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ABSTRACT 

 

Acoustic intensity is normally treated as a real quantity, but in recent years many articles 

have appeared in which intensity is treated as a complex quantity where the real (active) part 

is related to local mean energy flow, and the imaginary (reactive) part to local oscillatory 

transport of energy.  This offers the potential to recover additional information about a sound 

field and then to relate this to the properties of the sound source and the environment that 

surrounds it.  However, this approach is applicable only to a multi-modal sound fields, which 

places significant demands on the accuracy of the intensity measurements.  Accordingly, this 

article investigates the accuracy of complex intensity measurements obtained using a tri-axial 

Microflown intensity probe by comparing measurement and prediction for sound propagation 

in an open flanged pipe.  Under plane wave conditions comparison between prediction and 

experiment reveals good agreement, but when a higher order mode is present the reactive 

intensity field becomes complicated and agreement is less successful.  It is concluded that the 

potential application of complex intensity as a diagnostic tool is limited by difficulties in 

measuring reactive intensity in complex sound fields when using current state of the art 

acoustic instrumentation.   
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I. INTRODUCTION 

 

Sound intensity has long been used to describe the flow of energy in sound fields. 

Conventional practice is to take the time average of the instantaneous sound intensity and to 

treat intensity as a real quantity
1
. Thus, when the acoustic particle velocity is in phase with 

the pressure one fully captures the characteristics of the energy flow in the sound field, for 

example when a plane wave propagates in a free field. However, when the particle velocity 

and pressure are not in phase additional information may be obtained by accounting for this 

phase difference, and this can be realised by treating intensity as a complex quantity where 

the real part represents the magnitude of the local mean energy flow, and the imaginary part 

the local oscillatory transport of energy
1
.  Accordingly, complex intensity will deliver 

additional information regarding energy transport but only in regions of sound scattering 

and/or when higher order modes are propagating in a waveguide.  It is attractive to try and 

make use of this additional information when studying, for example, the near field of a sound 

source and to use this to help identify relevant characteristics of the source.  Here, a number 

of studies have appeared in the literature which seek to do just this
2-5

, with some limited 

qualitative success being observed following measurements of radiated sound fields.  A 

question mark remains, however, over the accuracy that may be achieved using this type of 

approach and hence the general viability of complex intensity when used as a diagnostic tool.  

This article seeks to quantify the levels of accuracy that one may achieve for complex 

intensity measurements under controlled laboratory conditions for which the measured 

complex intensity is expected to compare well with theoretical predictions.  This then permits 

a direct quantitative investigation into the feasibility of using a 3-component complex 

intensity vector as a condition diagnostic tool in multi-modal waveguides. 
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In general, sound intensity is normally referred to in terms of the instantaneous intensity, 

although Jacobsen
6
 noted that for a non-monochromatic sound field one cannot “make an 

instantaneous separation of the particle velocity into components in phase and quadrature 

with pressure”.  This means that for a non-monochromatic sound field multiple definitions for 

instantaneous complex intensity are possible.  Jacobsen
6
 reviews a number of alternative 

definitions and concludes that the one suggested by Heyser
7
 is probably the most useful.  

Here, Heyser
7
 uses Hilbert transforms to decompose the instantaneous intensity into real and 

imaginary components, which are shown by Jacobsen
6
 to be generalisations of the 

instantaneous complex intensity used for monochromatic sound fields. A series of articles
 

later introduce an alternative definition for instantaneous intensity in a general non-

monochromatic sound field
8-10

.  In particular, Stanzial and Prodi
10

 called these new 

parameters the radiating and oscillating intensities, which provide an alternative to the more 

usual active and reactive instantaneous intensity terminology.  These definitions were chosen 

so that the time average of the radiating intensity equals the time average of the instantaneous 

intensity, and the time average of the oscillating intensity is zero.  Stanzial et al.
11

 also 

reinterpret the acoustic energy flow using an electrical analogy in order to define an acoustic 

power factor as the ratio of the active intensity to the complex intensity magnitude.  The 

definition of complex intensity suggested by Stanzial and Prodi
10

 is significantly different to 

that proposed by Heyser
7
, and so in this article the relative merits of each approach will be 

investigated.  However, what is of most interest here is the use of Stanzial and Prodi’s 

complex intensity definition in the study of sound radiation from complex noise sources.  

This presents the possibility of using complex intensity to aid in the deduction of relevant 

characteristics of a sound source by providing additional acoustical information which may 

be used to improve inverse analysis procedures.  This approach has the potential for use in a 

wide range of applications and the authors are currently interested in using complex intensity 
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as an inverse analysis tool for the investigation of the characteristics of obstructions in a 

multi-modal waveguide. 

 

The use of complex intensity in inverse analysis has so far been restricted to sound radiation 

problems.  For example Stanzial and Prodi
10 

measured instantaneous complex intensity 

patterns radiated by a point source located in an anechoic chamber, and also in a 

reverberation room where the authors note some difficulties when attempting to link their 

new definitions to more usual interpretations.  Measurements were later extended to more 

complex sound fields by Mann and Tichy
2
 who measured instantaneous intensity in the 

acoustic near field of resonant cavities and vibrating plates.  Here, Mann and Tichy propose 

that one may deduce the vibrational characteristics of a plate using reactive intensity, 

although they note that some prior knowledge of the physical characteristics of the sound 

source is necessary.  Mann and Tichy propose that instantaneous reactive intensity is 

especially useful in analyzing the acoustic near field and can be used for machine diagnostics, 

although they note that reactive intensity can only provide a qualitative guide when 

attempting to distinguish between different noise sources, since the instantaneous reactive 

intensity field is not necessarily unique, see also Mann and Tichy
12

.  Other applications 

include the measurement of complex intensity fields radiated by a moped
4
, and the 

