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Abstract
Sequential panel selection methods (spsms — procedures that sequentially
use conventional panel unit root tests to identify I(0) time series in panels)
are increasingly used in the empirical literature. We check the reliability of
spsms by using Monte Carlo simulations based on generating directly the
individual asymptotic p values to be combined into the panel unit root tests,
in this way isolating the classification abilities of the procedures from the
small sample properties of the underlying univariate unit root tests. The
simulations consider both independent and cross-dependent individual test
statistics. Results suggest that spsms may offer advantages over time series
tests only under special conditions.
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1 Introduction

Panel unit root (ur) tests are powerful tools to check the global null hypoth-
esis that all the N series in a panel are I(1), but are unsuitable to classify
individual time series into nonstationary and stationary ones. With this
aim, Chortareas and Kapetanios (2009) proposed using a sequential panel
selection method (spsm), based on the following steps:

1. Apply the panel ur test. If the global null is not rejected, do not reject
the I(1) hypothesis for all the series in the panel: the procedure stops.
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2. If the global null is rejected then remove from the panel the series
with the minimum individual Dickey-Fuller (df) t-statistic: classify
the removed series as I(0).

3. Go to 1.

The result is a partition of the panel into two sets of I(0) and I(1) time
series.

The procedure was originally conceived using df tests jointly with Im
et al.’s (2003) panel ur test, but different spsms can be obtained using dif-
ferent tests. However, the chosen panel test should be able to reject even in
the presence of only one I(0) series and should not be based on N →∞, given
that it is applied sequentially over a decreasing number N of series. Further-
more, it should preferably be built by combining individual test statistics or
p values, so to be consistent with the selection criterion used to eliminate
from the panel one series at each iteration. For these reasons, beside Im
et al.’s (2003) test, p value combination tests (Choi, 2001; Demetrescu et al.,
2006) and Hanck’s (2013) intersection test are natural candidates to be used
within spsms. We label the resulting procedures as i-spsm, c-spsm, d-spsm,
and h-spsm, respectively.

In this paper we investigate the performance of spsms as classification de-
vices, as compared to standard time series ur tests and to Hommel’s (1988)
multiple testing procedure.1 In particular, we intend to study the behaviour
of the sequential procedures under the best theoretical conditions, so to ob-
tain simulated upper bounds of the classification ability of these procedures.
Other approaches have been recently proposed in the literature to deter-
mine the stationarity of individual time series in panels (see, e.g., Ng, 2008;
Hanck, 2009; Moon and Perron, 2012; Smeekes, 2015); however, these proce-
dures cannot be strictly labelled as spsm (in the sense used by Chortareas
and Kapetanios, 2009) and cannot be analyzed using our simulation method,
specifically tailored on Chortareas and Kapetanios (2009).

We complement and extend Chortareas and Kapetanios’s (2009) analysis
along five directions:

1. we study the performance of the procedure using four different panel
ur tests;

2. we use local-to-unit root alternatives;

3. our analysis covers the cases of independent and dependent test statis-
tics;

1Hommel’s procedure is a closed testing procedure related to Hanck (2013).
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4. we focus on the classification performance of the procedure in a way
that is not influenced by the finite-sample performance of the underly-
ing individual ur tests;

5. we summarize the simulation results using roc graphs, consistently
with the literature on discrete classifiers.

Two by-products of this research may also be of interest to many re-
searchers:

1. we offer a viable way to simulate dependent unit root and near-unit
root test statistics and p values;

2. we report a response surface to compute the critical values of the
t-barNT test for any N ∈ [2, 200] in this way generalizing Im et al.
(2003, Table 2).

2 Monte Carlo design

Since we focus on procedures that use panel ur tests based on p value com-
binations or on averaged test statistics, rather than simulating the individ-
ual time series constituting the panel, we directly simulate the asymptotic
(T →∞) individual df t statistics and p values under the ur null and under
selected local alternatives. The simulated t statistics and p values are then
used as the fundamental input to compute the panel ur tests outcomes. In so
doing, the classification performance of the different procedures depends only
on the procedures’ properties, not on the specification and the finite-sample
properties of the underlying individual ur tests. For this reason, the simu-
lation outcomes can be interpreted as the best possible results attainable by
each procedure: in no practical circumstance the examined procedures can
be expected to do better on average than in our simulations.

