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Abstract

The structural performance of thin shells is largely dictated by their curvature

and the degree of lateral restraint at the shell edges. The present study is

an attempt to theoretically investigate the influence of such factors on nonlin-

ear thermo-mechanical response of shallow shells with single and double cur-

vatures. For the mechanical loading, a transverse load is assumed and for the

thermal loading, a through-depth thermal gradient is applied on the shallow

shell. Two types of boundary conditions are considered for the shallow shell,

both of which constrain transverse deflections of the shell but allow rotations

parallel to the shell boundaries to be free. One of the boundary conditions

permits lateral translation (laterally unrestrained) and the other one does not

(laterally restrained). The fundamental nonlinear equations of shallow shells

are derived based on the quasi-static conditions. The validity and reliability

of the proposed approach is assessed by calculating several numerical examples

for shallow shells under various mechanical and thermal loads. It is found that

the proposed formulation, in particular, can adequately capture the nonlinear

behaviour of laterally restrained shallow shells.
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1. Introduction

It is well known that shells can deliver useful load-carrying capacity by their

curvatures, thereby effectively resisting the external applied loads with optimum

use of material. This makes them practical and efficient structural components

and of importance in the design of light weight thin-walled structures. Shell

components are widely used in buildings (typically as roof structures), bridges,

aerospace vehicles, ship hulls, pressure vessels and car bodies. Such components

are often subjected to different thermo-mechanical loadings. Research in this

area has been often focused towards developing efficient shell elements using

numerical methods (e.g. see [1–9]).

However, nonlinear thermo-mechanical behaviour of shells has also been

studied using adequately accurate analytical and semi-analytical methods that

take into account key features and many complexities of shell problems. Woo

and Meguid [10] studied the nonlinear analysis of simply supported (laterally

unrestrained) shallow spherical shells with functionally graded material prop-

erties subjected to transverse mechanical loads and through-depth temperature

fields. The governing equations were established based on the von Kármán

theory for large transverse deflections and were solved using series solutions.

It was revealed that considering thermo-mechanical coupling effects in the shell

formulation can affect the nonlinear response of the shell. Nie [11] presented the

nonlinear analysis of an imperfect shallow spherical shell on a Pasternak foun-

dation subjected to uniform loads. The shell was assumed elastically restrained

against rotational, transverse and in-plane displacements. The asymptotic it-

eration method was applied to obtain an analytical expression for the external

load and the central deflection of the shell. Numerical results indicated that

imperfections cause a drop in the load-bearing capacity of the shell. Heuer and

Ziegler [12] studied the thermal snap-through and snap-buckling of symmetri-

cally layered shallow shells with polygonal planforms and laterally restrained

boundary conditions (BCs) using a two degrees of freedom model derived from

a Ritz-Galerkin approximation.
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Amabili [13] investigated the large amplitude of the response of simply sup-

ported doubly curved shallow shells with rectangular planform to static and

dynamic loads. He used the Donnell and Novozhilov shell theories retaining

in-plane inertia to obtain geometrically nonlinear shell responses. Duc and

Van Tung [14] studied the nonlinear response of functionally graded cylindrical

panels to uniform lateral pressure and uniform and through-depth tempera-

ture gradients by an analytical approach associated with a Galerkin method.

Formulation was based on the classical shell theory, considering both the von

Kármán-Donnell type of kinematic nonlinearity and initial geometrical imper-

fection. The numerical results revealed that in-plane restraint and temperature

conditions play major roles in dictating the response of the functionally graded

cylindrical panels. Recently, the nonlinear buckling behaviour of homogeneous

and non-homogeneous orthotropic thin-walled truncated conical shells under

axial load was presented by Sofiyev and Kuruoglu [15]. The stability and com-

patibility equations of the problem were derived using the large deformation

theory with the von Kármán-Donnell type of kinematic nonlinearity. It was

reported that for long truncated conical shells, the effect of non-homogeneity on

the nonlinear axial buckling load is negligible.

Although there is no doubt that numerical methods provide greater flexibil-

ity for the analysis of shell structures when compared to analytical methods,

research on improving analytical methods is vital when computational effort

(mostly in terms of analyst effort) is a concern, or when an alternative ap-

proach is required to validate and corroborate numerical results. This is partic-

ularly very useful for benchmarking finite element codes developed for thermo-

mechanical simulations of shell elements [16]. Moreover, accurate mathematical

models could be used to:

(i) obtain rapid solutions of realistic thermo-mechanical analyses of simple

shell structures as part of Monte Carlo methods to account for uncertainty

in loads and structural form;

(ii) understand the mathematical underpinnings of engineering concepts such
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as “thermal snap-through” in shallow shells under large displacements;

(iii) provide advanced basis functions for hybrid-type computational approaches.

