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A New Approach to Non-Fragile State
Estimation for Continuous Neural Networks
with Time-Delays

Fan Yang, Hongli Dong Zidong Wang, Weijian Ren and Fuad E. Alsaadi

Abstract

In this paper, the non-fragile state estimation problemnisestigated for a class of continuous neural net-
works with time-delays and nonlinear perturbations. Théredor to be designed is of a simple linear structure
without requiring the exact information of the activatiam€tions or the time-delays, and is therefore easy to be
implemented. Furthermore, the designed estimator gamallowed to undergo multiplicative parameter variations
within a given range and the non-fragility is guaranteedraggossible implementation errors. The main purpose
of the addressed problem is to design a non-fragile staimatsir for the recurrent delayed neural networks such
that the dynamics of the estimation error converges to thdibqum asymptotically irrespective of the admissible
parameter variations with the estimator gains. By emplgyncombination of the Lyapunov functionals and the
matrix analysis techniques, sufficient conditions arebdisfaed to ensure the existence of the desired estimators
and the explicit characterization of such estimators ae@a tiven via solving a linear matrix inequality. Finally, a
simulation example is used to illustrate the effectiveradsthe proposed design method.

Index Terms

Recurrent neural networks; State estimation; Non-fragiliime-delays; Lyapunov functional; Matrix inequal-
ity.

I. INTRODUCTION

For several decades, recurrent neural networks (RNNSs) ese a focus of research mainly because
of their capability of learning and approximating nonlindanctions in an adaptive way. So far, a
variety of RNN architectures as well as RNN learning schehw& been used for pattern recognition,
classification, regression and optimization problems wpitactical applications in many areas such as
system identification and control, trajectory predictidecision making and medical diagnosis [9], [13].
On the other hand, due to finite switching speed of amplifieedectronic neural networks and finite signal
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propagation time in biological networks, the time-delayssignal transmission are often unavoidable. If
not properly taken into account, the time-delays would eatle undesirable oscillation and even the
instability. In the past 10 years or so, the time-delay phezimon has received considerable research
attention in the dynamic analysis problems for various akunetworks [6], [8], [12], [17], [33]. For
example, in [35], a kind of observer-based adaptive neugalvaork controller has been designed for a
class of single-input single-output strict-feedback imwedr stochastic systems with unknown time-delays.
In [26], the problem of global exponential stability of stateural networks with time delay and impulses
has been investigated by using the Lyapunov functional hadRazumikhin-type techniques.

For the successful application of neural networks, it isiot prerequisite to know the actual information
about the neuron states which can then be used for optimizati control purposes. However, due to
resource and physical limits, it is quite common that onlytiphinformation about the neuron states is
available through the network outputs especially in reddyi large-scale neural networks. As such, an
imperative task is to estimate the neural states as prga@sepossible via the available network outputs
[25], and the resulting state estimation problem for neunatiworks has attracted an ever-increasing
research interest in the past decade and a rich body oftliterhas been published, see e.g. [3], [5], [7],
[20] and the references therein. In particular, a statenedtir has been designed in [27] for discrete-time
neural networks with Markovian jumping parameters and tuaeying delays. The problem of observer-
based state estimation has been studied in [15] for fuzzyahewetworks (FNNs) with time-varying
structured uncertainties and time-varying delays.

In the course of controller/estimator implementationsibiten the case that the actually implemented
parameters are slightly different from the expected onem@wo various reasons such as numerical
roundoff errors, limited word length of the computer and th®precision in analogue-digital conver-
sion. It is now a well-known fact that small even tiny varats/drifts of the estimator/filter/controller
parameters could lead to dramatic changes (e.g. perfoerdegradation or even eventual instability) of
the overall system dynamics [2], [10], and such kind of pmeeoon is referred to as the fragility. In
the past few years, the non-fragility has become an inarghsimportant performance index that aims
to guarantee that the desired system behavior is insemsdithe admissible implementation errors for
the controllers/estimators. For example, in [37], a nawile H., filter has been designed for a class
of discrete-time T-S fuzzy systems with both randomly odogrgain variations (ROGVSs) and channel
fadings. In [28], the issue of the non-fragile robust firtitee H., control has been dealt with for a class
of uncertain nonlinear stochastic 1td systems via neuevark. In [4], a non-fragile procedure has been
introduced to study the problem of synchronization of neoeaworks with time-varying delay.

