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Abstract 

 

Many econometric analyses of commodity futures over the years have been performed 

using spot or front month contract prices. Using such daily prices without the consideration of 

the associated contract traded volumes is slightly erroneous because, in reality, traders will 

typically trade the ‘most liquid’ contract, that is, the contract with the largest average daily 

volume (ADV). The reason for this is in order to gain the best price when buying or selling. If 

this ‘true’ time series is to be considered, a mapping procedure is required to account for the 

price jumps at the time when a trader trades out of the expiring contract and enters the new front 

month contract. A key finding was that this effect was significant, irrespective of the size of the 

price jump, sometimes referred to as basis or roll and also due to the accumulated roll over a 

number of years corresponding to multiple contracts. It was also found that the mapping 

procedure has a significant effect on the time series and should hence always be employed if the 

realistic traded time series is to be considered. Given this phenomenon, algorithmically-traded 

commodities futures must necessarily employ such time series when creating metrics or 

considering an econometric analysis. 

The key findings include the importance of diversification in algorithmically-traded 

portfolios, utilising the AOM and PSI metrics. The mapping of data sets to create realistic ‘live-

traded’ time series was found to be significant, while the optimal day of roll over prior to 

contract expiry was found to be related to the trading volumes for certain commodities. Other 

key findings include the causalities and spillovers within the metals sector where various 

relationships are evident once the results were processed and analysed, both pre and post 

mapping. Interestingly, the key relationships including bidirectional volatility and shock 

spillovers between the four key metals existed when the unmapped data was used however, 

many of the feedbacks within these relationships was lost when the mapped data sets were 

considered. A significant finding was therefore the consistent differences in findings between 

mapped and unmapped data sets attributed to the optimisation or favourability of the models 

(whether econometric or algorithmic). This is due to the unmapped data including roll or basis 

(which the models are fitted to) taking into account the roll or basis and utilising them in finding 

relationships between data sets. In the mapped data set (the time series seen by traders) the roll 

or basis is accounted for and hence the relationships found stand in real-time trading situations. 

The differences in the results show how the effect of mapping can be significant with unmapped 

data sets displaying results which will not exist in a real time traded time series.   
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Introduction 

RGZ Ltd. (a research company specialising in algorithmic trading) allowed us the use of 

their algorithm output to develop metrics with which to measure algorithm performance. The 

algorithms themselves are intellectual property of the company and cannot be revealed but all 

are based on the same model with 5 parameters (2 of which are significant), optimised on 

commodities futures and utilising a long/short strategy for each commodity over their 5 year 

back-tested period. Using this, the importance of diversification in such portfolios is analysed. 

The metrics are detailed in Chapter 1 and the diversification importance coupled with the 

metrics is proven to work with the use of correlation matrices. Algorithm output profit profiles 

from the Nixon algorithm (RGZ Ltd.) were used to analyse the benefits of diversification within 

many commodity and asset class sectors in order to generate a superior portfolio profile. Metrics 

developed were the algorithm optimisation metric (AOM) and the parameter sensitivity index 

(PSI); the former accounts for noise and stability in profit profiles and optimises algorithms and 

portfolios yielding superior return-risk characteristics, the latter measures the stability of a given 

algorithm’s parameters and proportional changes in profits with respect to each parameter. 

Comparing these portfolio profits with those of more standard portfolios, demonstrated the 

superiority of the developed metrics. Alignment of data was found to be a significant factor.  

Optimising a portfolio with unaligned data outputs leads to incorrect portfolio weightings and an 

erroneous profit profile on back-tested data. Correlations of prices and algorithmic returns were 

analysed showing the resultant dilution of correlation due to the effect of the strategy and the 

trading of security spreads.   

In Chapter 2 the importance of the timing of rollover is analysed with respect to the 

metrics developed and is supported by contract futures volumes data which links in well with 

Chapter 1. Considering daily commodity futures data for use in practical trading systems, a 

mapping procedure is employed to show how rolling contracts on varying days prior to expiry 

can impact the performance characteristics of an algorithmic trading system. This is presented in 

conjunction with volume data for the contracts as commodities with lower average daily 

volumes experience significant drops in volume as their contract expiry nears. These changes in 

volume could be justified by the changes in roll value on different days and vice versa, along 

with other factors such as first notice day and price slippage.   

Chapter 3 employs PARCH models to show the differences between mapped and 

unmapped time series, delving into the significance of the effects with respect to each individual 

security. The differences prove that using mapped data as opposed to unmapped data can 
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significantly impact the best fit model. In considering daily commodity data for use in practical 

trading systems, mapping accounting for rollover at contract expiry is required to modify the 

data. This is because the individual contract data that constitute a conventional time series do 

not account for contract expiry and the roll that is inherent. Both mapped and unmapped data 

series for certain key commodities were investigated using various power ARCH models. This 

was done across a range of commodities in different sectors in order to observe the significance 

of roll. This was achieved by analysing the estimated coefficients and differences in model 

specification. Significant rolls in a given commodity resulted in larger differences in model. The 

significance of such an approach is that the creation of time series that account for roll will 

allow more accurate back testing of any algorithmic trading system. Finally we applied 

(P)ARCH models allowing for breaks, provided by Bai-Perron (2003) both in the conditional 

mean and variance, as well as conducted a spectral forecasting technique in five commodity 

futures prices.   

In Chapter 4 we take a closer look at the metals sector by looking at shock and volatility 

spillovers from one metal to the other with respect to returns and similarly. Chapter 5 looks at 

unidirectional and bidirectional effects, including spillovers. Chapters 4 and 5 are joint chapters 

as a result of collaborations with Professor M. Karanasos, Dr. P.D. Koutroumpis and Dr. F. M. 

Ali (combined 20% contribution). Chapter 4 examines how the most prevalent stochastic 

properties of key metal futures returns have been affected by the recent financial crisis. Our 

results suggest that copper and gold futures returns exhibit time varying persistence in their 

corresponding conditional volatilities over the crisis period; in particular, such persistence 

increases during periods of high volatility compared with low volatility. The estimation of a 

bivariate GARCH model shows the existence of time varying shock and volatility spillovers 

between these returns during the different stages of such a crisis. Our results, which are broadly 

robust irrespective of the use of mapped or unmapped data, suggest that the volatilities of copper 

and gold are inherently linked, despite these metals have very different applications.  

Chapter 5 looks at the mapped and unmapped time series of the metals commodities 

which is especially interesting due to the physical interactions metals share. The precious and 

industrial nature of these commodities, coupled with their occasional use as reserve currencies 

makes for an interesting analysis when cross effects are considered. In addition, the relatively 

small roll/basis associated with the metals shows that changes in cross effects between mapped 

and unmapped time series is evident.
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Chapter 1: An Advanced Approach to Algorithmic Portfolio Management 

Chapter 1 is joint work with R.B. Nath, G.S. Metallinos & M.G. Karanasos titled ‘An Advanced Approach to 

Algorithmic-Portfolio Management’. R.B. Nath, G.S. Metallinos & M.G. Karanasos contributed in some of the data 

collection, mapping and alignment with a combined contribution of 10% to the chapter (approx. 3% each).   

The remaining contributions are by Z.N.P. Margaronis for significant contribution (90%) in data-collection, data 

processing, data analysis, results & discussion and write-up throughout the Chapter.  

Keywords: Algorithmic trading, commodity spreads, crude oil benchmarks, AOM, RAP, 

PSI, portfolio management 

 

1.1 Introduction  

This study investigates the superior performance of including security spreads, primarily 

inter-commodity spreads, using a commercially-developed trading algorithm (RGZ Ltd.). The 

chief characteristic of security spreads, for example that of the crude oil benchmarks WTI and 

Brent, is that they are more stable and more predictable than the individual commodities 

themselves. This leads to a superior risk-return characteristic upon which the algorithm can 

capitalise. This is detailed later when a spread is compared to a single commodity. The 

algorithms themselves are multi parameter models which are coupled with a trading rule. The 

algorithms use back-tested daily futures data of settlement prices (over a number of years) to 

build a time series on which the model parameters are optimised. Typically, trades are very low 

frequency, lasting a number of days and in some cases weeks. The optimisation of the 

algorithms is subject to the metrics presented in this study and the diversification benefits of 

optimising long/short trading systems or portfolios using these metrics are explored.  

Given recent turmoil in financial markets, commodities must now play a key role in 

standard investment portfolios consisting of stocks, bonds and cash deposits (Financial Times 

2010). This is because of the fact that there are very low yields on fixed term deposits, stock 

market returns are currently very risky, and there is significant default risks associated with 

bonds, particularly those of the PIGS economies. The issues regarding the PIGS has become an 

increasing issue lately as elections in these countries are bringing in new political parties, as 

seen lately in Greece. These events had knock on effects to many economies due to various 

degrees of exposure with respect to currency, trade and other factors. The commercial 

importance of trading security spreads together with single commodities cannot be understated 

given the trading yields of the algorithm.  
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Crude oil, precious metals and other soft commodities such as cocoa and coffee, although 

fundamentally volatile if considered on their own, can be used in cointegrated pairs and as 

single securities hedging each other, where they are significantly more stable and predictable. 

Any price changes in the security due to structural, market or supply and demand factors do not 

significantly impact the spread of security pairs. An exception to this is the front-second month 

basis spread where the price structure of the market is considered, depending on whether it is in 

flat, backwardation or contango. They exhibit trends that can be exploited by virtue of trading 

algorithms based on such commodity prices and their spreads. The developed strategy can also 

be extended to other securities including foreign exchange, bonds and equity indices. In practice 

there are periods of upward and downward trends where the ‘noise’ component or volatility is 

low. The strategy is also applied to single securities which can be shown to hedge each other as 

will be seen later. 

A successful algorithm should be able to generate consistent profits in the key regimes of 

trends and stationary oscillations. The current RGZ algorithm is able to do this with Sharpe 

Ratios in excess of 4.2 (annualised) and annualised returns in excess 140%. The algorithm is a 

seven non-linear parameter model back-tested on daily closing price data (Bloomberg/Thomson 

Reuters 2012) over 5 years throughout the financial crisis. This is contrary to Chatrath et al. 

(2001) who show commodity prices to be chaotic to a certain degree. Of course this study only 

considers the prices of four agricultural commodities that tend to ‘spike’ more often, usually due 

to demand and supply shocks. Chatrath et al. (2001) use ARCH models to explain the non-

linearity in data (see also Karanasos et al., 2015) however given the stability of trading 

algorithms in terms of their returns, the extra volatility obtained in certain seasons exists but is 

not significant for a trading system which trades at a low frequency. This is because the 

optimisation of the algorithm takes into account any extra volatility obtained even if it is 

seasonal. 

Vivian et al. (2012) mention that the volatility obtained by commodities in the recent 

financial crisis is not significant and that there are no real volatility breaks that result. This is 

however not true for other financial crises where the volatility breaks are more obvious. For this 

chapter the recent financial crisis is more of interest as the optimisations are carried out over 5 

years of data (see also Karanasos et al., 2015 for a comprehensive analysis of breaks in the 

volatility of commodities futures). The fact that Vivian et al.’s (2012) findings show no real 

evidence of volatility breaks despite the financial crisis is important. This is because the profits 
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obtained from the trading algorithms also show no structural break in volatility even during the 

financial crisis. This may be supported by viewing the homoskedasticity of the profit profiles.  

Current algorithmic trading systems utilise simple ‘channel trade’ systems available where 

user is required to view current prices continually ensuring the trade occurs at the correct 

instant. These types of model take advantage of volatility during certain times of the day where 

fluctuations may occur perpetually. It allows for consistent trades to be made and give multiple 

trades of similar value while also sometimes incorporating degrees of sentimental trading. Of 

course more advanced systems exist where models are used for trading of various securities that 

incorporate Bollinger bounds and other such established methods. Most models are top secret 

and therefore remain the intellectual property of the investment bank, hedge fund or other 

financial institution which developed or purchased it. More advanced models try to capture 

volatility and trends and usually have a detailed econometric study supporting them. The key is 

to develop a model that captures trends, spikes and can deal with the volatility between trends 

and spikes. 

Cheung et al. (2010) agree that diversification benefits can be gained by investing in 

commodities and also that the diversification benefit of commodities is far more complex than is 

generally understood in finance. The view that commodities regimes change is also interesting 

as we see a huge amount of heteroskedasticity throughout our analysis. However diversifying 

into portfolios with commodities yielding a positive risk- return relationship compared to 

international equities is in line with what we believe. The RGZ (2010) algorithms have showed 

however that being diversified correctly can lead to a superior portfolio performance even in 

times of bearish commodity environments. The reason being the existence of spreads and the 

fact that algorithms, despite correlations in prices, do not display these correlations in their 

profits since different algorithms are in different buy/sell positions, constantly hedging 

themselves with respect to historical back-testing.  

Karali et al. (2009) support the view of diversification through the inclusion of different 

instruments in different sectors, especially within commodities so as to balance a portfolio given 

the increased volatility in recent years in commodities markets. Macroeconomic variables 

impact commodity prices but affect separate sectors in different ways. This suggests and 

supports the idea that diversification is crucial even if it is within a single market with sectors 

within it. 
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The study is comprised of four main sections which in turn have their own sub-sections: 

 

Section 1.1 details the Introduction 

Section 1.2 details the AOM & RAP Metrics Development with the following sub-sections. 

3.5.2 Spreads 

3.5.3  Diversification and AOM (Algorithm Optimisation Metric) 

3.5.4  RAP (Risk Adjusted Profits) 

3.5.5 Data 

Section 1.3 details the PSI (Parameter Sensitivity Index) 

Section 1.4 details Significance for Portfolio Management AOM & RAP Metrics Development-

Spreads with the following sub-sections. 

2.4.6 Portfolios 

2.4.7 Alignment  

2.4.8 Correlations 

2.4.9 Acknowledgements 

2.4.10 Conclusions  

The conclusions are then followed by the References and Appendix. 

 

 

1.2. AOM and RAP Metrics Development 

 

    1.2.1 Spreads 

 

Trading of spreads allows for a more stable and less risky strategy because one does not 

expose oneself to intraday or daily volatility of a single particular security. For example when 

trading equity indices it may be wise to try and capture trends in spreads between similar 

economies such as the French and German rather than play a single equity index. This is 

because if there is a financial shock, such as in 2008, the spread of two indices will not be 

affected nearly as much as a single equity index. Figure 1.1 shows how the spread is far more 

stable than the absolute price. This can be seen clearly by comparing the two vertical axes and 

their scales and is a phenomenon that exists across many cointegrated pairs. 
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Figure 1.1 DAX and CAC Daily Closing PX-Last (Bloomberg) 

  

Trading two securities as a spread is particularly interesting (see Margaronis et al. 2011 and 

Karanasos et al. 2015 for a comprehensive cointegration analysis of commodity futures). For 

example, the prices of WTI and Brent crude oils seem to be highly cointegrated with WTI 

leading the price of Brent as shown in the cointegration analysis of the two major crude oil 

benchmarks. 

The current chapter will analyse the results of a newly engineered trading algorithm created 

and owned by RGZ. The algorithm itself remains property of the company RGZ, however the 

results of the profit profiles and other outputs will be analysed here in order to obtain a new 

portfolio optimising metric and investigate algorithmic portfolio behaviour. The algorithm itself 

was designed to trade commodity spreads but after applying it to various securities it was clear it 

could be utilised and adapted in other markets and single (outright) securities.  

 

 

 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CAC

DAX

DAX-CAC



8 

 

1.2.2 Diversification and Algorithm Optimisation Metric (AOM) 

 

It is important to apply this to various securities as it allows for diversification within a 

portfolio which is imperative for day-to-day stability. The types of diversification are important; 

for example, not all trading systems should be identical across the constituent instruments. 

Further, different types of securities should be included such as grains, energy, equity indices, 

metals, foreign exchange, softs and bonds. This is important because the various sectors behave 

differently as may be observed by their pairwise correlations. The way in which the margin is 

apportioned is important because over-margining in energy, for instance will make the portfolio 

unbalanced and lead to unnecessary exposure to this sector. Finally, it is imperative that both 

spreads and single securities are used since both behave differently in different stages of the 

business cycle.  

As a result, such diversification with a suitable trading system is able to make consistent 

profits, even in times of financial turmoil, a phenomenon which is frequent more recently.  

Qiang et al. (2011) found that the impacts of the oil market spill over into other 

commodity markets. This may indeed be true in terms of price however it is clear that after 

applying a trading strategy to a range of instruments, the way in which the algorithm trades 

differs due to different optimised parameters. It is important to remember the significance of 

diversification along with the idea of trading spreads which reduces the exposure to any single 

commodity. This is linked to the correlation analysis where the prices may be correlated but the 

returns of the algorithms are not, even if prices are correlated the algorithms are not necessarily 

in the same buy/sell position. 

Looking at a profit profile of various trading histories it is clear that a metric can be 

developed to minimise aspects that would make a portfolio undesirable. It was found that such a 

metric was more powerful in this respect than the Sharpe ratio. The Algorithm Optimisation 

Metric (AOM) looks at three aspects of portfolio performance, and optimises performance by 

minimising noise in a back-tested PnL (profit and loss) profile, rewarding linearity and 

penalising drops of PnL known as maximum drawdown. The maximum drawdown of a profile 

is measured as the greatest drop in PnL including successive negative trades as well as small 

increases resulting from positive trades. Evidence that the AOM is a better way to measure 

stability will be investigated with a series of graphs depicting several extreme scenarios of profit 

profile and explaining why these might be undesirable. The three undesirable regimes are shown 
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and these include profiles that draw down, have poor positive to negative or ‘noise’ ratios and 

are not linear. The AOM’s three components minimise the undesirable aspects wealth managers 

and other stakeholders often see in their profit profiles and would like to eradicate. 

 

 

 

 

 

 

 

 

 

Figure 1.2 Representation of limiting cases for undesirable portfolio performance with regimes 

of poor linearity, large draw down and large noise 

 

 

The profit plotted against time profiles in Figure 1.2 represent extreme departures from a 

desirable linear PnL profile (dashed) that stakeholders and wealth managers would find 

undesirable in a portfolio’s performance. These represent limiting cases for which the AOM 

should be penalised. The idea is for the metric developed to minimise the three scenarios where 

essentially linearity is key assuming no reinvestment. It is imperative for the noise, as seen in 

the last graph, to be minimised, and finally for sudden drops such as in the second graph to be 

penalised.  

 

The AOM is defined thus: 

𝐴𝑂𝑀 = 𝑁𝑅 ∙ 𝐷𝐶 ∙ 𝑅2 

Where: 

𝑅2 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑁𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑖𝑠𝑒 𝑟𝑎𝑡𝑖𝑜 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠:  

𝑁𝑅 =
∑ ∆+𝜋

∑ ∆+ 𝜋 + |∑ ∆− 𝜋|
 



Time 

Linearity Large Draw-down ‘Noise’ 
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With  

𝜋 𝑡ℎ𝑒 𝑃 & 𝐿 (𝑝𝑟𝑜𝑓𝑖𝑡 & 𝑙𝑜𝑠𝑠), 

∆+ 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑎𝑖𝑙𝑦 𝑐ℎ𝑎𝑛𝑔𝑒, 

∆− 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑎𝑖𝑙𝑦 𝑐ℎ𝑎𝑛𝑔𝑒, 

 

And 

 

𝐷𝐶 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠: 

𝐷𝐶 = 1 −
𝑀𝐷

𝑀𝐷 +
252𝜋𝑚𝑎𝑥

𝑁

 

With: 

𝑀𝐷 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛 

𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 

252 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟 

 

    

      1.2.3 Risk-Adjusted Profits 

 

Risk-Adjusted Profits (RAP) is a term used for the product of the profit of an algorithm for 

its entire back-tested history and the AOM associated with it. This is because in reality, a trading 

system is utilised to generate profits. Maximising stability through the AOM can therefore be 

combined with the PnL generated to form the RAP of an algorithm. The RAP is a standardised 

way to distinguish between optimal and non-optimal parameters as is the AOM, while also 

weighting performance on profit too. It is an efficient measure of allowing balancing between 

securities or security pairs when considering degrees of diversification.  

The optimisation and trading algorithms were developed using Fortran 95 programming 

language where each individual security or pair has its own designated program. The outputs of 

the optimisation programs include a list of algorithm parameters and all combinations thereof as 

well as the AOM and RAP associated with each set of parameter combinations. The 

combination of parameters that give the highest RAP is chosen as the optimal parameters for 
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that particular algorithm. A brute strength approach is used in optimising the algorithm 

parameters as all possible combination of parameters is tried and tested against the data. 

 

1.2.4 Data 

 

The data used throughout is daily PX_LAST futures prices obtained from Bloomberg. 

Specifically, this study considers the front month contract of these various futures and this is 

typically because the front month tends to have the highest volumes and hence liquidity, making 

it the prime candidate contract for trading by speculators. PX_LAST is the price at the close of 

business while the prices themselves were procured over approximately a 5 year period from 

2007 onwards during the financial crisis and the beginning of economic recovery. The number 

of prices (or days as daily prices are considered) varies from instrument to instrument due to 

different markets following different holiday conventions. The raw data was mapped using a 

mapping procedure developed by RGZ Ltd. (RGZ Research 2011) while the mapping procedure 

itself is detailed in Margaronis et al. (2011).  

The data considered in this study includes ten raw data sets. From these ten sets, two spreads 

are considered and the rest are taken as outright positions resulting in a total of eight separately 

tradable futures.   

Three equities indexes are considered which includes the Nasdaq, Dax and Cac, which the 

Dax and Cac are considered as a spread i.e. Dax-Cac. The metals are represented by Copper as it 

is the main industrial metal with significant traded volume. The agriculturals considered are 

Cocoa and Oats while the energies, which are typically the most prominent sector in 

commodities, are Natural Gas, WTI Crude and Brent Crude. In this study, the crude oils are 

considered in a spread which is commonly known as the WTI-Brent spread. The construction of 

spreads within the energies sector allows for hedging and hence lower exposure to the famously 

highly volatile crude oil markets. Finally, EURUSD is considered representing the foreign 

exchange futures sector. It is clear that there is a good degree of diversification with respect to 

the markets and sectors and the analysis which follows will show how portfolio construction in 

algorithmic trading may benefit by utilising spreads, diversifying markets and of course utilising 

bespoke metrics.    
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1.3. PSI Metric Development 

A Parameter Sensitivity Index (PSI) is developed which allows for the stability of the 

constituent parts of the trading system to be measured by applying it to each security or security 

pair. The way in which the PSI program works is by varying a single parameter (100% plus or 

minus its optimised value) while keeping all the others constant and carrying this out for all 

parameters. The PSI is then evaluated as the ratio of actual versus maximal (optimised) profits. 

This allows for the user to see how changing a single parameter changes the level of RAP, AOM 

and profit generated. A matrix is then generated whereby the sensitivities are plotted for the two 

primary parameters and a surface plot can then be used to visualise the stability of each security. 

This can be utilised to judge whether an algorithm is too parameter-sensitive (unstable) or not. 

Also it helps to show if there are multiple regions of higher levels of RAP and AOM. More 

importantly it can allow for a region of lower AOM and RAP to be selected because of its 

superior stability. Examples of PSI outputs are shown in Figure 1.4.  

The actual PSI is evaluated by looping through a series of values of single parameters (100% 

plus or minus its value) by keeping all other parameters constant and then repeating this process 

for all parameters. In order to be able to create a surface that may be visualised and because it 

was found that two of the parameters were the most sensitive (primary parameters), the graphs 

for AOM or RAP are plotted for the primary parameters. The way in which a value of PSI is 

then generated is by considering the area under the graph of the parameter in question and 

comparing it to the maximum possible area. This is once again seen more clearly on the graph in 

Figure 1.3. 
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Figure 1.3 RAP/AOM variations with (a) insensitive parameter and (b) sensitive parameter 

 

The two profiles of Figure 3 depict what the output from a PSI file may look like with 

the (a) depicting an insensitive parameter since the AOM and RAP values do not vary a great 

deal with parameter value. On the other hand, (b) shows a relatively sensitive parameter where 

the values of AOM and RAP seem to change dramatically as parameter value is changed. The 

dashed lines represent the maximum possible values of AOM or RAP obtainable by the 

parameter value. The ratio of positive areas under the actual and maximal profiles provides a 

reasonable measure by which to measure parameter sensitivity. Actual outputs of PSI are shown 

below where surfaces are presented as they are a plot of two parameter sensitivities. A total PSI 

can then be calculated by calculating the product of all security sensitivities across all 

parameters.  

 

AOM or 

RAP 

Parameter i Parameter j 
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(a) 

 

(b) 

Figure 1.4 PSI plot for sensitive and insensitive instruments  

 

From the two surfaces of Figure 1.4, it is clear that the Nasdaq algorithm is far more 

sensitive with respect to parameter A than the DaxCac algorithm. The PSI values for Nasdaq 

and DaxCac are 14.2% and 27.1% respectively. As a result, the DaxCac algorithm is far more 

stable because changing these parameters does not translate into a significant drop in the RAP 

0

4

8

-10000

0

10000

20000

30000

40000

20 30 40 50 60 70 80 90 100 110

R
A

P
 

Parameter A 

PSI- Nasdaq Algorithm 

30000-40000

20000-30000

10000-20000

0-10000

-10000-0



15 

 

meaning the algorithm will still perform near its peak performance. This is not the case for the 

Nasdaq algorithm where small changes in parameter A result in significant decreases in RAP 

which suggests the algorithm may not perform well and may actually make losses with small 

deviations in behaviour.  

It is clear that this entire analysis is useful in real-life trading situations and does not aim to 

simply optimise a theoretical tool by maximising a single outcome. Some profit profiles for 

various algorithms are presented in Figure 1.5. The profiles shown in Figure 1.5 are outputs 

from the algorithms developed and owned by RGZ (2010). Those for other instruments are 

presented in the Appendix. The post analysis is what we are interested in - for managing a 

portfolio and maximising its performance. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 1.5 Profit profiles from algorithm outputs for various instruments 
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1.4. Significance in Portfolio Management 

      1.4.1 Portfolios 

These individual instrument profiles will now be added given certain weightings in order to 

obtain a diversified portfolio where the noise component and drawdown are minimised and 

linearity is maximised given a specific margin investable; that is to say that the overall AOM 

and RAP of the portfolio is maximised. 

The final profit profiles shown in Figure 6 are for portfolios. Figure 1.6(a) represents a 

portfolio containing all the securities considered in this study. Figure 1.6(b) shows the portfolio 

accumulated when only certain securities, as described in the main section of this chapter, are 

included. The reason for showing both is to show the effects of diversification and how 

important it is in minimising volatility in a portfolio. Both profiles have been chosen based on 

RAP and a margin of $100,000.  

 

 

(a) 
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(b) 

Figure 1.6 Portfolios (a) consisting of all 8 securities and (b) consisting of 5 securities, representing the 

impact on performance of successful diversification  

 

From the two profiles shown in Figure 1.6, the latter (b) has a larger component of noise in 

the PnL profile. The volatility of the second portfolio, whose margin is the same, is far greater. 

Hence, it is concluded that diversification is imperative, even in algorithmic trading, and thus 

the requirement for stability and consistency of returns in such a portfolio. 

