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Abstract

A radial basis function (RBF) neural network approach with a fusion of multiple signal candidates in precision
motion control is studied in this paper. Sensor weightages are assigned to sensor measurements according
to the selector attributes and are approximated using RBF neural network in multi-sensor fusion. A specific
application towards precision motion control of a linear motor system using a magnetic encoder and a soft
position sensor in conjunction with an analog velocity sensor is demonstrated. Motion velocity and noise
level in the sensor are chosen as the selector attributes and the optimal sensor weightages under different
attributes are approximated using RBF neural network with the reference data from laser interferometer.
The experiment results illustrate that the proposed method can provide relative better results than both

single encoder measurement and ordinary RBF neural network based multi-sensor approach.
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1. Introduction

High precision motion control is a core require-
ment in many industries leveraging on precise
robotics and automation such as semiconductor
manufacturing, precision machining and metrology.
The measurement accuracy sustainable in those
applications relies critically on the precision and
resolution of the position sensors used as well as
other important characteristics such as response
time, bandwidth, robustness to environmental fac-
tors, control interface, physical dimensions, mount-
ing and price. Because there is inevitably a limit
to the overall performance achievable with a sin-
gle sensor, multiple sensors can be used and fused
when multiple facets of performance measures are
necessary in an application.

The approach using multi-sensor fusion to im-
prove system performance has been used in cer-
tain domains, including location tracking systems
[1], reverse engineering in coordinate measuring ma-
chines [2][3], terrain mapping [4], vehicle navigation
[5] and robotics control [6]. In previous mentioned
research, many probability based multi-sensor fu-
sion techniques based on probabilistic modelling
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have been proposed, such as Bayes’ rule, proba-
bilistic grids, Kalman filter, sequential monte carlo
methods and functional density estimates. How-
ever, due to the limitations in probabilistic methods
such as unguaranteed precision in probabilities for
the states of interest and inefficient implementation
of large number of probabilities [7], the applications
of multi-sensor fusion are relatively scarce in preci-
sion motion control.

Alongside the probability based methods, neu-
ral network method has been adopted by several
researchers in the areas of multi-sensor data fu-
sion, such as robot inverse kinematics determina-
tion [8] and tool condition monitoring [9]. In all the
proposed neural network based data fusion meth-
ods from literature review, the measured data from
multiple sensors are directly used as the inputs to
train the network without any amenable structure
to deal with the changes in the system attributes
and the environment which may affect the output of
each sensor. However, neural network based multi-
sensor fusion may produce worse results than single
sensor due to the lack of secondary information in
the fusion [10], which lacks the flexibility and has
weakness in uncertainty [11].
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In order to overcome the previous mentioned lim-
itations in sensor fusion techniques and to expand
applications of such fusion techniques to precision
motion system, a novel radial basis function (RBF)
neural network based sensor fusion framework is
proposed. The weight attached to each sensor mea-
surement is not fixed but is allowed to evolve to
selector attributes chosen to bring out the relative
strengths of each measurement. As these weights
change in a nonlinear manner to the selectors, a
RBF network is used to model the weight variations
over the range of operations under different selec-
tor attributes, which has a fast convergence rate
and high accuracy due to the local approximation
ability [8]. RBF method also has several advan-
tages over the look-up table, such as parametric
model, nonlinear interpolation, and recursively re-
fined parameters. It has been shown that under
mild assumptions, RBF is suitable for universal ap-
proximations, i.e., any continuous function can be
approximated over a compact set to any degree of
accuracy.

The proposed method is more efficient because
processing selector attributes instead of sensor mea-
surements in neural network is relatively faster and
easier due to low data dimensions. The proposed
method also provides higher flexibility to cope with
uncertainties in secondary information. The dif-
ference between the proposed method and conven-
tional neural network based sensor fusion method
is illustrated in Fig. 1. In this paper, the ap-
proach is more specifically elaborated with respect
to precision motion system where the application
of sensor fusion is less commonly encountered and
a case study is employed in the development which
involves the motion control of a linear motor using
a digital magnetic encoder and an analog circuit
providing incremental position measurements from
velocity measured by an analog sensor. In this way,
this paper suggests a new approach to apply multi-
sensor fusion in high precision system instead of
conventional probability based method.

