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Abstract

Quiescent consistency is a notion of correctness for a concurrent
object that gives meaning to the object’s behaviours in quiescent
states, i.e., states in which none of the object’s operations are being
executed. The condition enables greater flexibility in object design
by allowing more behaviours to be admitted, which in turn allows
the algorithms implementing quiescent consistent objects to be
more efficient (when executed in a multithreaded environment).

Quiescent consistency of an implementation object is defined
in terms of a corresponding abstract specification. This gives rise
to two important verification questions: membership (checking
whether a behaviour of the implementation is allowed by the spec-
ification) and correctness (checking whether all behaviours of the
implementation are allowed by the specification). In this paper,
we consider the membership and correctness conditions for qui-
escent consistency, as well as a restricted form that assumes an
upper limit on the number of events between two quiescent states.
We show that the membership problem for unrestricted quiescent
consistency is NP-complete and that the correctness problem is de-
cidable, coONEXPTIME-hard, and in EXPSPACE. For the restricted
form, we show that membership is in PTIME, while correctness is
PSPACE-complete.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; F.1.2 [Com-
putation by Abstract Devices]: Modes of Computation—Parallelism
and concurrency; F.3.1 [Logics and Meanings of Programs]):
Specifying and Verifying and Reasoning about Programs—Logics
of programs; H.2.4 [Systems]: Concurrency

General Terms  Algorithms, Theory, Verification

Keywords Quiescent consistency, concurrent objects, decidabil-
ity, Mazurkiewicz Trace Theory

1. Introduction

Due to the possibility of interference, correctness of a concurrent
object cannot be stated in terms of pre/post conditions of its op-
erations. Instead, correctness is expressed in terms of a history of
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operation invocation/response events, capturing the interaction be-
tween a concurrent object and its clients. In particular, a concur-
rent object’s history (with potentially overlapping operation calls)
is mapped to a sequential history of its specification (with no over-
lapping operation calls).

1. A history of a concurrent object is considered to be correct
with respect to a correctness condition C' iff the history can be
mapped to a valid (sequential) history of the object’s specifica-
tion and the mapping satisfies C.

2. A concurrent object satisfies C'iff each of its histories is correct
with respect to C.

These two notions give rise to two distinct verification problems:
the former gives rise to a membership problem, and the latter a
correctness problem. In this paper, we study the decidability and
complexity of both membership and correctness for systems in
which the condition C above is quiescent consistency [11, 35].

Quiescent consistency is derived from a similar notion in repli-
cated databases [16], that gives meaning to an object in its qui-
escent states, i.e., states in which none of the object’s operations
are executing. Quiescent consistency allows events of a concurrent
object’s history between two consecutive quiescent states to be re-
ordered (when mapping to a sequential history) but disallows re-
orderings for events separated by a quiescent state [11, 15, 35].
For both membership and correctness, we consider two versions of
the problem: an unrestricted version with no limits between two
quiescent states and a restricted version that assumes a fixed upper
bound on the number of events between two quiescent states.

This paper’s main contributions are as follows. (/) We describe
how quiescent consistency can be expressed using independence
from Mazurkiewicz Trace Theory [32] and encoded as finite au-
tomata. This extends the methodology developed by Alur et al. [4],
and demonstrates the generality of their approach. (2) Prove that
deciding membership for quiescent consistency is (i) NP-complete
if the number of events between two quiescent states is unrestricted,
and (ii) polynomial (with respect to the size of the input run) if the
number of events between two quiescent states has a fixed upper
limit. (3) Prove that correctness for quiescent consistency is (i) de-
cidable, coNEXPTIME-hard, and in EXPSPACE in the unrestricted
case, and (ii) PSPACE-complete in the restricted case.

The restricted version of quiescent consistency has previously
not been studied. Our complexity results for it provide motivation
for giving the condition greater consideration, e.g., an implementa-
tion could use a combination of scheduling algorithms, “try-once”
designs and exponential backoff schemes [3] to guarantee that qui-
escence will eventually occur within a fixed finite number of steps;
the benefit being that the membership and correctness problems are
both simpler than the unrestricted case.

Sequential bottlenecks within a concurrent implementation
must be reduced to improve performance [19, 35], and using a
relaxed notion of correctness has been shown to lead to greater
performance [6, 7, 37] because it allows greater flexibility in an



object’s design. Shavit has argued for quiescent consistency as the
condition for the multi-core age [35] as it allows reorderings that
are not allowed by other conditions in the literature. For example,
unlike linearizability [15, 23, 24], it allows the effects of operation
calls to be reordered even if the calls do not overlap in a concurrent
history; unlike sequential consistency [15, 23, 31], it allows the ef-
fects of operation calls by the same process to be reordered. When
necessary, an algorithm designer is able to choose from a range
of other conditions to provide other types of guarantees, e.g., by
taking quantitative aspects into account [2, 28], altering the spec-
ification of the object at hand [22], or taking buffers into account
in the presence of relaxed memory [12, 15, 36]. Consideration of
decidability and complexity questions for these other known cor-
rectness conditions lies outside the scope of this paper.

This paper is organised as follows. In Section 2, we motivate
the problem using a diffracting queue example, and describe the
formal background of finite automata and independence used in
the rest of the paper. Section 3 develops a finite automata encoding
of quiescent consistency as well as the membership and correctness
problems. Our results for the membership and correctness problems
are given in Sections 4 and 5, respectively.

2. Preliminaries

This section motivates quiescent consistency with a queue example
(Section 2.1), then gives a finite automata formalisation for study-
ing the problem (Section 2.2). We will use a notion of independence
from Mazurkiewicz Trace Theory (see Section 2.3).

2.1 A quiescent consistent queue

We consider the quiescent consistent queue from [11] (see Figs. 1
and 2). The queue is based on the architecture of diffracting trees,
which uses the following principle (adapted from counting net-
works [5]). Elements called balancers are arranged in a binary tree,
which may have arbitrary depth. Each balancer contains one bit,
which determines the direction in which the tree is traversed; a bal-
ancer value of O causes a traversal up and a value 1 causes a traver-
sal down. The leaves of the tree point to a concurrent data structure.
Operations on the tree start at the root of the tree and traverse the
tree based on the balancer values. Each traversal is coupled with
a bit flip, so that the next traversal occurs along the other branch.
Upon reaching a leaf, the process performs a corresponding opera-
tion on the data structure at the leaf.

Our example consists of two 1-level balancers eb and db used
by enqueue and dequeue operations, respectively. Both operations
share the two queues at the leaves (see Fig. 1). Pseudocode for the
queue is given in Fig. 2. Both operations are implemented using
a non-blocking atomic CAS (Compare-And-Swap) operation that
compares the stored local value e with the shared variable v and
updates v to a new value n if the values of v and e are still equal:

CAS(v,e,n) ==
atomic{ if v = e
then v := n; return true
else return false}

Both operations read their corresponding bit and try to flip it using a
CAS. If they succeed, they perform an enqgueue Enq or dequeue Deq
on the queue of their local bit. For simplicity, we assume that Enq
and Deq are atomic operations (though they could be implemented
by any linearizable operation). The queue only satisfies quiescent
consistency if Deq is blocking, i.e., waits until an element is found
in the queue. The diffracting queue is not quiescent consistent if
Deq returns on empty (see [11] for details).