 

1.4.2 Alignment 

 

In order for an accurate portfolio AOM and RAP to be generated, the output profit data had 

to be aligned by date. The true performance of a portfolio can only be generated if the dates are 

known for each particular level of PnL for each security or pair. This is an imperative but 

tedious process as it involves aligning the daily outputs of a range of securities which have 

different trading days as they are traded on different exchanges. This was again automated in 

order to account for non-trading days of certain securities. It allowed correct correlation 

matrices for the securities to be generated (discussed below) and therefore allowed correct 

diversification to be obtained. The weightings were obtained by a program which used this 

aligned data to find the optimal portfolio. The date was used as a reference point. By using a 

nominal portfolio value and individual security margins based on 10:1 leveraging level, the 

program generated possible combinations of weightings for each security. This program then 
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selects the optimal combination of weightings based on maximisation of RAP for the entire set 

representing the real-time daily behaviour of the portfolio. The program is able to apportion 

initial margin to each security or pair and give a superior outcome of performance regarding 

RAP. The margins themselves are determined by and procured from (through Bloomberg and 

Thomson Reuters) the main exchanges used to trade commodities futures (CME and ICE). 

Computational time was minimised by only creating combinations for portfolio margins within 

a certain range since the optimisation approach was brute strength. The AOMs generated from 

this program are substantially superior to any of the individual securities or pairs. In this way, by 

combining the real-time date, margin and optimised profits of each algorithm, a real historical 

performance of a portfolio can be seen and then traded with confidence due to its accuracy. 

In selecting the correct combination of securities to trade, it is imperative that the program 

has the traded behaviour of algorithms with respect to time in order to minimise ‘noise’ 

component of the portfolio. This can therefore result in a true maximised RAP portfolio. A 

profile of aligned profit profiles and non-aligned profit profiles will be compared to show how 

significant this error can be. This is also very important because the program needs to have 

accurate daily behaviours for all traded instruments in order to make a correct selection for a 

noise-minimising portfolio. An example of how the misalignment can mislead someone when 

taking positions is shown in Figure 1.7. Presented here is a simple portfolio profit profile 

containing only copper and three positions of the crude oil spread (WTI-Brent) shown for 400 

days. Two profiles are shown where one is the actual aligned profits with respect to dates and 

the other is not. It is important to remember that the misalignment in the second profile is up to 

about 10 days, which is realistic given the time span. Real portfolio drops are underestimated 

and gains can be overestimated. Also the noise component is ‘ironed out’ or smoothed. It is 

therefore clear that by inputting the incorrect graph into an optimisation program which 

maximises RAP, that the noise, drawdown and linearity of a misaligned data set will be 

erroneous and ultimately incorrect, hence resulting in incorrect weightings and exposure to risk 

due to this.  
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Figure 1.7 Portfolio performance over 400 days showing alignment error between aligned 

(blue) and unaligned (pink) profits 

 

To show that the maximum RAP is indeed the most effective method for optimising a 

portfolio, it must be compared to other more conventional methods such as the return-risk ratio 

(RR), minimum variance and even perhaps comparing the maximum AOM to maximum RAP 

combinations to see possible differences in portfolio performance with respect to consistent and 

stable profits. 

In order to show this, a number of important characteristics need to be considered. This is 

because the differences will not be clear from a profit profile. A table was created showing the 

measures of optimising portfolio performance and the characteristics of those portfolios. The 

characteristics used will include the negative ratio (NR) which is a measure of downward 

movements in profit of the profile, the coefficient of determination (R
2
), the maximum loss 

which is simply the value (in USD) of the greatest drop in profit over the trading history and the 

return on margin (ROM) which is the returns generated in relation to the amount of capital 

margined out initially in the portfolio. The RR is calculated by the ratio of the mean to standard 

deviation of the daily returns. The equally-weighted portfolio is simply a combination of 

weightings whose margin is equal. We assume all these portfolios have a nominal margin of 

$50,000 and trade for a four year period.  
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 Max RAP Max RR Min Variance Max AOM Equally-

Weighted 

AOM (%) 58.9 59.6 58.2 59.4 52.7 

NR (%) 65.3 67.0 66.6 66.4 61.8 

R
2 

(%) 98.0 97.1 96.8 97.7 98.2 

Max Loss ($) 34,662 27,401 28,750 29,474 38,144 

ROM (%) 1054 755 700 769 621 

RAP 824,533 620,588 535,290 654,915 457,489 

Profit ($) 1,399,887 1,041,255 919,742 1,102,551 868,101 

 

Table 1.1 Portfolio characteristics for various optimisation metrics 

 

 

From the Table 1.1, it may be observed that the portfolios’ performance across the metrics is 

fairly similar, however the maximum RAP combination is superior in the amount of profit 

generated and its ROM. Across the table, all other characteristics seem similar and therefore it 

must be concluded that the maximum RAP combination is most desirable especially due to its 

significantly larger return. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Profit against AOM plot showing existence of frontier of trading and where portfolio 

operates 
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Another tool to show portfolio diversification is the correlation matrix of daily price changes 

for all the component securities as well as a correlation of all the daily profit changes. This 

allows a direct comparison to be made between these two correlation matrices. The reason price 

returns were not used is due to the CFD (contracts for difference) nature of trading where profits 

are a function of price differences. Comparing these two correlations will allow any portfolio 

manager to understand the degree of diversification and which securities are correlated. In 

addition it can show the effectiveness of using long-short strategies to diversify portfolios. For 

example, a portfolio can be highly exposed to equity indices because they are indeed correlated. 

The European economies, for example, find themselves in turmoil at this present time and that is 

affecting the US and Asian markets because many banks and companies share funding and of 

course collaborate through trade meaning they are exposed to each other in one way or another. 

As may be seen in Table 1.2, the correlations of the profits generated show how using the 

selected combination of securities as defined by the maximum RAP from the program, reduces 

the correlations even more. Despite prices being highly correlated, the algorithm output for the 

two instruments will not be as instruments’ positions will not necessarily be in the same 

long/short position during the history. Hence, this approach may be viewed as a black box which 

decouples the structural correlation that exists between the securities by using back testing and 

taking long or short positions accordingly to maximize the diversification effects, and hence the 

portfolio performance. It should be noted that the Dax-Cac spread is considered in the post 

correlation as the program runs the spread. The pre correlation however considers the two 

indexes separately in order to give a better understanding of how the two are related to each 

other. On the other hand, the WTI-Brent spread is a price which is procured as is. This means 

the price of the spread was constructed by the exchange. The emboldened correlations represent 

levels above 15%, the threshold chosen to differentiate significant and insignificant correlations 

in this study.  

 

 

 

 

 

 

 

 



23 

 

1.4.3 Correlations 

 

Correlations for Absolute Price Change 

Pre                   

  Copper Oats Cocoa Dax Cac Nasdaq EurUsd 
Natural 

Gas 
WTI-
Brent 

Copper 100.00%                 

Oats 29.10% 100.00%               

Cocoa 29.40% 14.30% 100.00%             

Dax 52.10% 21.60% 23.30% 100.00%           

Cac 53.60% 25.50% 24.30% 92.80% 100.00%         

Nasdaq 32.50% 16.60% 15.80% 59.50% 56.50% 100.00%       

EurUsd 34.50% 22.90% 28.10% 33.60% 33.50% 31.40% 100.00%     

Natural 
Gas 

14.40% 15.90% 10.90% 11.90% 11.40% 9.80% 13.90% 100.00%   

WTI-
Brent 

50.50% 28.00% 26.20% 39.90% 41.10% 33.50% 32.30% 23.30% 100.00% 

 

Correlations are chosen to be significant at the 15% level and these are emboldened 

(15% chosen due to desirability within portfolios of two instruments not having correlation 

greater than 1 in 6)   

(a) 

From the correlations estimated on the absolute price changes it is clear there is a significant 

amount of correlation between many of the securities, for example, EURUSD seems to be quite 

correlated to all the securities considered. Reasons for this relationship with respect to the 

agriculturals may arise from the significance of import and export markets of these commodities 

and their consumption by the European Union. EURUSD is also expected to have a certain 

degree of correlation with its primary economic indexes and this will in turn spill over to some 

degree to the agricultural commodities. Copper prices tend to be an economic indicator since 

copper is a primary base metal used in most electronic equipment and wiring. Its relationships 

with the oil spread and the indexes may therefore be justified. The indices themselves are 

expected to have a certain degree of correlation between them, given the structure of financial 

systems worldwide where countries share debt and trade and this is especially visible by the 

very significant correlations between Dax, Cac and Nasdaq.  
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Correlations for Algorithm Profit Change 

Post                 

  Copper WTI-Brent 
Natural 

Gas 
Dax-Cac Nasdaq Oats Cocoa EurUsd 

Copper 100.00%               

WTI-Brent -1.00% 100.00%             

Natural 
Gas 

-0.10% -10.10% 100.00%           

Dax-Cac -5.80% 0.30% -1.20% 100.00%         

Nasdaq 6.50% -0.90% -1.80% 6.30% 100.00%       

Oats -3.70% 0.50% -2.20% -0.40% -14.80% 100.00%     

Cocoa 27.80% 2.50% -3.60% -26.70% 21.10% -2.10% 100.00%   

EurUsd 20.50% 0.40% -0.20% -9.40% 12.40% -4.60% 13.30% 100.00% 

 

Correlations are chosen to be significant at the 15% level and these are emboldened 

(b) 

 

Table 1.2 Correlation Matrices for (a) Absolute Price Changes and (b) Algorithm Profit 

Changes 

 

From the final correlation shown above it is clear that the correlations of the price returns 

that exist become insignificant once they have been processed by the trading system (see Table 

1.2(b)). The correlations seem to be insignificant across the table with a few exceptions as there 

are far fewer pairs with correlation magnitudes greater than 15%. This demonstrates an 

important effect of correlation dilution that exists by virtue of the trading strategy. The fact that 

trading allows one to take long/short positions means that profits can be made on both increases 

and decreases in price of a security. Even though the prices for various securities are linked 

(correlated), the algorithm is not necessarily in the same position across these securities, and 

historical back-testing is utilised to offset and hence smooth portfolio profit profiles taking into 

account historical scenarios of behaviour.  Therefore it can be concluded that the diversification 

impact in such a portfolio in algorithmic trading has substantial impact on the portfolio 

performance. 

 

1.4.4 Acknowledgements: The authors would like to thank RGZ Ltd. for the use of their Nixon-

class Algorithm outputs. 
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1.4.5 Conclusions 

This study shows a portfolio containing both spreads and single securities reduces 

exposure to certain markets by reducing ‘noise’ and smoothing portfolio performance, while the 

PSI can be instrumental in establishing how stable an algorithm will be in generating consistent 

profits. Other findings show that a truly diversified portfolio over many different asset classes 

yields superior performance and this can include both securities and security pairs, which in turn 

can diversify risk by hedging against holding outright positions in securities.  

Also significant was the alignment of data with respect to date, which was shown to be vital in 

establishing real-life traded portfolio weightings and meaningful correlation matrices. This study 

also allows us to conclude that correlations of daily price returns are significantly different to 

those of the output profit changes due to the effect of correlation dilution by virtue of the trading 

strategy or algorithm. This is because there are differences in the long/short positions across 

component instruments over the time history. Finally it may be concluded that optimising a 

portfolio according to the maximum RAP and AOM criterion leads to superior performance, 

particularly when compared to that of other criteria such as a maximum RR and minimum 

variance. Utilising the RAP and AOM in this instance (as well as other algorithmic systems 

governing portfolios or more simple portfolios comprised of a basket of stocks) can result in 

more profit generated and yield a far more desirable PnL profile. 
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Chapter 2: The significance of day of Rollover and Contract Volumes of Commodity 

Futures in Algorithmic Trading 

Chapter 2 is joint work with R.B. Nath, G.S. Metallinos & M.G. Karanasos titled ‘The significance of day of 

Rollover and Contract Volumes of Commodity Futures in Algorithmic-Trading’. R.B. Nath, G.S. Metallinos & M.G. 

Karanasos contributed in some of the data collection and mapping with a combined contribution of 10% to the 

chapter (approx. 3% each). 

The remaining contributions are by Z.N.P. Margaronis for significant contribution (90%) in data-collection, data 

processing, data analysis, results & discussion and write-up throughout the Chapter.  

Keywords: commodity, futures, price slippage, limit locks, ADV, market liquidity, VWAP, 

roll day, rollover, FND 

 

 

2.1. Introduction 

 

Traded contract volumes for commodity futures differ from day to day. Generally, an average 

daily volume (ADV) is considered however this is slightly erroneous in less liquid securities. 

This is due to the fact that futures markets with lower liquidity are subject to ‘price shocks’ as a 

single buyer or seller may enter the market and impact the price with a large order. In order to 

carry out a rigorous analysis, the daily volumes for a number of commodities were analysed 

over a period of a number of years. Data was acquired for certain commodities, both in liquid 

and illiquid markets and comparisons were carried out along with an analysis of an algorithmic 

trading system whose PnL profiles for different roll days were acquired for eight different 

commodities.  

This study aims to show how (for various instruments) the point at which the contract is rolled 

from the expiring contract to the newly active one in a single time series for a single instrument 

can be significant to the performance of trading algorithms which use these time-series as their 

back-tested input for optimisation. Various measures are employed to show the significance of 

altering the day of roll prior to expiry with respect to the time series. These include some 

standard measures such as the variation of daily returns, the mean return of returns and the 

coefficient of variation of returns. The study also employs some portfolio specific measures 

including the percentage change in PnL of the portfolio and the percentage change in AOM 

(Algorithm Optimisation Metric, see Margaronis et al. 2015) and DC (drawdown coefficient).  
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Showing this variation is significant to anyone needing to utilise a time series which considers 

the front month active contract of futures. This ranges from econometricians who are 

researching real life trading scenarios to wealth managers and algorithmic traders. The basis can 

differ significantly from rollover day to rollover day as can be seen from the results. The 

contract volume data of the active contracts is also illustrated to show how the optimised 

rollover day is usually prior to the volume dropping below the ADV (average daily volume) or 

in the case of highly liquid instruments, below a significant level.  

 

 

              2.1.1 First Notice Day (FND) 

 

An important consideration and problem associated with trading is that of the first notice day 

(FND). The FND is notice of the first day in which anyone can hold contracts before agreeing to 

take delivery of the raw commodity. Given that most people and institutions trade commodities 

for financial gain and not to take delivery of it at contract expiry, it is clear that most will not 

trade beyond the FND. Hence, logically, volumes of contracts traded should drop after FND. 

FNDs vary from commodity to commodity and this has also been considered in the analysis 

carried out. For the metals the FND is much earlier than the expiry date, whereas for energies 

the FND is actually after the last trading day. In the interest of the chapter and the wider trading 

community, the chapter has analysed expiries prior to, and beyond the FND.  

 

 

2.1.2 Volume Weighted Average Price & Price Slippage 

 

The problems associated with trading are therefore becoming apparent as there are many aspects 

of the trading world which are not considered in conventional studies in economics and finance 

where time series are used. Contract volumes in markets can be seen to have an impact on the 

price and therefore price change in any given security. The extent to which the price will be 

impacted depends on the proportion of volume traded in any given position (buy or sell) which 

is the ratio of the order of contracts to the contracts traded that particular day. The greater the 
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proportion, the greater the impact on the price for that given security. This volume weighted 

price is known as Volume Weighted Average Price or VWAP. 

In the case of algorithmic trading, the ADV is a factor that must be considered before applying 

an algorithm or trading model to a time series especially as profits grow increasing the number 

of positions taken. This is associated with the parameter sensitivity of the trading model of RGZ 

Ltd. by Margaronis et al. (2015). This is due to the sentimental aspect of trading of commodities 

where liquidity may be low, which suggests that any large trade made by anyone could move the 

market in any given direction. The VWAP is then greatly impacted. The problem arises when 

taking a position. In the case that you are trading an instrument with low ADV, there will 

usually be a price slippage associated with taking the position. The larger the position taken, the 

greater the price slippage. For this reason, traders have developed methods such as “ice-berging” 

where the trader will enter the market in stages by placing smaller numbers of orders at any one 

moment, allowing orders to be filled before progressing and placing the next order. This allows 

for lower average price slippage for the entire position taken. 

Price slippage is significant in illiquid markets. When a trade is placed that contributes to a 

larger proportion of the market, the price is expected to slip as the ‘bid-ask’ for the security in 

question is widened. This can have a catastrophic effect on trading algorithms where the 

liquidity of the market has not been analysed beforehand. Since the back testing of the system 

will most likely incorporate time series from which the price slip is not known at any given time 

for any given trade, making the price at which the trader is filled erroneous. This means that the 

price at which the trade is bought or sold is higher or lower respectively. This can erode the 

profit of any particular trade and therefore deem a successful trading algorithm flawed in 

practice. The mechanism by which this happens is shown below in Figure 1. As a result, it is 

highly desirable to avoid price slippage (by trading when the market is liquid) in order for real-

life trading to be as similar to the back-testing as possible and this is done through the process of 

selecting the optimal rollover day.  
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Figure 2.1 A representation of ‘price slip’ as a buy order of FCOJ is filled where the order is a 

significant proportion of ADV. This is a result of widening of ‘bid-ask’ for Frozen Concentrate 

Orange Juice (FCOJ) due to its low liquidity.  

 (This diagram is not representative of the real FCOJ market) 

 

 

In Figure 2.1 the price slip value represented as ‘x’ is the loss in value of the trade as the price of 

orange juice (FCOJ) moves upwards due to the basis which exists between the two contracts in 

the Frozen Concentrate Orange Juice (FCOJ) market. This shows more clearly how the profit of 

a trading algorithm can be eroded by the introduction of a significant player in the market. This 

mechanism is also in effect when shorting or selling.  

The ‘new price’ after the order has been filled is calculated and this is known as the volume 

weighted average price or VWAP. The VWAP is calculated by the exchange the commodity is 

traded on and incorporates the dollars traded for every transaction (number of contracts 

multiplied by price) divided by the total shares traded for the day. 
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             2.1.3 Limit Locks 

 

Limit locks can also pose a serious problem for those trading futures. Limit locks occur in the 

futures market and happen when the trading price of an instrument is predetermined at the 

exchange’s limit price. Limit locks occur mainly in the grains market and are usually the result 

of unexpected news due to weather or crop yields. They are in place to protect investors from 

the volatility exhibited in futures markets. When a limit lock occurs, trades above or below the 

lock price issued are not executed. For traders therefore, this situation is either very beneficial, 

as they are trapped in a trade that is moving in the correct direction with respect to their position 

(buy or sell), or very detrimental as they are trapped in a trade which keeps moving in the 

opposite direction to their respective position. Limit locks can therefore have an impact on the 

number of contracts traded on the days they occur. It is also worth mentioning that limit locks 

can occur for consecutive days. This is significant as the limit lock may cause an investor to 

perhaps refrain from trading that particular day or on the contrary impulse them to take even 

more positions in the market as a crop yield report may reveal information about what the price 

may do after the limit lock is removed.  

It is therefore expected for volumes on days where commodities limit lock to be significantly 

lower than usual as traders may enjoy the benefits of being locked in and place orders to be 

executed when the lock is removed or may be in a position where they are reducing their trades 

to reduce risk to market exposure and turn to other products such as options.  

The chapter is split into 10 main sections. The first and second sections include the introduction 

and Procedures for Data & Results Preparation which give a general overview of the purpose the 

chapter and of course the preparation of the data and how it is used. Section 3 details the 

literature review. Sections 4 to 7 detail the results and discussion of altering the roll day with 

respect to the measures mentioned earlier while Section 8 is dedicated to the representation and 

discussion of the volumes data. Section 9 includes the conclusion and Section 10 is comprised 

of the references. 
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2.2. Procedures for Data & Results Preparation 

 

The raw data of each contract (as obtained from Bloomberg) is organised into a single file such 

that all contracts for each instrument are in order in individual files. Each individual file (for 

each specific instrument) is then mapped using a mapping program (whose process is detailed 

below). This is done a number of times for each instrument in order to gain a set of time series 

for various rollover days for each instrument.  

The mapped time series for each instrument is then input to the trading algorithm once 

optimised, then PnL and certain metrics for each instrument and rollover day are evaluated. The 

post analysis involves the evaluation of measures used in this study as explained earlier and 

detailed later.  

 

 

              2.2.1 Mapping and Rollover 

 

The mapping procedure involves the use of a computer program. The input for the program is 

the entire set of monthly futures contracts obtained as explained earlier, in order, in a series. The 

data itself are daily settlement prices for each contract along with the date for the past 6 years. 

The program then takes the last price of each contract, being the price on expiry of the contract, 

and lines it up by date to the price of the second month contract. The program uses a counter for 

both the price series and the date series. When the counters match on the day before expiry, 

mapping occurs. The front and second month prices on that date are then lined up and their 

difference gives the basis or rollover for that contract. This is done consistently throughout the 

entire data set and each roll value or basis value is stored and accumulated in order for a 

calculation of the cumulative roll or basis to be made. The roll is then accounted for in the time 

series. Mapping data can have a significant impact on a price series if the roll value or basis 

value is significant. It is less significant in instruments which do not exhibit large rolls. However 

given that the cumulative roll is required, especially when a trading algorithm is applied, even if 

the roll values are not significant the fact that it accumulates over time makes the mapping 

procedure imperative no matter the magnitude of the roll or basis. 
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Figure 2.2 A representation of the mapping procedure showing how contracts can be rolled and 

the process used in the computer programs used 

 

 

             2.2.2 Data and Day of Rollover (Roll Day) 

 

In the interest of this chapter, eight commodities were selected and analysed (two softs, two 

grains, two metals and two energies). The commodities selected were chosen based on their 

sector (range of sectors analysed), their liquidity and the size of their roll.  

Each set of price data used in the trading algorithms was mapped according to an optimal 

performance given by the performance indicators employed. Of course the optimal is restricted 

by certain issues such as FND. For example, the optimal day to roll the oats trading algorithm 

may be one day before expiry however; its FND is many days before that. Hence, it cannot be 

rolled a day before in practice unless delivery of the commodity is taken on expiry.  

The optimal roll day for all commodities has been found to be a few trading days before the 

FND.  

The price data for each commodity was then constructed for different roll days. This means 

mapping the price from one contract to the next happens on different days from expiry in each 
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data set. Once different sets of price data for different roll days were available, each set was 

input into the trading algorithm. The trading algorithm uses the price data to apply its trading 

rule and strategy, then output a PnL profile and performance indicators thereof.  

Given the difference in roll day it is clear there will be differences in the algorithm’s 

performance and the aim of this chapter is to determine how significant this difference is and 

perhaps show the reasons for this. The indicators employed include the AOM (Algorithm 

Optimisation Metric), DC (Drawdown Coefficient) and PnL (trading gains made during back-

tested period), as defined by Margaronis et al. (2011). 

Once the PnL profiles for different roll days is produced, the PnL returns for each profile were 

calculated in order for standard deviation, mean return (with respect to margin requirement) and 

CV (coefficient of variation) to be evaluated. It is also evident that due to altering roll day, these 

values will differ from PnL profile to PnL profile for the same commodity.  

The results are presented as percentage changes in order for comparisons inter sector to be 

made.  

 

 

2.3. Literature Review 

 

Groot et al. (2014) study the term-structure information of novel momentum strategies for 

commodities futures. They show that the momentum strategies that invest in contracts with the 

largest expected roll yield the greatest returns. They show that traditional strategies which utilise 

the nearest contracts earn lower returns but nonetheless it is clear from the analysis that the basis 

from contract to contract in commodities exists and that it can significantly alter returns when it 

is incorporated into the time series.  

Theories of storage are often used, as in the study by Symeonidis et al. (2012) where 21 

different commodities are considered. The study focuses on the relationship between the 

inventory and forward curve while also considering price volatility as a function of inventory. 

The findings show that low inventory is associated with forward curves in backwardation. Also, 

the findings show that as inventory decreases, so the price volatility increases. This is very much 
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in line with the findings of this study where we show the decrease in volumes (associated with 

inventories) can induce volatility in the returns via the metrics used.  

An interesting study by Yang (2012) identifies a factor which explains most of the average 

excess returns of commodity futures sorted by basis. This compliments the study by Margaronis 

et al. 2011 where the significance of basis was investigated for various commodities and of 

course this study where it is found that lower volumes can result in induced volatility as the 

FND approaches.  

Although the literature may not be completely relevant to the study, it is still very interesting to 

see how many different factors there are which can impact the volatility through basis and 

volumes. Even though the studies considered do not consider the exact same factors, it is clear 

that these factors are related and that the findings are therefore relevant. Due to the nature of this 

study, and unexplored area within the commodities futures sector being analysed, there are no 

completely related studies which delve into the relationship between basis, contract volumes and 

the impact from an algorithmic trading point of view.  

 

 

2.4. Softs 

 

The softs is a sector that is very useful in diversifying the risk of trading energy, or metals 

weighted portfolios. Also, given the nature of the liquidity, there can be large price jumps which 

can be taken advantage of if a strategy is able to predict them.  

In order to analyse the two softs, Frozen Concentrate Orange Juice (OJE) and Lumber (LBS) as 

with CQG Trading Platform, the FND must be used as well as the most optimal day prior to 

expiry to roll. The optimal expiry day is imperative to evaluating percentage changes as it is 

used as the benchmark.  

After applying the procedures detailed in section 2, the following results were observed. 
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Figure 2.3 

 

From Figure 2.3 it is clear that altering the day the price data is rolled has minimal impact on the 

standard deviation of the PnL profile’s returns. However, it can be inferred that the LBS 

algorithms are more stable than the OJE algorithms as their PnLs exhibit significantly lower 

standard deviations across the roll day range.   

 

 

Figure 2.4 
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From Figure 2.4 it is possible to see that the mean returns for OJE PnL returns are significantly 

higher than those of LBS. Despite the LBS PnL returns exhibiting lower standard deviations (as 

seen in Figure 2.3), overall, the OJE algorithms seem to have both a more stable mean return 

characteristic, and higher mean returns. It can therefore be said also that altering the day of roll 

for OJE will not significantly impact the PnL returns or coefficient of variation.  

On the other hand, the LBS results show that changing the day the prices are rolled can have a 

more significant impact on both CV and the mean returns. Figure 2.4 suggests that generally, 

increasing the number of days before expiry that the contracts are rolled will reduce the CV for 

LBS, and increase its mean returns but by a less than proportional amount. i.e. the drop of CV is 

greater than the increase in mean return. The reason for this effect may be due to the impact of 

the FND. The FND for lumber is after the expiry hence it is traded non-speculatively until 

expiry. Despite this, volumes are generally low as the trading hours for LBS are long. This 

makes LBS subject to price shocks which may create the instability seen. These price shocks are 

likely to become more and more significant as the expiry day nears since the volumes reduce 

further. This phenomenon may explain the instability shown.  

 

 

Figure 2.5 

(Note: optimal roll day is 15 days prior to expiry for OJE and 12 days prior to expiry for LBS) 
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Figure 2.5 shows how the accumulated PnL varies with respect to roll day, where percentage 

changes are with respect to optimal accumulated PnL being day 15 for OJE and day 12 for LBS. 

As can be seen, OJE is significantly more stable and is not actually being operated at the most 

optimal level. The reason for this is due to the FND for OJE. As a precaution, traders will roll 

contracts earlier to avoid price volatility and price slippage due to reduced volumes. It is clear 

that after day 15, there is instability whereas before day 15 the percentage change is minimal roll 

day to roll day. As a result, given the instability after day 15, and the precaution to roll before 

FND and avoid price slippage from low volumes, day 15 was selected as the best balance of 

performance and stability.  

In the case of LBS, it is clear that the change in PnL is far more significant than that of OJE 

throughout the range. There are significant drops in PnL as expiry is approached. This may be 

due to reduced volumes as expiry looms and traders move into the next contracts. The effect in 

the case of the LBS market is accentuated due to the long trading hours and low liquidity. This 

means price slippage will be even more significant. Despite this however, increases in PnL 

could be experienced if the data was rolled slightly earlier.   

