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Abstract

State estimation problem for power systems has long been a fundamental issue that demands
a variety of methodologies dependent on the system settings. With recent introduction
of advanced devices of phasor measurement units (PMUs) and dedicated communication
networks, the infrastructure of power grids has been greatly improved. Coupled with the
infrastructure improvements are three emerging issues for the state estimation problems,
namely, the coexistence of both traditional and PMU measurements, the incomplete infor-
mation resulting from delayed, missing and quantized measurements due to communication
constraints, and the cyber-attacks on the communication channels.

Three challenging problems are faced when dealing with the three issues in the state
estimation program of power grids: 1) how to include the PMU measurements in the state
estimator design, 2) how to account for the phenomena of incomplete information occurring
in the measurements and design effective state estimators resilient to such phenomena, and 3)
how to identify the system vulnerability in state estimation scheme and protect the estimation
system against cyber-attacks.

In this thesis, with the aim to solve the above problems, we develop several state estima-
tion algorithms which tackle the issues of mixed measurements and incomplete information,
and examine the cyber-security of the dynamic state estimation scheme.

• To improve the estimation performance of power grids including PMU measurements, a
hybrid extended Kalman filter and particle swarm optimization algorithm is developed,
which has the advantages of being scalable to the numbers of the installed PMUs and
being compatible with existing dynamic state estimation software as well.

• Two kinds of network-induced phenomena, which leads to incomplete information
of measurements, are considered. Specifically, the phenomenon of missing measure-
ments is assumed to occur randomly and the missing probability is governed by a
random variable, and the quantized nonlinear measurement model of power systems
is presented where the quantization is assumed to be of logarithmic type. Then, the
impact of the incomplete information on the overall estimation performance is taken
into account when designing the estimator. Specifically, a modified extended Kalman



x

filter is developed which is insensitive to the missing measurements in terms of ac-
ceptable probability, and a recursive filter is designed for the system with quantized
measurements such that an upper bound of the estimation error is guaranteed and also
minimized by appropriately designing the filter gain.

• With the aim to reduce or eliminate the occurrence of the above-mentioned network-
induced phenomena, we propose an event-based state estimation scheme with which
communication transmission from the meters to the control centre can be greatly
reduced. To ensure the estimation performance, we design the estimator gains by
solving constrained optimization problems such that the estimation error covariances
are guaranteed to be always less than a finite upper bound.

• We examine the cyber-security of the dynamic state estimation system in power grids
where the adversary is able to inject false data into the communication channels
between PMUs and the control centre. The condition under which the attacks cause
unbounded estimation errors is found. Furthermore, for system that is vulnerable
to cyber-attacks, we propose a system protection scheme through which only a few
(rather than all) communication channels require protection against false data injection
attacks.
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Chapter 1

Introduction

1.1 Motivation

The power grid, which is regarded as one of the greatest engineering achievements in the
20th century, has been undergoing important changes since the beginning of the 21st century
[49]. Due to the low-carbon requirement, more and more renewable distributed generations
such as photovoltaic (PV) generators and wind farms are incorporated in the power grids and,
therefore, the nowadays power grids have inevitably become complex large-scale dynamic
networks demanding sophisticated analysis and control tools. To monitor and control such
networks in an efficient and flexible way, the supervisory control and data acquisition
(SCADA) system, as the information technology (IT) infrastructure in power grids, has been
enhanced by the development in sensor and network technologies. Specifically, the advanced
phasor measurement units (PMUs) and the communication networks have truly been the
enabling technologies in SCADA systems. A typical system structure of power grids is
depicted in Fig. 1.1.

Synchronized PMU is an advanced meter developed in 1980s, which is capable of directly
measuring both voltage/current magnitudes and phase angles. In addition, PMUs sample at
a much higher frequency compared to conventional remote terminal units (RTUs), and all
PMUs are synchronized by the GPS universal clock. When a sufficient number of PMUs are
deployed in the power grid, all system states are observable and can be easily calculated from
the linear PMU measurement equation. However, for economic reasons, it is not affordable
to replace all the conventional RTUs with PMUs in the foreseeable future. As a result, it is a
challenge to make the most of the mixed (PMU and RTU) measurements to better monitor
and control the power grid.

While PMUs provide accurate and timely system measurements for the power grid, the
communication network does play an important role to deliver the measurements from the
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Fig. 1.1 A typical system structure of power grids

meters to the control centre. Depending on the transmission distance and communication
capability, a variety of communication technologies have been used in the SCADA systems
that include, but are not limited to, power line, wired network and wireless network [54,
49]. Power lines, though mainly used for power transmissions, can transmit information
using the signal modulation techniques. Typically, the data transmission via power lines
is limited in the area between two transformers as no signal can propagate through the
transformers. Wired networks connected through telephone line and/or optical fibre can
provide reliable communication in long distance, but great investments are needed for
deploying such networks in the geographically wide-spanned power grids. Compared with
the wired network, the wireless one has the benefits of low installation and maintenance cost,
but wireless signals are generally susceptible to external disturbances and noises that could
deteriorate the signal quality.

Though the deployment of the communication networks has greatly improved the efficien-
cy and reliability of the SCADA system, the bandwidth-constrained communication networks
still remain as the bottleneck when a huge amount of measurement data are transmitted
over a long distance. In such a case, the networked-induced phenomena (e.g. transmission
delays, data asynchronization, quantization and packet losses) may occur. For instance, it
has been reported that, in the Bonneville Power Administration system, the transmission
of PMU packets using modems has high latency (60–100 ms) and relatively high dropout
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rates, and the latency using fibre optic digital communication is approximate 30 ms [163]. A
direct consequence of network-induced phenomena is that only incomplete information of
the measurements can be received by the control centre. On the other hand, the pervasive
usage of communication networks makes the power grid vulnerable to cyber-attacks. Since
the power grid is a closely coupled cyber-physical system, the attacks on the communication
networks can mislead the system operations and subsequently affect the physical dynamics
of the power grid.

A seemingly natural idea to handle the emerging network-induced issues of mixed
measurements, incomplete information and cyber-attacks is to widely deploy PMUs and
develop reliable, secure and low-latency communication network infrastructures in the
SCADA systems. This idea is, unfortunately, not physically feasible in the near future simply
because of technological and financial constraints. As such, it is practically significant and
theoretically important to develop new algorithms and update existing energy management
software (EMS) so as to tackle the network-induced limitations. Among the programs in the
EMS software package, In particular, we focus on the power system state estimation (PSSE)
in the thesis. The PSSE program serves to monitor the state of power grids and enables EMS
to perform other control and optimization tasks such as bad data detection and power flow
optimization.

Traditional state estimation methods used in the control centres have been designed
to deal with the conventional RTU measurements alone. Compared with the RTUs, the
PMUs provide more accurate measurements with a much higher sampling rate. Due to the
differences between these two kinds of measurements, the traditional state estimators cannot
be directly used to deal with the PMU measurements. As such, much research effort has
been devoted to the development of new yet effective estimation algorithms that are suitable
for mixed RTU and PMU measurements. Moreover, the incomplete information occurring
in the measurements is usually ignored in the traditional state estimator and, as such, there
is no guarantee that the estimation performance is as good as expected in the presence of
network-induced phenomena such as packet dropouts and communication delays. To this
end, there is a rather urgent need to develop new state estimators that are robust against
incomplete information yet efficient in handling mixed RTU/PMU measurements. Two
issues that we would have to face are the characterization of the incomplete information
and the examination of the impact from incomplete information on the overall estimation
performance for power grids.

As to the cyber-security issue of the state estimation system in power grids, the false
data injection (FDI) attacks have been paid special attention in the past few years. Through
designing the attack data deliberately, the attacker can modify the measurements and sub-
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sequently the state estimate of the power grid via bypassing the bad data detection scheme
in power grids. As such, it is important yet challenging to identify the system vulnerability
in the existing state estimation schemes and develop effective attack detection methods
as well as system protection mechanisms. It should be pointed out that, since the power
system dynamics is closely related with the behaviours in communication networks, the
cyber-security issue in power systems cannot be solved using only classical system and
control approaches or existing information security methods [150]. For instance, reliance
on communication networks increases the possibility of intentional cyber-attacks against
physical plants, and this problem cannot be solved by simply using classical control design
approaches. On the other hand, information security methods (e.g. authentication, access
control, message integrity) do not explicitly exploit the system dynamics of the underlying
physical process, and are therefore inapplicable since system dynamics is often the target for
cyber-attacks. As such, it is important yet challenging to identify the system vulnerability in
the existing state estimation schemes and to develop effective attack detection methods and
system protection mechanisms.

1.2 Contribution

The main contributions of the thesis are listed as follows.

• A new dynamic state estimation scheme is proposed to improve the estimation per-
formance of power system including PMU measurements. 1) Such a scheme has
the advantages of being scalable to the numbers of the installed PMUs and of being
compatible with existing DSE software. 2) Practical issues of missing measurements in
communication network are investigated thoroughly and a modified EKF algorithm is
developed which is insensitive to the measurement unreliability in terms of acceptable
probability. 3) Extensive comparative experiments have been implemented based on
different missing rates of the RTU measurements and it is confirmed that our proposed
estimation algorithm provides better performance than the traditional EKF in the
presence of the missing measurements.

• An explicit model for power system with quantized nonlinear measurement is proposed
that is closer to the engineering practice. Based on the proposed model, a recursive
estimation algorithm is developed for the system with consideration of both the non-
linear measurements and quantization effects. It is to be noted that the developed
recursive algorithm is computational efficient and suitable for on-line application in
power systems.
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• A joint input and state estimator is proposed for the power grid with unknown input
based on a novel event-based transmission scheme. The communication burden is
lessen in such a scheme where less measurement data are transmitted to the control
centre than in the traditional time-based scheme. On the other hand, the joint input/state
estimates are guaranteed to be precise within a known confidence interval even though
only partial measurements at the event-triggered instants are accessible by the proposed
estimator.

• As to the cyber-security issue in the state estimation problem for power grids: 1) new
security criteria are proposed for state estimation systems under FDI attacks and, in the
case that all communication channels are compromised by the adversary, our criteria
are shown to be necessary and sufficient that improve the existing ones; 2) an effective
protection scheme is proposed for the system which is insecure under FDIAs; and 3)
the developed criteria are applied to security analysis and system protection in the state
estimation program of power grids.

1.3 Publication

The following papers report the research results in this thesis:

• L. Hu, Z. Wang, I. Rahman and X. Liu, A constrained optimization approach to
dynamic state estimation for power systems including PMU and missing measurements,
IEEE Transactions on Control Systems Technology, 2015, in press. DOI: 10.1109/
TCST.2015.2445852. (Resulting from Chapter 3)

• L. Hu, Z. Wang and X. Liu, Dynamic state estimation of power systems with quantiza-
tion effects: a recursive filter approach, IEEE Transactions on Neural Networks and
Learning Systems, 2015, in press. DOI: 10.1109/TNNLS.2014.2381853. (Resulting
from Chapter 4)

• L. Hu, Z. Wang and X. Liu, Event-triggered input and state estimation for linear
discrete-time systems, under review (submitted to International Journal of Control).
(Resulting from Chapter 5)

• L. Hu, Z. Wang and X. Liu, State estimation under false data injection attacks: secu-
rity analysis and attack detection, under review (submitted to IEEE Transactions on
Automatic Control). (Resulting from Chapter 6)
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• L. Hu, Z. Wang and X. Liu, A Survey on state estimation of power grids with un-
conventional measurements, under review (submitted to IEEE Transactions on Smart
Grid). (Resulting from Chapter 2)

• Z. Wang, L. Hu, I. Rahman and X. Liu, A constrained optimization approach to dy-
namic state estimation for power systems including PMU measurements, International
Conference on Automation and Computing (ICAC), 2013, IEEE press. (Resulting
from Chapter 3)

1.4 Thesis Structure

This thesis is organised into 7 Chapters (including the present chapter). The contents of the
remaining chapters are outlined as follows.

In Chapter 2, we review some recent advances on the state estimation problems for power
systems where new measurement devices and communication networks are introduced. Three
types of new issues (i.e., mixed measurements, incomplete information and FDI attacks)
have been paid particular attentions. This chapter begin with the background knowledge on
the topic of power system state estimation. Following that, the state estimation problem with
the above mentioned three issues are discussed one by one. We analyse the motivation for
each issue, present their impact on the estimation performance and provide overviews on the
corresponding research results. Specifically, 1). the research works on mixed measurements
are categorized into three frameworks, namely, the dynamic state estimation framework, the
static state estimation framework and the hardware-enhanced framework; 2). the methods
for dealing with the incomplete information are classified into two types, one is to make the
state estimator resilient to incomplete information through improving traditional estimation
algorithms, and the other is to eliminate the occurrences of incomplete information by
adopting the new decentralized estimation structure; and 3). we summarize the research work
on state estimation with FDI attacks from three aspects, namely, system vulnerability, attack
detection and system protection.

Starting by the motivation of the work, in Chapter 3 we propose a hybrid filter algorithm
to deal with the state estimation problem for power systems by taking into account the impact
from the PMUs. Our aim is to include PMU measurements when designing the dynamic
state estimators for power systems with traditional measurements. Also, as data dropouts
inevitably occur in the transmission channels of traditional measurements from the meters to
the control centre, the missing measurement phenomenon is also tackled in the state estimator
design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements
are treated as inequality constraints on the states with the aid of the statistical criterion, and
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then the addressed state estimation problem becomes a constrained optimization one based on
the probability-maximization method. The resulting constrained optimization problem is then
solved by using the particle swarm optimization (PSO) algorithm together with the penalty
function approach. The proposed algorithm is applied to estimate the states of the power
systems with both traditional and PMU measurements in the presence of probabilistic data
missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system
and it is shown that the proposed algorithm gives much improved estimation performances
over the traditional EKF method.

Chapter 4 begin with the measurement model in which the RTUs and the PMUs are
subject to quantizations described by a logarithmic quantizer. Then a recursive filter algorithm
is developed to deal with the state estimation problem for power systems with quantized
nonlinear measurements. Attention is focused on the design of a recursive filter such that,
in the simultaneous presence of nonlinear measurements and quantization effects, an upper
bound for the estimation error covariance is guaranteed and subsequently minimized. Instead
of using the traditional approximation methods in nonlinear estimation that simply ignore the
linearisation errors, we treat both the linearisation and quantization errors as norm-bounded
uncertainties in the algorithm development so as to improve the performance of the estimator.
For the power system with such kind of introduced uncertainties, a filter is designed in the
framework of robust recursive estimation, and the developed filter algorithm is tested on the
IEEE benchmark power system to demonstrate its effectiveness.

In Chapter 5, We try to design a new state estimation method to handle the networked-
induced incomplete information, and find that the event-based estimation could be a promis-
ing approach to maintaining the estimation performance under limited communication
resources. In the event-based strategy, a sensor is triggered to send the measurement data
only if some events occur, thereby consuming less communication bandwidth than the sensor
in the time-based one. Considering the unknown input (such as abrupt changes in energy
supply and consumption) in power grids, we design an event-based recursive input and state
estimator such that the estimation error covariances have guaranteed upper bounds at all times.
To this end, the event indicator variable is introduced to reflect the triggering information and
reduce the conservatism in the analysis of estimation performance. Moreover, upper bounds
of the estimation error covariances are obtained recursively and then reduced by choosing
proper scalar parameters and estimator gains according to a given procedure.

In Chapter 6, we consider the security issues in state estimation of power grids, where the
adversary can inject false data into the communication channels between sensors and a remote
estimator. For the case that the adversary can compromise all communication channels, a
necessary and sufficient condition is derived under which the estimation error caused by the



8 Introduction

attacks is unbounded all the time. For the case that the adversary can only compromise a
part of the communication channels, a sufficient condition ensuring the security is derived
as well. Moreover, a criterion on protecting a sufficient number of channels such that the
estimation error is kept bounded under FDI attacks has been proposed. A simulation example
is proposed as well to demonstrate the usefulness of the developed results and algorithms.

In Chapter 7, we summarise the work presented in this thesis and discuss several directions
of future research.



Chapter 2

Background

In this chapter, we aim to review the development of state estimation for power grids from a
new horizon, namely, the unconventional measurements. The examples of unconventional
measurements include, but are not limited to, mixed measurements, delayed measurements,
missing measurements and measurements tampered with by FDI attacks. We endeavour
to capture all important results despite the rapid growth of the literature. Due to the rapid
growth of the literature, we cannot review all but the most relevant to our study. This
chapter is organised as follows. In Section 2.1, the measurement model is introduced and
typical estimation methods used for the problem of power system state estimation (PSSE)
are discussed. The results on PSSE with mixed measurements are reviewed in Section 2.2.
Section 2.3 provides a thorough summary of the research works on state estimation for
power grids with three kinds of incomplete information: delayed, asynchronous and missing
measurements. Finally relevant literature on the cyber-security issue of PSSE is included in
Section 2.4.

2.1 Preliminaries on Power System State Estimation

The PSSE program has been a key module in the EMS of power grids. As the core of the
PSSE program, the state estimator processes the measurement data and generates the state
estimate of the entire power grid that will be needed in other system monitoring, control and
planning tasks such as bad data detection and optimal power flow. As application-specific
software, the operation of PSSE program relies on the communication backbone in power
grids, i.e., the SCADA system. The SCADA system collects measurements from RTUs and
then sends them to the control centres. Fig. 2.1 shows the relation of the PSSE module with
the EMS/SCADA system.
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Fig. 2.1 The PSSE module in an EMS/SCADA system
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In the following, we first briefly introduce the measurement model, then summarize two
different kinds of state estimation schemes widely used in the control centres, and finally
describe the bad data detection module in the EMS.

2.1.1 Measurement Model

Two basic elements in power grids are the bus and the line. A bus (line), also called as a
node (branch) in some literature, stands for a generator or a load substation (a transmission
or distribution line connected two buses). Let us first introduce the basic two-buses π model
so as to build the measurement model for a complex large-scale power grid.

In Fig. 2.2, two buses (s and t) are connected by one line, where Yst := gst + jbst is the
series admittance of the line connecting buses s and t, and Y 0

st := g0
st + jb0

st is the half shunt
admittance of the line connecting bus s and t. Based on Kirchoff’s laws, the following
equation is obtained:

−→
I st = (gst + jbst)(

−→
V s −

−→
V t)+(g0

st + jb0
st)
−→
V s (2.1)

where
−→
V s is the complex voltage at bus s and

−→
I st is the current flowing from bus s to t.

Using the π model, similar equations can be derived for complex power grids with more than
two nodes.

Electrical quantities (e.g. bus voltage, line current and power flow) are all complex-valued
in alternative current (AC) power grids, and hence can be represented in either the polar
or the rectangular coordinates equivalently. For simplicity, we introduce power grids in
the rectangular coordinate as default in this chapter. For a power grid, the voltages at all
buses are usually chosen as the system states. In an N-bus network, the state vector has the
form x =

[
xr,1, xr,2, · · · , xr,N , xi,1, xi,2, · · · , xi,N

]T , where xr,l and xi,l represent the real and
imaginary voltage of the lth bus, respectively. In practice, the system states usually cannot
be directly measured. Instead, they need to be estimated using possibly noisy and incomplete
measurements.

At present, both traditional instruments and new instrument of PMU have been installed
in power grids. Due to their inherently distinct characteristics, the traditional instrument and
PMUs are able to measure different electrical quantities in power grids, see the following
two subsections for more details.

Traditional Measurements

The readings of traditional meters in power grids are collected via RTUs, and then sent to the
control centre through communication networks in the SCADA system. Typically, the bus
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Fig. 2.2 The π model

voltage magnitude, the real and reactive bus power injections, and the real and reactive line
power flows are measured. Based on the π model and (2.1), all measurement equations can
be represented as follows (for the purpose of simplicity, the time instant k is omitted):

Vs =
√

x2
r,s + x2

i,s

Ps = xr,s

N

∑
j=1

(Gs jxr, j −Bs jxi, j)+ xi,s

N

∑
j=1

(Gs jxi, j +Bs jxr, j)

Qs = xi,s

N

∑
j=1

(Gs jxr, j −Bs jxi, j)− xr,s

N

∑
j=1

(Gs jxi, j +Bs jxr, j)

Pst = (x2
r,s + x2

i,s)(g
0
st +gst)− xr,sxr,tgst − xi,sxi,tgst − xi,sxr,tbst + xr,sxi,tbst

Qst =−(x2
r,s + x2

i,s)(b
0
st +bst)− xi,sxr,tgst + xr,sxi,tgst + xr,sxr,tbst + xi,sxi,tbst

(2.2)

where Vs, Ps, Qs, Pst and Qst are the voltage magnitude, the real and reactive bus power
injections at bus s, and the real and reactive line power flows from bus s to t, respectively.

With consideration of the measurement noise, the traditional measurement can be written
in the following compact form:

y1(k) = h
(
x(k)

)
+ v1(k) (2.3)
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where y1(k) is the traditional measurement vector, x(k) is the system state and v1(k) is a
zero-mean Gaussian noise. Note that the mapping function h(x) is nonlinear in general.

PMU Measurements

Compared with traditional measuring meters, PMUs can measure the system with a much
higher frequency. Typically, the sampling rate of PMUs is 30 measurements every second
while that of traditional meters is only once every several seconds. Moreover, all PMU
measurements are synchronized and time-stamped by the global position systems (GPS). As
PMUs are able to provide more accurate and timely measurements than traditional meters,
they have been increasingly deployed in power grids in the past few years. For instance, it
has been reported that, more than 1000 PMUs will be installed in North America by 2019
covering all 200 kV and above substations [177].

A PMU measures not only the voltage phasor of the bus where it is installed but also the
current flows of the lines connecting to the bus. Similar to the traditional measurements, the
PMU measurement equations can also be derived using the π model and (2.1) as follow:

Vr,s = xr,s, Vi,s = xi,s,

Ir,st = (xr,s − xr,t)gst − (xi,s − xi,t)bst + xr,sg0
st − xi,sb0

st ,

Ii,st = (xi,s − xi,t)gst +(xr,s − xr,t)bst + xi,sg0
st + xr,sb0

st

(2.4)

where Vr,s and Vi,s are respectively the real and imaginary parts of the voltage at bus s, and
Ir,st and Ii,st are respectively the real and imaginary parts of the current flow from bus s to t.

With the state variables and measured variables in the rectangular form, a linear PMU
measurement model is obtained as follows:

y2(k) = Hpx(k)+ v2(k) (2.5)

where y2(k) is the PMU measurement and v2(k) is the PMU measurement noise.
A hot topic of research that has stirred much attention is how to make the most of PMUs

in power grids [55]. On one hand, to ensure the PMU measurements compatible with existing
software in power systems, the IEEE Standard C37.118-2005 on PMUs has been proposed
[114]. On the other hand, to quantify the quality of PMUs, the data reliability of PMU
measurements has been quantitatively analysed in [166, 82, 28]. For more details of PMU
technology development, we refer the readers to the recent survey chapter [5].
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2.1.2 Estimation Methods

Since the initial research conducted by F. C. Schweppe in 1970 [136], significant contributions
have been made to the development in PSSE techniques. Depending on the time evolution
of the estimation method, PSSE can be classified into two different paradigms: static state
estimation (SSE) and dynamic state estimation (DSE). Below we provide a brief overview
on the formulation, methods and development in these two PSSE paradigms.