Example 1. The following is a possible history for the blocking
concurrent queue implementation:

enqueue%{ eb 0 queue[O]‘
1
0

dequeue»{ db 1 queue[l]‘

Figure 1. A 1-level diffracting queue with two queues

Init: eb, db = 0

enqueue (el:T) dequeue

El: do 1b := eb; D1: do 1b := db;

E2: until CAS(eb,1b,1-1b) D2: until CAS(db,1lb,1-1b)
E3: Enq(queue[lb],el) D3: return Deq(queue[1b])

Figure 2. Enqueue and dequeue of the diffraction queue

hi = Dy Ey(a) Es(b) Da(b) Ds(a) Es(c) D1 (c)

where D1 denotes a dequeue invocation by process 1, 131 (¢)
denotes a dequeue by process 1 that returns c, Fo (/g) denotes an
enqueue invocation by process 2 with input a, and E3 denoﬁzs the
corresponding return event. We also assume E;(j) = E;(j) E; and
Di(j) = Di Di(j).

Operations D1, E3, Ds, and Eg act on queue [0], whereas Es
and Dy act on queue[1]. There is not much concurrency in hi.
Only the first dequeue is running concurrently with the rest of the
operations. However, due to the first dequeue invocation, h1 is only
quiescent at the beginning and end.

History hy is not linearizable [24] because the dequeues by pro-
cesses 4 and 5 violate the FIFO order of enqueues by processes 2
and 3, and linearizability does not allow non-overlapping opera-
tions to be reordered (see [11] for details). However, hi is qui-
escent consistent because quiescent consistency allows operations
between two consecutive quiescent states to be reordered even if
they do not overlap. This means that it may be matched with the
following sequential history, which satisfies a specification of a se-
quential queue data structure.

hz = Ed(b) E2 (a) D4(b) D5(CL) E(,(C) Dl(C) O

2.2 Problem representation

In this section, we present our formal framework. The behaviour of
a system will be a sequence of events. Given a set A we will let
A™ denote the set of finite sequences of elements of Aande ¢ A
denote the empty sequence. Like Alur et al. [4], the specification
and implementation are both represented by finite automata, whose
alphabet is a set of events recording the invocation/response of an
operation.

Definition 1. A finite automaton (FA) is a tuple (M, mo, 3, ¢, M)
in which M is the finite set of states, mo € M is the initial state,
Y. is the finite alphabet, t : M x X <> M is the transition relation
and My C M is the set of final states.

Given a finite automaton M = (M, mo, Z,t, Mt), m’ € t(m,e)
is interpreted as “it is possible for M to move from state m to
state m’ via event €” and this defines the transition (m,e,m’). A
path of M is a sequence p = (mu,e1,ma), (M2, ez, m3),...,
(mu, ex, mi+1) of consecutive transitions. The path p has starting
state start(p) = ma, ending state end(p) = mp+1 and label
label(p) = e1ez ... ex. We let Paths(M) denote the set of paths
of M. The FA M defines the regular language L(M) of labels of
paths that start in m and end in final states. More formally,

p € Paths(M)A }

L(M) = {label(p) start(p) = mo A end(p) € M




Given run o € L(M) we let M[o] denote the set of states of M
that are ending states of paths in Paths(M) that have label o.

If M represents either a specification or implementation, 3
(the alphabet of M) is the set of events, and so, the language
L(M) denotes the possible sequences of events (called runs). In
this setting, each o € L(M) of an automaton representing an
object is also a possible history of the object.

We will use S = (S5, s0,%,ts,S5+) to denote the FA that
represents the specification and Q = (Q, qo, X, tg, Q+) to denote
the FA that represents the implementation. We will typically use
s1, ... for the names of states of S and q1, ... for the names of
states of Q. If S is the FA for a sequential queue object, it will
generates runs such as ho in Example 1, and if Q is the FA for the
implementation in Fig. 2, then it will generate runs such as h;. In
this paper we will be interested in two different problems.

1. Deciding whether a run ¢ € L(Q) of the implementation is
allowed by the specification S. (membership)

2. Deciding whether all runs of Q are allowed by the specification
S and thus whether Q is a correct implementation of S.

(correctness)

Note that using FA forces examples such as Section 2.1 to be stati-
cally bounded. However, this is not different from other treatments
in the literature (e.g., for linearizability [4]). Moreover, the lower
bounds still hold for unbounded data structures and it is possible
that our results can be extended to context-free languages.

To model concurrent operations, we assume that an operation
has separate invoke and return events. We will use natural numbers
N to identify processes and make the following assumption, which
is a common restriction used in the literature.

Assumption 1. The number of processes in the specification and
implementation is bounded.

This assumption is implicitly met by the fact that we use FA S
and Q. Others have considered infinite-state systems in the con-
text of linearizability [8]. Here, dropping Assumption 1 causes
the correctness problem for linearizability to become undecidable,
whereas linearizability with a bound on the number of processes is
decidable [4]. To recover decidability in the infinite case, one must
place restrictions on the algorithms under consideration, in partic-
ular, linearizability is EXPSPACE-complete for implementations
with “fixed” linearization points [8] (see [13, 23] for examples of
such implementations).

Each event in X is associated with a process, an operation, and
an input or output value. Like [4], our theory is data independent in
the sense that the input and output values are ignored. We simply
assume that the event sets of the specification and implementation
are equal, and hence, every input/output that is possible for an event
of the implementation is also possible for the specification. Given
process p, X.(p) denotes the set of events associated with p. We
write e — €’ to denote that e matches €', i.e., e is an invoke
event and ¢’ the corresponding response, which holds whenever
the process and operation corresponding to e and e’ are the same.
We let 7, (o) denote the run that restricts o to events of process p,
which is defined by

mp(e) =¢ mp(eo) = if e € X(p) then emp(0) else (o)
The empty run € is sequential. A non-empty run ¢ = eg...e€x 1S
sequential iff eg is an invoke event, for eacheveni < k, e; — e;41,
and if k is even, ey, is an invoke event. o is legal iff for each process
p, mp(0o) is sequential. Legality ensures that each process calls at
most one operation at a time. Furthermore, legality is prefix closed,
i.e., if o is legal, then all prefixes of ¢ are legal.

As is common in the literature, we make the following assump-
tion on each specification object, which essentially means that its
operations are atomic.

Assumption 2. The specification S is sequential (and hence legal).

Furthermore, as is common in the literature [4, 23, 24, 28],
we ignore the behaviour of clients that use the concurrent object
in question, but assume that each client process calls at most one
operation of the object it uses at a time (different client threads may
call concurrent operations). This is captured by Assumption 3.

Assumption 3. All runs of implementation Q are legal.

