t−h

η̇T (s)Zη̇(s)ds
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= hη̇T (t)Zη̇(t)−

t
∫

t−h(t)

η̇T (s)Zη̇(s)ds−

t−h(t)
∫

t−h

η̇T (s)Zη̇(s)ds,

V̇4(η(t)) = ηT (t)Sη(t)− ηT (t− h)Sη(t− h).

By using the Leibniz-Newton formula, for matricesM andN with appropriate dimensions, we obtain

the following equations:

0 = 2ζT (t)N [η(t)− η(t− h(t))−

t
∫

t−h(t)

η̇(s)ds], (21)

0 = 2ζT (t)M [η(t− h(t))− η(t− h)−

t−h(t)
∫

t−h

η̇(s)ds] (22)

whereζ(t) =
[

ηT (t) ηT (t− h(t))
]T

.

On the other hand, according to the conditions (11) and (12),for positive scalarsεi (i = 1, 2, 3), it can

be deduced that

0 ≤ ε1[η
T (t)ḠT Ḡη(t)−HT

1 (η(t))H1(η(t))], (23)

0 ≤ ε2[η
T (t− h(t))ḠT Ḡη(t− h(t))−HT

1 (η(t− h(t)))H1(η(t− h(t)))], (24)

0 ≤ ε3[η
T (t)F̄ T F̄ η(t)−HT

2 (t, η(t))H2(t, η(t))]. (25)

For matrixX = XT of any suitable dimension, it is derived that

0 =

t
∫

t−h

ζT (t)Xζ(t)ds−

t
∫

t−h

ζT (t)Xζ(t)ds

=hζT (t)Xζ(t)−

t
∫

t−h(t)

ζT (t)Xζ(t)ds−

t−h(t)
∫

t−h

ζT (t)Xζ(t)ds.

(26)

Adding the right-hand sides of the formulas (21)-(26) to thederivatives ofVi(η(t)) (i = 1, 2, 3, 4), one

obtains that

V̇ (η(t)) ≤ ψT (t)[Φ1 + hΦT

2ZΦ2]ψ(t)−

t
∫

t−h(t)

ξT (t, s)Ψ1ξ(t, s)ds−

t−h(t)
∫

t−h

ξT (t, s)Ψ2ξ(t, s)ds (27)



REVISION 8

where

Φ1 =





















Φ11 Φ12 −M1 PE +Q12 PD PC

∗ Φ22 −M2 0 −(1− µ)Q12 0

∗ ∗ −S 0 0 0

∗ ∗ ∗ Q22 − ε1I 0 0

∗ ∗ ∗ ∗ −(1 − µ)Q22 − ε2I 0

∗ ∗ ∗ ∗ ∗ −ε3I





















,

Φ2 =
[

A+ B 0 0 E D C
]

, ξ(t, s) =
[

ζT (t) η̇T (s)
]T

,

ψ(t) =
[

ηT (t) ηT (t− h(t)) ηT (t− h) HT

1 (η(t)) HT

1 (η(t− h(t))) HT

2 (t, η(t))
]T

.

Note that if Φ1 + hΦT

2ZΦ2 < 0, Ψ1 ≥ 0 and Ψ2 ≥ 0, then for sufficiently smallε > 0, we have

V̇ (η(t)) < −ε‖η(t)‖2 and then the augmented system (10) would be asymptotically stable by the Lyapunov

stability theory. SinceΨ1 ≥ 0 andΨ2 ≥ 0 are true according to (15) and (16), it remains to prove that

Φ1 + hΦT

2 ZΦ2 < 0. By the Schur Complement Lemma,Φ1 + hΦT

2 ZΦ2 < 0 holds if and only if

Φ =



























Φ11 Φ12 −M1 PE +Q12 PD PC h(A+ B)TZ

∗ Φ22 −M2 0 −(1− µ)Q12 0 0

∗ ∗ −S 0 0 0 0

∗ ∗ ∗ Q22 − ε1I 0 0 hETZ

∗ ∗ ∗ ∗ −(1− µ)Q22 − ε2I 0 hDTZ

∗ ∗ ∗ ∗ ∗ −ε3I hCTZ

∗ ∗ ∗ ∗ ∗ ∗ −hZ



























< 0. (28)

