
An Investigation of Feature Weighting Algorithms

and Validation Techniques using Blind Analysis for

Analogy-Based Estimation

A thesis submitted as partial fulfilment of the requirement of

Doctor of Philosophy

by

BOYCE B. SIGWENI

College of Engineering, Design and Physical Sciences

Brunel University London

January 2016

Abstract

Context : Software effort estimation is a very important component of the software develop-

ment life cycle. It underpins activities such as planning, maintenance and bidding. Therefore,

it has triggered much research over the past four decades, including many machine learning

approaches. One popular approach, that has the benefit of accessible reasoning, is analogy-

based estimation. Machine learning including analogy is known to significantly benefit from

feature selection/weighting. Unfortunately feature weighting search is an NP hard problem,

therefore computationally very demanding, if not intractable.

Objective : Therefore, one objective of this research is to develop an efficient and effective

feature weighting algorithm for estimation by analogy. However, a major challenge for the

effort estimation research community is that experimental results tend to be contradictory

and also lack reliability. This has been paralleled by a recent awareness of how bias can

impact research results. This is a contributory reason why software effort estimation is still

an open problem. Consequently the second objective is to investigate research methods that

might lead to more reliable results and focus on blinding methods to reduce researcher bias.

Method : In order to build on the most promising feature weighting algorithms I conduct

a systematic literature review. From this I develop a novel and efficient feature weighting

algorithm. This is experimentally evaluated, comparing three feature weighting approaches

with a näıve benchmark using 2 industrial data sets. Using these experiments, I explore blind

analysis as a technique to reduce bias

Results: The systematic literature review conducted identified 19 relevant primary studies.

Results from the meta-analysis of selected studies using a one-sample sign test (p = 0.0003)

shows a positive effect — to feature weighting in general compared with ordinary analogy-

based estimation (ABE), that is, feature weighting is a worthwhile technique to improve

ABE. Nevertheless the results remain imperfect so there is still much scope for improve-

ment. My experience shows that blinding can be a relatively straightforward procedure. I

also highlight various statistical analysis decisions which ought not be guided by the hunt

i

for statistical significance and show that results can be inverted merely through a seemingly

inconsequential statistical nicety. After analysing results from 483 software projects from

two separate industrial data sets, I conclude that the proposed technique improves accuracy

over the standard feature subset selection (FSS) and traditional case-based reasoning (CBR)

when using pseudo time-series validation. Interestingly, there is no strong evidence for supe-

rior performance of the new technique when traditional validation techniques (jackknifing)

are used but is more efficient.

Conclusion : There are two main findings: (i) Feature weighting techniques are promising

for software effort estimation but they need to be tailored for target case for their potential to

be adequately exploited. Despite the research findings showing that assuming weights differ

in different parts of the instance space (‘local’ regions) may improve effort estimation results

— majority of studies in software effort estimation (SEE) do not take this into consideration.

This represents an improvement on other methods that do not take this into consideration.

(ii) Whilst there are minor challenges and some limits to the degree of blinding possible, blind

analysis is a very practical and an easy-to-implement method that supports more objective

analysis of experimental results. Therefore I argue that blind analysis should be the norm

for analysing software engineering experiments.

ii

Publications List

The publications listed below are results of work based on this thesis:

� Sigweni, B., (2014, May). Feature weighting for case-based reasoning software project

effort estimation. In Proceedings of the 18th International Conference on Evaluation

and Assessment in Software Engineering (EASE) (p. 54). ACM.

� Sigweni, B. and Shepperd, M., (2014, September). Feature weighting techniques for

CBR in software effort estimation studies: a review and empirical evaluation. In Pro-

ceedings of the 10th International Conference on Predictive Models in Software Engi-

neering (PROMISE) (pp. 32-41). ACM.

� Sigweni, B. and Shepperd, M., (2015, April). Using blind analysis for software engi-

neering experiments. In Proceedings of the 19th International Conference on Evaluation

and Assessment in Software Engineering (EASE) (p. 32). ACM.

� Ayoung, A.D., Sigweni, B. and Abbott, P., (2015, December). Case-Based Reasoning

System for Predicting the Sustainability of a Telecentre. In Proceedings of the 10th

International Conference for Internet Technology and Secured Transactions (ICITST-

2015). IEEE.

� Sigweni, B., Shepperd, M., & Turchi, T. (2016, June). Realistic assessment of software

effort estimation models. In Proceedings of the 20th International Conference on Eval-

uation and Assessment in Software Engineering (EASE) (p. 41). ACM (best short

paper award)

iii

Contents

1 Introduction 1

1.1 Motivation for Thesis . 3

1.2 Research Objectives . 4

1.3 Scope of Work . 5

1.4 Thesis Structure . 6

2 Background and Related Work 8

2.1 Introduction to Machine Learning . 9

2.1.1 Reinforcement learning . 9

2.1.2 Unsupervised Learning . 10

2.1.3 Supervised Learning . 10

2.1.4 The choice of classifier . 14

2.2 Feature Weighting . 15

2.2.1 Filter Method . 17

2.2.2 Wrapper Method . 17

2.2.3 Embedded Method . 20

2.3 Software effort estimation techniques . 21

2.4 Analogy-based Software effort estimation . 22

2.4.1 Similarity Measure . 24

2.4.2 Choice of k for k -NN . 27

2.4.3 Adaptation Rules . 28

iv

2.5 Analogy-based Tools and Systems . 29

2.5.1 Estor . 29

2.5.2 ArchANGEL . 30

2.6 Advantages of Analogy-based estimation . 33

2.7 Summary . 35

3 Feature Weighting Techniques for ABE in Software Effort Estimation 36

3.1 Objective for the Literature Review . 37

3.1.1 SLR Research questions . 38

3.2 Method of Identification of Relevant Literature 39

3.2.1 Search strategy . 40

3.2.2 Study selection and data extraction 42

3.2.3 Data synthesis . 44

3.3 Systematic Literature Review Findings . 46

3.3.1 Feature Weighting Techniques . 47

3.3.2 Methods for Accuracy Estimation . 48

3.3.3 How was Feature Weighting Dealt With? 50

3.4 Summary . 51

4 Blind Analysis for Software Estimation Experiments 53

4.1 Sources of Bias in Research . 54

4.2 Blind Analysis . 57

4.2.1 What is a Blind Analysis? . 57

4.2.2 Blinding strategies . 58

4.3 Blind Analysis Design and Discussion . 59

4.3.1 Blind Analysis Experiences . 64

4.4 Overcoming barriers to blind analysis . 65

4.4.1 Concerns about blind analysis . 66

4.4.2 Challenges for blind analysis . 66

4.5 Summary . 68

v

5 Forward Sequential Weighting for Analogy Based effort Estimation 69

5.1 Introduction . 70

5.2 Feature Weighting: Formal problem description 71

5.3 Rationale and the assumptions of Analogy-Based Estimation (ABE) 72

5.4 A Feature-space Partitioning Approach . 76

5.4.1 Feature Space Partitioning . 76

5.4.2 Weight Sets . 83

5.5 The feature weighting algorithm . 85

5.5.1 Supervised Feature weighting . 85

5.5.2 Feature re-weighting . 87

5.6 An eXtension for ArchANGEL . 88

5.7 Summary . 90

6 Empirical Evaluation of FSW for Analogy Based effort Estimation 91

6.1 Experimental Framework . 92

6.1.1 Choice of feature weighting approach 92

6.1.2 Choice of performance metrics . 93

6.1.3 Choice of data sets . 96

6.1.4 Method for Accuracy Estimation . 99

6.1.5 Moving windows approach . 100

6.1.6 Experimental process . 103

6.2 Empirical evaluation of Feature Sequential Weighting 105

6.2.1 Experimental results for comparison of FSW to FSS, CBR and Näıve 108

6.2.2 Blind Analysis Experimental results 110

6.3 Summary . 123

7 Conclusions and Further Work 125

7.1 Summary of work done . 126

7.2 Contribution of this Thesis . 128

7.3 Limitations and Possible Future Work . 129

vi

7.3.1 Approach limitations . 129

7.3.2 Limitations of Analysis . 130

7.3.3 Possible Future work . 131

Appendix A 150

Appendix B 152

vii

List of Figures

2.1 The machine learning approach to classification adapted from [140] 11

2.2 CBR process life-cycle [81] . 13

2.3 The filter approach to feature weight set selection adapted from [93] 17

2.4 The wrapper approach to feature weight set selection adapted from [93] . . . 19

2.5 CBR Process adapted from Shepperd [144] 23

2.6 The Euclidean distance in 3-dimensional space [49] 25

2.7 Nearest neighbours (k -NN) example . 27

2.8 Estor Logical Architecture [125] . 29

2.9 ANGEL schematic[141] . 31

2.10 ArchANGEL Logical Architecture . 32

3.1 The filter approach for feature subset selection 43

4.1 Experimental design and blind analysis process 60

5.1 Donors distance (d) . 72

5.2 Relationship between distance (d) and absolute residuals and efforts difference 73

5.3 Desharnais ANOVA results and Effect size eta squared 74

5.4 Finnish ANOVA results and Effect size eta squared 75

5.5 Scatter plot of d between first two donors for W2 and W3 for Desharnais data

set . 77

5.6 Comparing weight set 2 and 3 for Desharnais data set 78

5.7 MAR’s changes as a different distances’ quantile of selection is chosen. 80

viii

5.8 Feature weighting adapted from [152] . 86

6.1 Evaluation data sets . 100

6.2 Blinding process . 105

6.3 Desharnais percentiles against MAR . 106

6.4 Finnish percentiles against MAR . 107

6.5 Performance trends of techniques over window size per data set based on MAR 109

6.6 Boxplots showing residual distributions for Finnish Data Set 111

6.7 Boxplots showing residual distributions for Desharnais Data Set 118

ix

List of Tables

3.1 Systematic Literature Review Summary . 38

3.2 The search form for data extraction . 44

3.3 Dimensions For Distinguishing Feature Weighting Methods from [170] 45

3.4 Range and diversity of FWTs . 47

3.5 Performance of FWTs against ABE benchmark 49

3.6 Performance of non-binary weight-space FTWs on Desharnais data set 50

4.1 Blinding strategies [110] . 58

4.2 Pairwise comparison Wilcox’s percentile bootstrap [154] 63

4.3 Pairwise comparison of mean absolute residual using Wilcox’s percentile boot-

strap (Trimmed means 0.2) . 63

6.1 Example to illustrate MMRE problem . 94

6.2 Selected data sets . 97

6.3 Desharnais data set features . 98

6.4 Number of projects completed per year for Finnish dataset 101

6.5 Number of projects completed each year for Desharnais dataset 101

6.6 Number of sub data sets per window size for both data sets 102

6.7 ArchANGEL setup . 104

6.8 Performance of weight sets based on MAR for both data sets showing potential

gain . 108

6.9 Performance of each technique for both data sets based on MAR 109

x

6.10 Comparing absolute residuals by prediction system 112

6.11 Harrell-Davis 50th percentile estimators for prediction system absolute residuals113

6.12 Results for Finnish dataset (SA and effect size ∆) 113

6.13 Window size 3 . 113

6.14 Window size 5 . 113

6.15 Window size 10 . 114

6.16 Window size 15 . 114

6.17 Results for Finnish dataset (SA and effect size ∆) 114

6.18 Window size 30 . 114

6.19 Window size 45 . 114

6.20 No windows — entire Finnish data set . 114

6.21 Pairwise comparison of median absolute residual differences using Wilcox’s

percentile bootstrap . 115

6.22 Pairwise comparison of median absolute residual differences using Wilcox’s

percentile bootstrap for each window size for Finnish data set 116

6.23 Kruskal-Wallis Test . 119

6.24 Results for Desharnais dataset (SA and effect size ∆) 119

6.25 Window size 3 . 119

6.26 Window size 5 . 119

6.27 Window size 10 . 120

6.28 Window size 15 . 120

6.29 Window size 30 . 120

6.30 Window size 45 . 120

6.31 No windows — entire Desharnais data set . 120

6.32 Pairwise comparison of median absolute residual differences using Wilcox’s

percentile bootstrap for Desharnais data set 121

6.33 Pairwise comparison of median absolute residual differences using Wilcox’s

percentile bootstrap for each window size for Desharnais data set 122

xi

A1 Selected studies . 151

B1 Finnish data set features . 153

xii

Acronyms

ABE Analogy-Based Estimation

CBR Case-Based Reasoning

COCOMO Constructive Cost Model

FSS Feature Sequential Selection

FSW Feature Sequential Weighting

FWT Feature Weighting Technique

ISBSG International Software Benchmarking Standards Group

MAR Mean Absolute Residual

MdMRE Median of Magnitude Relative Error

MMRE Mean Magnitude of Relative Error

MRE Magnitude of Relative Error

PROMISE Software Effort PRedictOr Models In Software Engineering

SA Standardised Accuracy

SEE Software Effort Estimation

SLR Systematic Literature Review

xiii

Acknowledgments

I would first and foremost like to thank my supervisor Professor Martin Shepperd for his

dedicated supervision and unwavering support, not only for his academic guidance and as-

sistance, but also for his patience and personal support — without which this thesis would

never have got off the ground. Thanks Prof, I am truly grateful.

Thanks to Dr. Simon Kent for his work as my second supervisor. Many thanks to

Tommaso Turchi for his practical assistance in the investigations carried out for this thesis.

A great deal of thanks must also go to my parents, siblings, and Bareneetse Memo who

have supported me throughout, putting up with my thoroughly unsociable behaviour and

late nights.

The research contained within this thesis has been supported by Botswana International

University of Science & Technology (BIUST).

xiv

This thesis is dedicated to the memory of my father, Themba Ntatiwa Sigweni. Thank you

for believing in me.

xv

Chapter 1

Introduction

Given the importance of timely and accurate software cost prediction, it is unsurprising that

there is a large body of published research work, the majority of which has focused on effort

prediction since effort is normally the dominant and hardest to predict component of overall

cost. Unfortunately, estimates are often substantially wrong and specifically most projects

encounter effort overruns.

Software effort estimation with resounding reliability, productivity and development is a

demanding and arduous task. “Anyone who expects a quick and easy solution to the mul-

tifaceted problem of resource estimation is going to be disappointed.” — Alfred Pietrasanta

1968 cited in [99]. Three decades later Briand et al. observed that “Despite the large number

of cost factors collected and the rigorous data collection, a lot of uncertainty in the estimates

can be observed” [27]. The current situation is not any better; there are still problems as-

sociated with effort estimation, whose errors have devastating consequences. An example

is the cancelled NASA’s Check Out Launch Control System (CLCS) project in 2003, where

approximately 400 developers lost their jobs when the project was cancelled after the initial

estimate was increased by more than $250 million dollars [60]. Worldwide software revenue

totalled $3.5 trillion in 2015 according to Gartner, Inc. (NYSE: IT) [47]. Considering that

software effort estimates are often wrong [25], therefore this highlights the importance of very

good estimates. Good estimates have potential not only to save livelihoods but to help other

sectors of the economy grow.

1

Introduction Chapter 1

Software effort estimation research is focused mainly on issues associated with errors in

estimation and seeking to identify better estimation methods. These efforts have resulted in

varying levels of support for different approaches [60].

Although many approaches have been proposed, a widely used technique is based upon

Case-Based Reasoning (CBR) [98] and is usually referred to as Analogy-Based Estimation

(ABE) [121, 150]. CBR essentially proceeds by using knowledge of past episodes of interest

called cases that are encoded as vectors of features that describe the case state and the case

solution. New, or target cases, are solved by utilising solutions from past cases that exhibit

similarity, i.e., are proximal in the feature space.

For effort prediction a case is usually a project, is a fixed vector of features values. A

feature, sometimes called an attribute, describes some characteristic of a case. Two examples

of features types: categorical (development environment ∈ {Java, C++, python}) and con-

tinuous (for example cyclomatic complexity). Continuous features are used when the values

can be linearly ordered, even if the values are not truly continuous.

The case state will be a vector of features such as size, development environment, client

experience, etc., and the solution is the actual amount of effort utilised. Thus the case-base

is conceptually an n × p matrix where there are n cases and p features. Often the features

that are included in the case-base are more due to happenstance and availability rather than

because it is known that there are well defined relationships with the case solution. Moreover,

there may exist multicollinearities amongst these features. Consequently, as is common with

the majority of machine learning techniques, it is widely acknowledged that not all features

are of equal importance [51, 157]. Thus CBR systems will benefit from optimisation of the

feature sets. In order to improve CBR estimation accuracy, many researchers have proposed

Feature Weighting Techniques (FWTs) or feature set optimisation.

Feature set optimisation can be accomplished by means of feature weighting which has

the effect of stretching or compressing the feature space thus impacting the proximity of

cases (projects) and thus modifying the set of neighbour projects that are used to donate

solutions. Such problems are NP-hard and for non trivial numbers of cases and feature sets

present significant computational challenges. A slightly less daunting approach, although

2

Motivation for Thesis Chapter 1

still NP-hard, is feature subset selection where features are assigned weights of {0, 1}. Until

recently this has been the dominant approach within software effort prediction.

In recent years there has been growing concern about conflicting experimental results in

empirical software engineering. This lack of agreement is shown amongst the many empirical

studies conducted in the various branches of empirical software engineering [145] including

defect prediction [118, 175] and Software Effort Estimation (SEE)) [72, 149]. Closer investiga-

tion suggests that a contributory reason — though only one of many — is selective reporting

and partial analysis [71, 146].

The focus of this thesis is on the analogy-based or case-based software effort estima-

tion techniques. Other software effort estimation techniques are not the primary focus of

this research, nevertheless, a brief introduction of other algorithmic models are discussed in

Chapter 2 to put the research theme into context. This thesis also focuses on blind analysis

as mechanism to reduce researcher bias (analysis bias) in an effort to improve consistency of

experimental results in empirical software engineering.

As it is common practice within the software engineering literature, the terms effort and

cost will be used interchangeably during the course of this thesis, as will the terms prediction

and estimation, case and project.

1.1 Motivation for Thesis

Although there is widespread consensus that some form of feature weighting technique is ben-

eficial there has been no empirical investigation on how offering different weight sets affects

estimation accuracy. Nor has there been an experimental evaluation of CBR FWTs on the

interaction between performance and data set based on time series or data set size. The

motivation for this thesis is to provide the software effort estimating community with a more

effective approach to the feature weighting problem, complementing current practices, and

blind analysis for software engineering experiments. The main reasons for this are:

� Much of research effort has been spent on developing different feature weighting tech-

3

Research Objectives Chapter 1

niques to improve estimations accuracy, however predictions are still far from perfect.

The suggestion, therefore, is to apply research effort on how these diverse feature weight-

ing techniques might address the problems of effort estimation for each new case in a

more effective way.

� There has been growing concern about conflicting experimental results in empirical soft-

ware engineering [146]. Numerous empirical studies into the consistency of results of

software experiments have been published in the literature (for example [72, 118, 145,

149, 175]). Unfortunately, the over-riding trend is inconsistency. Closer investigation

suggests that a contributory reason — though only one of many — is selective reporting

and partial analysis [71, 146] known as analysis bias. Exploring techniques that help

reduce analysis bias makes it possible to build effort prediction systems that produce

consistent results.

� Validation approaches currently used may not be representative of industry practice.

Validation must reflect the industrial practice where a project’s effort can only be

predicted based on past projects. More appropriate approaches need to be adopted

that do validation using only earlier projects. Normally validation is done using any

project in the case base even if it was completed after the test project.

1.2 Research Objectives

The work described within this thesis is a practical investigation of offering different weight

sets to ‘local’ regions (different parts of the instance space) of data set, which has received

little to no attention from the software engineering community. The software community

is also concerned about the contradictory results from software engineering experiments.

Therefore I will look at techniques to reduce bias, this will in turn improve consistency.

This work is an attempt to partially redress this imbalance with the following objectives:

1. systematically evaluate all relevant empirical studies of feature weighting using analogy-

based estimation in the domain of software engineering.

4

Scope of Work Chapter 1

2. research bias in order to mitigate contradictory results in software engineering.

3. propose an efficient feature weighting algorithm for analogy-based estimation.

4. investigate if there is any difference between existing traditional validation techniques

such as jackknifing and pseudo time-series — a technique that better reflects industry

practice

The overall objective is to investigate in an unbiased way the efficacy of offering different

weight sets for analogical reasoning for the purpose of estimating the required effort to com-

plete software projects.

1.3 Scope of Work

Whilst this work could be applied to other software measurement problems such as the predic-

tion of defect density or estimation of project duration, the focus of this thesis is exclusively

on the estimation of software project effort. Admittedly effort is by no means the only driver

of software project costs, it is commonly the most important. The definition of what effort

constitutes varies between development environments but is expected to include at least, the

effort expended during the requirements definition, design, coding and testing phases [141].

In reality it is the cost rather than effort that we are trying to predict. However, since

software production costs are often too sensitive to be made public, we therefore substitute

effort for cost. Cost is largely informed by effort, therefore effort can be used as a convenient

proxy for cost with the assumption that there is a linear relationship between cost and effort.

Also effort is also much easier to compare across different companies. We use data sets from

different companies.

Effort estimated in this study is not restricted to the effort for developing new software

but can also refer to effort for maintenance or enhancement of existing projects, which reflects

the large amount of effort required for such activities on software projects. Data sets such

as Finnish has a mixture of new, maintenance and enhancement projects. This thesis only

uses industrial projects data sets, therefore hypothetical or educational projects such as those

5

Thesis Structure Chapter 1

commonly carried out by students for their coursework are not considered.

1.4 Thesis Structure

Following on from the introduction which outlined the importance of software effort esti-

mation, Chapter 2 presents a background of analogy-based software effort estimation and

related work. Analogy-based estimation is a form of case-based reasoning in the machine

learning field therefore it is important to first discuss machine learning and in general feature

weighting techniques available. This enables the discussion on various types of software esti-

mation methods before detailing the analogy-based estimation which the is main technique of

this thesis. To obtain a better understanding of analogy-based estimation, the following are

discussed; tools, systems, advantages and disadvantages as well as issues with analogy-based

estimation.

Machine learning is known to significantly benefit from feature selection/weighting.

Chapter 3 reports on a comprehensive systematic literature review focussing on how fea-

ture weighting has been dealt with in the empirical software engineering community for

effort estimation using case based reasoning. I specifically focus on feature weighting in

software effort estimation (SEE) because of the distinctive characteristics of the SEE data

sets. Feature weighting in other domains may not be as representative of interrelationship of

features in software effort estimation. Systematic literature review (SLR) findings show that

feature weighting does improve estimation accuracy. However, experimental results tend to

be contradictory therefore lack reliability.

In an effort to address the issue of experimental results unreliability in software engineer-

ing, I looked at experimental techniques to reduce experimental bias in Chapter 4. Specifically

I used the little known technique of blind analysis and I also incorporated robust statistics

as appropriate and reported my experiences. Feature weighting does improve estimation ac-

curacy. However, all such approaches assume a uniform set of weights across the entire case

base. In Chapter 5, I investigate whether local feature weighting schemes may offer benefit

over more conventional approaches which use a single weight set for the entire data set. A

6

Thesis Structure Chapter 1

new algorithm that finds more local sets of feature weights is presented. In addition, I address

this question in the more realistic setting of a dynamic data set, i.e., one that grows over

time.

Empirical evaluation of feature weighting for analogy-based effort estimation in chapter

6 is based on two industrial data sets. The results show that blind analysis can be used to

reduce analysis bias and suggest that multiple weight sets should be used in effort prediction

for all future models using analogy-based effort estimation that employ feature weighting to

improve estimation accuracy.

The objective of this work was to improve SEE. In Chapter 7 as well as providing a list

the contributions of this thesis I outline limitations of the work. Finally I provide pointers

to possible future work in the field of feature weighting in empirical software engineering.

7

Chapter 2

Background and Related Work

8

Introduction to Machine Learning Chapter 2

2.1 Introduction to Machine Learning

Machine Learning is the field of scientific study that explores induction algorithms, that is,

algorithms that can be said to “learn” from data (definition provided by Kovahi and Provost

in the glossary of terms [94]). Learning algorithms are presented with data that represent

a task so that they can learn from it, and therefore predict a solution for a new task when

provided with new data. These algorithms make use of inputs to build models that could be

used to make predictions or decisions [21]. Machine learning can be employed in computing

processes where creating and explicitly programming instructions is not practical or easily

achieved.

Chapter 1 provided an introduction to the topic of analogy-based estimation with a

brief discussion about the importance of software effort estimation and the issue of feature

weighting. This chapter continues the software effort estimation discussion from Chapter 1 by

first addressing the machine learning process. The term CBR effort estimation, also known

as analogy-based effort estimation, is usually used as a synonym for case-based reasoning in

machine learning. More precisely, analogy-based reasoning is an application of case-based

reasoning in the machine learning field, both sharing many similarities in the application

process and algorithms involved and their differences are also discussed in this chapter.

There are three broad categories of learning determined by the type of “feedback” available

to a learning system [136]. These are: Reinforcement learning, Unsupervised learning and

Supervised learning. These will be discussed in the next three subsections. My focus will be

on supervised learners because they take advantage of the fact that in classification problems,

the class label can provide additional information regarding the usefulness of a feature to the

problem at hand [42] and I know what class I’m interested in.

2.1.1 Reinforcement learning

Reinforcement learning is where an algorithm learns through a series of rewards or punish-

ments inspired by behaviourist psychology [78, 136]. Reinforcement learning was introduced

by Christopher Watkins [166] in 1989 using Q-learning. Q-learning is a form of model-free

9

Introduction to Machine Learning Chapter 2

reinforcement learning. Q-learning provides the capability of learning — acting optimally in

Markovian domains by experiencing the consequences of actions. An algorithm tries different

actions at different states, then evaluates its consequences of each action in terms of the

immediate reward or penalty it receives. By trying all actions, the algorithm learns which

action is best overall, based on long-term discounted reward [165].

In reinforcement learning the algorithm interacts with a changing environment in which it

must perform a certain goal without any feedback explicitly telling it whether it is close to its

goal or not. The environment can be formulated as a Markov decision process [20] as many

reinforcement learning algorithms for this context utilize dynamic programming techniques.

While reinforcement learning may not be very appropriate for static data sets of SEE, a form

of reinforcement learning is often used for unsupervised learning [13], where the algorithm

bases its actions on the past rewards and punishments without necessarily even learning how

its actions affect the environment.

2.1.2 Unsupervised Learning

In unsupervised learning the labels of training data are not available. The algorithm learns

patterns in the input even though no explicit feedback is made available. Data clustering

[68] is one of the common unsupervised learning tasks. The data clustering algorithm detects

potentially useful clusters of input examples. A good representational process of input ob-

jects is essential because the level of accuracy the learned model achieves depends intensely

on how the input object is represented. Unsupervised Learning is advantageous where the

problem can not be clearly specified e.g., Data mining. Data sets used in software effort esti-

mation are often fully labelled, for an example effort data sets in PROMISE [117]. Therefore

unsupervised learning may not be very beneficial for effort estimation.

2.1.3 Supervised Learning

In Supervised Learning the algorithm studies training data examples of input-output pairs

and learns a function that maps output to input. The difference between supervised learning

and unsupervised learning, is that the labels of training data must be known. The task of

10

Introduction to Machine Learning Chapter 2

supervised learning can be represented as follows [136]:

Given N examples of input-output pairs as a training set

(x1, y1), (x2, y2), . . . (xN , yN),

where an unknown function y = f(x) generates each yj ,

the algorithm discovers a function h that approximates the true function f

where x and y need not be numbers; they can be any value, h is the hypothesis function.

Searching through the space of possible hypotheses for one that will perform well, even on

unseen targets beyond the training set for example ŷN+1, the algorithm learns.

Supervised learning algorithms are trained using labelled examples, such as an input

where the desired output is known [139]. Input data is called training data. A predic-

tion model is adjusted through a training process where it is required to make predictions.

The learning algorithm receives a set of inputs along with their corresponding correct out-

puts, and the algorithm learns by comparing its predicted output with correct outputs to

find differences. Figure 2.1. These predictions are corrected if wrong. The training pro-

cess stops when the model achieves a desired level of accuracy on the training data [28].

machine learning

algorithm

classification

rule

new example

predicted

classification

labelled

training

data

Figure 2.1: The machine learning approach to classification adapted from [140]

The learning problem is called classification when the output y is one of a finite set of values.

And when the output is a continuous number the learning problem is called regression [136].

Supervised learning is usually used in applications where historical data can be used to predict

likely future events. Some of the approaches and algorithms proposed for supervised learning

11

Introduction to Machine Learning Chapter 2

include:

Random forests - A random forest can be defined as a classifier made up of a collection of

tree-structured (decision trees learning [133]) classifiers such that {h(x,Θk), k = 1, ...} where

the {Θk} are independent identically distributed random vectors [26]. While random forests

are more computationally intensive than CBR, studies do not show that they are consistently

better than CBR in SEE [113].

Artificial neural networks [53], Neural networks (NNs) are composed of simple elements op-

erating in parallel, inspired by natural biological nervous systems. The connections between

elements are used to determine the network function. Neural networks are trained by adjust-

ing the values of the connections between elements in such a way that a particular input leads

to a specific target output. Many input/target pairs are needed to train a network [36]. The

advantage of using neural networks for prediction is that after learning from examples only,

they may be able to find hidden and strongly non-linear dependencies, even in presence of

significant noise in the training set. The disadvantage is that the error of prediction cannot

be generally estimated [127] and also NNs can learn the dependency valid in a certain period

only.

Naive Bayes classifiers [46] - is based on the Bayes’ Theorem and the maximum posteriori

hypothesis. The naive assumption of class conditional independence is often made to reduce

the computational cost [101]. Studies do not show that naive Bayes classifiers are consistently

better than CBR in SEE.

Case-based reasoning (CBR) [1], is a well-established methodology with broad applications

such as medical science, finance, mechanics, and electronics [104]. CBR offers some distinct

advantages in SEE over the previously discussed ML techniques. CBR needs only to deal with

problems that actually occur in practice, while generative systems must handle all possible

problems. This enables CBR to deal with poorly understood domains (such as SEE) since

solutions are based upon what actually happened rather than chains of rules in the case of

rule based systems. CBR systems are also able to identify failed cases, enabling practitioners

to discover potentially high-risk projects [150].