Static State Estimation

The traditional state estimator works in a static setting where the one-scan measurement is
processed to estimate the system states. In the static state estimator, the weighted least square
(WLS) method is typically utilized. In particular, given the RTU measurements, the estimate
of state x(k) is obtained through finding

x̂(k) = argmin
x(k)

(
y1(k)−h(x(k))

)TW−1(y1(k)−h(x(k))
)
,

where the weighting matrix W is commonly set as the covariance matrix of the measurement
noise. Noting that the measurement model (2.3) is nonlinear, the solution of x̂(k) is usually
obtained using the Gaussian-Newton algorithm or its variants in an iterative fashion. At each
iteration, (2.3) is first linearized around the obtained state estimate and then the linear least
square method is applied to the linearised model. The iterative procedures are repeated until
the prescribed terminating condition has been satisfied.

The WLS method has the features of fast convergence and easy implementation, which
give rise to the popularity of the static estimation approach in control centres around the
world. This method, however, has certain limitations with two examples given as follows:
1) there is no guarantee for the convergence to the global or even a local minimum; and 2)
the performance of the algorithm is sensitive to the initial guess. To overcome the identified
weakness in WLS methods, several other improved methods have been proposed, see, the
fast-decoupled WLS method [52, 67] and the robust WLS method [80, 30, 185], to name just
a few. In the literature, there have been a number of survey chapters on the SSE methods.
For example, the developments in the early two decades up to the year 1990 have been
summarized in [19, 169], and the advances in the subsequent one decade from 1990 to 2000
have been reviewed in [122]. In addition, two textbooks [121, 2] have provided more details
on SSE techniques in power grids.
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Dynamic State Estimation

In the traditional SSE paradigm, to obtain the state estimate at current instant, only the new
set of measurement is processed by the estimator, and the previous state estimate is not
considered. In such a way, the evolution of the system state over consecutive measurement
instants is ignored. Different from the SSE scheme, the DSE one utilizes the information
of system dynamics in power grids. The advantage of the DSE scheme lies in its ability to
provide a prediction database, which could be adopted as a set of pseudo-measurements in
case of missing data or meter outages in the power grids.

There are three main steps in the DSE scheme, i.e., system modelling, state prediction
and state estimation. The aim of the first step is to model the dynamical behaviour of power
grids between consecutive measurement instants. When considering the PSSE problem,
it is assumed that the power system operates normally in the quasi-steady regime, which
is in accordance to the slow dynamics in load variations and generation changes. Various
state-space power grid models have been developed in the literature. The first widely used
model has been proposed by Debs and Larson [37], which is described by the following
random-walk process:

x(k+1) = x(k)+w(k) (2.6)

where w(k) is assumed to be a zero mean Gaussian noise to represent changes of the states
between consecutive instant. Several similar models were proposed as results from early
attempts made in the 1970s. One common drawback in these models is that they are over-
simplified as no time evolution is explicitly characterized in these models, and this might
lead to poor performance in the next two steps of state prediction and state estimation. To
overcome such a drawback, a more appropriate model has been put forward in [34] as
follows:

x(k+1) = A(k)x(k)+u(k)+w(k) (2.7)

where the diagonal matrix A(k) represents how fast the state transition is, u(k) is associated
with the trend of the state trajectory and w(k) is a zero-mean Gaussian noise. The values
of A(k) and u(k) can be obtained by on-line or off-line methods. Different techniques have
been proposed and successfully applied to estimate the parameters in the system model (2.7),
including Kalman filtering, exponential smoothing and artificial neural network approaches.

Once the accurate system model is obtained, it is ready to design the dynamic state
estimator. For power grids with nonlinear traditional measurements, the dynamic state
estimator based on the extended Kalman filter (EKF) has been widely adopted [99, 133, 53].
In such a kind of estimator, based on the system model (2.7) and measurement model (2.3),
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the two steps of state prediction and state estimation are accomplished as follows:

x̄(k+1) = A(k)x̂(k)+u(k)

x̂(k+1) = x̄(k+1)+K(k+1)[y(k+1)−h(x̄(k+1))]
(2.8)

where x̄(k) is the state prediction at time instant k, x̂(k) is the state estimation at instant k, and
K(k) is the filter gain to be determined at time instant k. Denoting H(k) = ∂h(x(k))

∂x(k) |x(k)=x̄(k),
the filtering gain is obtained recursively as follows:

K(k) = P(k)HT (k)R−1

P(k) = [HT (k)R−1H(k)+M−1(k)]−1

M(k) = A(k)P(k−1)AT (k)+W.

(2.9)

Other alternative filtering algorithms to EKF for PSSE have also been developed, includ-
ing the iterative Kalman filter [18], the unscented Kalman filter [161, 159], the particle filter
[45], the robust filter [140], the disturbance filter [105, 53], the adaptive filter [178, 179]
and the filter for joint estimation of state and parameter [15, 16]. Moreover, to speed up
the estimation algorithm applied in large-scale power grids, parallel EKF-based dynamic
state estimator has been proposed in [85–87]. In addition, computational intelligence tools
(e.g. neural networks, evolutionary algorithm and fuzzy logic) have also been integrated
into the DSE algorithms in [126, 147, 104]. The readers are referred to the survey papers
[133, 141, 20, 21] for more details on DSE methods.

While the traditional measurements are modelled by nonlinear equations in (2.3), the
PMU measurement model is linear. As such, if sufficient numbers of PMUs are installed
in the power grids, the traditional Kalman filter (rather than the EKF) is needed. The
performance of DSE using PMU measurements has been evaluated in [135, 88]. Different
from the EKF, the Kalman filter has the desirable properties of convergence in estimation
error and low computational complexity. Though the SSE and DSE methods are summarized
separately above, a hybrid filter combining the static WLS and the dynamic UKF has been
developed to exploit the advantages of both methods [131].

2.1.3 Bad Data Detection

In EMS, there is another process closely related to the PSSE, namely, bad data detection
(BDD). On one hand, the state estimate is a prerequisite for the BDD to identify any gross
errors in the measurement set. On the other hand, when the bad measurements are eliminated
by the detector, the estimator can yield more accurate state estimates. Depending on static or
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dynamic flavours of the state estimation schemes adopted, different algorithms have been
used for BDD. Nevertheless, all the algorithms are designed based on the following residual:

r(k) =

{
y1(k)−h(x̂(k)) traditional measurements,
y2(k)−Hpx̂(k) PMU measurements,

(2.10)

where the residual r(k) is equal to the difference between the actual measurements and the
estimated measurements.

When there are no abnormal measurements, the norm of residual r(k) should follow a χ2

distribution with known covariance and, accordingly, the χ2 test has been widely used for
bad data detection [2]. Specifically, if the condition ∥r(k)∥ ≤ σ is violated, an alarm will
be triggered by the detector, where σ is a scalar which can be determined according to the
statistical information of the residual r(k).

2.2 Mixed Measurements

Recently, more advanced synchronized phasor measurement technologies have been applied
in power systems, which makes it possible to measure the system states in a more accurate
and timely way. Unfortunately, for economic reasons, it is not affordable to replace all
the RTUs with PMUs in the foreseeable future [78]. In other words, only partial states
could be measured directly by PMUs and the rest would have to be estimated by using the
conventional RTUs. As such, an emerging yet promising research issue is how to integrate
PMU measurements into existing SE algorithms, which is depicted in fig. 2.3.

There are several challenges that would need to be overcome in order to make it practically
possible to develop PSSE methods in the presence of mixed (RTU and PMU) measurements.
The challenges are outlined below:

• High computing burden: Due to computational limitations, most existing estimators
that process traditional measurements alone (without PMU measurements) in control
centre run every few minutes even though the sampling time of traditional measure-
ments is less than one minute [122]. The inclusion of PMU measurements results
in the measurement vector with an even-higher dimension and thus aggravates the
computational burden greatly.

• Big Data: PMU measurements are obtained at a much higher (typically two order of
magnitude higher) sampling rate than traditional measurements. The huge amount
of measurement data put great burden on the communication networks with limited
bandwidth in power grids [9]. As discussed in [180], the communication constraints
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Fig. 2.3 The mixed measurements

have inevitably led to network-induced phenomena such as random communication
delays, data quantization and missing measurements.

• Numerical instability: Since PMU measurements are significantly more accurate than
traditional measurements, integration of these two kinds of measurement data often
leads to the ill-condition problem for the measurement noise covariance matrices. As is
known, numerical computation problem may be caused by the ill-conditioned matrices
in the process of state estimation.

2.2.1 Methodologies

In this subsection, we review the state estimation methods for power grids with mixed
measurements according to the following orders: first the static estimation methods, then
the dynamic counterparts, and finally a hardware enhanced method through buffering PMU
measurements.

Generally speaking, two static estimation schemes have been proposed . One scheme is to
process both kinds of measurements simultaneously after transforming them into a common
coordinate (either rectangular or polar) [188, 14, 94, 189, 175]. The other one is actually a
two-stage scheme: a) estimated states are obtained by employing RTU measurements and
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PMU measurements, respectively, and b) such estimates are fused based on the estimation
fusion formula [143, 60, 59].

Several different techniques has been introduced to design DSE methods with mixed
measurements [7, 26, 27, 42, 103, 137]. For example, the mixed-integer programming
formulation has been proposed to decide whether the predicted state at buses without PMUs
measurements are utilized or not [7, 26, 27], and a dynamic state estimator has been designed
based on the relevance vector machine algorithm in [103], where the auto-encoder technique
has been used to further reduce the data dimensionality in mixed measurement. In addition,
based on the multi-agents model, a software module for DSE has been built to scan and
process RTU and PMU measurements in parallel in [137].

Different from the aforementioned two methods that focus on developing estimation algo-
rithms with mixed measurements, the third method tries to cope with the mixed measurement
problem through improving the hardware design. Considering different sampling rates of
the traditional and PMU measurements, a memory buffer of PMU measurements has been
recommended to be installed in the state estimator. In [181], the problem that how buffering
the phasor measurements can improve the state estimate has been investigated. Furthermore,
the optimal buffer design and the use of the phasor measurements from that buffer have been
addressed in [125].

2.3 Incomplete Information

The modern power grid is a typical complex networked system, where the widely geograph-
ically separated components such as generation plants and substations are interconnected
by communication cables. The underlying communication networks in SCADA system
is depicted in Fig. 2.4, from which we can find that the communication links in SCADA
systems have different forms including telephone, optical fibre, satellite, microwaves, etc.
Undoubtedly, it is expected that the communication network is capable of providing secure
and reliable data transmission from meters to the control centre. Unfortunately, though
networking technologies and systems have been greatly enhanced, network-induced phenom-
ena still happen in practical power grids. In this chapter, the information with respect to
the network-induced phenomena is customarily referred to as the incomplete information
[40, 74].

The incomplete information under consideration mainly includes delayed, asynchronous
and missing measurements, whose mathematical models are listed in Table 2.1, where y(k)
is the measurements received by the estimator, and h(x(k)) and ν(k) represents the ideal
measurement and the measurement noise, respectively. The development on PSSE with
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Fig. 2.4 Typical communication links in SCADA systems

Table 2.1 Mathematical models of incomplete information in measurements

Types Mathematical models
Delayed measurements y(k) = γ(k)h(x(k))+(1− γ(k))h(x(k−1))+ν(k), where γ(k) is a stochastic variable tacking value on 0 or 1.
Asynchronous measurements y(k) = h

(
x(t(k))

)
+ν(t(k)), where t(k)≤ k < t(k+1).

Missing measurements y(k) = γ(k)h(x(k))+ν(k), where γ(k) is a stochastic variable tacking value on 0 or 1.

incomplete information will be reviewed in great detail. In particular, we will present the
sources of the three kinds of incomplete information, analyse their impacts on the estimation
performance, and review both the centralized and decentralized state estimation methods
developed in the literature.

Delayed and Asynchronous Measurements

When considering the state estimation problem in power grids, it is explicitly assumed that the
system state remains unchanged during the time interval among two successive measurement
instants. In fact, this assumption may fail sometimes due to the transmission delay and
time skewness among measurements from different areas. As the communication networks
in power grids span wide geographic areas, the long-distance communication between
different components would inevitably lead to network transmission delay. For example,
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non-negligible transmission delays have been observed in the communication networks of
practical power grids [112]. On the other hand, time-skewness in traditional measurements,
which can be viewed as a specific kind of time delays, is a common phenomenon because
the measurement data from different RTUs are not synchronized. Though the asynchronous
measurements can be easily removed if all traditional measuring meters are replaced by the
GPS-synchronized PMUs, it cannot be realized in near future due to resource limitations.

Some researchers have observed the phenomenon of delayed measurements in experi-
mental or practical power grids. Using the designed Ethernet-based communication platform
for power systems, the transmission delays have been measured experimentally [23], and
the statistical characteristics of transmission delay in some practical power grids have been
obtained through analysis of real data [112]. The delayed measurements could largely affect
the power systems in different aspects such as system stability [116] and power market
[127]. Nevertheless, in this chapter, we focus on the effect of delay measurements on PSSE
exclusively.

Missing Measurements

In power grids, the phenomenon of missing measurements occurs quite often when there are
malfunction or faults in the meters and, traditionally, this issue has been investigated in the
research area of fault detection for power grids. Recently, the introduction of communication
networks in power grids has also stimulated the studies on missing measurements. The
measurement data may be transmitted unsuccessfully due to unintentional conditions such
as network traffic congestion and limited communication bandwidth. On the other hand,
transmission failures can also be caused by intentional cyber-attacks. For instance, one par-
ticular type of attack called denial of service (DoS) attack can block the data transmission in
communication networks. Under DoS attacks, the control centre cannot receive measurement
data from certain meters. In addition, when arriving at the control centre with excessive long
transmission delay, the data are usually discarded and can therefore be viewed as missing. If
not adequately taken into account, the phenomenon of missing measurements could degrade
the performance of the state estimator or even cause divergent estimation errors.

Some Remarks

In most of the early literature on PSSE, the perfect communication scenarios have been
assumed. Recently, researchers have observed that the measurement data may not always
arrive at control centre in a perfect condition. Moreover, without consideration of the incom-
plete information, traditional state estimators (both the static and the dynamic ones) could
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perform poorly especially in a networked environment. Accordingly, new PSSE methods
have been proposed and applied in power grids to deal with the incomplete information in
measurements.

2.3.1 Centralized State Estimation Scheme

Traditionally, the state estimator works in a centralized manner in which all remote measure-
ments are sent to a unique control centre. In the SSE paradigm, if the measurements are
delayed or lost, the static estimator may fail completely because, with fewer measurements
than unknown states, the measurement equation (2.3) or (2.5) becomes undetermined. Un-
fortunately, in this situation, little can be done to improve the SSE scheme except viewing
the delayed and missing measurements as a kind of bad data. On the contrary, in the DSE
paradigm, quite a lot improved state estimation algorithms have been proposed for the power
grid with incomplete information.

Delayed and Asynchronous Measurements

Several models have been used to characterize the time delays [163, 23, 152, 112, 183, 151,
63]. Of course, it would be convenient to tackle the state estimation problem by assuming that
the delay is constant. Unfortunately, it is often not the case in practice. Most protocols used
in the communication network of power grids (e.g. TCP/IP) do introduce time-varying delays.
As such, in [163], a bounded but time-varying delay model has been proposed to capture
the network-induced constraints in wide-area measurement systems. In [23], a stochastic
delay that exists in power systems has been experimentally measured from an Ethernet-
based communication platform. Moreover, the stochastic communication delay distribution
in China southern power grids has been reported in [112]. In addition, a straightforward
calculation method and model of communication delays in power system have been proposed
in [151].

Based on the statistical model of delayed measurements, different state estimators have
been developed. For example, a recursive estimator under one time-step random communica-
tion delay has been designed in [152]. To model the one-time step random delay, a binary
switching sequence has been used which can be viewed as a Bernoulli distributed white
sequence taking values of 0 and 1. In [63], a DSE algorithm has been proposed to deal with
time delays that are more than one step, where the time-forward kriging model has been
used to forecast the missing load data from the available measurement data. In [152, 63], it
has been shown that the designed estimators exploiting statistical information of the delay
perform much better than the traditional estimator without considering the delay information.
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On the other hand, the issue of time skewness caused by asynchronous measurements
has been taken into account in the DSE design [4, 173, 182]. Specifically, based on the
credibility of each available measurement, a method has been proposed to appropriately
adjust the variance of the measurement noise from different devices [4], and such an idea
has been extended to calibrate the PMU measurement data received by the estimator [182].
Moreover, the imperfect synchronizations in PMU measurements have been estimated and
then the estimation information has been utilized is the subsequent step of estimator design
[173]. It has been shown that the proposed estimator outperforms the traditional ones.

Missing Measurements

As discussed before, the phenomenon of missing measurements may happen due to either
hardware faults or communication failures. Accordingly, two different kinds of methods
have been used to deal with the state estimation problems for power grids with the missing
measurements.

• For the first method, to make the system resilient to sensor faults, different strategies of
PMUs placement in power grids have been put forward in [6, 129, 43]. For instance, in
[6], by assuming the occurrence of random sensor faults, the optimal PMU placement
solution has been derived to maximize the probability of topological observability.
The sensor failure problems have been considered in a deterministic way in [129, 43]
whose main idea is to use backups of measurements (i.e., measurements at previous
instants) to replace the lost measurements.

• The other method addressing the missing measurements caused by communication
failures shares similar ideas used to tackle delayed measurements. That is, the statistics
of the random missing measurements has to be utilized. The occurrence of missing
measurements has been modelled as a stochastic variable satisfying the Bernoulli
random binary distribution [76, 154, 155, 38]. Furthermore, the off-line state estimation
algorithm has been developed in [76] where, instead of the exact occurrences of missing
measurements, only the information about the statistical law (i.e., first- and second-
order moments) of the stochastic variable are used for filter design. In contrast, the
state estimator gains are computed on-line according to the real-time situation whether
a packet is lost in [154, 155]. Moreover, in[38] the impact of dropped packets on
stability of the estimator has been investigated.

In [162, 24], both the time delays and missing measurements have been simultaneously
considered. Specifically, in [162], a method using the GPS synchronized sampling technolo-
gies has been proposed to compensate both time delays and missing measurements. In [24],



24 Background

an integrated software package has been developed for the power grids simulation wherein
the delay and the packet loss introduced by the communication systems have been taken into
account.

2.3.2 Decentralized State Estimation Scheme

In the above subsection, we have reviewed the centralized state estimation methods for power
grids with incomplete information. All these methods are developed based on the basic
models described in Section 2.2. To deal with the incomplete information issue, another
research line is to find a solution such that the phenomena of incomplete information is as
less likely to happen as possible. The decentralized state estimation scheme seems to be
a promising solution since it removes the necessity of a fast and reliable communication
network in a power grid.

The structure in decentralized state estimation schemes has evolved from the hierarchical
one to the completely distributed one. In both structures, the overall power grid is split into
several geographically different areas that are electrically connected via tie-lines. Every
area comprises a) a local area control centre where the local state estimator is maintained,
and b) a subset of buses which are measured by meters. Due to the multi-area feature, the
decentralized state estimation is also called multi-area state estimation in some papers on
PSSE [187, 62]. In the hierarchical state estimation scheme, all the local area centres first
perform local area state estimation and then send the local state estimates to the unique global
control centre where the state estimate of the overall power grid is obtained. In this scheme,
the local state estimators located remotely communicate only with the unique global one.
Since research focuses in decentralized state estimation for power grids have been recently
shifted from the hierarchical scheme to the completely distributed one, in this chapter, we
only review recent advance in the latter scheme in detail. For the hierarchical state estimation
scheme, we refer the readers to the review papers [33, 61].

Different from the hierarchical scheme where all local state estimates are directly sent to
a global centre, for the distributed approach, such a global centre does not exist and, instead,
every state estimator exchanges information with the estimators in its neighbouring areas. The
distributed estimation approach only involves a) communication between every meter and its
local estimator; and b) limited information exchange between estimators in neighbouring
areas. Therefore, the heavy communication burden can be alleviated as compared to the
centralized approach. A specific structure of the decentralized state estimator in the IEEE
14-bus system is depicted in Fig. 2.5.



2.3 Incomplete Information 25

(a) The IEEE 14-bus system benchmark [1]

(b) Decentralized estimation structure in the IEEE 14-bus system

Fig. 2.5 The IEEE 14-bus system: (a) Conventional system; (b) Decentralized estimation
structure



26 Background

In the following, we summarize the distributed state estimation methods in two different
frameworks: the distributed static state estimation (DSSE) and the distributed dynamic state
estimation (DDSE).

• Typical works in the first framework include [170, 102, 89, 81, 175, 42]. In [170], a
fully distributed static estimation algorithm has been proposed where, through iterative
information exchanges with estimators in neighbouring areas, all local estimators can
achieve an unbiased state estimate of the entire power grid. In [102], by integrating the
network gossiping algorithm into the WLS state estimation algorithm, the distributed
static state estimators has worked in an adaptive re-weighted manner. In [89], the
alternating direction method of multipliers (ADMM) technique has been utilized to
design a distributed and robust state estimator. In addition, the DSSE methods using
both PMU and traditional measurements have been presented in [81, 175, 42].

• In the DDSE framework, different estimation methods have been put forward in
[145, 29, 128, 101, 132, 68]. Specifically, in [29], a factor graph has been used to
model a power grid and a DDSE algorithm has been proposed based on the graphical
model. As for the local estimator design, the unscented Kalman filter (UKF) has been
used to process PMU measurements at each control centre in [145]. Using Gaussian
approximation and stochastic linearisation techniques, the distributed point-based
Gaussian approximation filters has been developed in [68]. Moreover, to improve the
estimation performance, the local information exchanges of neighbouring areas based
on the consensus algorithm has been introduced in [128]. In addition, a distributed
Kalman filter has been developed to compensate for the information loss in the multi-
rate large-scale power grids in[132], and two short survey papers on recent advances
of DDSE have been given in [130, 101].

2.4 False Data Injection Attacks

To monitor and control the power grids with increasing complexities in real time, communi-
cation networks have been widely used in the SCADA system. However, due to the strong
coupling between communication networks (cyber layer) and electrical networks (physical
layer), the power grids are becoming vulnerable to cyber-attacks. Of all the modules in EMS,
the PSSE module seems to have the highest possibility to be attacked because, through modi-
fying the state estimation successfully, the attackers can mislead other operation decisions of
the power grids and even manipulate the electric market [171].
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Fig. 2.6 System structure of cyber-attacks in PSSE

2.4.1 Attack Model

There are several different kinds of cyber-attacks, among which DoS attacks and false data
injection (FDI) attacks are two most common ones as far as the power grids are concerned.
Different from DoS attacks, FDI attacks violate the data integrity through tampering with
the data. A successful FDI attack aims at the state estimator in power grids by changing
the actual measurement data transmitted in the communication networks and, meanwhile,
bypassing the bad data detector in EMS. The structure of PSSE problem under FDI attacks is
depicted in Fig. 2.6.

Assume that the attacker has the ability to inject false data over the communication
channels between the meters and the estimator. Under FDI attacks, the measurement output
received by the estimator is given as follows:

ya(k) = y(k)+a(k) (2.11)

where y(k) ∈ Rm is the measurements of the PMU and/or traditional meters depending on
the meter placement in practical power grids, a(k) ∈ Rm represents the false data injected
by the attacker at time instant k. The attack vector is described by a(k) = Baa0(k) where
the injection matrix is defined as Ba = diag{γ1, . . . ,γm} with γi = 1 if the attacker is able to
inject false data into the ith communication channel and γi = 0 otherwise. Matrix Ba reflects
which communication channels the attacker can compromise. Specifically, Ba = 0 means
that no FDIAs can be injected into any communication channel and Ba = Im implies that the
attacker has the ability to inject FDIA into all communication channels.
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If the residual r(k) in (2.10) does not change under FDI attacks, then no alarm will be
triggered by the bad data detector. In formal mathematical description, the FDI attack a(k)
in (2.10) will not be detected if the following

ra(k)− r(k) = 0 (2.12)

is true, where ra(k) and r(k) are the residuals generated by the bad data detector in the cases
of a) FDI attacks on the measurements; and b) no attacks on the measurements, respectively.