Example 2. Consider the history hy from Example 1. We have that
Dy — D1(c), E2(a) — Eo, etc. Furthermore, h1 is legal because
mp (T) is sequential for each process p. O

2.3 Independence

In this paper, we study quiescent consistency by using the concept
of independence from Mazurkiewicz Trace Theory [32]. Here, a
symmetric independence relation I C ¥ X X is used to define
equivalence classes of runs. If (e,e’) € I, then consecutive e and
¢’ within a run can be swapped. The independence relation defines a
partial commutation — some pairs of elements commute, but there
may be pairs that do not. This leads to an equivalence relation ~7,
where o ~; ¢’ iff run o can be transformed into ¢’ via a sequence
of rewrites of the form o1e e’ o2 —1 o1€’ eos for (e,e’) € I.

Example 3. For hy and hy in Example 1, if I = ¥ X X then
hi ~r ho. O

Given a run o we will let [o]; = {¢’ | ¢ —1 o’} denote
the set of runs that can be produced from o using zero or more
applications of the rewrite rules defined by 1. We will let £L; (M) =
UseL(M) [c]r denote the set of runs that can be formed from those
in M using rewrites based on /. We can now state membership and
correctness as stated in Section 2.2 more precisely as follows.

1. Deciding if o € L;(S) for a given o € L(Q).
2. Deciding if L(Q) C L(S).
N.B., the correctness problem is sometimes referred to as the model
checking problem. In the next section we explore how problems
associated with quiescent consistency can be expressed in this

manner, and will see that this requires the FA that represent the
specification and implementation to be slightly adapted.

(membership)

(correctness)

3. Quiescent consistency

In this section we define quiescent consistency and explore its
properties. In Section 3.1, we define quiescent runs and state a
number of properties that will be used in the rest of the paper,
then in Section 3.2, we present an adaptation of the FA from
the previous section to enable reasoning about membership and
correctness for quiescent consistency. In Section 3.3, we define
quiescent consistency, and state the membership and correctness
problems in terms of the adapted FA. Sections 4 and 5 then explore
these problems.

3.1 Quiescent runs

We first define quiescent runs and state some properties that we
use in the rest of this paper. If ¢ = oc1e02 and e is an invoca-
tion event, we say e is a pending invocation if for all ¢ € o2,
e /4 €. Arun o is quiescent if it does not contain any pend-
ing invocations. Thus, if a legal run is quiescent then there is a
one-to-one correspondence between invoke and response events. A
path P = (q07 €1, q1)> (q17 €2, Q2)> ceey (Qk—h €k, Qk) is quiescent
if label(p) is quiescent.



Example 4. Run hy in Example 1 is quiescent, but the run
hi Ev(z) D3 El is not because the invocation D3 is pending. Note
that quiescence does not guarantee legality, e.g., runs D, (&) and
Dy Dy Dy(€) Da(€) are both quiescent, but neither is legal. [0

The following result links quiescence and legality.

Proposition 1. Suppose 0 = o102 ... 0k is a legal and quiescent
run, such that each o; (for 1 < i < k) is a quiescent run. Then for
all1 < i <k, gy is legal.

Proof. Suppose o is a legal quiescent run and ¢ = 0102 ... 0%,
where each o is quiescent. If £ = 1 then we are done so assume
that k > 1. Let 0; for 1 < i < k be the first subsequence
that is not legal, i.e., there exists a process p such that 7,(o;) is
non-empty and not sequential. Because legality is prefix closed,
o' = o1...0,—1 must be legal. Moreover, for each process g,
mq(0’) is either empty, or a non-empty sequential run ending with
a return event. Thus for p, we have that 7, (0’ 7;) is not sequential,
which contradicts the assumption that o is legal. O

We say that o is end-to-end quiescent iff it is quiescent and all
non-empty proper prefixes of o are not quiescent. We write (o) to
denote o being end-to-end quiescent. For example, h; in Example 1
is end-to-end quiescent, and hg is quiescent but not end-to-end
quiescent. The next result states that a legal quiescent run can be
expressed as the concatenation of legal end-to-end quiescent runs.

Proposition 2. Suppose o is a legal quiescent run. Then o can be
written in the form o10s . . . ok such that each o; is a legal end-to-
end quiescent run.

Proof. 1f o is end-to-end quiescent, we are done. Otherwise, there
must exist o1 and o2, where 0 = o102, such that o, is legal and
end-to-end quiescent, and o3 is legal and quiescent. Because o2 is
quiescent, it is possible to inductively apply the construction above,
which completes the proof. O

3.2 Distinguishing quiescence

We now develop an extension to the FA in Section 2.2 to facili-
tate reasoning about quiescent consistency in an automata-theoretic
setting. Quiescent consistency is defined in terms of quiescent
runs and so we will consider the behaviour of the implementa-
tion/specification to be its quiescent runs. By Assumption 2, S is
sequential, and hence, distinguishing its quiescent states is straight-
forward. The following proposition gives a sufficient condition un-
der which it is possible to partition the state set of Q into quiescent
states and non-quiescent states.

Proposition 3. Suppose that every path of Q starting from qo is a
prefix of some a legal quiescent path of Q. If p is a quiescent path
of Q such that start(p) = qo and end(p) = q, then all paths of Q
starting from qo and ending in q are quiescent.

Proof. The proof is by contradiction. Assume that there exist p, p’
and ¢ such that paths p and p’ end at g, p is quiescent and p’ is
not quiescent. Since p’ can be completed to form a quiescent path,
there must be a path p”’ from g such that p’p”’ is quiescent. Further,
p"" must contain more responses than invokes. Thus, since p is
quiescent we can conclude that the path pp” from the initial state of
Q has more responses than invokes. This provides a contradiction
as required, since, by Assumption 3, all histories of Q are legal. [

Due to Proposition 3, it is straightforward to make the following
assumption on Q.

Assumption 4. A path of S (and Q) starting from the initial state
of S (and Q) is quiescent iff it ends in a final state of S (and Q).

Note that in the proof of Proposition 3, it might be necessary to
invoke a new operation in order to complete the non-quiescent path
p under consideration and reach a quiescent state. For example,
consider our diffraction queue in Section 2.1, where the dequeue
operation that blocks when the queue is empty. Suppose we have a
path p’ such that

label(p') = Dy Dy Es(x) Do(z) Es

It is not possible for p’ to reach a quiescent state by only completing
the pending invocations in label(p’) — the only pending invocation
D is blocked because the queue is empty. However, it is possible
to reach a quiescent state by following a path where a new enqueue
operation is invoked (by some process), and this new operation
along with the pending D; in label(p’) is completed by adding
matching returns. This observation does not invalidate our results,
which only require that we identify the quiescent states.

We now work towards a definition of allowable behaviours for
quiescent consistency (Section 3.3), stated in terms of an indepen-
dence relation (Section 2.3). We introduce a new event § ¢ X that
signifies quiescence and use the universal independence relation:

U=YxX%

which defines a partial commutation that allows all events different
from § in a run to commute. Thus, the alphabet of the FA we use
is extended to X5 = ¥ U {d}. Note that using U as the indepen-
dence relation means that matching invocations and responses of
the specification may also be reordered when checking both mem-
bership and correctness. However, as is standard in the literature,
we have assumed that all runs of the implementation are legal (As-
sumption 3), and hence, do not generate runs such that a response
precedes an invocation, i.e., commutations of a response that is fol-
lowed by a matching invocation will never be used.

We now consider how we should add § events to the FA S (rep-
resenting the specification) and Q (representing the implementa-
tion) by extending their transition relations, which results in au-
tomata S5 and Q.