The series in the panel are assumed to obey

yi,t = %iyi,t−1 + εi,t (1)

%i = exp
(
−γi
T

)
≈ 1− γi

T
. (2)

with i ∈ NN , t ∈ NT , and Nk := {1, 2, . . . , k}. Under the global null, γi = 0
∀i ∈ NN ; under the alternative, γi > 0 ∀i ∈ NH1 ⊆ NN .

The simulation algorithm can be divided into 6 steps:
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1. since I(0) and I(1) series are asymptotically uncorrelated, define the
asymptotic correlation matrix among the test statistics as

Σ =

(
ΣN1 ON1,N0

ON0,N1 ΣN0

)
where ONj ,Nk

(j, k ∈ {0, 1}, j 6= k) are null matrices and ΣNj
(j ∈

{0, 1}) is

ΣNj
=


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

...
. . .

...
...

ρ ρ ρ . . . 1

 ;

2. draw N values n from the N -variate normal N(0,Σ);

3. draw N uniform variables u as u = Φ(n) and partition u as u =
(u′1,u

′
0)
′, where u1 and u0 have N1 and N0 elements;

4. drawN1 test statistics under the alternative hypothesis as s1 = F−11 (u1)
and N0 test statistics under the null as s0 = F−10 (u0), where F1(·) and
F0(·) are the cdfs of the test statistics under the alternative and under
the null hypothesis, respectively;

5. generate the p values under the alternative as F0(s1) and set the p values
under the null as u0;

6. use the simulated individual p values and test statistics to carry out all
the panel ur tests.

After defining the desired dependence among the test statistics2 (step 1),
steps 2–4 simulate dependent asymptotic ur and near-ur test statistics us-
ing a Gaussian copula with Dickey-Fuller and Phillips marginals (see, e.g,
Asmussen and Glynn, 2007, p. 53). Then, step 5 derives the p values asso-
ciated to the test statistics under the alternative (those under the null are
uniformly distributed and are derived in step 3).

In order to solve steps 4 and 5, we simulate 200,000 values of the test
statistics under the null and under each of the local alternatives and use the
estimated cdf’s F̂0(·) and F̂1(·). Under the null the t statistics are asymptot-
ically distributed according to the df distribution, and their simulation rises

2By simulating correlated individual test statistics we allow for rather general forms of
dependence: any form of dependence that induces the presence of cross-correlation among
the time series implies correlation of the individual test statistics and p values.
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no special difficulty (see, e.g., Hatanaka, 1996, Chapter 7). The asymptotic
distribution of the df t statistic under the local-to-unit root alternative can
be written in terms of functionals of the Ornstein-Uhlenbeck process that we
simulate following Chan (1988), method II.

Since the critical values of Im et al.’s (2003) t-barNT test depend on
N , in order to apply the test recursively we need the critical values for
all possible values of N ∈ {1, . . . , Nmax}. Therefore, we simulate t-barN∞
under the null over 50,000 replications with N ∈ {1, 2, . . . , 10, 15, 20, . . . ,
100, 120, 140, . . . , 200}, compute the 100α-th percentile of each simulated dis-
tribution, cvN,α, and estimate a response surface of the form

cvN,α = β0 + β1 ln(N) + β2 ln(N)2 + β3 ln(N)3 + ξN,α . (3)

The 5% critical values are computed as

ĉvN,0.05 = β̂0 + β̂1 ln(N) + β̂2 ln(N)2 + β̂3 ln(N)3

≈ −2.851 + 0.597 ln(N)− 0.108 ln(N)2 + 0.007 ln(N)3 (4)

(R2 = 0.9998)

for any N ∈ {1, . . . , 200}: (4) generalizes and extends Table 2 in Im et al.
(2003).

All experiments are simulated over 5,000 replications fixing the nominal
significance level at α = 0.05, the number of time series N ∈ {10, 20, 40, 80},
and the fraction of stationary alternatives N1/N ∈ {0.20, 0.50, 0.80}. We
consider four distinct local alternatives with γ ∈ {1, 5, 10, 20}, and the cor-
relation among individual test statistics is ρ ∈ {0, 0.4, 0.8}. In order to
maintain the paper within a reasonable length, we consider only individual
df tests with constant and no trend.