2.4.2 Latest Progress

Since the initial results reported in 2009 [110], the research topic of PSSE under FDI attacks
has been attracting an increasing research attention. In the following, we review the recent
advances of this research topic from three different aspects: system vulnerability, attack
detection and system protection.

System Vulnerability

To examine the cyber-security of the state estimator in power grids, we need to answer
the question from the perspective of protector/attacker: which set of measurements (or the
corresponding communication channels transmitting them) should be protected/attacked in
order to make the attack detectable/undetectable by the bad data detector? To answer this
question, we need to find the inherent weaknesses in the state estimator and the bad data
detector in power grids.

Some representative works that would help answer the aforementioned question can be
found in [110, 111, 95, 79, 148, 109]. In the context of approximate linear state estimation
model (rather than the original nonlinear one), the case that the attacker has perfect knowledge
of system model has been investigated in [110, 111] and the case that limited (rather than
all) model knowledge is known by the attacker has been considered in [109]. Furthermore,
in [95], it has been assumed that the attackers has only limited resources to manipulate
either a deterministic or random subset of all measurements. The system vulnerability
has been discussed from a different angle in [148] where the minimum number of sensor
measurements required to be tampered with for successful attacks has been determined, and
the corresponding constrained cardinality minimization problem has been solved by using
some convex relaxation techniques. In addition, the system vulnerability under FDI attacks
has been further investigated for the nonlinear, exact, (as opposed to linear and approximate)
state estimation model in [79].
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Attack Detection

It is widely recognized that the PSSE system is typically vulnerable, and it is of great
importance to detect whether the system is under FDI attacks or not. The attack detection
can be achieved by improving either the BDD schemes or the state estimation algorithms.
For example, In [95], a new BDD scheme has been proposed to replace the tradition one
using χ2 test and the new scheme has been shown to successfully detect a particular kind
of FDI attacks. In [32], different detection methods for FDI attacks in power grids have
been reviewed. On the other hand, the sparse nature of the attack vectors in power grids has
been exploited in designing efficient attack detection/estimation algorithms [106, 57, 149].
Specifically, sparse optimization-based estimation methods have been proposed to detect
the attacks in [106] and, under a stronger assumption that less than 6 meters/communication
channels can be attacked simultaneously, an efficient FDI attack estimation method has
been developed in[57]. Similarly, using the minimum-cut algorithm, the stealthy attacks on
power networks have been computed exactly in[149]. Moreover, the optimal policies for
attack design/detection from the adversary/defender has been investigated in a game-theoretic
framework in [46].

System Protection

System protection refers to the countermeasures which remove or mitigate the existing
system vulnerabilities, thus making successful attacks less likely to happen. To prevent
the PSSE system from cyber-attacks, the PMUs and the communication networks which
transmit measurement data should be protected. Several protection schemes have been
developed [56, 56, 91, 160, 13, 123, 100, 164] by using methods such as secured PMU
placements, data encryption and isolated physical transmission media. Assuming that the
PMU measurements are free from cyber-attacks, the optimal placement of secured PMUs
has been considered in [56, 91]. Without the above assumption, in [13], both exact and
fast approximation algorithms have been derived to compute the minimum number of
measurements needed to be protected, and an algorithm has been developed in [123] for
determining the set of PMUs that should be disabled such that the remaining PMUs continue
to maintain the observability of the power grids under FDI attacks. There have been some
other research results focusing on how to secure the communication networks. For instance,
schemes to reroute measurements have been used in [160] whose main idea is to change the
communication network topology and make successful attacks difficult to accomplish. From
the information theoretic perspective, the minimum channel capacity needed in the wireless
network that ensures negligible information leakage of the power grid to the eavesdropper has
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been studied in [100]. In addition, another different protection mechanism has been proposed
in [164] where, by strategically shutting down some preselected transmission lines by turns,
the topologies of the electrical network (instead of that of the communication networks) have
been switched. By doing so, the measurement model is time-varying and therefore difficult
to be obtained by the attacker.

Some Remarks

Though the literature on the security of the PSSE system under FDI attacks has been classified
and reviewed from three different aspects, there has been indeed some literature concentrating
on more than one aspects. For example, both the system vulnerability and attack detection
problems have been considered in [70] and, in [174], both the system vulnerability and system
protection problem under FDI attacks have been considered simultaneously. In addition, as an
interdisciplinary research area, the cyber-security of the PSSE system has drawn significant
attention of researchers from a variety of communities such as power systems, computer
security, communication and control. Progresses made in different research societies can be
found from the survey papers [150, 165, 64, 134].



Chapter 3

A Constrained Optimization Approach
to Dynamic State Estimation for Power
Grids including Missing and PMU
Measurements

3.1 Introduction

State estimation (SE) has long been one of the fundamental problems in the research on
power systems. Traditional SE approach is typically static where the single-scan weighted
least-squares estimators are adopted [2]. Static SE method exhibits the features of fast
convergence and easy implementation, but it suffers from the accuracy problems since the
dynamics of the power system is ignored.

With rapid development of the sensing techniques, online monitoring has recently become
popular which gives rise to the renewed research interests on the design of the dynamic state
estimator (DSE). Comparing with the static state estimation scheme, the DSE is capable
of achieving better estimation accuracy since more information about the state evolution is
utilized. Another advantage of the DSE is its potential ability to provide prediction database
that could be adopted as a set of pseudo-measurements in case of missing data or meter
outages in the power grids.

Note that the missing data phenomenon constitutes one of the major concerns in state
estimation for power systems since data dropouts inevitably occur in the transmission
channels of traditional measurements from the meters to the control centre. As discussed
in [146, 163, 74], the communication constraints (e.g. limited bandwidth) have inevitably
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led to network-induced phenomena such as random communication delays and missing
measurements. As for missing measurements, a conventional way is to treat them as normal
bad data without in-depth characterization of the dropouts. Very recently, the missing
measurement problem has been tackled in [154, 146] where a certain stochastic variable
is involved in the estimator, and this renders the difficulties in the implementation. In this
chapter, a recursive algorithm is developed to mitigate the effect of missing measurements
through modifying the traditional DSE approaches.

The main purpose of this chapter is to design dynamic state estimators for power systems
by making one of the first attempts to solve the aforementioned two challenging problems,
i.e., 1) how to account for the probabilistic missing data phenomenon? 2) how to include
the PMU measurements in the state estimator design? In this chapter, the phenomenon
of missing measurements is assumed to occur randomly and the missing probability for
each channel is governed by an individual random variable satisfying a certain probability
distribution over the interval [0,1]. The impact of missing measurements on the overall
estimation performance is considered when designing the estimator. On the other hand,
to incorporate the PMU measurements into the widely used extended Kalman filter (EKF)
algorithm, the PMU measurements are characterized via a set of inequality constraints based
on the well-known 3-sigma rule of the Gaussian distribution, and then the EKF problem
with state constraints becomes a constrained optimization problem that can be effectively
solved by the particle swarming optimization (PSO) algorithm. As PSO has been developed
primarily as an unconstrained optimization method, the penalty function approach is utilized
to convert the constrained optimization problem into an unconstrained one.

The reminder of this chapter is organized as follows. In Section 3.2, the dynamic model of
the power systems is briefly introduced, and the PMU measurement is characterized by a set
of inequality constraints on systems states. In Section 3.3, the EKF estimation problem with
the inequality constraints on the states is converted to a constrained optimization problem by
the maximum probability method. The PSO algorithm together with the penalty function
approach for the constrained optimization problem is described in Section 3.4. The results of
case studies performed on the 14-bus IEEE benchmark system are presented and analysed in
Section 3.5. Finally, the chapter is concluded in Section 3.6.
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3.2 Problem Formulation and Preliminaries

3.2.1 System Model with Missing RTU Measurements

In this chapter, the power network is assumed to operate among quasi-steady states and such
kind of steady-state dynamics is typically different from the transient ones generated by the
electro-mechanical power systems. Let us consider the following model that represents the
slow system dynamics of N buses ([15, 17, 20, 154, 159]:

x(k+1)−u = A(x(k)−u)+ω(k) (3.1)

where the state x(k)∈R2N is the vector of the real parts and the imaginary parts of the voltages
at all buses in the rectangular form, that is, x(k) =

[
xr,1(k) · · · xr,N(k) xi,1(k) · · · xi,N(k)

]T ,
and u ∈ R2N is the trend behavior of the state trajectory. ω(k) is a Gaussian sequence with
zero mean and covariance matrix W (k). A represents how fast the transitions between states
are. The initial value of state x(0) is a white Gaussian noise with mean value x̄(0) and
covariance matrix Σ(0|0). For computational convenience, the state transition matrix A has
been traditionally assumed to be diagonal in the dynamic state estimation algorithms of
power systems [20].

For the purpose of simplicity, define B, I−A, then (3.1) can be rewritten in the following
compact form:

x(k+1) = Ax(k)+Bu+ω(k). (3.2)

The ideal measurement (without missing phenomena) z(r)(k) ∈ Rm collected by RTUs is
given as follows

z(r)(k) =
[
V T (k) PT (k) QT (k) P f T (k) Q f T (k)

]T

Recall that the explicit element for each aforementioned measurement is given in (2.2) in
Chapter 2. Taking the measurement noise into consideration, z(r)(k) can be rewritten as the
following compact form

z(r)(k) = h(x(k))+ v1(k) (3.3)

The nonlinear function h(x) is given as follows:

h(x(k)) = [V T (k),PT (k),QT (k),P f T
(k),Q f T

(k)]T ,
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and v1(k) is the RTU measurement noise which is also a Gaussian noise with zero mean and
covariance matrix R1(k). Assume ω(k) and v1(k) are uncorrelated with x(0) and with each
other.

Considering missing measurements, the actual measurement z(k) is described by

z(k) = Ξ(k)h(x(k))+ v1(k) (3.4)

where Ξ(k) = diag{γ1(k),γ2(k), · · · ,γm(k)} with γi(k) (i = 1,2, · · · ,m) being m unrelated
random variables. Ξ(k) is also unrelated with ω(k), v1(k) and x(0). Furthermore, it is
assumed that the stochastic variable γi(k) is a Bernoulli-distributed white noise sequence
taking values on 0 or 1 with:

Prob{γi(k) = 0}= 1−µi(k), Prob{γi(k) = 1}= µi(k)

where the value of Prob{γi(k) = 0} is also called the missing rate of the ith measurement.
In RTU measurements, one bus is usually chosen as the reference bus for all the other

buses to obtain the relative phase angles, while in PMU measurements, all PMU measure-
ments provide the direct phase angles with respect to the time reference provided by the GPS
system. In this chapter, we use both RTU and PMU measurements, and therefore all the bus
phase angles are relative to the reference dictated by the GPS [94]. As a result, no reference
buses are needed.

Remark 3.1 In the state transition equation, there are three parameters to be determined,
namely, A, W and u, where A is assumed to be diagonal for computational convenience. Based
on a frequently used power system model, we aim to develop a new estimation algorithm so
as to handle both RTU and PMU measurements in the presence of quantization effects. One
of our next research topics would be to integrate the parameter identification issue with our
developed state estimation algorithm.

3.2.2 PMU Measurements and Inequality Constraints

In this chapter, both the state variables and measured variables are in the rectangular form,
which makes a linear PMU measurement model. Assume that the lth PMU is installed at
bus j, and recall the PMU measurement model given in (2.4) in Chapter 2. Considering
the measurement noise, the PMU measurements can be presented in the following compact
vector form:

z(p)(k) = H(p)x(k)+ v2(k) (3.5)
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where z(p) is the PMU measurement vector, and v2(k) is the PMU measurement noise, which
is also a Gaussian noise with zero mean and covariance matrix R2(k). H(p) can be obtained
directly from PMU configurations, and it can be found that the measurement z(p)(k) is
linearly related to the state x(k).

A seemingly natural idea is to treat the PMU measurements as an additional set similar to
the RTU measurements. Note the fact reported in [94, 14], that the standard deviation of the
errors of PMU measurements is one to two order magnitude less than the one of traditional
RTU measurements. Unfortunately, since the PMU measurements are much more accurate
than the RTU measurements, including these two kinds of measurements in the estimation
process often results in ill-conditioned filtering procedure due primarily to the low covariance
matrix for the PMU measurement noises.

As R2(k) is always a real symmetric matrix, we can find a transformation matrix M(k) of
appropriate dimension such that the matrix M(k)R2(k)MT (k) is diagonal. Accordingly, we
can obtain the following equation from (3.5):

M(k)z(p)(k) = M(k)H(p)xp(k)+M(k)v2(k) (3.6)

where M(k)v2(k) is still a Gaussian noise with zero mean and covariance matrix M(k)R2(k)MT (k).
Based on the well-known 3-sigma rule of Gaussian distribution, we can conclude that the

following inequality sets are satisfied with probability 99.7%:

−3R̃2(k)≤ M(k)z(p)(k)−M(k)H(p)xp(k)≤ 3R̃2(k) (3.7)

where R̃2(k), M(k)R2(k)MT (k)Im1,1. From the perspective of engineering applications, it
is reasonable to assume that the above inequality sets are satisfied all the time. So far, we
have characterized the PMU measurements by a set of inequality constraints on the states for
the power system.

Remark 3.2 Traditionally, the measurement noise is usually assumed to be Gaussian. Some-
times such an assumption, however, is no longer true for PMU measurements where the
probability distribution of the measurement errors (noises) is unavailable. According to [27],
sometimes only the maximal measurement errors are specified by PMU manufacturers, which
can be interpreted as the inequality constraints on the PMU measurements. In this case, it
makes more practical sense to model the PMU measurement errors via inequality constraints
in order to characterize the noise in a more accurate way.
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3.3 Filter Schemes

3.3.1 EKF Design for the System with RTU Measurements

In this subsection, we first introduce the EKF approach to estimating the system state for the
system (3.2) with missing measurements (3.4). The EKF is of the following form:

x̂(k|k−1) = Ax̂(k−1|k−1)+Bu

x̂(k|k) = x̂(k|k−1)+K(k)[z(k)− Ξ̄(k)h(x̂(k|k−1))]

where x̂(k|k) is the estimate of x(k) at time instant k with x̂(0|0) = x̄(0), and x̂(k|k− 1) is
the one-step prediction of x(k) at time k−1. K(k) is the filter gain to be determined at time
instant k, and Ξ̄(k), E{Ξ(k)}= diag{µ1(k),µ2(k), . . . ,µm(k)}. P(k|k−1) and P(k|k) are
the covariance matrices of, respectively, the one-step prediction error and the filtering error
defined by

x̃(k|k−1) = x(k)− x̂(k|k−1), x̃(k|k) = x(k)− x̂(k|k),
P(k|k−1) = E{x̃(k|k−1)x̃(k|k−1)T},
P(k|k) = E{x̃(k|k)x̃(k|k)T}.

Denoting H(k) = ∂h(x(k))
∂x(k)

∣∣∣
x(k)=x̂(k|k−1)

, the gain K(k) can be obtained using the following

recursive algorithm:

P(k|k−1) = AP(k−1|k−1)AT +W (k−1) (3.8)

P(k|k) = [I −K(k)Ξ̄(k)H(k)]P−1(k|k−1) (3.9)

S(k) = Ξ̃(k)◦ (h(x̂(k|k−1))hT (x̂(k|k−1)))

+Ξ̃(k)◦ (H(k)P(k|k−1)HT (k))+R(k)

+Ξ̄(k)H(k)P(k|k−1)HT (k)Ξ̄(k) (3.10)

K(k) = P(k|k−1)HT (k)Ξ̄(k)S−1(k) (3.11)

where Ξ̃(k), diag{µ̃1(k), µ̃2(k), . . . , µ̃m(k)} with µ̃i(k) = µi(k)(1−µi(k)) (i = 1,2, . . . ,m).

Remark 3.3 In this chapter, the exact occurrence time for the randomly missing measure-
ments is not required to be exactly known, and this reflects the practical situation in power
system. Nonetheless, the statistical law (i.e., the first- and second- order of moments) of
the random occurrence of missing measurements is needed in the filter design, where the
statistical law could be obtained through statistic tests.
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Remark 3.4 There are mainly two kinds of DSE paradigms in power system state estimation.
These two paradigms differ from each other in system dynamics model and time scale. In
one paradigm (see e.g. [159, 20, 17] and the references therein) called forecasting-aided
state estimation, the bus voltages are chosen as state variables and a succession of the quasi
steady-states is assumed to evolve in time. Therefore, a dynamic model is adopted to describe
the slow time evolution of the quasi steady-state. In the other paradigm (see e.g. [48] and the
references therein), rotor angles and rotor speeds of generators are chosen as state variables,
and the classic dynamic model of generators is considered. The DSE of such a paradigm is
concerned with the low frequency electromechnical dynamics.

3.3.2 The Probability-Maximum Method

For the constrained estimation problem, it is difficult to incorporate the inequality/equality
constraint of system states into traditional EKF estimator. Fortunately, the probability-
maximum method has been successfully exploited in [144] to convert the constrained estima-
tion problem into a constrained optimization one after each step of the EKF algorithm and,
therefore, this method is chosen to handle the constrained EKF problem in this chapter.

For presentation conciseness, the notation for time instant, k, is omitted in this subsection.
It is known from [8] that, based on the Kalman filter theory, the state estimate of x maximizes
the conditional probability density

P(x|Z) = (2π)−
n
2 |P|−

1
2 exp{−1

2
(x− x̄)T P−1(x− x̄)− 1

2
(h(x)−h(x̄))T R−1(h(x)−h(x̄))}

(3.12)
where n is the dimension of x, P is the covariance of the Kalman filter estimate, Z ,

{z(0),z(1), . . . ,z(k)} denotes the set of measurements available at time instant 0,1, . . . ,k, and
x̄ is the conditional mean of x given Z.

The constrained EKF can be derived by finding an estimate x̂ such that the conditional
probability P(x̂|Z) is maximized and x̂ satisfies the constraint (3.7). Since maximizing P(x̂|Z)
is equivalent to maximizing its natural logarithm, the problem to be solved can be expressed
as

maxlnP(x̂|Y )⇒ min(x̂− x̄)T P−1(x̂− x̄)+(h(x)−h(x̄))T R−1(h(x)−h(x̄))

subject to−3R̃2 ≤ Mz(p)−MH(p)Cx̂ ≤ 3R̃2.
(3.13)

So far, the constrained state estimation problem has been converted into an equivalent
constrained optimization problem that can be solved after each time step of the EKF algorithm.
As is impossible to develop a deterministic method for the constrained nonlinear optimization
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Table 3.1 The nominal voltage at normal states

Bus 1 2 3 4 5 6 7 8 9 10 11 12 13 14
R.V 1.0600 1.0368 0.9609 0.9858 0.9958 1.0016 1.0022 1.0270 0.9827 0.9769 0.9850 0.9806 0.9755 0.9552
I.V 0 0.0943 0.2173 0.1821 0.1563 0.2694 0.2512 0.2643 0.2743 0.2744 0.2724 0.2759 0.2748 0.2812

problem (3.13) in the global optimization category, we adopt the PSO algorithm, which is a
popular evolutionary algorithm in solving the nonlinear optimization problem.

3.4 PSO for Constrained Optimization Problem

Particle Swarm optimization (PSO) is a metaheuristic that optimizes a problem by iteratively
searching in a large spaces of candidate solutions [90]. In PSO, a population of candidate
solutions (called as particles) moves in the search space according to two simple mathematic
formulae over the particle’s position and velocity. More specifically, each particle’s movement
is influenced by its local best known position and also the best known positions, which are
updated by other particles, in the search space. By such an iterate approach, the swarm of the
particles moves towards the best solutions. The velocity and position of the particle at the
next iteration are updated according to the following equations:{

vi(s+1) = ωvi(s)+ c1r1(pi(s)− xi(s))+ c2r2(pg(s)− xi(s))

xi(s+1) = xi(s)+ vi(s+1)
(3.14)

where xi(s) = [xi1(s), . . . ,xid(s)], xi(s) is the position of the ith particle at the sth iteration,
and xi(s) ∈ [xmin,n,xmax,n], with xmin,n and xmax,n being the lower and the upper bounds for all
particles’ positions. vi(s) = [vi1(s), . . . ,vid(s)], vi(s) is the velocity of the ith particle at the
sth iteration. ω is the inertia weight, c1 and c2 are called acceleration coefficients, namely,
cognitive and social parameters, respectively. r1 and r2 are two uniform random number
samples from [0,1]. pi(s) is the local best position encountered by ith particle at the sth
iteration, and pg(s) is the global best position in the swarm at the sth iteration.

PSO has been successfully applied to various optimization problems. As to constrained
optimization problem, PSO is still valid with the aid of the popular constraint-handling tech-
nique: the penalty function approach. By using the penalty function approach, a constrained
optimization problem can be converted into a corresponding unconstrained optimization one
by adding a penalty term to the original objective function [176].

In this chapter, the penalty function F(x) is defined as

F(x) = f (x)+h(s)g(x),x ∈ Rn (3.15)
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Fig. 3.1 The estimated states of bus 2 from the traditional EKF and our proposed EKF
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where f (x) is the original objective function of the constrained optimization problem in (3.13),
h(s) is a dynamic penalty coefficients with the sth iteration steps, g(x) is a penalty factor

defined as g(x) = θ ∑
m1
i=1 q2

i (x). Here qi(x) = max{0,ci(x)} with ci(x) =
|Mi(k)(z(p)−H(p)xp)|

3R̃2i(k)
−

1, i = 1, . . . ,m1, where Mi(k) and R̃2i(k) are the ith row of M(k) and R̃2(k) in inequality (3.7).

3.5 Simulation Results

In this section, the proposed hybrid algorithm of EKF and PSO is tested in the case study of
the IEEE 14-bus test system. The simulation is implemented in Matlab with the Matpower
package[190]. First, the IEEE 14-bus test system can be model as (3.1) with parameters
A = diag28{0.98}, B = diag28{0.02} and W (k) = diag28{0.012}. The trend u of the normal
state is the base-case voltages given in Table 3.1. Furthermore, assume that the initial voltages
of all buses are at flat start, that is, xr,l(0) = 1 p.u, xi,l(0) = 0 for all l = 1,2, . . . ,14.

The measurement configuration is the same as the one used in [94], where RTU measure-
ments consist of three categories: the voltage magnitude at bus 1, power injections at bus
3, 5, 13 and 14, and power flows at branches 1-2, 1-5, 2-5, 3-4, 4-7, 4-9, 6-11, 6-12, 6-13,
7-8, 7-9, 9-10, 9-14, 10-11, 12-13 and 13-14. In addition, PMUs are deployed at buses 2, 7
and 9. Furthermore, the covariance matrices of the traditional RTU measurement and PMU
measurement noise are R1(k) = diag43{0.12} and R2(k) = diag28{0.012}, respectively.

The algorithm is implemented in Matlab R2010a. The simulation is performed on a PC
with a Intel(R) Core(TM) CPU i5-2500 @3.30 GHz and 4 GB RAM. The time required by
the proposed EKF without PSO algorithm at each step is 0.81 seconds. For the proposed
EKF with PSO algorithm, the computation time is related to the population of the swarm (ps)
and the iterations (iter). In the simulation, we have set ps = 100 and iter = 200, and the time
required by the proposed EKF with PSO algorithm at each step is 1.47 seconds. It can be
concluded that the proposed EKF with PSO algorithm is quite fast and hence is suitable for
online implementations. Moreover, the integration of PSO into EKF slows the computational
speed slightly, yet improves the performance of state estimation obviously.