instantaneous intensity field scattered by a rigid prolate spheroid
13

.  Barton et al.
5
 later 

investigated the structural features of the scattered wave field in the resonance region of a 

motionless rigid sphere, where instantaneous complex intensity was shown to reveal the 

interference patterns of the diffracted waves.  Barton et al.14 also extended this analysis by 

considering a sphere that could either be fluid-filled or respond like an elastic thin-walled 

shell. Jacobsen and Molares15 studied the fundamental statistical properties of the 

instantaneous active and reactive sound intensity in reverberant spaces at low frequencies and 
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demonstrated the influence of modal overlap on the relative variance in the instantaneous 

active and reactive intensity fields. Dean and Braselton16 also showed that this approach can 

be applied to study the instantaneous intensity vector flow in compressional waves in elastic 

media. 

 

Thus, instantaneous complex intensity has been used in a number of sound radiation 

applications and its potential use as a diagnostic tool has been investigated by a number of 

authors.  For sound radiation problems this approach does, however, require the measurement 

of complex intensity in the acoustic near field of a sound source.  A crucial assumption of this 

approach is that one is able to measure complex intensity accurately enough to enable its use 

in any inverse analysis procedure that follows.  However, it is very difficult to quantify the 

accuracy of this type of approach for external sound radiation problems; this is because 

developing accurate theoretical models suitable for comparison against the measured data is 

challenging.  Accordingly, this article compares instantaneous and non instantaneous 

complex intensity measurements against predictions for sound propagation inside a circular 

duct, as this presents a much more controlled environment under which to review the 

accuracy of complex intensity measurements.  Moreover, if one also studies a stationary 

sound field then the reactive intensity is likely to be significant over the entire length of the 

duct because both incident and reflected waves will propagate, so that one is not restricted 

solely to measuring close to a region of high modal scattering.  Accordingly, this article 

begins in Section II by reviewing two methods of representing instantaneous complex 

intensity measurements, the methods of Heyser
7
 and Stanzial and Prodi

10
.  Here, use is made 

of a simple duct acoustics model in order to demonstrate some of the advantages and 

disadvantages of each method for the measurement of instantaneous intensity.  The two 

methods are then compared against one another in Section IV through the prediction and 
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measurement of sound scattered from the open end of a flanged duct.  Here, both 

instantaneous and non instantaneous intensity is investigated in order to provide further 

opportunities to make quantitative comparisons between prediction and experiment.  

Experimental data is obtained using a tri-axial “p-u” Microflown sensor17, 18, which combines 

a pressure microphone with three particle velocity transducers to measure simultaneously the 

air particle velocity in three orthogonal directions.  The advantage of using an open ended 

flanged duct is that it enables the accurate placing of the Microflown sensor, as well as 

permitting the study of sound scattering in a controlled environment.  This does, however, 

require a more sophisticated theoretical model capable of capturing sound scattering close to 

the duct exit, as well as the propagation of higher order modes in the duct, and this 

[numerical] model is briefly described in section III.   

 

II. COMPLEX INTENSITY DEFINITIONS 

 

Jacobsen
6
 suggests that when measuring the instantaneous complex sound intensity in a non-

monochromatic sound field it is preferable to use a narrow band source in order to apply the 

complex representation of the instantaneous intensity suggested by Heyser
7
.  In this respect, 

the study of instantaneous complex intensity in a non-monochromatic sound field is 

challenging and so if one is attempting to compare prediction and experiment it is sensible 

first to simplify the problem and use only a monochromatic sound field.  For a 

monochromatic sound field, the real part is normally called the instantaneous active intensity 

and the imaginary part the instantaneous reactive intensity1, 9.  However, it is common also to 

measure intensity in a stationary sound field, and this is normally accomplished by taking a 

time average of the instantaneous intensity and treating intensity as a real quantity.  Here, the 
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real part is often called the active or mean active intensity
1
 so that it corresponds to the 

terminology used for the instantaneous active intensity discussed previously.  This 

terminology appears to have been chosen in view of the ubiquity of the real part of the time 

averaged intensity, although it is noted here that other authors sometimes refer to this 

quantity as the time independent intensity.  This definition works well for the real part of the 

instantaneous complex intensity, although if one simply takes the time average of the 

imaginary part of the instantaneous intensity then this will give zero.  To address this, Fahy
1
 

uses the amplitude of the imaginary part of the instantaneous intensity and defines this as the 

reactive intensity.  Thus, for instantaneous complex intensity, Fahy adopts the terminology of 

instantaneous active and instantaneous reactive intensity, and for non instantaneous intensity, 

active and reactive intensity.  In view of the simplicity of this approach, the terminology of 

Fahy is also adopted here.   

 

Two techniques for calculating of the instantaneous complex intensity are investigated here. 

The first technique is based on the method proposed by Heyser7, who defines the 

instantaneous active 	���� and reactive ���� intensity as 

���� = 12
� + 12 
̂�� (1) 

 

and 

 ���� = 12 
̂� − 12
��, (2) 

 

respectively.  Here, � is time, and 
 and � are the time history values of pressure and velocity, 

respectively, with ^ denoting a Hilbert transform. The second technique was introduced by 

Schiffrer and Stanzial
8
, Stanzial et al.

9
, and Stanzial and Prodi

10
 who define radiating and 

oscillating components of instantaneous intensity so that 
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������� = 
�〈
�〉〈
�〉  (3) 

 

and 

 ������� = 〈
�〉
� − 
�〈
�〉〈
�〉 . (4) 

 

Here 〈∙〉 indicates a time average, and ������� and ������� are the radiating and oscillating 

intensity, respectively.  It is interesting to note here that the method of Stanzial and Prodi
10

 

introduces a time averaging procedure that does not appear in the method of Heyser
7
.  For 

time stationary problems this presents no problems, however it is clear that for transient 

problems the calculation of complex intensity will depend on the time window chosen for the 

averaging process.  Here, Stanzial and Prodi
10

 propose that their method may be applied to 

transient problems provided one restricts the analysis to narrow banded signals.   

