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Abstract

Motivation: Analysing the joint association between a large set of responses and predictors is a

fundamental statistical task in integrative genomics, exemplified by numerous expression

Quantitative Trait Loci (eQTL) studies. Of particular interest are the so-called ‘hotspots’, important

genetic variants that regulate the expression of many genes. Recently, attention has focussed on

whether eQTLs are common to several tissues, cell-types or, more generally, conditions or whether

they are specific to a particular condition.

Results: We have implemented MT-HESS, a Bayesian hierarchical model that analyses the associ-

ation between a large set of predictors, e.g. SNPs, and many responses, e.g. gene expression, in mul-

tiple tissues, cells or conditions. Our Bayesian sparse regression algorithm goes beyond ‘one-at-a-

time’ association tests between SNPs and responses and uses a fully multivariate model search

across all linear combinations of SNPs, coupled with a model of the correlation between condition/

tissue-specific responses. In addition, we use a hierarchical structure to leverage shared information

across different genes, thus improving the detection of hotspots. We show the increase of power re-

sulting from our new approach in an extensive simulation study. Our analysis of two case studies

highlights new hotspots that would remain undetected by standard approaches and shows how

greater prediction power can be achieved when several tissues are jointly considered.

Availability and implementation: Cþþ source code and documentation including compilation

instructions are available under GNU licence at http://www.mrc-bsu.cam.ac.uk/software/.

Contact: sylvia.richardson@mrc-bsu.cam.ac.uk or lb664@cam.ac.uk
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1 Introduction

Integrating different layers of genomic information is essential to im-

prove our understanding of the genetic basis of complex diseases.

The development of integrative analysis strategies has become an

important part of experimental design in the era of next-generation

genomics (Hawkins et al., 2010). A fundamental task faced by many

integrative strategies in genomics is to study the associations be-

tween two high-dimensional datasets. The study of such associations

and the related biological questions can be naturally built within a

regression framework, which exploits prior biological knowledge on

the direction of the relationships between the different layers of gen-

omics data.

One prime example is expression quantitative trait loci (eQTL)

analysis, which links DNA polymorphisms to gene expression levels

on a genome-wide basis. Typically, such analyses would involve test-

ing for association of all transcript-SNP pairs. When eQTL studies

involve large numbers of variants and genes, performing millions of

such tests can become slow and it has been necessary to develop fast

implementations (Shabalin, 2012). To go beyond such ‘one at-a-

time’ strategies, eQTL mapping can be performed using high-dimen-

sional regression models with expression measurements modelled as

responses and genetic variants as predictors (Bottolo et al., 2011;

Fusi et al., 2012; Scott-Boyer et al., 2012). The high-dimensional re-

gression framework leverages information across the set of re-

sponses that are related to the same predictor, increasing the

probability of detecting hotspots, i.e. genomic loci that regulate sev-

eral genes at once.

There is currently much interest in dissecting tissue, cell type or

condition specificity of eQTLs (Fairfax et al., 2012; Lee et al., 2014;

Melé et al., 2015; Raj et al., 2014; Westra et al., 2013). The multiple

tissues or cell types add an extra dimension to the data. For instance,

analysis of eQTLs across multiple tissues or cell types can inform to

which extent eQTLs are shared (or conserved) between different sys-

tems, therefore elucidating fundamental genetic regulatory mechan-

isms. So far these questions have been addressed using one of two

alternative approaches. The first uses separate analysis for each tis-

sue, and intersects the resulting lists of genetic variants (Fairfax

et al., 2012). The second approach (Flutre et al., 2013; Petretto et

al., 2010) combines tissues but performs a separate analysis for each

predictor (genetic variant) and response (gene expression level).

Neither approach fully exploits the data available, nor both can re-

sult in a loss of power to detect small effect eQTLs that are shared

across conditions. To the best of our knowledge, there is currently

no alternative method that goes beyond ‘one-at-a-time’ association

tests and models simultaneously the expression of multiple genes

under multiple conditions in a multivariate way.

In this article, we propose a generic Bayesian variable selection

approach and an associated evolutionary stochastic search algo-

rithm to tackle the challenging integrative task of linking parallel

high-dimensional multivariate regressions in a computationally effi-

cient way. The specificity of our approach is: (i) to move away from

single feature at-a-time analysis and account for the correlated na-

ture of the predictors by implementing a fully multivariate model

search over the space of predictors (ii) to allow the analysis of multi-

dimensional responses, and (iii) to exploit the relatedness of multiple

responses through a Bayesian hierarchical model. Hierarchical mod-

elling of expression responses allows us to exploit the potential func-

tional relationships (e.g. co-regulation relationship, mRNA–mRNA

interactions, protein–protein interactions, etc.) between multiple

genes, thus increasing the power to detect hotspots. We build on our

previous work (Bottolo et al., 2011; Petretto et al., 2010),

demonstrate the power of our new efficient hierarchical implemen-

tation in an extensive simulation study when compared with

MANOVA or the intersection of condition/tissue-specific results.

We also illustrate the benefits of our approach in two case studies

related to eQTLs in multiple conditions (tissues or cell types), where

we recapitulate previously validated hotspots and uncover new hot-

spots. In one case study, we also show that when several tissues are

jointly considered the prediction error is substantially reduced com-

pared with separate single-tissue analysis.

Even though our case studies relate to eQTL analyses, the model

and algorithm that we present are generic and can be used for a large

range of integrative genomics analyses that can be formulated within

a parallel regression framework, such as finding targets for miRNAs

by regressing gene expression levels on miRNA levels (Stingo et al.,

2010), linking DNA variation and metabolites levels, the so-called

mQTL analyses (Marttinen et al., 2014), or linking copy number al-

terations and tumour gene expression (Kristensen et al., 2014).

2 Modelling approach

We describe here in a non-technical fashion how we model the asso-

ciation between multiple responses, here the expression of genes in

different conditions (e.g. tissues, cell-types, disease states, etc.), and

many predictors, here the SNPs. We present a Bayesian variable se-

lection method that acts simultaneously on three levels:

1. Each response in each tissue is sparse-regressed on all the

predictors.

