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Abstract

Comparing simulation and data histograms is of interest in nuclear and particle physics experiments; however,

the leading three-dimensional histogram comparison tool available in ROOT, the 3D Kolmogorov-Smirnov test,

exhibits shortcomings. Throughout the following, we present and discuss the implementation of an alternative

comparison test for three-dimensional histograms, based on the Energy-Test by Aslan and Zech.

The software package can be found at http://www-nuclear.tau.ac.il/~ecohen/.
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1. Introduction1

Goodness of Fit (GoF) comparisons are a recurrent2

task when analyzing nuclear physics and high-energy ex-3

periments. Particularly common are GoF comparisons4

between histograms of data and Monte Carlo (MC) sim-5

ulation. Such comparisons typically serve to determine6

whether the data and an MC sample are consistent7

with being generated from the same parent distribution.8

Often multiple MC sets with different parameters are9

generated, and GoF comparisons are needed to deter-10

mine which best describes the data (The null-hypothesis11

(distributions are the same) is well defined, and it is12

important to obtain appropriate GoF methods to check13

its validity).14

One-dimensional comparison methods are well15

known in the literature. Some are designed for his-16

togrammed data comparison (e.g, the χ2 test), while17

others are intended for discrete data application (e.g,18

the Kolmogorov-Smirnov (KS) test), though also appli-19

cable to histogrammed data provided that the binning20

effects are considered.21

GoF using the KS test (and other existing cumu-22

lative tests) is problematic for comparing multidimen-23

sional data, as it relies on the ordering of the data to24
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obtain the Cumulative Distribution Function (CDF)25

and because of the large number of distinct ways of or-26

dering the data in space (2d − 1 in d-dimensional space).27

Another disadvantage of multidimensional GoF tests is28

the lack of metric invariance, which leads to an undesir-29

able high sensitivity of the comparison on a scale factor30

- or the number of bins in the histogrammed case.31

1.1. Histograms comparisons in ROOT32

ROOT is the most widely used data analysis tool in33

high-energy physics experiments [1]. The major existing34

method for comparing 3-dimensional (3D) histograms35

in ROOT is the Kolmogorov-Smirnov Test (the KS36

test). ROOT also implements a 3D version of the χ2
37

test, though due to exceptionally inferior performance38

in previous 2D investigations [4, 5], it was not consid-39

ered in this work. The 3D extension of the KS test40

is complicated by the problem of ordering the data to41

build the CDF. In addressing this, ROOT computes six42

CDFs for each histogram, accumulating the binned data43

raster-wise, in all distinct possible patterns, so that the44

comparison yields six maximum differences to which the45

Kolmogorov function is applied to the averages, return-46

ing the null hypothesis probability (i.e., that the two47

histograms represent selections from the same distribu-48

tion). However, at finer histogram binning, the order49

in which the binned data are accumulated approaches50

the order of the discrete data in the slowest varying51

dimension [4]. Consequently, the CDFs generated by52

the ROOT 3D-KS test approach those of the discrete53

data ordered in one dimension along each coordinate54

separately. In extreme cases this can lead to false pos-55

itives as histograms with similar projections onto the56

axes are compared (see e.g. [5] for the 2D case).57

1.2. An alternative 3D test58

The Energy Test (ETest), first proposed by Aslan59

and Zech [2, 3], can serve as a powerful and robust tool60

for multidimensional data comparison. Although this61

test was originally designed for discrete data, apply-62

ing it to histogrammed or clustered data may expedite63

calculations [3].64

The ETest is a two-sample test, in which the null65

hypothesis to be examined is that both samples origi-66

nate from the same distribution. The ETest can also67

be considered as a standard GoF test, if there is an68

MC sample large compared to a data sample. In this69

case, the null hypothesis is that the data follow the70

parent distribution of the MC sample. The difference71

between these two cases is important for obtaining the72

distribution of the ETest statistic. For model-dependent73

calculations, a large number of MC samples can be gen-74

erated and compared with the data to accumulate a75

distribution of the Energy-Test statistic; however, in76

the case of two-samples originating from real experi-77

ments, this might not be possible. The only solution78

in this case is to perform the test multiple times using79

bootstrap samples of the data.80
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Reid et al. [4] have implemented a version of the81