 

The relative performance of both methods for characterising instantaneous intensity may first 

be investigated by using a simple duct acoustics model in which a simple obstruction/area 

discontinuity is placed within a duct.  This will enable the study of two different signals, one 

incident in the duct and one reflected by the obstruction.  Here, the details of the obstruction 

are not important, rather it is the way in which the two signals are considered in the time 

averaging process in Eqs. (3) and (4) that is of interest.  Therefore, consider a circular duct of 

diameter �, in which an obstruction of arbitrary shape is placed at an axial distance of � = �, 

with a narrow band incident pulse generated by a sound source placed at � = 0.  If the 

analysis is restricted to plane wave propagation then the acoustic pressure 
 ∝ !"#�$%"&'�, 
where � is time, ( = √−1, and * = + ,⁄ , with + the radian frequency and , the speed of 

sound.  The complex intensity in the duct may then be calculated at any given location in the 

duct using the following equations
1
, 



10 
 

 

���� = 0.5Re{
�∗}41 + cos2�+� + ∅�9 (5) 

 

and 

 

���� = 0.5Im{
�∗}	sin2�+� + ∅�, (6) 

 

where, �∗ is the complex conjugate of the velocity vector �, and	∅ is the phase of the 

pressure.  For plane wave propagation, one may readily separate the axial intensity I%��� and 

J%��� computed for the incident pulse from that of the pulse reflected from the obstruction 

provided the location of the obstruction is sufficiently far from the point at which the 

intensities are computed (in order to separate the two signals in the time domain).  In Fig. 1, 

predictions obtained using the methods of Heyser
7
 and Stanzial and Prodi

10
 are compared to 

one another for the instantaneous active intensity in Fig 1a, and instantaneous reactive 

intensity in Fig. 1b.  In these figures only the incident and reflected signals are presented and, 

when computing the time average in Stanzial and Prodi’s definition, the upper time limit is 

taken so as to encompass both the incident and reflected pulse. 

 

It is immediately apparent in Fig. 1 that the methods of Heyser
7
 and Stanzial and Prodi

10
 

deliver very different representations of complex intensity.  For the active intensity the 

method of Heyser delivers the upper envelope of I���? for the incident and reflected sound 

wave, although it is noticeable that the sign is reversed for the reflected wave.  For the 

reactive/oscillating intensity Heyser’s method gives a value of zero, whereas Stanzial and 

Prodi
 
predict oscillating energy is present in the duct.  This latter result illustrates the 
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problems associated with taking the time average in Eqs. (3) and (4).  This simple problem 

has been chosen because it is easy to show that for plane wave propagation using a transient 

signal there can be no oscillating energy in the duct.  Thus, the method of Heyser delivers 

exactly what one would expect to see (a zero imaginary part), but if one takes both pulses 

when carrying out the time average then the method of Stanzial and Prodi delivers incorrect 

values, as the imaginary component is not zero.  It is clear, therefore, that one must be very 

careful when implementing the time averaging process in Eqs. (3) and (4), and it is seen in 

Fig. 1 that cancelling can occur between signals and for this example this delivers erroneous 

results.  This problem may be rectified by appropriate windowing, so that the incident and 

reflected waves are analysed separately before computing I���?��� and J���?���.  If this is 

carried out then the method of Stanzial and Prodi
10

 delivers consistent predictions for the real 

and imaginary parts of the intensity, and the method of Heyser is seen to provide a running 

time average of I���?��� and an envelope of J���?���.  But this is only possible if one can 

successfully window out each pulse. 

 

The predictions in Figs. 1a and 1b demonstrate that one must be careful when using the 

method of Stanzial and Prodi
10

 when analysing transient problems.  If multiple signals are 

included in the time averaging procedure (and these need not overlap one another) then 

interference may occur and distorted values of complex intensity may arise.  This type of 

behaviour may explain some of the problems identified when complex intensity 

measurements were undertaken in a reverberation room by Stanzial and Prodi
10

.  

Furthermore, when studying transient signals radiated by a sound source it is possible that 

different noise sources may interfere with one another, and after carrying out a time 

averaging process oscillating energy may be predicted when it is not actually present in 
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practice.  Accordingly, one needs to exercise caution when applying the method of Stanzial 

and Prodi
10

, especially in the study of the radiation of sound from complex noise sources, 

including, for example those noise sources studied in a later article
4
. 

 

The definitions of Heyser
7
 and Stanzial and Prodi

10
 are principally of use in the study of 

instantaneous intensity.  For a time stationary monochromatic sound field it is still possible to 

use these definitions by taking a time average of the instantaneous intensity; however, for non 

instantaneous intensity the definition of complex intensity is unambiguous and here it is usual 

practice to take a cross-spectrum between the measured sound pressure and particle velocity 

in order to compute the frequency dependent active and reactive intensity1, 19.  Thus, for non-

instantaneous intensity 

��ω� = Re4SB��+�9 (7) 

 

and ��ω� = −Im4SB��+�9. (8) 

 

Here, ��ω� is the active and ��ω� the reactive intensity in a time stationary sound field, where 