2. The sparse regressions from all tissues for the same response are

performed jointly as a multi-variate regression, modelling the

correlation between tissues, with the same predictors selected

for controlling the response in all tissues.

3. The multi-tissue regressions across all responses are influenced by

shared prior parameters that encourage borrowing of information.

Combining information between tissues allows us to boost signal in

a robust way because the residual correlation is modelled accurately

by latent covariance matrices.

The first level is the key driver of the method. This single re-

sponse variable selection is accurately described in Bottolo and

Richardson (2010). Building on a sparse formulation, this level of

analysis eliminates all predictors for which the signal is not strong

enough. The model takes into account the correlation between pre-

dictors to better identify the best supported combination of pre-

dictors. The performance of this method is illustrated in Bottolo and

Richardson (2010) and Bottolo et al. (2013), and it shows a major

improvement over univariate and commonly used penalized regres-

sion methods used in the ‘large p, small n’ framework in terms of

separation between signal and background noise, and in terms of

genetic resolution as it can handle the highly correlated predictors

that result from linkage disequilibrium (LD).

The second level is built on top of this variable selection, in the

sense that evidence from all the tissues influences the probability for

a predictor to be selected. This strong assumption is reasonable only

when considering a small number of correlated traits for which evi-

dence of joint control is interesting to quantify. Note that once a

predictor is selected, tissue-specific regression coefficients can be

estimated from the posterior distribution.

The third level pools information across all responses in order to

enhance the detection of hotspots. It also has the great benefit of

eliminating many false positives. The performance of this choice of

prior was explored in Bottolo et al. (2011).
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3 Methods

3.1 Bayesian hierarchical sparse regressions
Our model is an extension of HESS algorithm (Bottolo et al., 2011;

Richardson et al., 2010) to the case where the response variables are

observed in multiple conditions, e.g. in different tissues, cell types or

time points.

We consider q response variables observed in r different condi-

tions. In the following, we will use upper-case letters for matrices

and lower-case letters for vectors and scalars. For k ¼ 1; . . . ;q, let

Yk be an n� r matrix, whose entry yik‘ is the response k measured in

condition ‘ for individual i. The explanatory variables are stored in

an n�p matrix X such that xij is the jth explanatory variable meas-

ured in individual i. The association between the explanatory vari-

ables and the responses is modelled through q linear regressions

linked by a hierarchical model. Each of the q regression equations is

given by

Yk � Ak �XBk � NðIn;RkÞ;

where the matrix of regression coefficients Bk is of size p� r, whose

generic element bkj‘ is the regression coefficient relating xj to yk in

condition ‘. Finally, NðIn;RkÞ is the matrix normal distribution

with independent rows, and columns correlated according to the

r� r covariance matrix Rk (Brown et al., 1998). The intercept Ak

and the between-conditions covariance matrix Rk are specific to

each response k. To perform variable selection, we introduce a bin-

ary matrix C of size q�p such that ckj ¼ 0 implies bkj‘ ¼ 0 for all ‘

and ckj ¼ 1 implies bkj‘ 6¼ 0 for for all ‘. For a given k, we denote by

ck the row binary vector ðck1; . . . ; ckpÞ with the number of its non-

zero entries given by jckj. The matrix Xck
of size n� jckj is obtained

by selecting from the matrix X all the columns j such that ckj ¼ 1.

Similarly, we define Bck
to be the matrix of non-zero coefficients of

dimension jckj � r obtained by selecting from the matrix Bk all the

rows j such that ckj ¼ 1.

Conditionally on C, A1; . . . ;Aq; B1; . . . ;Bq and R1; . . . ;Rq, the q

sparse regressions

Yk � Ak �Xck
Bck
� NðIn;RkÞ

are independent, and their joint likelihood is given byYq

k¼1

ðð2pÞrjRkjÞ�n=2exp
n
� 1

2
tr½R�1

k �

ðYk � Ak �Xck
Bck
ÞTðYk � Ak �Xck

Bck
Þ�
o
:

3.2 Prior settings
The prior distribution for the regression coefficients for the kth re-

sponse is the matrix–variate normal

Bck
jck; g;Rk � Nð gðXT

ck
Xck
Þ�1;Rk Þ;

centred in the jckj � r matrix of 0 s, where the prior covariance of

the regression coefficients follows a g-prior (Bottolo and

Richardson, 2010). We choose for the constant Ak the non-inform-

ative prior pðAkÞ / 1. To gain flexibility in fitting the correct

amount of shrinkage, the parameter g is learned from the data, and

its prior distribution is given by g � InvGammaðag;bgÞ.
For the binary matrix C, we introduce a q�p matrix X such that

Pðckj ¼ 1 jXÞ ¼ xkj. To favour hotspot detection while maintaining

a sparsity prior C, we decompose each cell of the matrix x as

xkj ¼ xk � qj, where the row effect xk accounts for the sparsity,

and the column effect qj accounts for the propensity of predictor j to

be a hotspot, that is to be associated to a significant proportion of

the responses (see the following section for hotspots definition in

practical applications). The sparsity prior is given by

xk � Betaðaxk
; bxk
Þ and qj � Gammaðcqj

; dqj
Þ, where x1; . . . ;xq

and q1; . . . ; qp are all a priori independent. To enforce that xkj is a

probability, we impose the constraint 0�xk � qj�1. The interested

reader is referred to Bottolo et al. (2011) for further information

about the multiplicative decomposition of xkj and the sparsity priors

assigned to its components. Finally, the prior for the cross-tissue

error covariance matrix Rk is an Inverse Wishart distribution,

Rk � IWðd;hkIrÞ.
The priors we have chosen allow to integrate out the regression

coefficients Bk, the intercepts Ak and the residual cross conditions

covariances Rk. For each response k, k ¼ 1; . . . ;q, the conditional

marginal likelihood is given by

pðYkjX; ck; gÞ / ð1þ gÞ�rjck j=2

� jhkIn þ
1

1þ g
YT

k Yk þ
g

1þ g
RðckÞjðdþnþr�2Þ=2;

where

RðckÞ ¼ YT
k Yk � YT

k Xck
ðXT

ck
Xck
Þ�1XT

ck
Yk:

The joint distribution of the Bayesian model factorizes as(Yq
k¼1

pðYk jX; ck; gÞpðck jxk; q1; . . . ; qpÞpðxkÞ
)
� pðgÞpðq1; . . . ; qpÞ

(1)

To complete the specification of the model, we need to discuss

the hyperparameters setting for the priors. Regarding the shrink-

age parameter g, a popular choice is the Zellner–Siow prior

g � InvGammað1=2;n=2Þ, which allows to learn the amount of

shrinkage from the data. Theoretical results show good properties of

this prior in model selection (Liang et al., 2008), but little is known

when the Zellner prior is used in q related (multiple conditions/tis-

sues) regressions with an exchangeable shrinkage prior on g. In our

set-up we have found empirically that when q is large the level of

shrinkage is too low. We adapted the Zellner–Siow prior to related

multiple responses by taking g � InvGammaðq=2þ q� 1;nq=2Þ.
This corresponds to keep the same prior mode for g as in q¼1, and

at the same time increasing the precision of the prior proportionally

to the number of responses. In our experiments, this improved the

performance.

We fix cqj
¼ 1:2 and dqj

¼ 1:2 for all j, in order to centre qj on

average around 1. This choice of parameters for the Gamma distri-

bution ensures a finite mode while allowing a large coefficient of

variation, thus providing necessary shrinkage for most qjs towards 1

but also supporting some large qjs to enhance hot-spot detection.

Alternative parameterizations cannot achieve these two competing

goals simultaneously. See Supplementary Material, Section S.4, for a

sensitivity analysis on a simulated and real dataset. We let the par-

ameters axk
and bxk

to be chosen according to the specific dataset to

be analysed. These hyperparamters are determined by back calcula-

tion once, for each k, Eðjckj) and Varðjckj) (respectively, the a priori

expected number of predictors and its variance for each response k)

are specified.

Finally, for the covariance matrices Rk, we choose the convenient

value d¼3, which brings EðRkÞ ¼ hkI. The choice for hk is more

complicated, as it should be comparable in size with the likely error

variance. We use the same empirical Bayes approach as in Petretto

et al. (2010), that is, for a given response k, we run a stepwise

MT-HESS: Multi-Tissue Hierarchical Evolutionary Stochastic Search 525
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regression for each condition ‘ ¼ 1; . . . ; r. Then we set hk as the me-

dian of the condition-specific estimates of the error variance.

3.3 MCMC algorithm
The inference on this high-dimensional model is performed using a

specifically designed MCMC algorithm. This algorithm has already

been presented in great detail in Bottolo and Richardson (2010),

Richardson et al. (2010) and Bottolo et al. (2011), so we are simply

sketching its structure, and we refer to the relevant sources for all

the technical details.

The variables sampled are those that appear in the posterior

density (1), that is the q�p matrix C ¼ ðc1; . . . ; cqÞT, the vectors

x1; . . . ;xq and q1; . . . ; qp, and the parameter g. The challenging part

is the sampling of the matrices C, and this problem is solved by rely-

ing on an Evolutionary Monte Carlo (EMC) structure as introduced

in Liang and Wong (2000). To avoid being trapped in a local mode,

EMC samples several chains, each with its own temperature, and

allows them to exchange information. At each step, the chains are

updated by local moves which act on a single chain (i.e. traditional

MCMC moves), as well by global moves, which use a selection step

inspired from genetic algorithms.

In our setting, if we run the MCMC algorithm for T sweeps and

C chains, its output is given by Cðt;cÞ; xðt;cÞ1 ; . . . ;xðt;cÞq ; qðt;cÞ1 ; . . . ;qðt;cÞp

and gðtÞ with t ¼ 1; :::;T and c ¼ 1; :::;C. The parameter g has been

kept in a single chain because this setting allowed for a faster con-

vergence of our algorithm (see Bottolo et al., 2011). All the details

regarding the local moves and the global moves, as well as the tun-

ing of the temperature parameters, can be found in Bottolo and

Richardson (2010) and Bottolo et al. (2011).

The following pseudo-algorithm shows the various moves per-

formed at each iteration.

Algorithm 1. MCMC algorithm iteration

1. Sample uniformly the responses to update.

2. For each response k to update:

2.1 For each chain c, update the kth row of CðcÞ by using

a local move.

2.2 Update the kth row of Cð1Þ; . . . ;CðCÞ by using a glo-

bal move.

2.3 Update xð1Þk ; . . . ;xðCÞk .

3. Update qð1Þ1 ; . . . ; qð1Þp ; . . . ; qðCÞ1 ; . . . ; qðCÞp .

4. Update the global shrinkage parameter g.

3.4 Post-processing
3.4.1 Declaration of associations and hotspots

The posterior distribution of any function of any subset of model

parameters can be calculated straightforwardly in the MCMC

estimation of the model. Since the model includes explicit variable

selection parameters (ckj), we focus on functions of those parameters

in order to summarize the evidence of association between pre-

dictors and responses.

Pairwise association between response k and predictor j is thus

quantified by the marginal posterior probability of inclusion (MPPI)

pkj ¼ Pðckj ¼ 1jY1; . . . ;Yq;XÞ:

This quantity summarizes the evidence brought by all the data

regarding whether the predictor xj is associated with the n� r

response Yk. It is straightforwardly estimated by the average number

of times ckj ¼ 1 during the MCMC run. In order to obtain a list of

associations of interest, we need a decision rule. The simplest choice

is to threshold on the MPPI: declare an association if pkj is greater

than some threshold value c. The threshold is set according to the

user’s required balance between false positives and false negatives.

An alternative approach is to calculate the so-called Bayesian FDR

(Broët et al., 2004; Muller et al., 2006). For a given threshold c, this

is defined as

bFDR �
P

k;jð1� pkjÞI½pkj > c�P
k;jI½pkj > c�:

Users can either calculate the bFDR for a given threshold on the pkj,

or can set a required level of bFDR and use that to find a threshold

on the pkj. Either way, the declared pairwise associations are those

with the largest values of pkj.