First, consider the specification S. One option is to insist that
a ¢ is included in a run whenever a quiescent state is reached.
However, if we apply this approach to the specification, then the
runs of S will all be of the form deieidesexd . . ., i.e., arun o of
the implementation can only be equivalent to a run ¢’ of S under
the partial commutation defined by U if ¢ = o', which is not what
is intended under quiescent consistency. This is a result of applying
the restriction — that one can only reorder between instances
of quiescence — to runs of the (sequential) specification; this
restriction should only be applied to runs of the implementation.
Thus, we should not require a & to appear in a run of S whenever
a quiescent state is reached. Instead, we rewrite S to form an FA
S5 so that if s is a quiescent state of S (i.e., after each return event)
then there is a self-loop transition (s, d, s) in Ss. These are the only
transitions of Ss with label §. Thus, S5 allows the inclusion of §
whenever a run of S reaches a quiescent state.

Now consider the implementation Q. Here, we must insist that
there is a § in a run of Q whenever a quiescent state is reached,
therefore we rewrite Q to form an FA Qs such that if ¢ is a
quiescent state of Q then all transitions that leave ¢ in Qs have
label . These are the only transitions of Qs that have label §. In
particular, for each quiescent state ¢ of Q we simply add a new
state ¢s, make ¢s the initial state of all transitions of Q that leave
g, and add the transition (q, 9, gs). If ¢ is a final state of Q, i.e.,
q € Q4+, we will make g5 a final state of Qs instead of ¢. Overall,
we construct Qs such that we require the inclusion of § when Q
reaches a quiescent state.

The inclusion of ¢ in runs of S allows us to compare runs of S
and Q (once rewritten based on independence relation U).



Example 5. Returning to runs hy and ha in Example 1, there are
many possible 0 extensions of ha (which is a run of the specifica-
tion), for example:

h1 = 6 Es(b)  Ea(a) 6 Du(b) 6 Ds(a) 6 Es(c) d Dy(c) &
S, = 6 Es(b) Ea(a) § D4(b)  Ds(a) § Ee(c) Di(c) &
hS 5 = 6 Es(b) Ea(a) Da(b) Ds(a) Es(c) Di(c) &

In contrast, there is exactly one & extension of hi1, namely 6 hy 6. If
ho had been a run of the implementation, then the only § extension
of ha is h 1. O

In addition to adding § to the runs of S and Q, we must also
reason about runs with § removed. To this end, we define the
following projection

ms(e) =€ s (ec) = if e € X then ens (o) else ms (o)

Thus, for example s (6h15) = hq and m(hgl) = ho.

3.3 Allowable quiescent consistent behaviours

In this section we formalise what it means for a run of Q to be
allowed by S, stating this in terms of Q. Under quiescent con-
sistency, runs o and ¢’ are equivalent if they have the same (multi-
)sets of events between two consecutive occurrences of quiescence.
As a result, all elements in ¥ commute (we do not care about the
relative order of these events) but nothing commutes with 4.

Under quiescent consistency, a quiescent run o is allowed by
specification S if o can be rewritten to form a run of S by permut-
ing events between consecutive quiescent points. We thus obtain
the following definition.

Definition 2. Suppose 0 = 0102 ...0% is a legal quiescent run
and each o; is legal and end-to-end quiescent (N.B., by Proposi-
tion 2, it is always possible to write o in such a form). Then o is
allowed by S under quiescent consistency iff there exists a permu-
tation o ~yr o foreach 1 < i < ksuchthat oo . ..o}, € L(S).

We now define what it means forarun o € L(Qs) to be allowed
by a specification S under quiescent consistency.

Definition 3. Run o € L(Q;) is allowed by S under quiescent
consistency if ws (o) is allowed by S under quiescent consistency.

We say o is a legal permutation of a legal run o iff 0 ~y o’
and o’ is legal.

Proposition 4. If o is legal and quiescent, then any legal permuta-
tion of o is quiescent.

We can now express the membership and correctness problems
in terms of Qs and Ss, instead of between Q and S as done in
Section 2.3.

Lemma 1 (Membership). Suppose o € L(Qs). Then o is allowed
by S under quiescent consistency iff o € Ly (Ss).

Proof. Suppose o € L(Qs). By Proposition 2 and the construction
of Qs, we have 0 = 0016 . . . 010 such that the o; do not include §
(i.e., each o; is end-to-end quiescent).

First assume that o is allowed by S under quiescent consistency.
By Definition 3, o102 ... oy is allowed by S, and hence, by Defi-
nition 2, S has arun 005 . . . 0}, such that o} is a legal permutation
of o; (for all 1 < ¢ < k). Furthermore, S is initially quiescent
and by Proposition 4, each o7 is quiescent, therefore Ss has the run
o' = 6010056 ... 60},8. By definition, ¢ € Ly (Ss) as required.

Now assume 0 € Ly (Ss). Then, L(Ss) contains a run ¢’ =
daidahd ... do},6 for some o1, ..., o} such that o} is a permuta-
tion of o; (all 1 < i < k). We therefore have that L(S) contains a
run o . ..o}, such that o} is a permutation of o; (all 1 < i < k),
and hence, have that o is allowed by S as required. O

Lemma 2 (Correctness). Under quiescent consistency, Q is a
correct implementation of S iff L(Qs) C Lu(Ss).

Proof. By Lemma 1 and the definition of quiescent consistency.
O

4. The Membership Problem

In this section we explore the following problem: given a specifi-
cation S and run o € L(Qs), do we have that o € Ly (Ss)? We
show that this question is in general NP-complete (Section 4.1), but
by assuming an upper bound between occurrences of two quiescent
states, the question can be solved in polynomial time (Section 4.2).

4.1 Unrestricted quiescent consistency

We first establish that the membership problem for quiescent con-
sistency is indeed in NP.

Lemma 3. The membership problem for quiescent consistency is
in NP.

Proof. Given a run ¢ € L(Qs) and a specification S, a non-
deterministic Turing machine can solve the membership problem
of deciding whether o € L¢7(Ss) as follows. First, the Turing ma-
chine guesses a run ¢’ of S with the same length as o. The Turing
machine then guesses a permutation o’ of & that is consistent with
the independence relation U. Finally, the Turing machine checks
whether ¢’/ = ¢”. This process takes polynomial time and hence,
since a non-deterministic Turing machine can solve the member-
ship problem in polynomial time, the problem is in NP. O

We now prove that this problem is NP-hard by showing how
instances of the one-in-three SAT problem can be reduced to it. An
instance of the one-in-three SAT problem is defined by boolean
variables v1, ..., v, and clauses C1,...,C, where each clause
is the disjunction of three literals (a literal is either a boolean
variable or the negation of a boolean variable). The one-in-three
SAT problem is to decide whether there is an assignment to the
boolean variables such that each clause contains exactly one true
literal and is known to be NP-complete [34].!