 

 

 

Figure 2.6 

(Note:  optimal roll day is 15 days prior to expiry for OJE and 12 days prior to expiry for LBS) 
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Figure 2.6 shows how altering the day of roll can significantly impact the AOM and DC. In the 

case of OJE there is a hint of stability. The AOM and DC seem to fluctuate between values 

while also having periods of stability. As expected, the AOM and DC drop as expiry nears and 

this is once again due to the reasons stated earlier regarding volumes and price slippage. On the 

other hand the LBS AOM and DC drop significantly as the roll day is altered which shows that 

LBS has a far more sensitive algorithm. Significant changes in performance could be 

experienced as a result of rolling on a different day. This drop in performance will also be 

magnified by the price slippage that would be experienced due to the low volumes and longer 

trading hours.  

These variations could also be attributed to the size of the roll because a greater roll has a 

greater error attributed to it in absolute terms which is supported by Karanasos and Margaronis 

et al. (2011). 

 

2.5. Grains 

 

 The grains are a sector that has varying liquidities. Grains are however present in most 

commodity portfolios. Their significant price changes can yield impressive returns but also 

makes them very risky. In the interest of this chapter, ZSE (Soybeans) and ZOE (Oats) were 

selected. The reason for the selection is because ZSE is very liquid and ZOE is very illiquid, 

hence the significance of volume may be made clearer.  

Generally, the grains are subject to the same issue as the OJE market. When expiry is looming, 

the liquidity in the active contract drops as traders move into the next contract to avoid price 

slippage. This effect is even more prominent in the grains. The FND is 10 days prior to expiry 

but in order to avoid any price slippage, the optimised roll day is 15 days before the expiry date.  
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Figure 2.7 

From Figure 2.7 it is clear once again, that altering the day the price data is rolled has minimal 

impact on the standard deviation of the PnL profile’s returns. However, it is clear from the 

results that the ZOE algorithms exhibit lower standard deviations across the range of roll days 

than the ZSE algorithms.  

 

 

Figure 2.8 

From Figure 2.8 it can immediately be seen that the ZOE mean return and CV are far more 

stable than that of ZSE. Despite this however, the CV for ZOE is consistently greater than 

ZSE’s suggesting that the PnL returns of ZOE are more volatile. Both the CV and mean return 

for ZSE have very unstable profiles with respect to roll day around the 10
th

 day. Hence, the FND 
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for the grains is 10 days before expiry. The instability of the profiles shown may be attributed to 

effect of FND as traders close out positions in the active contract to open positions in forward 

contracts (that will become the active soon). Figure 2.8 also shows that one day from expiry, 

both ZSE and ZOE experience significant changes in CV and mean return. In the case of ZSE, 

the CV drops while the mean return rises, suggesting any extra volatility due to lower volumes 

is favoured by the ZSE algorithms. On the other hand, the ZOE algorithms do not favour the 

same scenario as the CV rises and mean return drops. These differences may be due to the fact 

that ZSE volumes are generally an order of magnitude larger than ZOE volumes.  

From the results it may be inferred that rolling 15 or more roll days before expiry would yield 

the most stable profiles and therefore algorithms.  

 

 

Figure 2.9 

(Note: optimal roll day is 15 days prior to expiry for ZSE and ZOE) 

 

Figure 2.9 details the percentage change in PnL with roll days. Any day after the optimised roll 

day (15 days prior to expiry) seems to be more stable than prior to it. ZOE PnLs are very 

insensitive to roll days greater than the optimised. ZSE PnLs are far more sensitive as can be 

seen. Once again on the FND 10 (10 days prior to expiry) the percentage change in PnL drops 

significantly. The reasons for this were discussed above.  Also, it is interesting to see how ZOE 
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associated with the price as volumes reduce closer to expiry. There is however a significant drop 

on roll day one suggesting instability. Despite the increase in PnL for ZOE, it would be 

impossible to make these gains in practice as it is not advisable to keep trading the same contract 

after FND. Also given the lower volumes, the price slippages that would be experienced after 

FND would greatly erode PnL. This is also the case for ZSE however, it would also not be 

advisable based on the results shown as PnL significantly drops as expiry is approached.  

 

 

Figure 2.10 

(Note: optimal roll day is 15 days prior to expiry for ZSE and ZOE) 

 

Figure 2.10 shows the variation of AOM and DC with varying roll days. From the graph it is 

clear that any roll day closer to the expiry than the optimised for ZSE (15 days prior to expiry) 

will result in catastrophic effects on AOM and DC. On the other hand ZOE gains from 

significantly greater AOM and DC. It has also be discussed how this would not be possible in 

practice due to the FND. Also that the price slippage would be significant and may harm 

performance characteristics in real time practice. However, rolling any day before the optimised 

day i.e.>15days, it is clear that the AOM and DC for both instruments are quite stable (more so 

for ZOE though). Generally however, the extra stability seen in ZOE would be eroded in reality 

by the price slippage as ZOE ADVs are consistently an order of magnitude lower than those of 

ZSE.  
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2.6. Metals 

 

Metals is a sector that is common in many portfolios not just commodity portfolios. Metals are 

non-perishable and therefore are not subject to price-shocks unlike the grains and softs. In the 

interest of this chapter, two metals were considered, Copper (CPE) and Gold (GCE). The reason 

for this selection is to include a base metal (CPE) used in manufacturing and industry, and a 

precious metal (GCE) used as an investment, base currency and other reasons. Unlike the grains 

and softs also, the metals sector is not subject to low volumes however, when it comes to 

contract expiry, the volumes can be seen to drop significantly. This is because traders and 

investors may not be interested in taking delivery of the actual commodity.  

The CPE and GCE contracts have been optimally rolled 28 days prior to expiry while the FND 

is 18 days prior to expiry.  

 

 

Figure 2.11 

 

Similarly with the previous results, Figure 2.11 shows there being virtually no variation with roll 

day of the standard deviation. This is true for both GCE and CPE. Although it can be inferred 

from the graph that the GCE algorithms are more stable with respect to PnL returns over the roll 

day range as they exhibit lower standard deviations. 
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Figure 2.12 

 

From Figure 2.12 it is clear that the GCE mean return and CV is very stable across varying roll 

days. This means that whether the price data is rolled on expiry, or 7 weeks before expiry, the 

CV and mean return should not change significantly for GCE. In the case of CPE there is 

slightly more variation, especially as expiry nears. There are a number of reasons that could 

explain this. Firstly, CPE, although not perishable, is used and is not considered ‘precious’ as 

GCE is. GCE also does not have the storage costs associated with it as CPE does. This means as 

FND approaches, CPE traders will be far more vigilant of their open positions than GCE traders. 

Secondly, although both metals are very liquid, GCE is far more liquid than CPE by an order of 

magnitude. This suggests that the price volatility associated with the drop in volume may be 

proportionally more for CPE. This can also be inferred from the behaviour of CPE as it 

approaches expiry.  

Generally however, in practice this is not an issue as metals contracts’ FND is 18 days prior to 

expiry. This means that those who do not want to take delivery of the commodities must not be 

trading them the 18 days before expiry and must therefore have rolled their positions to the next 

forward contract.  
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Figure 2.13 

(Note:  optimal roll day is 28 days prior to expiry for GCE and CPE) 

 

From Figure 2.13 it is clear that the PnLs for both metals vary significantly as roll day tends to 

expiry. In the case of GCE, the PnL changes are not significant until the FND of 18 days. It is 

clear that after that day, traders remove positions they may have and begin to trade the next 

contracts. There is another region of stability between the FND and expiry which may exist due 

to very high volumes (liquidity) of GCE as many traders take delivery. In the case of CPE, once 

again after FND and on approach to expiry, the changes in PnL are significant but in this case 

they drop rapidly. The drop may be associated with the decrease in volume as traders roll their 

contracts and price volatility is established due to the huge ‘dumping’ of contracts.  

Compared to the grains and softs however, it is obvious (by comparing scales) that the metals 

market is much less affected by the day the data is rolled, proportionately.  
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Figure 2.14 

(Note:  optimal roll day is 28 days prior to expiry for GCE and CPE) 

 

From Figure 2.14 it is apparent that the AOM and DC for GCE are very stable across roll days 

with slight increases as the roll day tends to expiry. On the other hand the CPE is far more 

unstable with both AOM and DC fluctuating throughout the roll day range. Interestingly, as 

expiry nears, the AOM and DC drop dramatically and this may be due to the illiquidity 

phenomenon discussed earlier however compared to both the grains and softs, the fluctuations in 

AOM and Dc are far lower proportionately, making both metals algorithms stable with respect 

to roll day. Even though there are changes in performance, the size of the changes for the metals 

is not as significant as with the other sectors. Also it is important to consider the fact that most 

traders do not hold positions past FND, and that contracts held after the FND are subject to 

delivery.  
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energies sector fairly against the other sectors, two energies were selected to be subject to the 

procedures and analysis to determine whether their algorithmic performance is compromised 

with respect to roll day; Heating Oil (HOE) and Natural Gas (NGE). Due to the same 

phenomenon of volumes dropping as expiry nears the energy algorithms are optimised to roll 3 

days before expiry. The FND (as mentioned earlier) is not of importance as it occurs after 

expiry.  

 

 

Figure 2.15 

 

From Figure 2.15, as with all other sectors, the standard deviation of PnL returns remains 

constant as the roll day is altered. Generally, compared with the other sectors, the standard 

deviation of the PnL returns are very high suggesting greater price volatility associated with the 

energies. In relation to each other though, the HOE standard deviation is far lower than that of 

NGE and this may be due to the famous issue of storage problems associated with gas which 

makes it susceptible to price shocks. 
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Figure 2.16 

From Figure 2.16 it is apparent that the mean return for both NGE and HOE are quite stable. 

The mean return however of HOE is far lower and more stable than NGE’s. The reason for this 

may be the problem associated with the storage of gas making the price more volatile as expiry 

nears. This suggests why the mean return for NGE is stable up until 4 days prior to expiry. On 

the other hand the CV’s of both NGE and HOE exhibit very similar trends with an almost 

sinusoidal characteristic. It is quite clear though that as expiry nears more and more, the CV will 

rise for all energies as the storage of both is an issue for whoever is taking delivery. There is 

also a drop in volumes of both NGE and HOE as expiry nears.  

 

Figure 2.17 

(Note:  optimal roll day is 3 days prior to expiry for HOE and NGE) 
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From Figure 2.17 it is clear that both energies have a greater stability of PnL across roll days 

compared to the softs and grains, similar to the metals. In the case of the energies there are sharp 

drops 1 or 2 days from expiry. Reasons for this could be the fact that energies’ FND is after 

expiry, so traders are rushed to “dump” contracts closer to expiry resulting in an increase in 

price volatility, hence the drop in PnL. The other reason for the instability shown could be the 

size of the roll for energies. Energies (unlike metals) have famously large roll values which 

mean mapped algorithm prices have larger margins for error, hence there could be a larger 

discrepancy of PnL.  

 

 

Figure 2.18 

(Note:  optimal roll day is 3 days prior to expiry for HOE and NGE) 

 

Figure 2.18 shows how the AOM and DC for HOE and NGE change with respect to the day the 

data is rolled (days from expiry contracts are mapped). From the graph it is apparent that both 

energies suffer from instability in both AOM and DC. As expiry nears, the algorithms AOM and 

DC collapse suggesting that the price volatility associated with the lower volumes and storage 

issues are significant. Also the FND is after expiry so contracts may be held longer by traders 

compared to commodities in other sectors. The major drops occur as expiry nears with HOE 

performance characteristics falling more violently. The reason for this may be due to the lower 

liquidity associated with HOE compared with NGE, especially as expiry nears.  
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2.8. Volume Data 

 

Volume data was acquired for all the commodities considered in this analysis in order to show 

that volumes reduce towards expiry. In the interest of the chapter, the last three years of volume 

data have been considered in order to make the diagrams legible to the reader. The red lines 

throughout represent the ADV. 

 

2.8.1 Softs 
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From Figure 2.19 it is clear that both LBS and OJE follow contract cycles as explained earlier. 

There is an apparent drop as contracts near expiry for both softs which consolidates the findings 

made in section 4. The ADVs shown support this, while also making it easier to understand. The 

reason for changes in PnL, CV, mean return and performance characteristics can therefore be 

supported. The drops in volume suggest traders are rolling their positions due to FND.  

 

2.8.2 Grains 

 

 

 

 

Figure 2.20 
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From Figure 2.20, just by looking at the scales and ADVs it is clear that ZSE volumes are an 

order of magnitude larger than ZOE’s. This in itself may be a reason for the difference seen 

earlier in section 5. The proportional decrease should be considered also. In the case of ZSE, the 

contract cycle is less prominent but still nevertheless exists.  

 

2.8.3 Metals 

 

 

 

 

Figure 2.21 
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From Figure 2.21 it is clear that both metals experience lower volumes as expiry nears for each 

liquid contract shown. In the representation shown, intermediate contracts for the metals have 

also been plotted for entirety. These contracts in practice are ‘dead’ contracts and only exist for 

those who want to trade on Globex and take delivery at the end of the month. These contracts 

have not been considered in the analysis carried out earlier. However in the interest of this 

chapter, a number of contracts for each metal are shown with clearly falling volumes towards 

expiry and clearly rising volumes from the beginning of the cycle. 

 

2.8.4 Energies 

 

 

 

 

Figure 2.22 
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Figure 2.22 shows the volumes for the energies selected for the past 3 years, daily. The data 

clearly shows that both NGE and HOE follow monthly cycles with drops in volumes towards 

the expiry of the contracts. The ADV lines make it easier to distinguish what is to be deemed 

‘lower than average volume’ and ‘higher than average volume’.  It is however apparent that the 

volumes for HOE are less than half those for NGE. This along with the storage issue and the fact 

FND is after expiry day may attribute to the results shown in section 7. All results are presented 

in graphical form.  

 

 

2.9. Conclusions 

 

From the results it is clear that altering the roll day of price data used to optimise a trading 

algorithm can greatly impact the performance characteristics of the algorithm, while also 

impacting mean PnL returns and coefficients of variation. It is apparent also that altering roll 

day in trading algorithms will not impact standard deviation significantly and this was clear 

throughout the analysis across all sectors. 

The volume data supports the theories of lower volumes towards expiry throughout the sectors. 

In the case of GCE where performance indicators were stable near expiry, it is clear that the 

volumes are so large that it is not possible to have volatility induced by reduced liquidity. Also it 

must be remembered that GCE is a non-perishable ‘precious’ commodity and does not have the 

storage costs associated with it of other commodities. This is supported by Margaronis et al. 

(2011). Also, it can be held indefinitely in its raw form much like a currency meaning traders 

may not rush to come out of positions in it. These are all reasons supporting the stability of GCE 

throughout the roll day range.  

In the case of ZSE, positive changes are seen as expiry nears. This shows that the ZSE 

algorithms favour the volatility induced by the reduction in volumes. However, due to FND, 

ZSE contracts cannot be traded so close to expiry unless delivery it taken (which has storage 

costs, margin calls and other complexities associated with it).  

In the case of the softs, the volumes are low throughout making price-slippage an issue when 

taking positions and rolling contracts. The softs and grains also have lower numbers of contracts 

cycles per year. ZOE and the softs experience low volumes making the price volatility as expiry 
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nears greater. This, coupled with price slippage can have a devastating impact on an algorithms 

performance in live-trading. Also, given the FND none of the grains or softs can be traded 

beyond this point unless delivery is taken. Hence it is wise to optimise trading algorithms to roll 

a certain number of days before each instrument’s FND. 

In the case of the metals, the volumes data is not as conclusive however, the trends can still be 

seen clearly enough. Also, it is clear that for both the metals and energies sectors, the impact of 

altering the roll day effected the performance indicators, mean return of PnL returns and CV of 

PnL returns far less, proportionately than in the softs and grains; the main reason being the 

differing liquidity of the markets.  

For the energies the volumes data showed clearly the monthly cycles with volumes dropping 

significantly as expiry nears. However, given that the FND for energies is after the expiry date, 

there is no indicator for traders to start thinking about rolling contracts to the next month. 

Hence, when expiry nears there is a massive rush for traders to ‘dump’ contracts that are 

expiring. This causes instability in the price and therefore volatility since proportionately, 

volumes decrease more. Another significant reason for the instability of the energy algorithms 

towards expiry (especially in relation to performance indicators) is the storage issues associated 

with them. Both NGE and HOE (more so NGE as it is a gas) require a huge amount of 

infrastructure to be stored, hence as expiry looms (and FND has not been announced as it is after 

expiry) those trading energies who do not want to take delivery must roll their positions or come 

out of the trades altogether. Finally, given the contract cycle of the energies, it is clear that they 

roll more often, meaning there is a greater chance of there being error in rolls and hence greater 

chances of algorithms being optimised incorrectly due to inaccurate data. 

Overall however, the results support the initial theory that altering roll day of price data used to 

optimise a trading algorithm can impact the trading algorithm’s performance criteria among 

other characteristics. The results supported the theory more so for certain instruments than 

others but the properties of each instrument could be used to explain these differences, being 

absolute ADV (liquidity/volume), FND and storage costs.   
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Chapter 3: The significance of rollover in commodity returns using PARCH models 

Chapter 3 is joint work with M.G.Karanasos, P.D. Koutroumpis & R.B. Nath ‘The significance of rollover in 

commodity returns using PARCH models’. M.G.Karanasos, P.D. Koutroumpis & R.B. Nath contributed with 

mapping of data and interpretation of some of the results with a combined contribution of 10% to the chapter 

(approx. 3% each).  

The remaining contributions are by Z.N.P. Margaronis for significant contribution (90%) in data-collection, data 

processing, data analysis, results & discussion and write-up throughout the Chapter.  

Keywords: Algorithmic trading, forecasting, futures commodities, rollover, mapping, 

power ARCH models, structural breaks 

 

3.1.  Introduction 

The most important aspect of any algorithmic system is to ensure the data with which the system 

is back-tested is correct and completely agrees with the data of the platform which is then used 

to trade. Generally most studies in econometrics do not specify which type of data is used, 

whether futures or spot and at which time the data is taken. The application of any of the 

theoretical models to real life trading situations is rare. Finding the correct prices for back 

testing is more difficult than initially thought. It is therefore not straightforward to obtain the 

data required to back test. Such data is obtained from two sources: Bloomberg and Thomson 

Reuters Datastream. In order for a real time series to be created, one needs to search and 

download prices available for each individual active (front month) contract for the given 

security. The data obtained then needs to be mapped (roll/basis accounted for)  if futures 

contracts are being considered which expire on a regular basis. Carrying out an analysis on any 

data that is not mapped makes it inapplicable to real life trading systems since these are based on 

continuous data sets. The aim of this study is to show how the unmapped and mapped data differ 

econometrically. Showing this will confirm that any analysis carried out for the purposes of real 

life trading requires mapped data to be used because the differences between the mapped and 

unmapped data can be significant. 

The data section describes the data and degrees of homoskedasticity. The main issue with such 

data sets is that for a trading algorithm to be applied, the data itself must be continuous and 

contemporaneous for security spreads, if considered. Due to the existence of monthly contracts, 

expiry of the front month contract means the second month contract then becomes the new front 

month contract, and since these prices differ, a rollover or basis exists. If this roll is not taken 
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into account, any trading system will misestimate profits generated. The value and significance 

of the roll differs greatly from instrument to instrument. In order for a traded continuous data set 

to be meaningful, the data must be mapped in order to account for roll. The only data that does 

not require mapping is foreign exchange data and any contracts such as those for equity indices 

that take spot prices and do not involve contracts and hence rollover.  

This chapter will analyse the differences, econometrically, between data that has been mapped 

and data that is unmapped. This is significant for algorithmic trading because the roll that exists 

can significantly change a data set. When a model is optimised based on the data, it is clear how 

having incorrect data with respect to real life trading situations can lead to a very erroneous and 

wrong optimised algorithm parameters. It will be seen that the significance of roll is greater in 

some data sets than in others. The significance of the rollover will be compared econometrically 

by running PARCH (Power Autoregressive Conditional Homoskedasticity) models and the 

various coefficients within models will be analysed across securities. If coefficients change 

significantly between a single time series, one that has been mapped and one that is unmapped, 

then it will be concluded the impact of roll is large. The impact of the roll is found to be 

significant for most instruments, greatest of all in energies and least of all in metals, considered 

as a percentage of price. 

 

 

3.2. Literature Review 

Tansuchat et al. (2009) carry out an impressive analysis modelling long memory volatility in a 

number of agricultural futures returns and find that the fractionally integrated GARCH and 

EGARCH models outperform the conventional GARCH and EGARCH models. This is an in-

depth analysis looking into many agriculturals but mapping was not considered at any point 

throughout the analysis and by looking at the results of this chapter, it will be made clear that the 

model which best fits a time series can significantly change when rollover is accounted for and 

mapped data is introduced. Of course this analysis appears to be concentrating more on the 

theoretical side of the science rather than the more practical trading aspects considered in this 

chapter. 

Chatrath et al. (2001) show commodity prices to be chaotic to a certain degree. This chapter 

only considers the prices of four agricultural commodities that tend to ‘spike’ more often since 
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they are less liquid markets. They use ARCH processes to explain the non-linearity in data 

however given the stability of trading algorithms in terms of their returns, the extra volatility 

obtained in certain seasons exists but is not significant for a trading system which trades at a low 

frequency. This is because the optimisation of the algorithm takes into account any extra 

volatility obtained even if it is seasonal.  

Vivian and Wohar (2012) mention that the increased volatility exhibited by commodities in the 

recent financial crisis was not significant and that there are no real resulting volatility breaks. 

This is however not true for other financial crises where the volatility breaks are more obvious. 

For this chapter the recent financial crisis is more of interest as the optimisations are carried out 

over 5 years of data. The fact that their findings show no real evidence of volatility breaks, 

despite the financial crisis, is important. This is because the profits obtained from the trading 

algorithms also show no structural breaks in volatility even during the financial crisis. This was 

confirmed from the homoscedastic nature of the profit profiles obtained.  

Ji and Fan (2012) tell us that the impacts of the oil market spillover into other commodity 

markets. This may indeed be true in terms of price, however it is clear that after applying a 

trading strategy to many instruments, the way in which the algorithm trades and is optimised for 

different securities varies. It is important to remember the significance of diversification along 

with the idea of trading spreads which reduces the exposure to any single commodity. This is 

linked to the analysis of correlation between securities where the prices and daily returns may be 

correlated, but the returns of the algorithms are not by virtue of the important fact that 

algorithms will not predict securities to be in the same buy/sell positions. Margaronis et al. 

(2011) have already demonstrated the fundamental effect of correlation dilution of a diversified 

trading system which uses securities that are highly correlated, especially intra-sector. 

Cheung et al. (2010) agree that diversification benefits can be gained by investing in 

commodities and also that the diversification benefit of commodities is far more complex than is 

generally understood in finance. The fact that commodities regimes are constantly changing is 

also interesting as we see a significant amount of heteroscedasticity throughout our analysis. 

However diversifying into portfolios with commodities yielding a positive risk-return 

relationship compared to international equities is in line with what the authors believe, given 

that commodities’ low volatility leads to lower returns. The RGZ algorithms (2010) have shown 

however that being diversified correctly can lead to a superior portfolio performance even in 

times of a bearish commodity environment. This is due to the inclusion of security spreads, 

single securities in different sectors and asset classes in the portfolio, as well as dilution effect 
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on daily return correlations mentioned earlier which generate a profit profile that is truly 

diversified and offers a superior return-risk characteristic. 

Guida and Matringe (2005) show that stock indices time series are easier to predict using 

econometric models, however mapping of data was not employed at any point throughout the 

analysis. The reason for their agricultural commodities model not giving the results expected 

may be because the roll was not accounted for or even because the data used was not exactly the 

front month contract. Also given the large sample of data used, structural breaks were included 

in the analysis that would not help the model in its prediction. They suggest the use of 

continuous futures which do not entail rollover. It is however very difficult to find exchanges 

where these types of futures are available to trade making the practicality of the models slightly 

difficult to see in a real life situation. The results however will be very interesting to compare 

against mapped and unmapped time series and see which is most alike. 

 

 

3.3. Data 

 

This particular study is based on trading the front month contract based on daily prices at 2100 

hrs GMT (for most instruments) or at the close of business for each respective instrument. All 

data was obtained from Thomson Reuters Datastream and Bloomberg and the prices are daily 

for the front month futures contract at that particular time. For example, on May 5
th

 2008, the 

active contract that was trading on that particular date needs to be obtained so that back testing 

for that time is carried out on correct data. This will require knowledge of the correct ticker 

corresponding to that month. Tickers are defined by the security, month and year, so a three part 

code is required for every contract search. This results in a large number of contracts required to 

generate a time series. Given the hours of trading of certain securities, the time to 

algorithmically trade varies. In the case of Wheat, the daily closing price is at the close of 1900 

hrs GMT since it is traded on a US Exchange only. So if any new positions in the portfolio need 

to be taken or changed, in most cases, it should happen at 2100 hrs on the trading day. For most 

time series the sample size is from January 2007, for five years. 
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3.3.1. Mapping Procedure 

 

The mapping procedure involves the use of a program. The input for the program is the entire 

set of front month contracts obtained as explained earlier in order in a series (front month 

contract from January 2007, 5 years of daily settlement data). The program then takes the last 

price of each contract, being the price on expiry of the contract, and lines up by date to the price 

of the second month contract. The program uses a counter for both the price series and the date 

series. When the counters match on the day of expiry, mapping occurs. The front and second 

month prices on that date are then lined up and their difference gives the basis or rollover for 

that contract. This is done consistently throughout the entire data set and each roll value or basis 

value is stored and accumulated in order for a calculation of the cumulative roll or basis to be 

made. Mapping data can have a huge impact on a price series if the roll value or basis value is 

significant. It is less significant in instruments which do not exhibit large rolls. However given 

that the cumulative roll is required, especially when a trading algorithm is applied, even if the 

roll values are not significant the fact that it accumulates over time makes the mapping 

procedure imperative no matter the magnitude of the roll or basis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Diagram representing mechanism of mapping procedure  
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3.3.2. Grains 

 

Figure 3.2 Mapped and unmapped prices and returns for Wheat 

 

In figure 3.2, 3.3 and 3.4 the time series for the past five years of mapped and unmapped grains 

have been plotted. The grains prices are more heteroskedastic than those for copper (figure 3.5) 

as the degree of volatility throughout the time series seems to change with greater levels of 

volatility around the beginning of 2008 and 2010 days. In this case, the size of the roll is greater 

hence there is a far greater impact on the data of carrying out the mapping procedure. The 

returns are shown in figure 3.2, 3.3 and 3.4 where it is clear that the grains prices, more so 

visible for wheat figure 3.2,  have gained a greater level of volatility in the last year or so. Given 

the larger level of roll in this sector it is predicted that the coefficients of the PARCH model run 

should differ more than those for copper. This same regime can be seen in oats and corn. The 

reason is the similar behaviour and roll within the grains sector. 