In the context of non-fragile estimation for neural netwgyrkome initial results have been appeared
in the literature. For example, in [23], the non-fragile ebh&r design problem has been dealt with for
neural networks with mixed time-varying delays and Markoviumping parameters by developing a
reciprocal convex approach. Furthermore, the non-fragjie estimation problem has been investigated
in [16] for a class of memristive neural networks with twofeient types of memductance functions and
uncertain time-varying delays by using the Wirtinger-tyipequality analysis. It should be pointed out
that, in [16], [23], the structure of the estimator/obserngebe designed has been assumed to be similar
to that of the underlying neural network so as to facilitdte subsequent dynamics analysis. Such an
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assumption, however, implies that the time-varying dekayd the activation functions would have to be
exactly known in order to make practical sense of the estinf@iserver implementation. Unfortunately,
utilization of such complex estimators/observers is greitonvenient as this would place great demands
on the parameter identification as well as the engineerinizegion. As such, a seemingly natural idea
is to develop an easy-to-implement state estimator whiabf i@ simple structure so as to facilitate the
practical application with guaranteed estimation perfamoe, and this constitutes the main motivation of
this paper.

In this paper, we deal with the non-fragile state estimapooblem for a class of continuous neural
networks with time-varying delays. By employing a combioatof the Lyapunov functionals and the
matrix analysis techniques, sufficient conditions are l#isfaed to ensure the existence of the desired
estimators and the explicit characterization of such esdting are then given via solving a linear matrix
inequality. A simulation example is used to illustrate thHeaiveness of the proposed design method.
Comparing to the existing results, the novelty of this pajgemainly twofold: 1) the structure of
the non-fragile estimator is of a simple linear form that teams two constant gain matrices, thereby
facilitating the practical implementation; and 2) the estior gains are allowed to tolerate multiplicative
parameter variations within a given range and such muttgilve form can better reflect the gain-dependent
perturbations.

Notation The notation used in this paper is fairly standard exceptrabtherwise stated/” represents
the transpose ol/. R” represents the dimensional Euclidean space aR#*™ is the set of alln x m
real matrices. The notatioR > 0 means that’ is a real, symmetric, positive definite matrix:; stands
for the Euclidean norm of a vectar. The notationdiag{ A, As, ..., A,} stands for a block-diagonal
matrix, andx always denotes the symmetric block in a symmetric matrixe mbtation\nax(-) shows the
maximum eigenvalue.

[I. PROBLEM FORMULATION
Consider a class of delayed neural network described by:
i(t) = —Cu(t) + Ag(x(t)) + By(z(t — h(t))) (1)

wherez(:) = [z1(-), 22(:), - ,2,(-)]F € R" is the neural state vectoy(z(-)) = [g1(21(")), ga(xa(+)),
<+ gu(za(-))]T € R™ is the nonlinear activation function with the initial cotidh ¢g(0) = 0, C =
diag{cy, co,...,c,} is the positive definite diagonal matrixl and B are the connection weight matrix
and the delayed connection weight matrix, respectiviely) is the time-varying delay satisfying

0<h(t)<h @)
h(t) < p (3)

whereh and . are constants.
The activation functiony(-) satisfies the following Lipschitz condition:

lg(z) — g(y)| < |G(z —y)| (4)

whereG = diag{¢, g2, - - -, 9»} IS @ known diagonal matrix.
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The measurements of the neural network are expressed awdoll

y(t) = Da(t) + (L, 2(1)) (5)

wherey(t) € R™ is the measurement outpud, € R™*" is a known constant matrix.(¢, z(¢)) is a neuron-
state-dependent nonlinear perturbation at the outputeoh#ftiwork with the initial conditiory(0,0) = 0.
f(t,z(t)) satisfies the following Lipschitz condition:

‘f(tvxl) - f(t,l’g)‘ < |F(JI1 - 1’2)‘ (6)

where F' = diag{ f1, f2, ..., fn} IS @ known constant matrix.
The full-order non-fragile state estimator is of the follogy form:

I(t) = (Ap + AAp)2(t) + (Br + ABp)y(t) (7)

wherez(t) is the state estimation of the neural netwotlk, and By are the gain matrices of the estimator to
be designedA Ar and A Br quantify the estimator gain variations satisfying thedaling norm-bounded
multiplicative form [11]:

AAp = ApHAFA(t)E A 8)

ABF = BFHBFB(t)EB (9)

where H4, Hp, E4 and Ep are known matrices with appropriate dimensions,(t) and F(t) are
unknown matrices satisfying? (t)F(t) < I and FL(¢t)Fp(t) < I.

Remark 1:As discussed in the introduction, the non-fragile stateredton problem for time-delayed
neural networks has stirred some initial research attentiothe existing literature (e.g. [16], [23]), two
typical assumptions are that the estimator gain variasaadditive and the time-delays are exactly known
due to their involvement in the estimator structure. Thessiaptions are, unfortunately, a bit restrictive
in practice. On one hand, a high gain tends to result in a big gaiation during the implementation,
which means that the range of the gain variations is largelyeddent on the gain itself. As such, the
gain variation is usually multiplicative (rather than adgd) with respect to the gains. On the other hand,
in the case that the exact identification of the time-varyitgdays is difficult, it is often desirable to
have a delay-independent estimator capable of toleratiegdelay effects. Therefore, in this paper, a
novel delay-independent estimator is introduced in (¥)w®ere the multiplicative gain variations are
introduced.

For analysis convenience, we denote

ne) = [0 70, H) = [0 @) "G0)]  Baa) = [/Meaw) )]
Combining estimator (7) with system (1)-(5), we obtain agragnted system as follows:
0(t) = An(t) + Bn(t) + CHy(t, n(t)) + DHy(n(t — h(t))) + EHi(n(t)) (10)
where
A = diag{—C, Ar + AAr}, D =diag{B,0}, & = diag{A,0},

0 0
Br+ABr 0

0 0| o_
(Bp+ABg)D 0|~
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From (4) and (6), we have
HY (n(t))Hy(n(t)) < 0" ()G Gn(t) (11)
H (t,m(t)) Ha(t, (1) < 0" (6)FTF(t) (12)
whereG = diag{G, G}, F' = diag{F, F}.
Definition 1: The augmented system (10) is said to be asymptoticallyesilthe following is true:
Jim fo(6)* = 0. 3)

The objective of this paper is to design a non-fragile staterator for the continuous neural network
(1) to ensure that the augmented system (10) is asympigtitable.

. MAIN RESULTS

In this section, we aim to investigate both the stability lgsia and the estimator design problem for
neural network system (1) with measurement output (5). Beftating our main results, we introduce
the following lemma.

Lemma 1:(S-procedure) [1] LetV/ = MT, U andV be real matrices of appropriate dimensions with
V satisfyingV?V < I, then

M+ UVW +WIvTuT <o

if and only if there exists a positive scalarsuch that
M+ eUUT + e 'WIW <0

or, equivalently,

M U WT
M= | eU" —elI 0 < 0.
w 0 —el

The following theorem is given to ensure that the system {d@symptotically stable.
Theorem 1:Consider the continuous neural network (1)-(5) subjectiteivarying delays, nonlinear
perturbations and gain variations. Let the estimator patarsA - and By be given. The augmented system