SB��+� denotes the cross spectrum for 	+ ≥ 0, and the minus sign in Eq. (8) appears because 

the reactive intensity is defined as pointing in the direction of decreasing pressure.  Here, the 

study of time stationary problems is attractive as this simplifies the measurements and the 

definition of complex intensity is also unambiguous.  However, the measurement of complex 

intensity in a time stationary problem is not necessarily straightforward because if one wishes 

to compare measurements against predictions one needs to ensure that the respective 

boundary conditions of the problem are well known so that they can be accurately 

represented in the theoretical model.  In view of this it was decided here to measure intensity 
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in an open ended duct as this would make it easy to locate the intensity probes close to a 

region of modal scattering, as well as delivering a well defined problem in terms of the 

termination of the duct.  The disadvantage of this experimental set up is that it requires a 

more advanced theoretical model so this is discussed next, before moving on to compare 

predictions against experiment.  Here, the theoretical prediction of non instantaneous 

intensity may be obtained from the following equations 

��+� = 0.5Re{
�∗} (9) 

 

and 

 

��+� = 0.5Im{
�∗}. (10) 

 

where �D�+� is the active and �D�+� is the reactive intensity.  These values are then computed 

using the theoretical model that follows. 

 

III. THEORY FOR A FLANGED DUCT  

 

The prediction of sound radiated by a flanged duct is far from straightforward, especially if 

one wishes to include evanescent modes scattered by the end of the duct, as well as higher 

order modes propagating modes in the duct itself.  Recently, a suitable numerical model was 

proposed by Duan and Kirby
20

 and this model is adapted here to include a point source at the 

closed end of the duct, see Fig. 2.  The model adopts modal expansions for the uniform 

region R2, and the outer region R4; a finite element discretisation is used to capture the sound 

field radiated by a point source in region R1, and in region R3 a relatively dense mesh is used 
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to capture the complex scattered sound field from the end of the duct.  The details of the 

finite element based model are described by Duan and Kirby, and so only a brief summary is 

provided here.  The open end of the duct is assumed to have an infinite flange, which in 

practice means that the length of the flange is much larger than the wavelength of sound 

considered.  Sound propagation in region ED (F = 1, 2, 3 and 4) is governed by the following 

acoustic wave equation 

1,� G�
DG�� − ∇�
D = IJ, (11) 

 

where IJ is assumed to be a time harmonic sound source in region R1, and is given as 

IJ = K�L − LM�	K�N − NM�K�O − OM�!#&',  (12) 

 

for a cylindrical coordinate system �L, N, O), with �LM, NM, OM) denoting the location of the 

monopole sound source.  A finite element discretisation is used so that the pressure 
 = PQ, 

where P and Q are row and column vectors, respectively, and these hold the global trial (or 

shape) functions and the unknown acoustic pressures.  After applying the Galerkin method, 

the governing equation in region EJ can be written as  

R S∇PTU∇PT − *J�PTUPTVWX �ΩJQT = R PTUZ[ ∇
J ∙ \]�ΓJ +R PTUIJWX �ΩJ (13) 

 

with 

R PTUIJWX �ΩJ = PTU�LM, NM, OM�. (14) 

 

Here,	ΩJ denotes the volume of region EJ, and  \] is the outward unit normal vector over 

surface Γa; the surfaces of region EJ that do not lie on Γa are assumed to be hard walled so 
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the integral over these surfaces in Eq. (13) is zero.  The finite element discretisation in region 

EJ is joined to the rest of the problem using the hybrid finite element method described by 

Duan and Kirby
20

.  This requires the pressure in regions E� and Eb to be expanded over a 

series of eigenmodes to give 


��L, N, O� = cdeФeg
ehM �L, N�!"#$ijk +cleg

ehM Фe�L, N�!#$ijk. (15) 

 

and 


b�L, N, m� = cneΨeg
ehM �N, m�ℎqr�2��*L�, (16) 

 

respectively. Here, de le, and ne are modal amplitudes and * = + ,⁄ . The (dimensionless) 

wavenumber in region E� is given by λe, and the eigenfunctions in regions E� and Eb are 

given by Фe	�L, N� and Ψe�N,m� respectively.  In region R4, ℎtj��� is a spherical Hankel function 

of the second kind, of order qe, and a spherical co-ordinate system �L, N, m� is adopted.  The 

hybrid method proceeds by enforcing continuity of acoustic pressure and normal velocity 

over surfaces Γa, Γu	and Γv, and these conditions are enforced here using mode matching
21

. 

The final system equations are written in matrix form to give 

 

wxTy xTzxzT xz{| w}Ty}z{| = ~�T� �. (17) 

 

The individual matrices that make up Eq. (17) are reported in Appendix A.  Equation (17) 

forms a set of r' �r' = rJ + 2��+r� +�b� linear equations, where rJ and r�	are the 
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number of nodes in regions EJ and E�, and �� and �b are the number of modes in regions 

E� and Eb, respectively.  

 

It is useful first to investigate the sound intensity field in the duct using theoretical 

predictions before proceeding to make a comparison with measurements; this will illustrate 

the likely complexity of the sound intensity field and support the discussions that follow.  

Accordingly, the duct studied here has a radius of 75mm, with �J = 75	mm, �� = 5850	mm, 
and �� = 75	mm, where �J and �� denote the axial length of regions EJ and E�, respectively, 

and �� denotes the location of the interface between the modal representation and the finite 

element discretisation in the duct, see Fig. 2.  The sound source is located at L = 65 mm, 

N = −90°, and O = −6	 m.  All three regions of the duct are assumed to contain air, with a 

speed of sound , = 343.2	m/s, and density � = 1.225	kg/m�.  It is interesting first to 

visualise the complex sound intensity field inside the duct, especially in the vicinity of the 

open end to inform the programme of experiments.  It is convenient here to use non 

instantaneous intensity and in Fig. 3 the active and reactive intensities are plotted for a 

frequency of 1 kHz in the vicinity of the open end of the duct.  Here, a streamline vector plot 

is used in which the length of the vector is proportional to the magnitude of the acoustic 

intensity component.  At 1 kHz only the fundamental mode propagates in the duct and so the 

problem is axisymmetric.  The sound intensity field shown in Fig. 3 is seen to be 

predominantly active, as the amplitude of the active intensity is clearly larger than that of the 

reactive intensity.  Moreover, it is only very close to the open end of the duct that the active 

intensity vectors take on a small radial component due to the presence of evanescent modes.  