 

Figure 3.3 Mapped and unmapped prices and returns for Corn 
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 Figure 3.4 Mapped and unmapped prices and returns for Oats 

 

 

3.3.3. Metals 

  

Figure 3.5 Mapped and unmapped prices and returns for Copper 

 

Figure 3.5 shows the price of copper for the past five years. Generally there is a degree of 

homoskedasticity. The copper price seems to possess homoskedasticity throughout the time 

series. From the plot it is clear that there is a slight difference between the mapped and 

unmapped prices. The differences can also be seen in the logarithmic returns for unmapped and 

mapped prices are shown. These graphs prove that inclusion of rollover in any time series can 

impact the data and as predicted earlier given the smaller level of roll in metals, the effect of 

mapping might be not as significant for the time series. This will be further investigated in the 

analysis section. Platinum is also show in figure 3.6 where the less significant roll in metals can 

again be seen despite differences in heteroskedasticity. 
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Figure 3.6 Mapped and unmapped prices and returns for Platinum 

 

 

3.3.4. Energies 

 

Figure 3.7 Mapped and unmapped prices and returns for Heating oil 

 

The level of roll for energies such as heating oil is generally very significant. Energies’ futures 

cannot be traded algorithmically unless some kind of data manipulation is carried out. The graph 

of figure 3.7 shows how significant the impact of mapping is for the price of heating oil is and 

the returns for heating oil (mapped and unmapped). Generally, the entire time series seems to be 

very homoscedastic over the five year period. There seems to be far more irregularity in the 

returns of this particular commodity since a greater proportion of the unmapped returns plot 

(blue) can be seen to be larger than the corresponding mapped returns (red). This means that 

there is an artificial return in the data due to the roll. Very similar behaviour can be seen in the 
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periods while also having quite a significant roll. Heating oil returns seem to be slightly more 

volatile, however the level of heteroscedasticity for both instruments is similar with both 

enduring more volatile returns around the end of 2007 and beginning of 2008. 

  

Figure 3.8 Mapped and unmapped prices and returns for RBOB 

 

In the case of WTI it is clear there is a significant difference between the mapped and unmapped 

prices, as can be seen in figure 3.9. Despite the very large decline in price between the end of 

2008 and the beginning of 2009, the data is quite homoscedastic throughout the sample period, 

except during the decline. The crisis in 2008 caused a volatility in the oil price which is evident 

however the price resumed its original behaviour by 2009. In the case of the returns, there is 

evidence that the mapping procedure has created a series that is different to the original due to 

the rolls that have now been accounted for. These observations are generally quite consistent 

with what has been seen earlier in figures 3.7 & 3.8. 

 

 

 

Figure 3.9 Mapped and unmapped prices and returns for WTI 
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Figure 3.10 Mapped and unmapped prices and returns for Natural Gas 

 

In figure 3.10 there is a very large inconsistency between the mapped and unmapped data sets 

for natural gas. Unfortunately it is not possible to understand these difference between mapped 

and unmapped data sets until the analysis is concluded. By the end of 2009 and beginning of 

2010, there is a three quarter period of increased volatility. The reason for the very large 

differences between mapped and unmapped prices in this case may be due to the significant and 

sudden loss of homoscedastcity. Generally however, the time series is consistent with the 

presumption that the energy sector of commodities yields significantly different series after 

being mapped.  

 

3.3.5. Softs 

 

 

Figure 3.11 Mapped and unmapped prices and returns for Cocoa 
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Cocoa seems to be another commodity whose price seems very different after being mapped 

(figure 3.11). Cocoa prices have a large amount of volatility however it can be seen that the 

mapping of cocoa prices reduces exposure to some of it. The level of volatility seems generally 

quite high given the price fluctuations but nonetheless it still exhibits a degree of 

homoskedasticity. In the case of coffee, there seems to be a great deal of heteroscedasticity 

around the beginning of 2010 where there seems to be a structural break in the data as the coffee 

price obtains a greater volatility suddenly (figure 3.12). The impact on the coffee price of 

accounting for roll is significant as expected however this will be considered more in-depth 

when analysing the results later. 

 

Figure 3.12 Mapped and unmapped prices and returns for Coffee 

 

 

 

Figure 3.13 Mapped and unmapped prices and returns for Sugar 
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From figure 3.13 it is apparent that mapping the sugar price can have a significant impact on the 

time series which results. There also seems to be a lack of homoskedasticity throughout. 

Similarly it also has a profound impact on the returns for sugar where it is evident, especially 

between 2008 and the beginning of 2010, that mapping of commodities such as sugar is 

imperative if a trading system is to be created around the time series.  

From figure 3.14, the orange juice price and returns can be observed and immediately it 

becomes apparent that it is far more homoscedastic than the other softs with the exception of a 

few spikes. The reason for these few spikes is due to supply shocks as orange juice production is 

based on two major producers. The orange juice price dependant very much upon the weather in 

the countries of these two producers and can therefore be considered a weather derivative, 

unlike the other softs. The mapping procedure seems to not have a very significant impact on the 

data.  

 

 

Figure 3.14 Mapped and unmapped prices and returns for Orange juice 
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3.3.6. Soy Complex 

 

 

 

Figure 3.15 Mapped and unmapped prices and returns for Soybeans 

 

The soy complex is a sector that is comprised of soybeans and its processed derivatives. When a 

soybean is crushed, oil can be extracted known as soy oil and the shell and rest of the bean is 

known as soy meal. In the case of soybeans, the price seems relatively homoscedastic but at 

second glance, the returns show a time series that is quite heteroscedastic.  Even though the 

price difference is not significant between mapped and unmapped data sets, there is still a 

requirement for mapping as there are points with significant differences between mapped and 

unmapped data sets. 

 

 

Figure 3.16 Mapped and unmapped prices and returns for Soy meal 

  

600

800

1,000

1,200

1,400

1,600

1,800

I II III IV I II III IV I II III IV I II III IV I II III IV I

2007 2008 2009 2010 2011

SB_MAPPED SB_UNMAPPED

-.12

-.08

-.04

.00

.04

.08

I II III IV I II III IV I II III IV I II III IV I II III IV I

2007 2008 2009 2010 2011

SB_RM SB_RU

100

200

300

400

500

600

700

I II III IV I II III IV I II III IV I II III IV I II III IV I II

2007 2008 2009 2010 2011 2012

SM_MAPPED SM_UNMAPPED

-.25

-.20

-.15

-.10

-.05

.00

.05

.10

.15

I II III IV I II III IV I II III IV I II III IV I II III IV I II

2007 2008 2009 2010 2011 2012

SM_RM SM_RU



70 

 

The soy meal data shown above in figure 3.16 is surprisingly different from the soy bean data. 

The returns show a significant degree of homoscdasticity which is not expected if the soybean 

results are considered and the fact that soy meal is a derivative. However, it is important to 

remember the uses of these commodities and the fact that soy meal is used primarily as animal 

feed and hence does not have the same demand characteristic as the rest of the soy complex.  

Figure 3.17 shows the soy oil price and returns which, as expected, are very similar to those of 

soybeans with a lower volatility characteristic in 2007 and increasing volatility in 2008 after 

which it varies. 

 

 

 

Figure 3.17 Mapped and unmapped prices and returns for Soy oil 
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3.4. PARCH model 

 

In this Section, for the different commodity returns, we will estimate AR-PARCH models (for 

applications of the asymmetric PARCH models see among others, Karanasos and Kim, 2006). 

Since PARCH models require stationary data to be run, the returns of each of the instruments 

will be considered. The data was summarised briefly in the data summary section. For each 

instrument, the mapped and unmapped returns will be analysed. The data itself would be run 

through different PARCH models within the Eviews software. This is because a pre-analysis 

showed that a PARCH model was far more suited to the data than GARCH models. The reason 

being the PARCH model allows estimation of the power or an a priori specification of a power. 

In a GARCH model this power is of course fixed at a value of 2. The pre-analysis also 

confirmed that the heteroscedasticity consistent covariance (Bollerslev-Wooldridge) option for 

coefficient covariance was used for robust standard errors. This is due to the nature of the 

returns as seen earlier in the data summary section. The optimisation algorithm selected was the 

default Marquardt and the method was chosen to favour accuracy over speed since 

computational time was not of particular significance.   

After running the data for through a number of combinations of models, some very interesting 

findings were made. The mapped and unmapped data, as predicted, differed in terms of 

coefficients and sometimes even in terms of the model specification which suited best the data. 

Throughout the analysis the errors were assumed to be of Gaussian distribution.  

Overall, the Akaike information criterion (AIC) was used to measure the relative goodness of fit 

of each model and this was the final criterion by whish each model for each data set was 

selected. Throughout the analysis, a level of significance of 0.10 was chosen for the significance 

of coefficients. 

Let commodity returns be denoted by 𝑦𝑡 = (𝑙𝑜𝑔𝑝𝑡 − 𝑙𝑜𝑔𝑝𝑡−1) × 100, where 𝑝𝑡 is the 

commodity futures price at time t. A general AR(1)-PARCH(1,1)-in mean specification is given 

as: 

𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + ℎ𝑡 + 𝜀𝑡, 



72 

 

where 𝜀𝑡|Ω𝑡−1∼N(0, 𝜎𝑡
2) is the innovation, which is conditionally (as of time t-1) normally 

distributed with zero mean and conditional variance 𝜎𝑡
2. In addition, 𝜎𝑡

𝛿  is specified as a PARCH 

(1,1) model
1
: 

𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝜀𝑡−1| − 𝛾𝜀𝑡−1)

𝛿
+ 𝛽𝜎𝑡−1

𝛿 , 

where α and β denote the ARCH and GARCH parameters, γ is the asymmetry coefficient and δ 

is the power term. The `persistence' in the conditional variance, in the absence of breaks, is 

given by c=αk+β, where 𝑘 =
2

𝛿
2

√𝜋
𝛤 (

𝛿+1

2
) under normality (see Karanasos and Kim, 2006). All 

the instruments considered will follow this model however some will differ due to symmetry 

meaning the asymmetry parameter () will not exist in that particular model. The coefficients of 

each individual security (mapped and unmapped) are shown later. 

 

 

3.5. Empirical Analysis   

 

Let it be noted that throughout the analysis the AIC was minimised for each instrument by 

running different versions of the models. 

 

3.5.1. Grains  

 

Wheat Returns  

The wheat returns yielded very interesting results when tested. The mapped and unmapped data 

gave very different models which is interesting considering the data is essentially the same 

except that the mapped data accounts for the rollover of contracts.  The unmapped returns fitted 

best with a symmetric (P)ARCH model where the power was fixed at 1.1. Also the in-mean 

specification was favoured. On the other hand, the mapped data yielded very different 

                                                           
1
 In order to distinguish the general PARCH from a version in which δ is fixed (but not necessarily equal to two) we 

refer to the latter as (P)ARCH. 
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estimation results. That is, for the mapped data  the power estimation was favoured  with 

δ=0.49. 

 

Corn Returns  

The mapped and unmapped data gave very similar models which is interesting considering the 

significant level of rollover in the grains data on contract expiry. The unmapped corn returns 

favoured an asymmetric (P)ARCH model with a fixed power at a value of 1.3.  In the case of the 

mapped returns for corn, a very similar model was favoured in that it was once again (P)ARCH 

with asymmetry, with a fixed power at 1.1 which is similar to the 1.3 output for the unmapped 

returns.  

 

 

Oats Returns  

The significant roll in oats prices meant the models favoured for the mapped and unmapped 

returns were quite different.  The unmapped returns favoured a symmetric AR-(P)ARCH model 

where the power was fixed to a value of 1.4. On the other hand the mapped returns agreed with a 

very different model, once again an AR-(P)ARCH, however the power was favoured to be fixed 

at a value of 0.87 and the asymmetric term was significant. 

 Where the unmapped data favoured fixing the power in all three grains, the mapped data 

preferred power estimation in the case of wheat. Looking at the power terms it is clear there is a 

considerable difference (between mapped and unmapped data)  for wheat and oats. The reason 

being the rollover can be significant in instruments such as grains. There is also a noticeable 

difference in some of the other estimated coefficients (for a summary see also the Appendix) 

confirming that the roll and therefore the mapping of data has a significant impact on how it 

behaves and how it can be modelled. In the interest of the real life trading situations this can be 

the difference between making a profit and a loss on a long lasting trade. Most of all, this is 

crucial to anyone using such data to back test a trading system or algorithm. An algorithm 

optimised with the unmapped data will yield far different parameters to one optimised on 

mapped data and this analysis has proved this theory. 
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Notes: Table above estimates the following model: 

𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + ℎ𝑡 + 𝜀𝑡 

𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝜀𝑡−1| − 𝛾𝜀𝑡−1)𝛿 + 𝛽𝜎𝑡−1

𝛿  

All figures are to 3d.p. 

Bold results signify percentage change greater than 30%. Standard errors are shown in brackets 

*Coefficient is significant at a 5% level 

 

Table 3.1 Table of results showing coefficients for unmapped and mapped data and their 

percentage changes for grains (standard errors shown in brackets) 

 

From Table 3.1 there seems to be a greater percentage change in certain coefficients. The 

proportional change in AIC is quite similar for corn and oats which may be explained by the 

lesser volatility these two instruments display in comparison to wheat. Generally the  (not 

reported) and δ coefficients have the greatest change proportionately. The power coefficient can 

have a large impact on the model therefore given its large change it is safe to say the mapped 

and unmapped data are significantly different.  

 

 

3.5.2. Metals 

 

Copper Returns 

For the copper returns we expect the results to differ from the wheat results. The reason for this 

is that the rollover for metals is generally not very significant.  The mapped and unmapped 

copper returns fitted almost identical models. Both favoured asymmetric AR-(P)ARCH models 

with very similar  fixed powers (0.72 for the mapped and 0.71 for the unmapped). 

 

Grains                   

  Wheat     Corn     Oats     

  Unmapped Mapped % change Unmapped Mapped 
% 

change Unmapped Mapped % change 


0.053 * 
(0.016) 

0.035 * 
(0.011) 34.48% 

0.061 * 
(0.022) 

0.075 * 
(0.021) -21.85% 

0.094 * 
(0.026) 

0.092 * 
(0.019) 2.12% 


0.935  * 
(0.022) 

0.972 * 
(0.008) -3.91% 

0.876 * 
(0.033) 

0.893 * 
(0.025) -2.01% 

0.854 * 
(0.044) 

0.914 * 
(0.018) -7.03% 

       
0.738 * 
(0.329) 

0.748 * 
(0.230) -1.43%   

0.257  

(0.142)   

 1.100 
0.491  

(0.487) 55.36% 1.300 1.100 15.38% 1.400 0.870 37.86% 


-7.470 
(3.891)                



(AR1)             
0.126 * 
(0.031) 

0.142 * 
(0.032) -12.66% 
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Platinum Returns 

For the platinum returns we expect the results to differ from the grains results. The reason for 

this is that the rollover for metals is generally not very significant.  In the case of the platinum 

returns the models were actually identical with both mapped and unmapped sets of returns 

favouring symmetric (P)ARCH models and a fixed power of 1.60. 

From the results it is clear that the metals’ roll is not significant. The mapped and unmapped 

data yield very similar results and have almost an identical model. Further, the coefficients are 

almost exactly the same. This supports the suggestion made earlier that the rollover on metals is 

less significant. The impact on the results of mapping the data is not crucial in this case. A 

trading algorithm optimised on unmapped data may therefore not be erroneous in reality with 

respect to the trades it makes. 

 

 

Metals             

  Copper     Platinum     

  Unmapped Mapped % change Unmapped Mapped % change 


0.055 * 
(0.011) 

0.057 * 
(0.012) -2.96% 

0.088 * 
(0.021) 

0.088 * 
(0.021) 0.08% 


0.941 * 
(0.013) 

0.937 * 
(0.014) 0.37% 

0.906 * 
(0.023) 

0.906 * 
(0.022) -0.03% 


0.806 * 
(0.167) 

0.802 * 
(0.167) 0.54%       

 0.720 0.710 1.39% 1.600 1.600 0.00% 

(AR1)
-0.055 * 
(0.026) 

-0.053 * 
(0.026) 3.35% 

0.108 * 
(0.030) 

0.108 * 
(0.030) -0.27% 

  Notes: Table above estimates the following model: 

                    𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + ℎ𝑡 + 𝜀𝑡 

                   𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝜀𝑡−1| − 𝛾𝜀𝑡−1)𝛿 + 𝛽𝜎𝑡−1

𝛿  

                 All figures are to 3d.p. 

Bold results signify percentage change greater than 30%. Standard errors are shown in brackets 

*Coefficient is significant at a 5% level 

 

Table 3.2 Table of results showing coefficients for unmapped and mapped data and their 

percentage changes for metals 

   

In this case the roll is not significant hence the models throughout for each instrument, even if 

mapping has been carried out, are similar. Since the roll is not large, the data is not transformed 

as much so similar models should result as expected. The results clearly show this with a 

maximum percentage change being in for copper at 2.96%, which is far less than the 30% 

change tolerance set.  
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3.5.3. Energies 

 

RBOB Returns 

In the case of energy commodities such as heating oil and RBOB, the rollover is considered to 

be larger than in most other sectors so the differences in model between the mapped and 

unmapped data are expected to be quite substantial.  The mapped and unmapped returns for 

RBOB  have quite a significant roll which explains why the models for the RBOB mapped and 

unmapped returns differed so much. In the case of the unmapped returns, an asymmetric 

(P)ARCH model was favoured with a fixed power at 1.10. However for the mapped returns a 

symmetric GARCH model (that is with a fixed power of 2.00) was favoured.  

 

Heating Oil Returns  

For heating oil the values of the roll were also quite significant which explains why the models 

for the mapped and unmapped returns differed so much. The unmapped heating oil returns 

favoured an asymmetric (P)ARCH model with a power fixed at 0.92. On the other hand the 

mapped returns also favoured a (P)ARCH model however in this case symmetry was favoured 

and the power was fixed at 1.55. Thus the models were very different due to the power values 

and the presence of asymmetries in the unmapped data. 

 

WTI Returns 

The mapped and unmapped returns for WTI favoured models that differed also. In the case of 

the unmapped returns, an asymmetric (P)ARCH model was favoured with the power fixed at 

1.18. In the case of the mapped returns however the same model specifications were favoured 

with the significant difference that the power was favoured and fixed at 1.42. 

 

Natural Gas 

Similar to RBOB, the returns for natural gas yielded favoured very different models for 

unmapped and mapped returns. The unmapped returns favoured a symmetric AR-GARCH 
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model (power being 2.00). On the other hand, the mapped returns favoured a symmetric 

(P)ARCH model where the power was fixed at 1.30. 

From the results it can be concluded that the roll does in fact have a significant impact on the 

data in the case of energies. This can be seen clearly from that data as the unmapped data 

favours a model of asymmetry in three cases, whereas mapped data favours a model of 

symmetry in two out of the four cases (that is RBOB and heating oil). This suggests that in this 

particular case, not accounting for roll introduces an asymmetric component to the behaviour of 

the data over time.  There is also a significant change in the value of the power parameter which 

impacts the model greatly. Interestingly however, the values of the other coefficients are not 

very different.  

 

 

 

Energies             

  RBOB     Heating Oil     

  Unmapped Mapped % change Unmapped Mapped % change 



0.061 * 
(0.021) 

0.059 * 
(0.017) 2.60% 

0.042 * 
(0.013) 

0.040 * 
(0.011) 5.38% 



0.931 * 
(0.023) 

0.927 * 
(0.020) 0.40% 

0.958 * 
(0.013) 

0.958 * 
(0.013) -0.03% 



0.520 * 
(0.250)     

0.642 * 
(0.243)     

 1.100 2.000 -81.82% 0.920 1.550 -68.48% 

           Notes: Table above estimates the following model: 

                            𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + ℎ𝑡 + 𝜀𝑡 

                            𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝜀𝑡−1| − 𝛾𝜀𝑡−1)𝛿 + 𝛽𝜎𝑡−1

𝛿  

        All figures are to 3d.p. 

                       Bold results signify percentage change greater than 30%. Standard errors are shown in brackets 

                      *Coefficient is significant at a 5% level 

 

 

Energies             

  WTI     Natural Gas     

  Unmapped Mapped % change Unmapped Mapped % change 



0.047  
(0.026) 

0.049  
(0.028) -4.26% 

0.065 * 
(0.017) 

0.204 * 
(0.037) -214% 



0.946 * 
(0.021) 

0.939 * 
(0.021) 0.74% 

0.918 * 
(0.018) 

0.852 * 
(0.023) 7.19% 



0.887  
(0.594) 

 0.685 
(0.462)  22.77%     

 1.180 1.420 -20.34% 2.000 1.300 35% 

AR(1)
   

-0.072* 
(0.032)   
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          Notes: Table above estimates the following model: 

                            𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + ℎ𝑡 + 𝜀𝑡 

                            𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝜀𝑡−1| − 𝛾𝜀𝑡−1)𝛿 + 𝛽𝜎𝑡−1

𝛿  

                        All figures are to 3d.p. 

                       Bold results signify percentage change greater than 30%. Standard errors are shown in brackets 

                      *Coefficient is significant at a 5% level 

 

Table 3.3 Table of results showing coefficients for unmapped and mapped data and their 

percentage changes for energies 

 

The reason for the RBOB and natural gas changes being slightly larger may be due to the 

storage implications in reality. This means there can be very large spikes in prices which can 

impact the roll if the spike occurs at rollover. This may also be due to larger errors in the data 

for the same reasons. The results for WTI showed that from all the energies it is the least 

sensitive to mapping with none of its parameter percentage changes exceeding the tolerance set. 

On the other hand, the heating oil returns yielded results proving the mapped and unmapped 

data is significantly different. Generally however, there is a significant difference between 

mapped and unmapped data for energies and the results prove this.  

 

3.5.4. Softs 

 

Cocoa, coffee, sugar and orange juice (both are the instruments traded on the American 

exchanges) are commodities that fall into the category of ‘softs’. This is a separate sector and is 

often confused with the ‘grains’ sector. However like the grains, the softs’ time series can 

exhibit a significant roll. This will be seen from the results yielded having run the models. 

 

Cocoa Returns 

The unmapped cocoa returns favoured an asymmetric AR- (P)ARCH model with asymmetry 

and a power fixed at 1.46. On the other hand the mapped cocoa returns favoured a (P)ARCH 

model too however in this case symmetry was favoured and the power was fixed at a value of 

0.48. 
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Coffee Returns 

In the case of the coffee returns the models were quite similar despite the roll being quite 

significant. Both mapped and unmapped returns for coffee favoured asymmetric (P)ARCH 

models. The only differences between the models was the fixed power, which for the unmapped 

coffee returns was favoured at 0.68 and for the mapped coffee returns was favoured at 0.54. 

 

Sugar Returns 

For the sugar returns there was a significant difference between the models favoured by the 

mapped and unmapped series. The unmapped returns favoured asymmetry and a (P)ARCH 

model with a fixed power of 0.55. On the other hand, the mapped returns favoured a very 

different model, that is a symmetric GARCH model. 

 

Orange Juice Returns 

For the orange juice returns the models favoured by both unmapped and mapped returns were 

quite similar. This is in line with the fact that the rollover values or basis for orange juice is not 

very significant; hence it is not expected to observe a large difference between mapped and 

unmapped data. Both mapped and unmapped returns favoured asymmetric AR-(P)ARCH 

models with fixed power. The unmapped data favoured a fixed power of 1.89 while the mapped 

data favoured a power of 1.96.  

From the results it can be concluded that the mapped and unmapped data for softs is indeed 

different, with the exception of orange juice. This can be seen from the significant changes in 

coefficients between the models and the models themselves as mapped data prefers a symmetric 

model and unmapped prefers asymmetric models in the case of cocoa and sugar. Given that the 

mapped an unmapped data differ quite substantially in most of the cases, the models within a 

certain instrument differ too. Overall, it is clear that there is an importance to the mapping 

procedure in accounting for roll when trading these securities, even for orange juice where the 

roll is not significant since the accumulation of rolls over time will end up being significant. In 

order to quantify this effect, the following table was drawn up (Table 3.4). 
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Softs             

  Cocoa     Coffee     

  Unmapped Mapped % change Unmapped Mapped % change 


0.032 * 
(0.012) 

0.026 * 
(0.011) 18.41% 

0.036 * 
(0.014) 

0.040 * 
(0.014) -12.08% 


0.963 * 
(0.014) 

0.974 * 
(0.014) -1.12% 

0.947 * 
(0.024) 

0.952 * 
(0.020) -0.52% 


-0.395  
(0.280)     

-0.612 
(0.321) 

-0.479  
(0.276) 21.68% 

 1.460 0.480 67.12% 0.680 0.540 20.59% 

(AR1)
0.047  

(0.026)           

Softs             

  Sugar     Orange Juice     

  Unmapped Mapped % change Unmapped Mapped % change 


0.049 * 
(0.016) 

0.047 * 
(0.012) 4.08% 

0.161 * 
(0.038) 

0.162 * 
(0.045) -0.62% 


0.948 * 
(0.019) 

0.951* 
(0.012) -0.32% 

0.705 * 
(0.060) 

0.593 * 
(0.093) 15.89% 


-0.377  
(0.259)   

-0.247 * 
(0.091) 

-0.297 * 
(0.103) 16.84% 

 0.550 2.000 -263.63% 1.89 1.96 -3.7% 

AR1    

0.140 * 
(0.031) 

0.134 * 
(0.031) 0.60% 

                Notes: Table above estimates the following model: 

                𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + ℎ𝑡 + 𝜀𝑡 

               𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝜀𝑡−1| − 𝛾𝜀𝑡−1)𝛿 + 𝛽𝜎𝑡−1

𝛿  

             All figures are to 3d.p. 

            Bold results signify percentage change greater than 30%. Standard errors are shown in brackets 

           *Coefficient is significant at a 5% level 

 

Table 3.4 Table of results showing coefficients for unmapped and mapped data and their 

percentage changes for softs 

 

In reality the link between soft commodities is not as strong as it may be in other sectors. This is 

important when considering this set of results. The mapped and unmapped series in this case do 

have significant differences however the changes are not similar in all cases. The proportional 

changes in cocoa and sugar returns for the influential coefficients are far greater than those for 

coffee and orange juice. For example, the models are very different with the mapped and 

unmapped returns demanding very different power parameters.  This may be explained by the 

structural break that may exist in the coffee data (see figure 3.12). Perhaps if the coffee returns 

were more homoscedastic the results would yield more similar percentage changes. The orange 

juice returns on the other hand yield very similar models for both unmapped and mapped data 

which may be due to the low roll values. However, the rolls accumulate and will impact the data 

in the long run. 
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3.5.5 Soy Complex 

 

Soybean Returns 

In the case of the soy complex the results are very interesting. At first glance, all three soy 

derived commodities are expected to have a very similar behaviour with respect to both price 

and returns given the fact that both soy oil and meal are derivatives of soybeans. However, in 

reality the soy meal exhibits very different behaviour and this is reflected in the results. The roll 

characteristics throughout the soy complex, despite the behavioural differences in soy meal, are 

quite similar. In the case of soybeans returns, the model favoured by the unmapped returns was 

a symmetric (P)ARCH model of fixed power 1.56. In the case of the mapped returns, the model 

favoured was again a (P)ARCH model of fixed power 1.36 and again no asymmetry.  

 

Soy meal Returns 

For the soy meal returns the model favoured by the returns for the unmapped data was a 

symmetric (P)ARCH model of fixed power 1.31. In the case of the mapped returns, once again a 

symmetric (P)ARCH model was favoured but this time with a fixed power of 1.51.  

 

 

Soy oil Returns 

In the case of soy oil returns the models favoured were quite similar. In both cases a symmetric 

(P)ARCH model was favoured with very similar powers (fixed at 2.15 and 2.12 respectively).  

The models themselves have been summarised in table 3.5 below. 
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Notes: Table above estimates the following model: 

𝑦𝑡 = 𝜑0 + 𝜑1𝑦𝑡−1 + ℎ𝑡 + 𝜀𝑡 

𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝜀𝑡−1| − 𝛾𝜀𝑡−1)𝛿 + 𝛽𝜎𝑡−1

𝛿  

All figures are to 3d.p. 