12

Introduction to Machine Learning Chapter 2

The fundamental principle of CBR is as follows (see Figure 2.2): when a new case for esti-

mation is provided, the most similar past cases are selected to predict the target unit of the

new case by utilising a similarity measure.

Figure 2.2: CBR process life-cycle [81]

Figure 2.2 shows the 4-stage CBR process which is also sometimes referred to as the R4

model (Shepperd [143]). The 4-stage cycle described by Aamodt and Plaza [1], consists of:

1. RETRIEVE the case or cases most similar to the target problem

2. REUSE the past solution and information to solve the new problem

3. REVISE the proposed solution and to better fit the target problem

4. RETAIN the parts of current solution and information in the case-base for future problem

solving

The main activities of the 4-stage cyclical CBR process are: the identification of a problem as

a new case, then retrieve similar cases from case base repository, the reuse of knowledge

derived from previous cases and the suggestion of a solution for the new case. It may be

neccessary to revise the predicted solution in the light of actual events and the outcome

retained to augment the repository of completed cases [150].

13

Introduction to Machine Learning Chapter 2

2.1.4 The choice of classifier

Having looked at different learning styles and classifiers, how do we choose from among

multiple inconsistent options? One alternative is to select the simplest option consistent

with the data [136], also parsimony helps avoid over-fitting. This principle is called Ockham’s

razor, used to argue against all sorts of complications. Defining simplicity is not easy, but it

could be argued that a degree-1 polynomial is simpler than a degree-7 polynomial. The term

“simplicity” closely related to prior expectations while “complexity” could be measured by

the number of input parameters [140]. Therefore the choice of classifier or learning style may

depend on reasons such as:

� Do you have enough training examples, that is, do you have sufficient data sets and are

these data sets labelled or not,

� does the classifier show good performance on the training set,

� and the classifier is not too complex, that is, classifiers should be “as simple as possible,

but no simpler”

Looking at preceding points: Available software effort datasets are fully labelled therefore a

supervised learning is the best option. The next item to consider is a “simple” classifier under

supervised learning that shows good performance on training sets. CBR has shown consistent

good results on different datasets for example experiments such as using ESTOR [125] and

ANGEL [150]. The “simplicity” of CBR is due to the fact that it bases its estimates on real

life past examples. This is a familiar mode of human problem solving [98]. Users often find

it easy to understand and accept solutions from analogy based systems [112] since these are

obtained via a form of reasoning similar to human problem solving, as opposed to the some-

what arcane chain of rules or neural nets[144, 150]. It is for these reasons that CBR is chosen.

Analogy-based software effort estimation is an example of a CBR strategy for problem solving.

In effort estimation each project is represented as a case. Each case is characterised by features

such as: the number of interfaces, function points, customer type. These features in supervised

learning would be represented by (x1, x2, . . . xp) and completed projects also have extra target

features, for example total effort (person-days) represented by y. Thus the case-base is

14

Feature Weighting Chapter 2

conceptually an n×pmatrix where there are n cases and p features. Often the features that are

included in the case-base are more due to happenstance and availability rather than because

it is known that there are well defined relationships with the case solution. Features may be

collected for all kinds of reasons. Moreover, there may exist multicollinearities amongst these

features. Consequently, as is common with the majority of machine learning techniques, it is

widely acknowledged that not all features are of equal importance [51, 157]. Thus Analogy-

based estimation (ABE) systems will benefit from optimisation of the feature sets.

Feature set optimisation can be accomplished by means of feature weighting which has the

effect of stretching or compressing the feature space thus impacting the proximity of cases

(projects) and thus modifying the set of neighbour projects that are used to donate solutions.

Such problems are NP-hard and for non trivial numbers of cases and feature sets present

significant computational challenges.

2.2 Feature Weighting

A slightly less daunting approach, although still NP-hard, is feature subset selection where

features are assigned weights of {0, 1}. Until recently feature subset selection has been

the dominant approach within software effort prediction. Effort estimation methods using

feature weighting tend to outperform feature subset selection methods [153]. This is also

reflected in other domains other that SEE, where results indicate that hard removal of

features employed by feature subset selection is sometimes undesirable and better results

can be obtained by simply down-weighting the less important features [42, 95]. Therefore

it is worthwhile to investigate the more difficult general case of feature weighting instead

of feature subset selection. The different feature weighting techniques available to SEE are

discussed in the next chapter where I present a literature review on how feature weighting

has been employed in SEE. Further discussions about feature weighting are presented in the

following sections.

Feature weighting is a process commonly employed in machine learning to deal with the

15

Feature Weighting Chapter 2

problem of high dimensionality. For small data sets, large dimensionality of feature space

may lead to over-fitting [96]. Features are assigned different weights to reflect their relevance

to the output (predicted value). For example, irrelevant or redundant features are assigned

a very low weight value. Classification performance is improved since the focus is on most

important aspects of data.

The feature weighting techniques are usually embedded in ABE algorithms employing differ-

ent variants of the similarity distance function shown in Equation 2.1.

Similarity(T, S) =

p∑
k=1

f(Tk, Sk)× wk (2.1)

where T is the target case, S is the source case, f is the similarity function, p is the number

of features and wk is the kth feature weight where 1 6 k 6 p. Typically, but not necessarily,

f is some variant of Euclidean distance.

There are many objectives for feature weighting, but the most important ones are[137]:

a) to improve model performance and avoid over-fitting, i.e in the case of clustering

better cluster detection and improve prediction performance in the case of supervised

classification,

b) to provide more cost-effective and faster models,

c) to gain a deeper insight into the underlying processes that generated the data, and

d) to obtain a subset of features through feature weighting for improving prediction ac-

curacy or decreasing the size of the structure without significantly decreasing prediction

accuracy of the classifier built using only the selected features [97].

There are three general categories to finding feature weights for a particular case base. The

categories are based on how the the feature weight search combine with the construction of

the classification model. These are – the Filter methods, Wrapper methods and Embedded

methods. The next three subsections provide a common taxonomy of feature weight search

methods, and for each technique highlighting the advantages and disadvantages, as well as

some examples.

16

Feature Weighting Chapter 2

2.2.1 Filter Method

The main idea behind the filter approach is shown in Figure 2.3. The induction algorithm

is considered as a black box. The dataset is usually partitioned into training data and test

data. Filters use statistical or other general information that can be extracted from the data

set alone to attempt to determine the important features. This importance is then reflected

in the feature weights. Filters have lower complexity but at the expense of accuracy [86]. An

example would be to use principal components analysis.

Weight set

Generation

Weight set

Evaluation
Induction

Algorithm

Results

Validation

Final

Weight set

Feature

Weight set

Heuristic

Merit

Training

Data

Test Data

Figure 2.3: The filter approach to feature weight set selection adapted from [93]

The main disadvantage of the filter approach is that the filtering process totally ignores the

effects of the selected features weight set on the performance of the estimation algorithm.

Filters do not take into account the biases of the algorithms and features that are independent

of the induction. In terms of supervised learning which is the focus of this thesis, a study by

Kohavi and John [93] reported several issues with filters that define feature relevance inde-

pendently of the learning algorithm. They highlighted the following problems: filters exclude

less relevant features even though inclusion of these features may actually aid performance,

filters include correlating features but inclusion of such features may actual hurt performance.

It is for these reasons that filters are not pursued any further for this research.

2.2.2 Wrapper Method

An alternative to filter method, but far more computationally demanding method, is the

wrapper approach [69]. The wrapper methodology, popularized by Kohavi and John [93],

offers a way to address the problem of variable selection. The optimal features weight set

17

Feature Weighting Chapter 2

should depend on the specific heuristics and biases of the induction algorithm [162]. Hence,

wrapper methods employ a specific induction algorithm to evaluate the usefulness of selected

features weight set, and offer a powerful and yet simple way to address the problem of features

weight set selection, irrespective of the chosen learning machine method [93]. In simplified

terms the induction algorithm is considered as a black box. The dataset is usually partitioned

into training data and test data. The feature weight set selection algorithm searches for a

good weight set using the induction algorithm itself as part of the function evaluating feature

subsets. The final weight set is the feature weight set with the best evaluation, and is run on

the induction algorithm. The resultant classifier is then evaluated on the test data.

Given a predefined induction algorithm, a typical wrapper model will perform the following

steps:

Step 1: searching a weight set of features,

Step 2: evaluating the selected weight set of features by the performance of the in-

duction algorithm,

Step 3: repeating Step 1 and Step 2 until the desired evaluation accuracy is achieved.

The main idea behind the wrapper approach is shown in Figure 2.4. A general framework

for wrapper methods of contains three major components:

� Feature weight set search - how to search the weight set of features from all possible

feature weight set,

� Weight set evaluation - how to evaluate the performance of the chosen classifier, and

� Induction Algorithm.

18

Feature Weighting Chapter 2

Feature

Weight set

Search

Induction Algorithm

Results

Validation

Final

Weight set

Feature

Weight set

Performance

estimation

Training

Data

Test Data

Feature

Weight set

Weight set Evaluation

Hypothesis

Induction Algorithm

Figure 2.4: The wrapper approach to feature weight set selection adapted from [93]

The feature weight set search component produces a set of weights for features and the weight

set evaluation component uses the induction algorithm to estimate the performance, which

is returned back to the feature weight set search component for the next iteration of feature

weight set selection. The feature weight set with the best estimated value will be chosen as

the final weight set. The resultant induction algorithm is then evaluated on test data that

is not used in during the training process [93]. Performance assessments are usually carried

out using a validation set or by cross-validation [51].

In practice, one needs to define: (i) how to search the space of all possible variable subsets;

(ii) how to assess the prediction performance of a learning machine to guide the search and

halt it; and (iii) which predictor to use [51].

An exhaustive search may be performed, if the number of features is small. This is true for

feature subset selection. The size of search space for p features is O(2p), thus an exhaustive

search is impractical if p is large; feature weighting is even worse, depending upon how many

weight values you allow per feature. The problem is known to be NP-hard and the search

becomes quickly computationally intractable. A wide range of search strategies can be used,

including: heuristic search, hill-climbing, best-first, and greedy search algorithms [137].

The hill-climbing strategy expands the current search set by adding weights and moves to the

19

Feature Weighting Chapter 2

weight set with the highest accuracy, terminating when no weight improves over the current

set [162]. The best-first strategy is to select the most promising set that has not already

been expanded and is a more robust method than hill-climbing [93]. Greedy search strate-

gies seem to be particularly robust against overfitting and computationally advantageous

[51, 162]. Greedy search strategies come in two flavours - forward selection and backward

elimination. Forward selection refers to a search that begins at the empty set of weights,

then most promising are progressively added into the weight set, — stopping when all avail-

able weights have been tried — weights that do not improve accuracy are discarded (not

added to the set), whereas backward elimination begins with the full set of weights and the

least promising weights are progressively eliminated, until we end with the best weight set.

The search component aims to find a weight set with the highest/best evaluation, using a

heuristic function to guide it. Since the actual accuracy of the classifier is unknown, accuracy

estimation is used as both the heuristic function and the valuation function in the weight

evaluation phase [51].

Generally wrappers are found to perform better than filters (see Kohavi and John [93]). If the

learning machine is considered as a black box, wrappers are remarkably simple and universal.

Popular predictors that use wrappers include decision trees, näıve Bayes, CBR predictors,

and support vector machines [51]. These are widely used in analogy-based effort estimation.

2.2.3 Embedded Method

The third approach, termed embedded techniques, is hybrid of wrapper and filter methods.

The search for an optimal subset of features is embedded into the classifier construction, and

as such can be seen as a search in the combined space of feature weight set and hypotheses.

Embedded approaches are specific to a given learning algorithm. An example would be

feature weight set search using the weight vector of support vector machines (SVM) [52].

Embedded methods have the advantage that they take into account the interaction between

the classification model and selected feature weight set, contemporaneously being far less

computationally intensive than wrapper methods since some features are already “filtered”

out. The disadvantage of embedded method is that feature selection is classifier dependent

20

Software effort estimation techniques Chapter 2

[137].

The focus of this thesis is on estimation by analogy and wrappers have been found to perform

better than filters and used by popular CBR predictors. Other estimation approaches are

not in the scope. Discussion of analogy-based estimation techniques is continued in the next

section.

2.3 Software effort estimation techniques

Software effort estimation can be defined as approximating the quantity of work required to

develop a software project from start to finish. There is a plethora of software effort estima-

tion models and methods in practice, having different strengths and limitations. There are

different schemas for classifying software effort estimation techniques, which can be grouped

into three main categories [24]:

Expert judgement-based : Expert judgement methods are techniques whereby the estimates

are generated based on a considered opinion process. Experienced estimators familiar with

the project development environment are required to make estimates. This makes the esti-

mation result highly dependent on the expert’s abilities and decision making therefore is not

repeatable in another environment for different projects [75]. Although expert judgement

based methods are the most used technique [123] in practice, they have several limitations

[70]. Experts can easily be influenced by external factors, such as being biased because of:

client’s expectation of cost [77], misleading or irrelevant information during estimation re-

quest stage [73] and by cultural related characteristics [73]. Also Expert judgements in most

instances involve over-optimism [72]. The strength of expert judgement methods is that when

quantified, empirical data is absent. For example if a new software project’s effort is required

but no similar past projects exist, data driven methods would fail but an expert could use

his knowledge of past seemingly dissimilar projects and his experience in effort estimation

to come with a reasonable estimate. Some of the examples of expert judgement methods

include: Work Breakdown Structure (WBS) [24], Wideband Delphi [24, 25] and Planning

Poker [124].

21

Software effort estimation by analogy Chapter 2

Model based techniques: algorithmic cost models such as Function Points Analysis [5] and

Constructive Cost Model (COCOMO) [25] by Boehm (1981). These model based techniques

require a certain amount of completed historical project data. Therefore for early software

life-cycle where many of required parameters may be unavailable these models would not be

suitable. Incomplete or partial requirement specifications would prevent these algorithmic

models from producing the required estimates [80]. Often models come with parameters.

The problem is that they need calibration and generally independent studies show poor

performance e.g., Kemerer 1987 [79] onwards.

Learning Oriented techniques: New developments in modelling and pattern recognition en-

couraged researchers to investigate effectiveness of techniques previously used in domains

other than SEE. These techniques attempt to automate improvements achieved in the es-

timation process by constructing models that “learn” from previous experience [24]. Some

examples include: starting in 1995, Sirnivasan and Fisher looked at Regression trees [159], in

1997 Shepperd and Schofield investigated Case-based reasoning [150], Genetic programming

[29] by Burgree and Lefley in 2001, Pedrycz looked at Rule-based expert systems [130] in

2002, Fuzzy systems [174] in 2004 by Xu and Khoshgoftaar, in 2006 Oliveira investigated

Support vector regression [128] and Neural networks by Idri et al. [66] in 2007. Learning

oriented techniques have two distinct advantages: First, being, the capability to model a

complex set of relationships between features and the output value (value being predicted).

Second, learning oriented techniques are able to learn from historical datasets therefore use

these datasets to predict new cases. Amongst these techniques, case based reasoning (or

synonymously estimation by analogy) is the most commonly used technique by researchers.

Further discussions about estimation by analogy and its research directions are presented in

the following sections.

2.4 Analogy-based Software effort estimation

Analogy-based software effort estimation is a typical example of a CBR strategy for problem

solving. CBR is the process of solving new problems based on the solutions of similar past

22

Software effort estimation by analogy Chapter 2

problems see Figure 2.5 adapted for effort estimation. When a new problem is entered into

the CBR system, studies such as [143] considered the new problem as a case that comprises

two parts (pretty much inherent to the approach). The basic data structure of the system is

formed by two parts — the description part and the solution part forming . The description

part consists of a set of features that describe the case state at the point at which the problem

is presented. The solution part describes the solution for the specific problem (the problem

description part). Figure 2.5 illustrates the problem description part and the solution part

forming the basic data structure of a typical CBR or analogy-based system. The fundamental

principle of ABE is as follows; when a new project for estimation is provided, the most similar

past projects are selected to predict the effort/cost of the new project by utilizing similarity

measure.

Real world problem

Problem description

<f1, ……,fn>

Target Case

CODIFY

Problem description

<f1, ……,fn>
Solution(s)

Similar Solved Case(s)

RETRIEVE

REUSE

Problem description

<f1, ……,fn>

Proposed

solution

Target Case

REVISE

Problem description

<f1, ……,fn>
Solution

Previous Cases

Problem description

<f1, ……,fn>
Solution

Problem description

<f1, ……,fn>
Solution

Problem description

<f1, ……,fn>
Solution

RETAIN

Problem description

<f1, ……,fn>

Target Case

Problem description

<f1, ……,fn>

Confirmed

solution

Target Case Completed

Figure 2.5: CBR Process adapted from Shepperd [144]

The main principle of ABE is that the more similar the projects are, the more similar their

effort will be [84]. Generally, there are three key parameters for ABE: the similarity measure

function, number of nearest neighbours (denoted as k -NN) and the adaptation rules [104].

The effectiveness of analogy based estimation may depend on the similarity measure function

23

Software effort estimation by analogy Chapter 2

and the number of nearest neighbours (k -NN) used . Each of these parameters has crucial

impact on the estimation accuracy of CBR. In the next subsequent subsections I introduce

some of the similarity measures available for ABE, the choice of k -NN and performance

metrics.

2.4.1 Similarity Measure

The similarity measurement is an essential part of software effort estimation by analogy. A

similarity function is used to measure the degree of similarity between software projects.

Similarity measurement plays significant role in the identification of projects closest to the

project being estimated (Nearest Neighbour k -NN — k is the number of nearest neighbours

that are used as donor projects to predict effort of target project), therefore having an in-

fluence on estimation accuracy. A study by Mendes et al. [115] comparing different types

of distance metrics in analogy software estimation, reported that using different distance

metrics may yield divergent results. There are many different types of similarity functions,

such as the Minkowski distance, but Euclidean similarity and Manhattan similarity based

similarities measures are widely used in software effort estimation by analogy [104]. The

Euclidean distance metric is presumably the most frequently used in software effort esti-

mation by analogy for distance measures [81]. Euclidean distance metric is based on the

principle of Pythagorean Theorem deriving a straight line distance between two points in

m-dimensional space. Standardisation is used to overcome problems of units. The figure 2.6

illustrate the concept of Euclidean distance measure between two objects in 3-dimensional

space (x1, x2, and x3).

24

Software effort estimation by analogy Chapter 2

Figure 2.6: The Euclidean distance in 3-dimensional space [49]

In general, the un-weighted Euclidean distance between two points X = (x1, x2, . . . , xn) and

Y = (y1, y2, . . . , yn), in Euclidean n-dimensional space, is defined and calculated as:

dx,y =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 =

√√√√ n∑
i=1

(xi − yi)2 (2.2)

Alternatively weights can be applied to individual features to reflect their relative importance,

because individual features may have different contributions to the overall project cost. In the

literature there are several approaches focusing on feature weighting. Sigweni and Shepperd

[153] identified more than 12 distinct approaches. For example, given wi and wp as the

weights of ith and pth project features. The weighted Euclidean distance would be calculated

as:

dx,y =

√√√√ n∑
i=1

wi(xi − yi)2 (2.3)

25

Software effort estimation by analogy Chapter 2

The Euclidean similarity (SIM) based on the Euclidean distance between two projects is

calculated as follows:

SIM(c1, c2, p) = 1/

√∑
j∈p

wjDIS(c1j, c2j) + δ

 (2.4)

DIS(c1j, c2j) =


(c1j, c2j)

2 if the features are numeric

0 if the features are categorical and c1j 6= c2j

1 if the features are categorical and c1j = c2j

(2.5)

where c1 and c2 represent the cases, c1j and c2j represent the jth feature values of selected

cases, p is the total number of features and DIS is the feature dissimilarity and δ is a small

constant to deal with the situation when the denominator equals 0, Li et al. [104] set

δ = 0.0001.

Shepperd and Schofield [150] identified other different forms of similarity measure that could

be used, such as:

Manually guided induction. Key features are manually identified by an expert.

Template retrieval. A range of values for ranges is supplied by the user and all cases

that match the criteria are retrieved (similar to database queries).

Goal directed preference. Cases that have the same goal as the target case are selected.

Specificity preference. Cases that match features exactly are selected over those that

match generally.

Frequency preference. Cases that are most frequently retrieved are selected.

Recency preference. Select cases that have been recently matched over cases that have

not been matched for a period of time.

Fuzzy similarity. Implemented based on concepts such as at-least-as-similar and just-

noticeable-difference.

Among many different distance metrics available for non-continuous variables, Jaccard dis-

tance [161] for binary distance and Gower distance [48], based metrics are some of the widely

accepted. Only the Euclidean distance measure is considered in this thesis, since it is the

26

Software effort estimation by analogy Chapter 2

most used distance measure in software cost estimation studies [81, 85]. Also the Java shell

(ArchANGEL) used for this research adopted the Euclidean distance measure.

2.4.2 Choice of k for k-NN

k refers to the number of analogies sought, close to the target project being estimated [104].

In order to estimate the cost of a new project in software effort estimation by analogy, one

or more historical software projects are required. The decision on the number of analogies

(k) that is required to predict the cost of target case may be one of the important issues in

software effort estimation by analogy. See Figure 2.7 for different scenarios where a different

k value would benefit different target cases (A, B and C). For example for Case A k = 5 may

not yield the best result, this is due to a5 being required to make number of analogies equal

5 to estimate Case A. Donor a5 is clearly to not very similar to a1 . . . a4 but k = 5 may be

perfect for Case C since all donors are all almost equidistant from C. Case B represents a

situation where either k = 2 or k = 4 will yield similar results, therefore shows that there

are situations where different k values would be suitable for the same target case.

A B
C

Case A Case B Case C

a1a2

a4

a5

a3

b1

b2

b4

b5

b3

c1

c2

c4

c5

c3

Figure 2.7: Nearest neighbours (k -NN) example

The optimal value of k has been the subject of debate in literature [81], also begs the question

is there an optimal value? Studies such as [12, 31, 164] suggested k = 1, while other studies

[74, 116, 150] and [61] recommend k equals to two or three. Other authors investigated other

approaches to determine the suitable value of k. Keung [82] proposed a dynamic approach in

an attempt to determine the best possible value of k. Idri et al.’s approach involves selecting

all projects that fall within a set similarity limit [64]. Therefore any study using k = {1, 2,

27

CBR based systems Chapter 2

3, 4, 5} would cover most of the suggested k values in the literature.

So, in this thesis, experiments will evaluate the performance of the estimating model when to

use the different k values from the set {1,2,3,4,5}. This will cover most of the recommended

k value in existing research work to enable acceptable comparison.

2.4.3 Adaptation Rules

After the k nearest neighbours are selected, a case adaptation strategy is then applied to

the selected donor cases in order to obtain a prediction of effort for the target case. Tthe

target case is the new case being predicted. Adaptation rules are mechanisms used to derive

a new estimate in order to minimize the differences between donor cases and target case [129].

Various techniques of adaptation have been proposed, such as;

� The mean adaptation rule uses the average effort of nearest neighbours. This is a

classical measure of central tendency and assumes that similar projects have equal

influence with each other.

� The median adaptation rule is another measure of central tendency. It takes the median

of the effort of selected neighbours and hence more robust than mean as k increases [7].

� The inverse distance weighted mean allows neighbouring cases to have different influence

on the estimation. Therefore cases more similar to the target case have more influence

on the estimate.

This is a very important step in estimation by analogy because it reflects structure of target

case on retrieved cases. Adaptation techniques cam be a lot more sophisticated than the

above mentioned examples but tend to be hand developed so there is a significant danger of

over-fitting e.g., see Srinivasan, K., & Fisher, D. (1995) [159]. Some estimation techniques

such as Estor [125] adopt rule based adaptation founded on the rules that are hand crafted

(selected via expert judgement [80]) rather than induced. The next subsection explores

analogy-based tools and systems, describing how they apply the three key parameters for

ABE: the distance function, the number of nearest neighbours and the adaptation rules.

28

CBR based systems Chapter 2

2.5 Analogy-based Tools and Systems

There are various implementations of analogy-based tools and systems for software project

effort estimation, such as: Analogical and Algorithmic Cost Estimator (ACE) [164], Finding

Analogies for Cost Estimation (FACE) [22], TEAK [91], BRACE [160], AQUA+ [102], Estor

and ArchANGEL. These tools and systems apply the same principles of CBR reasoning ap-

proach discussed in the previous sections. Therefore they have the same design goal, which

is automating the estimation process and enabling data-intensive analogy for software effort

estimation [81]. However they have different mechanisms for case adaptation and the choice

of value for k (i.e. number of analogies). In this section related literature (implementations,

performance and limitations) is surveyed from the earliest (Estor) to probably the most pop-

ular [65] (ArchANGEL) analogy-based systems for software effort estimation. ArchANGEL

is the focus of this thesis and its performance on wide range of different data set sizes is well

established [153]. Secondly, I have access to the Java shell and its developers.

2.5.1 Estor

In the early 90’s Mukhopadhyay et al. [125] developed Estor as a proof-as-concept system

to evaluate the feasibility of case based reasoning in software effort estimation. Estor is one

of the early implementations of an analogy-based to estimate software project effort. Figure

2.8 shows the logical architecture for Estor.

Construct

Retrieval

Transfer

Map

Adjust

Case-based Problem

solver
Working

Memory

Knowledge Base

Case Base

Rule Base

Analogue

Retrieval

External

Memory

Figure 2.8: Estor Logical Architecture [125]

29

CBR based systems Chapter 2

The Estor framework involves five basic processes (Figure 2.8): construct, retrieve, transfer,

map, and adjust, outlined as follows:

1. The construct process is used to develop a representation of the target problem.

2. Estor invokes a domain-specific case selection heuristic such as “similarity distance” to

retrieve an appropriate source analogies.

3. Transfer the solution that achieved the goal in the base case to the target case by

referencing the effort attribute of the source project.

4. Estor identifies the differences between the target case and source case and then maps

them. Bringing their individual attributes one by one into working memory, and all

non-corresponding attributes are kept in a list in memory.

5. Based on the differences identified between the attributes Estor will adjust the estimate

for the initial solution, using a set of rules.

For effort estimation Estor employs k = 2 (i.e. 2 analogies), selected via expert judgement

[80]. Estor’s accuracy performance is assessed via magnitude of relative error or (MRE).

The accuracy of the estimation is inversely proportional to the MRE of a project. To evaluate

the accuracy of Estor, the mean MRE (MMRE) for a set of projects is calculated. In a study

by Mukhopadhyay et al. [125], based on Kemerer dataset [79], they demonstrated through

statistical based results that there is no difference between Estor and Expert judgement

approach, both being more consistent than either COCOMO model [25] and Function points

[5]. Unfortunately, Estor has limitations: as already stated in section 2.5.1, Estor requires

an expert to choose the number of analogies and to derive rules for adaptation. Another

point is that since the rules are derived for features of a particular data sets, this limits their

generalisability [143].

2.5.2 ArchANGEL

ArchANGEL CBR tool[143] is the latest version of ANaloGy softwarE tooL (ANGEL) [151]

developed by Shepperd, Schofield and Kirsopp. ArchANGEL (or ANGEL) is the dominant

automated software effort estimation based on analogy [65]. Many researchers such as [15,

84, 85, 102, 104, 143, 147, 148, 150, 151, 164] on analogy-based research published findings

30

CBR based systems Chapter 2

based on the results of ArchANGEL. It is a tool based on a k -NN system to estimate software

projects effort based analogy. ArchANGEL is an implementation based on the case-based

learning algorithm in [3], where it adopts a similarity function and the normalization strategy

for the different data types of feature values [81].

ArchANGEL separates the process of effort estimation into three key components (Fig 2.9):

i The template is like a data dictionary so that the tool can have a shell architecture

and is not restricted to a particular data set or features.

ii Information captured in a template is used to build project case base, which is the

repository for project data.

iii Utilising source projects in the project case base, estimate generation allows the

user to generate estimates for target projects.

The interaction between the key components of the ANGEL tool are shown in Figure 2.9.

Prior to project case data being stored, a template editor is used to outline the environment

from which the data will be collected, creating a template. The subsequent template is saved

as a text file. The project case editor then uses this template file to create a project case

base. Finally the estimate generator can use the project data to generate estimates for any

new projects. Preferably, an estimate should then be added to the project case base so that

it may be compared to the final estimate, (this is not mandatory in ANGEL)[141].

+ Template File

Template Editor

Project

Editor

Project

data

Used by

Returns

estimate to

Used by

+ estimate

Estimate Generator

Creates/Modifies

Figure 2.9: ANGEL schematic[141]

31

CBR based systems Chapter 2

ArchANGEL employs the Euclidean distance metric to measure the similarity between target

project and all potential source analogues from the case base. It implements various feature

subset selection and case subset selection algorithms such as Random search, Exhaustive

search, Hill climbing, Forward and backward sequential selection algorithms. These algo-

rithms are evaluated using the performance indicators used in the estimation process such as

bootstrapping, MMRE and PRED(p) but MAR is also available enabling evaluation based on

SA [149]. Therefore, avoiding issues related to MMRE and PRED(p) discussed in the previous

sections. For validation, techniques such leave-one-out cross-validation (LOOCV) procedure

are employed [39]. Although LOOCV is computationally intensive for larger datasets when

using a wrapper, the advantage is that the results are deterministic. By comparison, m× n

fold cross validation also available in ArchANGEL will depend upon the random allocation

of cases to the individual folds and so there is often some variability in the results [154].

ANGEL

Dataset

Learning Phase

Case and

Feature

selection

Learned

Accuracy

distribution

Prediction Phase

Similar

Project

cases(s)

Case

Adaptation
Estimate

Case under

prediction

Historic dataset

Pre-processing

Figure 2.10: ArchANGEL Logical Architecture

ArchANGEL is very popular with researchers due to the completeness of its implementation:

· Supporting various kinds of validation techniques.

· Uses the wrapper approach whose advantages have been discussed previously

· Multiple search heuristic algorithms to perform feature and case selection on the dataset

· A user-friendly graphical GUI as its primary user-interface.