ETest for 2-dimensional histogrammed data within the82

ROOT framework, provided some evaluations of its per-83

formance [4], and presented some of its advantages over84

χ2-2D and KS-2D ROOT implementations. A revisit85

of the 2D histogrammed implementation of the ETest86

was introduced in 2012 to a wider audience, together87

with comparisons to available 2D tests (χ2 and KS) [5].88

In this work we follow [5] and introduce a 3D his-89

togrammed implementation of the ETest, as well as90

demonstrate some of its performances.91

2. The Energy-Test92

Consider a sample of Data (D) and MC points in a93

d-dimensional space, consisting of nD and nMC charges,94

{xD
i } and {xMC

j }, respectively. The hypothesis that95

they arise from the same parent distribution is to be96

examined.97

If D (MC) represents a system of positive (negative)98

point charges 1/nD (−1/nMC), then, in the limit of99

nD →∞ and nMC →∞, the total electrostatic energy100

(for a 1/r potential) of the two samples will reach a min-101

imum when both samples have the same distribution.102

The ETest generalizes this concept.103

2.1. The test statistic104

The ETest statistic consists of three terms, corre-

sponding to the self-energies of the two samples, D and

MC, and the interaction energy between the two sam-

ples, Φ = ΦD + ΦMC + ΦDMC, where

ΦD = 1
n2
D

nD∑
i=2

i−1∑
j=1

ψ(|xD
i − xD

j |)

ΦMC = 1
n2
MC

nMC∑
i=2

i−1∑
j=1

ψ(|xMC
i − xMC

j |)

ΦDMC = − 1
nDnMC

nD∑
i=1

nMC∑
j=1

ψ(|xD
i − xMC

j |)

and ψ is a continuous, monotonically-decreasing func-105

tion of the Euclidean distance r between the charges.106

Following [5], we choose to use ψ = − ln(r + ε), rather107

than the electrostatic potential 1/r, since it renders108

a scale-invariant function for the test, and offers bet-109

ter rejection powers against alternatives to the null-110

hypothesis1. The value of the cutoff parameter ε is111

not critical so long as it is of the order of the mean112

distance between points at the densest region of the113

sample distributions.114

2.2. Implementation of a 3D histogrammed version of115

the ETest in ROOT116

The ETest was implemented as a compiled ROOT117

macro for equally-binned (N ×N ×N) histograms.118

Aslan and Zech [3] suggest that the ranges of the data119

can be normalized, to equalize the relative scales of120

the x, y, and z-coordinates. We found that for our spe-121

cific application a similar normalization is not necessary.122

Underflow and overflow bins (with indices 0 and N+1,123

1if all axes are scaled identically.
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respectively, in ROOT notation) can be included with124

nominal widths of 1/N below or above the histogram125

limits, selected by a user input parameter.126

The choice of the number of bins chosen can be

based on statistical methods proposed in the literature.

The authors found the Freedman-Diaconis rule to work

well in practice [6]. In this approach the bin size is

chosen by

bin size = 2 n(x)−1/3 IRQ(x),

where n(x) is the number of observations in the sample127

x, and IRQ(x) is the interquartile distance2. For the128

example of 135,000 points uniformly distributed in a129

unit cube, this results in N ∼ 50 bins in each direction.130

131

Histograms neglect intrabin positional information132

as all points within a given bin are assigned a single133

position, i.e., the bin centre. Unlike the discrete case,134

the self-energy between points in the same bin must135

be taken into account. This means that the r = 0 case136

must be treated individually, i.e., when bin (i1, i2, i3) is137

being compared to bin (i1, i2, i3)138

We assume the original points are randomly dis-139

tributed within the bin limits, and take the average140

distance between pairs of random points in a unit141

cube to calculate an effective cutoff ε. This value is142

〈r〉 = 0.66170... 3 [7], so we use ε = 〈r〉 /N as the cutoff143

distance. See below the sensitivity study to the cutoff144

parameter and the number of points in each bin.145

We also modified the calculation of the self-energy146

of k points within a given bin by the weight k2/2 rather147

than the rigorous k(k − 1)/2, to ensure that compar-148

isons between identical histograms return exactly zero149

analytically.150

To summarize, the implementation of the three151

terms in the energy sum when comparing two152

N ×N ×N ROOT histograms, hD representing the153

data and hMC representing the Monte-Carlo expecta-154

tion, with total content nD and nMC, respectively, is155

given by:156

2The interquartile distance, sometimes also referred to as the midspread, is the difference between the upper and lower quartiles.