Bold results signify percentage change greater than 30%. Standard errors are shown in brackets 

*Coefficient is significant at a 5% level 

 

Table 3.5 Table of results showing coefficients for unmapped and mapped data and their 

percentage changes for the Soy Complex (standard errors shown in brackets) 

 

From the soy complex results it is clear that the models between the mapped an unmapped 

returns do not differ significantly suggesting that mapping is not as imperative when considering 

applying a trading model or algorithm to the soy complex. The results for soybeans and soy oil 

are significantly below the threshold making them relatively insensitive to the mapping 

procedure. On the other hand, the soy meal returns favour models which differ to a greater 

degree, but still not at a level where it can be considered significant.  Having said this however, 

the (fixed) powers within the (P)ARCH models do change, especially in the cases of soybean 

and soy meal. Overall however, it can be concluded that the soy complex is not very sensitive 

with respect to mapping. In reality, all soy complex data would be subject to mapping if it were 

to be used in a trading model or algorithm as the rolls can accumulate and become large even if 

they are individually small. Also, in the case of trading in reality, it is clear that the most 

accurate possible model will be desired; hence it is likely that a mapping procedure is employed.  

 

3.6 Structural Breaks 

 

This Section, reports the baseline results provided by the conditional maximum likelihood 

estimates of the (P)ARCH(1,1) model allowing the conditional means and variances to switch 

across the breakpoints identified by the Bai and Perron (2003) procedure. First, we present the 

breakpoints that we obtained from Bai-Perron and discuss the potential major economic events 

Soy 
Complex                   

  Soybeans     Soy meal     Soy oil     

  Unmapped Mapped % change Unmapped Mapped 
% 

change Unmapped Mapped % change 


0.065 * 
(0.015) 

0.070 * 
(0.016) 7.69% 

0.063 * 
(0.015) 

0.073 * 
(0.017) 15.87% 

0.062 * 
(0.015) 

0.063 * 
(0.015) -1.61% 


0.934 * 
(0.016) 

0.935 * 
(0.015) 0.12% 

0.941 * 
(0.019) 

0.934 * 
(0.015) 0.74% 

0.924 
(0.017) 

0.923 * 
(0.017) 0.11% 

 1.56 1.36 12.82% 1.31 1.51 -15.27% 2.15 2.12 1.40% 
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that are associated with them. Then we focus our analysis based on these breaks to discuss the 

findings produced from our univariate models in Table 4. 

 

 

3.6.1 Estimated Breakpoints 

 

An analysis of breakpoints was conducted for each series of returns (Table 2 below) and squared 

returns/ ’variance’ (Table 3 below). The breakpoints are detailed in the two tables shown and 

using the dates of past events, the reasons behind the breaks will be explained where possible. 

The dates in bold indicate break dates for which, at least one dummy variable is significant in 

either the mean or the variance equation of each commodity series [for instance for oats 

08/01/2010 breakpoint ϕ1
3 is significant, see Table 4 below]. In the following breakpoint 

analysis we will focus on the significant break dates. Five primary commodities in each sector 

were considered to show how break impacts change depending on sector.  

By applying the Bai-Perron breakpoint estimation procedure on commodity and squared 

commodity returns we identify five breaks during the sample period. Furthermore, there are 

several cases where the breaks are either identical or very close to one another, which clearly 

show the significant impact that some economic events had on the commodities returns under 

consideration. The main finding supports that the financial crisis of 2007-2008, and the 

European sovereign-debt crisis that followed are reflected in all commodity returns and squared 

returns series. However, despite the sharp down-turn in prices during 2008 and early 2009 in 

most of the series, prices began to rise again from late 2009 to mid-2010 (a resounding 

exception is the case of natural gas where prices are still falling since 2008 causing significant 

problems in exporting countries such as Russia). 

 

 

3.6.2 Oats 

 

The beginning of 2010 saw Greece to unveil its financial problems and the EU pledge its 

support. The crisis in Greece has caused a huge change in consumer confidence worldwide due 
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to the exposure of the banking sector, which causes knock on effects into other markets. 

Additionally, Greece itself produces grains including oats (2nd largest European producer), and 

the crisis may have impacted the production of grains within Greece, hence introducing the 

break seen in the time series (8
th

 January 2010, see the first row in Table 2). 

 As far as the breaks in the squared returns are concerned (see the first row in Table 3), the Bai-

Perron test identifies three significant break dates, namely 3
rd

 of October 2008, 15
th

 of March 

2010 and 2
nd

 of August 2010. October the 2
nd

 2008 saw the US Senate pass their bailout bill, 

which would increase stability within the world economy however the economic confidence 

would still be uncertain due to the need for government intervention in the private sector and 

this may be a very good explanation for the first break seen in the oats squared returns. This also 

might be due to consumer confidence being impacted, hence affecting demand for grains. The 

other two breaks occurred (15
th

 of March 2010 and 2
nd

 of August 2010) are not directly linked to 

events however they may be the result of lags from past events or simple demand and supply 

issues, especially in the grains market where farming factors such as weather and crop yields are 

significant. 

 

3.6.3 Platinum 

 

The platinum time series saw no significant breaks in the mean equation throughout the period 

(see Table 2). Metals are non-consumable and recyclable and in the case of precious metals, 

they can be considered reserve currencies. These are likely the reasons why the metals time 

series saw no significant breaks in their time series. In the case of breaks in the ‘variance’ (see 

the second row in Table 3), where the squared returns are utilised,  the platinum series 

experiences two breaks. One occurred late August 2008 and shortly before the Fannie Mae, 

Freddie Mac and Ginnie Mae takeover by the Federal Reserve Bank (FRB) and the other early 

January 2009 when the FRB began purchasing mortgage backed securities guaranteed by the 

same companies. This may be explained by the use of precious metals in times of financial 

turmoil as reserve currencies, where a sudden surge of demand for them, manifests as 

confidence in other securities falls. 
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3.6.4 Natural Gas 

 

The natural gas time series saw no breaks in the mean equation throughout the period (see Table 

2). In the case of breaks in the variance,  there are two significant breaks dates; one on the 9
th

 of 

October 2008 and one on the 26
th

 of February 2009 (see the third row in Table 3). The first 

break occurred during the worst week for the stock market in 75 years, meaning economic 

confidence and stability would be at historical low level, and hence possibly affecting demand 

for consumables such as natural gas. Additionally, another factor that might explain the break in 

October of 2008 could be the start of the winter months in Europe, where natural gas is used for 

household heating. The second break (26
th

 of February 2009) took place when the Federal 

Deposit Insurance Corporation (FDIC) announced its list of `problem banks', as well as huge 

losses being announced by Fannie Mae. Once more the economic confidence would be affected 

by these two events.  Furthermore, the end of February marks the end of the harsh winter in 

many parts of Europe where natural gas is used to heat households, adding a reason that might 

explain the displayed break. 

 

3.6.5 Coffee 

 

Similarly coffee shows a significant break only for its squared return early March 2008 (see the 

fourth rows in Tables 2 and 3). This period is during the time Bear Stearns was taken over by JP 

Morgan for a fraction of its previous year's price. Furthermore a recession is beginning to 

become more and more evident and consumer and economic confidence as well as stability 

started to decrease.  

 

3.6.6 Soybeans 

 

The soybeans saw no significant breaks for the returns, however when the squared returns were 

considered, a number of breaks occurred. The first break for soybeans on the 14
th

 of June 2007, 
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took place shortly after large banks began to show signs of instability and profit warnings and 

given their involvement in the trading of soy contracts, it is possible that the volumes for such 

perishable commodities might be adversely effected, hence affecting their demand and price. 

The second break on the 31
st
 of July 2008 occurred, shortly after consumer sentiment was 

measured to be the lowest in 28 years, which would of course impact demand for goods (and 

services) involving the soybeans industry. Additionally, gasoline reached $4 per gallon, hence 

machinery and vehicles used to process and transport soybeans would become more expensive 

to run, altering price due to cost changes. 

 

Figure 3.18 The Break Points (commodity returns) 

 

 

 

Figure 3.19 The Break Points (squared commodity returns) 
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3.7 PARCH Models with Breaks 

 

    In this Section, for the five different commodity returns, we will estimate AR-PARCH models 

with structural breaks (for applications of GARCH models with structural breaks see Karanasos 

et al., 2014 and the references therein). 

    The mean equation is defined as: 

                                          

where 𝐷𝜏 are dummy variables defined as 0 in the period before each break and 1 after the 

break. The breakpoints τ=1 are given in Table 2 above. In addition 𝜎𝑡
𝛿  is specified as a 

PARCH(1,1): 

 

Tables 4 below, reports the baseline results provided by the conditional maximum likelihood 

estimates of the (P)ARCH(1,1) model
2
 allowing the conditional means and variances to switch 

across the breakpoints [see Eq. (1) and (2) above] identified by the Bai and Perron procedure. 

Moreover, the tests for remaining serial correlation suggest that all the models are seem to be 

well-specified since there is no remaining autocorrelation in either the standardized residuals or 

squared standardized residuals at 5% statistical significance level. In the case of the two 

constants (φ₀, ω) the effects of breaks are insignificant in all the cases, whereas for the 

autoregressive coefficients there seems to exist a statistically significant impact of the breaks 

only in the case of oats. In particular, the parameters of the mean equation show time varying 

characteristics across one break (in the case of oats). As far as the conditional variance is 

concerned, the ARCH parameter (α) shows significant time varying behavior with either one or 

two breaks in the case of platinum and soybean respectively. The GARCH parameter (β) shows 

either three (oats), two (platinum and natural gas) or one (coffee and soybeans) significant.  In 

the case of soybeans GARCH parameter does not show time varying behavior.  As far as the 

power parameter is concerned it is fixed, and equal to 1.20 (oats and coffee), 1.30 (natural gas 

and soybeans) and 1.60 (platinum); different from either zero or unity.  Finally, the asymmetry 

                                                           
2
 In order to distinguish the general PARCH from a version in which δ is fixed (but not necessarily equal to two) we 

refer to the latter as (P)ARCH. 
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parameter displays significant and positive leverage effects when oats and soybeans are under 

examination. 

 

Figure 3.20 The estimated univariate (P)ARCH (1,1) allowing for breaks in the mean and in the 

variance 

 

3.7.1 Forecasting using spectral techniques 

 

In this section we employ spectral techniques in order to forecast the commodity prices of oats, 

platinum, natural gas, coffee and soybean (to the best of our knowledge, this is the first time that 

forecasting using spectral techniques is employed in commodity prices data). In particular we 

implement an algorithm suggested by Geweke and Porter-Hudak (1983).  The basis of the 

method is the moving average representation: 
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𝑌𝑡 = 𝑐(𝐿)𝜀𝑡, 

where  c(L)=1-c₁L-...-𝑐𝑝 𝐿𝑝 is polynomial in L of order p, c(0)=1 and ε is fundamental for Y. 

Spectral techniques permit us to compute an estimate of the Fourier transform of c, which in 

turn can be employed to compute forecasts. In this study we will attempt to forecast the prices of 

oats, platinum, coffee and soybean from 30
th

 of April 2012 (end of our original dataset) to 29
th

 

of June of 2012 or for 45 steps ahead. In the case of natural gas we will forecast the price for 

117 steps ahead since the end of our original dataset is 18
th

 of January 2012. The reason behind 

the choice of that period (end of June 2012) lies to the fact that during the first quarter of 2012 

United Kingdom (UK) announced  for a second consecutive time a negative growth rate, 

formally entering a recession, while euro zone showed negative growth rates for three 

consecutive quarters (2011Q4 to 2012Q2) since the last recession of 2009. It would be only 

some months later were euro zone would experience a double dip recession. Hence it would be 

interesting to investigate whether or not the forecasting technique would be able to capture the 

effects of this negative economic atmosphere that dominated the European economy on the 

commodity prices.  

During the period under consideration (daily data covering a period from January 2007 to April 

2012) the commodity prices have gone through many variations due to the financial and the EU 

sovereign debt crisis of 2007-2008 and 2009-present respectively. Hence employment of 

forecasting methods that are not sensitive to dynamical variations such as the aforementioned is 

a vital stage of the estimation procedure. Therefore, taking under consideration the properties of 

spectral forecasting method, the latter could be considered as an appropriate technique for 

predicting the commodity prices.   

Figure 2 below displays the history and the forecast for each of both the mapped and unmapped 

commodity prices
3
. First notice, that regardless of whether the data for each commodity are 

mapped or unmapped the trend (blue line in Figure 2 below) is approximately the same. 

Specifying the results, in the case of the oats, platinum and soybeans the forecasting algorithm 

predicts that the prices in overall will increase the period from 30
th

 of April 2012 to 29
th

 of June 

2012. In contrast, the predicted prices of natural gas and coffee show a declining trend. To check 

the validity of our results and the accuracy of the forecasting algorithm we compared the 

predicted prices (for the unmapped data) with those of the actual prices during the period under 

examination and we found that the way they behave (both predicted and actual series) is very 

                                                           
3
 For oats, platinum, coffee and soybeans the forecasting period is 30/04/2012-29/06/2012, whereas for natural 

gas is 18/01/2012 to 29/06/2012. 
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similar
4
. Hence spectral methods could be a reliable tool for predicting the future prices of 

commodities.  

 

 

 

 

                                                           
4
 Actual data during the first two quarters of 2012 for the commodities under investigation are not plotted 

graphically, graphs upon request. 



91 

 

 

Figure 3.21. History and Forecast of commodity prices, mapped and unmapped daily data 

 

3.8 Conclusion 

 

 From the results presented it can be concluded that some data sets are more sensitive 

than others when it comes to data mapping. The analysis was carried out over a range of 

commodities in different sectors in order to capture the significance of rollover in each. The 

metals results showed how copper prices and platinum prices have a small rollover and therefore 

mapping the data does not significantly change its behaviour. The model which best fits the data 

therefore remains very similar for mapped and unmapped data. This was also seen within the 

Soy Complex. On the other hand, the grains’ results showed how significant the impact of 

rollover can be on a time series. The rollover for grains’ prices from contract to contract is more 

substantial and this was projected in the results where the mapped and unmapped time series for 

grains fitted very different models. This was also observed in most of the softs and energy 

results.  

 The impact of the roll may not seem substantial however in the world of real life trading 

where the front month contract of any instrument is the active contract, the inclusion of roll into 

prices used to back test could be the difference between a trading strategy being successful or 

not. Therefore it must be concluded that data mapping be an essential pre-analysis carried out 

before back-testing any trading system. Just as a PARCH models’ coefficients differ as data is 

mapped or unmapped, so much so may the parameters of a trading algorithm differ. The more 

significant the roll for a given commodity, the larger was the observed difference in model 

coefficients and general specification. The significance of the current approach is that the 

creation of time series that account for roll will allow more accurate back testing of any 

algorithmic trading system that is proposed including those of RGZ Ltd. This finding is in 
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contrast to that of Chatrath et al. (2001) who show commodity prices to be chaotic to a certain 

degree.  

In addition by applying the Bai-Perron breakpoint estimation procedure on commodity and 

squared commodity returns we identify five breaks during the sample period. The main finding 

supports that the financial crisis of 2007-2008, and the European sovereign-debt crisis that 

followed are reflected in all commodity returns and squared returns series. Having obtained the 

breaks we applied (P)ARCH models allowing for breaks both in the conditional mean and 

variance. The tests for remaining serial correlation suggest that all the models seem to be well-

specified. 

 The main results suggested that for the two constants (φ₀, ω) the effects of breaks are 

insignificant in all the cases, whereas for the autoregressive coefficients a statistically significant 

impact of the breaks exist only in the case of oats. As far as the ARCH parameters is concerned 

there is a time varying behavior only in the case of platinum and soybean. Regarding the β 

coefficient there are significant breaks in all cases apart from soybean. Finally, leverage effects 

are observed only for oats and soybean while the power parameter δ is fixed and different from 

either zero or unity. 

Concluding we used spectral methods in order to predict the futures prices of five commodities 

(in both mapped and unmapped data). The results indicated that in the case of the oats, platinum 

and soybeans the predicted prices in overall will increase. In contrast, the predicted prices of 

natural gas and coffee showed a declining trend.  

 

The authors would like to thank RGZ Ltd. for the use of their Reagan–class Mapping 

Algorithm and its output.  
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3.9. Appendix 
 

Summary Tables 
 

 

Grains  

Wheat 
  

     Unmapped Mapped 

PARCH √ √ 

Power  1.10 
0.41 

(Estimated)  

Asymmetry x x 

In-mean √ x 

AR x x 
 

Corn 
  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  1.30 1.10 

Asymmetry 0.74 0.75 

In-mean x x 

AR x x 
 

Oats 
  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  1.40 0.87 

Asymmetry x √ 

In-mean x x 

AR 0.13 0.14 
 

 

 

 

 

 

Metals  

 

Copper 
  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  0.72 0.71 

Asymmetry 0.81 0.80 

In-mean x x 

AR  -0.05 -0.05 
 



94 

 

 

Platinum 
  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  1.60 1.60 

Asymmetry x x 

In-mean x x 

AR x x 
 

 

 

 

 

Energies  

 

Heating Oil 
  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  0.92 1.55 

Asymmetry √ x 

In-mean x x 

AR x x 
 

 

 

RBOB 
  

     Unmapped Mapped 

(P)ARCH √ x 

Power  1.10 2.00 

Asymmetry √ x 

In-mean x x 

AR x x 
 

 
 

WTI 
  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  1.18 1.42 

Asymmetry 0.89 0.68 

In-mean x x 

AR x x 
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Natural 
Gas 

  

     Unmapped Mapped 

(P)ARCH x √ 

Power  2.00 1.30 

Asymmetry x x 

In-mean x x 

AR √ x 
 

 

 

 

Softs  

 

Cocoa 
  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  1.46 0.48 

Asymmetry √ x 

In-mean x x 

AR √ x 
 

 

 
 
Coffee 

  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  0.68 0.54 

Asymmetry -0.61 -0.48 

In-mean x x 

AR x x 
 

 

 

Sugar 
  

     Unmapped Mapped 

(P)ARCH √ x 

Power  0.55 2.00 

Asymmetry √ x 

In-mean x x 

AR x x 
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Soy Complex  

 

Soybeans 
  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  1.56 1.36 

Asymmetry x x 

In-mean x x 

AR x x 
 

Soy meal 
  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  1.31 1.51 

Asymmetry x x 

In-mean x x 

AR x x 
 

 

 
Soy oil 

  

     Unmapped Mapped 

(P)ARCH √ √ 

Power  2.15 2.12 

Asymmetry x x 

In-mean x x 

AR x x 
 

 

 

 

Orange 
Juice 

  

     Unmapped Mapped 

(P)ARCH √ x 

Power  1.89 1.96 

Asymmetry -0.25 -0.30 

In-mean x x 

AR 0.14 0.13 
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Chapter 4: Modelling Time Varying Volatility Spillovers and Conditional Correlations 

Across Commodity Metal Futures 

Chapter 4 is joint work with M.G. Karanasos, F.M. Ali & P.D. Koutroumpis ‘Modelling Time Varying Volatility 

Spillovers and Conditional Correlations Across Commodity Metal Futures’. M.G. Karanasos, F.M. Ali & P.D. 

Koutroumpis helped in the model specification and contributed to some of the interpretation of the results with a 

combined contribution of 20% to the chapter (approx. 7% each).   

The remaining contributions are by Z.N.P. Margaronis for significant contribution (80%) in data-collection, data 

processing, data analysis, results & discussion and write-up throughout the Chapter.  

Keywords: Financial crisis, metal futures, structural break, time-varying volatility 

spillovers  

JEL Classification Codes: C32; Q02 

 

 

4.1 Introduction 

The financial crisis of 2007-08 and the European sovereign-debt crisis that occurred 

afterwards sent a wave of panic throughout financial and commodity markets around the 

globe. Given the macroeconomic slowdown and the widespread fear of an international 

systemic financial collapse, an interesting issue is whether the main stochastic properties of 

the underlying financial time series of these markets and their cross-shock and volatility 

spillovers have been affected b y the crisis.  Karanasos et al.  (2014) do indeed find a time 

varying pattern in the persistence of the volatility of stock market returns, as well as their 

correlations, cross-shock and volatility spillovers during the period. 

Surprisingly, the aforementioned impact in relation to the commodity futures markets has 

drawn less attention. To the best of our knowledge, the studies  by Vivian and Wohar  

(2012) and Sensoy (2013) are the  only ones to  date  to  have  examined  the  impact  of the  

recent  crisis on the  volatility of commodity returns, even though  they consider spot 

price data.  Moreover, such studies  have limitations in that they ignore  the  impact  of 

the  crisis  on the  cross-shock  and  volatility spillovers  between  the  corresponding 

returns. 
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This chapter, by contrast, considers two metals futures : copper and gold . These metal  

f u t u r e s  a r e  considered due to their sheer daily volumes.  Gold is the main precious metal 

and has mixed demand characteristics. Its demand is determined by financial factors as it 

is a reserve currency for the world, as well as being a traded commodity whose price is 

longed and shorted continually in huge volumes.  Gold is also affected by its pure 

consumer and market application in jewellery and electronics.  Copper, on the other hand, 

is the main industrial metal, with huge applications in electronics, mainly in wiring.  It is 

far more abundant in comparison to other metals, and hence it is a useful candidate metal 

to be considered for this analysis.1 

Consequently, there are several broad contributions to the existing literature that we make, 

which we outline following the structure of the chapter. More specifically, we make use of 

several modern econometric approaches for univariate and multivariate time series 

modelling, which we also condition on the possibility of breaks in the volatility dynamics 

taking place in the returns of these metal futures.   That is, we use a  battery of tests  

to  identify  the  number  and  estimate   the  timing  of breaks  both  in  the  mean  and 

volatility dynamics.  Then, we use these breaks in the univariate context by adopting an 

asymmetric generalised autoregressive conditional heteroscedasticity (AGARCH) model to 

determine changes in the persistence  of volatility, and  in the  multivariate one by 

employing  the  recently  developed  unrestricted extended   dynamic  conditional 

correlation (UEDCC) AGARCH  model  of Karanasos et  al. (2014)  to analyse the 

volatility transmission and the correlation structure. 

We also examine how the persistence of volatility of the two considered returns is affected 

by their  corresponding  positive (e.g. increases in these metal  futures)  and  negative  (e.g.  

declines in these  metal  futures)  returns.  Finally, w e  investigate the regime dependent 

volatility spillovers between these metal futures returns to discern shock and volatility 

spillovers associated with the exact movements of each metal future (e.g. upward or 

downward) to the other, and  vice versa.  Knowledge  of the  spillovers  mechanism  

adopted in this  chapter   could prove  to be very valuable  to investors  since such spillovers 
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in addition  to the associated structural changes could give rise to trading strategies, 

thereby  minimising  the risk exposure  and maximising  the returns. 

It is also important to consider the manipulation the data has undergone in this chapter.  

The unmapped data is comprised of prices that have not been adjusted for differences in 

prices due to rollover or ‘basis’.2 

The use of mapped data will  allow us to observe the true interactions between the 

commodities.  Taking into account the roll or basis alters the time series in such a way that 

econometric models’ best fit may change as a result.    The  use of the  front  month  

contract prices  (at  the  time  of trading in real  time) indicates  the  time  series as it 

would appear  to a trader at  the  particular point in time.  The differences in the time 

series (mapped and unmapped) may be large or small and sometimes cancel each other out. 

However, they should be considered if a true ‘live’ trading time-series is to be created. 

 

1 See also Conrad a n d  Karanasos (2014) for an application to inflation-growth link
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Our  results  suggest  that both  copper  and  gold futures  returns exhibit  time  varying  

persistence  in their corresponding conditional variances over the recent crisis.  The results of 

the bivariate UEDCC- AGARCH(1;1) model  also show the  existence  of time  varying  

shock and  volatility spillovers  between these  returns during  the  different  stages  of 

the financial crisis.  In particular, there i s  a bidirectional mixed feedback between the  

two volatilities.  That is, the conditional  variance of copper affects g o l d  negatively 

whereas the reverse effect is of the opposite sign.  This mixed feedback between the 

volatilities of copper and gold is consistent with the fact that these two metals are so 

different in their values and uses. 

The  results  also suggest  that the  volatility transmission from  gold returns to  those  of 

copper  has shifted  after  the  European sovereign-debt crisis and  the  downgrade  of the  

US government  debt  status. The  regime-dependent  volatility spillovers  analysis,  by 

contrast, suggests  that declines in copper  prices induce  positive  volatility spillovers  to  

gold  returns. These results are broadly robust irrespective of whether mapped or 

unmapped data are employed. 

The remainder of this chapter is as follows. Section 2 reviews the relevant literature. 

Section 3 describes our employed data a n d  methodology.   Sections 4 and 5 present our 

empirical results and a discussion. The f i n a l  Section contains the summary and our 

concluding remarks. 

 

 

 

2 Rollover,  or  roll,  occurs  when  the  current  contract  of a  commodity  instrument  expires  and  the  next  month  contract 

then becomes the new front month contract.  As this happens, the price of the instrument may ‘jump’ since the front month 

contract  and  next  month  contract  do not  have  the  same  price  at the  time  of rollover.  In this first analysis, t h erefore , the 

data have not been mapped to account for the rollover values.  It has been discovered  that taking  into  account the roll can 

significantly  change  the  time  series since these  roll values  can be signi…cant  in the commodities  considered  (Margaronis et 

al.,2014).
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4.2 A Review of the Relevant Literature  

 

Modelling the stochastic properties of financial and commodity returns as well as their cross-

shock and volatility spillovers has drawn much attention to the fields of financial and energy 

economics, given their important practical implications f o r  investors.   For  example,  

understanding the  stochastic properties  of returns may  help  investors  in  terms  of 

forecasting  market  movements,   while  strong  linkages  between financial and/or 

commodity returns would imply limited portfolio diversification opportunities for them. 

Although t h e r e  i s  a large body of literature that has examined t h e  interactions 

between international  financial markets  such  as those  of equity,  foreign exchange,  and  

bond,  and  their  returns properties, a growing literature has also been examining  the 

dynamic  linkages between commodity  markets  as well as their  return characteristics. 

Recent  studies  on  exploring  the  stochastic  properties   of commodity   returns include  

Watkins and McAleer (2008), Hammoudeh and Yuan (2008), Choi and Hammoudeh 

(2010), Vivian and Wohar (2012), Arouri  et  al.  (2012), Sensoy (2013), and Demiralay 

an d  Ulusoy  (2014) among  others.   Using a rolling AR(1)-GARCH(1,1) model,  

Watkins and  McAleer  (2008)  found  that the  conditional volatility of aluminium and 

copper returns have  been  time-varying when  analysed  over a long horizon.   By 

contrast, Choi and Hammoudeh (2010), using a Markov-switching specification and data 

over the January period.  

Vivian and Wohar (2012), using daily data over the period January 1990 to July 2010, 

concluded that the volatility persistence of spot commodity returns, including those of 

precious metals, remains very high even when structural breaks are accounted  for. More 

recently,  Sensoy (2013) revealed that the volatility of palladium and  platinum, unlike 

that of gold and  silver, exhibited  an upward  shift  during  the  turbulent year  2008 using 

spot price data  over the period January 1999 to April 2013. His results  also provided  

evidence that gold has a uni-directional volatility shift contagion  effect  on all other  

precious  metals  while silver has a similar effect on platinum and palladium. 
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Empirical  studies  that have  examined  the  linkages  across  commodity  prices  and  their  

returns and volatility include Ciner (2001), Xu and Fung (2005), Erb and Harvery  

(2006), Hammoudeh et al.  (2010), and  Sensoy (2013) among many others . Ciner  

(2001)  reported that gold and  silver  futures  contracts traded in Japan are not  

cointegrated using daily  data  over the  period  1992 to 1998.  Erb  and  Harvery (2006) 

further  provided  evidence  that commodity  futures  returns have  been  largely  

uncorrelated with one another, especially across the different sectors.  However, using 

daily futures  data  of gold, platinum, and  silver futures  contracts traded in both  the  

US and  Japanese markets, Xu and  Fung  (2005) found evidence of strong volatility 

feedback between these precious metals across both markets over the period November  1994 

to March  2001.  Choi and  Hammoudeh (2010), using a dynamic  conditional correlation 

model and data over the period January 1990 to May 2006, also found evidence of 

increasing correlations between  all the  considered  spot  commodity  returns (Brent  oil, 

WTI  oil, copper,  gold and  silver)  over recent years. 