The construction in the proof of the result below takes an in-
stance of the one-in-three SAT problem and constructs a specifica-
tion S that has k£ 4 1 ‘main’ states so, . . ., s, and for boolean vari-
able v; it has two paths from s;_1 to s;: one path piT has a matching
invocation/response pair e;, €; for every clause C; that contains lit-
eral v; and the other path p” has a matching invocation/response
pair e;, e; for every clause C; that contains literal —v;. The rel-
ative order of the pairs of events in p! and p! will not matter.
A path from sg to sgy1 is of the form pflpr e pf’“ for some
By, ..., By € {T, F}. Furthermore, the number of times that the
events e; and €; appear in the label of the path is the number of
literals in clause C; that evaluate to true under this assignment of
values to v1, ..., vg. As a result, such a path contains each e; and
e exactly once iff the assignment of B; to v; (all 1 < ¢ < k) leads
to exactly one literal in C; evaluating to true. Thus, there is a path
from go to ¢ that contains each e; and €; exactly once iff there is
a solution to this instance of the one-in-three SAT problem.

Example 6. Suppose we have four boolean variables v, . . .,va
and clauses C1 = v1 V vg V —w3, Co = v1 V —w2 V 14, and
C3 = w2 V vs V —wy. This leads to the FA shown in Figure 3.
In this, for example, the label of plT is e1e1eaes because C1 and
Cs both have literal v1, and the label of pg is esey since Cs is
the only clause that contains literal —vs. Consider now the path

!'Note that the one-in-three SAT problem differs slightly from the more
well-known 3SAT problem.



L1 = label(p{) = e1e1e2€2 L3 = label(pg:) = e3e3

Lo = label(pg) = ej€1eze3 Ly = label(p}:) = egey

Ly Lo

o @S

label(pf):e label(pz) eg€a label(ps) e1€e1 label(p4 —egé€s

Figure 3. Finite automaton for Example 6

p?pgpSpr, which has label e1€1ezexe2e2e1€1e3€3. The label of
this path tells us that if we assign true to v1 and false to each
of v2,vs,va then clause C contains two true literals (since ey
appears twice), Ca contains two true literals (since ez appears
twice), and C'3 contains one true literal (since es appears once).
Thus, this assignment is not a solution to this instance of the one-
in-three SAT problem because more than one clause of C1 and Co
evaluates to true. O

Note that we are not asking whether the clauses can be satisfied,
but whether they can be satisfied in a way that makes exactly
one literal of each true. This is equivalent to asking whether we
can make the clauses true if they are stated in terms of isolating
disjunction V, where

V(1,025 -5 00) = Vcion (Vi AN 705)
Example 7. Checking the assignment in Example 6, is equiva-
lent to checking for a satisfying assignment to the clauses C, =
\/(’Ul, V2, —|’U3) Cz = V(U1, —|’Ug,’U4) and Cg = \/(1)2, U3, —\U4)
where, for example, ¢ = (v1 A —w2 Awsg) V (mv1 Ave Avz) V
(ﬁ’l)l A v A ﬁv3). O

We now prove NP-hardness of the membership problem. The
proof essentially uses run o = e1€; . .. e,€, and the FA described
above. Additional events are included to allow these events to be
reordered. In particular, we add an initial invocation e and a final
response €y in the run and so the implementation is only quiescent
in its initial state and at the end of the run. This allows the events
of the run to be reordered; without the initial invocation and final
response we could only compare o with runs of the specification in
which the pairs e;, €; are met in the order found in o.

Lemma 4. The membership problem for quiescent consistency is
NP-hard.

Proof. Assume that we are given an instance of the one-in-three
SAT problem defined by boolean variables vy, ..., vy and clauses

Ci,...,Cpn. We define a specification with invocation events
€0, €1, .. ., €n, e and corresponding return events €g, €1, . . . , €n, €.

Define a finite automaton specification S as follows. The state set
of S5 includes states so, 1, - . ., Sk and s, s’ with s being the initial
state. For all 1 < ¢ < k there are two paths from s;—; to s;: path
p¥ has invocation/response pair e, €; for every clause C; that con-
tains literal v;; and path p!” has invocation/response pair e;, €; for
every clause C; that contains literal —v;. Thus, a path from so to
sy is of the form pP1 pP2 . .pkB’c for some By, ..., B, € {T, F}.
From the initial state s the path to so has run egép and from sy, the
path to the final state s’ has run e €.

Consider the run o = ege1€y . .. enéne € ey. We prove that o is
in Ly (S5) iff there is a solution to the instance of the one-in-three
SAT problem defined by v1, . .., v and C1, . . ., Cy,. First note that
if o € Ly(Ss) then the corresponding run of Ss must end at state
s’ since o contains the events e and €. In addition, o is end-to-
end quiescent and so we simply require that some permutation of
o isin L(Ss). Thus, o € Ly (Ss) iff Ss has a path from sg to si

whose label o contains each e; and €; exactly once for 1 < i < n.
Funhermore o1 must be the label of a path of Ss that is of the form
p=pPiple .. pkB". Thus, o € Ly (Ss) iff there is an assignment
v1 = Bi,...,vx = Bg such that each clause C1, . . ., C,, contains
exactly one true literal. This is the case iff there is a solution to this
instance of the one-in-three SAT problem. The result now follows
from the one-in-three SAT problem being NP-complete and the
construction of Ss and o taking polynomial time. O

The following brings together these results.

Theorem 1. The membership problem for quiescent consistency is
NP-complete.

4.2 Upper bound for restricted quiescent consistency

We now consider a restricted version of quiescent consistency that
assumes an upper limit on the number of events between two qui-
escent states. It turns out that the membership problem under this
assumption is polynomial with respect to the size of the specifi-
cation S and the length of o. To prove this, we convert the mem-
bership problem into the problem of deciding whether two finite
automata define a common word, which is a problem that can be
solved in polynomial time. In particular, for a givenrun o € L(Q),
we construct a finite automaton M /o] (see Definition 5) such that
o € Ly (Ss) iff L(M[o]) N L(S) is non-empty.

For any run o, we define a finite automaton My [o] that accepts
any permutation of the events in o. The states of My [o] are multi-
sets of events from o and so in the following { and } are used for
multi-sets. We use & for multi-set union and P () for the set of
subsets of multi-set 3.

Definition 4. Given run o = e1...ex, we let My[o| be the
FA (P(%),0,%3,t,{X}) where ¥ = {e1,...,ex} and for all
T, T' € P(X), we have (T, e, T') € tiff T' = T W {e}.

Note that the construction My [o] is generic, but we only use it
in situations where o is legal and end-to-end quiescent.

Next, we define M|o] for runs 0 € L(Qs). We use Ly - Ly to
denote the language product of languages L1 and Lo and for FA A
and B, we let A- B be the FA such that L(A-B) = L(A)-L(B).In
what follows, A only has one final state (A is My [o] for some o),
and hence, we can construct A - B by adding an empty transition
from the final state of A to the initial state of B.

Definition 5. For run o = 6010020 ... 0010 such that £(o;) for
eachl < i <k, welet M[o] = Mul[o1]- Muloz]-...- Mulow].

The next result uses Definition 5 to convert the membership
problem into a problem of deciding whether two FA accept a
common word. Its proof is clear from the definitions.

Proposition 5. For any o € L(Qs), we have o € Luy(Ss) iff
L(M]o]) N L(S) # 0.

‘We now arrive at our main result for this section.