This effect is caused by oscillatory behaviour in the sound intensity field and this is seen to 

be more pronounced for the reactive intensity, which illustrates why the use of complex 
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intensity is potentially attractive.  The reactive intensity is also seen to be approximately 

equal to zero at O ≅ −0.045	m; this is the anti-node position of the acoustic pressure so that 

the end correction for the duct at 1 kHz may roughly be calculated as (0.0858-

0.045)/0.075=0.544, where 0.0858 m is a quarter of the wavelength and 0.075 m is the radius 

of the duct. This value for the end correction compares to a plane wave calculation of 0.525 

and serves to illustrate the influence of the evanescent modes.  

Fig. 4 shows the effects of a single higher order propagating mode on the non instantaneous 

active and reactive intensity fields.  Here, a frequency of 1.8 kHz is chosen so that the 

fundamental and the first circumferential modes are excited in the duct.  Fig. 4 shows the 

complex intensity field for the r-z plane that is coincident with the sound source (so that 

N = −90°).  When a higher order mode is present the intensity field contains strong radial 

and circumferential components and a circulatory pattern is observed, which repeats itself 

over the duct length.  This behaviour is similar to that observed by Fahy
1
 for active intensity 

in a two dimensional infinite duct, although Fahy presents mean intensity plots close to a 

monopole source in order to show the effect of evanescent modes from a source, rather than 

the change of intensity behaviour caused by the presence of high-order propagating modes 

near the duct end.  The circulatory pattern seen when a higher order mode is present is 

observed to surround points of minimum acoustic pressure, whereas the regions of maximum 

acoustic pressure are indicated by regions of divergence in the reactive intensity pattern in the 

vicinity of the duct wall.  But what is important here is the pronounced effect that the higher 

order mode has on the reactive intensity, which is seen to become much more complicated 

than the active intensity.  Accordingly, if one is attempting to measure the reactive intensity 

field it is necessary to be able to capture accurately the three dimensional nature of the 

scattered intensity field.  This clearly places significant additional demands on any intensity 

instrumentation used to undertake these measurements when compared to more conventional 
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approaches.  Clearly, the theoretical predictions seen in Figs. 3 and 4 illustrate the potential 

complexity of the intensity sound field, even when only one higher order mode is propagating 

or when sound is scattered by a simple pipe opening.   

 

IV Experimental Methodology 

Figure 5 presents a photograph of the experimental setup which was used for the validation of 

the complex intensity predictions. This setup consists of a flanged PVC duct with a Fané 

compression driver placed at the closed end of the duct, which is joined to the PVC duct by a 

short tube of inner diameter 15.4 mm and length 13 mm.  Here, the use of a short tube with a 

relatively small diameter to connect the loudspeaker to the main duct permits the closed end 

of the tube to take on the characteristics of an acoustically hard wall, as far as is possible.  A 

tri-axial Microflown USP intensity probe
17

 is used to measure the intensity field close to the 

open end of the duct.  The Microflown ‘p-u’ probe permits the measurement of all three 

velocity components simultaneously, the signals obtained by the pressure and velocity 

sensors may be Fourier transformed and inserted into Eqs. (7) and (8) to give the complex 

intensity in three orthogonal directions.  The probe is supported here by a rigid plastic frame, 

which enables the position of the probe to be fixed in the axial direction, see Fig. 6.  Two 

frames were constructed, one with the probe positioned in the centre of the duct cross-section 

and one with the probe located 9 mm away from the wall of the duct, which permits 

measurements to be taken at different circumferential locations (at a fixed radius).  The probe 

was orientated in such a way that the three velocity sensors were set to measure the axial, 

radial and circumferential velocity components. The frame was designed to minimise 

disturbance of the sound intensity field, whilst still providing sufficient stability when 

supporting the probe.  A National Instruments DAQ NI PXIE-6358 system was used to 
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acquire the signals from the USP probe. This system was controlled with LabVIEW software 

and was designed to generate acoustic stimulus and synchronously record the USP probe 

signals at a sampling rate of 48 kHz.   

 

The Microflown USP intensity probe was chosen here because it is the smallest device 

available on the market for measuring the three components of the acoustic velocity vector 

over a broad audio frequency range.  The device was calibrated using calibration formulae 

provided by Microflown. Generally, this calibration procedure yields accurate results. 

However, at very low or high frequencies when the sound field is either strongly active or 

reactive, the measurement accuracy strongly depends on the accuracy of the phase 

calibration
22

.  Furthermore, the majority of the Microflown calibration reports published so 

far in the literature are based on measuring intensity in one direction only19,22,23. The only 

calibration investigation available for a ‘p-u’ probe measuring pressure and velocities in three 

orthogonal directions simultaneously is provided by the manufacturer
17

.  Accordingly, in the 

experiments carried out here, the frequency range of the sound source is limited to between 

800Hz and 2000Hz in the expectation that acceptable accuracy can be obtained without 

further calibration tests. 