The essential difficulties encountered in this re-
search are the weightage adaptation in RBF neu-
ral network training and the consistency in system
measurement. In order to avoid the over-fitting
and local minimal problems, the parameters such
as training rates are properly selected in RBF neu-
ral network training and each network is trained
multiple times to ensure it converges to minimum.
Consistent measurement is also a critical require-
ment, as the accuracy of fusion outcome depends on
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Figure 1: Ordinary multi-sensor fusion approach with neural
network and the proposed method

the proper measurement of raw data under differ-
ent situations such as environmental noise and op-
erational speed. Thus proper monitoring and con-
trolling the system operational and environmental
characteristics is also a pre-requirement to conduct
the research.

The rest of this paper is organized as follows:
Section IT describes the proposed RBF neural net-
work based sensor fusion framework based on multi-
ple position sensors and a set of selector attributes.
Section IIT describes the selection and training of
the RBF networks. Section IV furnishes the exper-
imental work and results and Section V concludes
this paper.

2. Proposed Framework

The main idea of the proposed framework is to
facilitate the derivation of a single combined mea-
surement from multiple sensors providing the same
type of measurement. FEach sensor can be different
in the operational principles and thus individually
optimal for a restricted set of scenarios classified
under a set of selector attributes. The proposed
frame work is shown in Fig. 2 and Eq. 1. The ob-
jective is to achieve a higher quality measurement
in some sense of the application, not from any of
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Figure 2: Architecture of the proposed data fusion frame-
work

the individual sensors alone, but an appropriate fu-
sion of the multiple sensors to yield a more optimal
fit to the true values in a dynamic manner. While
the framework is general, it will be elaborated with
respect to position sensing in motion control in this
paper and substantiated similarly with a linear mo-
tor setup and experiments.

y(s, k) = f(s1, 82, ..., 8u) - g(k1, ka, ..., ky) (1)

where s1, s9, ..., S, are the sensor output signals of
the multiple sensors, ki, ko, ..., k, are the selector
attributes of the sensor outputs, and y is the data
fusion output.

2.1. Position computation using multiple position
SENSOTSs

Assuming that a total number of N position sen-
sors are used to infer a single position measurement
and the fusion function is chosen to be linear with
respect to the measurements as shown in Eq. 2 and
Fig. 3:

N
Lpos (ka 'r) = Z kixsnsri
i=1

== klxsnsrl + k2$snsr2 + ...+ kNxsner

(2)

where ki, ks,..., ky are parameters weighing the
influence of each of the measurement on the final
value, and Zspsry, Tsnsras--s Tsnsry re€present the
measurements from the N different sensors.

We would like to compute the weights so that the
target combined value approaches the true value. It
should be pointed out that the optimal weights are
not fixed but vary with different scenarios which
distinguish the strengths of each of the sensor. We
refer to the attributes classifying these scenarios as
the selector attributes. The true value is unknown
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Figure 3: Position computation using multiple position sen-
sors

in practice but it may be taken to be the value of
a close calibration from a gold standard calibration
sensor.

2.2. Selection weightage computation

For a fixed set of selector attributes, a laser in-
terferometer with nanometer resolution is used to
yield the reference of the true position xjqse,r and
the parameters ki, ko,..., kn are to be tuned to fit
the fused position x,,s to be as close as possible
to the reference xjgser [12]. Since the function is
linear with respect to the parameters, they can be
obtained efficiently in a non-iterative manner using
least squares estimation algorithms.