The ongoing literature has also been exploring the dynamic linkages across both financial  

and commodity markets (e.g., Choi and Hammoudeh, 2010; Mensi et al., 2013; among 

others). Choi and Hammoudeh (2010) found  evidence  of decreasing  correlations between  

spot  commodity  returns (Brent  oil, WTI  oil, copper,  gold and  silver)  and  the  US’ S&P 

500 stock market  returns over recent years.  However, Mensi et al.  (2013), using a VAR 

GARCH  model over the period January 2000 to December 2011, showed that there are 

significant spillovers in terms of shock and volatility between the S&P stock returns and 

spot commodity  market  returns. In particular, their  results  revealed  that the past  shock 

and volatility of the S&P  stock  returns strongly  influence  the  oil and  gold market  

returns.  Cochran e t  al.   (2010), on the other hand, showed that the VIX index is an 

important factor in the determination of metal returns and return volatility using spot 

price data on copper, gold, platinum, and silver over the period January 1999 to March 

2009. 

The impact  of the macroeconomic  performance  on commodity  prices and their  returns 

and volatility has also drawn  much  attention (e.g., Tulley  and  Lucey, 2007; 
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Hammoudeh and  Yuan,  2008; Sari et al., 2009; Batten et al., 2010; among others). 

Tulley  and  Lucey  (2007)  confirmed  that the  US dollar  is the  main  macroeconomic  

variable  which affects  gold.  Sari et  al.  (2009) further f o u n d  that spot metal prices 

(gold, silver, platinum, and palladium) are strongly related to the dollar-euro exchange 

rates. Hammoudeh and Yuan  (2008), on the other  hand,  provided  evidence that rising 

interest rates  are found to  dampen  futures  precious  metals  volatilities.  Using monthly 

d a t a  o v e r  the period January 1986 and May 2006, Batten et al.  (2010) examined  the 

macroeconomic  determinants of four precious metals  (gold, silver,  platinum and  

palladium prices)  and  found  that gold prices  are  greatly  influenced  by  monetary 

variables, but silver prices are not. Their results also provided supporting evidence of 

volatility feedback between the precious metals. 

To the best of our knowledge, analysing the stochastic properties o f  metal futures returns 

and their time varying cross-shock and volatility spillovers during the recent financial 

crisis has yet to be undertaken. This chapter aims to f i l l  this gap by considering copper 

and gold futures, with two types of data: mapped and unmapped.
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4.3 Data and Methodology  

 

This Section overviews the data  we have used and outlines  the methodology  we have 

employed  to study the  different properties  of the  stochastic processes associated  with  

gold and  copper  futures  returns over the  2007-8 crisis.  First, w e  provide a brief 

description of our data and  the break identification   method which we have adopted. 

Then we describe the univariate and bivariate models we have estimated. 

 

 4.4 Data Description and Breaks Detection  

 

We use daily  (mapped and  unmapped) data  on gold and  copper  futures  prices  which 

span  the  period January 3, 2007 to April 27, 2012. The unmapped data have been 

retrieved from Bloomberg. 

 

4.4.1 Gold vs. Copper 

The precious metals are, and for many years have been, used as a reserve currency in times of 

financial turmoil where uncertainty lingers within economies.  When consumers are not 

confident in their currency they often buy gold or other p r ec i o u s  metals.    The reason 

for  this is  the precious  metals’ value and demand.  The increased volatility, liquidity 

and use as a reserve currency mean that gold prices will react to the market w i t h  little to 

no lag time.  Precious  metals  are not  really  consumed  (and  if they  are it is usually a 

small percentage which is often recycled e.g. jewellery, watches, and used as wiring in 

expensive earphones  or sound  systems)  and  neither  do they  tarnish or rust.   They also 

have value and demand worldwide, making them a very good substitute fo r  a currency.   

Their price is therefore very difficult to be determined as it is traded very frequently by 

countless companies and individuals.  The use of gold to hedge currencies has become 

increasingly popular lately, which adds yet another demand dynamic to its already 

complex demand characteristic. The induced demand that  results from uncertainty in 

financial markets can cause behavioural changes in the price, hence impacting volatility. 

In the case of copper and its heavy industrial use, the demand characteristics are very 

different. Rather than being exposed to many market participants who trade lower 
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volumes each, the copper market tends to consist of fewer market participants who trade 

larger volumes each, e.g. mining companies, electronics companies, of  which there are 

limited numbers. Financial instability can be a major factor influencing the price of 

copper.  Decreased  demand  for copper as world demand  falls (especially for consumer  

goods in which copper  is a major  raw material) is therefore  expected  but  as the  non-

industrial utilisation of copper  rises, its  demand  characteristics are also subject  to 

major  changes.   Over  the  years,  the  copper price has been subject  to a huge amount of 

speculative  trading (although far less significant than  in the gold market) and  this,  

combined  with  the  uncertainty  of financial  markets, which typically  causes  the demand  

for copper  to  fall, can induce  significant levels of volatility in the  copper  price.   With  

a lower number  of market  participants, despite  the very  large  volumes,  the  net  

positions  placed  in the  copper market will differ significantly from those of gold due to the 

lower speculative nature and far less complex demand characteristics of the copper market. 

The recyclable nature of copper also makes it an interesting prospect to be analysed. 

 

4.4.2 Mapping Procedures 

 

The  mapping  procedure  in these  metal  futures  is achieved  by a specialist  computer 

program (mapping program) where the input  for the program  is the entire  set of monthly  

futures  contracts. The program  then  takes  the last (expiry)  price  of each  contract and  

lines it  up  by date  to  the  price  of the  second month  contract.   As the  program  uses a 

counter  for both  the  price series and  date  series, mapping  occurs when the  counters 

match  on the  day  before  expiry as this represents the true traded time series .   The  front  and  

second  month  prices  on that date  are  then  lined  up and  their  difference  gives the  

basis or rollover for that contract. Each  roll value or basis value is stored and 

accumulated in order for a calculation of the cumulative roll or basis to be made (see, for 

details, Margaronis e t  al., 2014).  Finally,  we use continuously compounded  returns (rt ) 

on these  metal  futures calculated as rt = (log pt   log pt 1 )     100; where pt  is the 
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metal futures  price at time t (Table C.1 in the additional Appendix  provides  a summary  

of the  statistical properties of metal  futures  returns (mapped and unmapped). 

 

4.4.3 Structural Breaks 

 

Since the  employed  data  span  includes  various  economic  and financial events causing  

behavioural changes due to confidence alterations in economies as a result of the financial 

crisis, the considered return series are  likely to  contain  breaks  associated  with  such  

events.   Examples  may  include  the  collapse  of Lehman  Brothers, the  collapse  and  

buy-out  of Bearn  Sterns  and  the  AIG,  increased  unemployment, quantitative easing 

and many  more. 

To account  for the  possibility  of breaks  in the  mean  and/or volatility dynamics  of these  

returns we use a set of parametric and  non-parametric data-driven methods  to identify  

the  number  and  timing  of the  potential structural breaks.   In particular, we employ the 

procedures in  Bai and Perron (2003) and Lavielle and Moulines (2000).3 

From applying these procedures on  gold and copper futures returns we find the stochastic 

behaviour  of both  returns yields four breaks  during  the  sample  period,  roughly  one 

every one and  a half years on average.   The  predominant  feature  of the  underlying  

segments  is that it  is mainly  changes  in variance  that are found to be statistically 

significant.  Moreover, all four break dates for the two series are very close to one another, 

which apparently signify economic events with a global impact (see Table C.2 in the 

additional Appendix). It follows that the  detected  breaks  contrast to those of Vivian and  

Wohar (2012), who found limited  evidence of common breaks  for spot  precious and  

industrial metals  using the AIT (adjusted Inclan  and Tiao,  1994) test  statistic. 

Figure  1 displays  the  identified four break  points  (see Table  1) and  the  associated  

regimes for each metal  futures  (unmapped) returns series.4    Overall,  events  such  as 

the  Troubled Asset  Relief Program (TARP) in the US, capital  purchase  program  by the 

US Treasury Department, the European sovereign- debt  crisis and  the  downgrade  of US 
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sovereign  debt  have  been associated  with  such  break  points.5   In particular, the first 

break  for gold returns observed  on July  22, 2008 may  be explained  by  the  stock 

markets  having suffered their  steepest  fall since January 2001 causing  the  Federal  

Reserve  to make  an emergency significant cut in rates soon after.  This act to help 

recovery by the Federal  Reserve mixed with their efforts to aid JP  Morgan  Chase  in 

their  offer to buy  Bear  Sterns,  and  the  government  assistance offered to the two largest  

mortgage  lenders in the US, may explain  the break  observed.  By contrast, the first break 

for copper returns observed on September 29, 2008 can almost certainly be attributed to the 

rejection of  the $700bn US banking secto r  rescue plan.   Although t h i s  was revised soon 

afterwards, it caused the stock markets worldwide to collapse and instilled a great deal 

of fear and uncertainty into the world economies again. 

 

 

 

 

 

 

Figure 4.1 Daily (unmapped) copper (left panel) and gold (right panel) metal futures 

returns over the sample period with breaks. 

 

 

3 Alternatively, we have also adopted the two-stage Nominating-Awarding procedure  of Karoglou (2010) (see also Karana- 

sos et al., 2014 and  Karanasos et al., 2015) to identify  breaks  that might  be associated  either  to structural  changes  in the 

mean and/or volatility dynamics or to latent non-linearities that may manifest themselves as dramatic changes in the mean 

and/or volatility dynamics  and might bias our analysis.  The details of the two stages in the Nominating-Awarding procedure 

are contained in an additional Appendix, which is available up on request. 

4 The graphs (available u p  on request) of the corresponding mapped returns exhibit a similar pattern. 

5 Table  C.3 in the additional Appendix provides a detailed account of the possible associations that can be drawn  between 
each breakdate for metal futures returns and  a major economic event that took place at or around  the breakdate period in 
the  world.  Table  C.4 in the additional  Appendix  presents  a summary  of the  descriptive  statistics  of each  segment  for the 
metal futures  returns. 
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In 2009 after the largest first-quarter loss ever announced in US history by AIG, the group 

received a significant amount in government rescue funds.  This was followed by the 

Federal Reserve’s plans to buy $1.2tn of mortgage and government debt.  This series of 

events may explain the observed break on March 10, 2009 in gold returns as fear and 

uncertainty in financial markets were moderated after the rescue plans by the Federal 

Reserve and the US government were implemented.  The  same phenomenon is 

observed on June  25, 2009 (the  second break for copper),  where ten of the large banks 

receive TARP rescue funds, again  showing how the  intervention to  aid the financial 

markets  by propping  up its  major  institutions instils confidence in the world economy 

which therefore undeniably impacts on the commodity markets, especially the metals  

studied  in this chapter. 

While the  observed  breaks  on June  13, 2011 and  August  10, 2011 in gold returns 

could be the result  of respectively  the  European sovereign debt  crisis and  the  

downgrade  of the  US government debt status, the  observed  break  on September 09, 

2011 in copper  returns may  also be due  to  the effects of the unexpected rating  

reduction which may have taken  a few weeks to be expressed in some commodity prices  

such  as those  of copper.   The break seen on November 03, 2011, by contrast, does not 

exactly coincide with a specific event. However, given the significance of the events 

prior to this, it is clear that at some point the economies of the world would begin 

recovering from the global financial crisis.  This date may represent the beginning of this 

recovery, and hence the start of a new low volatility regime.  
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4.5 Time Series Modelling 

 

4.5.1 Univariate Models   

The conditional mean equation of the considered metal futures returns is 

specified as: 

 

 

𝑟𝑡 = µ + 𝜀𝑡 ,             𝜀𝑡 = √ℎ𝑡𝑒𝑡         

 

where the  innovation 𝜀𝑡      Ӻ𝑡−1   ~  𝑁(0, ℎ𝑡)  is conditionally normal  with  zero mean  

and  variance  ht and 𝑒𝑡   ~
𝑖.𝑖.𝑑 𝑁(0,1)6. 

 

Next, the dynamic structure of the conditional variance is specified as an AGARCH (1, 1) 

process of Glosten et  al.  (1993) (one could also employ the asymmetric power GARCH 

(APGARCH) as in Karanasos and Kim, 2006).  Moreover, Karanasos et al.  (2014) found 

that the persistence of the conditional variances of financial returns such as those of  equity 

i n d i c e s  are significantly affected   by structural changes associated with financial crises 

and economic events over the last two decades.  To this end, in order to examine the impact 

of the breaks on the persistence of the conditional variances of these metal futures returns, 

the equation is specified as follows: 

 

ℎ𝑡 =  𝜔 + ∑ 𝜔𝑙𝐷𝑙
4
𝑖=1 + 𝛼𝜀𝑡−1

2 + ∑ 𝛼𝑙𝐷𝑙𝜀𝑡−1
2 + 𝛾𝑆𝑡−1

− 𝜀𝑡−1
2 + ∑ 𝛾𝑙

4
𝑖=1 𝐷𝑙𝑆𝑡−1

− 𝜀𝑡−1
2 + 𝛽ℎ𝑡−1 +4

𝑖=1

∑ 𝛽𝑙𝐷𝑙ℎ𝑡−1 ,
4
𝑖=1       
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Where  𝑆𝑡−1
− = 1  if   𝜀𝑡−1 < 0 , and 0 otherwise. Note that failure to reject 𝐻𝑜 : 𝛾 = 0 𝑎𝑛𝑑 𝛾𝑙 =

0, 𝑙 = 1, … ,4, implies that the conditional variance follows a simple GARCH (1,1) process. 

Furthermore, the stationarity conditions require 𝛼 + 𝛽 +
𝛾

2
 < 1  for the AGARCH (1,1) model, 

and hence  𝛼 + 𝛽 < 1   for the simple GARCH (1,1) process. The breaks 𝑙 = 1, … ,4 are given in 

Table 1 for metals futures returns, and 𝐷𝑙 are dummy variables defined as 0 in the period before 

each break, and 1 after the break.  

 

In order to examine how the persistence of the conditional variances is affected by upward and 

downward trends in these metal futures, we consider the simple GARCH (1,1) model which 

allows the dynamics of the conditional variances to switch across positive and negative returns. 

This is given by: 

 

ℎ𝑡 = 𝜔 + 𝜔−𝐷𝑡−1
− + 𝛼𝜀𝑡−1

2 + 𝛼−𝐷𝑡−1
− 𝜀𝑡−1

2 + 𝛽ℎ𝑡−1 + 𝛽−𝐷𝑡−1
− ℎ𝑡−1,         

Where 𝐷𝑡−1
− = 1  if   𝑟𝑡−1 < 0, and 0 otherwise. 

 

 

4.5.2 Bivariate Models  

 

Having  defined  the  univariate modelling,  in  this  Section  we use  a  bivariate model  to  

simultaneously estimate  the conditional means,  variances,  and covariances  of returns. 

Let 𝑦𝑡 = (𝑟1,𝑡𝑟2,𝑡)′ represent the 
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2x1 vector with the two returns of metal futures.   As before Ӻ𝑡−1 = 𝜎(𝑦𝑡−1, 𝑦𝑡−2, … ) is 

the filtration generated by the information available up through time t-1. That is, we estimate the 

following bivariate AGARCH(1,1) model: 

𝑦𝑡 = 𝜇 + 𝜀𝑡 ,           

 

 

where 𝜇 = [𝜇𝑖]𝑖=1,2  is a 2x1 vector  of drifts. 

 

Let ℎ𝑡 = (ℎ1,𝑡 ℎ2,𝑡) ′denote the 2x1 vector of  Ӻ𝑡−1  measurable conditional variances.   

The residual vector is defined as       𝜀𝑡 = (𝜀1,𝑡 𝜀2,𝑡)′ = 𝒆𝑡 ʘℎ𝑡
^

1/2  , Where the symbols ʘ and 

^ denote the Hadamard product and the elementwise exponentiation, respectively. The 

stochastic vector 𝒆𝒕 = (𝑒1,𝑡𝑒2,𝑡)′ is assumed to be independently and  

identically distributed (i.i.d.) with mean zero, finite second moments, 

and 2x2 correlation matrix 𝚁𝒕 = 𝑑𝑖𝑎𝑔{𝚀𝒕}−1/2𝚀𝒕𝑑𝑖𝑎𝑔{𝚀𝒕}−1/2 with 

diagonal elements equal to one and off-diagonal elements absolutely less 

than one. 𝚀𝒕 is specified as follows (see Engle, 2002): 

 

𝚀𝒕 = [𝑞𝒊𝒋,𝒕]𝒊,𝒋=𝟏,𝟐 = (1 − 𝛼𝐷𝐶𝐶 − 𝛽𝐷𝐶𝐶)Ǭ + 𝛼𝐷𝐶𝐶𝜀𝑡𝜀𝑡
′ + 𝛽𝐷𝐶𝐶𝚀𝑡−1        

 

Where Ǭ  is the unconditional covariance matrix of 𝜀𝑡 and 𝛼𝐷𝐶𝐶 and 𝛽𝐷𝐶𝐶 

are non-negative scalars fulfilling  𝛼𝐷𝐶𝐶 + 𝛽𝐷𝐶𝐶 < 1. A typical element of 

𝚁𝒕 takes the form 𝜌𝑖𝑗,𝑡 =
𝑞𝑖𝑗,𝑡

√𝑞𝑖𝑖,𝑡𝑞𝑗𝑗,𝑡    
 𝑓𝑜𝑟 𝑖, 𝑗 = 1,2   𝑎𝑛𝑑 𝑖 ≠ 𝑗. 

Following Conrad and Karanasos (2010, 2014) and Karanasos et al. 

(2014), we impose the UEDCC-AGARCH(1,1) structure on the 

conditional variances (one could also use multivariate fractionally 

integrated APARCH models as in Karanasos et al., 2014): 
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ℎ𝑡 =  𝜔 + 𝙰𝜀𝑡−1
^2 + ∑ 𝙰𝑙𝐷𝑙𝜀𝑡−1

^2 + 𝙱ℎ𝑡−1 + ∑ 𝙱𝑙𝐷𝑙ℎ𝑡−1

𝑛

𝑙=1

+ 𝛤𝑆𝑡−1𝜀𝑡−1
^2           

𝑛

𝑙=1

 

 

Where 𝜔 = [𝜔𝑖]𝑖=1,2,   𝙰 = [𝛼𝑖𝑗]𝑖,𝑗=1,2,   𝙱 = [𝛽𝑖𝑗]𝑖,𝑗=1,2;   𝙰𝑙 , 𝑙 = 1, … , 𝑛 (𝑎𝑛𝑑 𝑛 = 0,1, … ,4) is 

a cross diagonal matrix with nonzero elements 𝛼𝑖𝑗
𝑙 , 𝑖, 𝑗 1,2, 𝑖 ≠ 𝑗, 𝑎𝑛𝑑  𝙱𝑙  is a cross diagonal 

matrix with nonzero elements 𝛽𝑖𝑗
𝑙 , 𝑖, 𝑗 1,2, 𝑖 ≠ 𝑗, 𝑎𝑛𝑑 𝛤  is a diagonal matrix with elements  

𝛾𝑖𝑖, 𝑖 = 1,2, 𝑎𝑛𝑑 𝑺𝑡−1 is a diagonal matrix with elements 

𝑺𝑖,𝑡−1
− = 1 𝑖𝑓  𝑒𝑖,𝑡−1 < 0, 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

The model without the breaks for the shock and volatility spillovers and the asymmetries, that is 

ℎ𝑡 = 𝜔 + 𝙰𝜀𝑡−1
^2 + 𝙱ℎ𝑡−1, is minimal in the sense of Jeantheau (1998, Definition 3.3) and 

invertible (see Assumption 2 in Conrad and Karanasos, 2010). The invertibility condition 

implies that the inverse roots of |𝙸 − 𝙱𝐿|, denoted by 𝜑1and 𝜑2, lie inside the unit circle. 

Following Conrad and Karanasos (2010) we also impose the four conditions which are 

necessary and sufficient for ℎ𝑡 → 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡:  (𝑖)(1 − 𝑏22)𝜔1 + 𝑏12𝜔2 > 0 𝑎𝑛𝑑 (1 −

𝑏11)𝜔2 + 𝑏21𝜔1 > 0,   (𝑖𝑖)𝜑1𝑖𝑠 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝜑1 >  |𝜑2|,    (𝑖𝑖𝑖)  𝙰 → 0  𝑎𝑛𝑑 (𝑖𝑣) [𝙱 −

max(𝜑2, 0) 𝙸]𝙰 → 0, where the → denotes the elementwise inequality operator. Note that 

these constraints do not place any a priori restrictions on the signs of the coefficients in the 𝙱 

matrix. In particular, these constraints imply that negative volatility spillovers are possible. 

When the conditional correlations are constant, the model reduces to the UECCC-GARCH(1,1) 

specification of Conrad and Karanasos (2010).  

Moreover, we also amend the UECCC-GARCH(1,1) model by allowing shock and volatility 

spillovers to vary across positive and negative returns: 
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ℎ𝑡 = 𝜔 + 𝐴∗𝜀𝑡−1
^2 + 𝙱∗ℎ𝑡−1 

Where   𝐴∗ = 𝙰 + 𝛤𝑆𝑡−1 + 𝐴−𝐷𝑡−1
−

 and  𝙱
∗ = 𝙱 + 𝙱+𝐷𝑡−1

+  ;   𝐴−(𝙱+)   is a cross diagonal matrix 

with nonzero elements 𝛼𝑖𝑗
−

(𝛽𝑖𝑗
+

), 𝑖, 𝑗 = 1,2, 𝑖 ≠ 𝑗; 𝐷𝑡
−(𝐷𝑡

+) is a diagonal matrix with elements 

𝑑𝑖𝑡
−

(𝑑𝑖𝑡
+

), 𝑖 = 1,2,  where 𝑑𝑖𝑡
−

(𝑑𝑖𝑡
+

) 𝑖𝑠 𝑜𝑛𝑒 𝑖𝑓 𝑟𝑖𝑡 < 0 (𝑟𝑖𝑡 > 0) 𝑎𝑛𝑑 𝑧𝑒𝑟𝑜 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

The quasi-maximum likelihood method of Bollerslev and Wooldridge (1992) is used in the estimation 

of the above univariate and bivariate specifications
7
.  Finally, we check the standardized residuals and 

their squares to determine, respectively, the adequacy of the conditional means and the conditional 

variances in these specifications to capture their associated dynamics.  

 The estimation of these models was implemented in RATS 8.1 with a convergence 

criterion of 0.00001. 

 

 

 

 

4.6 Empirical Results  

 

In this Section we condition our analysis based on the breaks that we have identified to 

discuss first the findings from the univariate modelling and then from the bivariate 

modelling. 

4.6.1 Univariate Results   

The quasi-maximum likelihood estimates of the AGARCH(1,1) model for copper and 

gold returns using mapped  and  unmapped data  are displayed  in Table  2.  We allow the 

’unconditional variance’ (as well as the ARCH and GARCH parameters to switch across the 

breaks as in eq.  (2).  The  estimated models,  at  the  5% level, appear to be well-defined,  

there  is no evidence  of further  linear  or nonlinear dynamics  to be captured. In a broad 

sense, the results seem not to be dissimilar with regard to the type of data u s ed , mapped 
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or  unmapped.  Margaronis  et al.  (2014) found that small rolls or basis prove to yield 

similar time series for mapped and unmapped data sets.  The differences in the results 

may be due to the explanations expressed in this chapter whereby small compensations 

required over time to map data sets can accumulate to, and result in, large cumulative 

changes in the time series.  The unmapped data are likely to include artificial ‘price 

jumps’ when contract roll over occurs, which are of course reflected in the returns. 

Furthermore, while copper returns are shown to exhibit  asymmetric responses 

regardless of using mapped  or unmapped data,  this  is not  the  case for gold returns 

(the insignificant  parameters are excluded).  This finding is consistent with that of 

Hammoudeh and Yuan  (2008) using the EGARCH model over the period January 1990 

to May 2006. 

As far as the impact of the breaks is concerned, the results suggest that the 

‘unconditional variance’ (the ’s) for both types of metals is not significantly accepted b y 

the breaks.  However, the  dynamics  of the  conditional variances  especially  the  ARCH  

() and  GARCH  () parameters are  shown to  be time varying,  in line with Vivian and 

Wohar  (2012) who used spot price data.  That is, the ARCH parameter in copper 

returns becomes significant after  the first break (September 29, 2008) (see the  

coefficients), whilst this  parameter in the  case of gold returns decreases  after  the  

second break  (March  10, 2009) (2 is significant at  the  1% level).  With  regard  to the  

GARCH  parameter, it exhibits  time  varying  pattern across  the  second (June  25, 

2009), third  (September 09, 2011) and  fourth  (November  03, 2011) break for copper  

returns and  across  the first  (July  22, 2008), third  (June  13, 2011), and  fourth  (August  

10, 2011) break for gold returns (see the  coefficients in Table 2).  Moreover,  as is 

evident  from Table  3, the time variation of the ARCH and GARCH  parameters is also 

observed  by allowing the dynamics  of a GARCH (1, 1) process to switch across positive 

and negative metal futures returns (see the 

 and 


coefficients). 

 

Table 4 reports the persistence of the conditional variances of the two types of metal 

futures returns. It is evident that both re tu rns  show time varying pers i s t ence  i n  their 
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co r r e s p o n d i n g  c o n d i t i o n a l  v a r i a n c e s  irrespective of whether mapped and 

unmapped data are used.  In particular, the persistence of the conditional variance  of 

copper  returns increases  from 0:95 to 0:98 over the financial market  uncertainty created  

as a result  of the rejection  of the $700bn US banking  sector  rescue plan in the US. 

Nonetheless, such persistence declines to 0:93 over the TARP rescue funds and then 

increases to 0:99 over the period followed the downgrade of the US sovereign debt status 

before falling back to 0:93 over the break in late 2011.  With regard  to gold returns, the 

persistence of  its corresponding c o n d i t i o n a l  variance exhibits  a similar pattern. It 

increases from 0:94 to 0:97 over the period of high uncertainty identified by the first 

break  (July  22, 2008), then  it  declines  to  0:91 over the  capital  purchase  program  by 

the  US Treasury Department. However, after the European sovereign-debt crisis there 

is an increase in the persistence to unity before it declines to 0:94 over the downgrade of 

the US sovereign debt status. 

Table 5, by contrast, reports the time varying pattern of the persistence of the 

conditional variances by allowing the GARCH (1, 1) process to switch across positive and 

negative futures returns. The results suggest that the persistence of the conditional 

variances originating from negative returns is higher than those of the positive 

counterparts, especially for copper returns, using mapped and unmapped data.  In 

particular, negative returns are shown to increase the persistence of the conditional 

variances from 0:91 and 0:97 to around 0:98 and 0:99 for copper and gold returns, 

respectively. 

