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A homogeneous cavitation model, derived from the Keller-Miksis equation, is developed 

and applied to the two-phase problem of bubble growth, breakup and propagation in the 

melt. Numerical simulations of the ultrasonic field emanating from an immersed sonotrode 

are performed and the calculated acoustic pressure is applied to the source term of the 

bubble transport equation to predict the generation, propagation and collapse of cavitation 

bubbles in the melt. The use of baffles to modify the flow pattern and amplify sound waves 

in a launder conduit is examined to determine the optimum configuration that maximizes 

the residence time of the liquid in high cavitation activity regions. The simulation results 

demonstrate that dimensions that match integer wavelengths, and are therefore in 

resonance with the travelling waves, are desirable since they lead to an increase in the 

concentration of nucleating bubbles in the liquid compared with other dimensions. 

Keywords: Cavitation modelling, Ultrasonics, Liquid aluminium, Homogeneous cavitation, 

Ultrasonic melt treatment 

Introduction 

The treatment of melt with ultrasound has been demonstrated to result in significant 

improvements in the quality and properties of metallic materials 1-4: the beneficial effects of the 
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treatment include degassing of dissolved gases, improved wetting, activating inclusions by 

cleaning the solid-liquid interface, enhancing nucleation and refining the grain structure of the 

solidified sample 1. These improvements are attributed to ultrasonic cavitation 5: the creation, 

growth, pulsation and collapse of bubbles in the liquid 6, 7. However, treating large volumes of 

liquid metal, as is required by processes such as continuous casting, is still elusive; this 

technology has not yet been successfully transferred to the industry as a result. A fundamental 

study of the ultrasonic treatment of melt is required to circumvent these difficulties 8. 

Transport equation-based cavitation models applied to the Navier-Stokes equations are 

commonly encountered in the literature, for example 9, 10. Most of these models have been 

developed to predict cavitation bubble concentration in water, rather than in liquid metals where 

evaporation and condensation are not significant. The model of Merkle et al. 11, 12 uses 

evaporation and condensation terms that are both functions of pressure. Kunz et al. 13 uses an 

evaporation term that is a function of pressure, whilst their condensation term is a function of 

volume fraction. 

While both models yield satisfying predictions at different cavitation numbers 9, the full 

cavitation models of Athavale et al. 14, 15 and Sauer and Schnerr 16 are more commonly 

encountered in the literature. These models enable multidimensional simulation of cavitating 

flows, the modelling of which is crucial to the design of many engineering devices. In the 

approach of Athavale et al. 14, 15, the source terms for the bubble mass fraction transport equation 

are derived from the Rayleigh-Plesset equation 17, 18, which governs the evolution of a spherical 

bubble 19, 20, to predict the formation and collapse of bubbles in cavitating flows. This model has 

been used in a metallurgical context by Nastac 21 for the modelling of solidification structure 

evolution in a crucible. 

In this paper, the full cavitation model of Athavale et al. 14, 15 is modified to be applied in 

cases involving strong acoustic pressures, for example to determine the bubble concentration in a 



launder conduit. The Keller-Miksis equation, which is more appropriate than the Rayleigh-

Plesset equation for these large forcing amplitudes 22, is used to derive the source terms for the 

vapour transport equation. An additional turbulence source term, also derived from the Keller-

Miksis equation, accounts for the increased turbulence created by bubbles as they pulsate and 

cavitate. These changes are proposed to improve the understanding of the effect of ultrasonic 

treatment on flowing melt, paving the way to the ultrasonic treatment of liquid metal as a 

continuous process. 

Theory 

Governing Equations 

Wave equations 

The wave equation is usually expressed as 

 
𝜕2𝑝

𝜕𝑡2 − 𝑐2 𝜕

𝜕𝑥𝑖
(

𝜕𝑝

𝜕𝑥𝑖
) = 𝑐2𝑆𝑝 (1) 

where 𝑝 is acoustic pressure, 𝑐 is the speed of sound of the travelling medium and 𝑆𝑝 are 

the wave source terms. In this paper, the wave equation is expressed in terms of the continuity 

and momentum conservation equations. 