However, this single set of weights computed is
optimal in the least squares sense with respect to
the set of selector attributes. This is fine and suffi-
cient if these attributes are not expected to change
during the course of the operations expected of the
motion system. When they do change, the weights
may not be optimal anymore. To this end, a way
to efficiently model and compute the parameters
over a range of selector attributes will be neces-
sary. Such selectors may include the frequency of
the trajectory, the amount or variance of the noise
present relatively among the sensors, the velocity or
acceleration of the motion, or the positional zones
in the working area. The selectors are necessary to
bring out the strengths of individual sensors. For
example, different sensors have different character-
istics such as response time, bandwidth, resolution,
robustness to environmental factors, physical size
and cost. A higher weight should be assigned to
the specific sensor once the operation enters a do-
main where it offers relatively higher performance
above the others.

In this paper, we consider two selector attributes
in the motion velocity and noise level 1,45 in each
sensor. For a controlled variation in each of these



attributes, the optimal values of ki, ko,..., ky are
computed to correspond to the least square estima-
tion between the computed z,,s and the measured
Taser- For the linear data fusion function used in
Eq. 2, the equation can be re-written as the follow-
ing matric-vector form:

Tpos =K
Tsensory (tl) Tsensory (tl) kl
. Tsensory (t2) Tsensorn (t2) k2
Tsensory (tM) Tsensorn (tM) kN

where the entries of S are given by Zsensor, (t;)
which is the output of the sensor; at time t; (i =
1,2,...,N;5=1,2,..., M), the entries of K are given
by k;, and the entries of x,0s are given by xpos(t;)
at time t;.

To find the values of K using the least square
estimation between 0. and xjgser, let Eq. 3 equals
to Tigser:

SK = Llaser (4)

where the entries of z4ser are given by zigser(t;) at
time tj.

Assuming that STS is non-singular, the least
squares optimal solution of K is given by Eq. 4:

K = (S78) " ST 2105er (5)

where the entries of z4ser are given by zjgser(t;) at
time tj .

A recursive least square algorithm can be used
to refine the weights with each incremental data
set obtained, so that estimation can begin after the
first data set and each subsequent incoming data set
will improve the accuracy of the estimates. With
this algorithm, the optimal values of the weightings
ki1, ka,..., kn for each set of selector attributes can
be obtained to yield a position output closest to
the true value under the condition reflected by the
selector attributes. To this end, systematic errors
such as certain geometrical errors are also compen-
sated in the process. RBF networks, which would
be introduced in the next section, are then trained
to model those weights over the variation of the at-
tributes.

3. Parameter Weightage Modeling Using
RBF Neural Network

In this proposed approach, each computed pa-
rameter weightage K varies with motion velocity
and noise level n,4ise in a nonlinear manner. RBF
network is used to estimate the weightages in the
proposed multi-sensor fusion framework. RBF is a
real-valued function where the output only depends
on the distance from the origin or some center point
¢ to its input [13]. The following equation describes
the RBF:

oz —c) = ¢(||z —cl) (6)

Derived from function approximation theory, the
RBF network is a kind of feed-forward network.
They form mappings from an input vector to an
output vector. One of the most common RBF is
the Gaussian function. Let y(z) be a smooth func-
tion from R to R. Then, given a compact S € R
and a positive number wjs, there exists an RBF
network such that with ||wg|| < wps for all z € S.

M
y(x) = > wips(|x — pil]) + wo (7)

i=1
where M is the size of the input vector, w; is the
representative value vector, ; is the Gaussian

function which ¢;(]|lz — wl]) = exp(—%)a 2%
is the basis center of RBF, and o; is the standard
deviation.

In order to compute the nonlinear functions as-
sociated with the weightages, RBF network should
be trained using input and output data sets to ob-
tain the function parameters: w and p. Here the
gradient descent method based on error back prop-
agation is adopted as the training algorithm for pa-
rameter adaptation.