· Multiple case adaptation rules

· Any project dataset can be used (i.e. it does not assume that estimators will use a

particular dataset, therefore the estimator can use any project dataset available to

setup an estimation instance in ArchANGEL).

32

Advantages of Analogy-based estimation Chapter 2

· Normalisation, allowing features to be re-scaled so that the influence of a feature is not

related to the choice of unit.

Also, in-terms of feature weighting Kirsopp and Shepperd [87] using forward sequential se-

lection (FSS) algorithm reported improved efficiency and very good prediction results over

no weighting versions. Their study used a real life industrial data set, the so-called ‘Finnish

dataset’ which contains 407 cases described by 90 features. The features are a mixture of

categorical, discrete and continuous. Prediction made using no feature weighting had an

average error of 50.8% while FSS had 13.1%. In-terms of efficiency FSS required only 243

evaluations while hill-climbing required 74433 evaluation during for 113 hill climbs to achieve

similar accuracy as FSS. Therefore hill climbing can be very computationally intensive (but

you can choose to do as many or few restarts with hill climbing). It must be noted that this

form of multiple-start hill climbing does not have an in-built end point. Therefore it can run

indefinitely, but likely to show diminishing returns as it converges on an exhaustive search

[87].

2.6 Advantages of Analogy-based estimation

The objective of software estimation is to provide a very good software effort prediction for

project managers. Many researchers explored a wide range of techniques and approaches

to software effort estimation (see a systematic review of software development cost estima-

tion studies by Jørgensen and Shepperd [76]). The encouraging accuracy of estimates from

experiments such as using ESTOR [125], ANGEL [150] and [113] demonstrates that analogy-

based software effort estimation is a viable alternative to other software effort estimation

methods. Note I am not arguing that ABE is always the answer, but in addition to its

good prediction performance, analogy-based estimation also offers estimators some advan-

tages [80, 144, 150, 164] over other methods, and these are:

1. The basis for an estimate is easy to understand

Analogy-based estimation is different to input-output models. It bases its estimates on

real life past examples. This is a familiar mode of human beings problem solving [98],

33

Advantages of Analogy-based estimation Chapter 2

and this may explain why people are more comfortable estimating based on analogy.

Users often find it easy to understand and accept solutions from analogy based systems

since these are obtained via a form of reasoning similar to human problem solving, as

opposed to the somewhat arcane chain of rules or neural nets [144, 150].

2. Analogy-based estimation is useful where the domain is difficult to model

It is widely accepted that many factors influence the effort needed to complete a software

project. There is limited knowledge about how these factors interact with each other,

or how best to model the wealth of factors via software metrics. Estimation by analogy

can be used effectively without having a clear model of how effort is related to other

project factors. It relies primarily on selecting a past project that is similar to the

target project, rather than postulating a general relationship between effort and other

project characteristics that applies to all projects. Small historical data sets may be

sufficient to develop simple algorithmic models, provided the data does not prove too

noisy. However noise, unaccounted for variations in dependent variables, is at the crux

of domains which are difficult to model. Shepperd et al. (1996) give an example of a

data set of 8 projects for which no statistically significant relationships can be found. An

algorithmic model based on this data set would be suspect. Nevertheless, the accuracy

of analogical estimates for this data set was comparable to that of other much larger

data sets.

3. Analogy-based estimation can be used with partial knowledge of the target project

ABE addresses the problem of partial knowledge by allowing estimators to use any

information they have available to search for and therefore select relevant analogues,

rather than prescribing particular inputs.

4. Analogy-based estimation has the potential to mitigate problems with calibration

ABE has the potential to provide accurate estimates even using a different organisation’s

data, as long as an appropriate analogue for the target case can be found within the

data set used and the features are both appropriate and measured in a consistent

manner. This is possible even where the relationships differ for typical projects of each

34

Issues in estimation by analogy Chapter 2

organisation, therefore mitigating the need for calibration.

5. Analogy-based estimation has the potential to mitigate problems with outliers

Most project data sets have outliers: that is, projects that differ substantially from the

typical projects in the case base on values of their metrics and relationships between

them. If the target case is a typical example of projects in the data set, it very is likely

that one or more appropriate analogies are present to base the estimate on. Therefore,

outliers will have no influence on the estimate at all. However, if the target project is

itself an outlier, at least the lack of appropriate donors may make this evident to the

estimator.

2.7 Summary

ABE is relatively more effective but like any other prediction technique depends upon char-

acteristics of the dataset, and it will tend to be more effective when discontinuities exist in

underlying relationships between effort and the independent variables [85]. Unfortunately

ABE is also vulnerable to features that are irrelevant, or even misleading, for the particu-

lar prediction task [85]. Feature subset selection also known as feature weighting involves

determining the optimum (or at least a better) subset of features that would give the most

accurate estimation. In order to assess to what extent the empirical software engineering

community has addressed feature weighting in analogy-based software effort estimation a

systematic literature review was carried out, an its findings are reported in the next chapter

(chapter 3).

35

Chapter 3

Feature Weighting Techniques for

ABE in Software Effort Estimation

This chapter describes to what extent the empirical software engineering community has

addressed feature weighting in analogy-based software effort estimation. Although feature

weighting and techniques are recognised in empirical software engineering literature, the issue

of search space is sparsely addressed. Chapters 1 and 2 highlighted the importance of feature

weighting for software effort estimation. So although there is widespread consensus that

some form of feature weighting technique is beneficial, there has been no systematic literature

review1 (SLR) of all relevant primary studies, Nor has there been an analysis of the extent of

feature weighting techniques (FWTs), how they have been experimentally evaluated and the

interaction between performance and data set. Most of this chapter is based on my published

SLR [153]. In section 3.1 the objectives of this literature review are outlined, and section 3.2

describes the method of literature identification and section 3.3 describes the findings with

a more detailed discussion of key papers relevant to the investigations of this thesis. Section

3.4 concludes this chapter summarising the state of affairs for feature weighting in empirical

software engineering literature with links elicited to the work imparted in this thesis.

1“(also referred to as a systematic review) A form of secondary study that uses a well-defined methodology

to identify, analyse and interpret all available evidence related to a specific research question in a way that is

unbiased and (to a degree) repeatable”– Kitchenham 2007

36

Objective for the Literature Review Chapter 3

3.1 Objective for the Literature Review

Given the importance of timely and accurate software cost prediction it is unsurprising that

there is a large body of published research work, the majority of which has focused on effort

prediction since effort is normally the dominant and hardest to predict component of overall

cost. For an overview of the extent of this research see the mapping study by Jørgensen and

Shepperd [72] and more recently the review of machine learning based studies by Wen et

al. [168]. Recall from Chapter 2, for effort prediction a case is usually a project, the case

state will be features such as size, development environment, client experience, etc., and the

solution is the actual amount of effort utilised. Thus the case-base is conceptually an n × p

matrix where there are n cases and p features. It is widely acknowledged that not all features

are of equal importance [51, 157].

This systematic literature review (SLR) aims to identify and empirically evaluate existing

feature weighting techniques used in analogy-based software effort estimation studies pub-

lished between January 2000 and April 2014. The SLR characteristics are summarised in

Table 3.1 and described in more detail in subsequent sections.

37

Objective for the Literature Review Chapter 3

Table 3.1: Systematic Literature Review Summary

Characteristic Value

Review type Systematic literature review

Research question(s) The diversity of FWTs (RQ1), their strengths and weak-

nesses (RQ2), do FWTs improve predictive performance

(RQ3)? and the various approaches to the primary study

experimental design (RQ4).

Purpose Guide researchers and practitioners using estimation by

analogy techniques.

Audience Researchers

Search method Automated and hand search, citation analysis, previously

known articles plus approached authors.

Databases used BESTweb, IEEE Xplore, ScienceDirect, Google scholar,

ACM digital library, Springer

Population Empirical studies relating to FWT in software effort estima-

tion

Setting Commercial software projects

Study types Experiments, case studies, observational studies, simulation.

Inclusion criteria (i) Refereed paper (journal or conference) (ii) Empirical

study (iii) Copy of the article available

Language English language only

Search end date April 2014

Located articles dates 2000-2014 plus in press articles

3.1.1 SLR Research questions

The principal aim of this SLR is to answer the question of whether feature weighting tech-

niques improve the predictive performance of CBR prediction systems for software effort? In

doing so we need to review the range of FWTs that have been proposed, consider how they

have been empirically evaluated and using which data sets. This will enable us to provide

guidance for researchers and practitioners and identify areas for further research in order to

38

Method of Identification of Relevant Literature Chapter 3

improve the performances of current CBR models. To achieve this objective four research

questions are formulated and presented below.

RQ1 : What is the range and diversity of feature weighting techniques used for software

development effort estimation? In answering this question we characterise them using

the dimensions from a previous review by Wetterschereck [170]

Rationale: Practitioners can take the identified feature weighting techniques as can-

didate solutions in their practice. For feature weighting techniques that have not yet

been employed in CBR, researchers can explore the possibility of using them as potential

feasible solutions.

RQ2 : What are the strengths and weaknesses of existing feature weighting techniques?

Rationale: This will be helpful for practitioners to better understand the practical issues

around deployment.

RQ3 : What is the estimation accuracy of each FWT and how do they compare?

Rationale: to enable us to compare techniques and determine which support the most

accurate cost predictions.

RQ4 : How has the experimental evaluation been conducted e.g., which performance

metrics are used?

Rationale: This helps determine the importance we attach to the evidence e.g., some

performance metrics such as Mean Magnitude of Relative Error (MMRE) have been

shown to be biased by studies such as [43, 89].

The next section describes the methods adopted to aid in identifying relevant literature.

3.2 Method of Identification of Relevant Literature

The aim any literature review is to identify all relevant studies. So that the literature

review produced is unbiased and repeatable as much as possible. In this case I provide

an overall and coherent picture of how feature weighting in analogy-based software effort

estimation has been addressed in the empirical software engineering community. Recall that

39

Method of Identification of Relevant Literature Chapter 3

the main objective for the literature search was to discover studies that explicitly adopt

feature weighting for ABE in empirical software engineering, and how these studies addressed

this issue. Therefore the next subsections will discuss the search strategy adopted to achieve

this objective. This includes a detailed discussion on the: search terms, literature sources,

the actual search process employed, and finally outlining the study selection, data extraction

and data synthesis.

3.2.1 Search strategy

Previous systematic reviews, for example [72] reported that automated article searches via

on-line databases may lead to low recall rates, may not be thorough and also the likelihood of

additional work arising from low precision rates. However, this search was relatively focused

so there was little danger of that manifesting in significant proportion. The following sections

discuss: definition of search terms, selection of appropriate literature sources and the search

process used.

Search terms

The following steps were employed to build the search terms based on [2]:

1. Derive major terms from the research questions.

2. Identify synonyms and alternative spellings for major terms.

3. Use the Boolean OR and AND to incorporate and link alternative spellings and syn-

onyms.

The resulting search strings are described as follows: Software AND (effort/OR cost/) AND

(“prediction” OR “estimation” OR “forecasting”) AND (Analogy-based OR “Analogy based”

OR “case based reasoning” OR “CBR”) AND (“feature subset selection” OR “feature selec-

tion” OR “feature weighting” OR “feature weights” OR “weight” OR “feature significance”

).

40

Method of Identification of Relevant Literature Chapter 3

Literature sources

The search included important software engineering journals as per [72] and conferences

which publish literature on software development effort estimation. The search also involved

following up the references of included papers this is also known as ‘backward snowballing’.

I then searched the papers that cited included papers known as ‘forward snowballing’, which

was accomplished by means of Google Scholar (cited by).

No restriction was placed in terms of the start date of inclusion period. Any published

paper that met the inclusion criteria was selected because the intention was to have a broad

coverage since this was the first SLR on the topic based on the literature available at the

time. The feasibility of CBR in software effort estimation was carried out in the early 1990’s

by Mukhopadhyay et al. [125] therefore it was expected to find papers published starting

from the mid 1990’s or early 2000’s to current date 2014.

The initial search was performed on the online bibliographic library BESTweb2 maintained

by Simula Research Laboratory. The rest of the search involved searching five electronic

databases (IEEE Xplore, ScienceDirect, Google Scholar, ACM Digital Library and Springer).

Some other important resources such as CiteSeer, web of science or DBLP were not consid-

ered, because they are almost covered by the selected five electronic databases.

The search terms discussed and constructed in section 3.2.1 were used to search for papers

in the selected databases. The search covered title, abstract, and keywords.

Search process

As mentioned previously alluded to, a comprehensive search process of ‘all ’ relevant sources

is required for any SLR. Therefore to achieve this objective the search was divided into the

following three search phases described in Figure 3.1.

Search Phase 1: Using the in-built filter the online bibliographic library BESTweb

database was searched and potential relevant papers located. BESTweb was searched

first because it supplies journal and conference papers on software cost and effort esti-

2(http://www.simula.no/BESTweb)

41

Method of Identification of Relevant Literature Chapter 3

mation classified according to research topic, estimation approach, research approach,

study context and data set. This provides a good starting point and also leads to iden-

tification of potential unknown journals. The built in search filter also help to quickly

search for only papers on your estimation approach.

Search Phase 2: Using search terms the five electronic databases were individually

searched and then merged the located relevant papers with those from BESTweb form-

ing a set of potential candidate papers

Search Phase 3: The references of the included papers (‘backward snowballing’) are

searched. I then searched the papers that cited included papers known as ‘forward

snowballing’ in order to locate further papers.

Zotero3, Microsoft® Excel and Dropbox4 were used to manage and store search results. The

search process and the number of papers identified at each phase are shown in detail in Figure

3.1.

3.2.2 Study selection and data extraction

A total of 183 potential candidate papers were identified for inclusion in the SLR from search

Phases 1 and 2(see Figure 3.1). Since these papers were from independent sources they were

checked to eliminate duplicates. A total of 59 unique papers were obtained after removing

duplicates.

The next step involved reading the titles, abstracts, key words or full text of these 59 papers

to select relevant papers based on the inclusion criteria defined in Table 3.1. From this 17

relevant studies were selected. Then the references of every included study were searched to

identify other relevant studies that might have been missed and also examined citing papers.

This effort led to the identification of two further studies, resulting in a total of 19 papers.

The quality of the selected studies was linked to inclusion criteria, where only papers from

demonstrably rigorously refereed sources were included. Therefore no papers were excluded

3https://www.zotero.org/
4http://www.dropbox.com/

42

Method of Identification of Relevant Literature Chapter 3

BESTweb

IEEE

Xplore

Science

Direct

Google

Scholar

ACM Digital

Library
Springer

#39

#26 #30 #43 #16 #29

#183

59 candidate papers

Remove Duplicates

17 relevant papers

Apply inclusion criteria

Relevant paper References

2 candidate papers Apply inclusion

criteria

19 Selected papers

Citing papers

S
e

a
r
c
h

P
h

a
s
e

 1

S
e

a
r
c
h

P
h

a
s
e

 2

S
e

le
c
ti

o
n

P
h

a
s
e

 2

S
e

le
c
ti

o
n

P
h

a
s
e

 1

S
e

a
r
c
h

P
h

a
s
e

 3

Figure 3.1: The filter approach for feature subset selection

based on quality criteria. i.e., searched only high quality venues.

A master search form was created (see Table 3.2) to manage and keep record of all the

candidate papers. The first four items were essentially for bibliometric and housekeeping

purposes. The remaining categories of information are cross-referenced to the four research

questions. The search form was also used for data extraction. Exploiting the selected papers

for data that contributed to addressing the research questions concerned in this review. The

initial search and categorising was carried out by a different person from the one who checked

reliability via independent checking of the included papers. Any differences in inclusion or

categorisation were resolved through discussion.

43

Method of Identification of Relevant Literature Chapter 3

Table 3.2: The search form for data extraction

Search form fields RQ(s) Example article

addressed

Article identifier [S07]

Year of publication 2007

Source Conference

Article title Optimising project feature

weights for analogy-based

software cost estimation

using the mantel correlation

Weighting Technique RQ1 Mantel’s correlation

Technique framework RQ1 Bias : Preset

Weight Space : Continuous

Representation : Transformed

Generality : Global

Knowledge : Poor

Limitations and strengths RQ2 Removing some features

before weighting,

tested on single dataset

and statistically based

Performance metrics RQ4 MMRE, Pred(n)

Statistical testing? RQ4 Yes

Datasets used RQ4 Desharnais

Data quality/issues RQ4 Missing values instances

removed, suitability

Performance RQ3 Only one dataset considered,

dataset size, morphology

maybe a factor

3.2.3 Data synthesis

The goal of data synthesis is to identify different FWTs from the selected studies in order to

address the research questions. The extracted data obtained consisted of both quantitative

data (e.g., values of prediction accuracy or results) and qualitative data (e.g., strengths and

weaknesses of FWTs). Different strategies were used to synthesise the extracted data relating

to different sets of research questions. The strategies are explained in detail as follows.

For the data relating to RQ1, the results were tabulated to represent the distribution of

44

Method of Identification of Relevant Literature Chapter 3

FWTs. The FWTs were categorised based on the dimensions from a review by Wetterschereck

et al. [170]. Their dimensions (see Table 3.3) are as follows:

· Bias: refers to whether the weight learning utilises feedback from the performance

algorithm [69].

· Weight space: is used to distinguish feature weighting from conventional feature subset

selection algorithms.

· The Representation: distinguishes algorithms that transform the given representation

(to yield better results) from those that use the ‘given’ representation.

· Generality : is used to distinguish algorithms that assume weights differ among ‘local’

regions of the instance space form those that do not.

· Knowledge: highlights algorithms that use domain specific knowledge to determine

feature weights.

Table 3.3: Dimensions For Distinguishing Feature Weighting Methods from [170]

Dimension Possible Values

Bias {Performance, Preset}

Weight Space {Continuous, Binary}

Representation {Given, Transformed}

Generality {Global, Local}

Knowledge {Poor, Intensive}

In RQ2, the limitations of existing techniques were identified from analysis of the text. For

RQ3 differing response variables and the absence of detailed results (e.g., for prediction

performance indicators typically only measures of centre are given rather than variance)

make it difficult to conduct a formal meta-analysis. For our purposes we use a simple vote

counting procedure although we recognise this can be problematic as it may bias the results

to no effect [57]. For this reason we restrict our analysis to the question of “is there an

effect as opposed to how large is the effect” and make no judgement concerning statistical

significance when vote counting.

45

Feature Weighting Techniques Chapter 3

RQ4 considers the accuracy indicators utilised such as MMRE and R-squared, the data sets

used for validation and the experimental design in terms of benchmarks and so forth. It turns

out that all the primary studies were based on experiments although in theory other forms

of empirical study were not excluded from the review.

3.3 Systematic Literature Review Findings

In this section we present and discuss the findings from our systematic review. We start by

giving an overview of the selected studies. Then, we present a detailed description of the

findings of this review for each research question. We also interpret the review results, not

only within the context of the research questions, but also in a broader context related to

the effort estimation.

19 papers were identified describing original primary studies and included in this SLR (see

Table A1 in appendix A). These papers were published during the time period 2000 - 2014. A

total of 14 (74%) papers were published in journals and 5 (26%) papers appeared in conference

proceedings, however no papers were located from book chapters. The respective numbers,

date published and relative sources of the selected studies are shown in Table Appendix A1.

There is some evidence of the topic gaining momentum since six studies were published in

the first half of this time period (2000-6) whereas a further 13 were published in the second

half (2007-13), essentially doubling the rate of output.

In terms of the actual composition of the selected studies, observe that all the studies are

experimental in nature. No case studies or other forms of empirical research were located.

All studies, but for one, used a minimum of one project data set from industry to validate the

feature weighting techniques. Finally I reiterate that since the quality of the selected studies

was linked the inclusion criteria, where only papers from demonstrably refereed sources are

included, I believe these should represent good experimental and research practice.

46

Feature Weighting Techniques Chapter 3

3.3.1 Feature Weighting Techniques

From the 19 selected studies, 12 distinct techniques for feature weighting were identified

that have been applied to estimate software development effort to models using CBR. Other

techniques are either variations on combinations on these 12 techniques. They are listed in

Table 3.4:

Table 3.4: Range and diversity of FWTs

Technique Studies #

Genetic Algorithms (GA) [S06], [S12],[S17] 3

Exhaustive Search [S01], [S04],[S05] 3

Weighted Means [S03], [S04] 2

Particle Swarm Optimisation [S19],[S18] 2

Mantel’s Correlation [S07],[S10] 2

Principal Component Analysis [S11],[S13] 2

Kernel Methods [S15] 1

Heuristic Search (non-population) [S02] 1

Fuzzy Logic [S09] 1

Rough Sets Analysis (RSA) [S08] 1

Grey Relational Analysis (GRA) [S16] 1

Mutual Information [S14] 1

It is clear that there is considerable diversity in approach with the majority of studies propos-

ing and evaluating new techniques although the majority of techniques (13 out 19) adopt a

general approach to feature weighting as opposed to a binary (included/excluded) view.

Search heuristics are non-population searches such as hill climbing, therefore different from

GA. We also note that some of the FWTs are combinations, obtained by combining two or

more FWTs or by combining FWTs with non-FWTs. Overall we might characterise the area

as one that is still in an early stage of development. Since we have a maximum of three

observations (genetic algorithms) for any one FWT, our meta-analysis asks a more general

question (RQ3). Namely do the techniques generally offer improvement over those not using

a feature weighting regime?

47

Feature Weighting Techniques Chapter 3

3.3.2 Methods for Accuracy Estimation

Having considered the range, diversity, strengths and limitations of the feature weighting

techniques I now turn to the central and most actionable aspect of the systematic review. Do

FWTs perform better than conventional Analogy-Based Estimation (ABE) where all features

have equal weights? In order to make this comparison studies that use conventional ABE

as a benchmark are needed. Fortunately 17 out of 19 studies do this (i.e. not S01 and S10)

consequently these 17 primary studies are used for meta-analysis (see Table 3.5).

Although the 17 studies all use a comparable benchmark each study has differences in their

experimental design, choice of accuracy statistic and the level of reporting. Only counting

results that are statistically significant is known to be problematic and indeed the proba-

bility of making the correct decision tends to zero as the number of primary study results

becomes large (see Hedges and Olkin [57, pp48-52] for a detailed discussion). Mindful of the

potential problems of this procedure, I followed the procedure recommended by the Cochrane

Collaboration [59]: which recommends to ignore statistical significance and simply classify

studies as supporting the intervention (using FWT), neutral (i.e., no difference) and negative

(favouring constant feature weights).

Based on Table 3.5 observe that 16 out of 17 studies report a positive effect. As a formality

one could use a one-sample sign test which rejects the null hypothesis of no effect (p = 0.0003).

Thus despite reservations about the adopted meta-analysis procedure of vote counting there

is clearly a strong result and one can be reasonably confident that FWTs have the effect of

reducing prediction error for software effort when using CBR techniques.

The above analysis does not differentiate between differing classes of FWT. Examining the

selected studies more closely one can see that the two most popular accuracy metrics are

MMRE (Mean Magnitude of Relative Error) and Pred(25) (Percentage of predictions that

are within 25% of the actual value). It can also be noted that the Desharnais data set is

the most widely utilised. Therefore to make comparisons between the differing FWTs a

subset of eight primary studies that utilise the same accuracy metrics on the same data set

(see Table 3.6) are used. For some basic reference the original results reported in Shepperd

and Schofield [150] are provided, although I would caution against over-interpretation of the

48

Feature Weighting Techniques Chapter 3

Table 3.5: Performance of FWTs against ABE benchmark

Study FeatureWeightingTechnique Statistical Bench Improvement

Testing marking wrt EBA

[S01] Exhaustive Search No No n.a.

[S02] Search Heuristics Yes Yes Yes

[S03] Inverse Rank Weighted Mean Yes Yes Yes

[S04] Exhaustive Dimension Weighting No Yes Yes

[S05] Exhaustive Search No Yes Yes

[S06] Genetic Algorithm No Yes Yes

[S07] Mantel’s Correlation Yes Yes Yes

[S08] Rough Set Analysis No Yes Yes

[S09] Fuzzy Logic No Yes Yes

[S10] Mantel’s Correlation Yes No n.a.

[S11] Principal Components Analysis (PCA) Yes Yes Yes

[S12] Genetic Algorithm No Yes Yes

[S13] PCA with Correlation Weighting No Yes Yes

[S14] Mutual Information No Yes Yes

[S15] Kernel Methods Yes Yes No

[S16] Grey Relational Analysis No Yes Yes

[S17] Genetic Algorithm No Yes Yes

[S18] Particle Swarm Optimisation No Yes Yes

[S19] Combinations Yes Yes Yes

results. First differing procedures are used and the procedures for the exploration of the

number of neighbours to use (k) also vary. As has been extensively discussed elsewhere,

there is a lack of confidence in MMRE and Pred(25) as unbiased measures of prediction

performance [89]. In addition, using multiple measures can yield contradictory results, so

for example, the GAs in study S12 are ranked 3rd for MMRE and worst (9th) for Pred(25).

This may be explained by the choice of objective function for the GA.

Notwithstanding the above reservations it would seem that the FWTs generally outperform

the benchmark and unsurprisingly those based on exhaustive search tend to do best. The

latter observation suggests that it will be fruitful to focus on metaheuristic search as a way of

finding good approximations of the optima whenever computational considerations militate

49

Feature Weighting Techniques Chapter 3

Table 3.6: Performance of non-binary weight-space FTWs on Desharnais data set

Study Technique Criteria

MMRE(%) Pred(25)% k

[150] Benchmark - no FWT 64 36 1-3

[S04] Exhaustive Dimension Weighting 30 50 1-5

[S07] Mantel’s Correlation 34.5 49.5 1-5

[S12] Genetic Algorithm 43 32 1-5

[S13] Principal Components Analysis 46 51 1-5

[S17] Genetic Algorithm 46 48 1-5

[S05] Exhaustive Search 48.7 52.6 1-5

[S08] Rough Set Analysis 59 42 1-4

[S11] PCA with Correlation Weighting 64 36 1-5

against exhaustive search.

3.3.3 How was Feature Weighting Dealt With?

The findings and discussions on how feature weighting was dealt with is based on strengths

and limitations of FWTs as evidenced on the framework dimensions [170]. The first three

dimensions present inconclusive results while the last two dimensions present limitations. In

general the greatest strength of FWTs is that they do not assume that features contribute

equally to the output, therefore they assign different weights to the features. This poten-

tially results in improved accuracy since theoretically the worst case is where all features do

indeed merit equal weights which is a situation that should be discoverable by the FWT. The

discussions on the first three dimensions are as follows:

· Bias: Most algorithms in the selected studies use performance bias methods therefore

their search for feature weights is guided by the efficiency of the performance settings.

· Weight space: Thirteen of the 19 studies use continuous weight space and reported im-

proved accuracy when compared with studies which used binary weight space. There-

fore the use of continuous weight space by FWTs is a strength.

50

Summary Chapter 3

· Representation: All the algorithms in the selected studies transform the set of features

used to represent the instances. Transforming the given representation before assigning

weights assist to overcome insensitivity to correlated or interacting features. This may

lead to improved accuracy [122].

While significant efforts have been invested in developing and improving FWTs, some limita-

tions still exist which require research attention. These limitations are about the algorithms

used, which in summary, can be described as follows:

· Generality : Despite the findings of the survey by Atkeson et al. [10] showing that

assuming weights differ among ‘local’ regions of the instance space may improve results.

FWTs in selected studies use algorithms do not assume weights differ among ‘local’

regions of the instance space i.e., they use a single set of weights, and employ it globally

(i.e., over the entire instance space). Studies such as [4, 9, 45, 56] also reached the

same conclusion as Atkeson et al. [10], therefore based on these findings it could be

suggested that FWTs may benefit from assuming weights differ among ‘local’ regions

of the instance space.

· Knowledge: Several researchers such as [9, 30, 132, 156] and [18] demonstrated the use

of domain knowledge to assign weights and that it may lead to improved accuracy.

Unfortunately all feature weighting techniques in selected studies do not use domain

knowledge to specifically assign weights feature and this could be a limiting factor, since

domain specific knowledge could assist in identifying the most important features and

therefore assign them highest weights first.

3.4 Summary

This chapter presented a systematic literature review investigating how the empirical software

engineering community has addressed feature weighting with a specific focus on analogy-based

effort estimation. The literature search retrieved 19 papers, which appears a relatively low

number considering that the papers only had to mention analogy-based/CBR estimation and

feature weighting without actually proposing actions to tackle the issue, and also given the

51

Summary Chapter 3

large volume of papers published in the empirical software domain every year. Despite these

potential limitations, I consider the most striking and actionable finding of the review to

be that feature weighting techniques are consistently beneficial. Also FWTs may benefit

from assuming that weights differ among local regions of the instance space. Regions that

contribute more to the output may be assigned high weights and vice versa but intermediate

regions are also considered. These different regions could be established through means such

as: heuristic searches, statistical methods or genetic algorithms. Algorithms could also utilise

domain knowledge to determine the different regions which is similar to expert judgement.

The results show that feature weighting is an important aspect of CBR, however feature

weighting is still under-explored as evidenced by the small number of articles proposing

many techniques. There are many published feature weighting techniques which vary and

are complex. Prior to this SLR, no up-to-date, comprehensive picture of the current state

of FWTs in CBR existed, the closest being the review by Wettschereck et al. [170] also

nearly 20 years old!, which was utilised to provide a framework for comparison. The next

chapter presents a technique (blind analysis) that may help reduced the contradictory results

observed in this SLR.

52

Chapter 4

Blind Analysis for Software

Estimation Experiments

It has been said: if you torture the data

for long enough, in the end they will

confess. The data will always

confess, and the confession will usually

be wrong.