Pre- and post-multiplying the inequality (28) bydiag{I, I, I, I, I, I, PZ−1} anddiag{I, I, I, I, I,

I, Z−1P}, one obtains

Φ̃1 =



























Φ11 Φ12 −M1 PE +Q12 PD PC h(A+ B)TP

∗ Φ22 −M2 0 −(1− µ)Q12 0 0

∗ ∗ −S 0 0 0 0

∗ ∗ ∗ Q22 − ε1I 0 0 hETP

∗ ∗ ∗ ∗ −(1− µ)Q22 − ε2I 0 hDTP

∗ ∗ ∗ ∗ ∗ −ε3I hCTP

∗ ∗ ∗ ∗ ∗ ∗ −hPZ−1P



























< 0. (29)

Noticing that (P − Z)TZ−1(P − Z) = PZ−1P − 2P + Z ≥ 0, we havePZ−1P ≥ 2P − Z. Then,

it follows from (14) that (29) (orΦ1 + hΦT

2ZΦ2 < 0) is indeed true. Letα0 = λmax(Φ̂). Then, we have

α0 < 0 and it follows that

V̇ (η(t)) ≤ α0|η(t)|
2. (30)

Integrating both sides from 0 toT > 0 gives

V (η(T ))− V (η(0)) ≤ α0T |η(t)|
2 (31)
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which results in

|η(t)|2 ≤ −
1

α0T
V (η(0)). (32)

It can now be concluded that|η(t)|2 is convergent, and therefore

lim
t→∞

|η(t)|2 = 0. (33)

The proof is now complete.

Having conducted the stability analysis in Theorem 1, we arenow in a position to deal with the problem

of designing the non-fragile estimators. The solution to the design of non-fragile estimators is obtained

by the following theorem.

Theorem 2:Consider the continuous neural network (1) with estimator gain variations (7). The aug-

mented system (10) is asymptotically stable if there exist positive scalarsεi > 0 (i = 1, 2, 3) and ε̃ > 0,

positive definite matricesP = diag{P1, P2} > 0, Q =

[

Q11 Q12

QT

12 Q22

]

≥ 0, Z > 0, S > 0, matrices

N =
[

NT

1 NT

2

]T

, M =
[

MT

1 MT

2

]T

, X =

[

X11 X12

XT

12 X22

]

, ZA andZB satisfying

Φ̃ =







Ξ M̃ ε̃Ñ T

∗ −ε̃I 0

∗ ∗ −ε̃I






< 0 (34)
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as well as (15) and (16), where

Ξ =



























Φ̂11Ξ Φ12 −M1 A1 +Q12 A2 A3 A4

∗ Φ22 −M2 0 −(1− µ)Q12 0 0

∗ ∗ −S 0 0 0 0

∗ ∗ ∗ Q22 − ε1I 0 0 A5

∗ ∗ ∗ ∗ −(1− µ)Q22 − ε2I 0 A6

∗ ∗ ∗ ∗ ∗ −ε3I A7

∗ ∗ ∗ ∗ ∗ ∗ −h(2P − Z)



























,

A1 =diag{P1A, 0}, A2 = diag{P1B, 0}, A3 =

[

0 0

ZB 0

]

, A4 =

[

−hCTP1 hDTZT

B

0 hZT

A

]

,

A5 =diag{hATP1, 0}, A6 = diag{hBTP1, 0}, A7 =

[

0 hZT

B

0 0

]

,

Φ̂11Ξ =

[

−P1C 0

ZBD ZA

]

+

[

−CTP1 DTZT

B

0 ZT

A

]

+Q11 + S + ε1Ḡ
T Ḡ+ ε3F̄

T F̄ + hX11 +N1 +NT

1 ,

M̃ =
[

Ã1 Ã2 0 0 0 Ã3 Ã4

]

, Ñ =
[

Ã5 0 0 0 0 Ã6 0
]

,

Ã1 =
[

M̃T
1 0 0 0 0 0 0

]T

, Ã2 =
[

0 0 0 0 0 0 M̃T
3

]T

,

Ã3 =
[

M̃T
2 0 0 0 0 0 0

]T

, Ã4 =
[

0 0 0 0 0 0 M̃T
4

]T

,

Ã5 =
[

Ñ T
1 Ñ T

2 0 0 0 0 0
]T

, Ã6 =
[

0 0 0 0 0 Ñ T
3 Ñ T

4

]T

,

M̃1 =

[

0 0

ZBHB ZAHA

]