In the Supplementary Material, Section S.3, we give the true

FDR values for our simulation datasets for the decision rule defined

by setting a threshold on bFDR. We find that on average the method

is conservative, i.e. the bFDR overestimates the true FDR value in

line with the strong shrinkage of the pkj resulting from our sparsity

assumptions. Thus, reported hotspots using bFDR cut-offs carry a

higher level of support than their nominal level.

For the results in this article, we use the pkj to declare hotspots as

well as pairwise associations. We use a target value of the bFDR to

find a threshold on the pkj to declare pairwise associations, and sub-

sequently count the number of associations for each predictor.

Other options would be to consider directly the number of associ-

ations
P

k ckj for predictor j, and use the posterior mean or posterior

probability of reaching a given level to declare hotspots.

Focussing on a particular response k, it can also be of interest to

look at the whole set of predictors found to be associated with that

response. For this we consider the whole vector ck. We calculate a

‘re-normalized’ estimate of posterior model probabilities for each re-

sponse, see Supplementary Material, Section S.2, for details.

3.4.2. Model adequacy

In this section, we describe the Bayesian implementation of leave-

one-out prediction error and model adequacy (Gelfand et al., 1992).

For ease of notation, in the following we bypass the subscript ‘

that indicates the condition/tissue under investigation. Let

cB
k ¼ fcB

k : B ¼ maxtpðcðtÞk jYk;XÞg be the vector of the best model

visited during the MCMC for response k. For each response k, given

the best model visited cB
k and after integrating out the parameter g

numerically, we generate observations yf
ik from the predictive dens-

ity f ðyf
ikjyðiÞk; cB

k Þ, where yðiÞk denote the n� 1 data vector with yik

deleted. Under model adequacy, yik is then checked against

f ðyf
ikjyðiÞk; cB

k Þ. Since, if the model holds, Yik is a random realization

of f ðYf
ikjYðiÞk; cB

k Þ, we use

gðyik; y
f
ikÞ ¼

yik � ÊðYf
ikjyðiÞk; cB

k ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðYf
ikjyðiÞk; cB

k Þ
q (2)

as checking function where ÊðYf
ikjyðiÞk; cB

k Þ and dVarðYf
ikjyðiÞk; cB

k Þ are

the empirical mean and variance calculated from the MCMC iter-

ations. For each response, squared prediction error is summed

over the sample and the quantity
P

i ½gðyik; y
f
ikÞ�

2 is then used as a

measure of model adequacy with large values indicating that the

model performs poorly. This quantity resembles the widely adopted

mean-square error with the notably modification that now the dif-

ferences between the predicted and observed values are

standardized.
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3.5 Simulation study
In order to investigate the performance of our multi-tissue method,

we construct an artificial dataset with three tissues and 150 re-

sponses. As in Bottolo et al. (2011), we use the whole genome data

of rat Recombinant Inbred (RI) strains derived from a cross between

the Spontaneously Hypertensive Rat (SHR) and the Brown Norway

(BN) strains, which we have used previously to identify eQTLs

across multiple tissues (Heinig et al., 2010; Hubner et al., 2005;

Petretto et al., 2006). This choice allows us to test the performance

of our algorithm and compare it with alternatives methods when

complex patterns of correlation between markers depends on gen-

etic forces that shape the structure of LD. After removing redundant

variables, the genome-wide number of SNPs is reduced to 1304, giv-

ing a 29� 1304 X matrix.

Conditionally on the SNP matrix X, we generate responses for

each tissue from a linear model. For each tissue ‘; 1� ‘�3, the

n�q matrix Y‘ gathering the observations of the 150 responses is

given by the regression

Y‘ ¼ XB‘ þ E‘ þ Eshared;

where B‘ is the p�q matrix of regression coefficients, E‘ is the n�q

matrix of residuals for tissue ‘ and Eshared is a n�q matrix of

residuals shared by all tissues. The residuals are given by

�ik‘ � Nð0;r2
‘ Þ and �shared

ik � Nð0; r2
sharedÞ.

The matrix B‘ controls the pattern and strength of signal be-

tween each responses and predictors in tissue ‘. For the simulations

we keep B‘ constant across tissues (bkj‘ ¼ kkj � ckj) and control the

signal-to-noise patterns through the noise variance parameters. The

pattern of non-zero associations between responses and predictors is

encoded by the matrix C of 0 s and 1 s. Because, our method is aimed

at detecting a signal that is present in different conditions, we use

the same association pattern C in all conditions. This configuration

can be seen in Figure 1 where six hotspots (vertical bars) with a

varying number of associations per hotspot are simulated. The exact

specification is given in the Supplementary Material, Section S.1.1.

The signal strength is parameterized by l, with kkj � Nðl; 0:0012Þ.
The signal-to-noise ratio in each tissue is tuned thorough the tis-

sue-specific noise standard deviation r‘ and the ‘shared’ noise stand-

ard deviation rshared. Assuming without loss of generality

independence of the noise variances, the total noise standard devi-

ation for tissue ‘ is given by rtotal
‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
‘ þ r2

shared

q
. The correlation

between tissues is proportional to the ‘shared’ noise variance and

also depends on the noise variances of the two tissues considered

(see Supplementary Material, Section S.1.2).

We have conducted an extensive investigation into the effect of

the signal-to-noise ratio imbalance across tissues and here we show

the output of the simulations for independent residuals (rshared ¼ 0)

and correlated residuals (rshared ¼ 0:04). In each case, we consider a

balanced case with rtotal
‘ ¼ 0:1; 1� ‘�3, and an unbalanced case

with frtotal
1 ¼ 0:1; rtotal

2 ¼ 0:2; rtotal
3 ¼ 0:4g. We also ran the simula-

tions with several levels of the signal strength l. For the plots pre-

sented here we chose l ¼ 0:15.