J.B. Copas, [119]

More fields should, like particle physics,

adopt blind analysis to thwart bias

R. MacCoun and S Perlmuttera, [110]

ashared the 2011 Nobel Prize in Physics

53

Sources of Bias in Research Chapter 4

In recent years there has been growing concern about conflicting experimental results in em-

pirical software engineering. This lack of agreement is shown amongst the many empirical

studies conducted in the various branches of empirical software engineering [145] including

defect prediction [118, 175] and software effort estimation (SEE) [72, 149]. Closer investiga-

tion suggests that a contributory reason — though only one of many — is selective reporting

and partial analysis [71, 146] known as analysis bias. One technique for reducing the propen-

sity for bias is to conduct blind analysis [58]. Blind analysis entails, as a minimum, the

labels of the different treatments being anonymised such that the researchers performing the

analysis of the results do not know which result data (i.e., the response variables) relate to

which treatment. This chapter explores the practicalities of blind analysis of experimental

results to reduce bias and is based on my publication [154] — where Action research1 was

used as vehicle to explore blind analysis as a method to reduce researcher bias in software

engineering experiments. Blind analysis can also help reduce analysis bias in Crowdsourced

research studies such as [155]. The main purpose here is to find out how blind analysis can

work rather than the detailed results of the experiment which are discussed in chapter 6.

Since bias is one of the major factors contributing to conflicting experimental results in

empirical software engineering, the next section reviews what is known about bias in scientific

research in general and empirical software engineering in particular.

4.1 Sources of Bias in Research

“[L]et us define bias as the combination of various design, data, analysis, and

presentation factors that tend to produce research findings when they should not

be produced.” John Ioannidis [67]

Researchers have been concerned about the potential impact of unintentional bias upon the

part of scientists for at least the past three decades. In considering this it is important

1“Action research is a disciplined process of inquiry conducted by and for those taking the action. The

primary reason for engaging in action research is to assist the “researcher” in improving or refining his or her

actions.” [138]

54

Sources of Bias in Research Chapter 4

to distinguish between bias where there are systematic underlying reasons and processes

leading to wrong research findings and general randomness. Since confidence limits and null

hypothesis testing typically set thresholds at 95% this implies an acceptance of 5% of Type

I errors, i.e., wrongly rejecting the null hypothesis or where the true population statistic lies

outside the estimated and reported sample confidence limits. Conversely, depending upon the

power of the study there is also the random possibility of failing to reject the null hypothesis

when we should i.e., a Type II error.

There have been concerns that many areas of research ranging from medicine to social policy

and experimental psychology to genomics have been impacted by different sources of bias.

Delgado-Rodŕıguez and Llorca [35] have published a catalogue of more than 70 different types

of scientific bias. Moreover these exclude those specifically related to data analysis, reporting

and citation behaviours. At a generic level these include:

· publication bias: [38], which is the reduced likelihood of publishing certain types of

study when the results are not perceived as ‘interesting’. Generally results seen as not

interesting are typically exemplified by the null hypothesis being retained. This may

either be due to the peer review process (some results are seen more favourably by

the referees than others) or the “file drawer problem” [135] (when researchers fail to

complete or submit papers in a non-random way).

· selection bias: selective reporting in that the study only reports a subset of results [63].

Again this process can lead to the over-reporting of ‘interesting’ results and the under

reporting of non-significant results or results with small or no effect size.

· analysis bias: where statistical procedures are selected according to their ability to yield

‘interesting’ results. In passing note that null hypothesis significance testing (NHST)

is particularly vulnerable since the logic of this approach leads the researcher to an

all or nothing situation, of significance or no significance. More than twenty years ago

Dickersin observed how significant results are substantially over-represented in the field

of medical research [38].

Unfortunately software engineering does not seem to be immune from these biases. A major

55

Blinding Analysis Chapter 4

meta-analysis of 600 results derived from 42 primary studies of defect prediction algorithms

found that the research team that conducted the work explained approximately 25 times

more variance in the performance of the predictor as did the choice of algorithm [146]. Re-

search group was also more important than the data set used to validate the predictor and

considerably more so than the choice of metrics or inputs to the predictor. A recent study

by Jørgensen et.al. [71] investigating incorrect results in software engineering experiments

found that 67% of researchers had statistically tested and reported post hoc hypotheses,

69% only published the best outcome among several measures on the same test, and 55% of

researchers had modified or developed outlier criteria after observing the impact of doing so

on the results. Such biases also confound meta-analyses since the goal to uncover all rele-

vant studies is thwarted by the systematic non-availability of certain types of result. Thus

the entire research community is harmed along with our reduced ability to make reliable

recommendations to practitioners.

Of course the question arises as to why scientists may exhibit bias. The first thing that needs

to be absolutely clear about is that there is no suggestion that this bias is intentional or for

morally questionable reasons. Possible explanations include the fact that expertise may not

be evenly distributed, moreover some techniques are highly sophisticated and the parameter

free-space extensive. As a result it is conceivable that a research group may be able to use

Technique A more effectively than Technique B. Conversely a second group might behave in

the opposite way. Another explanation is the majority of predictors exploit different machine

learning techniques [168]. Such research generally proceeds experimentally and there is little

theory to guide. Such research tends also to explore many variants of prediction systems

often with many different parameter settings. The consequence is many results. This in

itself is not necessarily problematic and there are various statistical procedures for adjusting

significance thresholds accordingly. However what is less clear and therefore more difficult

is the stopping criterion; at what stage should the researchers stop their experiments and

report results? And a related problem is should all results be reported? There may be many

intermediate results. These kind of problems mean that selective reporting can be difficult

to address. The next section looks at blind analysis as a way to reduce researcher bias.

56

Blinding Analysis Chapter 4

4.2 Blind Analysis

One approach to combat these biases is blinding the analysis [58]. Blind analysis can only

help mitigate where statistical procedures are selected according to their ability to yield

‘interesting’ results i.e., analysis bias. The principal motivation of blind analysis in this

thesis is to reduce researcher’s analysis bias.

4.2.1 What is a Blind Analysis?

A blind analysis refers to an analysis in which the final result, and the individual data on

which it is based, are kept hidden from the analyst until the analysis is essentially complete

[55]. There are several different approaches to blind analysis, the method of choice depends

on the type of analysis performed [55]. Blind analysis entails, as a minimum, the labels of the

different treatments being anonymised such that the researchers performing the analysis of the

results do not know which result data (i.e., the response variables) relate to which treatment.

This renders “cherry picking” results more difficult. The idea is that by relabelling the

different treatments e.g., as predictor 1, 2, ... , n then the researcher conducting the analysis

of the results is no longer aware of which is the new ‘pet’ technique nor which are the results

from benchmarks. Searching for a test or procedure that yields statistical significance is less

straightforward since it is more difficult for the analyst to have a view as to what results are

‘interesting’. Note that only the response variables are blinded, therefore context descriptors

will be unchanged. I am unaware of this approach being used in software engineering prior

to my work [154] but there are examples in other disciplines such as physics [8], whilst

the concept is hardly used in the software engineering community. By the early 2000s, the

technique had widespread use in the areas of particle and nuclear physics [90, 110]. Blind

analysis has been used in the past by a number of particle physics experiments including:

E791, KTeV, BaBar, and BELLE [55]. Note also that the technique may not be appropriate

to other forms of empirical analysis such as case studies and focus groups.

57

Blinding Analysis Chapter 4

4.2.2 Blinding strategies

Some forms of blinding are widely known: for example, not revealing to either patients or

clinicians who receives a placebo or an experimental drug (also know as double-blinding),

or hiding names and affiliations on scientific manuscripts to prevent reviewers from being

influenced by authors’ identities [110]. But these practices are only applicable to collection

and source of data, not the analysis which is focus of this thesis.

Blinding strategies depend on the properties of the data, such as; statistical distribution,

lower and upper bounds of values presented, whether the values are continuous or discrete,

etc. Both data values and labels can be manipulated to develop a suitable strategy. Some

blinding techniques used in the fields of biological, psychological and social sciences are shown

in Table 4.1 [110] .

Table 4.1: Blinding strategies [110]

Strategy Perturbation Potential application

Noising Adding a random number from an
appropriate statistical distribution
the to data points or model param-
eters

Testing which of several injury
prevention training methods
is most effective in reducing
injury to Arsenal players.

Biasing Adding a hidden value that is biased
in a particular direction to obscure
differences in experimental condi-
tions.

Estimating whether the costs
of a controversial health and
safety regulation exceed its
benefits.

Cell scrambling Labels for experimental conditions
are shuffled, so that it is unclear
which set of results belong which
conditions.

Testing a prediction that
audio-books are better to
understand than hard-copy
books.

Item scrambling Relabel (randomly) each data point
to de-identify experimental condi-
tions.

Analysing group differences
that may be easy to recognize
even in the presence of noise
and bias (for example, effects
of reaction time and intoxica-
tion).

Various combi-
nations

Scrambling rows but keep pairs of variables together to preserve cor-
relation. Variable blinding —swapping labels of various variables

58

Blind Analysis Experimental Design Chapter 4

Strategies in Table 4.1 may be adopted for software engineering experiments. One researcher

—or, more —methodically alters data values, data labels or both. The second researcher

then conducts as much analysis as possible ‘in the dark’ [110]. Figure 4.1 outlines this

process described in more detail in subsequent sections adopted for a software engineering

experiment using blind analysis. The blinding was achieved as follows. Researcher 2 selected

a data set. The application of the different prediction systems to the data set was performed

by Researcher 1 who then sanitised the treatment labels. Next the results files were passed

to Researcher 2 who performed the statistical analysis. Once this was complete Researcher 1

revealed the actual treatments. Clearly for blind analysis to be effective it requires a minimum

of two researchers. Before unblinding, researchers should agree that they are confident enough

of their analysis to publish whatever the result turns out to be, without further rounds of

rethinking. Researchers are not prohibited from conducting extra analysis once data are

unblinded, but doing so risks bias, therefore researchers should label any further analysis as

‘post-blind’ [110].

4.3 Blind Analysis Design and Discussion

The focus of this thesis is analogy-based estimation for SEE. Therefore the experiment and

strategies are ABE for SEE, but this is a matter of convenience not necessity. This section

gives a description of an experimental approach and the decision making involved using

blinding when experimentally evaluating a new algorithm for feature weighting when using

case-based reasoning to predict software project effort. The experimental method will be fully

described later on in chapter 6 when blind analysis is included in empirical evaluation of the

proposed technique. The description of incorporating blind analysis in software engineering

experiment follows the steps numbered within Figure 4.1.

59

Blind Analysis Experimental Design Chapter 4

Select Dataset

Perform

Experiments

Blinding

1

2

3

4

5

7

Researcher 1 Researcher 2

Descriptive Stats

Reveal actual

Treatments

6

8

Raw results

e.g. residuals

e.g. Finnish

Decide

Treatments

Experimental

Design

Effect size,

confidence limits

Inferential Tests
Test results

Figure 4.1: Experimental design and blind analysis process

Step 1: Researcher 1 determines different treatments or methods for software effort estima-

tion using various analogy or case-based reasoning (CBR) methods. These methods could

present a range of possible strategies for analogy based effort estimation. A trivial or näıve

approach should be included (as a baseline) in order to determine the extent to which the

more sophisticated techniques offer any value, in other words — we expect sophisticated

techniques to be able to improve upon a baseline, and this is an important requirement for

blind analysis as it provides a reference point for comparison.

Step 2: The choice of data set(s) is made independently by Researcher 2 without knowledge

of the treatments. This is because it could be known that some data sets might particularly

favour some SEE methods. The selection of data set was introduced since one may reasonably

expect that some data set characteristics such as; distribution, size, presence of categorical

features, noise, etc, could favour some techniques/treatments over others, and researcher 1

60

Blind Analysis Experimental Design Chapter 4

may be aware of this bias.

Step 3: The data set selected to be used in the study may require preprocessing before

experiments can be performed on it. Preprocessing tasks such as; removing projects which

have missing values so as to ensure none of the projects had missing values or removing

any projects with values that are hard to interpret as meaningful, such as the number of

people being negative or billions on a single project. The question on whether Researcher 1

should be permitted to remove any outliers is not easy to decide. Note a study [71] where

55% of researchers had modified outlier criteria after observing the impact of doing so on

the results. This is one of the reasons why this blind analysis investigation adopted action

research to enable researchers to improve or refine their actions. In this particular case no

projects were removed — for one, software projects are commonly one offs [141], therefore

removing projects as outliers does not help the investigation.

Step 4: All statistical analysis is based on results provided with anonymised treatment labels

to Researcher 2. Note that if the experiments use a repeated measures design there may be

no particular need to look at context variables or experimental moderators, but researcher 2

could still be interested in them therefore a discussion could take place between researchers

1 and 2. In other settings this might be relevant, however, in this particular it was only

the treatments labels that need blinding consequently blind analysis did not inhibit richer or

more sophisticated analysis when appropriate.

Step 5: There are a number of challenges relating to the statistical analysis of the experi-

mental results. First, the distributions of the results must be established using descriptive

statistics. The results maybe extremely skewed and not amenable to simple transformations.

Second, there could be many ties. Third the data are dependent since one would compare the

performance of different predictors on the same data. Finally alpha (α) may need correcting

since multiple pairwise comparisons or tests could be needed.

Step 6: Next Researcher 2 may consider the questions of confidence limits for the descriptive

statistics such as medians and then measures of effect size. Non-parametric methods could be

required due to the non-normality of the distributions results. The Harrell-Davis percentile

estimator [54] with bootstrap may be used as an efficient, robust technique to estimate the

61

Blind Analysis Experimental Design Chapter 4

95% confidence limits for the median (i.e., the 50th quantile) value of the results.

Step 7: The basic descriptive analysis from Steps 5 and 6 informs decisions on which inferen-

tial tests to perform. In practice there are a number of decisions to be made and no a priori

reason to consider one superior to another in order to perform inferential tests.

· The level of trimming to apply since trimming provides a continuum of approaches from

including all observations in estimating population characteristics to the other extreme

of excluding all but the central point, i.e., the median.

· The choice between Winsorized trimming and trimming since Winsorizing involves the

replacement of values with the trimmed minimum or maximum as opposed to discarding

the values with trimming. The impact of such as choice is unclear.

· The type and direction of the null hypothesis, for example one could use one or two

tailed tests.

· How to correct alpha since methods range from Bonferroni’s correction which is a con-

servative method to methods such as Rom’s method [171].

· The choice of inferential test to compare medians is again somewhat open even if

we correctly restrict ourselves to robust methods since these include Cliff’s, Brunner-

Munzel and Wilcox’s methods.

· Lastly, a small but subtle difference is median difference between treatments or com-

parison of the medians of the treatments

Finally researcher 2 reveals results to researcher 1 in the last step.

Step 8: Results in Tables 4.2 and 4.3 are used as an illustrative example obtained from

my published blind analysis paper [154] comparing four treatments (FSW, FSS, CBR and

Näıve) where the only relevant number is the highlighted cells used to illustrate the point

of blind analysis. The predictors are compared pairwise (in this case six, since there are

four treatments) starting with the greatest median difference. The probability of the median

difference = 0 is given by p. The upper and lower bounds give the 95% confidence limits for

the median difference therefore for a significant difference one would not expect the limits to

straddle zero. The results are presented unblinded for the convenience of the reader.

The results of the analysis therefore show that whilst the technique FSW outperforms the

62

Blind Analysis Experiences Chapter 4

näıve and traditional CBR but there is no significant difference between FSW and FSS

(highlighted cell). Thus one cannot argue that FSW is superior for this particular data set.

Note that Researcher 2 might have easily and justifiably used trimming 10% or 20% (trimmed

means) of each tail [172]. If a 20% trim is applied (see Table 4.3) then this yields a different

set of results, that is: the same test that yielded p = 0.954 now yields p = 0; specifically,

there is a significant difference between the absolute residuals from FSW and FSS such that

FSW would be reported as being significantly superior.

Table 4.2: Pairwise comparison Wilcox’s percentile bootstrap [154]

Test p Lower bound Upper bound Median difference

FSW v Näıve ∼ 0 -2741.6 -2100.0 -2489.5

FSS v Näıve ∼ 0 -2658.8 -1771.1 -2410.0

CBR v Näıve ∼ 0 -2140.8 -1227.3 -1758.8

FSW v CBR ∼ 0 -457.4 -146.0 -252.7

FSS v CBR ∼ 0 -289.3 -58.9 -179.5

FSW v FSS 0.954 -0.5 0 0

Table 4.3: Pairwise comparison of mean absolute residual using Wilcox’s percentile bootstrap (Trimmed

means 0.2)

Test p Lower bound Upper bound Median difference

FSW v Näıve ∼ 0 -2764.5 -2219.7 -2492.1

FSS v Näıve ∼ 0 -2652.0 -2098.0 -2375.0

CBR v Näıve ∼ 0 -2112.9 -1511.9 -1812.4

FSW v CBR ∼ 0 -880.2 -479.3 -679.7

FSS v CBR ∼ 0 -769.8 -355.5 -562.6

FSW v FSS ∼ 0 -75.1 -59.0 -64.7

63

Blind Analysis Experiences Chapter 4

4.3.1 Blind Analysis Experiences

The decisions taken by Researcher 2, as previously mentioned, can lead to a different con-

clusion. For example, Table 4.3 shows that using an analysis based on 20% trimmed means

results in p ∼ 0 for the pairwise comparison of FSW v FSS (see the highlighted cell). This

strongly contrasts with Table 4.2 where the same test yields p = 0.954. The consequence is

that a ‘result’ may be transformed from insignificant to significant by changing the choice

of inferential test. Thus in evaluating FSW v FSS Researcher2 could easily and ‘correctly’

employ trimmed means to evaluate FSW v FSS. Trimmed mean looks to reduce the effects

of outliers but in a less conservative fashion than analysis based on medians which in a sense

is the most extreme form of trimming possible since only the central observation is retained

[172]. The choice results in different conclusions for the evaluation of FSW v FSS.

Lessons from blind analysis experience

The basic principle of blind analysis was straightforward to implement. The analyst was

only provided with residuals since actual predicted values could potentially jeopardise the

blinding for techniques such as using a sample mean since all predicted values would be the

same. One advantage of the relatively meaningless values was that the analyst (Researcher

2) could proceed in a somewhat detached fashion.

The point of blind analysis is not which is the most appropriate statistical approach to make

comparisons between experiment treatments but that if the analyst has a priori expectations,

and it’s difficult not to, then these can influence the choice of technique and in a highly non-

random fashion. Blind analysis does not prevent inappropriate analysis, it does, however,

militate against systematic use of statistical methods in order to yield ‘positive’ results.

It is relatively easy to change the results of a statistical analysis without resorting to scientific

misconduct. This is particularly the case for null hypothesis significance testing. For example

moving to trimmed means (0.2) has the impact on the results transforming a not significant

result (Table 4.2) in terms of evaluating a new algorithm into a significant one (Table 4.3).

As a means of reducing systematic bias in terms of statistical and analysis decisions being

made in order to achieve particular types of outcome I consider blind analysis has a great

64

Overcoming barriers to blind analysis Chapter 4

deal to commend it.

It is not easy for researchers 1 and 2 to communicate without the risk of unblinding the data

because the blinding was performed by researcher 1 and both were part of the experiment

(action research). Decisions on statistical tests are taken without much guidance. I have

just shown that you can get conflicting results without resorting to scientific misconduct,

based simply on decision you made (such as whether to trim means or not). Based on these

experiences and lessons learned I urge for a blind analysis protocol to help researchers perform

blind analysis.

Threats to validity

This chapter described experiences for a single action research experiment. There is no

control and n = 1.

All this demonstrates is that it is possible to manipulate results without recourse to poor

practice or scientific misconduct and that it is straightforward to blind the analysis. Beyond

this the argument rests upon advocacy. Nevertheless, I do argue that blind analysis should

become normal practice within empirical software engineering when dealing with multiple

treatments (and associated response variables) in some experimental or quasi-experimental

setting.

I acknowledge that they are barriers to adopting any new concept or idea, therefore the next

section looks at allay some of the fears or objections.

4.4 Overcoming barriers to blind analysis

Blind analysis is not a panacea, but it is very feasible. However, there are challenges and

concerns about its adoption. This section looks at how some of the common objections could

be addressed [110].

65

Overcoming barriers to blind analysis Chapter 4

4.4.1 Concerns about blind analysis

How do we prevent people from peeking at the raw data? Blind analysis is not im-

mune to fraudulent behaviour. But in ordinary research, teams of researchers can help

to enforce compliance. Where blinding is part of the research culture, researchers often

become its most effective custodians, for example, flagging the risk if a colleague asks

for information (i.e., a plot) that might accidental unblind the result [110]. This was

very evident when we performed blind analysis for [154] and subsequently for the work

on this thesis. Everyone became conscious of information they gave out or asked for.

Can’t we use other ways to avoid analysis bias? Preregistered analysis plans has

been proposed as a potential solution. Preregistration requires that analysis plans

are determined beforehand, and therefore offers some of the same benefits as blind

analysis but limits the scope of analysis [110]. Because many analytical decisions can-

not be anticipated, some of choices such as statistical tests are informed by the data

(results) which you do not have at the start of experiments. This forces researchers to

make some decisions knowing (consciously or unconsciously) how their choices affect

the results. Blind analysis enables the analyst to engage in analysis and exploration

without worrying about how his choices affect the results because they are informed by

the data.

Isn’t blind analysis too much hassle? Admittedly to do blind analysis there is extra ef-

fort involved. However, blind analysis could require as little effort as asking a colleague

down the hall to alter labels for you.

The next section looks at challenges in adopting blind analysis.

4.4.2 Challenges for blind analysis

While the experimental experience shows that blinding can be a relatively straightforward

procedure, there are challenges to its adoption:

Technical: learning what should be blinded while preserving features needed to permit ap-

propriate analysis is not easy [110]. Blinding must also make sure it is not easy to identify

66

Summary Chapter 4

the benchmark treatment i.e., if the benchmark uses the sample mean for all prediction then

just swapping the labels is not enough to blind the benchmark.

Communication during blind analysis process: Explaining to the analyst(s) the goal of anal-

ysis without unintentionally revealing the actual treatments or the benchmark is not easy.

The analyst can pick up on non-verbal cues as to which treatment is which when discussing

with the experimenter (researcher 1 in this case). Picking up non-verbal cues is not that dif-

ficult or unique to humans. Take for an example the story of Hans von Osten —often called

“Clever Hans” —a horse that could add two single digit numbers [131]. Hans demonstrate

his skill by pawing the ground with his hoof until the sum of the two numbers was reached,

while those who had presented the numbers on black board watched. Remarkably Hans still

managed to add the numbers correctly more often than not even with his trainer not in the

room. The mystery of Hans’s ability was solved in 1907 when the psychologist O. Pfungst

proposed that the trial be conducted in which everyone in the room with Hans was blinded

to at least one of the numbers presented [131]. Now with his observers blind to the answer,

Hans was not able to produce a correct result. The conclusion was that Hans had been using

subtle non-verbal cues from those observing him in the room —when deciding to stop pawing

the ground —cues the observers were not even aware they were providing [90]. Therefore the

lesson here is that the experimenter and the analyst must be blinded to the data. Previously

I mentioned that for blind analysis to work at least two researchers are needed but now it

looks like three would better. The third researcher would blind the raw results and pass

them on to the analyst(s) leaving the experimenter and the analyst to communicate with

little fear that some details may be un-blinded unintentionally. The details as to how the

third researcher is included in the process described through Figure 4.1 is in chapter 6.

Motivation: The software engineering community must provide incentives for researchers to

adopt a method that might make it harder for them to come up with desirable (although

possibly false) results. This is important because before unblinding results, researchers must

agree that they are confident enough of their analysis to publish whatever the result turns

out to be.

67

Summary Chapter 4

4.5 Summary

Whilst there are minor challenges and some limits to the degree of blinding possible, blind

analysis is a very practical and easy to implement method that supports more objective

analysis of experimental results. Various statistical analysis decisions which ought not be

guided by the hunt for statistical significance were highlighted and also showed that results

can be inverted merely through a seemingly inconsequential statistical nicety (i.e., the degree

of trimming). Apart from reducing analysis bias blind analysis has other benefits too —

blind analysis can help researchers to consider the opposite of their expectations, fuelling

both creativity and scrutiny of the theory and methodology [110] —considering the opposite

is a corrective strategy for social judgement [109].

Blind analysis will bring software engineering in line with best practice from other branches

of science. It is more a formalisation of good experimental practice than a new radical idea

[110]. It is certainly no panacea, it needs to be stressed that blind analysis will not eliminate

statistical errors and poor practice but what it does address is statistical procedures being

systematically selected on the basis of them yielding desired results. If we can reduce the risk

of analysis bias, why not do so? Therefore I argue that blind analysis should be the norm for

analysing software engineering experiments.

The next chapter looks at feature weighting algorithm for ABE, therefore in order to improve

the reliability of my results blind analysis will be used to analyse the results.

68

Chapter 5

Forward Sequential Weighting for

Analogy Based effort Estimation

69

Introduction Chapter 5

5.1 Introduction

The results of the systematic literature review presented in chapter 3 showed that feature

weighting has been somewhat neglected in empirical software engineering. In particular, there

is lack of studies on feature weighting algorithms distinguishing whether the weights apply

should globally (i.e., over the entire instance space) or locally (i.e., vary in distinctive parts

of the instance space (‘local’ regions)) [170] and empirical investigations into when to use a

specific k (number of donors). The relationship between the quality of the prediction and the

similarity distance d between the donor cases is not yet well understood. For example, it is not

yet known to what extent a small d could be related to a smaller absolute residual. Depending

on the nature of the relationship it may be possible to use it as a way to identify ‘local’ regions

in a dataset, to improve effort estimation accuracy. Despite research findings of an old survey

1997 [10] and studies such as [4, 9, 10] and [56] reporting that assuming weights differ among

‘local’ regions of the instance space may improve results — software effort estimation studies

continue to use a single weight set for entire data set — recall that from chapter 3 systematic

literature review [153] that none of the selected studies employed differing weights sets a

single data set, therefore did not assume weights differ among ‘local’ regions. Hence, based

on these findings it is worth while to explore if Analogy-Based Estimation (ABE) would

benefit from assuming weights differ among ‘local’ regions of the instance space. With this

in mind, this chapter aims to answer the following questions:

· RQ1: What is the relationship between the absolute residuals and the similarity dis-

tance d between the donor cases?

Rationale: The principle of ABE is that similar projects would have similar development

effort, therefore we are expecting a negative relationship.

· RQ2: What is the relationship between the absolute residuals and the difference be-

tween the donor cases solutions (Y)?

Rationale: The extent of how the variance between donors’ solutions decreases predic-

tion accuracy is unknown.

· RQ3: How can we exploit d between the donor cases to improve ABE?

70

Rationale and the assumptions of ABE Chapter 5

Rationale: A weight set is obtained using all cases, despite the cases being independent,

therefore it is possible that for some cases the weight set may not be the best option.

Even though the cases are independent, the ‘relationship’ obtained in RQ1 warrants d

to be explored e.g., small d may require a different weight set from larger d, therefore

d could be used to decide on which weight set to use.

Using answers obtained for the preceding research questions in this chapter a new technique

to offer different weights set for different regions is described, and its predictive capabilities

are evaluated in the following chapters. The technique extends ArchANGEL tool using a

Feature Sequential Weighting (FSW) algorithm for analogy based effort estimation, repre-

senting one of the approaches for feature weight selection. This is effectively a supervised

machine learning algorithm, and it is an uncomplicated greedy search based algorithm. It

is more efficient to explore simpler algorithms first before investing in complex algorithm if

a simpler algorithm proves to be just as effective. First, the formal problem description is

presented, so that the mechanisms of FSW are clearly described.

5.2 Feature Weighting: Formal problem description

Let the software effort estimation data set be denoted as Dset = 〈X,Y〉. X denotes a set of p

case features 〈X1, . . . ,Xp〉 and Y is the effort of the case. The ith historical case is described

as ci = 〈~xi, yi〉 where ~xi = 〈xi1, . . . , xip〉. Therefore xij represents the value of the jth feature

for the ith case. The objective is to assign a weight to each feature value. Then the problem

of effort estimation using feature weighting can be formally defined as:

Definition 5.1. For a new case ~c = 〈xc,1, . . . , xc,p〉 with unknown effort yc, determine wc,j

(weight of each feature) so that the prediction accuracy, defined as yc − ŷc, is maximized or

its error is minimized.

First, the rationale is introduced followed by an overview of forward sequential weighting,

which provides the core operation of the approach. Subsequent sections discuss the applica-

tion of, and limitations of FSW’s method.

71

Rationale and the assumptions of ABE Chapter 5

5.3 Rationale and the assumptions of ABE

This thesis explores the possibility that offering a different weight set to a target case depend-

ing on how similar its donors are to improve estimation accuracy. Hence, it is dependent on

there being a relationship between donors’ similarity and accuracy of estimate. Therefore be-

fore proceeding any further this relationship must be established. The visual representation

of d between donor 1 and donor 2 is shown in Figure 5.1.

Figure 5.1: Donors distance (d)

The relationship between donors’ similarity and accuracy of estimate must be based on

information available or that could be determined when a target is presented for estimation.

Information that is available to a target case includes the following items:

1. distance d(pd) between each case (potential donor) and the target case

2. distance d between each pair of cases (potential donors)

3. solution Y for each case (donor)

4. difference between each pair of cases’ (potential donors) solutions (Y1 − Y2)

5. and any variation of the above points .i.e., weighted d

If any of the above information or combination is related to the absolute residual then it can

be used to determine which weight set should be used for the target case in order to improve

accuracy of the estimate. This in turn will provide answers to the first two research questions.

The amount of information available to the target case is dependent on the number of donors

used, for example distance d(d3) to the third donor is only available if k = 3 is used. Using

a single donor (k = 1) severely limits the information available about the target case i.e.,

only distance d(d1) to the individual case is available. This does not provide any information

about the structure/distribution or morphology of the case base in relation to the target case.

Therefore for this reason this research will use at least 2 donors (k = 2) which provides more

72

Rationale and the assumptions of ABE Chapter 5

information about the target case. Therefore ArchANGEL using weight set 2 (W2) the effort

of all cases in both datasets is estimated and recorded together with the distance d between

the 2 donors for each case. This is used to calculate the absolute residual for each case. For

each case (target case) in the data sets the similarity distance d between its donor cases was

recorded as donors distance and paired with its absolute residual (|yi− ŷi|). This is used to

answer RQ1, which is exploring the existence of a relationship between the absolute residuals

and the similarity distance d between the donor cases. Recall ArchANGEL uses standardised

Euclidean distance as a similarity measure. Figure 5.2 shows the scatter plot of d against the

absolute residuals Figure 5.2 (a), and against difference between donor efforts 5.2 (b), with

a linear trend line that suggests a positive correlation between the distance between donors

(d) and both absolute residual and difference between donor efforts for Desharnais data set.