, M̃2 =

[

0 0

ZBHB 0

]

, M̃3 =

[

0 0

ZBHB ZAHA

]

,

M̃4 =

[

0 0

ZBHB 0

]

, Ñ1 = diag{EBD,EA}, Ñ2 = diag{EBDh,EAh},

Ñ3 =diag{EB, 0}, Ñ4 = diag{EBh, 0},

andΦ12 andΦ22 are defined, respectively, in (18) and (19). In this case, theestimator gains in the form

of (7) can be obtained byAF = P−1
2 ZA andBF = P−1

2 ZB.

Proof: According to Theorem 1, to prove the asymptotic stability ofthe system (10), it suffices to

show that (14) is implied by (34). For this purpose, we substituteA, B, C, D andE defined in (10) toΦ̂

defined in (14) and obtain

Φ̂ =



























Φ̂11 Φ12 −M1 A1 +Q12 A2 Ā1 Ā2

∗ Φ22 −M2 0 −(1 − µ)Q12 0 0

∗ ∗ −S 0 0 0 0

∗ ∗ ∗ Q22 − ε1I 0 0 A5

∗ ∗ ∗ ∗ −(1 − µ)Q22 − ε2I 0 A6

∗ ∗ ∗ ∗ ∗ −ε3I Ā3

∗ ∗ ∗ ∗ ∗ ∗ −h(2P − Z)



























(35)
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where

Ā1 =

[

0 0

P2(BF +∆BF ) 0

]

, Ā2 =

[

−hCTP2 hDT (BF +∆BF )
TP2

0 h(AF +∆AF )
TP2

]

,

Ā3 =

[

0 h(BF +∆BF )
TP2

0 0

]

.

Furthermore, note that̂Φ can be decomposed as follows:

Φ̂ = Ξ +∆Ξ (36)

where

Ξ =



























Φ̂11Ξ Φ12 −M1 A1 +Q12 A2 A3 A4

∗ Φ22 −M2 0 −(1− µ)Q12 0 0

∗ ∗ −S 0 0 0 0

∗ ∗ ∗ Q22 − ε1I 0 0 A5

∗ ∗ ∗ ∗ −(1 − µ)Q22 − ε2I 0 A6

∗ ∗ ∗ ∗ ∗ −ε3I A7

∗ ∗ ∗ ∗ ∗ ∗ −h(2P − Z)



























,

∆Ξ =



























Φ̂11∆Ξ 0 0 0 0 A8 A9

∗ 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ 0 A10

∗ ∗ ∗ ∗ ∗ ∗ 0



























, Φ̂11∆Ξ = A11 + A12,

A8 =

[

0 0

P2∆BF 0

]

, A9 =

[

0 hDT∆BT

F
P2

0 h∆AT

F
P2

]

, A10 =

[

0 h∆BT

F
P2

0 0

]

,

A11 =

[

0 0

P2∆BFD P2∆AF

]

, A12 =

[

0 DT∆BT

F
P2

0 ∆AT

F
P2

]

.

On the other hand, letZA = P2AF andZB = P2BF . Moreover,∆Ξ can be further split as

∆Ξ =∆Ξ1 +∆Ξ2

=M̃FmÑ + Ñ TF T

mM̃
T

where

∆Ξ1 =
[

Ã7 0 0 0 0 Ã8 0
]

, ∆Ξ2 =
[

Ã9 0 0 0 0 0 Ã10

]

,

Ã7 =
[

AT
11 0 0 0 0 0 A9

]T

, Ã8 =
[

AT
8 0 0 0 0 0 A10

]T

,

Ã9 =
[

AT

12 0 0 0 0 A8 0
]T

, Ã10 =
[

AT

9 0 0 0 0 AT

10 0
]T

,

Fm =diag{Fm1, Fm1, 0, 0, 0, Fm2, Fm2}, Fm1 = diag{FB(t), FA(t)}, Fm2 = diag{FB(t), 0}.
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So far, after tedious manipulations, we can rearrange (14) as follows:

Φ̂ = Ξ +∆Ξ = Ξ + M̃FmÑ + Ñ TF T

m
M̃T < 0. (37)

It follows from Lemma 1 that (14) is true if there exists a positive scalarε̃ such that

Ξ + ε̃−1M̃M̃T + ε̃−1(ε̃Ñ )T (ε̃Ñ ) < 0 (38)

holds. According to the Schur Complement Lemma, we know that(38) holds if and only if (34) is

satisfied. To this end, we can conclude that (14) is indeed implied by (34), and it follows from Theorem

1 that the system (10) is asymptotically stable. In addition, the estimator gains are obtained directly from

ZA = P2AF andZB = P2BF .