It is clear that the persistence of the conditional variances increases during periods of high 

volatility compared w i t h  low volatility.  That is, such persistence o f  both m e t a l s  

r e s p o n d s  t o  common factor such  as events  induced  high  uncertainty  in financial  

markets, even though  the identified  break  points for each return series have slight 

differences in timing  which can be explained  of how quick these metals react  to  such  

events.   In a broad s e n s e , our result o f  the t ime-varying persistence o f  the 

condi t ional  volatility corroborates the findings of Watkins and  McAleer (2008) and  

Choi  and  Hammoudeh (2010) who used rolling AR(1)-GARCH and Markov-switching 
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specifications, respectively.  However, the finding is not consistent with that of Sensoy 

(2013), who concluded that gold volatility was not accepted by the turbulent year 2008 

using spot price data.8 

8 In a related vein, Ewing and Malik (2010) observed a stronger reduction in the p persistence of oil returns volatility once 

structural breaks are accounted for.

 

4.6.2 Bivariate Results  

 

We  also  apply  the  bivariate  UEDCC-AGARCH(1; 1)  time  varying  model  to  estimate   

the  shock  and volatility spillovers  structure between  copper  and  gold returns using  

two  types  of data,   mapped  and unmapped. The results, reported in Table 6, provide 

evidence of strong conditional heteroskedasticty in the two variables, irrespective of using 

unmapped (left panel) or mapped (right panel) data. The ARCH parameters ( 11  and   

22 ) are positive and significant.  Copper returns exhibit asymmetric responses (the 

estimated  11    coefficient is positive and highly significant).   However, this is not the 

case for those of gold.  These results are  in line with those of the univariate ones. 

Furthermore, the results suggest the existence of bidirectional volatility spillovers between 

copper and gold returns. Specifically,  it is shown that volatility of gold  returns 

affects  that of copper  returns positively  (the  estimated  12   coefficient is positive  

and significant  at  the  10% significance  level),  whilst  the  negative  sign holds  in the  

reverse direction  (the  estimated 21   coefficient negative  and significant  at  the  10% 

significance  level).9    The negative  volatility spillovers from copper to gold implies that 

volatility innovations in copper affect  gold but  they  have  a less persistent effect  than 

the  volatility innovations from  gold itself  (see Conrad  and Weber,  2013).1 0 

With  regard  to  the  impact  of the  breaks  on the  volatility transmission structure 

between  the  two returns, the results  indicate  that there  are shifts in the volatility 

spillovers from gold to copper after  the

third (June  13, 2011) and the fourth  (August  10, 2011) break (see the estimated 

coefficient  and ), regardless of using mapped  or unmapped data.  These two 

shifts correspond to the European sovereign- debt crisis and the downgrade of the 

US government debt status, respectively. 
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 In other words, the results suggest that the volatility spillovers effect from gold to copper 

is sensitive to ‘structural changes’ in which such positive spillovers are shown to have 

diminished on the onset of the European sovereign debt crisis. 

9 Similar results hold for the conventional (without breaks) model  as well (see Table C.5 in the additional Appendix). 

1 0 The estimation of volatility impulse responses is left for future research. 

 

In particular, for the mapped returns this positive impact has weakened in the period 

after the sovereign debt crisis  and before the downgrade o f  the US government debt 

status .  Interestingly, for this period for the unmapped returns the effect has turned to be 

negative.   It is clear that the two events can filter through the financial system and impact 

on the way commodities such as gold and copper behave. The mechanism by which this 

happens has been detailed elsewhere in this chapter. 

 

Evidently, gold and copper volatility spillovers vary as structural breaks occur.  The 

stabilization of the crisis over the years induced confidence in the world economies.  The 

behaviour  of the world economy has  a direct  impact  on commodity  markets  and  the  

structural breaks  seen during  this  time  of turmoil along with  the findings  of Mensi et 

al.  (2013) support this.   This is also complemented by the work of Cochran et al.  (2010) 

where the analysis of the spot metal market and the VIX show similar mechanisms and 

impacts as this chapter does. The study by Batten et al. (2010), by contrast, showed how 

influential macroeconomic factors can be on the price behaviour of  gold.  Batten et al.  

(2010) also looked into  the volatility feedback  between  precious  metals  and  they  found  

good supporting evidence  of its  existence. Although  not  entirely  in the  scope of this  

study,  the  existence  of metals  volatility spills from one metal to another  is reassuring  for 

the findings of this chapter. 

Figure  2 shows the  evolution  of the  time  varying  conditional correlations between  the  

two  types  of metal  futures  returns over the sample period.  As is evident from Figure 1, 

the time varying correlations between both returns are shown to be similar using mapped 

and  unmapped data.   Furthermore, Tse’s (2000) test statistic of the null hypothesis H0 :  


D C C

 = 
D C C

 =0 are 0.400 (with p -value of 0.527) and 0.315 (with p -value of 0.574) for 
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unmapped and mapped data, respect ivel y .   These test statistics do not reject  the  

constant  conditional correlations between  the  two  returns using the  two  types  of data,  

even though the correlations between the two variables are shown to exhibit transitory shifts 

over the Lehman Brothers collapse and the phases of the European sovereign-debt 

crisis.11 

Finally, the results of the regime dependent volatility spillovers between the two metal 

futures returns, reported in Table 7, suggest that declines in copper prices generate  

positive  volatility spillovers to gold, using mapped  and  unmapped  data  (the  estimated 

coefficient is positive  and significant  at  the  5% level).  This result indicates that negative 

shocks to copper result in an increase in the volatility of gold. 

 

 

 

 

 

 

 

 

 

Figure 4.2. Evolution of  the dynamic conditional correlation between mapped and 

unmapped copper and gold returns. 

 

 

 11 The  results  (available   up on  request)  of  the  volatility  spillovers  were  shown  to  be  robust  by  using  the  

UECCC- AGARCH(1,1) specification.
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4.7 Discussion  

The conditional v a r i a n c e s  equat ions  w e r e  used to observe cross-volatility effects. 

From the unmapped data results it is clear that there are bidirectional volatility spillovers 

between the two metals, where the conditional variance of copper affects gold volatility 

negatively whereas the effect in the opposite direction is positive.  This means that when 

the price of copper exhibits greater volatility the price of gold becomes more stable an d  

i ts  volatility falls.   This is  in line with the differences  i n  the demand 

c h a r a c t e r i s t i c s  between the two metals, explained previously. 

During  times  of financial  turmoil,   where  uncertainty  lingers  and  individuals  and  

organisations tie their  capital  up in gold as a reserve currency,  the price of gold is 

suddenly influenced  more by all the new demand.   Rather than t rading  gold to make 

pro…t on its price changes, people are suddenly inclined to buy gold and keep it until 

there is confidence and stability in the economies of the world.  Also, the fact that gold 

is a precious metal  and copper is a base, industrial metal  suggests that their  price 

fluctuations will differ  simply because of the differences  in uses and therefore  demand  

and demand  characteristics. 

This can also be understood by considering the products based on each of the metals.  

Products based on copper are generally less dear and are replaced with new ones at a 

much greater rate, which is not the case for products containing gold  or made of gold.  

Since copper prices depend significantly on the state of the Australian mining sector, 

Chinese and South-East Asian demand and the demand of large world economies, the 

volatility exhibited can be due to uncertainties in these. 

The  positive  spillovers  from  the  conditional variance  of gold to  that of copper  are  

consistent  with the  sheer  volume  and significance  of gold in the  world economy.   

Induced vola t i l i t y in gold prices will almost certainly influence a wide range of world 

economic factors.  With gold being a reserve currency, a increase in the volatility of gold 

implies an increased uncertainty in world economies.  Copper, being the main industrial 

metal, i s  therefore hugely impacted b y  such uncertainty as industrial demand i s  based 

on economic and business confidence worldwide, hence the connection can be made.  

Uncertainty in such factors does not usually occur when economies are booming.  In the 

case of the gold price, however, the opposite effect is seen due to its establishment as a 

reserve currency and its non-consumable nature. This could therefore explain the inverse 
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relationship observed in the cross-volatility effects.  The use of gold as a hedging tool in 

times of financial turmoil common and is supported by Beckmann  et al.  (2014) and Wang 

and Lee (2011) among others, while the findings by Sensoy (2013) show gold having uni-

directional volatility shift contagion on all precious metals.  Sensoy (2013) supports the 

premise that precious metals are  used  in times  of financial  turmoil  to  hedge  and  

diversify  portfolios  and  as  alternative investment vehicles. 

In the case of the mapped data results the same bidirectional volatility spillovers occur 

between copper returns and gold returns as was seen in the analysis of unmapped returns. 

That is, the conditional variance of copper affects gold volatility negatively, while the 

reverse effect is of the opposite sign. This is consistent with the links between the two 

metals in terms of their monetary value through foreign exchange rates.  It is clear that 

while the two metals have, for the most part, very different applications, when a 

significant world event occurs impacting foreign exchange, volatility tends to be induced in 

most financial securities. However, given the relation of  gold with foreign exchange as it 

is used as a reserve currency, i t  is clear that it may be accepted with lesser lag than an 

industrial metal such as copper.
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4.8 Summary and Conclusions  

In this chapter, we have analysed how the recent financial crisis accepted the principal 

time series properties of the underlying series of two metal futures: copper and gold.  In 

particular, we have employed several univariate and multivariate models to examine how 

the volatility dynamics, including the volatility persistence  and  volatility spillovers  

structure of these  two  metal  futures  returns, have  changed  due to  the recent financial 

crisis, and conditioned  our analysis  on non-parametrically identified breaks. 

Our findings suggest that the volatility persistence of these metal futures returns exhibit 

substantial time variation over the recent financial crisis; in particular, such persistence is 

shown to increase during periods of high volatility compared with low volatility. This time 

variation appears consistent across metal futures returns and irrespective of whether we 

allow for positive and negative changes in the underlying asset.    The es t imat ion  of 

the b ivar i a t e  UEDCC-AGARCH (1; 1) model also shows that the vo la t i l i t y  

transmission from gold returns to those of copper shifted after the European sovereign-

debt crisis and the downgrade of the US government debt status. Finally, the regime-

dependent volatility spillovers analysis suggests that declines in copper prices induce 

positive volatility spillovers to gold returns. 

From  the  results  it may  be concluded  that there  is indeed  a systemic  relationship 

between  the  two metals  in spite  of their  very different  applications and  values.   The 

volatilities o f  copper and gold are inherently linked, proved by the findings of the 

analyses carried out.  The possible explanations for the findings have also been 

explored deeply, analysing the impacts of one market on the other and of course other 

factors, including the implications of the financial turmoil for these markets. 

Due to the financial crisis, therefore, it is clear that there are significant factors that 

cause the prices of copper and those of gold to behave as they do and this may be explored 

in the context of other commodities too.   The  impact  of the financial  crisis on the  other  

metals  whose characteristics differ significantly  by virtue  of mixed  demand  

characteristics and  lower  volumes  may  show  that the  metals  sector  has  far more to 

offer in terms  of these  relationships. Further to this,  the  utilisation and  comparison  of 

mapped and  unmapped time  series show how results  can differ  and  this  may prove to 

be far more important as conducted  by Margaronis  et al. (2015) for the other 

commodities  whose basis can be far more significant.
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Table 4.1 

Breakpoints ‘dates in copper and gold returns 

Break         Copper                        Gold 

1         29=9=2008               22=7=2008 

2         25=6=2009               10=3=2009 

3         09=9=2011               13=6=2011 

4        03=11=2011              10=8=2011 

Table 4.2 

The estimated univariate AGARCH (1,1) models allowing for breaks 

in the conditional variance 

Unmapped                                              Mapped 

Copper         Gold                       Copper                  Gold

                 0:063 0:088 a                       0:056 0:085 a

(0:047) (0:026) (0:050) (0:023)

       0:181 a       0:098 a                      0:196 a                 0:109 a

(0:062) (0:031) (0:062) (0:026)

                                    0:069 a                                                   0:074 a

(0:018) 

   1               0:025 b                                                          0:027 a 

(0:017)

(0:011) (0:011)

 2                                         - 0:066a                                                                   -0:069a

(0:025) 

               0:921 a       0:874 a                      0:918a 

(0:022) 

0:865 a

(0:019) (0:034) (0:018) (0:032)

                                           0:032 c                                                                       0:038 c

(0:017) 

              -0:046a                                                      - 0:043a
 

(0:020)

(0:016) (0:014)

                    0:056b           0:109 a                      0:055 b                       0:108 a

0:025) (0:028) (0:025) (0:023)

                 -0:059b        - 0:077a                            -0:054b                    -0:076a

(0:028) (0:019) (0:027) (0:018)

                 0:070 a                                          0:072 a

(0:017) (0:017)
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LogL  

LB(5) 

-2924:8 

8:369 

[0:137] 

-2268:9 

3:789 

[0:580] 

-2994:5 

8:086 

[0:151] 

-2319:5 

4:006 

[0:548] 

LB2 (5) 1:543 2:308 1:699 2:093 

 
[0:908] [0:805] [0:889] [0:836] 

Notes:  Robust-standard errors are used in parentheses.  LB(5)  and  LB
2 

(5) are 

Ljung–Box  tests  for serial correlations  of five  lags on the standardized  and 

squared  standardized  residuals,  respectively  (p -values  are reported  in brackets). 

   and     l indicate  the estimated  parameters  of the  break  dummies  

where the  break  l = 1; ::; 4 (see Table  1).  Insignificant parameters are 

excluded. a ; b and  c  indicate  significance  at the  1%, 5%, and  10% levels, 
respectively. 

 

Table  4.3 

The estimated univariate GARCH (1, 1) models allowing for switching across 

positive and negative returns:  

ℎ𝑡 = 𝜔 + 𝜔−𝐷𝑡−1
− + 𝛼𝜀𝑡−1

2 + 𝛼−𝐷𝑡−1
− 𝜀𝑡−1

2 + 𝛽ℎ𝑡−1 + 𝛽−𝐷𝑡−1
− ℎ𝑡−1 

Unmapped                                               Mapped 

Copper           Gold                    Copper                          Gold 

                0:034       0:076 b                             0:024 0:071 b

(0:048) (0:030) (0:050) (0:030)

       0:077 a          0:026 a                   0:088 a                         0:027 a

(0:011) (0:007) (0:013) (0:008)

                 0:020 b              0:072 a                    0:019 b                                    0:073 a

(0:008) (0:013) (0:008) (0:003)

       
                0:056 a           0:056a                          0:060 a                          0:055a

(0:009) (0:018) (0:010) (0:010)

                   0:891 a          0:900 a                   0:887 a                         0:900 a

(0:002) (0:004) (0:002) (0:006)

                 0:090 a          0:095 a                   0:097 a                         0:093 a

(0:011) (0:014) (0:009) (0:002)

    LogL             -2929.75        -2277.09              -2998.67                      -2327.98  

 LB(5)             8.688 a          3.608 a                   8.724 a                         3.788 a

(0:122) (0:607) (0:120) (3.788)

LB(5)             1.404 a          0.558 a                   1.131 a                         0.451 a

                            (0:923)            (0:989)                                 (0:951)                                           (0.993) 

Notes:  Robust-standard errors are used in parentheses.  LB(5)  and  LB2 (5) are 

Ljung-Box  tests  for serial correlation  of five  lags on the  standardized  and  squared 

standardized  residuals,  respectively  (p-values  are reported  in brackets). 
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a 
and  

b  
indicate  significance  at the  1% and  5% levels, respectively. 

 

Table 4.4 

 

The persistence of the AGARCH (1,1) models for copper and 

gold returns 

 

Panel A. The persistence o f  the standard (without breaks) 

AGARCH (1, 1) models  

Unmapped   Mapped 
Copper     Gold  Copper Gold 
0:982      0:988  0:981 0:988 

 

Panel B. The persistence o f  the AGARCH (1, 1) models 

allowing for breaks in the conditional v a r i a n c e  

 

Break 

Unmapped 

Copper     Gold 

  

Copper 

Mapped 

Gold 
0 0:956      0:943  0:954 0:939 
1 0:981      0:975  0:981 0:977 
2 0:935      0:909  0:938 0:908 
3 0:991      1:018  0:993 1:016 
4 0:932      0:941  0:939 0:940 

Notes:  Break  0 covers the  p period preceding  all breaks,  while break  1 

covers the  p period b between  breaks  1 and  2, and  break  2 covers the  period 

b between breaks  2 and  3, and  so on (see Table  1 for the  dates  of the  

breaks).
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2 

Table 4.5 

The persistence of the GARCH (1, 1) models allowing for switching 

across positive and negative returns  
 

 

 

Returns 

 

Unmapped 

Copper     Gold 

  

 

Copper 

 

Mapped 

Gold 

r+
 

r-  

0:911      0:972 

0:984      0:991 

 0:906 

0:984 

0:973 

0:992 

Notes:  r+ (r-)  indicates the persistence of the conditional variance genera ted  from positive (negative) returns.  The  p persistence  of the p 

positive  returns  is calculated  as    + , while that of the  negative  returns  is calculated  as 

𝛼 + 𝛽 + (
𝛼−+𝛽−

2
) 

 

Table  4.6 

Coefficient estimates of bivariate UEDCC-AGARCH models 

allowing for shifts in shock and volatility spillovers between copper 

and gold returns 

 

Unmapped                                                                              Mapped 

 

                         0:060 

Conditional Mean Equation 

                          0:075 b                                           0:052 

 

                      0:072 a

(0:042) (0:029) (0:047) (0:027)

 

                           0:017 

Conditional Variance Equation 

                         0:059 b                   
                        0:025 

 

                        0:060 c

(0:036) (0:029) (0:037) (0:026)


                          0:017 b           


 -

0:085c              
                               0:019 a     


 -

0:051c

(0:007)               (0:050) (0:009)              (0:030)

11                       0:016c            
  

4 
0:071 c                    11                   0:016c             


 0:071 c

(0:008)               (0:038) (0:009)               (0:040)


 22                       0:038 a        

  21                     - 0:003c                 


 22                       0:038 a       
21                          -0:003c

(0:009) (0:002) (0:011) (0:002)

11                       0:929 a        


 DC C                   0:010 11                       0:925 a        


 DC C                   0:010

(0:025) (0:007) (0:021) (0:007)


22                       0:960 a        DC C                   0:906 a             22                       0:961 a         DC C                   0:914 a

(0:011) (0:066) (0:015) (0:077)
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C op C op 

12 (  12 

11                        0:067 a                                                          11                        0:071 a

(0:024) (0:022)

 

LogL              -5208:3                                                  LogL               -5327:5

LB(5)Cop       9:055 

[0:106] 

LB(5)Gol        3:223 

[0:665] 

LB(5)Cop       3:910 

[0:562] 

LB(5)Gol        3:702 

[0:593]

LB(5)2 0:431 

[0:994] 

LB2 (5)Gol      0:298 

[0:997] 

LB(5)2 5:972 

[0:309] 

LB2 (5)Gol      3:823 

[0:575]

Notes:  Robust-standard errors are used in parentheses, 1= copper, 2=gold.  LB(5)  and  LB2 (5) are Ljung-Box  tests for 

serial correlation  of five  lags on the  standardized  and  squared  standardized  residuals,  respectively  (p-values  are 

reported in brackets). 12 (  12 ) indicates  shock (volatility)  spillovers from gold to copper, whilst   21 (  21 ) indicates

shock (volatility)  spillovers in the  reverse  direction.   l        

l
 

) indicates the shift in shock (volatility) spillovers for the

break l (see Table  1) from gold to copper.  Insignificant parameters are excluded. 

a , b and  c  indicate  significance  at the  1%, 5%, and  10% levels, respectively.



127 

 

Cop C op 

21 

Table 4.7 

Coefficient estimates of bivariate UEDCC-AGARCH models allowing for 

different spillovers across positive and negative returns in copper and gold 

 

Unmapped                                                                             Mapped 

 

1                          0:050 

Conditional Mean Equation 

2                           0:085 b                    1                          0:053 

 

2                           0:082 a

(0:038) (0:033) (0:049) (0:028)

 

1                          0:020 

Conditional Variance Equation 

11                         0:073 a            
1                          0:023 

 

 11                         0:073 a

(0:029) (0:022) (0:035) (0:022)

2                          0:039 b              
 12                        0:038 b                 

2                          0:033 a        
 12                         0:068 b

(0:016) (0:018) (0:010) (0:032)

  11                       0:016c 
 21                         -0:017a               

  11                       0:017c  
 21                          -0:018a

(0:009) (0:005) (0:010) (0:005)

  22                       0:049 a        
 

  
0:036 a                 

22                       0:030 a          
 

 
0:030 b

(0:010)               (0:012) (0:008)               (0:011)

 11                       0:931 a       


 DC C                   0:006 

 11                       0:914 a        


 DC C                   0:011

(0:021) (0:010) (0:020) (0:007)

 22                       0:929 a         


DC C                   0:792 a             
 22                       0:962 a        



DC C                   0:911 a

(0:018) (0:129) (0:013) (0:071)

 

LogL               -5198:2                                                   LogL               -5324:7

LB(5)Cop       8:900 

[0:113] 

LB(5)Gol        4:057 

[0:541] 

LB(5)Cop       8:657 

[0:123] 

LB(5)Gol        3:378 

[0:641]

LB(5)2
 0:418 

[0:994] 

LB2 (5)Gol      1:067 

[0:957] 

LB(5)2
 1:292 

[0:935] 

LB2 (5)Gol      0:092 

[0:999]

Notes:  Robust-standard errors are used in parentheses, 1= copper, 2=gold.  LB(5)  and  LB2 (5) are Ljung-Box  tests for 

serial correlation  of five  lags on the  standardized  and  squared  standardized  residuals,  respectively  (p-values  are 

reported in brackets). 12 ( 12) indicates shock (volatility) spillovers from gold to copper, whilst  21 (  21 ) indicate

shock (volatility)  spillovers  in  the  reverse  direction.  - 
 

    reports the  shift  in volatility  spillovers from copper to gold 

(Induced b y  negative copper returns).  Insignificant parameters are excluded.  a,  b and  c  indicate  significance  at the 

1%, 5%, and  10% levels, respectively.
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Chapter 5: Time-Varying analysis including Volatility Spillovers for Commodity Futures 

Metals 

Chapter 5 is joint work with M.G. Karanasos, F.M. Ali & P.D. Koutroumpis ‘Time-Varying analysis including 

Volatility Spillovers for Commodity Futures Metals’. M.G. Karanasos, F.M. Ali & P.D. Koutroumpis helped in the 

model specification and contributed to the interpretation of the results with a combined contribution of 20% to the 

chapter (approx. 7% each).   

The remaining contributions are by Z.N.P. Margaronis for significant contribution (80%) in data-collection, data 

processing, data analysis, results & discussion and write-up throughout the Chapter.  

Keywords: commodity, metals, futures, mapped, unmapped, rollover, spillover, volatility, 

bivariate, univariate, bidirectional  

 

5.1 Introduction 

 

This study considers the mapped and unmapped time series as defined by Margaronis et al. 

(2011), for the metals commodities. The methodology applied in Chapter 4 is reapplied to larger 

range of metals including Gold, Copper, Silver and Platinum. The metals considered include 

both industrial and precious metals and the aim is to ascertain the cross effects which exist 

between the various metals and how these cross effects change as the mapped data is considered 

as opposed to the unmapped data. This is especially interesting because of the large application 

of metals commodities, both as consumables in an industrial application and precious 

application, but also as reserve currencies, in hedging financial positions and as sentimentally 

traded financial securities.  

This study will look into the mean cross effects, ARCH spillovers and volatility spillovers for 

both mapped and unmapped data sets in order to give a complete overview of the metals’ 

interactions throughout the five year, daily data time series [PX_LAST Bloomberg] starting from 

January 2007.  
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By considering four different metals, it is clear that there will be a more holistic view of the 

metals sector and this is especially interesting because we know from Margaronis et al. (2011) 

that the metals sector has the smallest associated rolls or basis. Hence if we see differences in 

results between mapped and unmapped data within the metals sector, we can probably expect to 

see an even more significant difference between the mapped and unmapped relationships of the 

other commodities. 

We expect to see various relationships within the metals sector due to their similarities in use. 

We also expect to see some effects due to the world economy and its demand in one metal 

spilling over to another. This is obvious for some metals such as Gold, Silver and Platinum 

which are all used in everyday jewels. However, there are some less obvious relationships which 

may exist such as that between Copper and Platinum. Although Platinum is a precious metal, it 

has a large industrial use in catalytic converters in vehicles so we can expect to see some kind of 

relationship between Copper and Platinum due to their industrial demand which although 

different, may go hand-in-hand. These are just a handful of relationships we expect to see but 

may not actually surface from the analysis and it seems this is also an unexplored area as regards 

the literature.   

 

   

5.2 Literature Review  

 

 Wang et al. (2010) examine the effectiveness of gold as a hedging tool in the US and Japan, 

especially during the financial crisis (as a tool against sudden inflation). There has been a large 

movement into these metals markets, with ETFs and other commodities trading organizations 

driving this movement especially since the dawn of the financial crisis. Having said this, the 

analyses available within the metals market of commodities are not substantial although the few 

analyses that have been carried out are marginally relevant. They detail various aspects of the 

market including causalities that exist between precious metals and of course causalities 

stemming from other factors, namely stock markets, which influence metals price behaviour. 
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This section will review the current studies which are available relating to the metals within the 

commodities sector.  

Mensi et al. (2013) findings support the phenomenon that decreased confidence in the world 

economy leads to underperformance of stock markets, by looking primarily at the S&P 500. This 

in turn induces volatility in the metals markets, specifically the precious metals as people turn to 

them as reserve currencies during times of financial turmoil. Mensi et al. (2013) findings can 

therefore be considered to support the phenomenon that precious metals markets and industrial 

metals markets are linked. This may be linked to the findings by Batten et al. (2010) who 

indicate that gold prices are greatly influenced by macroeconomic variables, specifically 

monetary variables, which in turn are known to be used as a tool in governing economic growth. 

Batten et al. (2010) also look closely at the precious metals market including the financial crisis, 

showing volatility feedback between the precious metals. This is particularly interesting as there 

are certainly logical mechanisms linking the precious metals due to their substitutability in 

application and scarcity. 

Beckmann et al. (2014) and Wang et al. (2010) support each other in their findings and the initial 

premise that gold is traditionally used as a hedging tool in portfolios to protect investors against 

sudden movements in stock prices. This is advantageous as it shows a number of sources 

agreeing on the same phenomenon which is closely linked to the findings of this chapter.   

Smiech et al. (2012) study the causality between metals and find there to be a driving force of 

causality by copper and later platinum, whereas silver and gold were found to not be the Granger 

causes. Primarily, Smiech et al. (2012) acknowledge that their approach of using monthly metal 

prices will yield different findings to one where higher frequency data are considered which is 

the case for our study. It is of great interest however, that an analysis considering the causalities 

within the metals market yields results showing significant causal effects between metals during 

the crisis.  

Cochran et al. (2010) also delve into the metals market specifically but utlise spot prices to show 

how the VIX (implied volatility of the equity market) influences the metals’ returns significantly. 

Specifically, copper is found to have an indirect relationship with the VIX while other metals are 

found to have a direct relationship. It is nonetheless hugely important to show that once again, 
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metals prices are influenced not only by each other but by the volatility of the equity markets just 

as Mensi et al. (2013) suggest.   

A major consideration when considering commodities futures is taking account roll or basis 

when contract expiry nears. In order to create a real life time series, it is important to roll on 

specific days in order to be trading the active contract whose liquidity and hence volume is 

greatest. It has been discovered that taking into account the roll can significantly change the time 

series since these accumulation of roll values can be significant in the commodities considered 

(Margaronis et al. 2011) 

In one paper Hammoudeh et al. (2011) focus on the volatility dynamics in precious metals while 

also looking into the risk management implications too. Hammoudeh et al. (2011) discover that 

during the financial crisis in 2008, there is a very high variance and this complements the breaks 

discovered in this study. The premise that market participants invested in precious metals heavily 

during this time which suggests why this break occurs. The general conclusion is that during the 

initial years of their sample, Hammoudeh et al. (2011) find that there is low volatility of returns. 