In this test system, three comparative experiments regarding the estimation accuracy are
carried out as follows:

Case 1) Both the proposed EKF considering measurements with certain missing rate and
the traditional EKF ignoring the missing measurements are implemented for the system
with missing measurements;

Case 2) When the missing rate of the measurements varies from zero to higher values, the
proposed EKF is implemented in all the cases;
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Case 3) The state estimations based on the proposed EKF with/without PSO algorithm are
compared.

In order to have more general and significant experimental results, 100 Monte-Carol simula-
tions are run in Cases 2 and 3. The notion mean square error (MSE) is adopted to evaluate
the estimation accuracy, where MSEi denotes MSE for the estimate of the ith state, i.e.
MSEi(k) = 1

100 ∑
100
j=1(xi(k)− x̂i(k))2. To evaluate the average estimation performance of all

states, average mean square error (AMSE) is defined as AMSE(k), 1
n ∑

n
j=1 MSE j(k), where

n is the number of the state variables. In all the figures, “R.V” and “I.V” denote the real and
imaginary part of voltage, respectively.

3.5.1 Traditional EKF vs. the Proposed EKF

In this case, the probability density function for the missing Ξ(k) is Prob{Ξi(k) = 0} =

0.5, Prob{Ξi(k) = 1}= 0.5. The expectation can be easily calculated as µi(k) = 0.5. The
estimated states of the representative buses 2,5 obtained from traditional EKF without consid-
ering the missing measurements and our proposed EKF considering missing measurements
are plotted in Figs. 3.1 and 3.2, respectively. From the comparison, it can be found that our
proposed EKF algorithm performs well in the presence of missing measurements, whereas
the state estimate obtained from the traditional EKF cannot track the real states when missing
measurements occur randomly.

3.5.2 EKF with Individual Missing Measurements

In order to see how different missing rates impact on the estimation accuracy, three missing
rates of 0.15, 0.02 and 0 (without missing measurements) are considered. The MSEs of the
estimated states of buses 2,5 for all the three missing rates are compared in Figs. 3.3 and 3.4.
The AMSE(k) in all three cases are given in the first three rows of Table 3.2, for k = 1, . . . ,15.
From the comparisons, it can be found the less the missing rate is, the more accurate the state
estimation obtained from the proposed EKF algorithm will be.
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3.5.3 EKF vs. Hybrid EKF and PSO Algorithm

We are now in a position to evaluate the effectiveness of including the PSO scheme in the
EKF design. A comparison is made between the EKF algorithm alone and the hybrid EKF
and PSO algorithm. For this purpose, the missing rate is fixed as 0.15. Regarding the penalty
function parameters, θ = 1000 and h(s) = s are chosen in all the iteration steps.

For the same test system, one realization of the EKF and one realization of the hybrid
algorithm are simulated simultaneously, and the estimated states of bus voltages 2,5 obtained
from the two algorithms are illustrated in Figs. 3.5 and 3.6. It is seen that the trajectory by
the proposed hybrid approach is much closer to the true state trajectory than the one only by
the EKF. The MSE2 and MSE5 at all time instants for both algorithms are plotted in Fig. 3.7.
It can be found that for the same state variable, the MSE of EKF-based state estimation is
bigger than the MSE of the state estimation obtained from the hybrid algorithm. Especially,
when the accumulated error of EKF-based state estimation becomes bigger after several
integrations, the subsequent PSO algorithm can refine the state estimation and diminish the
error. The AMSEs of EKF and of the proposed hybrid algorithm are given in the last two
rows of Table II. It can be found the AMSE(k) of EKF is bigger than the one of the proposed
hybrid algorithm at each step.

From the comparative experiments, it can be concluded that our proposed hybrid EKF
and PSO algorithm outperforms the traditional EKF algorithm in the presence of probabilistic
missing measurements by including PMU measurements.

3.6 Conclusion

In this chapter, a hybrid filter algorithm is developed to deal with the state estimation
problem for power systems by taking into account the impact from the PMUs. Our aim is to
include PMU measurements when designing the dynamic state estimators for power systems
with traditional measurements. Also, as data dropouts inevitably occur in the transmission
channels of traditional measurements from the meters to the control centre, the missing
measurement phenomenon is also tackled in the state estimator design. In the framework of
EKF algorithm, the PMU measurements are treated as inequality constraints on the states
with the aid of the statistical criterion, and then the addressed state estimation problem
becomes a constrained optimization one based on the probability-maximization method.
The resulting constrained optimization problem is then solved by using the PSO algorithm
together with the penalty function approach. The proposed algorithm is applied to estimate
the states of the power systems with both traditional and PMU measurements in the presence
of probabilistic data missing phenomenon. Extensive simulations are carried out on the
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Fig. 3.3 The MSEs of the estimated state at bus 2 under different missing rates
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Fig. 3.5 The estimated state at bus 2 by EKF and the proposed hybrid algorithm
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Fig. 3.6 The estimated state at bus 5 by EKF and the proposed hybrid algorithm
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IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved
estimation performances over the traditional EKF method.



Chapter 4

Dynamic State Estimation of Power
Grids with Quantization Effects: A
Recursive Filter Approach

4.1 Motivation

Quantization phenomenon is ubiquitous in power systems. Considering the measurements in
power systems, the readings provided by digital meters (e.g., PMU and RTU) are practically
the quantized values converted by the analog-to-digital converter (ADC) from the continuous
original measurement signals. Quantization by the ADC adds errors to the measurement
values. Due to its effects on power system monitoring, the quantization error has attracted a
great deal of research attention. In [96], the effects of ADC-induced quantization error on the
recovery of harmonic amplitudes and phases have been examined by theoretical investigation
and simulation validation in order to determine the error limits of the instrumentation system
design for power system monitoring and harmonic power-flow measurement. In [25], it has
been revealed that, despite its impressive dynamic range, the 12-bit state-of-the-art digital
recorder is insufficient to achieve the required precision of the measured loss in high voltage
thyristor valves.

To mitigate the effects on quantization errors, a seemly natural way is to evaluate and
improve the measurement reliability by re-calibrating the measurements. In [166], the
reliability issue of PMU has been investigated by taking into account the data uncertainty
representing the quantization error. In order to enhance the overall accuracy of measurements
in a power transmission system, several mathematical techniques have been utilized in [182]
within an integrated calibration process. Furthermore, on the software side, new algorithms
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for power system monitoring and control have been developed in consideration of the effects
of quantization errors. In [47], the authors have proposed a fault location algorithm and
tested its performance against the quantization error introduced by ADCs. In [93], the
inherent limitation of quantization errors incurred by low-precision sensors on the accuracy
of estimated fault locations has been further investigated. In [3, 27], the quantization errors
have been assumed to be a range uncertainty with uniform distribution and new least-square
state estimation algorithms have been developed. However, such an assumption is quite
coarse as no prior knowledge on quantization process is utilized.

On the other hand, todays’ power system together with the tightly integrated hi-tech
devices constitutes a complex networked cyber-physical system, for which some practical
issues are emerging that have rarely been considered before for the traditional power systems.
One of these issues is to do with the transmission of massive measurement data over the
communication network with limited capacity. For example, PMUs update the measurements
with high frequency, and this puts enormous strain on the communication and data processing
infrastructure of the grid. It has been recently reported in [9] that, a single PMU can
take up almost 10% of the bandwidth of the substation. Due to the limited bandwidth of
the communication networks, the measurement signals in the networked environment are
typically quantized before being transmitted to the substation, and such a network-induced
quantization phenomenon (in addition to the aforementioned device-induced one) should be
properly taken in account when designing DSEs.

It is worth pointing out that, in the communities of system control and signal processing,
a series of theoretical results have been obtained on quantized control and estimation [44,
51, 50, 84, 138, 75, 167, 10]. In [44], it has been proved that the logarithmic quantizer
performs better than the linear quantizer in the quantized control problem. The sector
bound approach, which was first introduced in [51], has been extensively employed to
solve the quantized control problem. Parallel to the quantized control problem, the quantized
estimation problem has been widely investigated as well. In [50], the state estimation problem
has been investigated for linear discrete-time systems with quantized measurements. In [75],
a recursive filter has been designed for the systems with nonlinear dynamics subject to
multiplicative noise, missing measurements and quantization effects such that the estimation
error covariance has an upper bound. However, almost all published results on quantized
estimation have been concerned with systems with the linear measurement model only. In
reality, lots of practical systems have nonlinear measurements. Taking the power system as
an example, the RTU measurements are strongly nonlinear with respect to the state variables,
see Section 4.2 of this chapter for more details. As such, there is a gap between the theoretical
results and the practical application of DSE design problems in power systems due to the
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quantization issue, and our aim of this chapter is to shorten this gap by initiating a study on
this challenging issue.

Motivated by the above discussion, we aim to design a recursive filter algorithm for power
systems with quantized nonlinear measurement. First, the quantized nonlinear measurement
model of power systems is presented where the quantization is assumed to be of logarithmic
type. In the filter design, the composite errors caused by linearization of nonlinear mea-
surements and quantization effects are taken into consideration and represented by several
norm-bounded uncertainty matrices. Subsequently, a recursive filter algorithm is designed
for the system with the introduced uncertainties such that an upper bound of the estimation
error is guaranteed and then minimized by appropriately designing the filter gains.

The remainder of this chapter is organized as follows. In Section 4.2, the dynamic model
of power systems with quantized measurements is briefly introduced, and the structure of
the proposed filter is presented. In Section 4.3, the gain matrices of the recursive filter are
derived, which minimize the upper bound of the covariance matrix of the estimation errors,
and the upper bound at each time instant is given explicitly. In Section 4.4, the results of
case studies performed on the 14-bus IEEE benchmark system are presented and analyzed.
Finally, the chapter is concluded in Section 4.5.

4.2 Problem Formulation and Preliminaries

4.2.1 Dynamic System Model

First, recall that the dynamic system model of the power system with both RTU and PMU
measurements (without considering the quantized measurements) is described in (3.2) -(3.5)
in Chapter 3.

Next, let’s consider the quantization effect on measurements, where the map of the
quantization process is given by

z̃(k) = q(z(k)) = [q1(z(1)(k)) q2(z(2)(k)) . . . qm(z(m)(k))].

The quantizer is assumed to be of the logarithmic type, that is, for each q j(·)( j = 1,2, . . . ,m),

the set of the quantization levels is described by

U j =
{
±u( j)

i ,u( j)
i = χ j

iu( j)
0 , i = 0, ±1, ±2, · · ·

}
∪{0},

0 < χ j < 1, u( j)
0 > 0,
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where χ j( j = 1,2, . . . ,m) is called the quantization density. Each of the quantization level
corresponds to a segment such that the quantizer maps the whole segment to this quantization
level. The logarithmic quantizer q j(·) is defined as

q j(z( j)(k)) =


u( j)

i , 1
1+δ j

u( j)
i < z( j)(k)≤ 1

1−δ j
u( j)

i

0, z( j)(k) = 0
−q j(−z( j)(k)), z( j)(k)< 0

with δ j = (1−χ j)/(1+χ j).
It can be easily seen from the above definition that q j(z( j)(k)) = (1+∆

( j)
k )z( j)(k) for

certain ∆
( j)
k satisfying |∆( j)

k | ≤ δ j. According to the above transformation, the quanti-
zation effects have been transformed into sector-bounded uncertainties [51]. Defining
∆k = diag{∆

(1)
k , · · · ,∆(m)

k }, the measurement after quantization can be expressed as

z̃(k) = (I +∆k)z(k). (4.1)

By defining Λ = diag{δ1, . . . ,δm} and setting F(k) = ∆kΛ−1, we can know that F(k) is a
real-value time-varying matrix satisfying F(k)FT (k)≤ I.

Remark 4.1 As for state estimation with quantized measurements in power systems, the
conventional way is to treat the quantization error as a range uncertainty with uniform
distribution without in-depth characterization of the error [3, 27]. This assumption in
quantization errors is quite coarse, hence making the estimation conservative. In addition,
to the best of the author’s knowledge, all the results on quantized PSSE have been done in
the frame of static state estimation while none has been done in the frame of DSE, and this
chapter initializes the first attempt on DSE with quantized measurements in power systems.

4.3 Main Results

4.3.1 Filter Structure

In this chapter, we aim to design a filter with the following two properties: 1) the filter has
a recursive structure and hence is suitable for online DSE in power systems; 2) despite the
nonlinear measurement and quantization effects, the estimated state should be precise with a
confidence interval, that is, the estimation error covariance should fall in a bounded interval.
Meanwhile, we want to minimize such a bound by appropriately designing the filter gain at
every time instant.
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For the system (3.2) with measurement model (4.1), the recursive filter is designed as
follows:

x̂(k+1|k) = Ax̂(k|k)+Bu (4.2)

x̂(k+1|k+1) = x̂(k+1|k)+K(k+1)
(

z̃(k+1)−g(x̂(k+1|k))
)

(4.3)

where x̂(k+1|k+1) is the estimate of x(k+1) with x̂(0|0) = x̄(0), x̂(k+1|k) is the one-step
state prediction at time instant k, K(k+1) is the filter gain to be determined. The one-step
prediction and filtering error and the corresponding covariance matrices are defined as

x̃(k+1|k) = x(k+1)− x̂(k+1|k),
Σ(k+1|k) = E{x̃(k+1|k)x̃T (k+1|k)}
x̃(k+1|k+1) = x(k+1)− x̂(k+1|k+1),

Σ(k+1|k+1) = E{x̃(k+1|k+1)x̃T (k+1|k+1)}

(4.4)

Remark 4.2 The filter presented above inherits the basic recursive structure of the Kalman
filter, and hence it is suitable for online computation. However, due to the nonlinear RTU
measurement function and the nonlinearity induced by quantization effects, to design an
appropriate filter gain K is quite challenging, which is accomplished in the subsequent
subsection.

4.3.2 Filter Design

To introduce our main results, we need the following two lemmas.

Lemma 4.1 [172] Given matrices A, H, F, and M with compatible dimensions such that
FFT ≤ I. Let U be a symmetric positive-definite matrix and a be an arbitrary positive
constant such that a−1I −MUMT > 0, then the following matrix inequality holds:

(A+HFM)U(A+HFM)T

≤ A(U−1 −aMT M)−1AT +a−1HHT .
(4.5)

Lemma 4.2 For 0 ≤ k ≤ N, suppose that X = XT > 0, Y =Y T > 0, Sk(X) = ST
k (X) ∈Rn×n.

If
Sk(Y )≥ Sk(X), ∀X ≤ Y, (4.6)

then the solutions Mk and Nk to the following difference equations

Mk+1 ≤ Sk(Mk), Nk+1 = Sk(Nk), M0 = N0 > 0 (4.7)
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satisfy
Mk ≤ Nk.

This lemma can be easily derived from Lemma 3.2 in [158], and hence the derivation is
omitted here.

In this section, the filter is designed for the power system with quantized nonlinear
measurements. First, the one-step prediction and filtering error covariances are calculated,
wherein the specific difficulties caused by the composite of the measurement nonlinearity
and the quantization are pointed out. Second, a special effort is made to cope with these
difficulties in terms of some robust filtering techniques. At last, an upper bound of the
filtering error covariance is obtained and a filter gain is designed to guarantee that such an
upper bound is minimized.

To begin with, substituting (4.3) into (4.4), we have

x̃(k+1|k) = Ax̃(k|k)+ω(k), (4.8)

and the corresponding covariance matrix is easily obtained,

Σ(k+1|k) = AΣ(k|k)AT +W (k). (4.9)

Similarly, the filtering error can be written as

x̃(k+1|k+1) = x̃(k+1|k)−K(k+1)(z̃(k+1)−g(x̂(k+1|k)))

where

z̃(k+1)−g(x̂(k+1|k))
=q(g(x(k+1))+ v(k+1))−g(x̂(k+1|k))
=(I +∆k+1)(g(x(k+1))+ v(k+1))−g(x̂(k+1|k)).

(4.10)

Expanding g(x(k+1)) in a Taylor series around x̂(k+1|k), we can have

g(x(k+1)) =g(x̂(k+1|k))+G(k+1)x̃(k+1|k)
+o(|x̃(k+1|k)|)

(4.11)

where G(k+1), ∂g(x)
∂x |x=x̂(k+1|k) and o(|x̃(k+1|k)|) represents the high-order terms of the

Taylor series expansion. From the results of [22, 83], the high-order terms are transformed
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into the following easy-to-handle formulation:

o(|x̃(k+1|k)|) =C(k+1)ℵ(k+1)L(k+1)x̃(k+1|k) (4.12)

where C(k+1)∈Rm×n,L(k+1)∈Rn×n are problem-dependent scaling matrices, and ℵ(k+
1) ∈ Rn×n is an unknown time-varying matrix representing the linearization errors of the
measurement model that satisfies

ℵ(k+1)ℵT (k+1)≤ I. (4.13)

Combining the equations (4.10), (4.11), (4.12) and(4.13), we can obtain the filtering errors in
the following form:

x̃(k+1|k+1)

=Φ(k+1)x̃(k+1|k)−K(k+1)(I +∆k+1)v(k+1)

−K(k+1)F(k+1)Λg(x̂(k+1|k))

(4.14)

where

Φ(k+1), I −K(k+1)
(
C(k+1)ℵ(k+1)L(k+1)

G(k+1)+F(k+1)ΛG(k+1)+M(k+1)L(k+1)
)

M(k+1), F(k+1)ΛC(k+1)ℵ(k+1)

It can be easily found that M(k+1) satisfies

MT (k+1)M(k+1)≤ γI (4.15)

for certain scalar γ . To ensure the condition (4.15) is fulfilled, γ is chosen as γ = 10σmax(ΛC),
where σmax(·) indicates the maximum singular value (of a matrix). The covariance of the
filtering error can be written as follows:

Σ(k+1|k+1)

=Φ(k+1)Σ(k+1|k)ΦT (k+1)

−Φ(k+1)x̃(k+1|k)gT (x̂(k+1|k))ΛFT (k+1)KT (k+1)

−K(k+1)F(k+1)Λg(x̂(k+1|k))x̃T (k+1|k)ΦT (k+1)

+K(k+1)F(k+1)Λg(x̂(k+1|k))gT (x̂(k+1|k))ΛFT (k+1)KT (k+1)

+K(k+1)(I +F(k+1)Λ)R(k+1)(I +F(k+1)Λ)T KT (k+1)

(4.16)
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K(k+1) = (1+ ε1)
(
P−1(k+1|k)−λ1,k+1L̃T (k+1)L̃(k+1)

)−1GT (k+1)

×
[
(1+ ε1)G(k+1)

(
P−1(k+1|k)−λ1,k+1L̃T (k+1)L̃(k+1)

)−1

×GT (k+1)+(R−1(k+1)−λ2,k+1ΛΛ)−1 +λ
−1
2,k+1I +(1+ ε1)λ

−1
1,k+1

×C̃(k+1)C̃T (k+1)+(1+ ε
−1
1 )tr

(
Ψ(k+1|k)I

)]−1
, (4.17)

P(k+1|k) = AP(k|k)AT +W (k), (4.18)
P(k+1|k+1) = (1+ ε1)(I −K(k+1)G(k+1))×(

P−1(k+1|k)−λ1,k+1L̃T (k+1)L̃(k+1)
)−1

(I −K(k+1)G(k+1))T

+(1+ ε1)λ
−1
1,k+1K(k+1)C̃(k+1)C̃T (k+1)KT (k+1)

+(1+ ε
−1
1 )K(k+1)tr

(
Ψ(k+1|k)

)
KT (k+1)

+K(k+1)
[
(R−1(k+1)−λ2,k+1ΛΛ)−1 +λ

−1
2,k+1I

]
KT (k+1). (4.19)

The main result of this section is summarized in the following theorem.

Theorem 4.1 Consider the one-step prediction error and the filtering error covariances
in (4.9) and (4.16), respectively. Assume that (4.13) holds. Let γ , λ1,k, λ2,k and ε1 be
positive scalars, and K(k) be calculated recursively shown in (4.17) at the top of this page.
If there exist positive-definite solutions P(k + 1|k), P(k + 1|k + 1) with initial condition
P(0|0) = Σ(0|0) to the Riccati difference equations shown in (4.18)-(4.19) at the top of the
next page, subject to{

λ
−1
1,k+1I − L̃(k+1)P(k+1|k)L̃T (k+1)> 0

λ
−1
2,k+1I −ΛR(k+1)Λ > 0

(4.20)

where

L̃(k+1),
[
LT (k+1) (ΛG(k+1))T LT (k+1)

]T (4.21)

C̃(k+1), [C(k+1) I γI] (4.22)

Ψ(k+1|k), Λg(x̂(k+1|k))gT (x̂(k+1|k))Λ (4.23)

then the matrix P(k|k) is an upper bound for Σ(k|k), that is,

Σ(k|k)≤ P(k|k).
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Moreover, the filter with gain K(k+1) given by (4.17) minimizes the upper bound P(k|k).

Proof. To begin with, from (4.18) and (4.19), we can view the covariance matrices P(k+
1|k+1) as a function of P(k|k), that is

P(k+1|k+1) = ϕk
{

P(k|k)
}

(4.24)

where ϕk
{
·
}

denotes the specific functional relationship between P(k+1|k+1) and P(k|k).
Then, it is not difficult to verify that

ϕk(Y )≥ ϕk(X), (4.25)

for all X ≤ Y , X = XT > 0, and Y = Y T > 0.
Now, let’s consider the right side of (4.16) term by term. Representing Φ(k+1) in the

following form:

Φ(k+1)

=I −K(k+1)G(k+1)−K(k+1)C̃(k+1)

×

 ℵ(k+1) 0 0
0 Fk+1 0
0 0 1/γM(k+1)

 L̃(k+1)

from Lemma 6.1, we can obtain

Φ(k+1)Σ(k+1|k)ΦT (k+1)

≤
(
I −K(k+1)G(k+1)

)(
Σ
−1(k+1|k)

−λ1,k+1L̃T (k+1)L̃(k+1)
)−1(I −K(k+1)G(k+1)

)T

+λ
−1
1,k+1K(k+1)C̃(k+1)C̃T (k+1)KT (k+1)

(4.26)

if
λ
−1
1,k+1I − L̃(k+1)P(k+1|k)L̃T (k+1)> 0

for arbitrary positive scalars λ1,k+1.
Recall the following fundamental inequality

abT +baT ≤ ε1aaT + ε
−1
1 bbT (4.27)



60
Dynamic State Estimation of Power Grids with Quantization Effects: A Recursive Filter

Approach

where ε1 > 0 is a scalar, a and b are two vectors with arbitrary dimension. Taking (4.27) into
consideration, and noticing F(k+1)FT (k+1)≤ I, the second and third terms on the right
side of (4.16) can be rearranged as follows:

−Φ(k+1)x̃(k+1|k)gT (x̂(k+1|k))ΛFT (k+1)KT (k+1)

−K(k+1)F(k+1)Λg(x̂(k+1|k))x̃T
k+1|kΦ

T (k+1)

≤ ε1Φ(k+1)Σ(k+1|k)ΦT (k+1)

+ ε
−1
1 K(k+1)F(k+1)Ψ(k+1|k)FT (k+1)KT (k+1)

≤ ε1Φ(k+1)Σ(k+1|k)ΦT (k+1)

+ ε
−1
1 K(k+1)tr(Ψ(k+1|k))KT (k+1)

(4.28)

Similarly, the fourth term on the right side of (4.16) can be tackled as follows:

K(k+1)F(k+1)Λg(x̂(k+1|k))
×gT (x̂(k+1|k))ΛFT (k+1)KT (k+1)

≤ K(k+1)tr
(
Ψ(k+1|k)

)
KT (k+1).