𝜕𝜌

𝜕𝑡
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where 𝜌 is the fluid density and 𝒖′ is the perturbation velocity. The advantage of this 

formulation lies in the possibility of extending the discretization method of the wave equation to 



higher orders in space and time using fully staggered scheme to resolve acoustic wave 

propagation more accurately: a summary of this approach is presented elsewhere 23. 

The bubbly fluid density is related to the vapour and non-condensable gas mass fractions, 

𝑓𝑣 and 𝑓𝑔, according to: 

1
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where 𝜌𝑣 is the bubble vapour density and 𝜌𝑔 is the non-condensable gas density 14. 

Vapour is negligible when considering liquid aluminium, since the vapour pressure of 

aluminium at its melting point is 0.000012 Pa 24. Aluminium vapour bubbles are therefore 

unlikely to be formed in the bulk 25. However, vapour is readily present in water. 

The source term 𝑆𝑚𝑎𝑠𝑠 contains mass sources such as vibrating solid surfaces. The 

forcing terms 𝑆𝑢𝑖
′ contain velocity sources due to the vibrating solid surfaces. The speed of 

sound is dependent on the local density ρ and bulk modulus K: 

c = √K/ρ (5) 

Bubble evolution equation 

The Keller-Miksis equation 22 governs the evolution of bubble radii: 
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where 𝑅 is the bubble radius, 𝑐𝑙 is the speed of sound in the surrounding liquid and 𝜌𝑙 is 

the liquid density. The dotted accents denote time derivatives. 𝑃𝑠 is given by 

Ps = 𝑃𝐵(𝑡) + 𝑝𝑣 −
2𝜎

𝑅
−

4𝜇𝑅̇

𝑅
− 𝑃∞(𝑡) (7) 



𝑃𝐵 is the pressure inside the bubble and 𝑃∞ is the pressure in the liquid far from the 

bubble centre. 𝜇 is the dynamic viscosity. 𝜎 is the surface tension between the gas in the bubble 

and the liquid. 𝑝𝑣 is the sum of the vapor pressure and an estimation of the local values of 

turbulent pressure fluctuations: 

𝑝𝑣 = 𝑝𝑠𝑎𝑡 + 0.39
𝜌𝑘

2
 (8) 

where 𝑝𝑠𝑎𝑡 is vapour pressure 14. 

Flow equations 

Fluid flow is governed by the Reynolds-averaged Navier-Stoke (RANS) equations: 

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌𝒖) = 0 (9) 

𝜕(𝜌𝑢𝑖)
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 (10) 

𝒖 is the fluid velocity, 𝜇𝑡 is the eddy viscosity and 𝑆𝑢𝑖
 are the momentum sources, 

including buoyancy. 

The standard 𝑘 − 𝜀 turbulence model is used for closure 26 with an additional source term 

𝑆𝑘 to account for turbulence generated due to bubble collapse. 
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𝐺 is the turbulence generation rate. The constants 𝜎𝑘, 𝜎𝜀, C1ε and C2ε are 1.00, 1.30, 1.44 

and 1.92 respectively as per the original model.  



The velocity generated by bubble collapse is estimated from the Keller-Miksis equation 

 (6), ignoring the second-order derivative of 𝑅 and the time derivative of the bubble 

pressure, as: 
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where the interfacial velocity of the bubble is approximated by √𝑘. The total pressure 

𝑝𝑡𝑜𝑡 is given by 

𝑝𝑡𝑜𝑡 = 𝑝 + 𝑝0 + 𝜌𝑔ℎ (14) 

where 𝑝0 is the atmospheric pressure and ℎ is the depth below the free surface. The term 

𝜌𝑔ℎ is significant for dense liquids like aluminium. The additional turbulent source term in the 𝑘 

equation then becomes: 

𝑆𝑘 = 𝑓𝑔ρ
𝑣𝑘

2

𝑡𝑐
 (15) 

where 𝑡𝑐 is a characteristic time scale for the lifetime of the bubbles. 