Assuming that there is a network with differen-
tiable RBF activation functions, a minimal error
can be achieved with the derivatives of back prop-
agated error F = yr — y; vanishing with weights
w and basis center p. Define the parameter set
W=(w;, u;), and n as the learning rate, then the
update of the parameters can be done as:

W(t+1) =W(t) —nVE(W(t)) (8)

The discrete time version of this algorithm is
given as [14]:



wilt +1) = wi(t) — nBei(llz — wll*)  (9)

pi(t+1) = pi(t) = nuBwigi(||x — il |*) (@ — i) o7

(10)
where F is the back propagated error yr — y;, yr
is the target RBF output, x7 is the ideal RBF in-
put that yields the desired RBF output, ., and n,
are the learning rate of w and p and o; is chosen
as a constant. A termination condition E,,s, the
mean square of errors, is adopted here to end the
iterative adaption process and obtain the optimum
RBF parameters.

In the case study considered in this paper to be
further highlighted in Section IV, the two selector
attributes in terms of the velocity velo and noise
level ny0ise in the velocity sensor are considered as
the input z. The selection weightage K computed
using least squares estimation is used as the tar-
get y. Thus, this specific RBF network has 2-DOF
(degree-of-freedom) since its characteristics depend
on both motion velocity velo and noise level 1,44 5e-
Based on Eq. 7, this RBF network can be re-written
as:

M
K = Z wl()pl(| | [U€ZO7 nnOise]_[:uveloi ’ :unnoisei] |)+w0
1=1
(11)

The RBF weights w can be obtained by replac-
ing z and p with [velo, Nneise] and [fveloy fingiee)
accordingly in Eq. 9 and Eq. 10. The trained RBF
function can be used to model the variation of the
weightages K with the selector attributes and sub-
sequently used to construct the data fusion function
accordingly using Eq. 3.

4. Case Study

A single axis setup (Akribis DC linear motor) is
used as the basis for a case study. The slide at-
tached on the stage can move bi-directionally along
the X-axis, with a working range of 200 mm. A
magnetic encoder with a resolution of 2mm is used
to obtain the position signal ... An analog ve-
locity sensor is also mounted to give analog veloc-
ity measurements as well as positional information
when the velocity is fed into a digital integrator.
The two sensors work independently and no com-
munication is required between them. Thus, in this
case study, we have two different sources of posi-
tion measurement; one from the magnetic encoder
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Figure 4: System setup 1

and the other from the velocity sensor integrated to
yield the position. Being an analog sensor, the res-
olution of the velocity sensor is infinitesimal. Thus,
when digital integration is done accurately over the
lower velocity range, the latter position measure-
ment can offer a better accuracy than the magnetic
encoder. However, as velocity picks up relative to
the sensitivity of the sensor, the accuracy of the
velocity measurement degrades leading to accuracy
loss in the position measurements too after the dig-
ital integration. Thus, the relative performance of
each of the sensor varies with velocity and veloc-
ity is selected as the first selector attribute in this
case study. The relative amount of noise present
from the two sources should also govern the prior-
ity to be attached to each of the two measurements
to infer the final position measurement. Thus, the
second selector attribute is chosen to be the amount
of noise present in the velocity measurements.

A laser interferometer is used to provide the
“true” position measurement Zj,se. This laser in-
terferometer is only used in the selection weightage
computation stage and is not used in the system
operation. The system setup is shown in Fig. 4
and Fig. 5.

4.1. Data collection phase

The motor is controlled to run at constant veloc-
ity mode with 200mm total movement length. The
noise level associated with the velocity sensor used
can be maintained at 5% in ideal and static labo-
ratory conditions. However, it can vary with the
presence and interaction with EM sources, power
interference or operating conditions. To enable the
results to remain applicable at other times and op-
erating conditions of the motor, the noise level as a
selector attribute is allowed to vary during the data
collection phase by injecting or amplifying the noise
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to different levels. The raw data and true data are
collected with different velocities from 0.02m/s to
0.6m/s and different noise levels in the velocity sen-
sor from 5% to 500% of the maximum reading for
each velocity. At a specific movement velocity and
a specific noise level in the velocity sensor, the ve-
locity sensor output vysensor, the magnetic encoder
output T.n. and the true data x5 are continu-
ously collected during the motor movement, and the
velocity sensor measured position signal Zysensor 1S
obtained separately after the integration of vy sensor-