(4.29)

As to the last term of the right side of (4.16), the following inequality can be easily derived
from Lemma 6.1,

K(k)(I +F(k)Λ)R(k)(I +F(k)Λ)T KT (k)

≤ K(k)
[
(R−1(k)−λ2,kΛΛ)−1 +λ

−1
2,k I
]
KT (k)

(4.30)

if
λ
−1
2,k I −ΛR(k)Λ > 0

for arbitrary positive scalars λ2,k+1.
It then follows from (4.26), (4.28), (4.29) and (4.30) that

Σ(k+1|k+1)

≤ (1+ ε1)
(
I −K(k+1)G(k+1)

)
×
(
Σ
−1(k+1|k)−λ1,k+1L̃T (k+1)L̃(k+1)

)−1(I −K(k+1)G(k+1)
)T

+(1+ ε1)λ
−1
1,k+1K(k+1)C̃(k+1)C̃T (k+1)KT (k+1)

+(1+ ε
−1
1 )K(k+1)tr

(
Ψ(k+1|k)

)
KT (k+1)

+K(k+1)
[(

R−1(k+1)−λ2,k+1ΛΛ
)−1

+λ
−1
2,k+1I

]
KT (k+1)

(4.31)
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In other words, we have obtained that Σ(k+ 1|k+ 1) ≤ ϕk
{

Σ(k|k)
}

. Recall the condition
(4.24) and (4.25). Based on Lemma 6.2, we can therefore conclude that

Σ(k|k)≤ P(k|k).

Having determined the upper bound P(k|k), we are now ready to show the filter gain
given by (4.17) is optimal as it minimizes the upper bound P(k|k). Taking partial derivatives
of P(k+1|k+1) with respect to K(k+1) as follows:

∂ tr
(
P(k+1|k+1)

)
∂K(k+1)

=−2(1+ ε1)
(
I −K(k+1)G(k+1)

)(
P−1(k+1|k)−λ1,k+1L̃T (k+1)L̃(k+1)

)−1GT (k+1)

+2(1+ ε1)λ
−1
1,k+1K(k+1)C̃(k+1)C̃T (k+1)

+2(1+ ε
−1
1 )K(k+1)tr

(
Ψ(k+1|k)

)
+2K(k+1)

[
(R−1(k+1)−λ2,k+1ΛΛ)−1 +λ

−1
2,k+1I

]
(4.32)

and setting ∂ tr(P(k+1|k+1))
∂K(k+1) = 0, through some straightforward algebraic manipulation, we

obtain the optimal filter gain, as shown in (4.17). This completes the proof of Theorem 1.

Remark 4.3 It can be seen that the linearization has been enforced to facilitate the recursive
filtering algorithm developments. From (4.9) and (4.16), the filtering error covariance can be
obtained in consideration of the quantization effect. Unfortunately, due to the simultaneous
presences of the measurement nonlinearity and the quantization, the uncertainty matrices
ℵ(k), M(k), and F(k) are involved in the error covariance in (4.16). As such, it is impossible
to calculate the accurate covariance matrix Σ(k|k), and an alternative approach is proposed
to find an upper bound of the covariance matrix at every time instant through designing an
appropriate filtering gain K(k|k) for the filter.

4.4 Simulation Results

In this section, as did in Chapter 3, the proposed algorithm is tested in the case study of
the IEEE 14-bus test system. The simulation is implemented in Matlab with the Matpower
package[190]. First, the IEEE 14-bus test system can be model as (3.2) with parameters
A = diag28{0.98}, B = diag28{0.02} and W (k) = diag28{0.12}. The nominal centre u of the
normal state is the base-case voltages given in Table 3.1 in Chapter 3. Furthermore, assume
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that the initial voltages of all buses are at flat start, that is, xr,l(0) = 1 p.u, xi,l(0) = 0 for all
l = 1,2, . . . ,14, and Σ(0|0) = 10−4I28.

The measurement configuration is shown in Fig. 4.1, which has been adopted in [94].
The measurement system includes both conventional RTUs and PMUs, in which RTU
measurements consist of three categories: the voltage magnitude at bus 1, power injections
at the bus 3, 5, 13 and 14, and power flows at branches 1-2, 1-5, 2-5, 3-4, 4-7, 4-9, 6-11,
6-12, 6-13, 7-8, 7-9, 9-10, 9-14, 10-11, 12-13 and 13-14, and PMUs are deployed at buses
2, 7 and 9. Furthermore, the covariance matrices of RTU and PMU measurement noise are
R1(k) = diag43{0.12} and R2(k) = diag28{0.012}, respectively.

In the simulation, the default parameters are chosen as C(k)=
[
0.01I28×43 028

]T
,L(k)=

0.001I28,ε1 = 0.6,λ1,k = 0.01,λ2,k = 100, if not specifically mentioned. The parameters of
the logarithmic quantizers are ui

0 = 1 and χi = 0.8, for i = 1, . . . ,71.
Of all the buses, we choose bus 7 and 11 as the representative buses, as both PMU and

RTU are installed at bus 7 while only RTU at bus 11. In this test system, two experiments
regarding the estimation accuracy are carried out as follows:

Case 1) The proposed filter is implemented for the system with quantized measurements;

Case 2) The state estimations based on the proposed quantized filter and the traditional
EKF without considering quantization effects are compared.

In order to have more general and significant experimental results, 100 Monte-Carol
simulations are run. The notion mean square error (MSE) is adopted to evaluate the estima-
tion accuracy, where MSEi denotes MSE for the estimate of the ith state, i.e. MSEi(k) =

1
100 ∑

100
j=1(xi(k)− x̂i(k))2. To evaluate the average estimation performance of all states, av-

erage mean square error (AMSE) is defined as AMSE(k) , 1
n ∑

n
j=1 MSE j(k), where n is

the number of the state variables. In all the figures, “R.V” and “I.V” denote the real and
imaginary parts of voltage, respectively.

4.4.1 Estimation Performance of the Proposed Filter

In this case, both the RTU and PMU measurements are assumed to be quantized according to
the same quantizer level.

The algorithm is implemented in Matlab R2010a. The simulation is performed on a PC
with a Intel(R) Core(TM) CPU i5-2500 @3.30 GHz and 4 GB RAM. The algorithm is run
for 30 time steps, The corresponding time required by the algorithm is 61.5 seconds. We can
conclude that the algorithm is quite fast and hence is suitable for online implementations.

In Fig. 4.2, P7,8 is the RTU measurement of active power flow from bus 7 to bus 8, while
I7,8 is the PMU measurement of the real part of the current from bus 7 to bus 8. From
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Fig. 4.1 IEEE 14 bus system and measurement configuration

the comparison, we can see that even with the same quantization level, the quantized RTU
measurement is less accurate than the PMU counterpart. This is due to the nonlinearity of
RTU measurement model which aggravates the quantization errors of RTU measurements, as
the PMU measurements are linear functions of state variables while the RTU measurements
are nonlinear functions of state variables.

Fig. 4.3 shows the log(MSE) for the state at bus 7 and 11 as well as the upper bound,
which confirms that the MSEs stay below their upper bounds. That means the estimated
voltages of the systems are always close to the real values with a known upper bound on the
estimate error. Moreover, to show how the parameter L(k) affects the upper bound of error
covariance, different values of L(k) are considered. From Fig. 4.4, it can be seen that, the
upper bound of of error covariance with L(k) = 0.01∗I and the one with with L(k) = 0.001∗I
are almost the same, but the one with with L(k) = 0.1 ∗ I are larger than the former two.
Since the value of parameter L(k) reflects the linearisation error of the measurement function,
we can conclude that the performance of our algorithm is related to the linearisation error
and generally the smaller the linearisation error is, the less conservative the upper bound is.

The trajectories of the actual state x j(k), j = 7,11 and their estimation are plotted in
Fig. 4.5, which illustrate the good performance of our proposed algorithm in estimating the
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system states. This is due to the specific efforts we have made to compensate the linearization
errors of the nonlinear measurements as well as the quantization errors.

4.4.2 Traditional EKF VS the Proposed Filter

In Fig. 4.6, the estimation performances of the standard EKF and our proposed quantized
filter algorithm are compared. In our simulation settings, the system parameters are given. In
this case, the traditional FASE [98] implemented in the test system reduces to the traditional
EKF. In this sense, We have compared the performance of proposed filter with that of the
traditional approach to FASE [98] in the simulation.

One realization of the EKF and one realization of the proposed algorithm are simulated
simultaneously, and the estimate errors of the real part of the voltage at bus 7 at both cases are
illustrated in Fig. 4.6. We can find that, during the most of the time, the estimate error of EKF-
based state estimation is bigger than the one of our proposed algorithm. Especially, when the
accumulated error of EKF-based state estimation becomes bigger after several integrations,
our proposed algorithm still yields accurate estimated states without accumulating the errors.
The AMSEs of EKF and of the proposed algorithm are plotted in Fig. 4.6, from which
we can find that our proposed algorithm performs much better than the EKF one. This
is because the traditional EKF is sensitive to the quantization and linearization errors in
measurements. However, due to specific considerations of these errors of measurement
model and the designed robust filter gain, our proposed algorithm performs better.

4.5 Conclusion

In this chapter, we have developed a recursive filter algorithm for power system dynamic
state estimation. The system model with quantized RTU and PMU measurements is first
proposed. In consideration of the quantization effect of nonlinear measurement, both the
linearization and quantization errors are represented in terms of norm-bounded uncertainty
matrices. Then, in the frame of robust estimation, a recursive filter is designed to guarantee
that, despite the uncertainties existing in the derived model, the estimation error covariances
are always less than a finite upper bound. Furthermore, the filter gain is designed such that
the upper bound is minimized. Simulations have illustrated the performance of our proposed
algorithm. Higher estimation accuracy can be achieved with our algorithm than that from
the traditional EKF algorithm, which has confirmed the effectiveness of the propose filter
algorithm.
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Fig. 4.2 The measurements with/without quantization
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Fig. 4.3 Log(MSE) and its upper bound
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Chapter 5

Event-triggered Input and State
Estimation for Power Grids

5.1 Motivation

The extended Kalman filter has been widely used to estimate the state of the power grid, and
accurate state estimates can be obtained if the exact values of the system parameters and
the input/output data are known [8]. However, the exogenous input, which represents the
unknown disturbances or unmodeled dynamics, may not be known a prior. In this case, both
the traditional Kalman filter and the H∞ filter [11, 168, 39, 74] do not yield an optimal state
estimation. As such, a new kind of filter, which is applicable for power grids with unknown
inputs, is desirable.

Motivated by it wide range of applications of the state and unknown input estimation,
considerable research efforts have been devoted to optimal filtering in the presence of
unknown inputs during the last few years [92, 35, 36, 31, 73, 58]. Recently, the unknown
input state estimation algorithms have been applied in power systems [53, 15]. However,
all the results has implicitly adopted the time based strategy. That is, the meters send the
measurement data to the state estimator at a fixed time interval. However, as discussed
in previous two chapters, in this case networked-induced phenomena such as missing and
quantized measurements may occur especially when the bandwidth of the communication
networks in power grids is limited and precious [65, 66].

Governed by the event-based strategy, a sensor is triggered to send the measurement data
if and only if some events occur. The event-based strategy provides the possibility to maintain
system performance under limited communication resources and has attracted considerable
research attention for the past decade. Accordingly, the event-based state estimation problem
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has been investigated extensively [107, 108, 69, 115, 153, 142, 139, 77, 184]. However,
the event-based transmission scheme complicates the estimation problem considerably,
especially when no measurements are received by the estimator between two consecutive
event-triggered instants. As such, the Gaussian approximation is a typical assumption in the
existing work. For example, in [153], a modified Kalman filter has been proposed for the
discrete time-invariant system with a send-on-delta (SOD) event triggering mechanism; in
[142], with a general description of the event-based strategy, an event-based estimator has
been designed for the discrete time-invariant system using Gaussian sum approximations;
the maximum likelihood event-based estimation problem has been investigated in [139].
This assumption simplifies the estimator development, but makes the estimator with only
approximate minimum mean square error. In this chapter, we try to develop the estimator
and investigate the estimation performance without making such an assumption.

Summarizing the above discussion, although the event-based estimation problem has been
investigated for the linear system, the corresponding estimation problem for the power grids
with unknown input has not yet been investigated due mainly to the difficulty in handling the
unknown input with no prior information. In addition, when the adoption of the event-based
mechanism, the unbiasedness of both the input and the state estimate cannot be guaranteed
in general, and the traditional time-based unbiased input/state estimator design methods are
no longer applicable. As such, we are motivated to challenge the design problem of the joint
input/state estimators according to the event-based strategy by employing a SOD concept
[117]. Our aim is to the joint input/state estimates that are precise within a known confidence
interval even though only partial measurements at the event-triggered instants are accessible
by the estimator.

The remainder of this chapter is organized as follows. In Section 5.2,a general linear
time-varying system with unknown inputs is briefly introduced, and the structure of the
proposed filter is presented. In Section 5.3, An algorithm is proposed to choose scalar
parameters which facilitates the estimator design, and the filter gain is chosen to minimize the
upper bound of the covariance matrix of the estimation errors. In Section 5.4, the asymptotic
boundedness of the obtained upper bounds is analysed for the time-invariant linear systems.
The results of case studies performed on a three-bus power grids are presented and analysed
in Section 5.5. Finally, the chapter is concluded in Section 5.6.
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5.2 Problem Formulation and Preliminaries

In the section, we first consider the following linear discrete-time system which describes the
dynamics of the power grid:{

x(k+1) = A(k)x(k)+G(k)d(k)+ω(k)

y(k) =C(k)x(k)+ν(k)
(5.1)

where x(k) ∈ Rn is s the vector of the real parts and the imaginary parts of the voltages at all
buses in the rectangular form, d(k) ∈ Rp is the unknown system input and y(k) ∈ Rm is the
PMU measurement output. The initial value x(0) has mean x̄(0) and covariance P(0|0), the
process noise ω(k) ∈ Rn and the measurement noise ν(k) ∈ Rm are assumed to be mutually
uncorrelated, zero-mean random signals with known covariance matrices W (k) and R(k),
respectively. We assume that m ≥ p and, without loss of generality, Rk{C(k)G(k−1)} =
Rk{G(k)}= p.

Remark 5.1 Comparing (5.1) with the dynamic model used to describe the system dynamics
of the power grid in Chapter 3, it can be found that the linear system model in (5.1) is
more general. In (5.1), the input u(k) is not assumed to be known beforehand but instead is
estimated in real time.

5.2.1 Traditional Unknown Input and State Estimator

Up to now, lots of results have been developed with respect to the estimation problem with
unknown input. The traditional unknown input and state estimator has the following general
form:

E1 :


d̂t(k−1) = Mt(k)

(
y(k)−C(k)A(k−1)x̂t(k−1|k−1)

)
x̂t(k|k−1) = A(k−1)x̂t(k−1|k−1)+G(k−1)d̂t(k−1)

x̂t(k|k) = x̂t(k|k−1)+Kt(k)
(
y(k)−C(k)x̂t(k|k−1)

) (5.2)

where d̂t(k− 1) is the estimate of the unknown input at time instant k− 1, x̂t(k|k− 1) is
the one-step prediction of x(k) at time instant k− 1, and x̂t(k|k) is the estimate of x(k) at
time instant k with x̂t(0|0) = x̄(0). Mt(k) and Kt(k) are the estimator gain matrices to be
determined at time instant k.

So far, to the best of the author’s knowledge, almost all established results on unknown
input and state estimation problem have been obtained according to the time-based mech-
anism whose idea is to send the measurements to the estimator at every time instant. Due
to the resource limits on energy-consumption and communication bandwidth especially in
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wireless communication, the control system needs more energy-efficient and lower bitrate
data transmission mechanisms than the time-based one. The event-based data transmission
mechanism stands out as a promising solution to this issue because, with such a mechanism,
only important measurements (rather than all measurements) are transmitted to accomplish
the control/estimation tasks.

5.2.2 Event-based Unknown Input and State Estimator

In order to reduce the energy consumption and communication burden, the measurement y(k)
is transmitted only when certain event generator is triggered. In this chapter, the send-on-delta
(SOD) triggering mechanism is adopted and characterized as follows.

Assume that the event triggering instants are k0,k1, . . . , where k0 = 0 is the initial time.
Define ye(k) = y(k j) for k ∈ [k j,k j+1) with the subscript “e” indicating event triggering. The
sequence of event triggering instants 0 = k0 ≤ k1 ≤ ·· · ≤ ki ≤ . . . is determined iteratively by

ki+1 = min{k ∈ N|k > ki,∥ye(k)− y(k)∥> σ} (5.3)

where the threshold σ is a positive scalar.
Define δ (k) = y(k)− ye(k). Under the event-based strategy, δ (k) will be reset to zero if

the triggering condition is fulfilled. Consequently, the following inequality holds all the time:

δ
T (k)δ (k)≤ σ . (5.4)

With the event-based communication strategy, a recursive estimator for the system (5.1)
as follows:

E2 :


d̂e(k−1) = Me(k)

(
ye(k)−C(k)A(k−1)x̂e(k−1|k−1)

)
x̂e(k|k−1) = A(k−1)x̂e(k−1|k−1)+G(k−1)d̂e(k−1)

x̂e(k|k) = x̂e(k|k−1)+Ke(k)
(
ye(k)−C(k)x̂e(k|k−1)

) (5.5)

where d̂e(k− 1) is the estimate of the unknown input at time instant k− 1, x̂e(k|k− 1) is
the one-step prediction of x(k) at time instant k− 1, and x̂e(k|k) is the estimate of x(k) at
time instant k with x̂e(0|0) = x̄(0). Me(k) and Ke(k) are the estimator gain matrices to be
determined at time instant k.

In the event-based estimator E2, the input estimate d̂e(k − 1) is first obtained from
ye(k) since ye(k) is the first event-triggered measurement that contains information about
de(k − 1). Then, using both d̂e(k − 1) and the state estimate x̂e(k − 1|k − 1), the a prior
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estimate x̂e(k|k−1) is obtained. Finally, a posteriori estimate x̂e(k|k) is obtained by updating
x̂e(k|k−1) with a correction term.

Substituting the first two equations into the last one in (5.5) leads to

x̂e(k|k) = A(k−1)x̂e(k−1|k−1)+Le(k)
(
ye(k)−C(k)A(k−1)x̂e(k−1|k−1)

)
(5.6)

where
Le(k), Ke(k)+E(k)G(k−1)Me(k), E(k), I −Ke(k)C(k). (5.7)

Letting x̃e(k|k) = x(k)− x̂e(k|k), we have the following system that governs the estimation
error dynamics:

x̃e(k|k)=E(k)
(
A(k−1)x̃e(k−1|k−1)+G(k−1)d(k−1)+ω(k−1)

)
−Le(k)(ν(k)+δ (k)).

(5.8)
To eliminate the effect of the unknown input d(k) on the state estimation error x̃e(k|k) in

(5.8), the following lemma is needed.

Lemma 5.1 For the designed event-based estimator E2 in (5.5), the estimation error x̂e(k|k)
is unrelated to the unknown input d(k) if the gain matrix Me(k) satisfies

Me(k)C(k)G(k−1) = Ip. (5.9)

Proof. Substituting (5.6) and (5.9) into (5.8) yields

x̃e(k|k) = E(k)
(
A(k−1)x̃e(k−1|k−1)+ω(k−1)

)
−Le(k)(ν(k)+δ (k)). (5.10)

Comparing with (5.8), it can be found that, when condition (5.9) holds, the state estimation
error x̃e(k|k) in (5.10) is not related to the unknown input d(k).

When the condition (5.9) holds, the estimated input can be represented as follows:

d̂e(k) = Me(k)(ye(k)−C(k)A(k−1)x̂e(k−1|k−1)).

Accordingly, the input estimation error d̃e(k−1) can be given as follows:

d̃e(k−1) =−Me(k)
(
C(k)A(k−1)x̃e(k−1|k−1)+C(k)ω(k−1)+ν(k)+δ (k)

)
(5.11)

where d̃e(k−1), d(k)− d̂e(k).
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For presentation convenience, we denote

d̃u
e (k) = E{d̃e(k)}, d̃s

e(k) = d̃e(k)− d̃u
e (k),

x̃u
e(k|k) = E{x̃e(k|k)}, x̃s

e(k|k) = x̃e(k|k)− x̃u
e(k|k),

Σu
e(k) = d̃u

e (k)(d̃
u
e (k))

T , Σ
s
e(k) = E{d̃s

e(k)(d̃
s
e(k))

T},
Pe(k|k) = E{x̃e(k|k)(x̃e(k|k))T}, Σe(k) = E{d̃e(k)(d̃e(k))T},

Pu
e (k|k) = x̃u

e(k|k)(x̃u
e(k|k))T , Ps

e (k|k) = E{x̃s
e(k|k)(x̃s

e(k|k))T},

and then (5.10)-(5.11) can be rewritten in the following form:

x̃s
e(k|k) = E(k)(A(k−1)x̃s

e(k−1|k−1)+ω(k−1))−Le(k)ν(k),

x̃u
e(k|k) = E(k)A(k−1)x̃u

e(k−1|k−1)−Le(k)δ (k),

d̃s
e(k) = −Me(k)C(k)A(k−1)x̃s

e(k−1|k−1)−Me(k)C(k)ω(k−1)

−Me(k)ν(k),

d̃u
e (k) = −Me(k)C(k)A(k−1)x̃u

e(k−1|k−1)−Me(k)δ (k)

where x̃s
e(k|k) and x̃u

e(k|k) represent the stochastic and deterministic parts of the state estima-
tion error, respectively. Similarly, d̃s

e(k) and d̃u
e (k) represent the stochastic and deterministic

parts of the input estimation error, respectively.

Remark 5.2 As pointed out in [58], in the traditional time-based estimator design, the
estimator E1 is unbiased if and only if (5.9) is satisfied. On the other hand, in the event-based
scenario, the state estimation error is not affected by the unknown input d(k) when (5.9)
holds.

5.3 Estimator Design

In this section, for the system (5.1) with the event-based estimator E2, we will first obtain
the upper bounds of the error covariances of both the input and state estimates, and then
look for appropriate gain matrices Me(k) and Ke(k) such that the obtained upper bounds are
minimized.

Before proceeding further, we introduce the following lemmas which will be used in
subsequent developments.

Lemma 5.2 Given two vectors x,y ∈ Rm, the following inequality holds,

(x+ y)(x+ y)T ≤ (1+ ε)xxT +(1+ ε
−1)yyT (5.12)
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where ε is an arbitrary positive scalar.

Proof. (5.12) follows from (
√

εx−
√

ε−1y)(
√

εx−
√

ε−1y)T ≥ 0 immediately.

Lemma 5.3 Define a matrix function f : Sn
+ 7→ R as follows:

f (X) = Tr{(AT X−1A)−1}

where A is a given matrix of appropriate dimension and AT X−1A is nonsingular. For two
matrices X1,X2 ∈ Sn

+, if X1 < X2, then f (X1)< f (X2).

Proof. For two arbitrary positive definite matrices X1,X2 ∈ Sn
+, assume that X1 < X2, then

the following are true:

0 < X1 < X2 ⇒ 0 < X−1
2 < X−1

1 ⇒ 0 < AT X−1
1 A < AT X−1

2 A

⇒ 0 < (AT X−1
2 A)−1 < (AT X−1

1 A)−1 ⇒ f (X1)< f (X2),

and the proof is then completed.