Theorem 2. Suppose that there exists an upper limit b € N, such
that for each o € L(Qs) there are at most b events between two
occurrences of 0 in o. Then the membership problem for quiescent
consistency is in PTIME.

Proof. By Assumption 4, ¢ is quiescent, and by Proposition 2 and
the definition of Qs, o can be written as ¢ = 8010020 ...00L0,
where each o; is legal and end-to-end quiescent.

For each o;, the size of My[o;] is exponential in terms of
the length of o;. If we assume an upper limit b on the number
of events between two occurrences of quiescence then the size of
My |o;] is polynomial (it is exponential in terms of b). Therefore,
M o] is of polynomial size (the sum of the sizes of the My [o;])



and the result follows from it being possible to decide whether
L(M{o]) N L(S) # 0 in time that is polynomial in terms of the
sizes of S and M[o]. O

5. The correctness problem

For the correctness problem, we might directly compare L(Q) and
L(S), i.e., requires that L(Q) C L(S) holds. However, this lim-
its the potential for concurrency — Q would essentially be se-
quential. The effect of using a relaxed notions of correctness (such
as quiescent consistency) is that it allows L(Q) to be compared
with L(S) using some notion of observational equivalence. There-
fore, for quiescent consistency, we explore the following prob-
lem: given an implementation Q and specification S, do we have
that L(Qs5) C Ly (Ss5)? We show that this question is decidable,
coNEXPTIME-hard and in EXPSPACE.

A language is a rational trace language if it is defined by a finite
automaton and a symmetric independence relation. Decidability of
the correctness problem is proved by using the following result
from trace theory [1].

Lemma 5. Suppose A and B are FA with set of events ¥ and
I C ¥ x X is a symmetric independence relation. Then, the
inclusion L1(A) C L1(B) is decidable iff I is transitive.

The following is an immediate consequence.

Theorem 3. L(Qs) C Ly (Ss) is decidable.

Proof. The independence relation U = X x X is transitive. This
result thus follows from Lemma 5 and the fact that L(Qs) C
Lu(Ss) iff Lu(Qs) € Lu(Ss). O

We now explore the complexity of the correctness problem,
which is equivalent to the complexity of deciding whether the
inclusion Ly(Qs) € Ly (Ss) holds. We show that this problem
is coNEXPTIME-hard by considering the problem of deciding
inclusion of the set of Parikh images of regular languages. For the
rest of this section we assume that A and B are FA.

5.1 Lower bound for unrestricted quiescent consistency

Given alphabet ¥ = {ey1,...,ex} and o € X, the Parikh image
of o is the tuple (ni,...,nx) such that o contains exactly n;
instances of e; (all 1 < 7 < k). We use PI(A) to denote the
set of Parikh images of the runs in L(.A) and the inclusion problem
for Parikh images is to decide whether PI(.A) C PI(B). Deciding
inclusion for the Parikh images of regular languages is known to be
coNEXPTIME-hard [20]

To use the coNEXPTIME-hard result for Parikh images, we
construct FA A" and B’ from A and B such that PI(A) C PI(B)
iff Lu(A5) C Lu(Bs), where A5 (and Bj) extends A’ (resp. B)
with § events and transitions as defined in Section 3.2. Suppose ¥ is
the alphabet of both .4 and B. For each x € ¥ we define an invoke
event e, and corresponding response event €,. We also include an
additional invoke event e and corresponding response € that do not
correspond to any =z € ¥ and hence, the resulting event set is:

F={e,etU{e, |z eX}uU{e, |z X}

To construct FA A’, we initialise the state set of A’ to the state set
of A and the event set of A’ to I'. We then construct the initial state,
transitions, and final states of A’ as follows.

1. For the initial state qo of A, add a new state q(, ¢ A to A’, make
qo the initial state of A’, and add the transition (g, e, qo) to A’.

2. For each transition t = (¢, , ¢') in A, add transitions (g, €z, q¢)
and (g, €s,q’') in A’, where q; ¢ A, then add ¢, to A’.

3. Add a state g ¢ A to A’, make this the only final state, and
from every final state ¢ of .4, add the transition (g, €, gr).

We have the following relationship between L(A) and L(A").

Proposition 6.
172 ... Tk € L(A) iff € €s,€ny €apCay - - - €x, €xy € € L(A").

One important property of A’ is that every o € L(A") is end-to-
end quiescent. Thus, under quiescent consistency, o is allowed by
the specification of A’ iff some permutation of ¢ is in the language
defined by the specification.

FA B’ is constructed as follows. Initialise the state set of B’ to
the state set of B and the event set of B’ to I, then set the initial
state of B3 as the initial state of B’. Then perform the following.

1. For each transition t = (g, z, ¢’) in B, add transitions (g, €4, q+)
and (q¢, €5, q’) to B’ for a new state ¢; ¢ B’, then add ¢; to B'.

2. Add new states ¢’ and gr to B’, then for every final state ¢ of
B add transitions (q, e, ¢"') and (¢”, €, qr) to B’. Finally, make
qr the only final state of B’.

We have the following relationship between L() and L(B').

Proposition 7.
z1T2 ... Tk € L(B) iff €z, €2, €00€as - - - €x) €€ € L(B).

The next lemma links inclusion of Parikh images for A and B
to inclusion of the languages of A5 and Bj under independence
relation U'.

Lemma 6. PI(A) C PI(B) iff Lu(A}) C Lo (B)).

Proof. First assume PI(.A) C PI(B). Suppose that o € Ly (Aj);
it is sufficient to prove that o € Ly (Bj). By Proposition 6 there
is some w172 ...z, € L(A) such that o0 ~y Jo’§, where o' =
€ €xq €xq €xo€ay - . . Exy Ex, €. Since PI(A) C PI(B) we have that
L(B) contains a permutation y ...y of z1...zs. By Proposi-
tion 7, €y, €y, €yy€yy - - - €y, €y €€ € L(B') and so we also have
that 60”6 € Ly (Bs) where 0" = ey, €y,€y,€ys . . . €y, €y, €E.
As y1...yx is a permutation of z1 ...z, 0’ ~y o. Since
30”8 € Ly(B5) and ¢” ~y o' we have that §o'6 € Ly (Bj).
Thus, since o = do”’§, we have that o € Ly (Bj) as required.
Now assume Ly (Aj) C Ly(Bj). Suppose that v € PI(A)
and so there is some ¢’ = z1 ...z in L(A) with Parikh Image ~.
By Proposition 6, €€z, €z, €x,€uy - - - €z, €z, € € L(A’). Thus,
§€€s,CryCryCuy .- €, €2,€0 € Lyu(Af). Since Ly (Aj) C
Lu(Bs), deer, €z, €00€ay - .- € €x,€0 € Luy(Bj). By con-
struction, this implies that ey, €y, €yy€ys - - - €y, Ey €€ € L(B)
for some permutation y; ...y of x1...xr. By Proposition 7 we
therefore know that y1...yx € L(B). Finally, since y1 ...yx
and 1 ...z are permutations of one another they have the same
Parikh Image and so v € PI(B) as required. O

We therefore have the following result, which holds by Lem-
ma 6 and inclusion of Parikh images being coNEXPTIME-hard.