V COMPARSION BETWEEN PREDICTION AND EXPERIMENT 

Comparisons between prediction and measurement are carried out here both for instantaneous 

and non-instantaneous complex intensity, although for instantaneous intensity a steady state 

sound field is examined.  In Fig. 7 the instantaneous active and reactive intensities are 

presented at the exit from the duct (L = 0, O = 0) for a steady state sound field.  Here, the 

measured and predicted axial intensity is compared using the methods of Heyser
7
 and 

Stanzial and Prodi
10

 for sinusoidal excitation at a frequency of 1 kHz, which is chosen in 
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order to restrict sound propagation to plane waves.  The difference in the two representations 

of instantaneous intensity is clearly evident in Fig. 7, and here the method of Heyser
7
 delivers 

a running average for the active intensity and an upper envelope for the reactive intensity.  

This is similar to the behaviour observed in section II.  In contrast, the method of Stanzial and 

Prodi
10

 is capable of closely following the theoretical predictions once the signal has 

achieved a steady state, with a maximum relative error in the active intensity of 5 % in the 

region above 2 ms.  Note that in the region of approximately 0-2 ms the system response is 

transient and so one cannot expect to see agreement between prediction and measurement in 

this region because the predictions are based on a time stationary sound field.  Accordingly, 

one may observe here that the method of Stanzial and Prodi
 
is accurate under plane wave 

propagation conditions when the sound field is time stationary, and this supports the original 

findings of Schiffrer and Stanzial
8
. 

 

The non-instantaneous axial active and reactive intensity is shown as a function of the axial 

coordinate z in Fig. 8 for an excitation frequency of 1 kHz (plane wave).  It is evident in Fig. 

8(a) that away from the duct exit plane the theoretical active intensity is almost constant, 

although near to the duct end active intensity amplitude reduces whereas the reactive 

intensity increases. This behaviour can also be observed in Fig. 3. In Fig. 8 good agreement is 

generally observed between prediction and measurement, with an error of less than about 

10%, although the measured active intensity exhibits some oscillatory behaviour and deviates 

from the theoretical predictions as the distance to the open end of the duct increases.  In 

general, the results presented in Fig. 7 illustrate that it is possible to obtain agreement to 

within 5% for the predicted and measured data for the non instantaneous complex intensity 

under plane wave propagation conditions. 
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The results presented in Fig. 4 do, however, suggest that the complex intensity distribution 

should be far more complex when at least one higher-order mode is excited in the duct.  

Figures 9-11 show the predicted and measured data for the non instantaneous complex 

intensity with a monochromatic sound field at a frequency of 1.8 kHz.  At this frequency, one 

circumferential mode propagates in addition to the fundamental (plane wave) mode.  In this 

experiment, the centre of the tube connecting the output of the Fané compression driver was 

installed 9 mm from the duct wall at NM = −90° (see Fig. 1), and the Microflown probe was 

placed inside the duct at O = −0.2	m and 9 mm away from the duct wall.  Data for the axial, 

circumferential and radial intensity vector components were then obtained for different 

circumferential locations by rotating the probe frame through a full circle and taking 

measurements every 10°. 
 

Figs. 9-11 illustrate that when a multi-modal sound field is present in the duct, it becomes 

increasingly difficult to obtain good agreement between prediction and measurement.  The 

dominant components in this sound field are the axial and circumferential intensity and here 

the agreement between the behaviour in the amplitude of the predicted and measured axial 

active intensities in Fig. 9(a) is generally good but the pattern in the measured data is shifted 

by approximately 20
o
 with respect to the predicted result. The relative error between the 

amplitudes of the maxima in the predicted and measured active intensity (axial component) is 

relatively small, being less than 1%, but this error increases significantly when the value of 

the circumferential coordinate N is less than 120°, and here the amplitude of the active axial 

intensity becomes relatively small. This suggests that the probe is able to capture well the 

qualitative behaviour of the sound energy radiating from the pipe, but not its exact amplitude 

at a given circumferential coordinate. There is large a discrepancy, moreover, between the 

theoretical and experimental axial reactive intensities for circumferential coordinates greater 
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than 50º, which may be caused by the fact that most of the energy is radiated from the duct at 

1.8 kHz, making accurate measurements with the p-u probe more challenging.  Figure 10 

shows that the reactive part of the circumferential intensity component oscillates over the 

pipe cross-section and predicted behaviour generally agrees well with the measurement.  

However, one again observes a shift between the measured and predicted intensities, this time 

of about 15°. The measurement of the propagating (active) part of the circumferential 

intensity component is much less accurate and it does not match the prediction even in terms 

of its sign. Here, one expects a symmetric intensity field distribution and so this should not be 

entirely negative.  It is likely that some scattering from the frame supporting the probe has 

affected these measurements and that this effect is more pronounced in the case of the 

circumferential velocity component, especially at the higher frequencies and/or when higher-

order modes are excited.  Finally, Fig. 11 shows the radial complex intensity.  This intensity 

vector component is generally smaller than the axial and circumferential components seen in 

Figs. 9 and 10.  Good agreement between the predicted and measured active and reactive 

intensities is observed in the case of the radial intensity component (see Fig. 11) and this 

represents an improvement when compared to the errors in the measured data for the axial 

and circumferential intensities as shown in Figs. 9 and 10. This improvement may be 

explained by a reduction in the influence of the supporting frame and the probe body when 

taking measurements in the radial direction and more accurate response of the radially 

orientated velocity sensor in the USP probe.  