Lemma 5.4 [8] Consider the following recursion equation

P(k+1) = FP(k)FT +Q

where matrix P(k) ∈ Rn×n, and F and Q are known matrices of appropriate dimensions.
If |λ (F)| < 1, for arbitrary initial P(0), we have lim

k→∞
P(k) = P̄ where P̄ is the solution to

P̄−FP̄FT = Q.

Lemma 5.5 [108] For 0 ≤ k ≤ N, suppose that X ,Y ∈ Rn×n, X = XT > 0, Y = Y T > 0,
φ(X ,k) = φ T (X ,k) ∈ Rn×n. If

φ(X ,k)≤ φ(Y,k), ∀X ≤ Y, (5.13)

then the solutions M(k) and N(k) to the following difference equations

M(k+1)≤ φ(M(k),k), N(k+1) = φ(N(k),k), M(0) = N(0)> 0 (5.14)

satisfy
M(k)≤ N(k).
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5.3.1 Input Estimation

In this section, we consider the unknown input estimation problem. At time instant k, given
the event-based measurement ye(k), we aim to obtain the input estimate d̂e(k) and an upper
bound on the error covariance of the input estimate, and then we look for an appropriate
estimation gain Me(k) which minimizes such an upper bound.

An upper bound on the error covariance of the input estimate is given in the following
theorem.

Theorem 5.1 Consider the linear system (5.1) and the event-based estimator E2 in (5.5)
with event generator condition (5.3). Assume that the condition (5.9) is satisfied. For a given
positive scalar sequence {ε1(k),k ∈ N}, an upper bound on the error covariance matrix of
the input estimation Σ̂e(k−1) is given by

Σ̂e(k−1) = Me(k)Φ(k)MT
e (k) (5.15)

where

Φ(k) =C(k)Q(k−1|k−1)CT (k)+R(k)+(1+ ε
−1
1 (k))σ I,

Q(k−1|k−1) = A(k−1)
(
Ps

e (k−1|k−1)+(1+ ε1(k))P̂u
e (k−1)

)
AT (k−1)+W (k−1).

Proof. First, let us derive the expression of Σe(k−1). It follows from (5.12) and (5.12) that

Σe(k−1) = Σ
s
e(k−1)+Σ

u
e(k−1) (5.16)

Σ
s
e(k−1) = Me(k)

(
C(k)(A(k−1)Ps

e (k−1|k−1)AT (k−1)+W (k−1))CT (k)

+R(k)
)

MT
e (k) (5.17)

Σ
u
e(k−1) = δ (k)δ T (k)+Me(k)C(k)A(k−1)Pu

e (k−1|k−1)AT (k−1)CT (k)(Me(k))T

+
(
Me(k)C(k)A(k−1)x̃u(k−1|k−1)

)
(Me(k)δ (k))T

+Me(k)δ (k)
(
Me(k)C(k)A(k−1)x̃u(k−1|k−1)

)T
. (5.18)

Using Lemma 6.1, we obtain(
Me(k)C(k)A(k−1)x̃u

e(k−1|k−1)
)
(Me(k)δ (k))T

+Me(k)δ (k)
(
Me(k)C(k)A(k−1)x̃u

e(k−1|k−1)
)T

≤Me(k)
(
ε1(k)C(k)A(k−1)Pu

e (k−1|k−1)AT (k−1)CT (k)+ ε
−1
1 (k)δ (k)δ T (k)

)
MT

e (k).

(5.19)
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Substituting (5.19) into (5.18) and noting that Pu
e (k−1|k−1)≤ P̂u

e (k−1|k−1), we have

Σe(k−1)≤ Σ̂e(k−1),

where Σ̂e(k−1) is given in (5.15).

Now, we are ready to minimize the upper bound Σ̂e(k − 1) at each time instant by
appropriately designing the estimator parameter Me(k).

Theorem 5.2 Consider the linear system (5.1) and the event-based estimator E2 in (5.5)
with event generator condition (5.3). Assume that the condition (5.9) is satisfied. The upper
bound Σ̂e(k−1) (given in (5.15)) on the error covariance of the input estimation is minimized
if the parameter Me(k) is chosen as

Me(k) = Π
−1(k)GT (k−1)CT (k)Φ−1(k), (5.20)

and the minimized upper bound is given by

Σ̂e(k−1) = Π
−1(k) (5.21)

where Π(k) = GT (k−1)CT (k)Φ−1(k)C(k)G(k−1).

Proof. We need to search for an appropriate gain matrix Me(k) which minimizes the upper
bound matrix Σ̂e(k−1), and the corresponding problem can be equivalently written as the
following constrained optimization problem:

min
Me(k)

Σ̂e(k−1),

subject to Me(k)C(k)G(k−1) = Ip.
(5.22)

Using the completion-of-squares method, Σ̂e(k−1) can be rearranged as follows:

Σ̂e(k−1) =
(
Me(k)−Π

−1(k)GT (k−1)CT (k)Φ−1(k)
)
Φ(k)

×
(
Me(k)−Π

−1(k)GT (k−1)CT (k)Φ−1(k)
)T

+Π
−1(k)

(5.23)

By choosing
Me(k) = Π

−1(k)GT (k−1)CT (k)Φ−1(k),
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it can be easily found that the equality constraint in (5.22) is satisfied and Σ̂e(k − 1) is
minimized as

Σ̂e(k−1) = Π
−1(k).

This completes the proof.

5.3.2 State Estimation

In this section, we consider the estimation problem of the system state. We are interested in
finding an appropriate gain matrix Ke(k) for the event-based estimator E2 such that the upper
bound on the error covariance of the state estimation is minimized. First, an upper bound on
the error covariance of the state estimation is given in the following theorem.

Theorem 5.3 Consider the linear system (5.1) and the event-based estimator E2 in (5.5)
with event generator condition (5.3). Let the condition (5.9) be satisfied. Assume that, for a
given positive scalar sequence {ε2(k),k ∈ N}, there exist two sets of real-valued matrices
P̂u

e (k|k) and Le(k) satisfying the following Riccati-like difference equation with the initial
condition P̂u

e (k|k) = 0:

P̂u
e (k|k) = φ(P̂u

e (k−1|k−1),k−1), (5.24)

where

φ(P̂u
e (k−1|k−1),k−1)= (1+ε2(k))Āe(k−1)P̂u

e (k−1|k−1)ĀT
e (k−1)+(1+ε

−1
2 (k))σLe(k)LT

e (k),

Āe(k−1) = E(k)A(k−1), Le(k) = Ke(k)+E(k)G(k−1)Me(k).

Then, we have P̂u
e (k|k) ≥ Pu

e (k|k). Accordingly, an upper bound P̂e(k|k) on the estimation
error covariance matrix Pe(k|k) is given as follows:

P̂e(k|k) = Ps
e (k|k)+ P̂u

e (k|k) (5.25)

where

Ps
e (k|k) =Ā(k−1)Ps

e (k−1|k−1)ĀT (k−1)+Le(k)R(k)LT
e (k)

+E(k)W (k−1)ET (k), Ps
e (0|0) = P(0|0).
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Proof. From (5.12) and (5.12), it is straightforward to obtain that

Ps
e (k|k) = Ā(k−1)Ps

e (k−1|k−1)ĀT (k−1)+Le(k)R(k)LT
e (k) (5.26)

+E(k)W (k−1)ET (k), (5.27)

Pu
e (k|k) = Ā(k−1)Pu

e (k−1|k−1)ĀT (k−1)+ Ā(k−1)x̃u
e(k−1|k−1)(Le(k)δ (k))T

+σLe(k)LT
e (k)+Le(k)δ (k)(Ā(k−1)x̃u

e(k−1|k−1))T . (5.28)

For an arbitrary positive scalar ε2(k), it follows from Lemma 6.1 that

Ā(k−1)x̃u
e(k−1|k−1)(Le(k)δ (k))T +Le(k)δ (k)(Ā(k−1)x̃u

e(k−1|k−1))T

≤ε2(k)Ā(k−1)Pu
e (k−1|k−1)ĀT (k−1)+ ε

−1
2 (k)σLe(k)LT

e (k)

which, together with (5.28), indicates that φ(Pu
e (k − 1|k − 1)) ≥ Pu

e (k|k). As P̂u
e (k|k) =

Pu
e (k|k) = 0, and P̂u

e (k|k) can be calculated iteratively by the Riccati-like difference equation
P̂u

e (k|k) = φ(P̂u
e (k−1|k−1),k−1). It follows from Lemma 6.4 that

P̂u
e (k|k)≥ Pu

e (k|k),∀k > 0, (5.29)

and, furthermore, we can easily obtain from (5.25) and (5.29) that

P̂e(k|k)≥ Pe(k|k),∀k > 0

and the proof is now complete.

Before we design the estimator, we denote

Ω(k) ,
{[

P̃e(k−1|k−1)+Λ(k)GT (k−1)
]
CT (k)Ξ−1(k)−G(k)Me(k)

}
(5.30)

×
{

I −
[
I −C(k)G(k−1)Me(k)

]+[I −C(k)G(k−1)Me(k)
]}

(5.31)

In the following theorem, the upper bound matrix P̂e(k|k) at each time instant is minimized
by appropriately designing the estimator parameter Ke(k).

Theorem 5.4 Consider the linear system (5.1) and the event-based estimator E2 (5.5) with
event generator condition (5.3). Assume that the condition (5.9) is satisfied. The matrix
P̂e(k|k) given in (5.25), which is an upper bound on the error covariance Pe(k|k) of the state
estimation, can be minimized at the iteration when Ω(k) = 0 with the parameter Ke(k) given
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by

Ke(k) =
((

P̃e(k−1|k−1)+Λ(k)GT (k−1)
)
CT (k)Ξ−1(k)−G(k)Me(k)

)
×
(
I −C(k)G(k−1)Me(k)

)+ (5.32)

and the minimum given by

P̂e(k|k) =Λ(k)GT (k−1)CT (k)Ξ−1(k)C(k)G(k−1)ΛT (k)+ P̃e(k−1|k−1)

− P̃e(k−1|k−1)CT (k)Ξ−1(k)C(k)P̃e(k−1|k−1)
(5.33)

where

P̃e(k−1|k−1) =A(k−1)
(
Ps

e (k−1|k−1)+(1+ ε2(k))P̂u
e (k−1|k−1)

)
AT (k−1)+W (k−1),

Ξ(k) =C(k)P̃e(k−1|k−1)CT (k)+R(k)+(1+ ε
−1
2 (k))σ I,

Λ(k) =
(
G(k−1)− P̃e(k−1|k−1)CT (k)Ξ−1(k)C(k)G(k−1)

)
×
(
GT (k−1)CT (k)Ξ−1(k)C(k)G(k−1)

)−1
.

In the special case that the two set of positive scalar sequences are identical, that is, ε2(k) =
ε1(k),∀k ∈ N, the expression of Ke(k) reduces to the following equation,

Ke(k) = P̃e(k−1|k−1)CT (k)Ξ−1(k). (5.34)

Proof. For locally minimum-variance estimation, we first look for Le(k) which minimizes
P̂e(k|k) subject to the constraint Le(k)C(k)G(k− 1) = G(k− 1). Using the completion-of-
squares method, P̂e(k|k) can be rewritten as follows:

P̂e(k|k) =
(

Le(k)Ξ(k)− P̃e(k−1|k−1)CT (k)−Λ(k)GT (k−1)CT (k)
)

Ξ
−1(k)

×
(

Le(k)Ξ(k)− P̃e(k−1|k−1)CT (k)−Λ(k)GT (k−1)CT (k)
)T

+ P̃e(k−1|k−1)

+Λ(k)GT (k−1)CT (k)Ξ−1(k)C(k)G(k−1)ΛT (k)

− P̃e(k−1|k−1)CT (k)Ξ−1(k)C(k)P̃e(k−1|k−1)

(5.35)

By choosing

Le(k) =
(
P̃e(k−1|k−1)+Λ(k)GT (k−1)

)
CT (k)Ξ−1(k), (5.36)
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it can be found that P̂e(k|k) is minimized and the minimum of P̂e(k|k) is given by

P̂e(k|k) =Λ(k)GT (k−1)CT (k)Ξ−1(k)C(k)G(k−1)ΛT (k)+ P̃e(k−1|k−1)

− P̃e(k−1|k−1)CT (k)Ξ−1(k)C(k)P̃e(k−1|k−1).

Note that Le(k) = Ke(k)+
(
I −Ke(k)C(k)

)
G(k−1)Me(k) and Ωk = 0, it is easy to see

that the minimum-norm solution Ke(k) to(
P̃e(k−1|k−1)+Λ(k)GT (k−1)

)
CT (k)Ξ−1(k) = Ke(k)+

(
I −Ke(k)C(k)

)
G(k−1)Me(k)

exists and is given by

Ke(k) =
((

P̃e(k−1|k−1)+Λ(k)GT (k−1)
)
CT (k)Ξ−1(k)−G(k)Me(k)

)
×
(
I −C(k)G(k−1)Me(k)

)+
When ε2(k) = ε1(k), we have Φ(k) = Ξ(k) and then obtain Ke(k) as follows:

Ke(k) = P̃e(k−1|k−1)CT (k)Ξ−1(k).

This completes the proof.

Remark 5.3 In case that Ω(k) ̸= 0, the estimator gain (5.32) would lead to a practical (not
necessarily minimum-variance) solution with guaranteed upper bound P̂e(k|k). On the other
hand, if the threshold of event-triggering σ is set to be zero, then the event-based mechanism
reduces to the traditional time-based mechanism and, accordingly, our proposed estimator
reduces to the optimal time-based estimator proposed in [58].

5.3.3 Discussion on Choosing Scalar Parameters

From Theorems 5.1 and 5.3, it is clear that the estimation performance at time instant k de-
pends on system data and the scalar sequences εi(0),εi(1), . . . ,εi(k), i = 1,2. It means that, to
compute an optimal event-based estimator at time k, the scalar sequences εi(0),εi(1), . . . ,εi(k−
1), i = 1,2, need to be re-computed, and so do the corresponding estimator gain matrices
(5.20) and (5.32). The optimization over the scalar sequences becomes numerically in-
tractable as the time instant k tends to +∞.

To reduce the computation complexity, instead of optimizing the performance over all
the k scalar parameters, a practical way is to optimize the trace of matrices Σ̂e(k) and P̂e(k|k)
over a fixed length of scalar parameters εi(k+1− i),εi(k+2− i), . . . ,εi(k), i = 1,2. For the
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special case that the length is equal to 1, an optimal and suboptimal algorithms on how to
choose the scalar parameters are given below respectively.

Proposition 5.1 For the event-based estimator E2 in (5.5) with the parameters Me(k) and
Ke(k) given in (5.20) and (5.32), respectively, Tr{Σ̂e(k)} and Tr{P̂e(k|k)} are minimized if
the scalars ε1(k) and ε2(k) are given as follows:

ε1(k) = arg min
ε1(k)

Tr
{

Π
−1(k)

}
(5.37)

ε2(k) =arg min
ε2(k)

Tr
{

Λ(k)GT (k−1)CT (k)Ξ−1(k)C(k)G(k−1)ΛT (k)+ P̃e(k−1|k−1)

− P̃e(k−1|k−1)CT (k)Ξ−1(k)C(k)P̃e(k−1|k−1)
}
.

(5.38)

An analytical suboptimal scalar ε1(k) can be chosen as follows:

ε1(k) =


√

σ

ρ̄(k) , if Φ
(√

σ

ρ̄(k) ,k
)
< Φ(

√
σ

ρ(k) ,k)√
σ

ρ(k) , otherwise.
(5.39)

where ρ̄(k),ρ(k) are the minimum and the maximum eigenvalues of C(k)A(k− 1)P̂e(k−
1|k−1)AT (k−1)CT (k), respectively.

Proof. With the obtained optimal gain matrices Me(k) and Ke(k), we search for the opti-
mal/suboptimal scalar parameters ε1(k) and ε2(k). From (5.21) and (5.35), it is straightfor-
ward to derive the optimal ε1(k) and ε2(k), which are given in (5.37) and (5.38), respectively.
However, since it is numerical intractable to compute the analytical solution for the optimal
ε1(k) from (5.37), we would like to look for a suboptimal ε1(k). Instead of searching for the
optimal ε1(k) from the interval (0,+∞), in the following, a suboptimal ε1(k) belonging to
the interval

(
0,
√

σ

ρ̄(k)

]⋃[√
σ

ρ(k) ,+∞

)
, is derived in the analytical form.

Choosing two arbitrary scalar variables ε2(k)> ε̃1(k)> 0, we have

Φ(ε̃1(k),k)−Φ(ε1(k),k)

=(ε̃1(k)− ε1(k))C(k)A(k−1)P̂e(k|k)AT (k−1)CT (k)+σ(ε̃−1
1 (k)− ε

−1
1 (k))Im

=(ε̃1(k)− ε1(k))
(
C(k)A(k−1)P̂e(k|k)AT (k−1)CT (k)− σ

ε1(k)ε̃1(k)
Im
)
,

from which we conclude the following:
(i) if ε1(k), ε̃1(k) ∈

(
0,
√

σ

ρ̄(k)

]
, then Φ(ε̃1(k),k)< Φ(ε1(k),k);
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Algorithm 5.1 Event-based Simultaneous Input and State Estimation (ESISE)
1: Initialize:

k = 0, P̂u
e (0) = 0, P̂s

e (0) = P(0|0) ;
2: while k ≥ 1 do
3: if opt=“optimal” then
4: Choose the scalar ε1(k) via (5.37) ;
5: Calculate the input estimate gain Me(k) via (5.20);
6: Calculate the upper bound of the input estimation Σ̂e(k−1) via (5.21);
7: Choose the scalar ε2(k) via (5.38) ;
8: Calculate the state estimate gain Ke(k) via (5.32) ;
9: Calculate P̂e(k|k) via (5.33) ;

10: else if opt=“sub-optimal” then
11: Choose the scalar ε1(k) via (5.39) ;
12: Calculate the input estimate gain Me(k) via (5.20);
13: Calculate the upper bound of the input estimation Σ̂e(k−1) via (5.21);
14: Set the scalar ε2(k) = ε1(k);
15: Calculate the state estimate gain Ke(k) via (5.34) ;
16: Calculate P̂e(k|k) via (5.33) ;
17: end if
18: Input and state estimate d̂e(k), x̂e(k|k) via (5.5);
19: k = k+1;
20: end while

(ii) if ε1(k), ε̃1(k) ∈
[√

σ

ρ(k) ,+∞

)
, then Φ(ε̃1(k),k)> Φ(ε1(k),k);

(iii) if ε1(k), ε̃1(k)∈
[√

σ

ρ̄(k) ,
√

σ

ρ(k)

]
, then Φ(ε̃1(k),k) and Φ(ε1(k),k) are not dominated

by each other.
On the other hand, it follows from Lemma 6.2 that Tr{Σe(k)} is a strictly increasing

function of Φ(k). Hence, it is known that, for ε1(k)∈
(

0,
√

σ

ρ̄(k)

]⋃[√
σ

ρ(k) ,+∞

)
, Tr{Σe(k)}

attains the minimum when

ε1(k) =


√

σ

ρ̄(k) , if Φ(
√

σ

ρ̄(k) ,k)< Φ(
√

σ

ρ(k) ,k)√
σ

ρ(k) , otherwise.

This completes the proof.

The complete procedure of our proposed estimation algorithm is described in Algorithm
5.1.
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5.4 Boundedness Analysis

In the section, we investigate the asymptotic boundedness properties of the upper bound
P̂e(k|k) for the time-invariant system. Without notation confusion, when referring to the
time invariant system (5.1), it is explicitly assumed that the parameter matrices are fixed as
constant matrices, that is, A(k) = A, G(k) = G, C(k) =C, W (k) =W , and R(k) = R.

To facilitate our analysis, existing results on time-based estimation problems for time-
invariant systems are summarized in the following lemma.

Lemma 5.6 [35] Consider the linear time-invariant system with unknown input (5.1) and
the time-based estimator E1 in (5.2). The corresponding error covariance matrix Pt(k|k) of
the state estimation converges to a unique fixed positive semi-definite matrix P̄t for any given
initial condition Pt(0|0) if and only if the following two equations hold,

Rk

{[
zIn −A G
C 0

]}
= n+ p,∀z ∈ C, |z| ≥ 1. (5.40)

Rk

{[
A− e jω I G W

1
2 0

e jωC 0 0 R
1
2

]}
= n+m,∀ω ∈ [0,2π]. (5.41)

Moreover, with the associate limiting gain matrices Kt , lim
k→∞

Kt(k), Mt , lim
k→∞

Mt(k), the

time-invariant estimator is stable as well, i.e., all the eigenvalues of Āt , (I −LtC)A satisfy
|λ (Āt)|< 1, where Lt = Kt +(I −KtC)GMt .

Theorem 5.5 Consider the linear time-invariant system with unknown input (5.1) and event
generator condition (5.3). Assume that both (5.40) and (5.41) are satisfied and an event-based
estimator is designed according to Algorithm 5.1. With an arbitrarily chosen constant scalar
ε2 ∈ (0, ε̄), where ε̄ = ρ−2

max(Āt)− 1, the state error covariance matrix Pe(k|k) is bounded
and the upper bound P̂e(k|k) is asymptotically convergent.

Proof. 1). First, we prove that, for the event-based state estimator, when the filter gain
Ke(k) is set to be equivalent to the optimal gain Kt(k) obtained in the time-based scenario,
then the state estimation error covariance is bounded.

When the filter parameters are chosen as Ke(k) = Kt(k), Le(k) = Lt(k), then Āe = Āt .
From Lemma 6.3, it is known that Āe is a stable matrix and lim

k→∞
Pt(k|k) = P̄. Moreover, it

is easily found that Ps
e (k|k) coincides with Pt(k|k) and hence Ps

e (k|k) converges to matrix P̄t .
As Āe is a stable matrix and ε ∈ (0, ε̄), then Ãe ,

√
1+ εĀe is a stable matrix as well.
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Noting that P̂u
e (k|k) satisfies

P̂u
e (k|k) = ÃeP̂u

e (k−1|k−1)ÃT
e +(1+ ε

−1)σLeLT
e ,

it follows from Lemma 6.5 that P̂u
e (k|k) → P̄u

e when k → ∞, where P̄u
e = ÃeP̄u

e ÃT
e +(1+

ε−1)σLeLT
e . Furthermore, by noticing the fact that P̂e(k|k) = P̂s

e (k|k)+ P̂u
e (k|k), we have

lim
k→∞

Pe(k|k) = P̄t + P̄u
e .

2). Next, through the induction approach, we aim to prove that, with the proposed optimal
filter parameters Ke(k) and Me(k), the upper bound matrix P̂u(k|k) is always less than the
one with the gain Kt(k). That is, we would like to show that

P̂e

(
k|k,Ke(k), P̂e

(
k−1|k−1,Ke(k−1)

))
≤ P̂e

(
k|k,Kt(k), P̂e

(
k−1|k−1,Kt(k−1)

))
.