For each simulation set-up we generated nine replicates, and for

each of the datasets simulated, we ran MT-HESS analysing the three

tissues jointly and a MANOVA test (Nath and Pavur, 1985) for

each multiple tissue response–SNP pair separately. We also include

the receiver operating characteristic (ROC) curves intersecting the

results from the single-tissue version of HESS run on each separate

tissue (following Fairfax et al., 2012). We call these analyses iST-

HESS, intersection of single tissue HESS, to distinguish it from MT-

HESS, multi-tissue HESS. Associations were declared by

thresholding MPPI values for MT-HESS and ST-HESS and P-values

for MANOVA. For the intersection iST-HESS, associations are

declared positive for a given threshold if the single-tissue MPPIs ex-

ceed the threshold in all three tissues.

Figure 2 shows ROC curves for each of the four combination of

balanced/unbalanced noise across tissues and independent/corre-

lated residuals between tissues. We see that MT-HESS clearly out-

performs MANOVA in all scenarios, which confirms what has

already been shown in the literature, that is penalization methods

outperform ‘one-at-a-time’ methods (Bottolo et al., 2013), and

that borrowing information across responses improves even fur-

ther the performance (Richardson et al., 2010; Scott-Boyer et al.,

2012).

Comparison between MT-HESS versus iST-HESS also confirms

previous results (Petretto et al., 2006, 2010) that the intersection of
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Fig. 2. ROC curves comparing results of MT-HESS, MANOVA and iST-HESS.

Top row plots have balanced across tissues total noise standard deviation

rtotal
‘ ¼ 0:1; 1� ‘�3, bottom row are unbalanced with total noise standard de-

viation frtotal
1 ¼ 0:1; rtotal

2 ¼ 0:2; rtotal
3 ¼ 0:4g. Left hand column plots have

uncorrelated residuals between tissues with rshared ¼ 0, right hand column

have rshared ¼ 0:04
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Fig. 1. Matrix C for the pattern of associations common to the three tissues.

The entry (k, j) of the matrix C indicates the presence of an association be-

tween SNP j and response k in all tissues. (a) Main simulation study. (b)

Study for distinguishing cis- and trans-associations
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tissue-specific findings is likely to be a conservative approach and is

potentially affected by variability between tissues. Specifically in the

unbalanced case, MT-HESS strongly outperforms the intersection of

separate single-tissue results. This is still evident, although less pro-

nounced, in the balanced case with independent noise. As expected,

correlated noise lower slightly the ROC curves for the multi-tissue

methods (MT-HESS and MANOVA) since it encourages propaga-

tion of false positives across all the tissues. Obviously, this does not

affect iST-HESS. Note that the balanced cases have higher signal-to-

noise ratio than the unbalanced ones, and so ROC curves for all

methods are higher.

Supplementary Material, Section S.1, shows a greater range of

simulation set-ups and detailed findings for all the methods com-

pared here, i.e. MT-HESS, MANOVA and iST-HESS. In particular,

we provide further results obtained by specifying different levels of

the signal strength l. We illustrate how MT-HESS achieves a better

separation between noise and signal and how it allows to identify

more hotspots than traditional methods.

We now investigate the ability of the model to detect different

types of association patterns. Since the model is designed to borrow

information across responses, it is of interest to see whether the

model can also detect predictors associated with a single response,

for instance, if we can still detect cis-eQTLs. To look at this, we use

a different pattern of associations, with six markers designated as

hotspots (two each with 10, 20 and 30 responses associated) and 10

cis markers. Half the cis-associations are completely isolated, for the

other half the response is also associated with other (trans) markers.

The pattern is shown in Figure 1b. We allow the cis-associations to

be stronger than those in the hotspots, as trans-associations are ex-

pected to be weaker, thus we now have two parameters for signal

strength lcis ¼ 0:6 and ltrans ¼ 0:15 with independent residuals

(rshared ¼ 0) and balanced total noise standard deviation

rtotal
‘ ¼ 0:1; 1� ‘�3. ROC curves for these associations are very

similar to the case shown in Figure 2a (data not shown). The overall

performance for all methods considered here is slightly lower for the

new cis- and trans-association pattern, due to the lower proportion

of associations contained in hotspots.

To compare in detail cis- and trans-results, we classify the re-

sponse–predictor pairs as ‘true negative’, ‘true cis isolated’, ‘true cis

other’ and ‘true trans’ (part of hotspot). Table 1 shows the cross-

classification of ‘true’ and ‘called’ status for the three approaches

considered here. Thresholds for calling pairwise associations were

determined by fixing the true FDR level at 10%. We see that while

both MT-HESS and iST-HESS are able to detect the cis-associations

very well, the multiple tissue model is able to pick up more of the

associations that are contained in hotspots, thus showing the benefit

of combining the tissues in a fully Bayesian way. The MANOVA

misses all hotspot associations in this example. Looking directly at

the hotspots, Table 2 shows the average estimated size of each true

hotspot (defined as number of responses called marginally): it is

clear that MT-HESS has more power to detect hotspots than iST-

HESS.

4 Results

4.1 Rat data
The rat dataset consists of multiple tissue expression and genome-

wide genotype data (�1400 SNPs) in a panel of 29 RI rat strains

(Petretto et al., 2006). Here, we focus on the multi-tissue eQTL

mapping of a previously reported Interferon regulatory factor 7

IRF7-driven inflammatory network (IDIN) found to be associated

with immune response and increased risk of type 1 diabetes in

humans (Heinig et al., 2010).

We used HESS to re-analyse a sub-set of the IDIN network in

three rat tissues (left ventricle, aorta and liver) focusing on 146

probe sets (corresponding to 143 protein coding genes), which are

both robustly expressed and varying in expression across the three

tissues. See Supplementary Material, Section S.5, for details of how

these genes were chosen. We ran ST-HESS separately in each tissue

and MT-HESS simultaneously across the three tissues, as well as a

MANOVA (Nath and Pavur, 1985) analysis.

We ran HESS on a 2.90-GHz Intel(R) Xeon(R) CPU computer

with 130 GB of memory for 15 000 sweeps of which 5000 as burn-

in and the same hyper-parameters as in the simulation studies.