3 Monte Carlo results

We report the simulation results on the roc space (for an introduction to roc
curves see, e.g, Fawcett, 2006; Swets and Pickett, 1982, chapter 1, and the
supplementary material).3 Standard quantities that are routinely computed
in order to check classification performance are accuracy (acc, the fraction of
correctly classified items), true positive rate (tpr, an estimate of the proba-
bility that a positive instance is correctly classified as positive), false positive
rate (fpr, an estimate of the probability that a negative instance is mistak-
enly classified as positive), precision (prec, the fraction of correctly classified

3Theoretical issues that can help interpreting the results are offered in the supplemen-
tary material.
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DF Hommel C-SPSM H-SPSM I-SPSM
true positive rate 0.3319 0.0677 0.1884 0.0962 0.3244
false positive rate 0.0501 0.0037 0.0225 0.0053 0.1006
accuracy 0.6406 0.5348 0.6071 0.5520 0.6372
average recall 0.6409 0.5320 0.5829 0.5455 0.6119

Table 1: Average classification statistics over all the experiments.

positives among the items classified as positive), and average recall (avrec,
the average of the tpr and the tnr, the true negative rate, that is an estimate
of the probability that a negative instance is classified as negative). Accuracy
is a commonly used indicator but, contrary to roc curves (which are based
on the tpr and fpr), is not invariant to changes in the composition of the
panel in terms of I(1) and I(0) series, and tends to be misleading when the
class distribution is unbalanced (which is often the case in the framework we
are analyzing: see, e.g., Swets and Pickett, 1982; Fawcett, 2006). Therefore,
we urge the reader to consider the analysis of the simulation results in terms
of the more general roc curves. In fact, by using roc graphs we can jointly
compare not only the tpr and fpr, but also the prec and avrec of each pro-
cedure. An optimal classifier would be represented on the roc space by the
point with coordinates fpr = 0 and tpr = 1. However, in general the ranking
among classifiers depends on the researcher’s loss function, which may weight
differently the various performance measures. For example, a criterion could
be that of fixing the maximum “acceptable” fpr, fprmax,

4 and to chose the
classifier with the highest tpr among those with fpr ≤ fprmax. Other pos-
sibilities could be those of preferring the classifier with the highest avrec or
the highest prec (in the latter case one might probably prefer procedures
that control the family-wise error rate, fwer, such as Hommel’s). Finally,
if the False Discovery Rate (fdr, Benjamini and Hochberg, 1995) enters the

researcher’s preferences, then one might observe that F̂DR := 1 − p̂rec, so
that one might prefer the classifier with the highest tpr among those whose
prec is at least equal to the threshold that ensures that the fdr is below the
desired level.

A quick preview of the simulation results is offered in Table 1, which
reports the main average classification indicators over all the experiments
carried out in the paper. The table highlights that the spsms do not show on
average a superior classification ability with respect to standard time series
tests. On the other hand, closed multiple testing procedures are not partic-

4In what follows we consider acceptable fpr ≈ 0.05, much less so fpr > 0.10.
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Figure 1: ρ = 0, N1/N = 0.2. Larger symbols correspond to larger panels
with N ∈ {10, 20, 40, 80}. The dashed lines are precision isometrics. The
lowest precision isometric coincides with the random guessing line. The dot-
dashed line connects classifiers with the same average recall as the worst
case among the standard df. The broken solid line is the roc convex hull.
� = c-spsm; 4 = i-spsm; © = h-spsm; + = df; × = Hommel.

ularly well suited for classification purposes, unless one wishes to control the
fwer. Of course, the results vary across experiments, as we can appreciate
from the analysis of the roc curves plotted in Figures 1–4.