(10) is asymptotically stable if there exist positive deénmatricesP > 0, () = Q;I glz > 0,
12 W22
. T T X11 X12 .
Z >0, S >0, matricesN = [NlT NQT] , M = [MIT MZT] , X = Ty and positive scalars
12 22
g; (1 =1,2,3) satisfying the following linear matrix inequality (LMI):
[ &y, 1y —M; PE+ Qs PD PC  h(A+B)TP ]
* @22 —M2 0 —(1 - ﬂ)QlZ 0 0
x xS 0 0 0 0
d=1| x %  x Qu-—ecl 0 0 hETP <0  (14)
* * * * —(1—=p)Qap —eal 0 hDTP
* * * * * —egl hCTP
* * * * * x  —h(2P - 2)
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X N
U, = >0 15
1 Ak (15)

X M
U, = >0 16
5 R = (16)

where

by =P(A+B)+(A+B)TP+Qi+ S +eG'G +esFT'F + hXy + Ny + N, (17)
Py =hX19 — Ny + Ny + M, (18)
(1)22 = — (1 — M)Qll + 52@TG + hX22 — N2 — N2T + M2 + M2T (19)

Proof: Construct a Lyapunov functional as follows:

V(n(t) = Vi(n(t)) + Va(n(t)) + Vs(n(t)) + Va(n(t)) (20)

where

n(s) ]T[Qn Q12] [ n(s) ]ds
Hi(n(s)) Qs Qu | | Hi(n(s)) |

Calculating the derivatives of;(n(t)) (¢ = 1,2,3,4) in (20) along the trajectory of the system (10),
we have

Viate) = 207 (OP(e) = 20" (VPLAD(D) + Bat) + Ca(t (1) + DI (t = W) + EFR (1)
' _ n(t) Quu Qi n(t)
V) = [m( ] [le @22] H,(1(t) ]
o Q0 (®)
! h“”[ ] [ @22” t—h(t)))]
77

IA

[ n(t) ] [Qll Q12][ t) ]
Hi(n(t)) Qly Q| | Hi(n(t))

N ) On Qu ]l nit—he)
S ‘”[Hlu h()))] [@a @22” (n(t—h(t)))]
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t t—h(t)
= wi'0zi) - [ "Gz - [ i ez
t—h(t) t—h
Va(n(t)) = 0" (t)Sn(t) — 0" (t = h)Sn(t — h).
By using the Leibniz-Newton formula, for matricdg and N with appropriate dimensions, we obtain
the following equations:

t

0 = 2T (ON(t) — it — h(t)) — / i(s)ds), (21)
t—h(t)
t—h(t)
0 = 2¢7 (&) Mn(t — h(t)) — n(t — b) — / i(s)ds] (22)
t—h

T
where¢() = [77(t) 7"(t - h(t))|
On the other hand, according to the conditions (11) and (b2)positive scalars; (i = 1,2, 3), it can
be deduced that

0 < ey’ (G Gn(t) — HY (n(t)) Hi(n(t))], (23)
0 < ealn” (t — () GTGn(t — h(t)) — H (n(t — h(t)Hi(n(t — h()))], (24)
0 < esln” (1) F" Fy(t) — Hy (t,n(1)) Ha(t, n(t))]- (25)

For matrix X = X7 of any suitable dimension, it is derived that

0—/< HX((t ds—/< HXC(H)
h(t)

—h¢T ()X c<>—/<<>xc ds—/c HXC(t)ds

t—h(t)

(26)

Adding the right-hand sides of the formulas (21)-(26) to deeivatives ofV;(n(t)) (i = 1,2, 3,4), one
obtains that
t—h(t)
Vn(t) < 67 ([ + h] Zds)0 / St iEts - [ tsmgtsds (@D
t—h(t)

t—h
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where
(I)ll @12 _Ml PE + Q12 PD PC i
x Doy —M, 0 —(1 = p)Q12 0
* * -S 0 0 0
(I)l = )
*x % x Qoo —erl 0 0
* * * * —(1—=p)Qap —exl 0
B * * * * —e3l |