Theorem 4. The correctness problem for quiescent consistency is
coNEXPTIME-hard.

5.2 Upper bound for unrestricted quiescent consistency

We now investigate the upper bounds on the complexity of deciding
correctness of quiescent consistency and show that the problem is
in EXPSPACE. This proof is much more involved than the lower
bound result as it is necessary to first derive an algorithm for
checking correctness quiescent consistency (see Algorithm 1) and
derive an upper bound on its running time.

We start by introducing some new notation. For m € M and
FA M = (M,mo,%,t, M), we let m << M denote the FA
(M, m, %, t, M) formed by replacing the initial state of M by



m. Furthermore, for M’ C M (recalling that (o) denotes that o
is end-to-end quiescent), we define:

Zp(m) ={o € Lu(maM) | (o)}
Zp(M') = U, penr Zam(m)

Thus, Zaq(m) is the set of end-to-end quiescent runs that start in
state m of M. The following is immediate from this definition.

Proposition 8. If Q is a correct implementation of S with respect
to quiescent consistency and qo and so are the initial states of Q
and S respectively then Zg(qo) C Zs(so).

We will use an implicit powerset construction when reasoning
about quiescent consistency. Given states m, m’ € M of M, sets
of states M1, M2 C M and run o, we define some further notation:

m —Zsp m' iff 3p € Paths(M) . start(p) = m A
end(p) = m’ Alabel(p) € [o]u

M1 == Ma iff Vp € Paths(M) .
start(p) € M1 A
label(p) € [o]lu = end(p) € M>

Thus, m —Z ¢« m’ holds iff there is some path in M with labels in
[o]u from state m to state m’. Furthermore, M; == 01 Mo holds
iff every path of M starting from a state in My with label in [o]v
ends in a state of Ms.

If Q is not a correct implementation of S with respect to quies-
cent consistency then there must be a quiescent run o that demon-
strates this. We will use the following result, which shows that there
is some o = 01 ...0k+1 (Where £(o;)) that is a counter-example
for correctness of quiescent consistency such that o441 is the por-
tion of o that is in ©Q but not in S (under independence relation U)
and k is bounded by |Q| - 2.

Proposition 9. Q is not a correct implementation of S under
quiescent consistency iff there exists some run ¢ = 01...0k+1
for end-to-end quiescent o1,...,0k+1 and corresponding pairs
(g0, So0), (¢1,51), .., (qr, Sk) € Q x 2° such that So = {so},
qi—1 i)g qi and S;—1 =i s S (all 1 <1 < k) such that:

1. op41 € ZQ(Qk) and o411 & Zs(Sk), and
2. k< Q|29

Proof. The existence of such a o demonstrates that Q is not a
correct implementation of S under quiescent consistency and so
it is sufficient to prove the left-to-right direction. We therefore
assume that Q is not a correct implementation of S under quiescent
consistency. Thus, there exists a quiescent run o that is in L(Q)
but not in Ly (S). Assume that we have a shortest such run o,
0 = 01...0k41 for end-to-end quiescent o1, ...,0%41. Since
o is in L(Q) but not in Ly (S), by the minimality of o we must
have that ox+1 € Zo(qk) and oxy1 ¢ Zs(Sk) and so the first
condition holds. Further, by the minimality of o we must have that
(@i, Si) # (g, 55), all 0 < i < j < k; otherwise we can remove
0i...0j—1 from o to obtain a shorter run that is in Ly (Q) but not
in L7 (S). But, there are |Q| - 2!°! possible pairs and so the second
condition, k < |Q| - 2'°!, must hold. O

Using Proposition 9, we develop Algorithm 1, which defines a
non-deterministic Turing Machine that solves the problem of de-
ciding correctness. At each iteration, the non-deterministic Turing
Machine first checks whether Zg(g.) € Zs(Se); if not, it has
demonstrated that Q is not a correct implementation of S (the first
condition of Proposition 9). If this condition holds then the non-
deterministic Turing Machine increments the counter ¢ and guesses
a next pair (gc, Sc). It then checks that there is some o such that

Gee1 —50 ge and Se_1 =25 S.. If there is such a o, then
the process can continue, otherwise the result is inconclusive. The
bound on c ensures that the algorithm terminates as long as we can
decide the conditions contained in the if statements (we explore this
below).

Algorithm 1 Deciding correctness for quiescent consistency

c=0,80 = {s0}, Qo = {qo}
while ¢ < |Q| - 2/°! do
if Zg(qc) g Zs (SC) then
Return Fail
end if
c=c+l
Choose some (gc, S) € Q x 2°
if Zo. such that ge—1 —% o ¢c and S._1 =55 S. then
Return Ok
end if
end while

If a non-deterministic Turing Machine operates as above then it
will return Fail if there is some sequence of choices that leads to
Fail being returned. The following is thus immediate from Propo-
sition 9.

Proposition 10. If a non-deterministic Turing Machine applies
Algorithm 1 to Q and S then it returns Fail iff Q is not a correct
implementation of S with respect to quiescent consistency.

We now consider the two problems encoded in the conditions
of Algorithm 1: deciding whether Zg(g.) Z Zs(S.); and decid-
ing whether there exists a run o, such that g._1 —%¢ g. and
Se—1 =225 Se.

We start with problem of deciding whether Zo(qc) € Zs(Se).
This involves checking whether the Parikh Image of one regular
language is (not) contained in the Parikh Image of another regular
language. It is known that this problem can be solved in non-
deterministic exponential time (NEXPTIME) [25].

Proposition 11. Iz is possible to decide whether Zo (q.) € Zs(S.)
in NEXPTIME.

The remaining problem we need to decide, for states ge—1, qc
of Q and sets S._1, S. of states of S, is whether there exists some
o that can (i) take Q from g.—1 to g. and (ii) take S from the set
Sc—1 of states to the set S. of states.

We introduce some further notation. Form € M and M’ C M,
we let m << M > M’ denote the FA (M, m, X, t, M) formed
by making m the initial state of M and M’ the final states. We
introduce the following (assuming all states in M’ and M" are
quiescent).

Zm(m, M) = {oc € Ly(maM>M)|&0)}
ZM(M,aMH) = UmeM’ ZM(va”)

That is, Za(m, M"') is the set of end-to-end quiescent runs of M
that start in state m and end at a state in M". We use shorthand
Zy(m,m') for Zag(m, {m'}) (similarly Z g (M',m")).

Using this notation, condition (i) above may be formalised
as the predicate 0. € Zg(ge—1,¢c). Condition (ii) above re-
quires that o. can take S to all states in S. (and so that 0. €
MN.es, Zs(Sc—1,5)) and cannot take S from Sc—1 to any state
outside of S. (and so that o, & Use(s\sc) Zs(Sc—1,5)). The
negation of the overall condition thus reduces to the following.