 

The comparison between prediction and measurement in Figs. 9-11 demonstrates that 

obtaining good agreement between measured and predicted complex intensity presents a 

significant challenge when using a tri-axial intensity probe, even in the case of a well-defined 

problem such as an open ended duct.  Clearly, it is possible to obtain good agreement 
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between prediction and measurement for at least four out of the six complex intensity 

characteristics presented in Fig. 9-11. However, the agreement between the measured and 

predicted axial reactive and circumferential active intensities is poor. It is possible that these 

problems are caused by an increase in sound scattering from the supporting frame and the 

body of the probe as the frequency of sound is increased.  Alternatively, it is also possible 

that the tri-axial probe finds it more difficult to resolve accurately all three complex intensity 

components at higher frequencies and/or under multi-modal conditions because of errors in 

the acoustic velocity measurements.  Thus, it is clear that accurately measuring all the three 

intensity components in a complex sound field within a duct is a challenge, and in view of 

this caution should be exercised when interpreting complex intensity measurements obtained 

when higher order modes are propagating in a duct. 

 

These measurements illustrate the general difficulty of measuring accurately the complex 

intensity vector and here difficulties have been observed for a time stationary sound field in 

which only limited scattering from the open end of the duct is present.  It is expected, 

therefore, that further difficulties would be encountered for transient scattering problems.  

Thus, even for a relatively simple and well defined experimental set up one can expect only a 

limited quantitative understanding of a scattered sound field based on complex intensity 

measurements.  This is because the reactive sound field is typically very complicated under 

those conditions of interest and current measurement techniques are not sufficiently accurate 

to allow one to satisfactorily resolve the complex intensity vector.  This has important 

ramifications for the use of complex intensity in sound scattering problems, especially if one 

is attempting to apply inverse analysis techniques in an attempt to recover information about 

the sound source. 
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IV. CONCLUSIONS  

 

Complex intensity has been studied here for a relatively well defined problem that 

encompasses sound scattering from the open end of a duct, as well as the propagation of 

plane and higher order modes inside the duct.  For instantaneous intensity a comparison 

between the methods of Heyser
7
 and Stanzial and Prodi

10
 demonstrates that Heyser’s method 

always delivers a consistent representation of the energy transport within a duct.  However, 

the method of Heyser is seen only to deliver a running time average for the instantaneous 

active intensity, as well as the upper envelope of the instantaneous reactive intensity.  The 

method of Stanzial and Prodi
10

 adopts a very different approach and for steady state sound 

fields it is shown that the method delivers a much more detailed representation of complex 

intensity when compared to the method of Heyser.  Moreover, for sound radiated by an open 

ended duct in a time stationary problem the method of Stanzial and Prodi agrees very well 

with theoretical predictions under plane wave condtions.  However, for transient problems 

some difficulties are observed with the method of Stanzial and Prodi
10

 and these are linked to 

the time averaging procedure that appears in their definitions of radiating and oscillating 

intensity.  Following the use of simple theoretical calculations it is demonstrated that if 

different sound signals, or in this case the predicted incident and reflected pulse in a duct, are 

included within the time averaging procedure then some cancellation between the signals is 

possible.  This delivers erroneous predictions for plane wave propagation, which may be 

rectified only by windowing out individual signals.  Accordingly, it is concluded here that 

caution should be exercised when applying Stanzial and Prodi’s approach to transient 

problems, especially when studying the acoustic near field of complex sound sources in 

which multiple equivalent noise sources are present. 
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It is shown here that it is possible to obtain good quantitative agreement between predicted 

and measured complex intensity provided one studies a very simple problem, which in this 

case necessitated the use of plane waves in the duct.  Here, good agreement in a time 

stationary sound field is observed both at the exit of an open ended duct, and within the duct 

itself.  However, when the sound field is complicated by adding a higher order mode, it is 

found to be much more difficult to obtain good agreement between prediction and 

experiment.  It is seen that the reactive sound intensity field becomes significantly more 

complicated than the active sound intensity field (the one traditionally measured) and this 

places a much more stringent requirement on the accuracy of the measuring equipment.  

Under carefully controlled conditions it was found to be possible to obtain good agreement 

between prediction and measurement for four out of six of the tri-axial components of non 

instantaneous complex intensity, but the active circumferential and reactive axial intensities 

exhibit significant discrepancies.  Problems are thought to be caused by the interaction 

between the sound field and the supporting frame, as well as difficulties with accurately 

calibrating the Microflown device.  However, it is also thought that current measurement 

techniques are simply unable to resolve the complex nature of a reactive sound field at 

accuracy sufficient for delivering reliable quantitative data, and this was observed even for a 

relatively simple problem. 

 

Complex intensity has the potential to deliver additional information about the nature of 

energy propagation in the near field of a radiating sound source, or alternatively in a multi 

modal environment within a duct.  The accurate measurement of the instantaneous and non-

instantaneous complex intensity is, however, difficult to achieve with existing 

instrumentation.  Technology that is currently available for measuring intensity can only be 
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relied upon to provide a qualitative investigation into a complex intensity sound field.  This is 

likely to limit the effectiveness of any investigation into a radiated sound field using an 

inverse analysis approach that is based on the use of reactive intensity. 
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APPENDIX A 

 

xTy}Ty = ���
��T�� �T�� �T� −�T��T�T�� �T�� � ��T � −�T −�T�T� � −�z�T −�z ���

� �QT�QT�]��  , (A1) 

 

xTz}z{ = ¡ � � � �� � � �� � � ��z � � �¢ ¡
Qz£Qz�Qz¤¥� ¢, (A2) 

 

xzT}Ty = ¡� � −¦zU�T ¦zU� � � �� � � �� � � � ¢ �
QT�QT�]��  , (A3) 

 

xz{}z{ = ��
���z££ �z£� �z£¤ ��z�£ �z�� �z�¤ ��z¤£ �z¤� �z¤¤ −�{�� � �{ −�{�{"T��

�� ¡Qz£Qz�Qz¤¥� ¢, (A4) 

 

�T = 4PT}�LM, NM, OM�		 � � �9}. (A5) 

 

Here, 4§T9 and 4§{9 are diagonal matrices with each diagonal element given by !"#$λj¨, 