This is an informal argument but the correlation shows some support for the idea that (d)

may be related to residuals, while this shows the idea is worth pursuing, 5.2 also shows huge

outliers / high influence points that negatively affect this relationship.

(a) Absolute residual vs d (b) Effort difference vs d

Figure 5.2: Relationship between distance (d) and absolute residuals and efforts difference

Then the difference between the donor’s solutions (Y1 − Y2) is determined and recorded as

73

Rationale and the assumptions of ABE Chapter 5

solution distance. This is used to answer RQ2, which is exploring the existence of a

relationship between the absolute residuals and the difference between the donor’s solutions.

While Figure 5.2 shows positive correlation this is not enough to infer interaction effects. Next

is to determine whether the main effects and interaction effect between d and prediction errors

are statistically significant through analysis of variance (ANOVA).

A two-way analysis of variance which is an extension of the one-way ANOVA, is used to

examine the influence of two different categorical independent variables on one continuous

dependent variable, and also assessing if there is any interaction between the independent

variables. I use a two-way ANOVA to understand whether there is an interaction between

solution distance (d(d1,d2)) and donors distance (d) on absolute residuals of effort esti-

mates, where solution distance and donors distance are independent variables, and the

absolute residuals are the dependent variable. Table 5.3 shows the results analysis of variance

and eta squared for the Desharnais data set.

Table 5.3: Desharnais ANOVA results and Effect size eta squared

Based on the p-values and a significance level of 0.05, for the results of Desharnais data set,

based on Table 5.3 we can conclude the following:

· The p-value for solution distance is 0.66389 and R2 = 0.23%. This evidence does not

support a relationship/interaction between solution distance and different absolute

residuals, R2 is also too low.

· The p-value for donors distance (d) is 0.00191 and R2 = 12.3%, indicating that

the levels of d are associated with different absolute residuals, although only 12.3% of

variation in the response is explained by the model.

· The p-value for the interaction between donors distance * solution distance is

0.67838, indicating that the relationship between donors distance and absolute residuals

74

Rationale and the assumptions of ABE Chapter 5

does not depend on the value of solution distance.

Because the interaction effect between donors distance and solution distance is not sta-

tistically significant, we can interpret the main effects without considering the interaction

effect. Table 5.3 includes a model fitness for Desharnais dataset, showing about 12% of the

total variance can accounted by donors distance. So there are going to be limits as to what

can be achieved however Cohen would consider an η2 eta-square of 0.12 as tending to a large

effect [32]. Results from one dataset may not be enough, especially as the data has an outlier

therefore the same test was performed on the Finnish data set. Table 5.4 shows the results

analysis of variance and eta squared for the Finnish data set.

Table 5.4: Finnish ANOVA results and Effect size eta squared

Based on the p-values and a significance level of 0.05, for the results of Finnish data set based

on Figure 5.4, we can conclude the following:

· The p-value for solution distance is 3.35e-05 and R2 = 3.6%, this evidence does

support a relationship/interaction between solution distance and different absolute

residuals.

· The p-value for donors distance (d) is 0.000973 and R2 = 4.1%, indicating that the

levels of d are associated with different absolute residuals.

· The p-value for the interaction between donors distance * solution distance is

0.772829, indicating that the relationship between donors distance and absolute resid-

uals does not depend on the value of solution distance.

Again for the Finnish dataset the results show that donors distance (d) can be associ-

ated with different absolute residuals, accounting for a total variance of about 3%. Also

the interaction effect between donors distance and solution distance is not statistically

significant, therefore for both datasets the main effects can be interpreted without consider-

75

Feature-space Partitioning Approach Chapter 5

ing the interaction effect. Now with the relationship between absolute residuals and donor

distances established the next section describes feature-space partitioning approach.

5.4 A Feature-space Partitioning Approach

The question now is, how to identify these different ‘local’ regions when presented with a new

case to predict? The concept of ‘local’ regions in this research refers to the region in which

the distance between two donors would belong to, i.e. if region 1 is for distances between 0

and 0.5 then distance equalling or less than 0.5 would belong to region 1 — therefore use the

weight set allocated to region 1. All these distances are with respect to the target case. The

next section discuses a mechanism that can be used.

5.4.1 Feature Space Partitioning

Recall from previous section the relationship between d and absolute residuals was estab-

lished. This is a negative correlation whereby the increase in d results in reduced estimation

accuracy. The effect size on Desharnais is large (0.12) while it is small (0.025) on Finnish data

set, therefore there are limits on what can be achieved based on this relationship. The ques-

tion now is how to choose which weight set to use for each new case based on this relationship.

The information available for each new case c is the distance d between its candidate donors

and difference between their efforts. Recall also that from section 5.3 that for both data sets

only d could be associated with the absolute residuals, note this association was not very

strong. However d may be used in a meaningful way to identify different regions/partitions.

This will be used as follows;

The weight set obtained using k = 2, is used as the base weight set to find d between all

cases in the case base. The absolute residuals for each case obtained using different weight

sets are paired with their corresponding d for the weight set generated with k = 2. — based

on principle of Case-Based Reasoning (CBR) — one can assume that donors with a ‘small’ d

will have similar solutions and thus they are providing enough information for the prediction,

hence the target case will use the weight set computed with k = 2 that is Wk is W2. On

76

Feature-space Partitioning Approach Chapter 5

the other hand, when the two donors are dissimilar (i.e., they have a ‘large’ d), they are

unlikely to provide enough information to the target case’s prediction and it will need to gain

more information if we don’t want to result in poor performance; therefore, the prediction of

the target case will be done using the weight set computed with a higher number of donors

(k = 3) say W3. The use of W3 changes the feature landscape, new donors are now available

to the target case. Figure 5.5 shows the scatter plot of d for each case in the case base for

the 2 different weight sets W2 and W3.

Figure 5.5: Scatter plot of d between first two donors for W2 and W3 for Desharnais data set

From Figure 5.5 one can clearly see that the distances between donors obtained using W3 are

smaller than the distances obtained using W2; these have been clustered into two ellipses using

the method car::ellipse detailed in [44] using the R package stat ellipse. Looking at

77

Feature-space Partitioning Approach Chapter 5

the ellipses could lead one to be tempted to conclude that W3 would provide better accuracy.

Therefore, the absolute residuals for both weight sets W2 and W3 are plotted (see Figure 5.6)

to see if and when W3 performs better than W2 in relation to the distance (d) between the

donors.

Figure 5.6: Comparing weight set 2 and 3 for Desharnais data set

Technique FSW2 means prediction using W2 while FSW3 means using W3, from Figure 5.6

one can see that FSW2 is ‘better’ than when the distance d between the donors is less than

0.05 there after it would be better to use FSW3. This supports the assumption that if the

distance between the donors is small using two donors is enough to get good estimation

accuracy and increasing the number of donors as the d increases.

78

Feature-space Partitioning Approach Chapter 5

One can easily generalize this strategy to whatever number of available weight sets by

specifying the degree in which we will consider two donors to be dissimilar, using a more

“information-dense” weight set (one generated using a further donor) when the distance in-

creases. The question is given d of the new target case how do you decide between W2 and

W3? That is, how to identify the 0.05 value for each dataset, since if the d for a target is

greater than 0.05 we would use W3 else we would use W2.

A straightforward way to determine the ranges of distances d obtained for the target case for

which to apply a “higher-order” weight set will be to use quantiles. An illustration for this is

shown in Figure 5.7 for Desharnais data set for an example using only two weight sets. The

question is when presented with a target case how do you choose the weight set 1 (W1) or

weight set 2 (W2)?

79

Feature-space Partitioning Approach Chapter 5

Figure 5.7: MAR’s changes as a different distances’ quantile of selection is chosen.

In Figure 5.7 the weight set selection strategy is shown: on the x axis I reported the

distances’ quantile — based on the weight set 1 — used to perform the selection within the

dataset; I chose to employ quantiles rather then absolute distance values (as in figure 5.2) in

order to consider the distribution of distances of each target case, which might be sensibly

different if one employs a validation strategy based on moving windows (see chapter 6).

Given a sorted set S = {sj : sj 6 sj+1} (S is set of sorted quantiles), quantiles are cutpoints

used to split the set in equal sized groups; one can split S in q ∈ N portions and compute

80

Feature-space Partitioning Approach Chapter 5

the values marking each range using the operator

P(S, r, q) := frac

(
r(|S|+ 1)

q

)(
sb r(|S|+1)

q
c+1
− sb r(|S|+1)

q
c

)
+ sb r(|S|+1)

q
c,

which represents the value of the r-th q quantile of the set S, where frac(·) returns the decimal

portion of its argument.

On the y axis I reported the Mean Absolute Residual for the whole predictions’ set I obtained

in relation to the chosen selection (on the x axis); this way we can easily observe how the

choice of different selection strategies affect the performance of our algorithm. Selecting the

first quantile (0) would result in always selecting the predictions obtained by the weight set

1 for all the cases in the dataset; moving on to the x axis by selecting a greater quantile e.g.

5 will result in using the predictions obtained by the weight set 2 only for those cases with

a small distance between their first two donors which fall in quantile lower or equal than 5,

and the ones by weight set 1 for the rest. Finally, selecting the maximum quantile (30 in

this case) means that you are using the predictions obtained by weight set 2 for the whole

dataset, since given any distance between first and second donor, this will always fall in a

quantile lower or equal than 30 when q = 30.

The proposed selection strategy works by going through the case base and checking the

distance between each available case’s first two donors: the distances might belong (1) to the

same dataset for all the cases (i.e. strategy a prediction model, e.g., ArchANGEL-X — see

full description in section 5.6 — would use to do the prediction using the entire dataset) or (2)

to different datasets (e.g., the validation strategy based on moving windows, see chapter 6);

in the former case (1) one might choose a value (e.g., 0.005 in Figure 5.6) which will be used

to select whether the predictions will be performed using weight set 2 — when the distance

between the target case’s first two donors is lower than that – or 3 — when it is greater than

that. This is a sound strategy since the distances belong all to the same dataset and there

is no need to normalize them; given a set of target cases whose distances between first and

second donors belong to different sets (2) one needs to normalize the selection of the cutting

point in order to be consistent across all the given cases and evaluate the performance of the

proposed strategy for the whole available case base. This is done by using percentiles: by

81

Feature-space Partitioning Approach Chapter 5

selecting the weight set to be used based on the percentile the distance falls into in relation

to the given distances’ set provides a uniform strategy of selection which is independent from

the chosen set.

In order to detail the proposed strategy, let D = {ci} be our case base (donors) and

donor(c, i) := ci be the i-th donors of target case c ∈ D, namely

{c1, . . . , ci, . . . , cm where cj ∈ D \ {c} ∧ d(cj−1, cj) 6 d(cj , cj+1) ∀ 1 < j < m} ,

where d(ci, cj) measures the distance between case ci and cj using the weight set 1; we can

define the set

~d2 = {di : di = d(donor(ci, 1),donor(ci, 2)) ∧ di 6 di+1 ∀ 0 6 i < n}

as the sorted set of the distances between their first and second donor using weight set 2.

Let ȳ1
c and ȳ2

c be the prediction for any target case c using respectively the weight set W2

and W3; our algorithm is outlined in the following procedure, that takes as arguments the

case to predict c, the number of quantiles to use q ∈ N, the case base D and the sorted set of

the distances between each case’s first and second donors, this is detailed in Algorithm 5.1:

Algorithm 5.1 Validation strategy

1: function FswVal(c, q, D, ~d2)

2: for 0 6 i 6 q do

3: D̄i ←
{
d ∈ D : d(donor(d, 1),donor(d, 2)) > P(~d2, i, q)

}
4: end for

5: r∗ ← argmin
06i6q

(∑
d∈D̄i

|yd − ȳ2
d|+

∑
d/∈D̄i

|yd − ȳ1
d|

|D|

)
6: if d(donor(c, 1),donor(c, 2)) 6 P(~d2, r

∗, q) then

7: return ȳ2
c

8: else

9: return ȳ1
c

10: end if

11: end function

82

Feature-space Partitioning Approach Chapter 5

Function FswVal begins by computing the set D̄i of cases whose distance between first and

second donors falls into a quantile lower or equal than i, for each of the possible q quantiles

(0 6 i 6 q) for any given q ∈ N; this means that D̄0 ≡ ∅ and D̄q ≡ D. Then it selects the best

quantile r∗ minimizing the Mean Absolute Residuals of all the cases, using the prediction

obtained with the weight set 1 for those whose distance falls into a lower or equal quantile and

1 for the rest. Finally, it will predict case c using the weight set 2 if the distance between its

first two donors falls into a quantile equal or lower than r∗, using the weight set 1 otherwise.

Now that we have established how to select which weight set to use. The question now is

how to create multiple weight sets (i.e., W1 and W2) in a meaningful manner i.e., the weights

are not just an ensemble of sets from different algorithms used without any justification or

related to the fundamental principle of CBR, which is the focus of this thesis. The next section

describes ways of obtaining different weight sets from one weighting algorithm, exploiting the

fundamental principles of ABE.

5.4.2 Weight Sets

Currently a single weight set is generated for the whole dataset as established in the literature

review. This seems inadequate since the case base contains independent cases. Predicting

individual efforts in a case base ideally would require a different weight set for each case, a

weight set that fits each case’s specific features. In other words, independent cases should

demand a different weight set for their effort prediction. Since this is not feasible, one could

split the case base into virtual partitions and apply a different weight set on each partition.

How can one generate different weight sets for ABE that improve on the previous one? That

is, non-random weight sets which exploit the fundamental principles of CBR. This weight

sets should at least in theory result in improvement in terms of estimation accuracy. The

next weight set must be offering some improvement over the previous. Using the principle of

CBR “similar cases have similar solutions” hence if one donor (k=1) is sufficient to be used

to produce a good prediction then it is used, and when k=1 is not good enough to produce

reasonably estimates two donors (k=2) are used, two donors provide more information that

help improve estimation accuracy and so on. The other reason is that if the feature space

83

Feature-space Partitioning Approach Chapter 5

seems ill behaved / lots of variance then slowly moving to a more conservative strategy i.e., as

k increases the prediction will tend towards using a sample mean (which could be improved by

using one of the adaptation strategies discussed in chapter 2 such as weighted sample mean).

This is also reflected in literature where researchers use different k values for different data

sets [81].

Therefore, different weight sets can be generated by using a different number of donors

progressively, thus resulting in multiple weight sets: for this study the first weight set W2

is generated using two donors (k = 2) for each case, the second one W3 is obtained using

three donors (k = 3), and so on until W5 (k = 5). Generally adding a new one will give no

significant improvement, since on average it won’t be similar enough to the target case to

be of any benefit. The other reason is that, from the literature review reported in chapter 3

none of the selected studies used (k > 5)

The rationale for using multiple weight sets approach follows on the premises of ABE, where

the use of a single specific weight set in a prediction will generate a poor estimate when the

knowledge is limited. When the donors used to predict a target case are dissimilar (i.e. they

are distant from each other, following definition of cases distance) limited useful knowledge.

Therefore, a different weight set will be employed if it will provide more information where

the current weight set underperforms: incrementing the number of donors will then provide

more information in the prediction of a target case in the currently underperforming cases,

since it had only a limited amount of information available (i.e., a smaller number of donors).

Furthermore, many well-known datasets such as Desharnais heavily used in the literature

show different accuracy performance using a different number of donors (k = 1 . . . 5) [153],

depending on their own morphology each data set is suited to a different k. Joining different

datasets together to build a bigger case base (such as the International Software Benchmark-

ing Standards Group (ISBSG)) would result in the need to use a different number of donors

for each dataset’s corresponding segment to obtain a good overall estimate. In the previous

subsection the case of generating different weight sets for the whole dataset was made, each

time using an increasing number of analogies. The question now is how to search for these

weights to populate the weight set. The next section presents an algorithm used to generate

84

The feature weighting algorithm Chapter 5

different weight sets varying the number of donors, implemented in ArchANGEL.

5.5 The feature weighting algorithm

The algorithm used in this study is essentially a greedy search algorithm with some modifi-

cations. This approach was chosen for three reasons. First, studies such as [85, 86] and [167]

show that, it may not serve any purpose to use a complex search algorithm if the problem

can be solved effectively using a simple algorithm (recall Ockham’s razor) such as a greedy

search algorithm suffice. Second, greedy search strategies seem to be computationally good

and robust against overfitting [162]. Finally, a feature weighting algorithm presents the high

end strategy for analogy based effort estimation strategies.

5.5.1 Supervised Feature weighting

The proposed algorithm uses the Feature Sequential Weighting (FSW) technique, employing

supervised machine learning and the wrapper principles discussed in chapter 2. The weight

search begins with an empty set of features weights and weights are progressively incorporated

into a weight set. Every time a weight is assigned to a feature the accuracy of the predictions is

evaluated. See Figure 5.8 which illustrates the work flow of a typical forward feature weighting

algorithm used in ArchANGEL to evaluate possible combinations of input feature weights

using jack-knifing, with Mean Absolute Residual (MAR) used as the evaluation criteria for

its prediction accuracy, the system works in a greedy search fashion.

The Algorithm 5.2 works as follows: the objective is to find some vector such that each weight

wk satisfies 0 6 wk 6 1 and it yields a feature space that allows identification of better donors

(minimizing Euclidean distance), given m cases and p features (see Figure 5.8 and Equation

5.1). This is an updated version of the scheme I proposed in [153].

Similarity(ct, cs) =

p∑
k=1

σ(ctk, c
s
k)× wk (5.1)

where cs is the source case, ct is the target case, σ is the features similarity measure, p is the

number of features and wk is the kth feature weight where 1 6 k 6 m. The feature weights

85

The feature weighting algorithm Chapter 5

set: wk ∈ { 0
i−1 ,

1
i−1 ,

2
i−1 , . . . ,

i−1
i−1}, where i = number of values for w such that i > 2. This is

to cater for the special case i = 2, is , Feature Sequential Selection (FSS), whose feature’s

weights are: wk = 1 ∨ 0 i.e., a feature is either included or excluded.

Is it the

end of search

space?

Save current

weights vector

Weights Selection algorithm (FSW)

Feature weight

Distance Matrix

Generation

Case Extraction

Accuracy

Evaluation

(MAE)
Is MAE <

previous smallest

MAE?

Possible weights set

0/(i - 1), 1/(i - 1), 2/(i - 1), . . ., (i - 1)/(i - 1)

One case at

a time

Weights

evaluation

No

Yes

Initialize: weights via Random

and Heuristic

Optimal weights

vector

Yes

1

2

3

4 5
6

Figure 5.8: Feature weighting adapted from [152]

86

The feature weighting algorithm Chapter 5

Algorithm 5.2 Feature Sequential Weighting (FSW)

Require: Historical effort estimation data sets

Ensure: feature weight vector

1: Initialization :

2: Ws ← weightsSet, p← #features, n← times . All other feature’s weights are set to 0

3: w ← {Ws[i], 0, ..., 0} . Starting with the first weight

4: for i ∈Ws do

5: for j 6 p do

6: if M(Wj [i]) < M(W) then

7: if s 6 n then

8: W ← argmin
w∈{Wj [i],Wj [g(i)],Wj [g−1(i)]}

M(w)

9: s← s+ 1

10: else

11: W ←Wj [i]

12: end if

13: end if

14: end for

15: end for

16: return W

Step 8 in the algorithm 5.2 is a modification introduced to reduce effects of local minima, this

achieved in the form of feature re-weighting discussed in detail in the following subsection.

5.5.2 Feature re-weighting

Recall from chapter 2 that greedy search strategies are computationally good and robust

against overfitting [162]. However, greedy search algorithms are also prone to converging

to a local minima or maxima [50]. One approach to overcoming this is by re-weighting the

features using function g. This function g could employ addition, subtraction, division and

87

An eXtension for ArchANGEL Chapter 5

multiplication to change the feature weight using predetermined constants or dynamic values.

W ← argmin
w∈{Wj [i],Wj [g(i)],Wj [g−1(i)]}

M(w)

That is, instead of accepting the first weight that results in improvement one would check the

accuracy when the weight is increased or decreased using function g i.e., the weight set W

will be which ever is has the minimum error among Wj [i], Wj [g(i)] and Wj [g
−1(i)]. This not

only increases the number of weights available (improving granularity) it may also reduce the

epistasis effect. The next section looks at how this feature weighting strategy is implemented

in ArchANGEL.

5.6 An eXtension for ArchANGEL

The proposed algorithm extends the basic ArchANGEL framework by including multiple

weight sets and a mechanism that determines which weight set to use for each prediction.

I call this method ArchANGEL-X, i.e., an eXtension for ArchANGEL. The ArchANGEL-X

approach can be considered as a pre-process and functionality extension in ArchANGEL tool.

The steps are as follows for any data set:

1. increment k by steps of 1 to generate the weight sets W2,W3,W4 and W5 (see previous

section for details on why stop at k = 5) using the FSW algorithm 5.2.

2. Generate the sets of distances D2, D3 and D4 using respectively W2,W3 and W4 for

each case in the case base along with its residuals with each weight set.

88

An eXtension for ArchANGEL Chapter 5

Algorithm 5.3 ArchANGEL-X prediction strategy using FSW

1: function ArchANGEL-X(c, q, D, ~d2)

2: for i ∈ ~d2 do

3: D̄i ← {d ∈ D : d(donor(d, 1),donor(d, 2)) > i}

4: end for

5: d∗ ← argmin
i∈~d2

(∑
d∈D̄i

|yd − ȳ2
d|+

∑
d/∈D̄i

|yd − ȳ1
d|

|D|

)
6: if d(donor(c, 1),donor(c, 2)) 6 d∗ then

7: return ȳ2
c

8: else

9: return ȳ1
c

10: end if

11: end function

3. Generate the residuals of each case in the case base using W5 (there is no need for D5).

4. Use D2 to determine where the weight set W2 is most suitable by going through the

case base D and checking the distance between target case’s first two donors. If the

distance between the target case’s first two donors is lower than d∗ — W2 will be used

to make the prediction. Otherwise use D3 to determine where the weight set W3 is

most suitable for the remaining cases, and so on until W5 will be the weight set used to

make the predictions for the last set of remaining cases. The selection strategy works

by going through the case base D and checking the distance between target case’s first

two donors. This is outlined in Algorithm 5.3:

Predicting effort for a target case is as follows. First determine its d using W2, check which

range this d belongs and use the appropriate weight set W? to predict the effort. In summary,

ArchANGEL-X enables user to:

· Automate the entire feature weight assignment process

· Efficiently search and generate multiple weight sets

89

Summary Chapter 5

· employ multiple weight sets for single data set

· Identify the most appropriate weight set for the target case

ArchANGEL-X at the very least would provide the estimation equivalent to best accuracy of

two weight sets when using a single weight set if using multiple weight sets does not improve

estimation accuracy.

5.7 Summary

There is empirical evidence in the literature indicating that feature weighting improves esti-

mation accuracy. This led to a number of software engineering researchers to consider the use

of feature weighting in order to improve analogy-based estimation. This chapter described

a novel approach to the estimation of software development effort by searching for multiple

weight sets and identification of the most appropriate weight set for the current case. The

next chapter describes how the ArchANGEL tool is used as part of an empirical analysis

comparing the accuracy of FSW to FSS, CBR and Näıve approaches.

90

Chapter 6

Empirical Evaluation of FSW for

Analogy Based effort Estimation

91

Experimental Framework Chapter 6

A variety of factors could be considered when assessing prediction systems, however arguably

the most important and certainly visible factor is the relative accuracy of predictions obtained.

Therefore any new estimation technique must justify itself first and foremost by the relative

accuracy of its results.This chapter presents empirical results obtained using the ArchANGEL

tool employing the Feature Sequential Weighting (FSW) strategy to predict project effort for

483 real life software development projects from 2 different industrial data sets.

6.1 Experimental Framework

Software effort estimation experiments involve three important points: (1) choice of feature

weighting approach (estimation technique), (2) choice of performance metrics and (3) choice

of data sets to be used. All these points are carefully considered based on the aims of the

study. The framework presented in this chapter concentrates mainly on these three points

for Software Effort Estimation (SEE). This is used at least partly to answer the research

questions of this work. Throughout this study an Intel CORE� i5 vPro� PC was used to

run R [134] and the ArchANGEL tool.

6.1.1 Choice of feature weighting approach

As explained in Chapter 5, one of the objectives is determining whether different weight sets

for ‘local’ regions generally improve effort estimations given by a single weight set for the

entire data set for analogy-based estimation. With that aim, three feature weighting available

to Analogy-Based Estimation (ABE) were used. The three feature weighting approaches (as

described in chapter 4) are:

1. Case-Based Reasoning (CBR) - it might be thought of as the baseline well-established

technique and has been applied since the mid 1990s [150]. All features are equally

weighted to predict the effort.

2. Feature Sequential Selection (FSS) - While CBR uses all features equally weighted, FSS’

feature weights are either 0 ∨ 1. FSS excludes features that do not contribute (irrelevant

92

Performance metrics Chapter 6

features) to the predicted value. It has generally been found to be an improvement over

CBR [153].

3. FSW - it employs continuous, non-negative weights [153] to predict a new effort using

a more efficient algorithm to search for individual feature weights.

These methods present a range of possible strategies for analogy based effort estimation. A

trivial or näıve approach is included in order to determine the extent to which the more

sophisticated techniques offer any value, in other words a baseline I expect to be able to

improve upon.

In passing, note that in previous chapters the dangers of not using proper benchmarks were

demonstrated and how researchers can be unaware that their methods in fact perform worse

than guessing [149]. ABE using traditional CBR is the baseline technique and has been

applied since the mid 1990s [150]. Subsequently FSS has generally been found to be an

effective improvement over ABE; from my systematic review discussed in chapter 3 recall I

have found that 16 out of 17 relevant primary studies reported positive results [153]. Finally

FSW is a recent improvement to FSS [152] that uses a more efficient algorithm to search for

individual feature weights as discussed in chapter 5.

For this experiment a leave-one-out cross-validation (LOOCV) procedure is employed [39].

Although computationally intensive for larger datasets when using a wrapper (because a new

predictor has to be built for each case or project in the data set being held out) there is the

advantage of the results being deterministic. By comparison, m×n fold cross validation will

depend upon the random allocation of cases to the individual folds, thus there is often some

variability in the results.

The next section looks at performance metrics used to assess the accuracy of FSW.

6.1.2 Choice of performance metrics

In order to assess the accuracy of cost estimation techniques, various performance met-

rics have been considered. Typically statistics such as Mean Magnitude of Relative Er-

ror (MMRE), Median of Magnitude Relative Error (MdMRE), PRED(p) and Standardised

93

Performance metrics Chapter 6

Accuracy (SA) [149] have been used as the accuracy statistics for prediction systems. MMRE

is one of the most widely used evaluation criteria for measuring the performance of competing

software prediction models despite its flaws [153]. The basic metric in MMRE is Magnitude

of Relative Error (MRE), defined as follows [34]:

MRE =
|(yi − ŷi)|

yi
(6.1)

MMRE is given by:

MMRE =

∑n
1 MRE

n
(6.2)

where yi is the ith value being predicted, while ŷi is its estimate, yi − ŷi represent the ith

residual and finally the number of cases in data set D is represented by n. Small values for

MMRE indicate low level of estimation error. Unfortunately MMRE has been shown to be

a biased estimator of central tendency of the residuals of a prediction system because it is

an asymmetric measure [43, 89, 126]. MMRE will be biased towards prediction systems that

under-estimate, leading to over-optimism [75] since MMRE penalises overestimation more

than underestimation. See Table 6.1 for an example where MRE leads to a conclusion that

shows the prediction of project B being better than the prediction of project A, while in

reality the absolute error of these two predictions is equal (80). The MRE values imply the

prediction of project B is about 100 times better than the prediction of project A.

Table 6.1: Example to illustrate MMRE problem

yi ŷi Residual (yi − ŷi) Abs residual |yi − ŷi| MRE % |(yi−ŷi)|
yi

× 10

Project A 20 100 -80 80 800

Project B 100 20 80 80 80

The median of all the MREs are used to calculate MdMRE i.e. MdMRE = median(MRE).

While MdMRE exhibits similar pattern to MMRE but it is more likely to select the true

model especially in the underestimation cases since it is less sensitive to extreme outliers [43]

The PRED(p) is the percentage of all predicted cost values that fall within p% of the actual

94

Performance metrics Chapter 6

cost, and p = 25% is common used value. PRED(p) is defined as

PRED(p) =
l

n
, (6.3)

where n represent the number of all projects and l denotes the number of projects whose

MRE is less than or equal to p [104]. PRED(p) is not always suitable to compare competing

software prediction models, because it does not make any distinction between the models

that fall outside the p% range. For example if p = 25%, a model whose majority of values

lie at 26% of the actual cost would be ranked the same as a model whose values lie at 260%

of the actual cost, since both of them are outside the set p.

Due to the aforementioned issues for MMRE, MdMRE and PRED(p), Shepperd and Mac-

Donell proposed a new framework for evaluating prediction systems based upon an unbiased

statistic i.e. SA, testing the result likelihood relative to the baseline technique of random

‘predictions’, i.e. guessing, and calculation of effect sizes [149]. Their evaluation is based on

Mean Absolute Residual (MAR): ∑n
1 |(yi − ŷi)|

n
(6.4)

where yi is the ith value being predicted, while ŷi is its estimate, yi − ŷi represent the ith

residual and finally the number of cases in D represented by n. MAR unlike MMRE is not

based on ratios therefore it is unbiased. The Standardised Accuracy measure proposed by

Shepperd and McDonell [149], is given as:

SAPi =

1− MARPi

MARP0

× 100 (6.5)

The interpretation of SA is that the ratio represents how much better is the predicting system

Pi than random guessing P0, where MARP0 represent the mean of a large number of runs of

random guessing. The proposed framework can be used in comparing competing predicting

systems, providing a preferential order from binary preference relations such as P1 ≺ P2 over

the set P of candidate prediction systems. [149]. This preference relation may be interpreted

as saying P2 is preferred over P1 or P1 is less preferable than P2.