(5.42)
When k = 0, Ps

e (0|0) = P(0|0), and Pu
e (0|0) = 0, it is easy to find that P̂e(0|0,Ke(0)) =

P̂e(0|0,Kt(0)). Suppose that, when k = i−1, P̂e(i−1|i−1,Ke(i−1))≤ P̂e(i−1|i−1,Kt(i−
1)) and we like to prove that (5.42) holds for k = i. In this case, since Ke(i) minimizes P̂e(i|i)
given P̂e(i−1|i−1), we can see that

P̂e

(
i|i,Ke(i), P̂e

(
i−1|i−1,Ke(i−1)

))
≤ P̂e

(
i|i,Kt(i), P̂e

(
i−1|i−1,Ke(i−1)

))
. (5.43)

On the other hand, it can be found that

P̂e

(
i|i,Kt(i), P̂e

(
i−1|i−1,Kt(i−1)

))
− P̂e

(
i|i,Kt(i), P̂e

(
i−1|i−1,Ke(i−1)

))
= Āe(i−1)

(
(1+ ε)

(
P̂u

e (i−1|i−1,Kt(i−1))− P̂u
e (i−1|i−1,Ke(i−1))

)
−
(
Ps

e (i−1|i−1,Ke(i−1))−Ps
e (i−1|i−1,Kt(i−1))

))
ĀT

e (i−1).

(5.44)

Noting that Ps
e (i−1|i−1,Kt(i−1))≤ Ps

e (i−1|i−1,Ke(i−1)), and P̂e(i−1|i−1,Ke(i−
1))≤ P̂e(i−1|i−1,Kt(i−1)), it can be inferred that

0 ≤ Ps
e
(
i−1|i−1,Ke(i−1)

)
−Ps

e
(
i−1|i−1,Kt(i−1)

)
≤ P̂u

e
(
i−1|i−1,Kt(i−1)

)
− P̂u

e
(
i−1|i−1,Ke(i−1)

)
.

Substituting the above inequalities into (5.44), one obtains

P̂e

(
i|i,Kt(i), P̂e

(
i−1|i−1,Ke(i−1)

))
≤ P̂e

(
i|i,Kt(i), P̂e

(
i−1|i−1,Kt(i−1)

))
. (5.45)

Combining the inequalities (5.43) and (5.45) leads to (5.42).
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3). In this step, we aim to prove that the upper bound is asymptotically bounded. Noting
that

lim
k→∞

P̂e

(
k|k,Kt(k), P̂e

(
k−1|k−1,Kt(k−1)

))
= P̂,

it follows from (5.45) that

lim
k→∞

P̂e

(
k|k,Ke(k), P̂e

(
i−1|i−1,Ke(i−1)

))
≤ P̂.

This completes the proof.

5.5 Numerical Example

In this section, we consider the state estimation system of a three-bus system that is depicted
in Fig. 5.1. For the 3-bus test system, we choose the state x(k) as

x(k) =
[
xr,1(k) xr,2(k) xr,3(k) xi,1(k) xi,2(k) xi,3(k)

]T
where xr,l(k) and xi,l(k) represent the real and imaginary parts of voltage of the lth bus,
respectively, then the system is modelled as (5.1) with parameters A = diag6{1.0}, G =[
0,1,0,0,0,1

]T
, W (k) = diag6{0.012} and R(k) = diag10{0.12}. The unknown input is

given by
d(k) = 0.1us(k)−0.2us(k−20)

where us(k) is the unit-step function. The simulation time is 20 time steps. Assume that
the initial voltages of all buses are at flat start, that is, xr,l(0) = 1 p.u, xi,l(0) = 0 for all
l = 1,2, . . . ,3.

The values of branch parameters in the three-bus system are the same as the ones in [15].
We assume that each PMU measurement either one bus voltage or one branch current. Three
PMUs measure the voltages at bus 1, 2 and 3, and two PMUs measure the current at line 1-2
and 3-1.

To show that the threshold of the event-generator affects both the communication rate
and the estimation performance, four different values of the threshold σ (0,0.5,1.5,and10)
are considered. Let us choose the bus 3 as the representative bus.

Figs. 5.2 shows the actual and the estimated values of the system states 3,6 with different
thresholds respectively. Figs. 5.3 shows the actual and the estimated value of the unknown
input. It can be seen, the smaller the threshold is, the more accurate both the state and the
input estimates are.
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Fig. 5.1 The simplified 3-bus system

Fig. 5.4 shows the triggering events during the whole simulation period. Compared
with the time-based mechanism, it can be found that the transmission times are significant-
ly reduced, which clearly shows the superiority of the proposed event-based mechanism.
Moreover, the larger the threshold is, the less data transmission is.

From the observations of the simulation results, we can conclude that the event-triggered
estimation paradigm provides a flexible way to trade off the communication rate and the
estimation performance. Optimizing of one objective usually worsen the performance on
the other objective, and hence the threshold of the event triggering should be tuned carefully
with considerations of performance specifics.

5.6 Conclusion

In this chapter, an event-based joint input/state estimator has been proposed for the sake of
reducing the sensor data transmission rate and the energy consumption. Based on a SOD
concept, the sensors transmit the measurements when the prescribed conditioned is violated.
By using the inductive method and intensive analysis on the estimation error, upper bounds
of the estimation error covariances are obtained recursively. Subsequently, by choosing
some scalar parameters properly, such upper bounds are reduced. In addition, for linear
time-invariant system, the upper bounds are proved to be asymptotically bounded under
certain conditions. Finally, through a numerical simulation, we have demonstrated that the
proposed event-based estimator yields acceptable estimation performance while reduces the
number of transmission greatly.
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Fig. 5.2 The actual and estimated state at Bus 3 under different event-triggering thresholds
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Fig. 5.3 The actual and estimated unknown input under different event-triggering thresholds
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Fig. 5.4 The triggering sequence under different event-triggering thresholds





Chapter 6

State Estimation under False Data
Injection Attacks: Security Analysis and
System Protection

6.1 Motivation

the cyber-security in the state estimation problem of power grids has been a hot topic
of research that stirs considerable interest. In general, two kinds of attacks have been
considered [157], one is the denial-of-service (DoS) attack that violates data availability
through blocking information flows between meters and the control centre, and the other is
the false data injection (FDI) attack that violates data integrity through modifying the data
packets. Compared with DoS attacks, FDI attacks are more difficult to detect because the
adversary could keep the attacks stealthy to the bad data detector in EMS through deliberately
designing the attack sequences.

The FDI attacks have been first considered in [110] for the state estimation problems
of power grids where the static SE scheme is adopted. Since then, the cyber-security
issue of the PSSE program has been extensively addressed from different aspects such as
system vulnerability, attack detection and system protection. For example, the minimum
number of comprised sensors that needed to launch deception attacks has been investigated
in [95, 79, 148, 109] from the attackers’ perspective, and some attack detection methods
have been proposed in [156, 106, 57] from defenders’ points of view.

Though the cyber-security under FDI attacks has been extensively addressed in the
context of static state estimation, such a problem has not been sufficiently investigated in
the context of dynamic state estimators, except some scattered results in [186, 113]. In fact,
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both the SSE and DSE schemes are currently used in practical power grids, and thus more
attentions should be paid to the DSE schemes under cyber-attacks. Compared with FDI
attacks in static model, the FDI attacks in dynamic models are more difficult to detect because
the attacks can be mistaken as a type of noises by the protection devices. On the other hand,
due to the system dynamics of power grids related with the behaviours in communication
networks , the cyber-security issue in DSE cannot be solved using only classical systems and
control approaches or existing information security methods [150]. As such, it is important
yet challenging to investigate the cyber-security of the DSE program in power grids.

In this chapter, we focus on the dynamical state estimation problem for power grids under
possible FDI attacks where a χ2 detector is employed to monitor the state estimates. Note
that FDI attacks have been considered in [119, 118, 120, 97] for state estimation problems
of stochastic systems equipped with χ2 detectors. In particular, an approximation method
has been proposed in [118, 120] to analyse the cyber-security of the system by calculating
the estimation error bound caused by the FDI attacks, and some insecurity conditions have
been derived in [97, 119] to determine whether or not there exists FDI attacks which can
cause unbounded estimation error for the state estimation system. Nevertheless, a thorough
investigation reveals that 1) there is still room to improve the existing insecurity conditions;
and 2) there is also an engineering need to develop system protection scheme by using only
necessary number of communication channels requiring protection against FDI attacks.

The main purpose of the present research is to propose new insecurity conditions for state
estimation problems under FDI attacks. Specifically, for the case when all communication
channels are compromised by the adversary, we propose a new necessary and sufficient
condition under which the system is insecure in the sense that the estimation error caused by
FDI attacks is unbounded. Such new condition improves the existing ones as demonstrated by
an example. For the case when only parts of the communication channels are compromised
by the adversary, a sufficient condition is proposed as well. Furthermore, to protect the
overall power grid from FDI attacks, we propose a criterion which determines a sufficient
number of communication channels that require protection. According to the criterion, only
necessary number of (rather than all) communication channels need to be protected in order
to make the overall system secure against the FDI attacks.

The remainder of this chapter is organized as follows. The security problem of state
estimation system under cyber-attacks are formulated in Section 6.2. In Section 6.3, we
analyse the system security under FDI attacks for two cases and further propose the system
protection scheme. Examples for illustration are given in Section 6.4 and we conclude the
chapter in Section 6.5.
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Fig. 6.1 Diagram of state estimation problem under cyber-attacks

6.2 Problem Formulation

In this section, we describe the model of false data injection (FDI) attack and analyse how
the injected attacks affect the estimation system in power grids. The structure of the state
estimation system under cyber-attacks is shown in Fig. 6.1. For presentation convenience,
we first introduce the estimation system without cyber-attacks (i.e., ya(k) = y(k) in Fig. 6.1).

6.2.1 State Estimation without Cyber-attacks

The following dynamic equation is used to model the power system containing N buses

P :

{
x(k+1) = Ax(k)+ω(k)

y(k) =Cx(k)+ν(k)
(6.1)

where x(k) ∈ Rn is the voltages at all buses in the rectangular form and n = 2N, y(k) =
[y1(k), . . . ,ym(k)]T ∈ Rm is the PMU measurement output, and yi(k) is the output of the ith
PMU (labelled as Si in Fig. 6.1) at time instant k. The initial state x(0) has mean x̄(0) and
covariance Σ(0), the process noise ω(k) ∈ Rn and the measurement noise ν(k) ∈ Rm are
assumed to be mutually uncorrelated zero-mean random signals with known covariance
matrices W and R, respectively. It is assumed that (A,C) is observable.

The following time-invariant state estimator is proposed:

E :

{
x̂(k+1) = Ax̂(k)+Kz(k+1)

z(k+1) = y(k+1)−CAx̂(k)
(6.2)
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where x̂(k+1) and z(k+1) are the state estimate and the estimation residual at time instant
k+1, respectively. Throughout this chapter, we assume that the estimator converges to its
steady state.

Defining the estimation error x̃(k+1), x(k+1)− x̂(k+1), the dynamics of the estima-
tion error follows from (6.1) and (6.2) as follows:

x̃(k+1) = (I −KC)(Ax̃(k)+ω(k))−Kν(k+1). (6.3)

It is well known that the estimator is stable if and only if the matrix (I −KC)A is stable [71].
In this chapter, it is assumed that the estimator is stable by choosing appropriate estimator
gain K.

Failure detectors are often used to detect abnormal operations. In this chapter, we assume
that a χ2 failure detector is deployed. At each time instant k, the χ2 failure detector first
computes the value g(k) = zT (k)(CΣCT +R)−1z(k) where Σ is the steady estimation error
covariance, and then compares g(k) with a prescribed threshold α . If g(k)> α , then an alarm
will be triggered. When the system operates normally (i.e. without attacks), g(k) satisfies a
χ2 distribution implying low probability of a large g(k) [8].

From Fig. 6.1, we can see that there is a communication channel between each PMU Si

and the estimator E . In practice, the PMUs and the estimator are mainly connected through
wired or wireless network, and such networked communication makes the transmitted data
prone to be attacked by the adversary.

6.2.2 False Data Injection Attack

In this subsection, we introduce the model of false data injection (FDI) attack and then
investigate how it affects the estimation dynamics. Assume that the adversary has perfect
knowledge about the system model, that is, the values of all the matrices A, C, K, W and R
described in Subsection 6.2.1 are known by the attacker. We also assume that the attacker
has the ability to inject false data over the communication channels between the PMUs and
the estimator. Under FDI attacks, the measurement output received by the estimator is given
as follows:

ya(k) =Cx(k)+a(k)+ν(k) =Cx(k)+Baa0(k)+ν(k) (6.4)

where a(k) ∈ Rm represents the false data injected by the attacker at time instant k. The
attack vector is described by a(k)=Baa0(k) where the injection matrix Ba = diag{γ1, . . . ,γm}.
Here, γi = 1 if the attacker is able to inject false data into the ith communication channel,
otherwise γi = 0. The matrix Ba reflects which communication channels can be compromised
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by the attacker. Specifically, Ba = 0 means that no FDI attacks can be injected into any
communication channel, and Ba = Im implies that the attacker has the ability to inject FDI
attacks into all communication channels.

With the compromised measurement ya(k), based on the estimator E in (6.2), the dynam-
ics of state estimation can be derived as follows:

x̂a(k+1) =Ax̂a(k)+Kza(k+1)

za(k+1) =ya(k+1)−CAx̂a(k)
(6.5)

where x̂a(k+1) and za(k+1) are the state estimation and the estimation residual of system
(6.1) at time k+1 using the compromised measurement (6.4), respectively. Without loss of
generality, we assume that the attack begins at time instant 1 and x̂a(0) = x̂(0).

To take into account the effect of FDI attacks on the state estimation of system (6.1), we
define the difference between the state estimates of system (6.1) (without FDI attacks) and
system (6.4) (with FDI attacks) as

∆x̂(k+1), x̂a(k+1)− x̂(k+1),

and the difference between the estimation residuals of system (6.1) and (6.4) as

∆z(k+1), za(k+1)− z(k+1).

For convenience, we call ∆x̂(k+1) and ∆z(k+1) as the state estimation difference and the
estimation residual difference, respectively. The dynamics of ∆z(k+1) and ∆x̂(k+1) can be
derived from (6.2) and (6.5) as follows:

∆z(k+1) =−CA∆x̂(k)+a(k+1), (6.6)

∆x̂(k+1) = A∆x̂(k)+K∆z(k+1)

= (I −KC)A∆x̂(k)+Ka(k+1) (6.7)

where ∆x̂(0) = x̂a(0)− x̂(0) = 0.
In the considered FDI attack model, the purpose of the attacker is to launch a “special”

FDI attack sequence under which the state estimation difference ∆x̂(k) will diverge to ∞

without any alarm triggered by the χ2 detector. In other words, the attacker aims to inject
false data which would largely degrade the estimation performance without being detected
by the detector.
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It is known from the triangular inequality ∥za(k)∥ ≤ ∥z(k)∥+∥∆z(k)∥ that, if ∥∆z(k)∥ is
small, then the χ2 detector cannot distinguish between za(k) and z(k) with high probability.
As such, to make the attack sequence stealthy, the attacker launching the FDI attacks should
avoid causing a large change in estimation residual difference ∆z(k) [119], which means that
the inequality ∥∆z(k)∥ ≤ M should hold all the time, where M represents the tolerant level of
the χ2 detector. Obviously, a smaller value of M would result in a higher probability for the
corresponding attack to be undetected. We assume that M is predetermined by the attacker.
On the other hand, the attacker should design the attack sequence deliberately such that the
sequence {∆x̂(k)} becomes unbounded, i.e, limk→∞ ∆x̂(k) = ∞.

Throughout the chapter, the definition on system security is given as follows.

Definition 6.1 The system P in (6.1) with estimator E in (6.2) is called insecure if there
exists at least one FDI attack sequence {a(k)} such that the following two conditions are
satisfied simultaneously:

1) for the state estimation difference ∆x̂(k),

lim
k→∞

∥∆x̂(k)∥→ ∞; (6.8)

2) for the estimation residual difference ∆z(k),

∥∆z(k)∥ ≤ M, (6.9)

where M is a prescribed small positive constant scalar.

In case that (6.8)-(6.9) do not hold simultaneously under FDI attacks (6.4), the system P in
(6.1) with estimator E in (6.2) is called secure under FDI attacks (6.4).

The aim of the addressed system security problem is to analyse under what conditions
there exists an FDI attack that is undetectable by the fault detector but drives the bias in state
estimation to infinity.

6.3 Security Analysis

In this section, we investigate the security of system P in (6.1) with estimator E in (6.2) for
the following two cases: 1) the attacker is able to inject FDI attacks into all communication
channels, i.e., Ba = Im; and 2) the attacker can inject FDI attacks into only part of the
communication channels, i.e., Ba ̸= Im.
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Assume that the system matrix A in (6.1) has p independent eigenvectors and its Jordan
form J is given by

J = P−1AP (6.10)

where

J =


J1 0 0 . . . 0
0 J2 0 . . . 0
0 0 J3 . . . 0
...

...
... . . . ...

0 0 0 0 Jp

 , Ji =



λi 1
λi 1

. . . . . .
. . . 1

λi


,

the Jordan block Ji ∈ Cni×ni (i = 1, . . . , p) with |λ1| ≥ |λ2| ≥ · · · ≥ |λp| and ∑
i=p
i=1 ni = n.

Denote P =
[
P1, . . . ,Pp

]
and Q = P−1 =

[
QT

1 , . . . ,Q
T
p

]T
, where Pi ∈ Cn×ni and Qi ∈ Cni×n.

If ρ(A)≥ 1, there exists a positive integer l satisfying 1 ≤ l ≤ p such that the inequality
|λ1| ≥ · · · ≥ |λl| ≥ 1 > |λl+1| ≥ · · · ≥ |λp| is true. Furthermore, defining l̄ = ∑

l
i=1 ni, we have

A = PJQ =
[

Po Pc

][
Λ1 0
0 Λ2

][
Qo

Qc

]
, (6.11)

where block matrices Λ1 = diag{J1, . . . ,Jl} ∈ Cl̄×l̄ , Λ2 = diag{Jl+1, . . . ,Jp} ∈ C(n−l̄)×(n−l̄),

Po =
[
P1, . . . ,Pl

]
, Pc =

[
Pl+1, . . . ,Pp

]
, Qo =

[
QT

1 , . . . ,Q
T
l

]T
and Qc =

[
QT

l+1, . . . ,Q
T
p

]T
are

of appropriate dimensions.

6.3.1 Case 1: Ba = Im

To introduce our main results, we need the following lemmas.

Lemma 6.1 [72] For two matrices M,N ∈ Cn×n, det(MN) = det(M)det(N). Moreover,
matrices MN and NM have the same non-zero eigenvalues.

Lemma 6.2 For the system (6.1) with estimator (6.2), if ρ(A) ≥ 1, the following matrix
equation

PcX = K (6.12)

has no solution, where matrix K is the estimator gain of state estimator (6.2) and matrix Pc

is given in (6.11).
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Proof. It is known from Lemma 6.1 that the matrices (I −KC)A and A(I −KC) have the
same eigenvalues. Then, it follows from ρ((I −KC)A) < 1 that the inequality ρ(A(I −
KC))< 1 holds.

Let us prove the lemma by contradiction. Assume that there exists a matrix solution X̃ to
equation (6.12), then we have

A(I −KC) =
[

Po Pc

][
Λ1 0
0 Λ2

][
Qo

Qc

]
(I −PcX̃C),

and it follows from QoPc = 0 and QcPc = I that

A(I −KC) =
[

Po Pc

][
Λ1 0
0 Λ2

][
Qo

Qc − X̃C

]
.

Accordingly, the characteristic polynomial of matrix A(I−KC), denoted by det(λ I −A(I −KC)),
can be given as follows:

det(λ I −A(I −KC)) = det

([
Po Pc

]
λ I

[
Qo

Qc

]
−
[

Po Pc

][
Λ1 0
0 Λ2

][
Qo

Qc − X̃C

])

= det

([
Po Pc

][ (λ I −Λ1)Qo

(λ I −Λ2)Qc +Λ2X̃C

])

= det(P)det

([
(λ I −Λ1)Qo

(λ I −Λ2)Qc +Λ2X̃C

])
.

(6.13)

Setting λ = λi (i ∈ {1, . . . , l}), we can see that the last row of matrix λ I − Ji is a zero
row, which implies that there is at least a zero row in the sub-matrix (λ I −Λ1)Qo and hence
det(λ I −A(I −KC)) = 0. In other words, we conclude that λi (i = 1, . . . , l) is the eigenvalue
of matrix A(I −KC). Noting that |λi| ≥ 1 (i = 1, . . . , l), this conclusion contradicts the
inequality ρ(A(I −KC))< 1. As a result, there is no solution to the matrix equation (6.12)
and the proof is complete.

From Lemma 6.2, the following lemma can be easily obtained.

Lemma 6.3 For the system (6.1) with estimator (6.2), let ρ(A) ≥ 1 and Es,t represent the
element of matrix E in the sth row and tth column. Define matrix E = P−1K. Then, there
exists at least one non-zero component in matrix E, that is, there exist integers s ∈ {1, . . . , l̄}
and t ∈ {1, . . . ,m} with l̄ , ∑

l
i=1 ni such that Es,t ̸= 0.
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Algorithm 6.1 The algorithm for generating false date Injection attacks (FDI attacks)
1: Initialize:

Decompose matrix A in (6.1) as the Jordan normal form (6.10), Choose
arbitrarily a scalar σ ∈ (0,1) and the positive scalar M;

2: Determine the integers t, r and q according to Lemma 6.3, (6.18) and (6.19), respectively;
3: Set t̄r(0) = 0;
4: while k ≥ 0 do
5: if Re{λqt̄r(k)} ≥ 0 then
6: Set σ(k+1) = σ ;
7: Set the attack sequence a(k+1) =CA∆x̂(k)+σ(k+1)MIt

m ;
8: else
9: Set σ(k+1) =−σ ;

10: Set the attack sequence a(k+1) =CA∆x̂(k)+σ(k+1)MIt
m ;

11: end if
12: Calculate the state estimation difference ∆x̂(k+1) according to (6.7);
13: Calculate t̄r(k+1) according to (6.21);
14: k = k+1;
15: end while

Proof. Let us prove the lemma by contradiction. Assume that Es,t = 0, ∀s ∈ {1, . . . , l̄},

∀t ∈ {1, . . . ,m}. That is, E =

[
0
Ē

]
where Ē ∈ C(n−l̄)×m is the sub-matrix forming by the

last n− l̄ rows of E. Then, the equation K = PE can be rewritten as follows:

K = PE =
[

Po Pc

][
0
Ē

]
= PcĒ.

The above equation implies that Ē is the solution of equation (6.12), which contradicts the
statement in Lemma 6.2 that equation (6.12) has no solution. The proof is now complete.

Before we present the necessary and sufficient condition under which the system (6.1)
with estimator (6.2) is insecure, a procedure for generating a certain sequence of FDI attacks
is outlined in Algorithm 6.1.

Theorem 6.1 Assume that the attacker is able to attack all communication channels, that is,
Ba = Im. The system (6.1) with state estimator (6.2) is insecure if and only if ρ(A)≥ 1.

Proof. (Sufficiency) We start by proving that, if ρ(A)≥ 1, the system (6.1) state estimator
(6.2) is insecure. According to Definition 6.1, we need to prove that there exists at least one
FDI attack sequence satisfying both (6.8) and (6.9) if ρ(A)≥ 1. In the following, we prove
that (6.8) and (6.9) are true under the attacks generated by Algorithm 6.1.
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According to Algorithm 6.1, it is known that

a(k+1) =CA∆x̂(k)+σ(k+1)MIt
m (6.14)

where σ(k+ 1) takes value on either σ or −σ with σ ∈ (0,1). It follows from (6.6) and
(6.14) that

∆z(k+1) = σ(k+1)MIt
m, (6.15)

from which we can easily see that ∥∆z(k+1)∥= σM < M, and this implies that condition
(6.9) is satisfied.