<1>2:[A+B 00 & D c], g(t,s):[gT(t) a‘yT(s)]T,

w(t)=[7(t) W~ h(®) AT h) HE(n®) TG~ b)) HE(Ea()]

Note that if &, + h®IZ®, < 0, ¥; > 0 and ¥, > 0, then for sufficiently smalk > 0, we have
V(n(t)) < —||n(t)||* and then the augmented system (10) would be asymptotitalijesby the Lyapunov
stability theory. Sincel; > 0 and ¥, > 0 are true according to (15) and (16), it remains to prove that
®, + h®T Zd, < 0. By the Schur Complement Lemm@; + h®1 Z®, < 0 holds if and only if

[ ®)y B —M, PE+ Q12 PD PC  h(A+B)'Z ]
x  DPoy — My 0 —(1 = ) Q12 0 0
* x =S 0 0 0 0
b= * * x Qoo —e1l 0 0 hETZ < 0. (28)
* * * * —(1—p)Qun —c2l 0 hDTZ
* * * * * —egl hCTZ
* * * * * * —hZz

Pre- and post-multiplying the inequality (28) lyag{/,,I,1,1,1,PZ~'} anddiag{I,I,1,1I,]1,
I,Z~'P}, one obtains

Oy D1y —M; PE+ Qs PD PC h(A+B)TP |
x By —M, 0 —(1 = ) Q12 0 0
* * -5 0 0 0 0
(il = * * * ng — 61] 0 0 hgTP < 0. (29)
* * * * —(1=p)Qa2 —e2l 0 hDT P
* * * * * —e3l hCTP
* * * * * * —hPZ7'P

Noticing that(P — 2)TZ-Y(P — Z) = PZ~'P — 2P + Z > 0, we havePZ~'P > 2P — Z. Then,
it follows from (14) that (29) (ord; + hdT Z®, < 0) is indeed true. Letyy = A (®). Then, we have
ap < 0 and it follows that

V(n(t)) < aoln(t)]. (30)

Integrating both sides from O t6 > 0 gives

V(n(T)) = V(n(0)) < aT|n(t)|* (31)



REVISION 9

which results in

1
2
< —— :
B0 <~V (0(0)) (32)
It can now be concluded thag(t)|? is convergent, and therefore
tlim In(t)|> = 0. (33)
The proof is now complete. [ |

Having conducted the stability analysis in Theorem 1, wenaxg in a position to deal with the problem
of designing the non-fragile estimators. The solution te tesign of non-fragile estimators is obtained
by the following theorem.

Theorem 2:Consider the continuous neural network (1) with estimatn gvariations (7). The aug-
mented system (10) is asymptotically stable if there exisitive scalarg; > 0 (i = 1,2,3) andé > 0,

positive definite matrices® = diag{ P, P} > 0, Q = Q;I gu > 0,7 > 0,5 > 0, matrices
12 W22
T T X1 X L
N = [NlT NZT] , M = [MlT MZT} , X = 1T1 " |, Z4 and Z; satisfying
Xip Xo
= M eNT
d=|x - 0 | <0 (34)

* * —£1
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as well as (15) and (16), where

Oz By My A+ Q12 Ay As Ay
* (1)22 —M2 0 _(1 - ,LL)Q12 0 0
* * -S 0 0 0 0
E= * * * Qo —erl 0 0 As )
* * * * —(1—=p)Qa2 —e2l 0 Ag
* % % * * —e3l Az
* * * * * * —h(2P — Z)
0 0 —hCTP, hDTZEL
Ay =diag{P,A,0}, Ay =diag{P,B,0}, A3 = , Ay = Bl
1 lag{ 1 } 2 lag{ 1 } 3 Zs 0 4 [ 0 hZ;f
. T . T 0 th
A5 :dlag{hA Pl, 0}, AG = dlag{hB Pl, 0}, A7 = 0 0 >
. [ _PC 0 —cTp, DTZ% e .
b1z = FOu+S+eGTG+esFTF +hXy + Ny + N7,
112 ZsD 7 0 7T Qu 1 3 11 1 1