We consider first the case ρ = 0. To save space, we report only the results
relative to N1/N ∈ {0.2, 0.8}.5

The i-spsm and c-spsm procedures have very similar performances. When
the fraction of stationary time series is small (Figure 1), either procedure does
not provide advantages over the standard time series approach. Irrespective
of the distance of the local alternative from the ur null hypothesis, these two

5Results with N1/N = 0.5 are available in the supplementary material.
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Figure 2: ρ = 0, N1/N = 0.8. See Figure 1 for the explanation of the different
symbols.

procedures tend to be sub-optimal, especially for small N . When γ = 20, the
effect of panel dimension (N) on the classification performance is evident. In
this case, the i-spsm and the c-spsm can reach higher prec than univariate
df tests for large panels, but with lower tpr and avrec. The h-spsm and
Hommel’s method are very conservative and of scarce practical use under
these conditions: in a classification perspective, control of the family-wise
error rate is excessive, giving rise to an overall weak classification criterion.

When most of the series in the panel are I(0) (Figure 2) the results are
more articulated. When the alternative hypothesis is very close to the null
(γ = 1), then no method is significantly better than random guessing. When
the null and the alternative hypotheses are more separated (γ = 5, γ = 10),
both the tpr and the fpr of the i-spsm and of the c-spsm increase with N .
In particular, the fpr exceeds 0.15 for γ = 10 and N > 40. On the other
hand, when γ = 10, and especially for medium to large panels, the i-spsm
and the c-spsm have larger avrec than the classification based on standard
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Figure 3: ρ = 0.8, N1/N = 0.2, � = d-spsm. See Figure 1 for the explanation
of the remaining symbols.

df tests: provided one is willing to accept larger fpr and smaller prec, the
two spsm procedures may offer some advantages in terms of classification
over the standard time series tests. When the hypotheses are well separated
(γ = 20), then the fpr reduces, but since the power of the df test increases,
there is no real gain in using either the i-spsm or the c-spms, especially in
the presence of relatively small panels (N ≤ 20).6

The other procedures remain very conservative. In fact, the h-spsm and
the related closed testing procedure (Hommel, 1988) never reach a better
result than a half of the tpr that can be attained using conventional df tests,
with only a very limited increase in prec.

When ρ 6= 0, the panel ur tests proposed by Choi (2001) and Im et al.
(2003) are biased. We substitute the c-spsm with the d-spsm, based on

6The observed behaviour is not related to the effect described in Hanck (2008): see
supplementary material.
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Figure 4: ρ = 0.8, N1/N = 0.8, � = d-spsm. See Figure 1 for the explanation
of the remaining symbols.

Demetrescu et al. (2006), in order to take into account dependence in the
p value combination test, and we leave the i-spsm for reference. The h-spsm
and Hommel’s procedure remain valid in the presence of positively dependent
test statistics. To save space, we report only the results relative to ρ = 0.8
and N1/N ∈ {0.2, 0.8}.7

When the fraction of stationary time series is small (Figure 3), apart
from the expected large values of the fpr for the i-spsm, the results are
qualitatively similar to those obtained under independence. However, the
tpr and prec of the panel-based classification procedures are lower than those
obtained in the presence of independent test statistics.

When the fraction of stationary series is large (see Figure 4) the excess
of rejections disappears, except of course for the i-spsm. This is due to the

7Results with ρ = 0.4 and with N1/N = 0.5 are are available in the supplementary
material.
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fact that dependence makes the p values under the null and under the alter-
native more clearly separated. If the null and the alternative are sufficiently
separated, the d-spsm can reach higher prec than the classification based
on standard df tests, but at the cost of lower tpr and avrec. The i-spsm,
which is based on a biased panel test, can have larger avrec when γ = 5 or
γ = 10. However, this is obtained at the cost of huge increases in the fpr
and lower prec.

Summarizing, our results show that spsms are sensitive to the compo-
sition of the panel in terms of cross-section dimension, the fraction of time
series under the null and under the alternative, the distance of the null and
the alternative, and the existence and strength of dependence across indi-
vidual tests. spsms might offer advantages, in terms of avrec, over standard
time series tests only in a few special cases. However, in general it is prob-
lematic to assess in advance if an empirical setting reflects the favourable
conditions under which spsms can be safely applied.

Given the general nature of our Monte Carlo analysis, we expect the
overall conclusion to remain unchanged if more powerful individual unit root
tests and/or different panel unit root tests are used.
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