Mass fraction transport equation 

The growth and collapse rates of the cavitation bubbles are derived using the same steps as the 

full cavitation model of Singhal et al. 14, but using the Keller-Miksis equation instead, since this 

research is concerned with large forcing amplitudes. Combining the phase continuity equations 

expressed in terms of volume fraction 𝛼: 

𝜕[(1−𝛼)𝜌𝑙]

𝜕𝑡
+ ∇ ⋅ [(1 − 𝛼)𝜌𝑙𝒖] = Γ (16) 



𝜕(𝛼𝜌𝑏)

𝜕𝑡
+ ∇ ⋅ (𝛼𝜌𝑏𝒖) = −Γ (17) 

and the continuity equation  (8), and relating the volume fraction to the bubble density 

N, the following relation is obtained: 
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Using the Keller-Miksis equation  (6), and ignoring the viscous, surface tension terms 

and acceleration term, that is important only during the initial bubble acceleration, the expression 

for the net phase change rate Γ is obtained as 

Γ = √4𝜋𝑁(3𝛼)23 𝜌𝑙𝜌𝑏
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where the interfacial velocity of the bubble is again approximated by √𝑘. 

The use of the Keller-Miksis equation to derive the phase change source terms assumes 

the following: 

 The internal pressure of the bubbles is homogeneous, since the inertia of the gas is 

negligible. 

 The bubbles remain spherical. Due to the large value of the surface tension of hydrogen 

interfaces with liquid aluminium, bubbles observed in melt cavitation treatment are 

generally small, in the region of 10-100 μm in radius 27. 

Expressing phase change in terms of mass fractions, the mass fraction transport equation 

is given by: 

𝜕(𝜌𝑔𝑓𝑔)
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where Γ𝐺  and Γ𝐶 are the growth and collapse source terms respectively and Γ =  Γ𝐺 − Γ𝐶. 

The interfacial velocity of the bubble is approximated as √𝑘, giving: 

when 𝑝 < 𝑝𝑣: 
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when 𝑝 > 𝑝𝑣: 
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where 𝐶𝐺 = 0.02 and 𝐶𝐶 = 0.01. In the absence of known values for 𝑁, equation (18) 

has been re-expressed in terms of the bubble radius, and invoking the relation 28 

R =
0.061 𝑊𝑒 𝜎

2 𝜌𝑙𝑘
 (23) 

to express the source terms in terms of known quantities. 

Algorithm 

Wave equation solution 

The wave equations  (2) and (3) are initially solved using the leapfrog scheme, implemented in 

Greenwich’s in-house multiphysics package PHYSICA 29, with a time-step of 1 µs for a 

simulation time of 1 ms. In the leapfrog scheme, the pressures are stored at cell centres at each 

time-step. Velocity components of the pressure perturbations are stored on faces half a time-step 

apart from the pressures. The values for pressure and velocity components at the next iteration 

are given by: 
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𝑛 ) + 𝑆𝑖Δ𝑡  (25) 

where 𝑛 is the iteration number and 𝑥𝑖 is the cell distance in the ith direction. The 

subscripts 𝑑𝑤 and 𝑢𝑝 denote the downwind and upwind values respectively.  

The iterative procedure in each time-step is as follows: 

(1) The mixture density and speed of sound are updated using equations (4) and (5). 

(2) The acoustic pressure is solved using the discretized form of equation (2). 

(3) The velocities are then solved using the discretized form of equation (3). 

(4) The mass fraction transport equation (19) is solved. 

(5) The minimum and maximum acoustic pressures are stored in each cell. 

Averaged homogeneous cavitation model solution 

The cavitation model is then run for a longer simulation time of 20 s, with a larger time-

step of 1 ms. The transport equations are discretized using the finite volume method in a 

segregated manner 29. The evaluated local minimum and maximum acoustic pressures from the 

previous calculation are used in the source terms  (21) and  (22) respectively in this 

longer run: this corresponds to evaluating an average bubble growth rate in each cell. The appeal 

of using two calculations with different time scales lies in the reduced run time from weeks to 

hours, by enabling the use of large time-steps for cavitating flow simulations. 

Problem Description 

In order to model the continuous treatment of liquid with ultrasound, a launder geometry as 

shown in Figure 1 is used for the computational domain. The sonotrode is located at the centre of 



the domain, equidistant between the two baffles. The horn is immersed 1 cm below the liquid 

surface. The frequency of the sonotrode is 20 kHz and the amplitude of the acoustic pressure 

below the horn is 5.0 MPa. This amplitude is at the upper limit of acoustic pressures that can be 

encountered during melt treatment experiments: Xu et al. 27 used acoustic pressures of the order 

of 4.0 MPa in their experiments. 