M=|A A 000 A A, N=[4 0000 A o,
Ar=[M[ 00000 O]T,Agz[o 00000 M{]T,
Ay =M 0000 0 O]T,fh:[o 00000 MZ]T,
As = |NI NF 0000 O]T,/lﬁz[o 0000 NT J\Zfr,

~ 0 0 ~ 0 0 ~ 0 0
Ml = ) MZ = 3 3 = 5
ZpHp Za Hy ZpHp 0 ZpHp Za Hy
B 0 0 y 3
My = , Ny = diag{EpD, E,}, N, = diag{EgDh, Eh},
ZpHp 0

Ny =diag{E3,0}, N; = diag{ Ezh,0},
and ¢, and ®,, are defined, respectively, in (18) and (19). In this casege#tanator gains in the form
of (7) can be obtained b\ = P, 'Z, and Br = P, ' Zp.

Proof: According to Theorem 1, to prove the asymptotic stabilityttué system (10), it suffices to
show that (14) is implied by (34). For this purpose, we stibtgi4, B, C, D and€ defined in (10) tod
defined in (14) and obtain

A

Dy D My A+ Q2 Ay A Az
¥ By —M, 0 —(1 = p)Qn2 0 0
* x =S 0 0 0 0
P = * * * Qoo —erl 0 0 As (35)
* * * * —(1 — p)Qa — el 0 Ag
* * * * * —e3l A,
* * % * * * —h(2P — 7)
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where
i 0 0] 4 [ —hCTP, WDT(By+ABw)Py |
| P2(Br+ABF) 0 0 hAp + AAp)T P
Ay = - 8 h(Br + ?BF)sz

Furthermore, note thab can be decomposed as follows:

A

b==1 A= (36)
where
Oz Py —M; A+ Quo A As Ay
x Doy —M, 0 —(1 — p)Q12 0
* x =S 0 0 0 0
E= * * * Qo —ell 0 0 As ;
* * * * —(1 = p)Qa —e2l 0 Ag
* * * * * —e3l Aq
* * * * * x  —h(2P - 2)
[ diaz 00 0 0 Ag Ay |

* 0000 O 0
* * 000 0 0 O

AZ = * x x«x 000 0 0 , Priaz = A+ Ap,
* * x * 0 0 0
* x x x x 0 Ajp
* * ok ok % % 0

| o o [0 wDTABEP, [0 naBLP,

Tl RABr 077 0 haAZR, |7 T 0 0 ’
[0 0 0 DTABZLP,
A = , Arg = .
P,ABrD PAAp 0 AALP,

On the other hand, let, = P, Ar and Zg = P,Br. Moreover,A= can be further split as
= =AZE; + A5,
=MF, N +NTEEMT

AEI::/L 0000 A 0],AE2:[A9 00000 A]O],
T

Y

_ T 5
Ar=[AL 00 000 A , A=[AL 0000 0 Ay

- T - T
Ao=[A%, 00 0 0 A 0 Aw=[AT 00 00 A o] .
Fm :diag{lea lea 070a OaFm27Fm2}> le = dlag{FB(t),FA(t)}, Fm2 = dlag{FB(t),O}
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So far, after tedious manipulations, we can rearrange ($4pleows:
d=E+AZ=Z4+ MF N +NTFIMT <0. (37)
It follows from Lemma 1 that (14) is true if there exists a pivsi scalare such that
E+4 e MMT L EN)T(EN) <0 (38)

holds. According to the Schur Complement Lemma, we know (B8) holds if and only if (34) is
satisfied. To this end, we can conclude that (14) is indeediechjpy (34), and it follows from Theorem
1 that the system (10) is asymptotically stable. In addjttbe estimator gains are obtained directly from
Zs= P,Ar and Zp = P, Bp. [ |