Computational time was 70 and 114 min for ST-HESS (average

across tissues) and MT-HESS, respectively. Visual inspection of the

trace of the parameters wk and qj and g show no erratic behaviour.

Convergence is reached after few iterations due to the combined ef-

fect of the automatic tuning of the proposal density in the

Metropolis–Hastings algorithms and the parallel chains implemen-

tation which allow good mixing. Focusing on probe set-marker as-

sociations significant when using a Bayes FDR (bFDR) of 5%

(which corresponds to a MPPI>0.8), MT-HSSS identified three loci

controlling more than 30% of the probe sets under analysis (Fig. 3).

In addition to the regulatory hotspot in rat chromosome 15q25,

which was previously identified and experimentally validated

(Heinig et al., 2010), joint analysis of the three tissues revealed two

new regulatory hotspots for the IDIN, located at marker J343641

on rat chromosome 10, and at marker SHRSPc66a05_r1_451 on rat

chromosome 1, respectively. We also investigated the associations of

IDIN network in each single tissue. ST-HESS analysis uncovered a

signal for the rat chromosome 15q25 locus in left ventricle tissue, as

previously shown (Heinig et al., 2010), but failed to identify the new

regulatory loci in chromosome 10 and 1, see Figure 3. In view of the

variability of ST-HESS between the three tissues shown in Figure 3,

we did not consider iST-HESS further as it lacks power in unbal-

anced cases.

Table 1. Classification table for marginal pairwise associations at a

true FDR level of 10%

True

negative

True cis

isolated

True cis

other

True

trans

MT-HESS

Negative call 195 458.2 0.0 0.0 28.2

Positive call 11.8 5.0 5.0 91.8

MANOVA

Negative call 195 469.0 0.6 4.4 120.0

Positive call 1.0 4.4 0.6 0.0

iST-HESS

Negative call 195 462.3 0.0 0.0 63.2

Positive call 7.7 5.0 5.0 56.8

True positives are split into ‘true cis isolated’, ‘true cis other’ and ‘true

trans’ associations. Numbers are averages over nine replications

Table 2. Average size of hotspots declared at a true FDR level of

10% on pairwise associations of 10%

True size 10 20 30

MT-HESS 5.8 17.3 24.3

MANOVA 0.0 0.0 0.0

iST-HESS 1.4 10.7 16.3

Numbers are averages over nine replications
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Note that with the same 5% FDR threshold on P-values for

declaring associations, the MANOVA analysis does not return any

SNPs associated with five or more genes. In order to see if a

MANOVA analysis shows some of the evidence for the hotspots dis-

covered by MT-HESS, we also computed for each locus the sum

over all transcripts of the negative log P-values for the MANOVA

test (Supplementary Figure S16). This plot is very noisy, but it is

clear that the P-values contain evidence for the hotspots on chromo-

somes 10 and 15.

Given the different output produced by MT-HESS and ST-HESS,

we have also investigated their model adequacy (Gelfand et al.,

1992). We compared the two models on the basis of their leave-one-

out prediction accuracy by removing one observation at a time and

using the remaining observation for calculating the prediction error.

Following Gelfand et al. (1992) we took a fully Bayesian perspective

employing predictive distributions to evaluate model performance

by comparing model prediction with what has been observed. To be

precise, we use standardized prediction error as checking function,

as shown in Equation (2), with squared prediction error summed

over the sample as model adequacy.

Table 3 shows the value of model adequacy averaged across

probe sets. The best (shared across tissues) models fcB
1 ; . . . ; cB

qg ob-

tained by MT-HESS have on overage smaller prediction error than

the best models identified by ST-HESS in each tissue separately. In

particular MT-HESS is able to predict better than ST-HESS in aorta

and liver tissues where ST-HESS was unable to identify any host-

post. In the left ventricle tissue, the additional two hotspots detected

by MT-HESS permit a more accurate prediction than the single ST-

HESS hotspot. Altogether, the vast majority of probe sets are better

predicted by MT-HESS: among the 32 (22%) probe sets better pre-

dicted by ST-HESS only two were declared associated at 5% bFDR

with the hotspots found by MT-HESS, showing that almost all

probe sets (51/53) controlled by MT-HESS multiple hotspots are

better predicted than by single-tissue analysis. Overall, we conclude

that the model that comprises the experimentally validated and pre-

viously undiscovered putative hotspots is a more adequate model to

explain the joint variation of the transcripts across tissues.

We comment in more details on the regulatory hotspot located

in rat chromosome 10 (rat marker J343641), which showed associ-

ation with 53 probe sets (MPPI>0.8), representing 53 protein cod-

ing distinct genes. Enrichment analysis of transcription factor

binding sites (TFBSs) in the putative promoter of the corresponding

human orthologous genes using PASTAA (Roider et al., 2009) re-

vealed over-representation of TFBS motifs for IRF7 (adjusted

P ¼ 3:75� 10�4), IRF2 (adjusted P ¼ 2:60� 10�2) and NFKB (ad-

justed P ¼ 3:19� 10�2) and IRF1 or IRF10 (adjusted

P ¼ 3:20� 10�2), in keeping with the known IRF-driven regulation

of IDIN network genes (Heinig et al., 2010).

Examination of the genes in the LD block around the regulatory

locus on rat chromosome 10 (r2 > 0:8), revealed only one annotated

protein coding gene, Foxk2, with deletion of an exon and an intron

in the Spontaneous Hypertensive Rat compared with the BN rat

(Atanur et al., 2010). Foxk2 encodes the transcription factor fork-

head box protein K2. The human orthologue FOXK2 gene is an in-

hibitor of the Sendai virus-induced IFN-b production and, at the

protein level, it forms complexes with two known interferon tran-

scriptional repressors, IRF2 (one of the transcription factors whose

binding motifs were enriched as described above) and IRF4 (Li et

al., 2011a). In view of this, we propose Foxk2 as a candidate master

regulator of the subset of the IDIN network genes whose expression

is associated with the regulatory loci located in rat chromosome 10.