Remark 2: In Theorem 2, sufficient conditions for the asymptotic stability of the dynamic system (10)

are presented. It is evident that all the network parameters, the bounds of the activation function, the

bounds on the time-delays and its derivatives, the bounds ofthe nonlinear perturbation and the variations

of the gains are reflected in the main results. The corresponding solvability conditions for the desired

estimator gains are expressed in terms of the feasibility ofa few linear matrix inequalities that can be

solved using available software package. It should be pointed out that, compared to existing results in the

literature such as [16], [23], the structure of the non-fragile estimator developed in this paper is of a simple

linear form containing two constant gain matrices and is therefore convenient for practical implementation.

Furthermore, the gain-dependent perturbations, which occur frequently in reality, are taken into account

in terms of the multiplicative parameter variations.

IV. A N UMERICAL EXAMPLE

In this section, a simulation example is given to verify the effectiveness of the proposed estimator

design method for the continuous neural network with time delay and gain variations. Consider a delayed

neural network of the form (1) with the parameters as follows:

C =







0.2 0 0

0 0.3 0

0 0 0.15






, A =







0.2 −0.4 0.4

−0.4 0.2 0.2

0.2 0.4 −0.4






, B =







0.2 0.1 0.2

0.3 0.2 0.2

0.2 0.2 0.1






, h(t) = 4, G = 0.5I.

The parameters of the network measurement (5) are given asD = I, F = 0.4I, and the parameters of

the estimator gain variations are set to be the following

HA = I, HB = I, EA =







0.3 0.3 0.3

0.3 0.3 0.3

0.3 0.3 0.3






, EB =







0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5






,

FA(t) = diag(cos(0.1t), cos(0.1t)), FB(t) = cos(0.1t).

The selection of the activation functions is as follows:

g1(x1(t)) = sin(t(1− x1(t))), g2(x2(t)) = sin(t(1− x2(t))), g3(x3(t)) = sin(t(1− x3(t))).

The neuron-state-dependent nonlinear perturbationf(t, x(t)) = 0.0004 cos(x(t)).
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Using the MATLAB software, the set of solutions to the estimator gain matrices can be obtained as

follows:

AF =







−0.7359 0.2618 0.2618

0.2619 −0.7359 0.2618

0.2619 0.2618 −0.7359






, BF =







0.6574 −0.2743 −0.2743

−0.2743 0.6574 −0.2743

−0.2743 −0.2743 0.6574






.

The simulation results are shown in Figs. 1-4. Figs. 1-3 depict the states of the neural networksx1(t),

x2(t), x3(t) and their estimateŝx1(t), x̂2(t) andx̂3(t), respectively. The dynamical evolution of the estimate

error is plotted in Fig. 4. The asymptotic stability of the augmented system is confirmed by the simulation

results.

V. CONCLUSIONS

In this paper, the non-fragile state estimation problem hasbeen investigated for continuous-time neural

networks with time-varying delay and nonlinear perturbations. Sufficient conditions that guarantee the

asymptotic stability of the augmented system have been obtained by employing the Lyapunov stability

theory, and the gain matrices of the estimator have been characterized in terms of the solution to certain

LMIs. Finally, the effectiveness of the method has been demonstrated by the simulation results. We would

like to point out that our main results can be extended to moregeneral/practical systems such asItô-type

stochastic systems [14], nonlinear Markovian jump systems[18], [22], uncertain stochastic systems [19],

sampled-data systems [34] and finite-horizon nonlinear systems [21], [24], and the corresponding results

will appear in the near future. In addition, the methods herecould be further employed to deal with the

fault detection problem [31] as well as the non-fragile state estimation problems for neural networks with

more complex phenomena such as fading measurements [29], [30], [32] and incomplete measurements

[36], [38].
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