This changes as the financial crisis occurs and higher volatilities are experienced causing VaR 

estimates to diverge. In another paper, Hammoudeh et al. (2010) examine the correlation 

dependency and interdependency of the precious metals. There seem to be significant short run 

and long run interdependencies between the precious metals and this is a relationship that 

becomes stronger when exchange rates are included in the analysis. This is also true of monetary 

policy effects. As a result, it is clear that the metals behaviour is dependent on news as well as 

the other metals behaviour. There is also a spill over onto exchange rates from the metals which 

is interesting given our findings whose explanations are based on this theory.   

The purpose of this chapter is to investigate the relationship between the four metals and the 

impact of considering mapped and unmapped data sets, where we believe there is a significant 

void in the literature.  
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5.3 Bivariate Models  

 

5.3.1 Mean Cross Effects  

 

Information criteria and likelihood ratio tests choose the specification with the bidirectional 

feedback between platinum and either silver or gold returns.  As seen in Table 1, when 

the unmapped data are used (not accounting for roll/basis), there is a mixed bidirectional link 

between platinum and gold/silver returns. In particular, gold/silver returns affect  

platinum returns positively  [see also entrances in cells 2,3 (second  row, third  column) 

and 2,4 of the summary  Table 5 below] whereas the reverse effects  are of the opposite sign 

(see also the entries in cells 3,2 and 4,2 of the summary Table).   However, the feedback 

disappears when the mapped data are used. Moreover, the returns of gold have a positive 

impact on copper returns for both data sets. 

 

 

5.3.2 Error Correction 

 

As seen in Table 2 Platinum returns have a long run impact on both copper and silver 

returns. The latter effect disappears when the mapped data are used. 
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5.4 Spillovers 

 

5.4.1 ARCH Spillovers  

 

There a r e  bidirectional  ARCH sp i l l ov ers  between p l a t i n u m  and go l d  un- 

mapped returns.  Moreover, there are unidirectional ARCH cross effects from platinum 

unmapped returns to those of copper (see Table 3).  However, these cross effects disappear 

for the mapped data. In addition, there are cross ARCH effects from silver unmapped returns 

to both co p p e r  and gold  returns. The latter effects disappear when the mapped data are 

used. 

 

5.4.2 Volatility Spillovers 

 

The results in Table 4 suggest the existence of mixed bidirectional volatility spillovers  

between  copper  and  gold returns for both  mapped  and  unmapped data.  Specifically, it 

is shown that the volatility of gold returns affect that of copper returns positively (the 

estimated  12  coefficient is positive and significant at the 1% significance level; see also the 

entries in cell 1,3 of the summary  Table below), whilst the negative sign holds in the reverse 

direction (the estimated coefficient 21  is negative  and significant at  the  10% significance 

level; see also cell 3,1 of the  summary  Table).   The negative volati l ity spillovers from 

copper to gold implies that volatility innovations in copper affect gold but they have a less 

persistent effect than the volatility innovations from gold itself (see Conrad and Weber, 

2013). However, there are no cross effects between copper and gold returns (see Table 1 

above). 

The  empirical  evidence  also suggests  that there  is a causal  negative effect from the  

volatilities  of platinum and  silver returns to the  volatility of gold re- turns  at  the  5% and  
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1% significance levels, respectively  (see also the  entries in cells 3,2 and 3,4 of the summary  

Table).  The former impact disappears when the mapped d a t a  a r e  used.   Interestingly, the 

volatilities o f  platinum and silver returns (either mapped or unmapped) are independent 

of changes in the volatilities of  the other two returns. 

 

5.5 Summary 

 

Table 5.1. Bivariate Models: Return 

(Re), Volatility (Vo) spillovers and 

Error Correction (Er) effects. 

C                P                        G                S  

       C      x          ErM: -                  VoM   : + 

P                         x                       Re: +      Re: + 

G   VoM: -    Re:- ;    Vo:-      x                  VoM:-  

  S                     Re:-;              Er:-      ReM  : +         x   

 

Note:  C, P, G and S denote Copper, Platinum, 

and Gold and Silver respectively The variables 

in each column are the independent variables. 

 (+):  the effect is negative (positive) 

The subscript M indicates that the effect holds for the 

mapped data as well.
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According to the f i r s t  column of the summary tab le  5 the returns of copper does not 

affect the other three returns.  The volatility of copper returns has a negative effect on 

that of gold (see cell 3,1 of the summary table) whereas the volatilities of silver and platinum 

are independent of changes in the volatility of copper. 

 

Platinum returns affect the three other returns negatively (see the second column).  They 

have a short-run effect on gold returns, a long-run one on copper returns and  both  a short  

and  long-run  effect  on silver returns (for the  latter effect  see cell 4,2).  The volatility of 

platinum returns affects (negatively) only that of gold returns (see cell 3, 2) but not the 

other two volatilities. 

As seen in the third column gold returns have a positive effect on platinum and silver 

returns (see cells 2, 3 and 4, 3 respectively).  Similarly, the volatilities of gold returns affect 

those of copper returns positively (see cell 1, 3). 

Silver returns affect pos i t i ve l y the returns on platinum (see cell 2,4 in the fourth  

column)  whereas their  volatility has a negative  effect on the volatility of gold returns (see 

cell 3,4).  Copper returns are independent of changes in the returns (and their volatility) of 

silver. 

 

 



136 

 

5.6 Discussion 

 

 5.6.1 Bidirectional Effects 

  

Copper returns and their volatility are not affected by changes in silver returns and 

volatilities and vice versa.  Copper returns (in the short-run) and their volatility are 

independent of changes in platinum returns and their volatilities. 

 

There is a mixed bidirectional link between platinum and gold returns. Platinum 

returns affect gold returns negatively (see cell 3, 2 in Table 5a below) while the positive sign 

holds in the opposite direction (see cell 2,3).  In other words, the mean equation for 

unmapped time-series shows there is bidirectional causality evident between gold returns 

and platinum returns where gold returns affect platinum returns positively and the negative 

sign holds in the opposite direction. The mixed bidirectional causality could be explained by 

the liquidity difference between the two metals as gold is far more popular (and traded in 

higher volumes).  It will also naturally exhibit higher volatility as it is exposed on more 

demand f ro n t s  than p l a t i nu m .  The  increased  volatility, liquidity  and  use as a reserve  

currency  mean  that gold prices  will react  to  the  market  with  little  or no lag time.   On  

the  other  hand,  platinum, with  its  much  larger  demand  for industrial applications 

(catalytic converters) gives this particular metal a very different demand  characteristic.  

Lower liquidities  mean  there  will be a lag between  the  time  of an  event  and  the  actual  

impact  on  the  price  which  could explain  the bidirectional causality  found in the 

analysis. 

In a similar  way,  from the  unmapped results  of the  mean  equation,  silver returns 

were seen to affect platinum returns positively  while the  negative  effect holds  in the  

opposite  direction (platinum to silver), (see cells 2,4 and  4,2 respectively).   In sharp 

contrast, there is no volatility link between the returns of platinum and silver. 
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The bivariate conditional variance equations were used to observe cross volatility effects.  

From  the  unmapped results  it is clear that there  are bidirectional volatility spillovers 

between copper and gold returns where gold volatility affects  that of copper positively  (see 

cell 1,3 in Table  5a) and the negative  sign holds in the opposite direction (see cell 3,1).  This 

might be explained by the following mechanisms. 

The fact that gold is a precious metal  and copper is a base, industrial metal suggests  

the  price  fluctuations will differ  simply  because  of the  differences  in uses and  therefore  

demand  and  demand  characteristic.  This can also be understood b y  considering the 

products based on each of the metals.   Products based  on copper  are  generally  less dear  

and  are  replaced  with  new ones at  a much  greater  rate  which is not  the  case for 

products containing  gold or made of gold. Since copper prices depend significantly on the 

state of the Australian mining sector, Chinese and South-East Asian demand and the 

demand of large world economies, the volatility exhibited can be due to uncertainties in these. 

During times of financial turmoil, where uncertainty lingers and individuals and organisations 

tie  their  capital  up  into  gold as a reserve  currency,  the  price  of gold is suddenly  

influenced  more  by all the  new demand.   Rather than  trade gold to  make  profit  on its  

price  changes,  people are  suddenly  inclined  to  buy gold and  keep it until  there  is 

confidence and  stability in the  economies of the world. 

Gold may influence copper volatility positively due to the sheer volume and significance of 

gold in the wor ld  economy.    Induced v o l a t i l i t y  in gold prices will almost cer ta in ly 

i n f l u e n c e  a wide range of world economic factors.   With gold being a reserve currency, 

v o l a t i l i t y  increases in gold show uncertainty in world economies.  Copper being the main 

industrial metal in therefore hugely impacted   by such volatility as industrial demand i s  

based on  economic and business confidence worldwide, hence the connection can be made.  

Uncertainty in such factors does not usually occur when economies are booming.  In the 

case of the gold price however, the opposite effect is seen due to its establishment as a 

reserve currency and its non-consumable nature.  This might therefore explain the inverse 

relationship observed (that is, the negative cross volatility effect from copper to gold 

returns). 
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In the case of the mapped returns there is also mixed bidirectional volatility spillovers 

between copper and gold returns, similar to those for the unmapped returns. This may be due 

to the links between the two metals in terms of their monetary value through foreign exchange 

rates.  While the two metals  have, for the most part, very different applications, when a 

significant world event occurs impacting foreign exchange,  volatility tends to be induced 

in most financial securities  but  given the  relation  of gold with  foreign exchange  as it is 

used as a reserve  currency  it may  be affected with  lesser lag than  an industrial metal 

such as copper. 

In other words, as with the case of the unmapped returns there are reasons to explain 

this mixed feedback in behaviour which include the fact that copper is a base, industrial 

metal as oppose to gold and platinum which are precious metals.  That is, the mixed 

bidirectional volatility spillovers between copper and gold returns may also be explained by 

the fact that the metals are so different in their value and uses.  Generally in times of 

financial turmoil the price of copper falls while the price of gold rises and vice versa for 

periods of growth. 

 

Table 5.2.  Bidirectional Effects 

Bivariate Models and Unmapped 

Data: Return (Re), Volatility (Vo) 

spillovers 

 

 C P G S 

C 

P 

x  

x 

    VoM   : + 

     Re: + 

 

Re: + 

G VoM:-    Re:- ;    x  
  S                      Re:-   ;                        x   

Note:  C, P, G and S denote Copper, Platinum, 

Gold and Silver respectively The variables in  

each column are the independent variables. 

-(+):  the effect is negative (positive) 

The subscript M indicates that the effect holds for the 

mapped data as well. 
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5.6.2 Unidirectional Effects 

 

There  is a  long-run  causality  from  platinum returns to  copper  and  silver returns 

(see cells 1,2 and  4,2 in Table  5b below).  This might be explained by the industrial link 

and uses between these three metals.  Platinum and copper are used heavily in industrial 

applications while platinum has the added demand characteristic of also being desirable 

a s  a precious metal .    Given the use  of platinum as a reserve currency as  well it is clear 

that the platinum prices will ‘react’ to the markets faster.  The efficiency of the platinum 

market is greater (Kristoufek et al. (2013)) with many participants participating with lower 

volumes compared to the copper market wh er e  there are fewer participants buying and 

selling large volumes.  The causality from platinum to silver may be explained by the 

industrial applications of the metals however the added demand of platinum as a reserve 

currency could also be to blame. 

In the case of mapped returns, the results indicate that platinum has a long run effect in 

copper (see cell 1, 2).  The long run relationship observed between platinum and copper 

returns may be due to fact that both metals have significant industrial applications. 

Platinum, in the use of catalytic converters for  vehicles and copper primarily in the use of 

wiring and electrical equipment.  Another explanation could include the uses of platinum as 

a reserve currency. Increased demands for platinum as a reserve currency may arise from 

financial instability, which would in turn  explain the decreased  demand  for copper as 

world demand falls (especially  for consumer  goods) in which copper  is a major  raw 

material. The long run causality f r o m  platinum to copper returns is consistent as with 

the unmapped results. 

Gold returns have a positive effect  on silver returns (see cell 4, 3 in Table 5b). The 

positive causality from gold to silver returns may be explained by the similarities of  the two 

metals in their uses.  This includes the standard uses of precious metals such as jewellery and 

of course other applications. Another link between these metals’ demand characteristics is 

the fact that they may both be used as a reserve currency, although this is the case for gold 

far more than it is for silver.  Silver is considered in these circumstances when gold is 
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deemed to be too dear.  In supply, both metals are mined and undergo similar processes 

but again, silver is more abundant, hence its significantly lower price. 

For  the  mapped  mean  equation   results,  there  was  also  positive  causality from gold to 

silver returns (see cell 4,3).  Given that both  metals  share  a position as reserve currencies  

and as instruments to hedge currencies  (Wang  et al. (2010), and  Beckmann  et al. (2014)) 

this  relationship might  be expected.   It  is also evident that both are subject to similar 

demand characteristics (although to different degrees)  as  they  are  exposed  to  demand  

and  supplies  from  mining, f inancial markets, commercial  uses  and  industrial  

applications (these  applications are much  more prominent for platinum).  Beckmann  et 

al.  (2014) support Wang  et al. (2010)  in  their  f i ndings  and  the  initial  premise  that 

gold is traditionally used  as a hedging  tool in portfolios  to protect investors  against  

sudden  movements  in stock prices.  Even though this approach is market specific and the 

models used vary significantly from study to study, it is supported by the f i ndings of 

Wang et al.  (2010) and the results of our study also complement their findings. 

The volatilities o f  platinum and silver returns affect n eg a t i v e  tha t  of gold returns 

(see cells 3, 2 and 3, 4 in Table 5b).  That is, negative volatility spillovers also exist from 

platinum to gold, which as we analysed earlier are linked in more ways than one .  Platinum 

as an industrial metal and due to its more absolute demand characteristic, its volatility 

may lead that of gold negatively.  Platinum has a huge industrial application and as a 

result, is heavily subject to demand and supply shocks from a single source which can 

explain its volatility.  Given platinum’s links to gold in its uses, its volatility might 

(negatively) spill over into this market too, commercially and f i nancially. 

In the case of the negative spillovers from silver returns to gold returns, the phenomenon 

seen may simply be due to the lag associated with the markets. It was explained earlier 

that gold is considered a very efficient market (Kristoufek et al. 2013) with respect to number 

of buyers and sellers and volumes.  This is true to a much lesser extent for silver and may be 

the overriding factor causing the negative volatility spillover in the results. Another factor that 

might cause this phenomenon may simply be the fact that gold is used in hedging and as a 

reserve currency.  This may also be the case for silver, but to a far lesser extent. 
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 C P G 
C 

P 

x ErM :-   

x 

 

G  Vo:-   x 

 

 

Table 5.3.  Unidirectional Effects 

Bivariate Models and Unmapped 

Data: Return (Re), Volatility (Vo) 

spillovers and Error Correction (Er) 

effects. 

                                                                                 S 

 

 

VoM : -   

  S             Er: -         ReM  : +     x   

Note:  C, P,  G and  S denote  Copper, Platinum, 

Gold and  Silver respectively The  variables  in 

each column  are the independent  variables. 

-(+):  the effect is negative (positive) 

The subscript M indicates that the effect holds for the 

mapped data as well. 

 

 

5.7 Conclusion 

 

Much of the concluding remarks have been detailed in the discussion however the key findings 

of this chapter are that many of the relationships found, whether they were volatility spillovers, 

shock spillovers or mean effects, changed when unmapped and mapped data were employed. 

This shows that the transformation of the data and accounting for roll, even if roll or basis values 

are small (as they tend to be in the metals sector), has a significant enough impact on the data 

that relationships found with unmapped data, do not appear when the mapped data set is 

considered. It may therefore be concluded that the unmapped data and artificial price-jumps 

which exist within them, mislead the models into finding relationships which do not really exist 

in the real-life traded time series.  
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5.8 TABLES 

 

Bivariate Metals: 

 

 

 Table  5.4.  The  estimated  biavriate  cross  effects  of  the  conditional  mean  

(ij ).   

Unmapped                                                Mapped              

  RC,t            RP,t               RG,t             RS,t                RC,t            RP,t               RG,t                    RS,t   

RC,t                                                                                                       -0:075b
 

(0:037) 

RP,t                                          0:097 a     0:059 a

 

RG,t                   -0:058b
 

                                                               (0:023) 

(0:031) (0:014)

RS,t                    -0:081b       0:101 a                                                           0:099 a

                                                               (0:040) (0:027) (0:028)

 

Note:  RC,t , RP,t , RG,t ; RS,t indicate  copper,  platinum, gold, and silver returns, 

respectively.  The variables  in each column are the independent variables,  while those in 

each row are the dependent variables  in the corresponding  regression.  For example, the 

coefficient in the row labelled RG,t and in the column labelled RP,t indicates  the impact  

of the RP,t on RG,t . Robust s t a nd a rd  errors are reported in brackets. 

a and b  indicate  significance at the 1% and 5% levels, respectively. 
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 Table  5.5.  The  estimated  bivariate  error  correction  terms  in  the  

conditional  mean  (ii ).   

Unmapped                                                            Mapped 

      RC,t            RP,t       RG,t            RS,t                     RC,t            RP,t       RG,t                        RS,t   

RC,t 

RP,t      -0:808a                                     -0:289c                -0:759a

 

                     

RGt 

        

(0:317) (0:151) (0:396)

  RS,t    

Note:  RC,t , RP,t , RG,t ; RS,t indicate  copper,  platinum, gold, and silver returns, 

respectively.    The variables in each column are the dependent variables in the 

corresponding regression .  For example, the coefficient in the column labelled RC,t 

and in the row labelled RP,t indicates  the adjustment of RC,t to RP,t when the 

system is shocked away from the equilibrium.  Robust s tandard  errors are reported 

in brackets. 

a and c  indicate  significance at the 1% and 10% levels, respectively.
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 Table  5.6.  The  estimated  bivariate  cross  effects  of  the  conditional  variance  

(ij ). 

Unmapped                                              Mapped           

  RC,t          RP,t             RG,t             RS,t                  RC,t          RP,t            RG,t                        RS,t   

RC,t                     0:020 a                      0:006 b

                                                             (0:008) (0:002)

RP,t                                        0:044 b                                      0:006 b

                                                                                 (0:019) (0:003)

RG,t                     0:022 b                              0:015 a                                                                 0:016 a

                                                              (0:010) (0:005) (0:006)

  RS,t   

Note:  RC,t , RP,t , RG,t ; RS,t indicate  copper,  platinum, gold, and silver returns, 

respectively.  The variables  in each column are the independent variables,  while those 

in each row are the dependent variables  in the corresponding  regression.  For example, 

the coefficient in the row labelled RG,t and in the column labelled RP,t indicates  the 

impact  of RP,t on RG,t . Robust  standard errors are reported in brackets. 

a , b  and c  indicate  significance at the 1%, 5% and 10% levels, respectively. 

 

 Table  5.7.  The  estimated  bivariate  cross  effects  of  the  conditional  variance  

(bij ).   

Unmapped                                                  Mapped        

      RC;t                RP;t               RG;t               RS;t                      RC;t              RP;t             RG;t               RS;t   

RC;t                                                  0:058 a                                                0:036 b       0:061 a      0:010 a

                                                                                           (0:020) (0:018) (0:022) (0:004)

                     RP;t                                                                                                                                       0:041 c                                     

                                                                                                                                                                                   (0:024) 

RG;t    - 0:003c          -0:030b                                 -0:016a              -0:004b                                               -0:016a

                                                (0:002) (0:014) (0:005) (0:001) (0:006)

  RS;t   

Note:  See notes of Table 3. 
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5.9 ADDITIONAL TABLES 

Table 5.8. Summary of  descriptive statistics. 

 

 Unmapped 

     RC,t              RP,t              RG,t              RS,t   

Mapped 

     RC,t              RP,t              RG,t              RS,t   

Mean 0:026        0:023        0:067        0:056 0:019        0:030        0:064    0:053     

St.  Dev 2:244        1:681        1:363        2:509 2:360        1:666        1:420    2:643     

Skewness -0:132      -0:738      -0:100   -0:803     -0:135      -0:754    -0:084   -0:775     

Ex.  
Kurtosis 

JB Q(5) Q2 

(5) 

5:300        7:102        6:456        8:172 

309:9a        1098:8a        692:9a        1695:2a
 

26:76a        16:382a         5:307        1:816 

494:7a         299:5a         122:2a         77:38a
 

5:233        7:337        6:579     8:255    

292:4a        1218:8a        742:3a        1735:3a
 

24:68a         20:97a           5:575        1:777 

492:9a         258:2a         131:9a         80:71a
 

Note:  RC,t , RP,t , RG,t ; RS,t indicate  copper,  platinum, gold, and silver returns, respectively; 

JB is the Jarque-Bera test for normality; Q(5)and Q2 (5) are respectively  the Ljung-Box  test of significance of 
autocorrelations of five lags in the returns and squared  returns. 

a indicates  significance at the 1% level. 

 

 

Table  5.9.  The  estimated  bivariate  own  effects  of  the  conditional  variance  (ii ) 

Unmapped                                              Mapped              

    RC,t             RP,t             RG,t             RS,t                  RC,t             RP,t             RG,t                           RS,t   

RC,t                          0:077 a     0:036 a     0:101 a                           0:076 a     0:036 a               0:101 a

                                                                  (0:022) (0:009) (0:034) (0:021) (0:010) (0:034)

RP,t      0:057 a                      0:042 a     0:098 a          0:072 a                      0:042 a               0:103 a

                                               (0:012) (0:010) (0:017) (0:013) (0:011) (0:020)

RG,t      0:054 a     0:066 a                      0:137 a          0:056 a     0:076 a                                0:143 a

                                               (0:014) (0:018) (0:026) (0:014) (0:021) (0:028)

RS,t      0:060 a     0:080 a     0:036 a                           0:058 a     0:081 a     0:036 a

                                               (0:014) (0:014) (0:009) (0:016) (0:016) (0:009)

Note:  RC,t , RP,t , RG,t ; RS,t indicate  copper,  platinum, gold, and silver returns, respectively. 

The variables  in each column are the dependent variables  in the corresponding  regression.  For 

example, the coefficient in the column labelled RC,t and in the row labelled RS,t indicates  the 

own effect  of RC,t when the counterpart variable  is RS,t . Robust s t and a rd  errors are reported 

in brackets.a  indicates  significance at the 1% level. 
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 Table 5.10.  The  estimated  bivariate  own  effects  of  the  conditional  variance  (bii ). 

  

Unmapped                                            Mapped           

    RC,t             RP,t             RG,t             RS,t                  RC,t             RP,t             RG,t             RS,t   

RC,t                          0:902 a     0:964 a     0:865 a                           0:898 a     0:964 a     0:869 a

                                                                  (0:028) (0:013) (0:044) (0:026) (0:012) (0:043)

RP,t      0:916 a                      0:958 a     0:872 a          0:887 a                      0:948 a     0:866 a

                                               (0:014) (0:017) (0:024) (0:018) (0:013) (0:026)

RG,t      0:916 a     0:896 a                      0:835 a          0:913 a     0:889 a                      0:837 a

                                               (0:018) (0:025) (0:029) (0:019) (0:031) (0:027)

RS,t      0:919 a     0:903 a     0:946 a                           0:919 a     0:902 a     0:945 a

                                               (0:019) (0:017) (0:009) 

 

 

(0:020) (0:018) (0:010)
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Concluding Remarks 

 

In conclusion, it is clear that the AOM/RAP and PSI metric evaluated in Chapter 1 is a far 

more effective and representative metric for trading algorithm performance for back-tested 

systems. Along with this, it was also shown that diversification is an effective way to reduce 

market exposure and reduce risk when utilising such trading algorithms. The metrics 

developed could be used as the basis for optimisation by attempting to maximise their 

values when constructing a portfolio.  

From Chapter 2 the main conclusions that can be drawn include that altering the roll day of 

price data used to optimise a trading algorithm can greatly impact the performance 

characteristics of the algorithm, while also impacting mean PnL returns and coefficients of 

variation. It is apparent also that altering roll day in trading algorithms will not impact 

standard deviation significantly and this was clear throughout the analysis across all sectors. 

Overall however, the results support the initial theory that altering roll day of price data 

used to optimise a trading algorithm can impact the trading algorithm’s performance criteria 

among other characteristics. The results supported the theory more so for certain 

instruments than others but the properties of each instrument could be used to explain these 

differences, being absolute ADV (liquidity/volume), FND and storage costs.   

From Chapter 3, it can be concluded that the differences between mapped and unmapped 

time series can be significant depending on the commodity due to the roll/basis being 

accounted for in the mapped series. Despite the effect being more significant in some 

commodities than others, the impact of mapping the data sets always influences the time 

series in some way and results in different ‘best-matching’ models (whether they are 

econometric or algorithmic). This means trading algorithms will have alternate optimal 

parameters and hence alternate trade decisions.    

From Chapter 4, it is evident that there  is indeed  a systemic  relationship between  the  

two metals  in spite  of their  very different  applications and  values.   The volatilities 

o f  copper and gold are inherently linked, as evidenced by the findings of the analyses 

carried out. it is clear that there are significant factors that cause the prices of copper 

and those of gold to behave as they do and this may be explored in the context of other 

commodities too.   The  impact  of the financial  crisis on the  other  metals  whose 

characteristics differ significantly  by virtue  of mixed  demand  characteristics and  
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lower  volumes  may  show  that the  metals  sector  has  far more to offer in terms  of 

these  relationships. Further to this, the utilisation and comparison of mapped and 

unmapped time series show how results can differ especially for other commodities 

whose basis can be more significant.  

Chapter 5 also looks at the metals sector more closely and concludes that there are even 

more complex relationships between the main traded metals despite some being categorised 

as precious and others being categorised as industrial. The relationships are looked at more 

closely by considering volatility spillovers, bidirectional and unidirectional effects and of 

course the effect on these relationships of utilising mapped as oppose to unmapped data 

where a significant concluding remark was the existence of relationships with unmapped 

data, and the absence of these relationships when mapped data is considered. This shows 

that the unmapped data which does not account for rolls, can mislead the models into 

finding relationships that do not really exist in the traded time series.      
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Future Work 

 

The research could be extended to other commodities futures and a comparison to spot 

prices could be done. In addition, improvements could be made to the metrics to increase 

the number of significant parameters and improve accuracy. This could include a parameter 

with a memory function that ceases all trading when desired levels of gains have been made. 

The parameter sensitivity index could also be improved by including more parameters 

although visually displaying this will be difficult due to the number of dimensions, making 

this difficult to comprehend.  

The volumes data could be analysed in more detail where the deceleration or proportional 

drops of volumes from day to day could be matched to the optimised day of roll. This will 

give a more quantitative measure of the way contract volumes link to the day of roll and 

evaluating when the optimal roll day should be.   

Another area where the research could be extended is to consider the other commodity 

sectors using the methodology of Chapters 4 and 5 to see if the larger rolls associated with 

the other commodities do indeed result in spillovers which vary between the mapped and 

umapped data sets.    

The significance of using mapped time series will have a significant amount of applications 

throughout the science of time series analysis of commodities futures. This is however only 

if the study is focused on considering the true traded time series (which represents the real-

life trading prices used by financial institutions). And this is indeed realistic because the 

contract volume data proves it to be.  
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