3〈r〉 = 1
105

(
4 + 17

√
2− 6

√
3 + 21 sinh−1 1 + 42 ln(2 +

√
3)− 7π

)
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ΦD = 1
n2
D

N+1∑
d1=0

N+1∑
d2=0

N+1∑
d3=0

Dd1,d2,d3



d1−1∑
d′
1=0

N+1∑
d′
2=0

N+1∑
d′
3=0

Dd′
1,d

′
2,d

′
3
ψ
d′
1,d

′
2,d

′
3

d1,d2,d3

+
d2−1∑
d′
2=0

N+1∑
d′
3=0

Dd1,d′
2,d

′
3
ψ
d1,d

′
2,d

′
3

d1,d2,d3

+
d3−1∑
d′
3=0

Dd1,d2,d′
3
ψ
d1,d2,d

′
3

d1,d2,d3

+ 0.5Dd1,d2,d3
D0


,

ΦMC = 1
n2
MC

N+1∑
m1=0

N+1∑
m2=0

N+1∑
m3=0

MCm1,m2,m3



m1−1∑
m′

1=0

N+1∑
m′

2=0

N+1∑
m′

3=0

MCm′
1,m

′
2,m

′
3
ψ
m′

1,m
′
2,m

′
3

m1,m2,m3

+
m2−1∑
m′

2=0

N+1∑
m′

3=0

MCm1,m′
2,m

′
3
ψ
m1,m

′
2,m

′
3

m1,m2,m3

+
m3−1∑
m′

3=0

MCm1,m2,m′
3
ψ
m1,m2,m

′
3

m1,m2,m3

+ 0.5MCm1,m2,m3
D0


,

ΦDMC = − 1
nDnMC

N+1∑
d1=0

N+1∑
d2=0

N+1∑
d3=0

Dd1,d2,d3

N+1∑
m1=0

N+1∑
m2=0

N+1∑
m3=0

MCm1,m2,m3
ψm1,m2,m3

d1,d2,d3
,

where

ψj1,j2,j3
i1,i2,i3

=


D0 = − ln(〈r〉 /N), if i1 = j1, i2 = j2, i3 = j3,

− 1
2 ln

[
(i1−j1)

2+(i2−j2)
2+(i3−j3)

2

N2

]
, otherwise,

and Dd1,d2,d3 , MCm1,m2,m3 are the contents of individual bins within the histograms.157

2.3. Computation speed158

The computation time complexity of the test statis-159

tic is O(n2), and in terms of histogram dimensions160

O(N6). In order to minimize computation time, time-161

consuming operations were eliminated by the following:162

1. Allocating local arrays holding the histogram163

data to enable pointer indexing rather than164

using the time-consuming GetCellContents()165

method when retrieving bin counts.166

2. Constructing a local array to hold the potential167

function ψj1,j2,j3
i1,i2,i3

.168

3. Skipping computations involving empty bins.169

Table 1 shows the time expenditure for comparisons170

between histogram pairs filled with 106 randomly uni-171

formly distributed points with various binning. The172

comparison of data samples with distribution of equally173

spaced points is meant for testing, and not to describe a174

real application. Despite attempts to reduce calculation175

time, the time expenditure for fine binning (N ≥ 50)176

is very large, and time-reduction programming should177
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be further studied to address this issue. We also note178

that ROOT experiences frequent memory crashes for179

3-dimensional arrays with large sizes (N > 60), due180

to the fixed (and finite) memory size allocated on the181

stack. To address this, allocated variables were put182

in the heap so as to manually emulate 3D arrays. All183

calculations reported in this work were performed on a184

3 GHz Intel Core i7 processor (8 GB 1600 MHz DDR3185

memory) using ROOT version 5.34/21.186

Table 1: Comparison time for 106 points histograms of

various binning with the ROOT 3D-KS test and the

ETest.