To show that the condition (6.8) is satisfied, we define vector t(k) = Q∆x̂(k) where
t(k) = [tT

1 (k), . . . , t
T
p (k)]

T with ti(k) ∈ Cni (i ∈ {1,2, . . . , p}). Based on (6.7), (6.11) and
Lemma 6.3, the dynamics of t(k) can be derived as follows:

t(k+1) = Jt(k)+QK∆z(k+1) = Jt(k)+QPE∆z(k+1)

= Jt(k)+E∆z(k+1).
(6.16)

Substituting (6.15) into (6.16) gives

t(k+1) = Jt(k)+σ(k+1)MEIt
m.

Define t̄(k) =
[
tT
1 (k), . . . , t

T
l (k)

]T
and t(k) =

[
tT
l+1(k), . . . , t

T
p (k)

]T
. Noting that J =[

Λ1 0
0 Λ2

]
, one has

t̄(k+1) = Λ1t̄(k)+σ(k+1)Md, (6.17)

where d =
[
Il̄,0l̄×(n−l̄)

]
EIt

m, i.e., vector d is formed by the first l̄ elements of the tth column
of matrix E. From Lemma 6.3, it is known that d ̸= 0.

Define d =
[
d1, . . . ,dl̄

]T
and

r =1≤ j≤l̄ (d j ̸= 0), (6.18)

that is, dr is the non-zero element of vector d with the maximal index. Since 1 ≤ r ≤ l̄, there
exists an integer q (1 ≤ q ≤ l) such that

q

∑
i=1

ni −nq < r ≤
q

∑
i=1

ni. (6.19)
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It follows from (6.17) that
t̄r(k+1)

t̄r+1(k+1)
...

t̄nq(k+1)

=


λq 1

λq
. . .
. . . 1

λq




t̄r(k)
t̄r+1(k)

...
t̄nq(k)

+σ(k+1)M


1
0
...
0

 , (6.20)

where t̄ j(k) is the jth element of vector t̄(k), j ∈ {r,r+1, . . . ,nq}.
Noting the initial condition t̄r+1(0) = 0, it can be easily derived from (6.20) that t̄i+1(k) =

0 and
t̄r(k+1) = λqt̄r(k)+σ(k+1)M, (6.21)

and therefore

|t̄r(k+1)|2 = |λq|2|t̄r(k)|2 +σ
2(k+1)M2 +2σ(k+1)MRe{λqt̄r(k)} (6.22)

According to Algorithm 6.1, it is known that σ(k+1)Re{λqt̄i(k)} ≥ 0 and σ2(k+1) =
σ2. Furthermore, noticing that |λq| ≥ 1, we have

|t̄r(k+1)|2 ≥ |λq|2|t̄r(k)|2 +σ
2M2 ≥ |t̄r(k)|2 +σ

2M2. (6.23)

Based on the inequality |t̄r(k+1)|2 ≥ |t̄r(k)|2 +σ2M2 and the initial condition t̄r(0) = 0,
it can be inferred that |t̄r(k+1)|2 ≥ (k+1)σ2M2, which implies that limk→∞ |t̄r(k+1)|= ∞

and therefore limk→∞ t(k+1) = ∞. Since t(k+1) = Q∆x̂(k+1), it can be deduced that at
least one component of vector ∆x̂(k+ 1) is unbounded, and limk→∞ ∥∆x̂(k+ 1)∥ = ∞. To
this end, the condition (6.8) is satisfied and we finally reach the conclusion that the system is
insecure under the attacks generated by Algorithm 6.1 if ρ(A)≥ 1.

(Necessity). To prove the necessity, we just need to show that the system P in (6.1)
with estimator E in (6.2) is secure if matrix ρ(A)< 1. Again, let us prove by contradiction.
Assume that the system (6.1) with estimator (6.2) is insecure, that is, there exist attacks
sequences satisfying (6.8) and (6.9). It follows from (6.9) that ∆z(k+1) is norm-bounded.
Since ρ(A)< 1, based on the equation ∆x̂(k+1) = A∆x̂(k)+K∆z(k+1), it can be inferred
that ∆x̂(k+1) is norm-bounded as well. That is, condition (6.8) is violated and the proof is
now complete.

Remark 6.1 In the main results of [119, 97], it has been stated that the necessary and
sufficient conditions for the state error by FDI attacks to be unbounded are that a) the system
matrix A should be unstable; and b) at least one eigenvector v corresponding to the unstable
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system mode satisfies v ∈ Qoa where Qoa is the controllability matrix associated with the pair
(A−KCA,KBa). Note that Condition b) has been removed in Theorem 6.1 of this chapter
and we will use a simple example to show that the removal of such a condition is deemed to
be necessary.

Example 1: Consider the system given in (6.1) where the parameters are given by

A =

[
1.5 0
0.6 0.8

]
, W =

[
1 0
0 1

]
, C =

[
0 1

]
, Q = 1,

and the linear estimator is given in (6.2) with estimator gain K =
[
1.4 1.2

]T
.

Since matrix A has an unstable eigenvalue λ = 1.5 with eigenvector p =
[
4 −3

]T
, it

is known from Theorem 6.1 that the system is insecure. A specific FDI attack sequence is
generated according to Algorithm 6.1, where the parameters are chosen as σ = 0.1,M = 2.
It can be found from Fig. 6.2 that the norm of estimation error ∥∆x̂(k)∥ tends to unbounded
while the norm of residual error ∥∆ẑ(k)∥ is always less the prescribed scalar M.

On the other hand, from (6.7), the dynamics of estimation error ∥∆x̂(k)∥ can be given by

∆x̂(k+1) = (I −KC)A∆x̂(k)+Ka(k), ∆x̂(0) = 0, (6.24)

where (I −KC)A =

[
0.66 1.12
−0.12 −0.16

]
. Through straightforward calculation, it can be found

that ∆x̂(k) ∈ span
{[7

6

]}
, and therefore the eigenvector p is not a reachable state of the

dynamics system (6.24). According to the main results in [119, 97], the system is secure but
this is not actually the case as evidenced from the simulation results.

6.3.2 Case 2: Ba ̸= Im

In this case, we assume that the attacker is able to inject false data to only a part of (rather
than all) communication channels, i.e., Rk{Ba} < m. It can be easily seen from Theorem
6.1 that, if ρ(A) < 1, the system (6.1) with estimator (6.2) is secure no matter how many
communication channels the attacker could hijack. As such, in this subsection, we only
consider the case when ρ(A)≥ 1.

The following lemmas are useful in subsequent analysis.

Lemma 6.4 [12] Let A ∈ Cn×m, B ∈ Cm×l and C ∈ Ck×n. Assume that B has full row rank
and C has full column rank. Then, Rk{AB}= Rk{A}= Rk{CA}.
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Fig. 6.2 The estimation and residual differences under FDI attacks
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Lemma 6.5 If the system P in (6.1) with estimator E in (6.2) is insecure, then 1) the attack
sequence {ak} leading to the insecurity is unbounded, and 2) the state estimation difference
∆x̂(k) can be represented in the following form:

∆x̂(k) = Poζ1(k)+Pcζ2(k) (6.25)

for some ζ1(k)∈Cl̄ satisfying limk→∞ ζ1(k) = ∞ and some bounded vector sequence ζ2(k)∈
Cn−l̄ , where Po and Pc are defined in (6.11).

Proof. Assume that the attack sequence {ak} leading to the insecurity is bounded. Noting
that ρ((I −KC)A) < 1, it follows from the dynamics of ∆x̂(k) in (6.7) that ∆x̂(k + 1) is
bounded. According to Definition 6.1, the boundedness of ∆x̂(k+1) contradicts the insecurity
assumption of this lemma. As such, the attack sequence {ak} is unbounded.

Next, we proceed to prove that ∆x̂(k) can be represented as (6.25) and we use the same
notations for P,Q, Po, Pc, Qo and Qc as defined in (6.10)-(6.11). Similar to the proof of

Theorem 6.1, we define vector t(k) , Q∆x̂(k) and write t(k) =
[
tT
1 (k), . . . , t

T
p (k)

]T
with

ti(k) ∈ Cni (i ∈ {1,2, . . . , p}). According to (6.11), the dynamics of t(k) can be given by

t(k+1) =

[
t̄(k+1)
t(k+1)

]
=

[
Λ1 0
0 Λ2

][
t̄(k)
t(k)

]
+

[
QoK
QcK

]
∆z(k+1), (6.26)

where t̄(k),
[
tT
1 (k), . . . , t

T
l (k)

]T
and t(k),

[
tT
l+1(k), . . . , t

T
p (k)

]T
.

As ρ(Λ2)< 1 and ∆z(k) is norm-bounded, it can be inferred that t(k) is norm-bounded.

On the other hand, it is easy to see that ∆x̂(k) = Pt(k) =
[

Po Pc

][ t̄(k)
t(k)

]
= Pot̄(k)+Pct(k).

Since Pct(k) is bounded and limk→∞ ∆x̂(k) = ∞, it follows that limk→∞ t̄(k) = ∞ and therefore
expression (6.25) holds for ζ1(k) = t̄(k) and ζ2(k) = t(k), which completes the proof.

Theorem 6.2 For the system P in (6.1), assume that ρ(A) ≥ 1, Rk{CPo} = r and the
attacker is able to inject FDI attacks to a part of (but not all) communication channels, i.e.,
Rk{Ba} < m. The system P in (6.1) with estimator E in (6.2) is secure if the following
condition holds:

Rk
{
(I −Ba)CPo

}
= r. (6.27)

Proof. Again, we prove the theorem by contradiction. Suppose that the system is insecure
when condition (6.27) holds. It follows from Lemma 6.5 that (6.25) is true. Furthermore,
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noting that ∆z(k+1) is bounded, it follows from (6.6) and (6.25) that

a(k+1) =CA∆x̂(k)+∆z(k+1) =CPoΛ1ζ1(k)+O(k), (6.28)

where O(k),CPcΛ2ζ2(k)+∆z(k+1) which is obviously bounded.
Define matrix Φ =

[
φ1, . . . ,φl̄

]
=CPo where the vector φi is equal to the ith column of

the matrix CPo (1 ≤ i ≤ l̄). Since Rk{CPo}= r, there exists a matrix Ψ =
[
φi1,φi2, . . . ,φir

]
satisfying Rk{Ψ} = r where 1 ≤ i1 < i2 ≤ . . . < ir ≤ l̄. Moreover, the matrix CPo can be
represented as CPo = ΨX where X ∈ Cr×l̄ . For matrix X , Xs = Is

l̄ , s ∈ {i1, . . . , ir}, where Xs

represents the sth column of matrix X . It can be easily found that Rk{X}= r, i.e., matrix X
has full row rank. As a result, (6.28) can be represented as follows

a(k+1) = Ψξ (k)+O(k), (6.29)

where ξ (k) = XΛ1ζ1(k).
According to Lemma 6.5, the attack sequence {a(k)} is unbounded, the sequence {O(k)}

is bounded, and therefore the vector sequence {ξ (k)} is unbounded.
Left-multiplying both sides of (6.29) by I −Ba gives rise to

(I −Ba)a(k+1) = (I −Ba)Ψξ (k)+(I −Ba)O(k),

and then it follows from a(k+1) = Baa0(k+1) and (I −Ba)Ba = 0 that

(I −Ba)Ψξ (k)+(I −Ba)O(k) = 0. (6.30)

Since (I−Ba)CPo = (I−Ba)ΨX and X is full row rank, it is known from Lemma 6.4 that
Rk
{
(I−Ba)Ψ

}
= Rk

{
(I−Ba)ΨX

}
= Rk

{
(I−Ba)CPo

}
. Note the fact Rk

{
(I−Ba)Ψ

}
= r

in (6.27) or, in other words, the matrix (I−Ba)Ψ has full column rank. As limk→∞ ξ (k) = ∞,
we have limk→∞(I−Ba)Ψξ (k) = ∞ that contradicts (6.30), and the proof is now complete.

It is known From Theorem 6.1 that the system P in (6.1) with estimator E in (6.2) is
insecure when ρ(A) ≥ 1. In this case, it is important to ensure the security by protecting
some communication channels. The following corollary provides an efficient method on
which communication channels need to protected.

Corollary 6.1 For the system (6.1), assume that ρ(A)≥ 1 and Rk{CPo}= r. The system P

in (6.1) with estimator E in (6.2) is secure if
1) r communication channels are protected;
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2) Rk
{[

ϕT
i1 , · · · ,ϕ

T
ir

]T }
= r, where i1, . . . , ir are the indexes of the protected communi-

cation channels and ϕ j is the jth row of matrix CPo (i1 ≤ j ≤ ir).

Proof. Since the communication channels i1, . . . , ir are protected (i.e., free from cyber-
attacks), according to the definition of matrix Ba, it is known that γi1 = . . . = γir = 0 and

(I −Ba)CPo =
[
γ1ϕT

1 , . . . ,γmϕT
m

]T
.

On one hand, Rk
{[

ϕT
i1 , · · · ,ϕ

T
ir

]T }
= r implies that Rk

{
(I−Ba)CPo

}
≥ r. On the other

hand, we have Rk
{
(I −Ba)CPo

}
≤ Rk{CPo}= r. As a result, Rk

{
(I −Ba)CPo

}
= r and it

follows from Theorem 6.2 that the system (6.1) with state estimator (6.2) is secure, which
completes the proof.

Remark 6.2 It is clear that Rk{CPo} = r ≤ l̄ and it can be found from (6.11) that l̄ is the
number of unstable eigenvalues of matrix A (counted up to multiplicity). As such, Corollary
6.1 implies that the number of communication channels that should be protected is not more
than the number of unstable eigenvalues of matrix A (counted up to multiplicity).

6.4 Simulation Results

In this section, we consider the state estimation system of the three-bus system described in
the simulation section of Chapter 5. For the 3-bus test system, we choose the state x(k) as

x(k) =
[
xr,1(k) xr,2(k) xr,3(k) xi,1(k) xi,2(k) xi,3(k)

]T
where xr,l(k) and xi,l(k) represent the real and imaginary parts of voltage of the lth bus,
respectively, then the system is modelled as (3.1) with parameters A = diag6{1.0}, B =

diag6{0.02}, W (k) = diag6{0.012} and R(k) = diag10{0.12}. The trend

u =
[
0,−0.008,0.02,−0.026,−0.01,−0.014

]
. Furthermore, assume that the initial voltages of all buses are at flat start, that is, xr,l(0) = 1
p.u, xi,l(0) = 0 for all l = 1,2, . . . ,3.

The values of branch parameters are the same as the ones in [15]. We assume that each
PMU measurement either one bus voltage or one branch current. Three PMUs measure the
voltages at bus 1,2 and 3, and two PMUs measure the current at line 1-2 and 3-1. Each PMU
send the measurements to the estimator using its own communication channel. A stationary
Kalman filter is employed in the remote estimator and a χ2 fault detector is employed as
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Fig. 6.3 The generated FDI attacks

well. Our purpose is to 1) analyse the security of the system, and 2) protect the system from
cyber-attacks if it is insecure.

It can be computed that the eigenvalues of system matrix are all 1.0. According to
Theorem 6.1, the estimation system of the power grid is insecure. To confirm this conclusion
via simulation, a specific deceptive FDI attacks sequence is generated according to Algorithm
6.1 where the parameters are chosen as σ = 0.1,M = 2. Fig. 6.3 shows the generated FDI
attack sequence {a(k)}.

Fig. 6.4 depicts the state estimation difference ∆x̂(k) and the estimation residual difference
∆ẑ(k) under the designed attack sequences {a(k)}, respectively. From Figs. 6.3-6.4, it can be
seen that the sequence {∆x̂(k)} diverges to ∞ while the sequence {∥∆ẑ(k)∥} is always less
the prescribed scalar M. Here, the estimated state of the 3-bus system under the designed
FDI attacks deviates significantly from its nominal one but this cannot be detected by the χ2

fault detector. In other words, the state of the power gird cannot be tracked at all under the
attacks by the adversary.

Next, let us consider how to protect the system from cyber-attacks. It can be computed
that Rank(CPo) = 6, according to Corollary 6.1, it is known that the state estimate system of
the power grid is secure if the communication channel between the three PMUs that measure
bus voltages and the estimator is protected.
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Fig. 6.4 The estimation and residual differences under FDI attacks
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6.5 Conclusion

In this chapter, we have considered the security issues in state estimation of power grids,
where the adversary can inject false data into the communication channels between PMUs and
the state estimator in a remote control centre. For the case that the adversary can compromise
all communication channels, a necessary and sufficient condition has been derived under
which the estimation error caused by the attacks is unbounded all the time. For the case
that the adversary can only compromise a part of the communication channels, a sufficient
condition ensuring the security is derived as well. Moreover, a criterion on protecting a
sufficient number of channels such that the estimation error is kept bounded under FDI
attacks has been proposed. A simulation example has been proposed to demonstrate the
usefulness of the developed results and algorithms.





Chapter 7

Conclusions and Future Research

In this chapter, we first summarize our work in this thesis and then point out some directions
of further research that follow from this thesis.

7.1 Concluding Remarks

The unconventional measurements pose great challenges to the state estimation program
of power grids. The inability of processing mixed (RTU and PMU) measurements makes
the traditional state estimation method outdated. The disregard of incomplete information
in measurement data degrades the estimation performance. The vulnerability of the state
estimation scheme exposes itself to cyber-attacks.

In this thesis, we propose a series of new state estimation methods. Specifically, consider-
ing of the missing measurements, a novel EKF state estimator is designed, in which the PMU
measurements are incorporated as well (Chapter 3); an explicit model for the power grid with
quantized nonlinear measurement is proposed, and based on the model a recursive estimation
algorithm is developed for the system with consideration of quantization effects (Chapter 4);
an event-based state estimator is designed which could maintain the estimation performance
under limited communication resources (Chapter 5); the cyber-security of the DSE scheme
in power grids is examined and the corresponding system protection scheme against FDI
attacks is developed (Chapter 6). Next, we summarise the research results presented in each
of these chapters.

Chapter 3 presents a hybrid EKF and PSO algorithm which can be used for state estima-
tion of power grids. In consideration of the missing traditional measurements, a novel EKF
estimator is designed for the power system. The PMU measurements is incorporated in the
designed EKF estimator via the characterization of a set of inequality constraints. The con-
strained state estimation problem is transformed to a constrained optimization problem. Then,
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the PSO algorithm together with the penalty function is employed to solve the constrained
optimization problem. Simulations confirm the effectiveness of the propose method.

Chapter 4 presents a recursive dynamic state estimation algorithm for power grids. The
system model with quantized RTU and PMU measurements is first proposed. In consideration
of the quantization effect of nonlinear measurement, both the linearisation and quantization
errors is represented in terms of norm-bounded uncertainty matrices. Then, in the frame of
robust estimation, a recursive filter is designed to guarantee that, despite the uncertainties
existing in the derived model, the estimation error covariances are always less than a finite
upper bound. Furthermore, the filter gain is designed such that the upper bound is minimized.
Simulations illustrate the performance of our proposed algorithm. Higher estimation accuracy
can be achieved with our algorithm than that from the traditional EKF algorithm, which has
confirmed the effectiveness of the propose filter algorithm.

In Chapter 5, the joint input and state estimation problem is considered for power grids.
For the sake of reducing the PMU data transmission rate, an event-based transmission scheme
is proposed, with which the current measurement is released to the estimator only when
the difference from the previously transmitted one is greater than a prescribed threshold.
The purpose of this chapter is to design an event-based recursive input and state estimator
such that the estimation error covariances have guaranteed upper bounds at all times. The
estimator gains are calculated by solving two constrained optimization problems and the
upper bounds of the estimation error covariances are obtained in form of the solution to
Riccati-like difference equations. Special efforts are made on the choices of appropriate
scalar parameter sequences in order to reduce the upper bounds. In the special case of linear
time-invariant system, sufficient conditions are acquired under which the upper bound of the
error covariance of the state estimation is asymptomatically bounded. Numerical simulations
are conducted to illustrate the effectiveness of the proposed estimation algorithm.

In Chapter 6, the security issue in the dynamic state estimation problem for power
grids is investigated. The communication channels between the meters of PMUs and the
remote estimator in the control centre are vulnerable to attacks from malicious adversaries.
The FDI attacks are considered. We aim to find the so-called insecurity conditions under
which the estimation system is insecure in the sense that there exist FDI attacks that can
bypass the anomaly detector but still lead to unbounded estimation errors. In particular,
a new necessary and sufficient condition for the insecurity is derived in the case that all
communication channels are compromised by the adversary. Furthermore, a specific attack
algorithm is proposed with which the estimation system is insecure. Moreover, for the
insecure system, we propose a system protection scheme through which only a few (rather
than all) communication channels require protection against FDI attacks. A simulation
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example is utilized to demonstrate the usefulness of the proposed conditions/algorithms in
the secure estimation problem for power grids.

7.2 Recommendations for Future Research

Although we have presented several new state estimation algorithms that are capable to deal
with the challenges caused by unconventional measurements in power grids, the work may
be further developed in a number of ways:

• Two specific network-induced incomplete information phenomena, namely, the missing
measurements and quantized measurements, have been considered in Chapter 3 and
Chapter 4, respectively. In the communication networks of practical power grids, some
other phenomena such as time delay, time-varying sampling intervals may emerge as
well, resulting incomplete information of measurements received by the control centre.
Moreover, different incomplete information phenomena may emerge simultaneously.
For example, due to traffic congestion in the networked environment, some data
packets may be transmitted successfully but with a time delay and some others may be
totally lost. As such, one future research direction is to consider the different kinds of
incomplete information phenomena in a unified framework.

• In this thesis, all the developed state estimators works in the traditional centralized
estimation manner. One of the future research directions is the decentralized DSE
of power grids with unconventional measurements. Compared with the centralized
estimation algorithm, the decentralized one is much faster and its speed remains
independent of the size of the system[145]. However, the limited bandwidth of
communication networks may cause network-induced phenomena in the decentralized
DSE as well. Recently, some theoretical results on distributed dynamic state estimation
problem under limited communication bandwidth have been obtained in [124, 41].
How to extend these theoretical results to the practical application of DSE design in
power grids will be the next topic in our future research.

• Building dynamics model of the power grid is an indispensable part of the DSE scheme.
Though several effective models have been proposed and applied, there is still a lack
of rigorous validations to decide whether the proposed models are optimal or not.
Moreover, in almost all system models used in DSE schemes, it is assumed that 1)
the system state variables are uncoupled such that a diagonal transition matrix is used,
and 2) the system noise is a Gaussian white noise. Are these assumptions reasonable?
There is a need to justify the models through extensive experimental design and data
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analysis. In this regard, model verification of the DSE scheme is another future research
direction.

• Since the DSE is a model-based estimation scheme, its performance relies on the
accuracy of real-time system parameters. In this thesis since we focus on the im-
pact of unconventional measurements on the estimation performances, we adopt the
conventional assumption that all system parameters keep constant. In fact, system
parameters may be time-varying and the constant values of system parameters stored
in the database may be incorrect [15]. In order to further improve the estimation
performance, there is a need to jointly estimate the parameters and state of the power
grids in real time, which could be another future research direction.

• Though the cyber-security in state estimation of power grids has attracted lots of
research attentions, it is still a relatively young research area. Up to now, almost all
research results are based on the approximately linearised state estimation model of
power grids. However, the countermeasure schemes developed using the approximate
model may fail to protect the state estimation program in practical power grids due to
the inherent difference between the approximate and the exact models. To shorten the
gap between current research and practical application, future researches should be
done to re-examine the cyber-secuity of state estimation for power grids based on the
exact nonlinear model.
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