Ao. € (A\B)NnC 1

where A = (\,cg Zs(Sc-1,5), B = U,e(s\s.) £5(Se-1,5),
and C = Zo(ge-1, ge)-



Using some straightforward set manipulation, (1) is equal to
AN C C B. Thus, the problem is reduced to deciding whether
the intersection of a set of Parikh Images of regular languages is
contained within the Parikh Image of another regular language. We
also note that if we use L to represent the complement of a language
L then ANC C Bifand only if C C BU A, and by de Morgan’s
Law ) i A; is equivalent to | 4 A;. Condition (1) therefore becomes

ZQ(qc—h qe) - -
(Use<5\sc> 28(567178)) U (Usesc Z5(Se-1, 8))

The Parikh Image of a regular language can be represented by
a semi-linear set that contains exponentially many terms [30]. In
addition, the complement of a semi-linear set can be represented
by polynomially many terms [27]. Thus, all of Zo(ge—1,4c),
Uses\s.) Zs(Se—1, ), and U, g, Zs(Se-1,5) can be repre-
sented using exponentially many terms (linear sets). Further, the
problem of deciding whether one semi-linear set is contained in
another is in Eg [26]2 and so is in PSPACE. The overall problem is
thus in EXPSPACE (since there are exponentially many terms).

Proposition 12. [t is possible to decide whether there exists run o
such that qc—1 &Q qc and S._1 =& s S, in EXPSPACE.

We can now bring these results together.

Theorem 5. The correctness problem for quiescent consistency is
in EXPSPACE.

Proof. We know that a non-deterministic Turing Machine can use
Algorithm 1 to solve the problem. By Propositions 11 and 12 the
conditions of the if statements can be solved in NEXPTIME and
EXPSPACE. Observe also that the storage required for the algo-
rithm, beyond determining the conditions in the if statements, is
polynomial since the algorithm only has to store the current val-
ues of g., S. and ¢, the latter taking log(|Q|2'°!) space. Since
NEXPTIME is contained in EXPSPACE, we therefore have that
a non-deterministic Turing Machine can solve the problem in non-
deterministic EXPSPACE (NEXPSPACE). The result now follows
from Savitch’s theorem [33], which implies that NEXPSPACE =
EXPSPACE. O

5.3 Complexity for restricted quiescent consistency

We now consider the case where there is a limit b on the lengths of
subsequences of runs of Q between two occurrences of quiescence.

Proposition 13. If there is a bound on the length of end-to-end
quiescent runs in Q and S, then is possible to decide whether
Zo(qc) € Zs(S.) in PSPACE.

Proof. A nondeterministic Turing Machine can solve this problem
in PSPACE as follows. First, it guesses a run ¢ whose length is at
most the upper bound. It then checks that o is end-to-end quiescent.
It then checks whether 0 € Zg(q.) and whether o € Zs(S.); we
know that these checks can be performed in polynomial time since
this is an instance of the restricted membership problem. Finally, it
returns failure if and only if o € Zg(gc) and o &€ Zs(Se). O

Proposition 14. Let us suppose that there is a bound on the length
of end-to-end quiescent runs in Q and S. It is possible to de-
cide whether there exists run o such that ge—1 —o q. and
Se—1 =%s S. in PSPACE.

Proof. A nondeterministic Turing Machine can solve this problem
in PSPACE as follows. First, it guesses a run ¢ whose length is at

2 Cited in [25].

most the upper bound and checks that o is end-to-end quiescent. It
then checks whether

(oS ZQ(qcflch) and o € ZS(SC71756) \ ZS(Scfla S \ SC)

We know that the first check (solving the membership problem for
bounded quiescent consistency) can be performed in polynomial
time. The second check can be solved by deciding whether o €
Zs(Sc—1,Sc) and whether o € Zs(Sc—1, .5\ Sc) and, again, these
checks can be performed in polynomial time. The nondeterministic
Turing Machine returns True iff it finds that 0 € Zo(ge—1, qc),
RS Zs(Scfl,Sc),anda QZs(Scfl,S\Sc). O

Theorem 6. The correctness problem for bounded quiescent con-
sistency is PSPACE-complete.

Proof. From Propositions 13 and 14 we know that the two condi-
tions in Algorithm 1 can be decided in PSPACE. Thus, a nondeter-
ministic Turing Machine can apply Algorithm 1 using polynomial
space. We therefore have that the problem is in PSPACE.

We now show that the problem is PSPACE-hard. If the imple-
mentation is sequential then correctness corresponds exactly to the
inclusion of the regular languages recognised by Q and S. The re-
sult thus follows from it being possible to represent any instance of
regular language inclusion in this way and regular language inclu-
sion being PSPACE-hard [29].

6. Conclusions

This paper studied complexity questions for membership and cor-
rectness of quiescent consistency, which is a correctness condition
for concurrent objects. Like Alur et al.’s results for linearizabil-
ity [4], the study is based on notions of independence from trace
theory. Our main results are that the membership problem for the
unbounded case of quiescent consistency is NP-complete, but that
the bounded case has polynomial complexity. Correctness, on the
other hand, is in EXPSPACE and is coNEXPTIME-hard and for the
bounded case it is PSPACE-complete.

The notion of quiescent consistency we have considered is
based on the definition by Derrick et al. [11], which is a formali-
sation of Shavit’s definition [35]. This definition allows operation
calls by the same process to be reordered, i.e., sequential consis-
tency [31] is not necessarily preserved. The absence of sequential
consistency in quiescent consistency makes the notion of “concur-
rent operations” imprecise. Two operations on the same thread may
be treated as being concurrent if they occur between the same qui-
escent points, e.g., in history ~1 (Example 1) the operations by pro-
cesses 3-6 could be executed by process 2 (bounding program-level
concurrency to two processes), yet deciding quiescent consistency
for this history is as hard as deciding quiescent consistency for h;.

Variations of quiescent consistency have also been developed.
We have studied membership and correctness for a stronger version
of quiescent consistency that preserves sequential consistency [14].
Here, bounding the number of processes changes the complexity of
the problem. Others have considered quantitative strengthenings of
quiescent consistency [28], which includes quantitative relaxations
of linearizability [2, 22]. It is straightforward to show that the mem-
bership problem for this quantitative version is NP-complete, but
decidability of correctness is not yet known. Versions of quiescent
consistency suited to relaxed-memory architectures have also been
developed [15, 36], where the notion of a quiescent state incorpo-
rates pending write operations stored in local buffers. Consideration
of these different variations is a task for future work.

The problem of deciding membership and correctness for sev-
eral other correctness conditions have been studied. Correctness for
sequentially consistency is undecidable, even when the number of
concurrent processes is bounded [4]. Serializability (a consistency



condition used in databases) is in PSPACE and linearizability is in
EXPSPACE when the number of concurrent processes is bounded
[17]. For an unbounded number of processes, Bouajjani et al. [8]
have shown that serializability is EXPSPACE-complete, while de-
cidability for linearizability varies depending on the type of lin-
earization points of the operations. In particular, for operations with
fixed linearization points deciding correctness of linearizability is
EXPSPACE-complete, but in the general case linearizability is un-
decidable.

Bouajjani et al. have developed characterisations of algorithm
designs that enable reduction of the linearizability problem to a
(simpler) state reachability problem [9]. Other work [10] has con-
sidered (under) approximations of history inclusion with the aim
of solving the observational refinement problem for concurrent ob-
jects [18, 21] directly. Linking quiescent consistency to the state
reachability problem and under approximations for observational
refinement are both topics for future work.
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