 

 

1 50 cm x 9 cm x 8 cm launder. L denotes the length between baffles, of thickness 8 mm each.  

The sonotrode is immersed 1 cm into the free surface at the centre of the domain. 

 

The inlet and outlet are at the low and high y boundaries respectively. The liquid enters 

the domain at a velocity of 0.01 m s-1 in the y direction. The launder problem is solved for both 

water at 20 ºC and aluminium at 700 ºC; material properties for both water and aluminium are 

given in Table 1. The launder boundaries and the liquid free surface are assumed to be fully 

reflective to sound waves. A phase shift of 180 º occurs when pressure waves reflect from the 

free surface: this is implemented by setting the acoustic pressures in the computational cells 

located just above the free surface to 0 Pa. 

L 

Inlet 

Outlet 

Sonotrode position 



The distance between the baffles is a parameter that is varied as a function of the sound 

wavelength in the travelling medium. In water, the wavelength 𝜆 of ultrasound at 20 kHz is 7.4 

cm, and in aluminium, the wavelength is 23 cm. The simulation is run for each liquid for the 

following distances 𝐿 between baffles: 0.5 𝜆, 1.0 𝜆 and 1.5 𝜆 using the procedure described in the 

theory section. 

Mesh independence is determined by investigating the predicted pressure differences in 

the domain when using meshes with 8770, 16768, 22518 and 30486 cells as shown in Figures 2 

and 3. The mesh with 30486 cells is used for computing the results presented in the next section.

 

2 Predicted acoustic pressure along axis of 

launder with different meshes 

 

3 Predicted acoustic pressure along axis of 

sonotrode with different meshes

 

The large variations in the acoustic pressures with different mesh sizes are due to the 

sensitivity of cavitation models to the location and number of initial bubble sizes. In the 

homogeneous cavitation model presented in this paper, the choice of fixed finite volume cells 

imposes local length scales (of the order of the cube root of the cell volume) on the problem: 

processes occurring at smaller scales cannot be resolved 30. The model therefore predicts the 

average behaviour of a mixture (of liquid and bubbles) in each cell, instead of resolving the 

dynamics of each individual bubble. When changing the grid size, the computed cell densities 



and speeds of sound change, thereby having a knock-on effect on subsequent computations of 

acoustic pressures. This is an inherent trait of cavitation modelling: addressing this feature will 

necessitate uncertainty quantification modelling of the cavitation process, with many simulations 

run with slightly different parameters and gauging the effect of small changes in material 

properties, initial and boundary conditions, and mesh size on the macroscopic flow and pressure 

pattern. This will be the subject of future studies. The speed-up offered by the time-averaging 

algorithm presented in this paper makes such a systematic study affordable. 

Results 

Cavitation of a 100 𝝁m bubble 

Cavitating bubbles with radii of the order of 100 μm have been observed in X-ray imaging of Al-

10Cu samples 27. Solving the Keller-Miksis equation using the standard Runge-Kutta method for 

bubbles of this size in water and aluminium, for a forcing sinusoidal signal of amplitude 5.0 MPa 

and frequency 20 kHz, results in the radius evolution profiles depicted in Figures 4 and 5 

respectively. For both materials, bubble collapses occurs at 0.1 ms intervals: the characteristic 

time-scale 𝑡𝑐 used in term  (15) is therefore assumed to be 0.1 ms. 

Table 1 Material properties of liquid aluminium and water 

Material Property Aluminium (700 ºC) Water (20 ºC) 

Sound speed 𝑐 (m s-1) 4600 1481 

Density 𝜌𝑙 (kg m-3) 2350 1000 

Bulk modulus 𝐾 (GPa) 41.2 2.15 

Dynamic viscosity 𝜇 (mPa s) 1.3 0.798 



Surface tension (hydrogen interface) 𝑆 (N m-1) 0.87 0.072 

Vapour pressure 𝑝𝑠𝑎𝑡 (kPa) 0 4.24 

 

Improved formulation for the radius evolution will include contributions from the 

Bjerknes forces, as is the case for microscopic models 31: this is the subject of current 

investigation and will be detailed in future publications. 