In order to establish these preference relations, the following three fundamental questions

must be addressed:

95

The Data Sets Chapter 6

1. Is the performance of the proposed system better than random guessing?

2. Are the results statistically significant?

3. Is the effect size large enough to justify preferring one system over the other in practice?

After addressing these questions one is in a position to evaluate and validate any prediction

method[152].

6.1.3 Choice of data sets

The analysis presented in this thesis is based on two software project effort data sets (see

Table 6.2) namely Desharnais [37] and so-called ‘Finnish dataset’ used in [86]. These data

sets were chosen because:

· Accuracy metric used : I preferred data sets used in studies that employed the Shepperd-

MacDonell method [149] which uses Standardised Accuracy or at least studies that make

the MAR available. This will enable comparison of results based on SA. Both these

two datasets meet this condition. Recall that in the previous section I discussed issues

related to the popular metrics such as MMRE, therefore not used in this thesis.

· Widely used in feature subset selection for CBR: Desharnais is one of the most widely

used in order to estimate the software development effort. A review by Sigweni [153]

on ABE models employing feature weighting, found that 15 out of the 19 selected

studies used the Desharnais data set. The Finnish data set is also widely used in effort

estimation studies e.g. [85, 86, 154].

· Representative: In order for the data sets to be representative it is helpful if they are

of different sizes. Therefore one of the data set should be small — i.e. have a small

number of cases and features — while the other should be large — therefore having a

large number of cases and features. The Finnish data set would be representative of

larger software engineering data sets (408 cases and 44 features), since software project

effort data sets usually contain relatively few cases, typically less than 50 features and

almost invariably under 500 cases [85]. Therefore the Finnish data set used in this

96

The Data Sets Chapter 6

study is at the large end of this spectrum. Whilst the Desharnais data set with only 9

features and 77 cases would represent small to medium data sets.

Table 6.2: Selected data sets

Data set No. of No. of Min effort Max effort Avg. effort Std. dev.

cases Features effort

Desharnais 81 9 546 23940 5046.31 4418.77

Finnish 408 44 0 63694 5006.3 7314.49

The next two subsections provide detailed descriptions and explanation on how these data

sets were processed.

Desharnais data set

The original Desharnais data set consists of 81 software projects obtained from Canadian

software houses over 3 different development environments, published by Desharnais [37].

Unfortunately, 4 projects contained missing values therefore excluded from the original 81

resulting in 77 projects used in this study. This data set is described by 9 attributes/features,

one dependent attributes which is development effort measured in ‘person-hours’ (the feature

to be predicted), and 8 independent attributes. ABE does not deal well with missing values

therefore these 4 cases would lead to misleading estimation. The following section describes

the structure of Desharnais data set.

· Features: Desharnais data set has nine features used to describe a project. Only one

of the features (Language) is categorical while the rest are numerical. These features

are fully described in Table 6.3. The actual effort in person-hours is the dependent

variable.

97

The Data Sets Chapter 6

Table 6.3: Desharnais data set features

Feature Description

TeamExp Team experience

ManagerExp Manager’s Experience

Length Length of project

Transactions Number of transactions

Entities Number of entities

AdjustFctor Sum of complexity factors

PointsAdjust Number of adjusted

function points

Language Programming language

Effort Development effort

· Preprocessing: Detection and removal of outliers is often necessary when building

machine learning models but since my benchmarking studies did not remove them. I

did not remove any outliers from my selected data set. The other reason is that it is

not always a good idea to remove outliers as it will not always lead to improvement of

performance for the model, or could artificially improve the performance through local

optimisation but at the expense of generalisation.

· Missing values: Out of 81 projects in the Desharnais data set, four projects had

missing values. Four projects represent is a small number (about 5% of the total

number of projects). Since several previous studies (such as [120] and [86]) have removed

these projects, I decided to remove them from the data set since it enables proper

benchmarking.

Finnish data set

The Finnish data set is made up of project data collected by the software project management

consultancy organisation STTF Ltd. The Finnish data set contains 407 cases described by

98

Method for Accuracy Estimation Chapter 6

44 features.

· Features: The original Finnish data set had 90 features. The data set used in this

study is the same data set used by [85], which removed some features due to missing

values. The features are a mixture of categorical, continuous and discrete. These

features are fully described in Table B1 in Appendix B. The actual effort (Worksup) is

the dependent variable.

· Preprocessing: For the same reasons given for Desharnais data set I did not detect

or remove any outliers on the Finnish data set.

· Missing values: Out of 407 projects in the Finnish data set, none had missing values,

but two of them had the actual effort attribute being equal to zero, therefore I removed

these two projects. Zero effort would affect my analysis, as I would not be able to

calculate relative errors, besides two projects represent less than 1% of the total number

of projects.

6.1.4 Method for Accuracy Estimation

A majority of software effort estimation studies use historical datasets to build and validate

models for estimating software development effort. Almost all of them assign projects to

training and testing sets without any consideration to the date in which the projects were

completed [108]. Therefore it is likely that the training set used to build a model to esti-

mate the effort for a given target case includes cases that have not even started at the time

the prediction of the target case is commenced [108]. However, in a real life setting, only

completed projects can be considered when coming up with an estimate, i.e., one cannot

consider future projects. Thus there is an evident mismatch between normal industrial and

research practice [108]. However this has not been completely ignored software engineering

community: studies such as [6, 100, 107] considered chronological splitting their data into

training and testing sets. The notion of a “moving window” is brought about as time passes,

new projects enter the data set, and old projects are removed as the window moves past

them (see Figure 6.1). In particular, if it is assumed that recent cases better reflect current

99

Method for Accuracy Estimation Chapter 6

development tasks and practice, while past cases become less relevant over time, it might

make sense to discard older cases [108].

Figure 6.1 shows the projects in the case base ordered using their completion date. Therefore

C1, denotes the earliest project (i.e., completed first). In terms of ABE, for example using

window size 3, window 1 would be used to predict the effort for case C4, and when C4 is

completed and its effort now established it is then added to the case base (window 2) and

available to be used to predict the effort for case C5, note C1 is now considered less relevant

therefore it is excluded as shown in window 2, this also maintains the window size of 3. The

next section discusses how these windows can be defined.

 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 ……………………………………………... cn

 c1 c2 c3

 c2 c3 c4

 c3 c4 c5 cn-3 cn-2 cn-1 ……………………………………………………………………………………….

Data set

Window 1

Window 2

Window 3

Figure 6.1: Evaluation data sets

6.1.5 Moving windows approach

A moving window might be defined in two ways, by the number of cases included per window,

or by the period each window covers. With the former, only a fixed number (m) of the most

recent cases are retained. With the latter, the size of the window is based on a fixed time

span.

Each approach has potential benefits and limitations. A window based on a fixed number

of cases could have a very small time span if several projects are completed within days of

each other and conversely the time span could be very large if projects are completed very

far apart say several years apart. If the time span is too large earlier cases that are perhaps

irrelevant to current case would have to be included so that the window is the correct size

i.e., the choosen m. On the other hand, a window based on a fixed number of projects can

be scaled up or down to include enough cases needed for good analysis [107].

100

Method for Accuracy Estimation Chapter 6

For a window based on time period, only projects within the defined period are included,

therefore the number of cases could vary. One can only hope that there are enough projects

to provide good estimate, or else there must be a trade-off between degree of recency against

the number of cases included in the window. For a window based on time span can be scaled

to include only those projects that reflect recent software development practices.

Ultimately though the choice of approach adopted may be informed by the data sets available:

tables 6.5 and 6.4 show the distribution of projects completed per year for the Finnish and

Deshairnais data sets used in this work.

Table 6.4: Number of projects completed per year for Finnish dataset

Dataset 1978 -84 -85 -87 -88 -89 -90 -91 -92 -93 -94 -95 -96 -97 -98 -99 2000 -01 -02

Finnish 1 1 1 3 13 15 31 41 48 33 22 6 4 23 58 67 34 4 3

The numbers of completed projects per year for Finnish data set range from 1 to 67, therefore

if the windows are constructed based on this time period the windows will be very dispro-

portionate. Although not to the same extreme, a similar effect can seen on the Desharnais

(Table 6.5) data set.

Table 6.5: Number of projects completed each year for Desharnais dataset

Data set 1983 1984 1985 1986 1987 1988

Desharnais 3 5 22 28 14 5

It is for this reasons that a window based on time period would not be suitable for these data

sets. Therefore the second approach is used in this study, where a window contains the N

most recently completed projects. The next section discuses how N could be determined.

Window sizes

We need to establish the smallest amount of data that seems usable, for the smallest window

size. Humphrey [62] suggested that windows of size 3 may be usable if they exhibit a reason-

able correlation between size and effort i.e., (R2 > 0.5). The other point to consider is the

101

Method for Accuracy Estimation Chapter 6

number of training cases. Kitchenham et al. [88] suggested that at least 30 training cases

must be used. The size of windows is also limited by the available data. Earlier on the set of

completed projects is small, therefore one can only have smaller windows. However, as the

data set becomes large one might consider windows of larger size. In order to see the effect of

window size in addition to chronological arrangement of cases this study experimented with

window sizes ranging from 3 cases to 45. This would cover the window size m recommended

by [62] and the number of training cases suggested by [88].

Evaluation data sets

When evaluating the difference between multiple approaches (among windows of different

sizes or between using windows against not using them), it makes no sense to include only

cases available to all approaches. For example window sizes 3, 5, 10 can only be compared to

window size 45 on the 46th case onwards in the sorted case base. Therefore, as the window

size increases, the available set of evaluation cases decreases. This places an upper bound

on the window sizes that could be investigated. The absolute limit leaves only one case for

evaluation. Table 6.6 shows the evaluation data sets. The cross window size comparison for

Finnish data set can be done on 361 cases and for Desharnais on 32 cases, resulting in a loss

of 45 cases from each data set.

Table 6.6: Number of sub data sets per window size for both data sets

data set size 3 size 5 size 10 size 15 size 30 size 45

Finnish 403 401 396 391 376 361

Desharnais 74 72 67 62 47 32

Recall that the training set must consist of cases that were completed before the target

case, in order to reflect the real life industrial practices. First, both the selected datasets

were sorted chronologically by the projects’ completion date. Whilst the Desharnais data set

already contains this information (i.e. the feature YearFin), the Finnish data set required

an additional step — namely adding the duration of the project in months (duration) to

102

Method for Accuracy Estimation Chapter 6

the start date (DATESTART) of each project in the case base — in order to obtain a new

feature named EndDate (used only for sorting, not as part of the feature space used for

the prediction). Moreover, cases with identical end dates were again sorted using a random

number assigned at the beginning in order to invalidate their original order.

I then built different sets of case bases using a moving window technique, see Figure 6.1 for

an example. I extracted a continuous sequence of m + 1 cases (recall that m is the window

size), starting from the oldest one in both datasets. Each sequence is exploited as one single

case base with the oldest m cases as the knowledge base, and the additional one as the target

case whose effort has to be predicted.

This way, 77−m case bases were obtained for Desharnais and 406−m case bases for Finnish

each containing a single target case, thus requiring a total of 483−2m predictions for a single

window size m.

For validation, m ∈ {3, 5, 10, 15, 30, 45} were selected in order to compare the proposed

technique with the main existing ones in relation to different sizes of the knowledge base: the

lower bound 3 has been selected since proposed algorithm requires at least 3 donors to create

two different weight sets in order to predict a target case (also suggested by Humphrey [62]),

while 45 represents the upper bound since – as stated by Kitchenham [88] – at least 30 cases

are required for a proper validation, thus Desharnais’ size is a limitation.

This resulted in a total of 2328 sub-data sets for Finnish data set and 354 sub data sets for

Desharnais data set, the breakdown of each window size can be seen in Table 6.6. The next

section looks at how ArchANGEL was set-up to predict target cases for the evaluation.

6.1.6 Experimental process

This section first details the experimental process then outlines the blind analysis procedure

adopted for this thesis. First ArchANGEL was setup and used converted the windows created

in the previous section into the correct input format (XML). A total of 2682 of sub data sets

were converted. ArchANGEL was setup for prediction using feature subset strategy as shown

in Table 6.7:

103

Method for Accuracy Estimation Chapter 6

Table 6.7: ArchANGEL setup

Field Option

Target feature Actual Effort

Adaptation strategy Inverse distance weighted

Number of donors (k) 2

Holdout strategy Jack-Knifing

Performance indicator Mean(|r|)

Selection strategy CBR or FSS or FSW

The effort of all target cases in all evaluation datasets were estimated using all the three

different techniques (FSW, FSS and CBR) as the feature subset strategy and the mean of

absolute residuals for these predictions was used as the accuracy indicator for each estima-

tion technique. FSW was executed using different weight sets (Wk), specifically W2 and W3.

The method to choose between W2 or W3 is based on percentiles as described on chapter

5. Since this study uses blind analysis the raw data (unextracted results) from ArchANGEL

was passed onto a colleague to blind the results before being passed on to the analyst as per

the blinding process described in the next section.

This work uses blind analysis in the experimental process as described in the blinding process

from Chapter 4, with modifications to deal with issues encountered then. First I introduced

a third researcher into the blinding process, see Figure 6.2 detailing the role of the third

researcher. The introduction of the third researcher was brought on to deal with the com-

munication issues encountered in the first experiment [154] between the experimenter and

analyst. The third researcher (researcher 3) blinds and unblinds results after analysis of the

data to reveal actual treatments, this enables researcher 1 and 2 to communicate freely with-

out fear of accidentally unblinding the data. Also researcher 3 does not need to be closely

involved in the work so it is not too hard to organise.

104

Empirical evaluation of FSW Chapter 6

Select Dataset

e.g. Desharnais

Perform

Experiments

Raw results

1

2

3

4

7

9

Researcher 1 Researcher 2

Descriptive Stats

8

Decide

Treatments

Experimental

Design

Effect size,

confidence limits

Inferential Tests
Test results

5

Researcher 3

Blinding

6

Blinded results e.g.

relabelled residuals

unblinding

10

Reveal actual

Treatments

11

Discuss results

12

Figure 6.2: Blinding process

6.2 Empirical evaluation of Feature Sequential Weighting

The motivation for this work is to find ways to reduce analysis bias and at the same time

investigate the use of multiple weight sets instead of one for ABE, as well as compare a

traditional validation scheme against a scheme that reflects industry practice. Therefore the

results are going to be reported in terms of traditional jackknifing validation and then pseudo

time-series — with blind analysis wrapped around the whole process.

Recall from chapter 5 the proposed FSW should at least perform as the best of the two weight

105

Empirical evaluation of FSW Chapter 6

sets (in case of using only two sets). This would provide an improvement over a single weight

set, if the used weight set is not the best of the two. Therefore, the first point is to determine

when to use a particular weight set. Recall from chapter 5 that I proposed an algorithm 5.1

that uses quantiles to select the weight set to be used for prediction based on the d of the

target case’s donors.

Figure 6.3 shows the plots for Desharnais data set. Based on these plots using quantiles the

selection is as follows: for window sizes 3, 5, and 15 FSW uses weight set 3 only — for sizes

10 and 45 it uses weight set 2 only. For window size 30 FSW uses a combination of weight

set 3 and weight set 2 split at percentile 5 i.e, any d that is falls in a percentile below 5 uses

weight set 2 and the rest use weight set 3.

Figure 6.3: Desharnais percentiles against MAR

106

Empirical evaluation of FSW Chapter 6

Quantiles were also used to select the appropriate weight set for Finnish data set. Figure

6.4 shows the percentile versus MAR plots for Finnish data set. Based on these plots the

selection is as follows: for window sizes 3, 10, 15, and 30 FSW uses weight set 3 only — for

window size 5 it uses a combination of weight set 3 and weight set 2 split at percentile 51 and

for window size 45 uses a combination of weight set 3 and weight set 2 split at percentile 7.

Figure 6.4: Finnish percentiles against MAR

Table 6.8 shows the performance of each weight set — e.g., FSW2 is feature weighting using

weight set 2 (generated using 2 analogies) and FSW is a combination of FSW2 and FSW3,

107

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

its composition is based on percentiles as described in the previous section.

Table 6.8: Performance of weight sets based on MAR for both data sets showing potential gain

window
Desharnais (MAR) Finnish (MAR)

size FSW2 FSW3 FSW +∆ FSW2 FSW3 FSW +∆

0 1587.87 1698.76 1587.87 7% 1840.51 1953.29 1835.74 6%

3 2446.10 2671.48 2446.10 9% 2695.09 2839.08 2695.09 5%

5 1866.42 2566.64 1866.42 38% 2083.45 2159.93 2082.56 4%

10 1883.10 1759.86 1759.86 7% 1573.13 1902.01 1573.13 21%

15 1632.08 1961.34 1632.08 20% 1531.43 1899.14 1531.43 24%

30 1725.90 2080.95 1686.66 23% 1435.36 2069.39 1435.36 44%

45 1241.49 990.140 990.140 25% 1558.78 1679.00 1556.01 8%

The results in Table 6.8 show the use of multiple weight sets leads to some improvement

even when only two weight sets are used. Overall the improvement (+∆) over either FSW2

or FSW3 ranges from as little as 4% to 44% with an average of 17% improvement over the

different window sizes. FSW performs better than both FSW2 and FSW3 in four separate

occasions as reported in the highlighted cells. The next section presents experimental results

for comparison of FSW to FSS, CBR and Näıve techniques.

6.2.1 Experimental results for comparison of FSW to FSS, CBR and Näıve

FSW’s performance is compared to FSS, CBR and Näıve. This enables one to make as-

sessment to its predictive value. The results are reported in two parts: (1) Reporting the

performance of each technique based on MAR observed from the tool, therefore obtained

unblinded The only way to blind this output is to have a different person from the one who

developed the technique run the experiments, this seems too much extra effort for no real

benefit because at this stage one is only reporting observations not doing any analysis. (2)

report inferential tests results obtained through blind analysis. Table 6.9 shows the perfor-

mance based on MAR of FSW against FSS, CBR and Näıve techniques. The highlighted

cells (bold numbers) indicate the best performing technique.

108

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

window size

Data set w = 3 w = 5 w = 10 w = 15 w = 30 w = 45 fullset

Desharnais

Näıve 3844.86 3383.93 3287.23 3460.88 3115.11 3304.49 3008.37

CBR 1761.53 1717.94 2012.70 1771.39 2522.49 2292.26 2241.03

FSS 1330.79 1826.82 2279.74 2394.62 2420.67 1286.45 1793.84

FSW 2446.10 1866.42 1759.86 1632.08 1686.66 990.14 1587.87

Finnish

Näıve 5037.07 4658.79 4548.85 4422.99 4369.63 4229.82 4586.05

CBR 4016.22 3366.46 2947.61 3050.68 2860.41 2764.12 2548.05

FSS 2626.49 1904.53 1701.81 1712.11 1816.53 1805.14 1950.54

FSW 2695.09 2082.56 1573.13 1531.43 1435.36 1556.01 1835.74

Table 6.9: Performance of each technique for both data sets based on MAR

Figures 6.5 (a) and 6.5 (b) show the trends of the techniques using a logarithmic smoother. As

the window sizes increase the performance of all techniques improves bar CBR on Desharnais

data set. Note that as the window size increases the magnitude of increment reduces. This

could be due to addition of outdated or irrelevant projects into the search space.

(a) Desharnais data set trends (b) Finnish data set trends

Figure 6.5: Performance trends of techniques over window size per data set based on MAR

109

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

Overall results (see Table 6.9) based on MAR show that FSW performs better that FSS,

CBR and Näıve for both data sets. However, interestingly for small window sizes (3 and 5)

FSW does not perform better than FSS and CBR. For window size 3 FSS is the best for

both data sets, while for window size 5 in Desharnais data set CBR performs better and this

suggests that for small data sets FSS could be the better option. These are only preliminary

observations. Inferential tests results will show if any of these ‘superior’ performances are

statistical significant and I also have to asses effect sizes. These tests are performed using

blind analysis as part of the motivation of this thesis — to produce credible/consistent results.

In an ideal outcome as a developer of a new technique one would prefer the results that

show that for all instances FSW is the best performer to have statistical significance, and for

window sizes 3 and 5 to have no statistical significance. These results would therefore show

that the new technique is better that existing ones. This a natural tendency, if one takes

into account Maslow’s hierarchy of needs for a human being with respect to a researcher —

esteem and self-actualization [114].

One can achieve the desired outcome by choosing only statistical tests that reinforce superi-

ority of FSW. This could be due to lack of guidance on statistical decisions, not necessarily

deliberate scientific misconduct. These decisions include:

· The level of trimming to apply.

· The choice between Winsorized trimming and trimming.

· The type and direction of the null hypothesis.

· Method to correct alpha.

· The choice of inferential test.

One could also report only statistical significant results to support the advancement of FSW,

withholding other results and this is known as selective reporting.

6.2.2 Blind Analysis Experimental results

The inferential tests results are reported following the steps in the blinding process shown

in Figure 6.2, starting at step number 7. First I discussed the Finnish data set results then

Desharnais.

110

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

Finnish results analysis

Descriptive Stats: All statistical analysis of the results is based on absolute residuals. These

were provided with anonymised treatment labels to Researcher 2 by researcher 3. The four

treatments are labelled PS1, . . . , PS4. Note that for this experiment uses a repeated mea-

sures design and there was no particular need to look at context variables or experimental

moderators. It is only the treatments’ labels that needed blinding consequently blind analysis

did not inhibit richer or more sophisticated analysis when appropriate.

PS1 PS2 PS3 PS4

0

10000

20000

30000

40000

50000

60000

Figure 6.6: Boxplots showing residual distributions for Finnish Data Set

Descriptive stats, show that there are a number of challenges relating to the statistical analysis

111

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

of the experimental results. First, the distributions of the residuals are extremely skewed and

not amenable to simple transformations (see the box plots of the absolute residuals for the

prediction systems PS1, . . . , PS4. in Figure 6.6). Second, there are many ties (depending on

the particular pairwise comparison, this ranges between 114 and 168 out of 406 cases). Third,

the data are dependent since we are comparing the performance of four different predictors

on the same data. Finally, alpha needs correcting since multiple pairwise comparisons or

tests are needed (in our case six, since there are four treatments).

Table 6.10: Comparing absolute residuals by prediction system

Technique Mean abs residual Median abs residual

PS2 (FSW) 1835.7 725.4

PS4 (FSS) 1950.5 788.8

PS3 (CBR) 2548.1 1132.1

PS1 (Näıve) 4586.1 3675.0

Effect size, confidence limits: Next, Researcher 2 considered the questions of confidence limits

for the descriptive statistics such as medians and then measures of effect size. Non-parametric

methods are required due to the non-normality of the distributions of the absolute residuals.

The Harrell-Davis percentile estimator [54] with bootstrap was used as an efficient and robust

technique to estimate the 95% confidence limits for the median (i.e., the 50th quantile) value

of the absolute residuals (see Table 6.11). If the intervals are compared it would seem some

overlap, for example, PS2 and PS4 and others do not, for example, PS3 and PS1. Note that

the treatments are listed in decreasing order of performance so that smallest residuals —

and therefore best predictive performance — occur first. The treatments are labelled for the

reader’s convenience only, as this information was not available to Researcher 2 at the time

of the analysis.

112

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

Table 6.11: Harrell-Davis 50th percentile estimators for prediction system absolute residuals

Technique Lower bound Upper bound Estimated median

PS2 (FSW) 582.86 906.49 723.19

PS4 (FSS) 670.42 1048.16 812.35

PS3 (CBR) 974.43 1402.89 1148.43

PS1 (Näıve) 3514.84 3859.27 3699.27

The next part of the analysis turns our attention to effect size [40], in this case measured as

∆, which is defined as the difference in the median absolute residuals for the two treatments

being compared and normalised by the pooled standard deviation. This is reported in Ta-

bles 6.12 along with the Standardised Accuracy (SA) of each approach relative to guessing

based on permutation. To help interpret the effect sizes relative to guessing, these could be

characterised as ‘small’ (∼ 0.2) or ‘medium’ (∼ 0.5) and although not obtained, ∼ 0.8 might

be regarded as a ‘large’ effect size [32]. Analysed in this way none of the SEE techniques can

be seen as particularly successful and this is a powerful reminder of how far we still have to

go in pursuit of practical and effective SEE.

Tables 6.12: Results for Finnish dataset (SA and effect size ∆)

Table 6.13: Window size 3

Approach
Criteria

SA (%) ∆

FSW 46.99 0.318

FSS 48.34 0.327

CBR 21.00 0.135

Näıve 0.92 -0.007

Table 6.14: Window size 5

Approach
Criteria

SA (%) ∆

FSW 58.60 0.399

FSS 62.13 0.424

CBR 33.07 0.220

Näıve 7.38 0.041

113

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

Table 6.15: Window size 10

Approach
Criteria

SA (%) ∆

FSW 68.56 0.468

FSS 65.98 0.451

CBR 41.08 0.278

Näıve 9.08 0.056

Table 6.16: Window size 15

Approach
Criteria

SA (%) ∆

FSW 69.32 0.466

FSS 65.70 0.441

CBR 38.89 0.256

Näıve 11.40 0.066

Tables 6.17: Results for Finnish dataset (SA and effect size ∆)

Table 6.18: Window size 30

Approach
Criteria

SA (%) ∆

FSW 71.30 0.467

FSS 63.68 0.415

CBR 42.81 0.271

Näıve 12.63 0.063

Table 6.19: Window size 45

Approach
Criteria

SA (%) ∆

FSW 68.81 0.437

FSS 63.82 0.402

CBR 44.60 0.268

Näıve 15.23 0.063

Table 6.20:

No windows — entire Finnish data set

Approach
Criteria

SA (%) ∆

FSW 63.51 0.436

FSS 61.23 0.421

CBR 49.35 0.339

Näıve 8.84 0.061

Inferential Tests: The basic descriptive analysis from descriptive stats and Effect

size/confidence limits steps suggests that the medians of the absolute residuals appear to

114

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

differ by treatment but this difference needs to be tested using inferential statistics. Likewise

effect size/confidence limit step suggests that the 95% confidence limits from the medians do

not all overlap implying significant differences.

Unfortunately traditional non-parametric tests such as Wilcoxon-Mann-Whitney can lack

power [41], do not handle ties well and are unlikely to be satisfactory [172]. For this reason

a robust test was used to compare differences in marginal medians using Wilcox’s percentile

bootstrap using the R function dmedpb from the WRS library. Family-wise errors arising from

multiple testing were controlled using Rom’s method since k < 10. For details see Wilcox

[171].

The predictors are compared pairwise starting with the greatest median difference. The

probability of the median difference = 0 is given by p. The upper and lower bounds give

the 95% confidence limits for the median difference therefore for a significant difference one

would not expect the limits to straddle zero.

Table 6.21: Pairwise comparison of median absolute residual differences using Wilcox’s percentile bootstrap

Test p Lower bound Upper bound Median difference

FSW v Näıve ∼ 0 -2983.048 -2213.732 -2738.328

FSS v Näıve ∼ 0 -2841.37 -2105.15 -2579.47

CBR v Näıve ∼ 0 -2257.923 -1567.178 -1839.484

FSW v CBR ∼ 0 -230.1578 -58.22942 -116.9264

FSS v CBR ∼ 0 -212.9723 -51.74236 -115.7749

FSW v FSS 0.9 -14.12227 0 0

The analysis is shown in Table 6.21 where the pairwise comparisons between prediction

systems are organised in decreasing order of difference this facilitates the application of

Rom’s method which is based on the idea of sequential rejection so that once a threshold has

been exceeded there is no purpose in testing for smaller differences [172]. Again, the results

are presented unblinded for the convenience of the reader.

115

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

statistic

Window size p Lower bound Upper bound Median difference

Size 3
FSW v Näıve ∼ 0 -1466.658 -1014.749 -1234.648
FSS v Näıve ∼ 0 -1530.935 -1071.009 -1261.569
CBR v Näıve ∼ 0 -406.3729 -171.2047 -304.7058
FSW v CBR ∼ 0 -627.9851 -392.7379 -523.6321
FSS v CBR ∼ 0 -685.8376 -411.2059 -551.3394
FSW v FSS 0.918 -0.18916 0 0

Size 5
FSW v Näıve ∼ 0 -2125.6 -1612.217 -1926.077
FSS v Näıve ∼ 0 -2155.8 -1750.245 -1916.543
CBR v Näıve ∼ 0 -991.5451 -467.4115 -738.9186
FSW v CBR ∼ 0 -775.2357 -486.2929 -582.8682
FSS v CBR ∼ 0 -890.9782 -601.9987 -754.4851
FSW v FSS 0.914 -0.2111147 0 0

Size 10
FSW v Näıve ∼ 0 -2582.604 -1931.864 -2129.129
FSS v Näıve ∼ 0 -2384.833 -1844.053 -2035.337
CBR v Näıve ∼ 0 -1470.86 -938.6779 -1102.149
FSW v CBR ∼ 0 -764.4481 -442.9886 -582.3201
FSS v CBR ∼ 0 -620.2204 -335.6739 -468.8317
FSW v FSS ∼ 0 -27.34796 -1.68059 -10.03917

Size 15
FSW v Näıve ∼ 0 -2506.792 -2023.476 -2320.333
FSS v Näıve ∼ 0 -2455.978 -1938.133 -2155.905
CBR v Näıve ∼ 0 -1469.365 -862.1027 -1169.304
FSW v CBR ∼ 0 -626.1683 -329.9169 -483.6
FSS v CBR ∼ 0 -506.7596 -278.8388 -399.2315
FSW v FSS ∼ 0 -21.34563 -1.836587 -8.921373

Size 30
FSW v Näıve ∼ 0 -2413.3 -1916.268 -2209.648
FSS v Näıve ∼ 0 -2206.874 -1697.714 -1907.658
CBR v Näıve ∼ 0 -1693.691 -1238.293 -1434.605
FSW v CBR ∼ 0 -760.8053 -342.9459 -582.6768
FSS v CBR ∼ 0 -628.0211 -151.9311 -280.9804
FSW v FSS ∼ 0 -43.16877 -4.980373 -15.00122

Size 45
FSW v Näıve ∼ 0 -2349.639 -1845.058 -2112.106
FSS v Näıve ∼ 0 -2177.317 -1599.637 -1878.732
CBR v Näıve ∼ 0 -1630.536 -1061.932 -1344.858
FSW v CBR ∼ 0 -495.7877 -197.5857 -345.3598
FSS v CBR ∼ 0 -416.1132 -124.861 -220.63
FSW v FSS 0.002 -78.94588 -2.702868 -25.51186

Table 6.22: Pairwise comparison of median absolute residual differences using Wilcox’s percentile bootstrap

for each window size for Finnish data set

116

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

Discussion of results: The results of the analysis therefore show that whilst the new technique

FSW outperforms the näıve sample mean and traditional CBR there is no significant differ-

ence with FSS for this particular data set, despite a slightly superior effect size ∆ and SA

value (see Table 6.20). Thus based on this evidence I cannot argue the new feature weighting

technique is superior for this particular data set when validation is performed without regard

to completion date of projects.