Remark 2:In Theorem 2, sufficient conditions for the asymptotic digbof the dynamic system (10)
are presented. It is evident that all the network paramethes bounds of the activation function, the
bounds on the time-delays and its derivatives, the boundseohonlinear perturbation and the variations
of the gains are reflected in the main results. The correspgneblvability conditions for the desired
estimator gains are expressed in terms of the feasibilitg &w linear matrix inequalities that can be
solved using available software package. It should be pdinut that, compared to existing results in the
literature such as [16], [23], the structure of the non-feagstimator developed in this paper is of a simple
linear form containing two constant gain matrices and isdtoge convenient for practical implementation.
Furthermore, the gain-dependent perturbations, whichiroitequently in reality, are taken into account
in terms of the multiplicative parameter variations.

IV. A NUMERICAL EXAMPLE

In this section, a simulation example is given to verify titeaiveness of the proposed estimator
design method for the continuous neural network with timiayland gain variations. Consider a delayed
neural network of the form (1) with the parameters as follows

02 0 0 02 —-04 04 02 0.1 0.2
C=|0 03 0 , A= -04 02 02 |,B=03 02 02|, h(t) =4, G=0.51.
0 0 0.15 0.2 04 -04 0.2 0.2 0.1

The parameters of the network measurement (5) are givén-asl, F = 0.41, and the parameters of
the estimator gain variations are set to be the following

0.3 0.3 0.3 0.5 0.5 0.5
Hy=1, Hg=1, E4,=|03 03 03|, £Eg=| 05 05 05 |,
0.3 0.3 0.3 0.5 0.5 0.5

F4(t) = diag(cos(0.1t), cos(0.1t)), Fp(t) = cos(0.1t).
The selection of the activation functions is as follows:
g1(z1(t)) = sin(t(1 — z1(1))), g2(z2(t)) = sin(t(1 — 22(?))), gs(w3(t)) = sin(t(1 — x5(1))).

The neuron-state-dependent nonlinear perturbafionz(t)) = 0.0004 cos(x(t)).
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Using the MATLAB software, the set of solutions to the estionagain matrices can be obtained as
follows:

—0.7359 0.2618  0.2618 0.6574 —0.2743 —0.2743
Ap = 02619 —0.7359 0.2618 |, Bp=| —0.2743 0.6574 —0.2743
0.2619  0.2618 —0.7359 —0.2743 —0.2743 0.6574

The simulation results are shown in Figs. 1-4. Figs. 1-3 ddpie states of the neural networkgt),
x9(t), z3(t) and their estimates, (¢), z2(t) andzs(t), respectively. The dynamical evolution of the estimate
error is plotted in Fig. 4. The asymptotic stability of thegmented system is confirmed by the simulation
results.

V. CONCLUSIONS

In this paper, the non-fragile state estimation problembeen investigated for continuous-time neural
networks with time-varying delay and nonlinear perturtiasgi. Sufficient conditions that guarantee the
asymptotic stability of the augmented system have beenr@uteby employing the Lyapunov stability
theory, and the gain matrices of the estimator have beeraciesized in terms of the solution to certain
LMis. Finally, the effectiveness of the method has been detrated by the simulation results. We would
like to point out that our main results can be extended to myereeral/practical systems such fas-type
stochastic systems [14], nonlinear Markovian jump systgi§ [22], uncertain stochastic systems [19],
sampled-data systems [34] and finite-horizon nonlineatesys [21], [24], and the corresponding results
will appear in the near future. In addition, the methods hereld be further employed to deal with the
fault detection problem [31] as well as the non-fragileestgtimation problems for neural networks with
more complex phenomena such as fading measurements [29],[32] and incomplete measurements
[36], [38].
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