Histograms Size ROOT 3D-KS ETest

10× 10× 10 < 10 ms < 10 ms

30× 30× 30 < 10 ms 5.3 s

50× 50× 50 30 ms 150 s

100× 100× 100 320 ms 2×104 s

2.4. Testing resolving power187

The ability of a test to discriminate against non-188

conforming data, usually referred to as the power of the189

test, serves as a measure for the test capability to reject190

incompatible data sets based on selected criterion. De-191

termining the power is possible only if a confidence level192

for accepting the test result is established. A traditional193

criterion is a confidence level of 95% CL95%.194

In order to test our implementation of the 3D ETest,195

two reference sets were generated: (a) A unit cube filled196

with a constant distribution (no statistical fluctuations)197

of 37 points in each one of a 30× 30× 30 bins, and (b)198

a continually re-generated sample of 1,000,000 points199

randomly and uniformly distributed in the unit cube.200

10,000 tests were performed against these references201

using samples of 1,000,000 random points. The first202

sample served as a reference for a one-sample GoF test203

that can determine the consistency with the assumption204

of a constant distribution, and the second for a two-205

sample comparison test to determine if both resulted206

from the same parent distribution.207

Fig. 1 shows the resulting test statistic distributions.208

The values for CL95% are 2.2× 10−6 for a constant209

parent and 4.1× 10−6 for comparison between uniform210

random distributions.211

2.5. Gaussian contamination212

The test for sensitivity to contamination was con-213

ducted by the following [5]. The comparisons de-214

scribed above in Section 2.4 were repeated 1,800 times215

with 1,000,000 points, but where n = 0− 20% of the216

points from each sample were replaced by a trivariate217

N (µ = 0.5, σ = 0.1) Gaussian distribution. The ETest218

discrimination power was determined as the fraction of219

comparison below the corresponding CL95%. Results220

are presented in Fig. 2 and Table 2. As expected, for 0%221

contamination the result is consistent with the choice of222

CL95%, which clearly rejects distributions with n > 1%223

contamination. The ETest exhibits superior perfor-224
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mance than the 3D KS test.225

Table 2: Discrimination power of the ETest and the

ROOT 3D-KS (30× 30× 30 binning), as a function of

the contamination. See text for details.

Gaussian

Contamination

ETest power
ROOT

3D-KS power

0% 0.044 0.0

0.01% 0.051 0.0

0.1% 0.129 0.0

0.7% 1.0 0.0

1% 1.0 0.0

1.3% 1.0 0.0

3% 1.0 0.010

5% 1.0 0.260

10% 1.0 0.942

15% 1.0 0.999

20% 1.0 1.0

2.6. Binning effects226

To study the effects of the different number of bins on227

the ETest resolving power, a set of 1,000,000 points uni-228

formly distributed inside the unit cube was compared to229

3,000 similar sets, each contaminated by a fixed fraction230

of n = 0.1% Gaussian distributed N (µ = 0.5, σ = 0.1)231

points. The discrimination power for different binning232

(for N = 103, 203, 303, 403 and 503) is reported in Table233

3. As expected, the discrimination power is improved234

with finer binning, though not drastically.235

Table 3: ETest 95% confidence level for comparison be-

tween two sets of 1,000,000 uniform random distributed

points and contamination of n = 0.1% as a function of

the number of bins.