4.2 Human data
The human dataset comprised genotype and corresponding expres-

sion data from three purified leukocyte subsets (monocytes, and

CD4 and CD8 T cells) isolated from the peripheral blood of 59 pa-

tients with inflammatory bowel disease (see Supplementary

Methods for full details of the cohort). Note that CD4 and CD8

T cells are both T lymphocyte subsets, whereas monocytes are from

the myeloid lineage. We ran HESS separately on each cell type, and

simultaneously on the joint dataset. The analysis was restricted to

21 788 SNPs on chromosome 5 and 3248 probesets selected by high-

est variance (see Supplementary Material, Section S.6.1) for compu-

tational feasibility. HESS was run using a burn-in of 4000 sweeps
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Fig. 3. Genome-wide Manhattan-like plots for the rat analysis showing the

number of probe sets in the IDIN network associated with each SNP accord-

ing to genomic location. The x-axis depicts chromosome number and pos-

ition. The y-axis shows the number of probe sets significantly associated with

each SNP (bFDR � 0.05). From top to bottom: results for MT-HESS, and for

ST-HESS in aorta, left ventricle and liver

Table 3. Leave-one-out prediction error of MT-HESS and ST-HESS

conditionally on their best models visited

MT-HESS ST-HESS MT-HESS< ST-HESS

Aorta 22.85 (3.18) 33.06 (4.49) 143 (98%)

Left ventricle 35.22 (20.31) 40.86 (15.80) 114 (78%)

Liver 23.97 (4.34) 36.88 (5.67) 143 (98%)

For each tissue, average model adequacy measure across probe sets is re-

ported with standard deviation in brackets. Out of 146 transcripts analysed in

the IDIN network, the number of times ST-HESS model adequacy measure is

greater than the MT-HESS one is reported in the last column with % in

brackets
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and values recorded for 8000 sweeps. MT-HESS took 110 h on a

2.80-GHz Intel(R) Xeon(R) computer.

In the single cell type analysis, hotspots were most frequently de-

tected in CD4 T cells, followed by CD8 T cells, whereas in mono-

cytes we found a paucity of hotspot SNPs (Fig. 4). Using a 5%

bFDR, the maximum number of genes associated with a SNP in

monocytes was 6, versus 78 in CD4 T cells. There was less gene–

gene correlation in the monocyte expression data (Supplementary

Fig. S.17a–c), and this may account for the lack of hotspot detection

in this cell type.

In the joint MT-HESS analysis 28 SNPs were associated with ex-

pression of five or more genes at a 5% bFDR significance threshold,

with four of these SNPs associated with 20 or more genes

(Supplementary Fig. S.18). The signal in the joint analysis appears to

be driven predominantly by signal in either the CD4 T cells or the

CD8 T cells (Fig. 4). Unlike in the analysis of the rat data, we did

not observe any hotspots that were not detected in the single tissue

analysis. However, the number of genes associated with hotspots in

the MT-HESS analysis was not substantially diminished despite the

hotspots being highlighted mostly in one of the three cell-types

(Supplementary Fig. S.18).

We identified a putative trans master regulator SNP,

rs11745891, associated with the highest number of genes in both

the CD4 T cell and the joint analysis (78 and 71 genes, respectively).

The SNP lies in an intergenic region, �143 kB downstream from the

end of the nearest gene, PIK3R1 (phosphoinositide-3-kinase, regula-

tory subunit 1 (alpha)). Histone marks from ENCODE (Dunham

et al., 2012) suggest the SNP lies near a regulatory locus

(Supplementary Fig. S.19). Interestingly, this hotspot SNP lies

10.7 kb from the start site of a long intergenic non-coding (linc)

RNA (Ensembl transcript ENST00000507733). Emerging evidence

suggests that long non-coding RNAs play an important role in

orchestrating transcriptional programmes through a variety of

mechanisms, commonly involving ribonucleic acid–protein

interactions (Rinn and Chang, 2012). We hypothesize that our SNP

acts in cis on the lincRNA, and thus exerts its trans effects

through differential expression of the lincRNA according to

genotype.

The 78 genes whose expression in CD4 T cells was associated

with rs11745891 genotype are located on 21 chromosomes, most

frequently chromosome 1 (nine genes) (Supplementary Fig. S.20).

P-values from simple univariate regression of the expression of these

genes on rs11745891 were skewed towards zero (range from

1:23� 10�3 to 1:57� 10�8, see Supplementary Fig. S.21).

However, after multiple-testing of 3248� 217 888 ¼ 70 767 424

SNPgene pairs, using a 5% FDR threshold (Benjamini–Hochberg

procedure), none remained statistically significant, demonstrating

the strength of HESS in high-dimensional omics analysis.

The expression levels of these 78 genes were very highly corre-

lated (Fig. 5a). Strong correlation persisted in the residuals from the

simple regression of expression of these genes on rs11745891 geno-

type (Fig. 5b). A strength of HESS over traditional one SNP at-a-

time methods is its multivariate approach combined with variable

selection, allowing us to ask what combination of SNPs best explain

gene expression. Using this information, we next performed regres-

sion of expression of each gene on its best combination of SNP(s).

The resulting residuals were substantially less correlated than the re-

siduals from regression on just the hotspot SNP alone (Fig. 5c).

Thus, we see that including multiple SNPs in the model accounts for

a substantial fraction of the correlation in gene expression. This

highlights a major advantage of our approach.

Additional discussion of the human results is given in the

Supplementary Material.

5 Discussion

The availability of data collected over multiple tissues or conditions

is becoming increasingly common given the decreasing cost of gener-

ating transcriptomic, metabolic and epigenetic phenotypes over

large cohorts of individuals (Li et al., 2011b).