4.2. Parameter estimation

Using the linear in the parameter form, the com-
bined position can be expressed in the following
form:

xpos - klxvsensor + k2xenc (12)

The reference position xyuser obtained by the
laser interferometer is used as the reference position
Tigser fOr the purpose of estimating the parameters
k1 and ko. For each set of selector attributes, the
optimal weight parameters can thus be estimated
with the algorithm as presented in previous sec-
tion. Thus, with the full data set collected earlier,
two tables (Table 1 and 2) can be obtained, tabulat-
ing the optimal weights against the velocity selector
Vpsensor and the noise selector Mg, pise-

4.3. RBF modeling of weights variation

In this specific case, a 2-dimensional RBF net-
works is trained and applied to approximate the
values of the weight parameters k; and ks as shown
in Fig. 6 based on two selector inputs: vysensor and
Nnoise as follows:

kl = fkl ('Uvsensoh nnoise) (13)

Table 1: k1 Selection for Different Velocities and Noise Levels

Velocities (m/s)

Noise  —557 0.10 0.20 0.30 0.40 0.50 0.60
5% 0.87 0.875  0.61 0.46 0.25 0.29 0.00
10% 0.87 0.885  0.62 0.47 0.255  0.29 0.00
50% 0.89 0.98 0.585  0.405  0.30 0.265  0.00
100% 0915  1.00 0.665  0.48 0.185  0.31 0.00
300%  0.825  1.00 0.48 0.285  0.025  0.105  0.00
500%  0.375  0.38 0.205  0.01 0.005  0.055  0.00

Table 2: ko Selection for Different Velocities and Noise Levels

Noise Velocities (m/s)
0.04 0.10 0.20  0.30 0.40 0.50 0.60

5% 0.135  0.13 0.39  0.54 0.75 0.705 0.995
10% 0.135  0.12 0.38  0.53 0.745 0.705  0.995
50% 0.115  0.025 0.42 0.6 0.7 0.73 0.995
100% 0.09 0.01 0.34  0.525  0.82 0.69 0.995
300% 0.185  0.035 0.54  0.73 0.98 0.895  0.995
500% 0.65 0.665 0.82 1.00 1.00 0.945  0.995

k2 == fk‘z ('Uvsensoh nnoise) (14)

The fused position signal can be represented as in
Eq. 15, and this position signal ., can either be
used directly by the controller, or be interpolated
to a higher order to improve the system resolution.

Tpos :fk1 ('Uvsensorv nnm’se)xvsensor

+ sz ('Uvsensorv nnm’se)xenc (15)

The approximated functions fi, (Vysensors Pnoise)
of k1 and fx, (Vysensor; Mnoise) Of ko are determined
and depicted in Fig. 7 and Fig. 8, under different
velocities and noise levels. A nonlinear relationship
can be observed between k1 /ko values and selectors:
velocity and noise levels. k; decreases significantly
with higher noise levels under same velocity value.
This is consistent with physical intuition as a higher
content, of noise will shift weightage away from the
analog sensor. k; also decreases significantly with
higher velocity under same noise level. At lower ve-
locities, the position measurements from the digi-
tally integrated velocity signal yield good accuracy
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Figure 6: Flowchart of 2D RBF network
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but the accuracy is degraded at higher velocities
due to the sensitivity characteristics of the sensor.
The complementary relationships are observed in
ko.

4.4. Results & Discussions

To observe the improvement on the overall pre-
cision with the proposed framework and approach,
control experiments on the testbed are done. Three
sinusoidal reference signals with the amplitude of
100mm and the periods of 3/4/5 seconds are ap-
plied to the linear motor separately. The periods of
the sinusoidal reference signals are specially chosen
to include all the measured velocities of the linear
machine. A PID controller is used to control the
linear motor. The analog velocity sensor is used

to measure the velocity signal vysensor, the mag-
netic encoder is used to measure the position signal
ZTene and the laser interferometer is used to mea-
sure the reference position xj4se-. Those collected
signals can be used to train the 2-dimensional RBF
networks, and the estimated position x,,s can be
obtained using Eq.15. The positioning and track-
ing performances of the proposed method for the
three reference sinusoidal signals are shown in Fig.
9 to Fig. 11.