Table 6.22 shows the results of pairwise comparison of median absolute residual differences

using Wilcox’s percentile bootstrap for each window size for Desharnais data set. This vali-

dation based on moving windows, where a project can only be predicted using past projects

to reflect industry practice. The results of the analysis in Table 6.22 therefore show that

the new technique FSW outperforms the näıve sample mean, traditional CBR, and FSS for

window size 10, 15, 30 and 45 — with significant difference with FSS and a superior effect

size ∆ and SA value (see Tables 6.12). FSS performs better than FSW in window sizes 3 and

5, but there is no significant difference with FSW. Thus, based on these evidence I can argue

that the new feature weighting technique is superior for this particular validation scheme on

Finnish data set.

The next section looks at inferential tests for Desharnais data set.

Desharnais results analysis

The inferential tests results for Deharnais data set are reported following the steps in blind

process shown in Figure 6.2, starting at step number 7.

Descriptive Stats: As in the analysis for Finnish data set all statistical analysis of the Deshar-

nais results is based on absolute residuals. These were provided with anonymised treatment

labels to Researcher 2 by Researcher 3. The four treatments are labelled A, . . . , D. Note

that for this experiment uses a repeated measures design and there was no particular need

to look at context variables or experimental moderators. It is only the treatments labels

that needed blinding consequently blind analysis did not inhibit richer or more sophisticated

analysis when appropriate.

117

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

A B C D

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Technique

R
e

s
p

o
n

s
e

V
a

ri
a

b
le

Figure 6.7: Boxplots showing residual distributions for Desharnais Data Set

Descriptive stats, show that there are a few challenges relating to the statistical analysis of

the experimental results. First, the distributions of the residuals are extremely skewed and

not amenable to simple transformations (see the box plots of the absolute residuals for the

techniques A, . . . , D. in Figure 6.7).

Effect size, confidence limits: Next Researcher 2 considered the questions of confidence limits

for the descriptive statistics such as medians and then measures of effect size. Non-parametric

methods are required due to the non-normality of the distributions of the absolute residuals.

The Kruskal-Wallis test is a rank-based nonparametric test that is be used to determine

if there are statistically significant differences between groups of an independent variable

118

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

on a continuous dependent variable. Table 6.23 shows the Kruskal-Wallis test results for

Desharnais data set, unblinded for the benefit of the reader.

Table 6.23: Kruskal-Wallis Test

Technique N Median

A (CBR) 77 1340.500

B (FSW) 77 890.7080

C (FSS) 77 1110.680

D (Näıve) 77 2404.900

chi-squared = 28.07, df = 3, p-value = 3.512e-06

Based on the results in Table 6.23, the estimates of the medians for the four techniques are

1340.5, 2404.9, 1010.754 and 1110.684. I reject the null hypothesis because the p-value of

3.512e−06 is less than the significance level of 0.05, and conclude that the medians are not

all equal, therefore the techniques are different.

The next part of the analysis was to turn attention to effect size [40], in this case measured as

∆ which is defined as the difference in the median absolute residuals for the two treatments

being compared and normalised by the pooled standard deviation. This is reported in Tables

6.24 along with the Standardised Accuracy (SA) of each approach relative to guessing based

on permutation. Note that even using the sample mean is 20.8% better than guessing in the

worse case scenario (window size 3).

Tables 6.24: Results for Desharnais dataset (SA and effect size ∆)

Table 6.25: Window size 3

Approach
Criteria

SA (%) ∆

FSW 49.61 0.575

FSS 72.59 0.527

CBR 63.71 0.422

Näıve 20.80 0.241

Table 6.26: Window size 5

Approach
Criteria

SA (%) ∆

FSW 61.98 0.953

FSS 62.79 1.213

CBR 65.00 1.113

Näıve 31.07 0.626

119

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

Table 6.27: Window size 10

Approach
Criteria

SA (%) ∆

FSW 64.84 0.396

FSS 54.46 0.406

CBR 59.79 0.430

Näıve 34.33 0.049

Table 6.28: Window size 15

Approach
Criteria

SA (%) ∆

FSW 67.23 2.694

FSS 51.91 2.579

CBR 64.43 2.638

Näıve 30.50 2.357

Table 6.29: Window size 30

Approach
Criteria

SA (%) ∆

FSW 66.12 2.062

FSS 51.38 1.861

CBR 49.33 2.025

Näıve 37.43 1.582

Table 6.30: Window size 45

Approach
Criteria

SA (%) ∆

FSW 80.13 1.276

FSS 74.18 1.092

CBR 53.99 1.066

Näıve 33.67 0.917

Table 6.31: No windows — entire Desharnais

data set

Approach
Criteria

SA (%) ∆

FSW 67.15 0.775

FSS 62.89 0.726

CBR 53.64 0.619

Näıve 37.77 0.436

Inferential Tests: The basic descriptive analysis from previous two steps suggests that the

medians of the absolute residuals appear to differ by treatment but this difference needs

to be tested using inferential statistics. A robust test was used to compare differences in

120

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

marginal medians using Wilcox’s percentile bootstrap using the R function dmedpb from the

WRS library for reasons stated previously for Finnish data set. Again family-wise errors arising

from multiple testing were controlled using Rom’s method since k < 10. The predictors

are compared pairwise starting with the greatest median difference. The probability of the

median difference = 0 is given by p. The upper and lower bounds give the 95% confidence

limits for the median difference therefore for a significant difference one would not expect the

limits to straddle zero.

Table 6.32: Pairwise comparison of median absolute residual differences using Wilcox’s percentile bootstrap

for Desharnais data set

Test p Lower bound Upper bound Median difference

FSW v Näıve ∼ 0 -1825.467 -830.3226 -1550.281

FSS v Näıve ∼ 0 -1836.027 -532.2249 -1228.576

CBR v Näıve 0.004 -1393.409 -311.9091 -759.9091

FSW v CBR 0.004 -366.3493 -108.9135 -188.0408

FSS v CBR 0.152 -382.3571 41.58824 -223.6316

FSW v FSS 0.080 -145.1616 1.538595 -28.3533

The analysis is shown in Table 6.32 and 6.33 in where the pairwise comparisons between pre-

diction systems are organised in decreasing order of difference, this facilitates the application

of Rom’s method which is based on the idea of sequential rejection so that once a threshold

has been exceeded there is no purpose in testing for smaller differences [172]. Again the

results are presented unblinded for the convenience of the reader.

121

Comparison of FSW to Case-based reasoning, FSS and Naive Chapter 6

statistic

Window size p Lower bound Upper bound Median difference

Size 3
FSW v Näıve ∼ 0 -1328.666 -597.0077 -942.6078
FSS v Näıve ∼ 0 -2641.896 -575.2948 -1457.416
CBR v Näıve 0.012 -1842.75 -225.75 -835.8333
FSW v CBR 0.744 -713.3697 463.75 -193.5038
FSS v CBR 0.104 -160.621 1.660324 -63.63034
FSW v FSS 0.864 -330.0035 903.4862 72

Size 5
FSW v Näıve ∼ 0 -1876.094 -902.8825 -1359.542
FSS v Näıve 0.002 -1471.135 -112.2625 -562.9878
CBR v Näıve 0.032 -2016 -155.75 -656.6
FSW v CBR 0.02 -1058.4 -285.967 -707.5126
FSS v CBR 0.338 -23.8 244.7794 80.44451
FSW v FSS 0.006 -1130.524 -170.7936 -687.8406

Size 10
FSW v Näıve ∼ 0 -1943.872 -1084.669 -1611.311
FSS v Näıve 0.064 -1414.731 89.314548 -734.3471
CBR v Näıve 0.012 -1911.3 -436.45 -887.6
FSW v CBR 0.038 -703.5 -151.0133 -485.9274
FSS v CBR 0.27 -138 1014.185 262.3012
FSW v FSS 0.014 -1233.314 -368.7952 -571.7346

Size 15
FSW v Näıve ∼ 0 -2082.877 -1386.638 -1765.683
FSS v Näıve 0.012 -1366.077 -217.8302 -995.7841
CBR v Näıve ∼ 0 -2010.383 -712.8167 -1099.833
FSW v CBR ∼ 0 -783.8726 -196.8967 -685.2981
FSS v CBR ∼ 0 226.4475 914.7807 559.0569
FSW v FSS ∼ 0 -1462.663 -438.5139 -754.9407

Size 30
FSW v Näıve ∼ 0 -2374.371 -991.6033 -1549.467
FSS v Näıve 0.068 -984.799 66.73333 -503.1151
CBR v Näıve 0.06 -1637.767 194.9667 -996.1667
FSW v CBR 0.016 -1411.743 -485.4379 -1033.07
FSS v CBR 0.684 -531.3 942.8024 55.68182
FSW v FSS ∼ 0 -1261.834 -382.3223 -922.5947

Size 45
FSW v Näıve ∼ 0 -2967.669 -1157.417 -2150.532
FSS v Näıve ∼ 0 -1471.135 -112.2625 -562.9878
CBR v Näıve ∼ 0 -2016 -155.75 -656.6
FSW v CBR ∼ 0 -1058.4 -285.967 -707.5126
FSS v CBR 0.028 -1351.921 -68.74777 -540.0028
FSW v FSS 0.404 -300.4017 17.96799 -29.06363

Table 6.33: Pairwise comparison of median absolute residual differences using Wilcox’s percentile bootstrap

for each window size for Desharnais data set

122

Summary Chapter 6

Discussion of results: The results of the analysis in Table 6.32 therefore show that whilst

the new technique FSW outperforms the näıve sample mean and traditional CBR there is

no significant difference with FSS for this particular data set, despite a superior effect size

∆ and SA value (see Table 6.31). Thus, I cannot argue the new feature weighting technique

is superior for this particular validation scheme on Desharnais data set. Interestingly, even

though FSS outperforms the CBR, there is no significant difference (p = 0.152) between them

— FSS should be an improvement over CBR.

Table 6.33 shows the results of pairwise comparison of median absolute residual differences

using Wilcox’s percentile bootstrap for each window size for Desharnais data set. This

validation based on moving windows (time-series), by which a project can only be predicted

using past projects to reflect industry practice. The results of the analysis in Table 6.33 show

that the new technique FSW outperforms the näıve sample mean, traditional CBR, and FSS

for window size 10, 15 and 30 — with significant difference with FSS and a superior effect

size ∆ and SA value (see Tables 6.24). FSS performs better than FSW in window size 3 but

there is not significant difference with FSW. Thus I can argue within limitation that the new

feature weighting technique is superior for this particular validation scheme on Desharnais

data set.

6.3 Summary

In summary, after analysing results from 483 software projects, I found out that:

· offering multiple weight sets (FSW) improves accuracy over the standard feature subset

selection (FSS) and traditional CBR, when using pseudo time-series validation.

· for very small data sets (with 3 and 5 projects) traditional CBR, FSS and FSW perform

almost the same (no statistically difference).

· traditional validation scheme (jackknifing) produces results different to pseudo time-

series validation.

· as the window size increases the accuracy improves, but as the window size becomes

large the magnitude of increment reduces for all techniques.

123

Summary Chapter 6

Validation based on time-series should be norm to reflect industry practice. This chapter

also highlighted the easiness and importance of blind analysis for software engineering exper-

iments. The variance is not very good in the Desharnais data set but always positive therefore

the least I can say is that the prediction accuracy would remain the same but for most cases

will improve. The degree of improvement will be dependent on the dataset used. The next

chapter summarises thesis findings, work done, limitations and possible future research.

Observations

Feature weighting: The order in which weights are assigned features is important. Weights

must be assigned in descending order, i.e. largest to smallest; this ensures that influential

features are assigned highest weights first, else FSW performs poorly.

Data set: Finnish data set is very challenging for feature weighting. I think its because

Finnish data has a lot of enhancement and maintenance projects. These projects have a

lot of identical features, which I assume it is the same software development teams doing

maintenance of different projects, and have the same duration period and worksup (effort),

suggesting these are scheduled maintenance tasks. Therefore, depending on which features

are weighted higher (selected for FSS) the distance to the target case can be as high as 1

but the residual being zero. Which goes against principle of CBR that dissimilar projects

should have different solutions, on these instances they have identical efforts. The opposite

also occurs where donors have small distance (i.e. in CBR theory they are similar) but their

solutions are very different.

Blind analysis: Blind analysis also involves a social aspect, after all researchers are human

beings, therefore also succumb to social pressures — the relationship between experimenter

and analyst may play a role on the results reported — a junior researcher may be reluctant

to report poor results for his supervisors ‘complex algorithm’. Empirical studies such as

[19, 23, 33] show that scientists often fail to adhere to norms normally proposed as part

of good scientific practice such as objectivity and neutrality [142]. These studies have also

shown how that which comes to be reported as scientific knowledge is partly dictated by

social and psychological forces and partly by issues of economic and political power, both

within science and in the larger society [142].

124

Chapter 7

Conclusions and Further Work

125

Summary Chapter 7

This chapter brings together all the research findings of the previous chapters and analyses

both the contribution of the work and its limitations. First I summarise work carried out, then

the next section focuses on the contributions of this thesis to empirical software engineering.

Thereafter, limitations of the research and possible future work are discussed.

7.1 Summary of work done

The following is a summary of work done as part of this PhD:

1. I conducted a comprehensive systematic review of empirical studies of feature

weighting ABE in the domain of software engineering.

The literature review entailed the following tasks:

1. A search of all peer reviewed studies on feature weighting Analogy-Based Estimation

(ABE) from 1990 (first ABE paper was in 1992 [125]) to April 2014 located 183 potential

papers, this number reduced to 19 after removing duplicates and reading the titles,

abstracts, key words or full text of these papers to select relevant papers based on the

inclusion criteria.

2. A meta-analysis on the selected studies.

3. Results were published [153].

From the study it was apparent that, there is widespread consensus that some form of feature

weighting technique is beneficial to effort estimation but more research is required because

estimates are still not perfect.

2. I introduced blind analysis to software engineering experiments as means to

reduce researcher bias (specifically analysis bias).

Numerous empirical studies into the consistence of results of software experiments published

in the literature (for example [72, 118, 145, 175]) report inconsistency among software engi-

neering experimental results. To find ways to improve the consistency of results of software

experiments I:

126

Summary Chapter 7

1. investigated sources of conflicting results including analysis bias.

2. considered ways of reducing analysis bias in experiments, and I discovered that blind

analysis was used in other domains to reduce bias.

3. developed a procedure for blind analysis for software engineering experiments.

4. conducted an action research experiment to investigate the practicalities and viability

as means to reduce researcher bias specifically analysis bias.

5. reported results and experiences (published [154]).

3. Proposed a new approach to feature weighting for effort estimation that offers

multiple weight sets as opposed to the current situation where a single weight

set is offered to a data set.

Having identified a need for research in the area of feature weighting techniques to improve

analogy-based effort estimation. I developed a novel approach to feature weighting that

involves the use of multiple weight sets. This involved the following:

1. an algorithm to efficiently search for appropriate feature weights.

2. a method to generate multiple weight sets; since this is not just an ensemble of different

weights, a method was developed to generate the different weight sets based on a

hypothesis rooted on Case-Based Reasoning (CBR) that supports the notion that the

next weight set would be better when the previous one fails.

3. a mechanism to select the most appropriate weight set for the target case.

4. Time-series based validation

The analogy estimation technique was validated using a pseudo time-series (moving windows)

approach that allowed the technique’s performance to be observed in a setting resembling

real life. This allowed the approach to be assessed in a more realistic environment akin to

industrial practice where a project’s effort is estimated based on past projects. For this I:

127

Contribution of this Thesis Chapter 7

1. generated multiple data sets of different size based on the completion date of the projects

from the main data set.

2. used quantiles to normalise different results from the multiple data sets.

Studies on Desharnais and Finnish data sets showed that proposed feature weighting tech-

nique can effectively choose the appropriate weight set and thereby improve estimation accu-

racy over a technique that uses a single weight set. Therefore offering multiple weights sets is

beneficial to effort estimation. Blind analysis also proved to be a viable option for reducing

researcher bias in terms of analysis.

I demonstrated that it is easy to transform a non-significant result into a significant one with-

out resorting to scientific misconduct. Therefore, demonstrating the value of blind analysis

in software engineering experiments as a vehicle to reduce analysis bias.

7.2 Contribution of this Thesis

Work described in this thesis makes the following contributions:

(i) Through meta-analysis of selected studies for systematic literature review, I established

that Feature Weighting (FW) is beneficial to analogy-based estimation

(ii) Although meta-analysis of the studies suggests strong evidence that FW is helpful,

it does not mean these techniques get perfect predictions, so there is still a need to

improve.

(iii) Blind analysis is a very practical and easy-to-implement method that supports more

objective analysis of experimental results, therefore reducing analysis bias.

(iv) Traditional validation methods such as jackknifing that ignore when the projects are

completed produce different results from pseudo time-series validation.

(v) A new approach to feature weighting for effort estimation that offers multiple weight

sets as opposed to the current situation where a single weight is offered.

128

Limitation of Work Chapter 7

· The efficiency of the new approach is comparable with existing techniques.

· After analysing results from 483 software projects from two separate industrial

data sets, I conclude that offering multiple weight sets Feature Sequential Weight-

ing (FSW) improves accuracy over the standard Feature Sequential Selection (FSS)

and traditional CBR (ABE) when using pseudo time-series validation.

· In summary, the proposed technique enables the user to:

– Automate the entire feature weight assignment process

– Efficiently search and generate multiple weight sets

– Employ multiple weight sets for single data set

– Identify the most appropriate weight set for the target case

7.3 Limitations and Possible Future Work

Some of the techniques used in this thesis have not been previously applied to software

engineering experiments or effort estimation. Therefore, it is important to recognise the

limitations of the work presented.

7.3.1 Approach limitations

– The way ArchANGEL handles ties is primitive. If the Euclidean distance of two or

more projects is equal, the first project encountered is always chosen as the closest

analogy [141]. This becomes very pronounced on the Finnish data set where there are

a multiple ties.

– ABE may be sensitive to the choice of the algorithm’s similarity function therefore my

results are limited to standardised Euclidean distance. Note that Euclidean distance is

the normal approach in ABE so there is no reason to believe this is a major limitation.

– In order to validate the FSW using time-series the data sets needed to be sorted. This

was achieved through the end-date (date the project was completed). Unfortunately

129

Limitation of Work Chapter 7

the data sets had duplicates end-dates, and duplicates were handled by randomly gen-

erating numbers to determine the ordering. The limitation for this sorting strategy was

that Finnish data sets did not have end-dates, instead two of its features — duration

and start-date were used to determine the end-date. Duration was based on months

therefore one can only be precise up to 30 days this resulted in multiple duplicate

end-dates (again handled by random ordering).

– The other limitation was on the use of the end-date its self — some projects with span

a long time, therefore could end up validated using projects started after them because

they were completed earlier (i.e., shorter duration).

– Window size could only be based on the number of projects, not time since the distri-

bution of projects per year had a large variance. However, even for a small window size

of such as 3, projects were validated using projects completed 2 or 3 three years earlier,

this may not reflect well looking at technology advancement in that time period.

7.3.2 Limitations of Analysis

– The data set quality is unknown (recall that Finnish data set had two completed projects

with effort recorded as 0, and Desharnais had projects with missing values — note that

these projects were excluded from the study) and age of the data sets could also have

a limiting factor on the results obtained (Desharnais data set was published in 1989).

ABE may be intolerant to noise, therefore my results could be distorted by the presence

of noise. Therefore my results are limited to the data sets used.

– Some datasets may not be representing industry standard but only the the elite organ-

isations or only the best projects submitted. Single companies with unstable software

development process would result in a dataset that is scattered and inconsistent result-

ing in the problem of divergences of variances. The same effect can also be observed in

heterogeneous dataset for example, multi-organisational datasets such as International

Software Benchmarking Standards Group (ISBSG), because organisations have differ-

ent business models and development maturity. Older datasets may be representing

130

Possible Future work Chapter 7

irrelevant software development approaches and technologies.

– Blind analysis described experiences for an action research experiment where I was also

participant. There was no control and n = 1. But I demonstrated that it is possible to

manipulate results without recourse to poor practice or scientific misconduct.

7.3.3 Possible Future work

· Sensitivity analysis

A possible future research work would be to investigate the sensitivity of feature weight-

ing approach against window size (data set size) and number of features. In-depth

investigating the efficacy of data cleaning techniques proposed in [106] on the results

produced by feature sequentially weighting using different data sets.

· Validation method

Investigation of dynamic window sizes i.e., a window size based on both time period

and number of projects e.g., the window size would based on the time period or number

of projects — which ever produces the required window size first.

Research on the effects of using projects completed after the current project e.g., jack-

knifing (frequency of future projects being used)

· Blind analysis protocol

I argue for a protocol for blind analysis, this way, all parties involved know exactly the

expectations of the study. One of the conditions could be as already stated in chapter

4 that, before unblinding, researchers should agree that they are confident enough of

their analysis to publish whatever the result turns out to be, without further rounds of

rethinking.

· Improve ArchANGEL

An important addition to improve ArchANGEL Tool would be a mechanism to deal

with ties between source analogies. Incorporate benchmark algorithm therefore having

Standardised Accuracy (SA) as one of the options for performance measure.

131

References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological

variations, and system approaches. AI Communications, 7(1):39–59, 1994.

[2] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin. A systematic literature review

of software requirements prioritization research. Information and Software Technology,

56(6):568–585, 2014.

[3] D. W. Aha. Case-based learning algorithms. In Proceedings of the 1991 DARPA Case-

Based Reasoning Workshop, volume 1, pages 147–158, 1991.

[4] D. W. Aha and R. L. Goldstone. Concept learning and flexible weighting. In Proceedings

of the Fourteenth Annual Conference of the Cognitive Science Society, pages 534–539.

Citeseer, 1992.

[5] A. J. Albrecht and J. E. Gaffney. Software function, source lines of code, and devel-

opment effort prediction: a software science validation. Software Engineering, IEEE

Transactions on, SE-9(6):639–648, 1983.

[6] S. Amasaki and C. Lokan. The evaluation of weighted moving windows for software

effort estimation. In J. Heidrich, M. Oivo, A. Jedlitschka, and M. Baldassarre, edi-

tors, Product-Focused Software Process Improvement, volume 7983 of Lecture Notes in

Computer Science, pages 214–228. Springer Berlin Heidelberg, 2013.

[7] L. Angelis and I. Stamelos. A simulation tool for efficient analogy based cost estimation.

Empirical Software Engineering, 5(1):35–68, 2000.

132

[8] E. Aprile and et al. Dark matter results from 225 live days of xenon100 data.

Phys. Rev. Lett., 109:181301, Nov 2012.

[9] K. D. Ashley and E. L. Rissland. Waiting on weighting: A symbolic least commitment

approach. In Proceedings of the Seventh National Conference on Artificial Intelligence,

pages 239–244, 1988.

[10] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for control. In

Artificial Intelligence Review, pages 75–113. Springer, 1997.

[11] M. Auer and S. Biffl. Increasing the accuracy and reliability of analogy-based cost

estimation with extensive project feature dimension weighting. In Empirical Software

Engineering, 2004. ISESE’04. Proceedings. 2004 International Symposium on, pages

147–155. IEEE, 2004.

[12] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl. Optimal project fea-

ture weights in analogy-based cost estimation: Improvement and limitations. Software

Engineering, IEEE Transactions on, 32(2):83–92, 2006.

[13] T. O. Ayodele. Types of Machine Learning Algorithms, New Advances in Machine

Learning. INTECH Open Access Publisher, 2010.

[14] M. Azzeh, D. Neagu, and P. Cowling. Improving analogy software effort estimation

using fuzzy feature subset selection algorithm. In Proceedings of the 4th international

workshop on Predictor models in software engineering, pages 71–78. ACM, 2008.

[15] M. Azzeh, D. Neagu, and P. Cowling. Software effort estimation based on weighted

fuzzy grey relational analysis. In Proceedings of the 5th International Conference on

Predictor Models in Software Engineering, page 8. ACM, 2009.

[16] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi. A pso-based model

to increase the accuracy of software development effort estimation. Software Quality

Journal, 21(3):501–526, 2013.

133

[17] V. K. Bardsiri, A. Khatibi, and E. Khatibi. An optimization-based method to increase

the accuracy of software development effort estimation. Journal of Basic and Applied

Scientific Research, 2013.

[18] R. Bareiss. The experimental evaluation of a case-based learning apprentice. In Proc.

of the 2 nd Workshop on Case-Based Reasoning, pages 162–167, 1989.

[19] B. Barnes. Scientific knowledge and sociological theory, volume 2. London and Boston:

Roudedge & Kegan Paul, 2013.

[20] R. Bellman. A Markovian decision process. Technical report, DTIC Document, 1957.

[21] C. M. Bishop et al. Pattern recognition and machine learning, volume 4. Springer New

York, 2006.

[22] R. Bisio and F. Malabocchia. Cost estimation of software projects through case base

reasoning. In M. Veloso and A. Aamodt, editors, Case-Based Reasoning Research and

Development, volume 1010 of Lecture Notes in Computer Science, pages 11–22. Springer

Berlin Heidelberg, 1995.

[23] D. Bloor. Knowledge and social imagery. University of Chicago Press, 1991.

[24] B. Boehm, C. Abts, and S. Chulani. Software development cost estimation approaches–

a survey. Annals of Software Engineering, 10(1-4):177–205, 2000.

[25] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition, 1981.

[26] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[27] L. Briand, K. El Emam, D. Surmann, I. Wieczorek, and K. Maxwell. An assessment

and comparison of common software cost estimation modeling techniques. In Software

Engineering, 1999. Proceedings of the 1999 International Conference on, pages 313–323,

May 1999.

134

[28] J. Brownlee. A tour of machine learning algorithms. http://

machinelearningmastery.com/a-tour-of-machine-learning-algorithms/, 2013.

Accessed November 25, 2015.

[29] C. J. Burgess and M. Lefley. Can genetic programming improve software effort estima-

tion? a comparative evaluation. Information and Software Technology, 43(14):863–873,

2001.

[30] T. Cain, M. J. Pazzani, and G. Silverstein. Using domain knowledge to influence

similarity judgements. In Proceedings of the Case-Based Reasoning Workshop, pages

191–198, 1991.

[31] N.-H. Chiu and S.-J. Huang. The adjusted analogy-based software effort estimation

based on similarity distances. Journal of Systems and Software, 80(4):628–640, 2007.

[32] J. Cohen. A power primer. Psychological Bulletin, 112(1):155–159, 1992.

[33] H. M. Collins. Introduction: Stages in the empirical programme of relativism. Social

Studies of Science, 11(1):3–10, 1981.

[34] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software engineering metrics and

models. Benjamin-Cummings Publishing Co., Inc., 1986.

[35] M. Delgado-Rodŕıguez and J. Llorca. Bias. J. of Epidemiolgy and Community Health,

58:635–641, 2004.

[36] H. Demuth, M. Beale, and M. Hagan. Neural Network Toolbox� 6 User’s Guide. The

MathWorks, Inc., March, 2010.

[37] J. Desharnais. Analyse statistique de la productivitie des projets informatique a partie

de la technique des point des fonction. Master’s thesis, University of Montreal, 1989.

[38] K. Dickersin. The existence of publication bias and risk factors for its occurrence.

J. Am. Med. Assoc., 263:1385–1389, 1990.

135

http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

[39] B. Efron and G. Gong. A leisurely look at the bootstrap, the jackknife and cross-

validation. The American Statistician, 37(1):36–48, 1983.

[40] P. Ellis. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the

Interpretation of Research Results. Cambridge University Press, 2010.

[41] M. W. Fagerland and L. Sandvik. The Wilcoxon–Mann–Whitney test under scrutiny.

Statistics in Medicine, 28(10):1487–1497, 2009.

[42] G. Forman. Bns feature scaling: an improved representation over tf-idf for svm text

classification. In Proceedings of the 17th ACM conference on Information and Knowl-

edge Management, pages 263–270. ACM, 2008.

[43] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the model

evaluation criterion mmre. Software Engineering, IEEE Transactions on, 29(11):985–

995, 2003.

[44] J. Fox and S. Weisberg. An R companion to applied regression. Sage, 2010.

[45] J. H. Friedman. Flexible metric nearest neighbor classification. Unpub-

lished manuscript available by anonymous FTP from playfair. stanford. edu (see

pub/friedman/README), 1994.

[46] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine

Learning, 29(2-3):131–163, 1997.

[47] Gartner Inc. Gartner says worldwide it spending to decline 5.5 percent in 2015. http:

//www.gartner.com/newsroom/id/3084817, 2015.

[48] J. C. Gower and P. Legendre. Metric and Euclidean properties of dissimilarity coeffi-

cients. Journal of Classification, 3(1):5–48, 1986.

[49] M. Greenacre and J. Blasius. Multiple correspondence analysis and related methods.

CRC Press, 2006.