In this article we present a new model that exploits the multidi-

mensional nature of these data and extends ST-HESS presented in

Bottolo et al. (2011): our new hierarchical model and Cþþ algo-

rithm, MT-HESS is able to analyse a large number of responses col-

lected over dependent multiple tissues or conditions and regress

them on a large set of correlated predictors. Similar to its parent ver-

sion, MT-HESS retains the ability to perform hotspot discovery in -

omics experiments. To the best of our knowledge, MT-HESS is the

first tool able to unravel whether a genetic marker has a systemic

role and influences several OMICS traits in multiple related condi-

tions at the same time.

This is demonstrated in the complex multiple tissue scenario of

our real rat data analysis. The increased power of MT-HESS

allowed the detection of both experimentally validated and previ-

ously undiscovered putative hotspots for the IDIN network across

left ventricle, aorta and liver tissues. Prediction error analysis con-

firms the importance of the new detected hotspots. Model

Fig. 4. Manhattan plot for hotspot SNPs. The plot shows the number of genes

significantly associated with each SNP according to position on chromosome

5 using an MPPI threshold corresponding to a 5% Bayes FDR. Vertical purple

lines indicates results from the joint analysis. Red circles, blue diamonds and

black crosses indicate single tissue analysis in CD4 T cells, CD8 T cells and

monocytes, respectively

Fig. 5. (a) Correlation matrix of expression of the 78 genes associated with

hotspot SNP rs11745891 in CD4 T cells. (b) Correlation matrix of the residuals

after simple regression of expression of each gene on rs11745891 genotype.

(c) Correlation matrix of the residuals after regression of each gene on the

SNPs in its best model. All three correlation matrices have been hierarchically

clustered. Colour key and distribution of Pearson correlation coefficients are

shown in the upper panels
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adequacy measure shows the superiority of MT-HESS model over

ST-HESS and the benefit of the integrated analysis. While in the

rats dataset it is possible to perform a leave-one-out cross-

validation approach, in larger datasets out-of-sample prediction

error can be performed by taking a random split of the data, for in-

stance 50/50, and reserving the remaining data for calculating the

average prediction error.

Due to a lack of competing algorithms that can analyse

multiple layers of correlated responses in a fully multivariate fash-

ion, we have compared MT-HESS with a MANOVA test, which is

extensively used when multiple outcomes are present. Recall

that such MANOVA test is performed for each pair of

(SNP� response vector) at a time, where the vector of responses

correspond to the expression in multiple tissues or conditions. We

see that MT-HESS outperforms MANOVA, demonstrating that

our hierarchical modelling approach is more powerful than pair-

wise methods.

When faced with an eQTL analysis task which involves multiple

tissues, a natural alternative to MANOVA test is to compare results

from the intersection of single-tissue model (iST-HESS) with those

from the multiple-tissue one (MT-HSSS). Our extensive simulation

study show that when there is a similar pattern of association but

varying levels of signal-to-noise ratio across tissues, MT-HESS

clearly outperforms iST-HESS. This is well in keeping with the con-

struction of the model underlying MT-HESS, which performs a stat-

istically sound evidence synthesis for detecting hotspots between the

set of conditions or tissues. When signal-to-noise ratio is constant

across conditions/tissues MT-HESS results become closer to those of

iST-HESS pointing to the benefit of adjusting for external sources of

correlated noise prior to MT-HESS analysis, for example by using a

latent factor approach as in Stegle et al. (2012).

In our simulation study we show a substantial gain of power of

MT-HESS when the association in each tissue were too weak to be

detected by ST-HESS, a situation also illustrated in our first case

study where two new hotspots were highlighted by MT-HESS,

whereas they were not detected in the single tissue analyses. Here

the ST-HESS signal is relatively noisy and the ability of MT-HESS to

borrow and synthesize information between different layers of the

responses results in higher power for MT-HESS.

Our new Cþþ implementation of the complex hierarchical struc-

ture in MT-HESS (comprising ST-HESS as a special case) permits effi-

cient analysis of very large datasets. It made feasible an MT-HESS

analysis of our human dataset, where a multivariate analysis and vari-

able selection between 3000 responses in three cell types and nearly

22000 SNPs was carried out. The putative novel trans master regula-

tor situated near a long intergenic non-coding (linc) RNA (Ensembl

transcript ENST00000507733) (see Section 4.2) is a good example of

the power of our approach for generating hypotheses which can be

validated by follow-up experiments. The clear separation between

noise and signal offered by our sparse regression approach is para-

mount for successfully prioritizing such further validation.

In conclusion, our new algorithm MT-HESS with its efficient

Cþþ architecture is tailored to jointly analyse realistic case studies

that comprise a large number of responses collected over dependent

multiple tissues or conditions and a large set of potentially collinear

predictors.

Acknowledgements

We thank the patients who kindly volunteered for this study, and Dr. Miles

Parkes, Consultant Gastroenterologist at Addenbrooke Hospital, Cambridge,

for helping to identify suitable patients. We are also grateful to the editor and

three anonymous referees for valuable comments that greatly improved the

presentation of the paper. We acknowledge the NIHR Cambridge Biomedical

Research Centre.

Funding

This research was funded by Medical Research Council Grant G1002319

(A.L., H.S., L.B., S.R.), a Wellcome Trust Clinical PhD Programme

Fellowship (J.E.P.), Wellcome Trust Grant 083650/Z/07/Z and Medical

Research Council Grant MR/L19027/1 (K.G.C.S.), British Heart Foundation

PhD Studentship Grant FS/11/25/28740 (A.M., E.P.) and Engineering and

Physical Sciences Research Council Grant EP/K030760/1 (L.B.).

Conflict of Interest: none declared.

References

Atanur,S.S. et al. (2010) The genome sequence of the spontaneously hyperten-

sive rat: analysis and functional significance. Genome Res., 20, 791–803.

Bottolo,L. and Richardson,S. (2010) Evolutionary Stochastic search for

Bayesian model exploration. Bayesian Anal., 5, 583–618.

Bottolo,L. et al. (2011) Bayesian detection of expression quantitative trait loci

hot spots. Genetics, 189, 1449–1459.

Bottolo,L. et al. (2013) GUESS-ing polygenic associations with multiple

phenotypes using a GPU-based evolutionary stochastic search algorithm.

PLoS Genet., 9, e1003657.
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