 

4 Radius evolution for a bubble of initial 

radius 100 μm in water 

 

5 Radius evolution for a bubble of initial 

radius 100 μm in aluminium

Acoustic pressure solution 

Solving the wave equations  (2) and (3) gives the minimum and maximum acoustic pressure 

contours across the whole domain. The minimum acoustic pressure contour plots along the 

central x and y planes are shown in Figures 6 and 7. As expected, the extreme pressure values are 

found below the sonotrode, where the cavitation activity is expected to be most intense, inside 

the conical bubble structure. The cavitation threshold of -100.0 kPa (acoustic pressure) in water 

is achieved everywhere in the domain. 



 

6 Predicted minimum instantaneous acoustic pressure (Pa) in domain for a configuration with 

baffles separated at a distance of 1. 0 λ for water along the central x plane 

 

 

7 Predicted minimum instantaneous acoustic pressure (Pa) in domain for a configuration with 

baffles separated at a distance of 1.0 λ for water along the central y plane 

Cavitation run solution 

The minimum and maximum pressure fields from the wave equation solution are used in the 

source terms of the bubble transport equation  (20). The resulting bubble mass fraction 

plots along the axes of the domain are shown in Figures 8, 9, 10 and 11. These results are 

obtained in a run time of the order of 1.5 days on a 3.60 GHz CPU on the converged mesh of 

30486 cells, making this approach attractive for industrial and optimization applications. 

For both water and aluminium, a baffle separation of 1.0 𝜆 maximizes the bubble 

concentration in the domain. The flow generated with this baffle distance also convects the 

maximum concentration of bubbles downstream, resulting in a larger number of nucleation sites 

at the outlet. The baffle distances at half integers of wavelength are equally poor at yielding a 

large bubble concentration downstream. A larger bubble concentration is desired, since higher 

cavitation activity – occurring as more bubbles collapse – is thought to promote better grain 



refinement. The random cavitation of bubbles, that emit high pressure shock waves, disrupt the 

solidification front advancement, thus refining the grain structure 1. 

 

8 Bubble mass fraction along the axis of the 

sonotrode for water after a run time of 20 s. 

Mass fraction values are taken along the axis 

of the sonotrode 

 

9 Bubble mass fraction across the launder for 

water after a run time of 20 s. Mass fraction 

values are taken along the axis of the launder 

 

 

10 Bubble mass fraction along the axis of the 

sonotrode for aluminium after a run time of 

20 s. Mass fraction values are taken along the 

axis of the sonotrode 

 

11 Bubble mass fraction across the launder 

for aluminium after a run time of 20 s. Mass 

fraction values are taken along the axis of the 

launder 



  

Observing the flow field, two recirculation patterns are seen in two regions: under the 

sonotrode and downstream of the second baffle. The recirculation pattern is depicted for the 

aluminium case with a baffle separation of 0.5 𝜆 in Figure 12. The second recirculation pattern 

can be exploited by adding a second sonotrode above this region. 

The minimum residence time, the time taken for the liquid to leave the domain along the 

shortest path, is given in Table 2. These values are dependent on the flow pattern that is altered 

due to the baffle separation and the change in local densities due to cavitation activity. The 

wavelength of aluminium is large compared with the size of the modelled launder, giving the 

unusually short time to leave the domain for a separation of 1.5 𝜆 since the baffles are close to 

the inlet and outlets. 

 

Figure 12 Recirculation in configuration with baffles separated at a distance of 0.5 𝝀 for 

aluminium 

Table 2 Minimum residence time (s) for each case 

L (𝝀) Laluminium (cm) Aluminium (s) Lwater (cm) Water (s) 

0.5 11.5 7.0 3.7 2.6 

1.0 23.0 7.3 7.4 1.2 

1.5 34.5 0.2 11.1 2.4 



Conclusions 

A multiscale model for the ultrasonic treatment of liquid metals is presented in this study. The 

bubble concentration for the flow in a launder with baffles to create recirculation zones in high 

cavitation activity regions is studied with an improved version of the full cavitation model 

derived from the Keller-Miksis equation. 

The optimal baffle distance for both liquid water and aluminium has been found to be at 

one wavelength of the forcing frequency, implying that resonance with the driving frequency is a 

desired trait for ultrasonic cavitation treatment of liquid metal. 
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