136

http://www.gartner.com/newsroom/id/3084817
http://www.gartner.com/newsroom/id/3084817

[50] L. K. Grover. Local search and the local structure of NP-complete problems. Operations

Research Letters, 12(4):235 – 243, 1992.

[51] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal

of Machine Learning Research, 3:1157–1182, 2003.

[52] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification

using support vector machines. Machine Learning, 46(1-3):389–422, 2002.

[53] M. T. Hagan, H. B. Demuth, M. H. Beale, et al. Neural network design. Pub. Boston,

1996.

[54] F. Harrell and C. Davis. A new distribution-free quantile estimator. Biometrika,

69(3):635–640, 1982.

[55] P. F. Harrison. Blind analysis. Journal of Physics. G. Nuclear and Particle Physics,

28(10):2679–2691, 2002.

[56] T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 18(6):607–616, 1996.

[57] L. Hedges and I. Olkin. Statistical methods for meta-analysis. Academic Press, London,

1985.

[58] J. Heinrich. Benefits of blind analysis techniques. Report

CDF/MEMO/STATISTICS/PUBLIC/6576 Version 1, University of Pennsylva-

nia, 2003.

[59] J. Higgins and S. Green. Cochrane Handbook for Systematic Reviews of Interventions:

Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.

[60] J. Hihn and G. Tregre. Assuring software cost estimates: Is it an oxymoron? In

System Sciences (HICSS), 2013 46th Hawaii International Conference on, pages 4921–

4929, Jan 2013.

137

[61] S.-J. Huang and N.-H. Chiu. Optimization of analogy weights by genetic algorithm for

software effort estimation. Information and Software Technology, 48(11):1034–1045,

2006.

[62] W. S. Humphrey. A discipline for software engineering. Addison-Wesley Longman

Publishing Co., Inc., 1995.

[63] J. Hutton and P. Williamson. Bias in meta-analysis with variable selection within

studies. Applied Statistics, 49(3):359–70, 2000.

[64] A. Idri, A. Abran, and T. M. Khoshgoftaar. Estimating software project effort by

analogy based on linguistic values. In Software Metrics, 2002. Proceedings. Eighth

IEEE Symposium on, pages 21–30. IEEE, 2002.

[65] A. Idri, F. Azzahra Amazal, and A. Abran. Analogy-based software development effort

estimation: A systematic mapping and review. Information and Software Technology,

58:206–230, 2015.

[66] A. Idri, A. Zakrani, M. Elkoutbi, and A. Abran. Fuzzy radial basis function neural net-

works for web applications cost estimation. In Innovations in Information Technology,

2007. IIT’07. 4th International Conference on, pages 576–580. IEEE, 2007.

[67] J. Ioannidis. Why most published research findings are false. PLoS Medicine, 2(8):e124,

2005.

[68] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing

surveys (CSUR), 31(3):264–323, 1999.

[69] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection prob-

lem. In Proceedings 11th International Conference on Machine Learning, volume 94,

pages 121–129, 1994.

[70] M. Jørgensen, B. Boehm, and S. Rifkin. Software development effort estimation: Formal

models or expert judgment? IEEE software, 26(2):14–19, 2009.

138

[71] M. Jørgensen, T. Dyb̊a, K. Liestøl, and D. I. Sjøberg. Incorrect results in software

engineering experiments: How to improve research practices. Journal of Systems and

Software, 2015.

[72] M. Jørgensen, B. Faugli, and T. Gruschke. Characteristics of software engineers with

optimistic predictions. Journal of Systems and Software, 80(9):1472–1482, 2007.

[73] M. Jorgensen and S. Grimstad. Avoiding irrelevant and misleading information when

estimating development effort. IEEE software, 25(3):78–83, 2008.

[74] M. Jørgensen, U. Indahl, and D. Sjøberg. Software effort estimation by analogy and

“regression toward the mean”. Journal of Systems and Software, 68(3):253–262, 2003.

[75] M. Jørgensen and K. Moløkken-Østvold. How large are software cost overruns? a

review of the 1994 chaos report. Information and Software Technology, 48(4):297–301,

2006.

[76] M. Jørgensen and M. Shepperd. A systematic review of software development cost

estimation studies. Software Engineering, IEEE Transactions on, 33(1):33–53, 2007.

[77] M. Jørgensen and D. I. Sjøberg. The impact of customer expectation on software

development effort estimates. International Journal of Project Management, 22(4):317–

325, 2004.

[78] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.

Journal of Artificial Intelligence Research, pages 237–285, 1996.

[79] C. F. Kemerer. An empirical validation of software cost estimation models. Commu-

nications of the ACM, 30(5):416–429, 1987.

[80] J. Keung. Providing Statistical Inference to Case-Based Software Effort Estimation.

PhD thesis, University of New South Wales, Australia, 2007.

[81] J. Keung. Software development cost estimation using analogy: a review. In Software

Engineering Conference, 2009. ASWEC’09. Australian, pages 327–336. IEEE, 2009.

139

[82] J. W. Keung. Theoretical maximum prediction accuracy for analogy-based software cost

estimation. In Software Engineering Conference, 2008. APSEC’08. 15th Asia-Pacific,

pages 495–502. IEEE, 2008.

[83] J. W. Keung and B. Kitchenham. Optimising project feature weights for analogy-

based software cost estimation using the mantel correlation. In Software Engineering

Conference, 2007. APSEC 2007. 14th Asia-Pacific, pages 222–229. IEEE, 2007.

[84] J. W. Keung, B. A. Kitchenham, and D. R. Jeffery. Analogy-x: providing statisti-

cal inference to analogy-based software cost estimation. Software Engineering, IEEE

Transactions on, 34(4):471–484, 2008.

[85] C. Kirsopp and M. Shepperd. Case-based software project effort prediction. In

Bournemouth University, Technical Report, 2002.

[86] C. Kirsopp and M. Shepperd. Case and feature subset selection in case-based software

project effort prediction. In the Twenty-second SGAI International Conference on

Knowledge Based Systems and Applied Artificial Intelligence, pages 61–74, 2003.

[87] C. Kirsopp, M. J. Shepperd, and J. Hart. Search heuristics, case-based reasoning and

software project effort prediction. 2002.

[88] B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan. An empirical study of mainte-

nance and development estimation accuracy. Journal of Systems and Software, 64(1):57

– 77, 2002.

[89] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd. What accuracy

statistics really measure [software estimation]. In Software, IEE Proceedings-, volume

148, pages 81–85. IET, 2001.

[90] J. R. Klein and A. Roodman. Blind analysis in nuclear and particle physics. Annual

Review of Nuclear and Particle Science, 55:141–163, 2005.

140

[91] E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung. Exploiting the essential assump-

tions of analogy-based effort estimation. Software Engineering, IEEE Transactions on,

38(2):425–438, 2012.

[92] E. Kocaguneli, T. Menzies, and J. W. Keung. Kernel methods for software effort

estimation. Empirical Software Engineering, 18(1):1–24, 2013.

[93] R. Kohavi and G. John. Wrappers for feature selection for machine learning. Artificial

Intelligence, 97:273–324, 1997.

[94] R. Kohavi and F. Provost. Glossary of terms. Machine Learning, 30:271–274, 1998.

[95] A. Ko lcz and C. H. Teo. Feature weighting for improved classifier robustness. In

CEAS’09: Sixth Conference on Email and Anti-spam, 2009.

[96] A. Ko lcz and W.-T. Yih. Raising the baseline for high-precision text classifiers. In Pro-

ceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 400–409. ACM, 2007.

[97] D. Koller and M. Sahami. Toward optimal feature selection. Technical Report 1996-77,

Stanford InfoLab, February 1996. Previous number = SIDL-WP-1996-0032.

[98] J. Kolodner. Case-Based Reasoning. Morgan-Kaufmann, 1993.

[99] L. M. Laird. The limitations of estimation. IT professional, 8(6):40–45, 2006.

[100] M. Lefley and M. Shepperd. Using genetic programming to improve software effort

estimation based on general data sets. In E. Cantú-Paz, J. Foster, and K. Deb, editors,

Genetic and Evolutionary Computation — GECCO 2003, volume 2724 of Lecture Notes

in Computer Science, pages 2477–2487. Springer Berlin Heidelberg, 2003.

[101] K. M. Leung. Naive bayesian classifier. https://tom.host.cs.st-andrews.ac.uk/

ID5059/L15-LeungSlides.pdf, 2007.

[102] J. Li and G. Ruhe. Analysis of attribute weighting heuristics for analogy-based software

effort estimation method aqua+. Empirical Software Engineering, 13(1):63–96, 2008.

141

https://tom.host.cs.st-andrews.ac.uk/ID5059/L15-LeungSlides.pdf
https://tom.host.cs.st-andrews.ac.uk/ID5059/L15-LeungSlides.pdf

[103] J. Li and G. Ruhe. Analysis of attribute weighting heuristics for analogy-based software

effort estimation method aqua+. Empirical Software Engineering, 13(1):63–96, 2008.

[104] Y. F. Li, M. Xie, and T. N. Goh. A study of mutual information based feature selection

for case based reasoning in software cost estimation. Expert Systems with Applications,

36:5921–5931, 2009.

[105] Y.-F. Li, M. Xie, and T. N. Goh. A study of project selection and feature weighting for

analogy based software cost estimation. Journal of Systems and Software, 82(2):241–

252, 2009.

[106] G. A. Liebchen. Data cleaning techniques for software engineering data sets. PhD thesis,

Brunel University, School of Information Systems, Computing and Mathematics, 2010.

[107] C. Lokan and E. Mendes. Applying moving windows to software effort estimation. In

Proceedings of the 2009 3rd International Symposium on Empirical Software Engineer-

ing and Measurement, pages 111–122. IEEE Computer Society, 2009.

[108] C. Lokan and E. Mendes. Using chronological splitting to compare cross- and single-

company effort models: Further investigation. In B. Mans, editor, Thirty-Second Aus-

tralasian Computer Science Conference (ACSC 2009), volume 91 of CRPIT, pages

35–42, Wellington, New Zealand, 2009. ACS.

[109] C. G. Lord, M. R. Lepper, and E. Preston. Considering the opposite: a corrective

strategy for social judgment. Journal of Personality and Social Psychology, 47(6):1231,

1984.

[110] R. MacCoun and S. Perlmutter. Blind analysis: Hide results to seek the truth. Nature,

526(7572):187–189, 2015.

[111] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd, and S. Webster.

An investigation of machine learning based prediction systems. Journal of Systems and

Software, 53(1):23–29, 2000.

142

[112] C. Mair, M. Martincova, and M. Shepperd. An empirical study of software project

managers using a case-based reasoner. In System Science (HICSS), 2012 45th Hawaii

International Conference on, pages 1030–1039. IEEE, 2012.

[113] C. Mair and M. Shepperd. The consistency of empirical comparisons of regression and

analogy-based software project cost prediction. In Empirical Software Engineering,

2005. 2005 International Symposium on, pages 10 pp.–, Nov 2005.

[114] A. H. Maslow and K. J. Lewis. Maslow’s hierarchy of needs. Salenger Incorporated,

1987.

[115] E. Mendes, N. Mosley, and S. Counsell. A replicated assessment of the use of adaptation

rules to improve web cost estimation. In Empirical Software Engineering, 2003. ISESE

2003. Proceedings. 2003 International Symposium on, pages 100–109. IEEE, 2003.

[116] E. Mendes, I. Watson, C. Triggs, N. Mosley, and S. Counsell. A comparative study of

cost estimation models for web hypermedia applications. Empirical Software Engineer-

ing, 8(2):163–196, 2003.

[117] T. Menzies, R. Krishna, and D. Pryor. The promise repository of empirical software

engineering data. http://openscience.us/repo.NorthCarolinaStateUniversity,

DepartmentofComputerScience, 2015. Accessed November 25, 2015.

[118] T. Menzies and M. Shepperd. Editorial: Special issue on repeatable results in software

engineering prediction. Empirical Software Engineering, 17(1-2):1–17, 2012.

[119] A. J. Miller. Selection of subsets of regression variables. Journal of the Royal Statistical

Society. Series A (General), 147(3):389–425, 1984.

[120] L. L. Minku and X. Yao. Ensembles and locality: Insight on improving software effort

estimation. Information and Software Technology, 55(8):1512–1528, 2013.

[121] N. Mittas, M. Athanasiades, and L. Angelis. Improving analogy-based software cost

estimation by a resampling method. Information & Software Technology, 50(3):221–

230, 2008.

143

http://openscience.us/repo. North Carolina State University, Department of Computer Science
http://openscience.us/repo. North Carolina State University, Department of Computer Science

[122] T. Mohri and H. Tanaka. An optimal weighting criterion of case indexing for both

numeric and symbolic attributes. In AAAI-94 Workshop Program: Case-Based Rea-

soning, Working Notes, pages 123–127, 1994.

[123] K. Molokken and M. Jorgensen. A review of software surveys on software effort es-

timation. In Empirical Software Engineering, 2003. ISESE 2003. Proceedings. 2003

International Symposium on, pages 223–230. IEEE, 2003.

[124] K. Molokken-Ostvold and N. C. Haugen. Combining estimates with planning poker–

an empirical study. In Software Engineering Conference, 2007. ASWEC 2007. 18th

Australian, pages 349–358. IEEE, 2007.

[125] T. Mukhopadhyay, S. S. Vicinanza, and M. J. Prietula. Examining the feasibility of

a case-based reasoning model for software effort estimation. MIS Quarterly, pages

155–171, 1992.

[126] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in comparative

studies of software prediction models. Software Engineering, IEEE Transactions on,

31(5):380–391, May 2005.

[127] M. Obitko. Prediction using neural networks. http://www.obitko.com/tutorials/

neural-network-prediction/prediction-using-neural-networks.html, 1999.

[128] A. L. Oliveira. Estimation of software project effort with support vector regression.

Neurocomputing, 69(13):1749–1753, 2006.

[129] S. K. Pal and S. C. Shiu. Foundations of soft case-based reasoning, volume 8. John

Wiley & Sons, 2004.

[130] W. Pedrycz. Computational intelligence as an emerging paradigm of software engineer-

ing. In Proceedings of the 14th international conference on Software engineering and

knowledge engineering, pages 7–14. ACM, 2002.

[131] O. Pfungst. Clever Hans:(the horse of Mr. Von Osten.) a contribution to experimental

animal and human psychology. New York: Henry Holt and Company, 1911.

144

http://www.obitko.com/tutorials/neural-network-prediction/prediction-using-neural-networks.html
http://www.obitko.com/tutorials/neural-network-prediction/prediction-using-neural-networks.html

[132] B. W. Porter, R. Bareiss, and R. C. Holte. Concept learning and heuristic classification

in weak-theory domains. Artificial Intelligence, 45(1):229–263, 1990.

[133] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[134] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria, 2013.

[135] R. Rosenthal. The “file drawer problem” and tolerance for null results. Psychological

Bulletin, 86(3):638–641, 1979.

[136] S. Russell and P. Norvig. Artificial Intelligence: A modern approach. Pearson New

International Edition, 2013.

[137] Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioin-

formatics. Bioinformatics, 23(19):2507–2517, 2007.

[138] R. D. Sagor. The action research guidebook: A four-stage process for educators and

school teams. Corwin Press, 2010.

[139] Machine learning: What it is and why it matters. http://www.sas.com/en_us/

insights/analytics/machine-learning.html/. Accessed November 25, 2015.

[140] R. Schapire. Machine learning algorithms for classification. In Princeton University,

slides, 2006.

[141] C. Schofield. An Empirical Investigation into Software Effort Estimation by Analogy.

PhD thesis, Bournemouth University, United Kingdom, 1998.

[142] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and quasi-experimental

designs for generalized causal inference. Wadsworth Cengage learning, 2002.

[143] M. Shepperd. Case-based reasoning and software engineering. Technical Report TR02-

08, Bournemouth University, UK, Bournemouth University, UK, 2002.

145

http://www.sas.com/en_us/insights/analytics/machine-learning.html/
http://www.sas.com/en_us/insights/analytics/machine-learning.html/

[144] M. Shepperd. Case-based reasoning and software engineering. In A. Aurum, R. Jeffery,

C. Wohlin, and M. Handzic, editors, Managing Software Engineering Knowledge, pages

181–198. Springer Berlin Heidelberg, 2003.

[145] M. Shepperd. How do I know whether to trust a research result? Software, IEEE,

32(1):106–109, 2015.

[146] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of machine learning

in software defect prediction. on Software Engineering, IEEE Transactions, 40(6):603–

616, 2014.

[147] M. Shepperd and G. Kadoda. Comparing Software Prediction Techniques Using Sim-

ulation. Software Engineering, IEEE Transactions on, 27(11):1014–1022, Nov. 2001.

[148] M. Shepperd and G. Kadoda. Using simulation to evaluate prediction techniques [for

software]. In Software Metrics Symposium, 2001. METRICS 2001. Proceedings. Seventh

International, pages 349–359. IEEE, 2001.

[149] M. Shepperd and S. MacDonell. Evaluating prediction systems in software project

estimation. Information and Software Technology, 54(8):820–827, Jan. 2012.

[150] M. Shepperd and C. Schofield. Estimating software project effort using analogies.

Software Engineering, IEEE Transactions on, 23(11):736–743, 1997.

[151] M. Shepperd, C. Schofield, and B. Kitchenham. Effort estimation using analogy. In

Proceedings of the 18th International Conference on Software Engineering, pages 170–

178. IEEE Computer Society, 1996.

[152] B. Sigweni. Feature weighting for case-based reasoning software project effort estima-

tion. In Proceedings of the 18th International Conference on Evaluation and Assessment

in Software Engineering, EASE ’14, pages 54:1–54:4, New York, NY, USA, 2014. ACM.

[153] B. Sigweni and M. Shepperd. Feature weighting techniques for CBR in software ef-

fort estimation studies: a review and empirical evaluation. In The 10th International

Conference on Predictive Models in Software Engineering, pages 32–41. ACM, 2014.

146

[154] B. Sigweni and M. Shepperd. Using blind analysis for software engineering experiments.

In The 19th International Conference on Evaluation and Assessment in Software En-

gineering. ACM, 2015.

[155] R. Silberzahn and E. L. Uhlmann. Crowdsourced research: Many hands make tight

work. Nature, 526(7572):189–191, 2015.

[156] D. Skalak. Representing cases as knowledge sources that apply local similarity metrics.

In Proc. of the 14th Annual Conference of the Cognitive Science Society, pages 325–330,

1992.

[157] D. Skalak. Prototype and feature selection by sampling and random mutation hill

climbing algorithms. In 11th Intl. Machine Learning Conf. (ICML-94), pages 293–301.

Morgan Kauffmann, 1994.

[158] Q. Song and M. Shepperd. Predicting software project effort: A grey relational analysis

based method. Expert Systems with Applications, 38(6):7302–7316, 2011.

[159] K. Srinivasan and D. Fisher. Machine learning approaches to estimating software de-

velopment effort. Software Engineering, IEEE Transactions on, 21(2):126–137, 1995.

[160] I. Stamelos, L. Angelis, and E. Sakellaris. Brace: Bootstrap based analogy cost esti-

mation: Automated support for an enhanced effort prediction method. In Proceedings

12th European Software Control and Metrics Conference (ESCOM’2001), pages 17–23.

Citeseer, 2001.

[161] P.-N. Tan, M. Steinbach, V. Kumar, et al. Introduction to data mining, volume 1.

Pearson Addison Wesley Boston, 2006.

[162] J. Tang, S. Alelyani, and H. Liu. Feature selection for classification: A review. Data

Classification: Algorithms and Applications, page 37, 2014.

[163] A. Tosun, B. Turhan, and A. B. Bener. Feature weighting heuristics for analogy-based

effort estimation models. Expert Systems with Applications, 36(7):10325–10333, 2009.

147

[164] F. Walkerden and R. Jeffery. An empirical study of analogy-based software effort

estimation. Empirical Software Engineering, 4(2):135–158, 1999.

[165] C. J. Watkins and P. Dayan. Technical note: Q-learning. In Reinforcement Learning,

pages 55–68. Springer, 1992.

[166] C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s College,

University of Cambridge, 1989.

[167] M. Wattenberg and A. Juels. Stochastic hillclimbing as a baseline method for evaluating

genetic algorithms. In Proceedings of the 1995 Conference, volume 8, page 430, 1996.

[168] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang. Systematic literature review of ma-

chine learning based software development effort estimation models. Information and

Software Technology, 54:41–59, 2012.

[169] J. Wen, S. Li, and L. Tang. Improve analogy-based software effort estimation us-

ing principal components analysis and correlation weighting. In Software Engineering

Conference, 2009. APSEC’09. Asia-Pacific, pages 179–186. IEEE, 2009.

[170] D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical evaluation of

feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence

Review, 11(1-5):273–314, 1997.

[171] R. Wilcox. Pairwise comparisons of dependent groups based on medians. Computational

Statistics and Data Analysis, 50(10):2933–2941, 2006.

[172] R. Wilcox. Introduction to robust estimation and hypothesis testing (3rd Edn). Aca-

demic Press, 3rd edition, 2012.

[173] D. Wu, J. Li, and Y. Liang. Linear combination of multiple case-based reasoning

with optimized weight for software effort estimation. The Journal of Supercomputing,

64(3):898–918, 2013.

148

[174] Z. Xu and T. M. Khoshgoftaar. Identification of fuzzy models of software cost estima-

tion. Fuzzy Sets and Systems, 145(1):141–163, 2004.

[175] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project defect

prediction: a large scale experiment on data vs. domain vs. process. In Proceedings of

the the 7th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 91–

100. ACM, 2009.

149

Appendix A

150

T
a
b
le

A
1
:

S
el

ec
te

d
st

u
d
ie

s

ID
Y

e
a
r

S
tu

d
y

A
u
th

o
r(

s)
S

o
u

rc
e

W
e
ig

h
ti

n
g

T
e
ch

n
iq

u
e

W
e
ig

h
t

sp
a
c
e

R
e
f

[S
01

]
2
00

0
M

a
ir

et
a
l.

J
ou

rn
al

E
x
h

au
st

iv
e

S
ea

rc
h

B
in

ar
y

[1
11

]

[S
02

]
2
00

2
K

ir
so

p
p

a
n

d
S

h
ep

p
er

d
C

on
fe

re
n

ce
S

ea
rc

h
H

eu
ri

st
ic

s
B

in
ar

y
[8

5]

[S
03

]
2
00

3
M

en
d

es
et

al
.

J
ou

rn
al

In
v
er

se
R

an
k

W
ei

gh
te

d
M

ea
n

C
on

ti
n
u

ou
s

[1
16

]

[S
04

]
2
00

4
A

u
er

an
d

B
iffl

C
on

fe
re

n
ce

E
x
h

au
st

iv
e

D
im

en
si

on
W

ei
gh

ti
n

g
C

on
ti

n
u

ou
s

[1
1]

[S
05

]
2
00

6
A

u
er

et
al

.
J
ou

rn
al

E
x
h

au
st

iv
e

S
ea

rc
h

C
on

ti
n
u

ou
s

[1
2]

[S
06

]
2
00

6
H

u
a
n

g
an

d
C

h
iu

J
ou

rn
al

G
en

et
ic

A
lg

or
it

h
m

C
on

ti
n
u

ou
s

[6
1]

[S
07

]
2
00

7
K

eu
n

g
an

d
K

it
ch

en
h

am
C

on
fe

re
n

ce
M

an
te

l’
s

C
or

re
la

ti
on

C
on

ti
n
u
ou

s
[8

3]

[S
08

]
2
00

8
L

i
a
n

d
R

u
h

e
J
ou

rn
al

R
ou

gh
S

et
A

n
al

y
si

s
C

on
ti

n
u

ou
s

[1
03

]

[S
09

]
2
00

8
A

zz
eh

et
a
l.

C
on

fe
re

n
ce

F
u

zz
y

L
og

ic
B

in
ar

y
[1

4]

[S
10

]
2
00

8
K

eu
n

g
et

al
.

J
ou

rn
al

M
an

te
l’

s
C

or
re

la
ti

on
B

in
ar

y
[8

4]

[S
11

]
2
00

9
W

en
et

al
.

C
on

fe
re

n
ce

P
ri

n
ci

p
al

C
om

p
on

en
ts

A
n

al
y
si

s
(P

C
A

)
C

on
ti

n
u

ou
s

[1
69

]

[S
12

]
2
00

9
L

i
et

a
l.

J
ou

rn
al

G
en

et
ic

A
lg

or
it

h
m

C
on

ti
n
u

ou
s

[1
05

]

[S
13

]
2
00

9
T

o
su

n
et

a
l.

J
ou

rn
al

P
C

A
w

it
h

C
or

re
la

ti
on

W
ei

gh
ti

n
g

C
on

ti
n
u

ou
s

[1
63

]

[S
14

]
2
00

9
L

i
et

a
l.

J
ou

rn
al

M
u
tu

al
In

fo
rm

at
io

n
B

in
ar

y
[1

04
]

[S
15

]
2
01

1
K

o
ca

g
u

n
el

i
et

al
.

J
ou

rn
al

K
er

n
el

M
et

h
o
d

s
C

on
ti

n
u

ou
s

[9
2]

[S
16

]
2
01

1
S

o
n

g
an

d
S
h

ep
p

er
d

J
ou

rn
al

G
re

y
R

el
at

io
n

al
A

n
al

y
si

s
B

in
ar

y
[1

58
]

[S
17

]
2
01

3
B

a
rd

si
ri

et
a
l.

J
ou

rn
al

G
en

et
ic

A
lg

or
it

h
m

C
on

ti
n
u

ou
s

[1
7]

[S
18

]
2
01

3
B

a
rd

si
ri

et
a
l.

J
ou

rn
al

P
ar

ti
cl

e
S

w
ar

m
O

p
ti

m
is

at
io

n
C

on
ti

n
u

ou
s

[1
6]

[S
19

]
2
01

3
W

u
et

a
l.

J
ou

rn
al

C
om

b
in

at
io

n
s

C
on

ti
n
u

ou
s

[1
73

]

151

Appendix B

152

Table B1: Finnish data set features

No. Feature Description
1 Project tech ID Project code
2 Project name Project identifier
3 Business names Business sector of the customer
4 Protype names Development type
5 Hardware names Hardware/platform type
6 Duration Duration of the project in months
7 Size ep99 proj Total size of the project software in Experience 2.0 FP’s
8 Worksup Total effort of the supplier
9 SituCoeff Situation coefficient multiplier
10 T01 Involvement of the customer representatives
11 T02 Performance and availability of the development environment
12 T03 Availability of IT staff
13 T04 Number of stakeholders
14 T05 Pressure on schedule
15 T06 Impact of standards
16 T07 Impact of methods
17 T08 Impact of tools
18 T09 Level of change management
19 T10 Maturity of software development process
20 T11 Logical complexity of software
21 T12 Size of database based on number of entities
22 T13 Number of interfaces to other software
23 T14 Quality requirements of software
24 T15 Efficiency requirements of software
25 T16 Training and installation/platform requirements
26 T17 Analysis skills of staff
27 T18 Application knowledge of staff
28 T19 Tool skills of staff
29 T20 Experience of project management
30 T21 Team skills of the project team
31 InpTot Total number of input functions
32 InpFP Size of inputs in Experience 2.0 fp’s
33 InqTot Total number of inquiry functions
34 InqFP Size of inquiries in Experience 2.0 fp’s
35 OutTot Total number of output functions
36 OutFP Size of outputs in Experience 2.0 fp’s
37 IntTot Total number of interface functions
38 IntFP Size of interfaces in Experience 2.0 fp’s
39 EntTot Total number of entities
40 EntFP Size of entities in Experience 2.0 fp’s
41 AlgTot Total number of algorithmic functions
42 AlgFP Size of algorithms in Experience 2.0 fp’s
43 AllTot Total number of all types of functions
44 AllFP ep20 Application size in Experience 2.0 fp’s

153

	Introduction
	Motivation for Thesis
	Research Objectives
	Scope of Work
	Thesis Structure

	Background and Related Work
	Introduction to Machine Learning
	Reinforcement learning
	Unsupervised Learning
	Supervised Learning
	The choice of classifier

	Feature Weighting
	Filter Method
	Wrapper Method
	Embedded Method

	Software effort estimation techniques
	Analogy-based Software effort estimation
	Similarity Measure
	Choice of k for k-NN
	Adaptation Rules

	Analogy-based Tools and Systems
	Estor
	ArchANGEL

	Advantages of Analogy-based estimation
	Summary

	Feature Weighting Techniques for ABE in Software Effort Estimation
	Objective for the Literature Review
	SLR Research questions

	Method of Identification of Relevant Literature
	Search strategy
	Study selection and data extraction
	Data synthesis

	Systematic Literature Review Findings
	Feature Weighting Techniques
	Methods for Accuracy Estimation
	How was Feature Weighting Dealt With?

	Summary

	Blind Analysis for Software Estimation Experiments
	Sources of Bias in Research
	Blind Analysis
	What is a Blind Analysis?
	Blinding strategies

	Blind Analysis Design and Discussion
	Blind Analysis Experiences

	Overcoming barriers to blind analysis
	Concerns about blind analysis
	Challenges for blind analysis

	Summary

	Forward Sequential Weighting for Analogy Based effort Estimation
	Introduction
	Feature Weighting: Formal problem description
	Rationale and the assumptions of ABE
	A Feature-space Partitioning Approach
	Feature Space Partitioning
	Weight Sets

	The feature weighting algorithm
	Supervised Feature weighting
	Feature re-weighting

	An eXtension for ArchANGEL
	Summary

	Empirical Evaluation of FSW for Analogy Based effort Estimation
	Experimental Framework
	Choice of feature weighting approach
	Choice of performance metrics
	Choice of data sets
	Method for Accuracy Estimation
	Moving windows approach
	Experimental process

	Empirical evaluation of Feature Sequential Weighting
	Experimental results for comparison of FSW to FSS, CBR and Naïve
	Blind Analysis Experimental results

	Summary

	Conclusions and Further Work
	Summary of work done
	Contribution of this Thesis
	Limitations and Possible Future Work
	Approach limitations
	Limitations of Analysis
	Possible Future work

	Appendix A
	Appendix B