To observe the error tolerance of the proposed
approach, the system tracking performance at dif-
ferent noise levels are plotted from Fig. 12 to Fig.
17, for reference signals with period of 5 seconds
and error percentages of 5%, 10%, 20%, 30%, 40%
and 50%. As can be clearly observed in the exper-
imental study, the proposed method can improve
the tracking performance and system precision if
the noise level is kept below 30%.

In order to verify the efficacy of the proposed
method comparing with the ordinary approach
from literature review, a RBF network is designed
where the measurements from multi-sensors are di-
rectly used as the inputs to train the network as
the standard neural network shown in Fig. 1. Two
sinusoidal reference signals with the amplitude of
100mm and the periods of 1 and 2 seconds are ap-
plied to the linear motor separately and the esti-
mated position signals from both proposed method
and ordinary approach are shown in Fig. 18, to-
gether with the reference signals. It can be ob-
served that the estimated position signals from the
proposed method are much better than those from
the ordinary approach.

The promising results show that in precision mo-
tion system the fusion of magnetic encoder and ana-
log velocity sensor using proposed method can pro-
vide better results than ordinary approach and indi-
vidual sensor alone. Although in practice, magnetic
encoder has lower resolution than optical encoder,
but with lower cost it is less sensitive to vibration
and impact and more robust to the presence of envi-
ronmental contaminants. Therefore in this specific
example, magnetic encoder can outperform with re-
spect to some of these requirements using proposed
method.

In practice, a digital encoder can be used to yield
position measurements with satisfactory accuracy
over a good range of the control motion, but a
higher accuracy is needed near the target position.
Using an additional position sensor in parallel, such
as an analog encoder which can be invoked around



Estirnated Position

. 200 T T T T T Laser Measured Reference
E Encaoder Measured Position
o 100 — =

3

=

= 0 2

k=

T

5 -100 i

5

= 1 1 1

200 L L L L .
1] 045 1 5 2 2 El 38 4 4.4

Samples w10

‘ Error in Estirmated Position
‘ Errar in Encoder Measured Position

=
=]

[
]

[}
=}
T
L

M ernent Error {rorm)
o
L

| I |
05 1 15 2 25 3 35 4 45
Samples w10

.
=]
o

Figure 9: Tracking performance with sinusoidal reference
input signal (amp=100mm period=3s)

Estimated Position

= 200 T T T T T Laser Measured Reference
£ Encader Weasured Position
o 100 =

3

=

[ =) D |

k=

T

5 -100 ]

5

=

200 L L L L L
1] 0.5 1 i3] 2 2 3 ER) 4 445 4

Samples w10

[N
o]

o
T
L

=]
T

Error in Estirnated Position
Error in Encader Measured Position

M ernent Error {rorm)
o
L

[
=]
=]

|
0s 1 15 2 25 3 35 4 45 5
Samples w10

Figure 10: Tracking performance with sinusoidal reference
input signal (amp=100mm period=4s)

the settling point to yield or interpolate into finer
resolution measurements [15][16], can fill the gaps
beyond the reach of the other sensor. The potential
of the use of multiple different sensors for the same
measurement is shown, each suited to a certain set
of operational factors possibly and collectively aris-
ing in the same application. Other applications may
include an appropriate synergy of position sensors
to achieve dynamic balance in response speed and
resolution, bandwidth and accuracy, cost and per-
formance, robustness and sensitivity, or other com-
bination of these attributes.
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Figure 16: Tracking performance with 40% velocity sensor
error and sinusoidal reference input signal (amp=100mm pe-

riod=>5s)



5. Conclusion

A RBF neural network based framework to fuse
measurements from different sensors in a practically

Emated P amenable manner has been presented in this paper.
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