(r = 0,1,⋯ ,���, and  ∂ℎqr�2��*L� ∂r⁄ |­h®, (r = 0,1,⋯ ,�b�, respectively. The modal 

amplitude coefficients are normalised as �T"T£ = £�  and �b¤ = ¤̄. The constituent matrices 

are given by 

4�T9 = R S∇PT}∇PT − *�PT}PTVWX �ΩJ (A6) 
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4�z9 = R S∇Pz}∇Pz − *�Pz}PzVW° �Ω� (A7) 

4�T9 = (*±²R Ф²PT�ΓaZ[ ,				�� = 0,1,⋯ ,��� (A8) 

4�z9 = (*±²R Ф²Pz�ΓuZ³ ,				�� = 0,1,⋯ ,��� (A9) 

4�{9 = R Ψ²Pz�ΓvZ´ ,				�� = 0,1,⋯ ,�b� (A10) 

4�T9 = (*±² µ Ф²Фe�ΓaZ[ ,			(� = 0,1,⋯ ,��; r = 0,1,⋯ ,��� (A11) 

4�z9 = (*±² µ Ф²Фe�ΓuZ³ ,			(� = 0,1,⋯ ,��; r = 0,1,⋯ ,��� (A12) 

4�{9 = ℎqr�2��*E�µ Ψ²Ψ·�ΓvZ´ ,			(� = 0,1,⋯ ,�b; r = 0,1,⋯ ,�b� (A13) 

 

Here, the outer radius of the finite element mesh in region R3 is E = 150	mm.  If only plane 

waves propagate, then the numerical model reduces from three to two dimensions, but when 

higher order modes propagate (above 1341 Hz for this duct) the problem is no longer 

axisymmetric and a three dimensional model is necessary.  For the two dimensional model, 

eight noded quadrilateral isoparametric elements were used to discretise region EJ, and the 

part of region E� which lies inside the duct. In the case of the part of region E� that lies 

outside of the duct, six noded triangular isoparametric elements were used.  For the three 

dimensional model, ten noded tetrahedral isoparametric elements are used to discretise 

regions EJ and E�, and six noded triangular isoparametric elements are used for the surface of 

regions EJ and E�. A very fine mesh is used in regions EJ and E� in order to ensure accuracy 

of the calculations. A minimum of 45 nodes per wavelength in the two dimensional model is 

chosen. For the three dimensional model, the element size within E� is optimised so that it is 

finer on the surfaces Γu and Γv (see Fig. 1) and coarser within the volume of E� in order to 
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improve the accuracy of the integration over each surface, but also to control the number of 

elements. Here, at least 27 nodes per wavelength are used on surfaces Γu and Γv, whilst a 

minimum of 11 nodes per wavelength is used within the volume of regions EJ and E�. For 

the two dimensional model, 40 modes are used in region E� and 80 modes in region Eb. For 

the three dimensional model, 60 modes are used in  region E� and 120 modes in region Eb. 
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FIGURE CAPTIONS 

Fig. 1. Instantaneous active (a) and reactive (b) intensity at 200Hz.  ───, predictions using 

on Stanzial and Prodi's method
10

; - - - - -, predictions based on Heyser’s method
7
 

 

Fig. 2. Geometry of open ended duct. 

 

Fig. 3. Active (a) and reactive (b) intensity at 1000Hz. 

 

Fig. 4. Active (a) and reactive (b) intensity at 1800Hz. 

 

Fig. 5. A photograph of the experimental setup.  

 

Fig. 6. The USP probe installed in the frame.  

 

Fig. 7. Instantaneous complex intensity at 1000Hz: instantaneous active (a) and instantaneous 

reactive (b): ───, theory; ─ ─ ─, experimental data based on Stanzial and Prodi's 

method
10

; - - - - -, experimental data based on Heyser’s method
7
. 

 

Fig. 8: Active (a) and reactive (b) axial intensity at 1000Hz:   ───, theory; ▲, experiment. 

 

Fig. 9: Active (a) and reactive (b) axial intensity at 1800Hz:   ───, theory; ▲, experiment. 

 

Fig. 10: Active (a) and reactive (b) circumferential intensity at 1800Hz:   ───, theory; ▲, 

experiment. 
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Fig. 11: Active (a) and reactive (b) radial intensity at 1800Hz:  ───, theory; ▲, experiment. 
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Fig. 1. Instantaneous active (a) and reactive (b) intensity at 200Hz.  ───, predictions using 

on Stanzial and Prodi's method
10

; - - - - -, predictions based on Heyser’s method
7
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Fig. 2. Geometry of duct. 
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Fig. 3. Active (a) and reactive (b) intensity at 1000Hz. 
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Fig. 4. Active (a) and reactive (b) intensity at 1800Hz. 
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Fig. 5. A photograph of the experimental setup. 
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Fig. 6. The USP probe installed in the frame. 
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Fig. 7.  Instantaneous complex intensity at 1000Hz: instantaneous active (a) and 

instantaneous reactive (b): ───, theory; ─ ─ ─, experimental data based on method of 

Stanzial and Prodi
10

; - - - - -, experimental data based on method of Heyser
7
. 
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Fig. 8: Axial intensity at 1000Hz: active (a) and reactive (b): 

 ───, theory; ▲, experiment. 
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Fig. 9: Active (a) and reactive (b) axial intensity at 1800Hz: 

 ───, theory; ▲, experiment 
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Fig. 10: Active (a) and reactive (b) circumferential intensity at 1800Hz: 

 ───, theory; ▲, experiment  
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Fig. 11: Active (a) and reactive (b) radial intensity at 1800Hz: 

 ───, theory; ▲, experiment  
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