Histogram binning ETest CL95% ETest power

10× 10× 10 3.35× 10−6 0.11

20× 20× 20 4.05× 10−6 0.11

30× 30× 30 4.10× 10−6 0.13

40× 40× 40 4.65× 10−6 0.12

50× 50× 50 4.85× 10−6 0.14

2.7. Cutoff parameter impact236

To study the effects of different cutoff parameters237

values on the ETest results, the comparisons described238

in section 2.4 were repeated 3,000 times using cutoff239

parameters 〈r〉 in the range 0.1− 1.0. The Gaussian240

contamination was fixed at n = 0.1% Gaussian distri-241

bution N (µ = 0.5, σ = 0.1).242

Figure 3 shows results from this study. As expected,243

the choice of the cutoff parameter is not critical if its or-244

der of magnitude equals the mean intra-points distance245

in the densest distributions region.246

2.8. Displacement sensitivity247

The sensitivity of the tests to a shift in the position248

of a histogrammed sample was investigated by compar-249

ing 1,000 pairs of 135,000 trivariate N (µ = 0.5, σ = 0.1)250
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Figure 1: Distribution of the 3D ETest statistic. Compared are 10,000 sets of 1,000,000 randomly distributed points

in the unit cube to a constant distribution and to a second uniform distribution, with 30× 30× 30 bins.

6 x 10φETest statistic, 
0 10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

0.25

0.3 0% (no contamination)

0.01%, ETest power=0.051

0.1%, ETest power=0.129

0.7%, ETest power=1.0

1.0%, ETest power=1.0

1.3%, ETest power=1.0
3.00%, ETest power=nan

5.00%, ETest power=nan

Figure 2: Same as Fig. 1 right, with one sample contaminated by n = 0, 0.01, 0.1, 0.7, 1, and 1.3% trivariate

N (µ = 0.5, σ = 0.1) Gaussian distribution. The red doted line indicates the CL95%.
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Figure 3: ETest discrimination power for different cutoff parameters 〈r〉 in the range 0.1− 1.0, with 30× 30× 30

bins. Compared are sets of 1,000,000 uniformly distributed points inside the unit cube and contamination of 0.1%

against a uniform reference.
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distributed points and 30× 30× 30 bins. The second251

distribution was shifted away (0.5, 0.5, 0.5) by several252

values (δx). For the histogrammed Energy-Test, CL95253

was taken from the test metric distribution obtained254

from 10,000 pair-wise comparisons at δx = 0, which255

yielded a value of 1.95× 10−5 (Figure 4); The selection256

criteron for the ROOT 3D-KS tests was a 5% accep-257

tance level. The calculated powers for the tests are258

given in Table 4. The histogrammed ETest provides259

significantly better rejection than the ROOT 3D-KS260

test, approaching full rejection at δx = 0.002 (about 6%261

of bin size), compared to δx = 0.2 for the 3D-KS test.262

Table 4: Discrimination power of the ETest and the

ROOT 3D-KS test for various δx displacements between

trivariate N(µ = 0.5, σ = 0.1).

δx ETest power ROOT 3D-KS power

0.0001 0.150 0.0

0.0005 0.337 0.0

0.0007 0.477 0.0

0.001 0.910 0.0

0.002 0.999 0.0

0.003 1.0 0.0

0.004 1.0 0.002

0.1 1.0 0.350

0.15 1.0 0.790

0.2 1.0 1.0

3. Conclusions263

A new implementation of the Energy Test of Aslan264

and Zech, for performing GoF comparisons between265

three-dimensional histograms, was introduced and in-266

vestigated. The software package can be found at267

http://www-nuclear.tau.ac.il/~ecohen/.268

Concluding this investigation, we show that the269

histogrammed ETest is superior to the only available270

ROOT Kolmogorov-Smirnov Test, for comparing271

synthetic data sets.272

The main reason for this seems to be the fact that273

the histogrammed ETest is a global test that compares274

each pair of bins in the histograms, while the ROOT 3D-275

KS is sensitive to neighborhood variations, dependent276

on the way in which the CDFs are built.277

The disadvantage of the histogrammed ETest is that278

its calculations are time consuming, especially with fine279

binnings. For moderately-sized histograms the penalty280

is slight, particularly if the time taken to construct the281

histograms is also considered.282

An upgraded version of the 3D ETest, which also283

includes an un-binned test option, is planned for imple-284

mentation in ROOT in the near future.285
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Figure 4: The distribution of results of the histogrammed ETest, comparing 10,000 pairs of histograms, each consisting
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