Motivated by this opportunity, in the present work, a nonlinear mathemat-

ical model is developed to analyse the large deflections of shallow shells with

various types of curvature under thermo-mechanical loading conditions. The

shallow shell is under transverse mechanical loading while being subjected to

through-depth thermal gradients. Two types of BCs are considered in the anal-

ysis: edges laterally unrestrained in translation, henceforth referred to as the

“laterally unrestrained” BC; and edges restrained against translation, hence-

forth referred to as the “laterally restrained” BC. In both BCs, transverse de-

flections of the shallow shell are restrained but rotations parallel to the shell

boundaries are unrestrained. The compatibility and equilibrium equations are

solved for the steady-state problem using appropriate series functions. A notable

feature of the proposed approach is its good performance and its relatively rapid

convergence for shallow shells with the laterally restrained BC. In the case of

shallow shells with the laterally unrestrained BC, this is, however, only achieved

for ‘extremely shallow shells’ (see Figure 1). The reason for poor agreement for

this BC is the significant change in curvature which is not able to be captured

by the formulation.

2. Fundamental theory

Consider a shallow shell under non-uniform through-depth thermal gradi-

ents while it is being subjected to a transverse mechanical load. In line with the

assumptions of the shallow shell theory, it is assumed that the rise of the shell

is relatively small in comparison to its other dimensions (see Figure 1 which

is adapted from Donnell [17] and illustrates schematically the ranges of appli-

cability of various shell theories for modelling cylindrical shells). In the case

of large deformations, the strain-displacement relations of a shallow shell with

accounting for the stretching of the middle surface of the shell are expressed by
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Figure 1: Hierarchy of various shell theories as function of their applicable ranges of subtended

angle. The figure is adapted from Donnell [17]. A shallow shell typically has a rise of less than

one-fifth of the smallest dimension of its planform. In the case of ‘extremely shallow shells’,

the minimum radius of curvature of the shell is more than two times larger than its maximum

planform dimension [18].

(1a)εxx =
∂u

∂x
+

1

2

(
∂w
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+
w

Rx
− z ∂

2w

∂x2

(1b)εyy =
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+
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+
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− z ∂
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+
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+
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+

2w

Rxy
− 2z

∂2w
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where u, v and w are the displacements of the middle surface of the shell in x,

y and z-directions, respectively, Rxy represents the twist radius of the middle

surface of the shell, and Rx and Ry are the radii of curvature of the undeformed

shell as illustrated in Figure 2 for shallow hyperbolic paraboloidal shell (with

double positive and negative curvature), shallow spherical shell (with double

curvature) and shallow cylindrical shell (with single curvature). For a shell with

thickness of h, elastic modulus of E, Poisson’s ratio of ν, the strain components

including thermal effects can be rearranged as

(2a)εxx =
1

Eh

(
Nxx − νNyy +Nθ

)
(2b)εyy =

1

Eh

(
Nyy − νNxx +Nθ

)
(2c)γxy =

2(1 + ν)

Eh
Nxy
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The thermal stress resultant Nθ is given by

Nθ = Eα

∫ h/2

−h/2
θ(z) dz (3)

where α is the coefficient of thermal expansion and θ describes temperature

changes across the shell thickness. The stress resultants can be expressed in

terms of a stress function as follows

(4a)Nxx = h
∂2F

∂y2

(4b)Nyy = h
∂2F

∂x2

(4c)Nxy = −h ∂
2F

∂x∂y

It must be noted that the stress function F is an unknown parameter that

is determined based on the BCs assumed at the supports of the shallow shell.

3. Governing equations

Under quasi-static conditions, the nonlinear response of a thermo-mechanically

loaded shell can be determined by solving compatibility and equilibrium equa-

tions simultaneously. These are a system of two coupled nonlinear equations.

The compatibility equation relates the internal membrane forces caused by large

deformations to the transverse displacement of the shell. It can be obtained by
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Figure 2: Various types of curvature for shallow shells with rectangular planform. The curvi-

linear coordinates on the middle surface of the shells are replaced with a Cartesian coordinate

system due to a comparatively small rise above the shells’ rectangular planform. It must be

noted that for untwisted shallow shells the radius Rxy is infinite.
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taking the second derivatives of the strains and combining the resulting expres-

sions as follows:

∂2εxx
∂y2

+
∂2εyy
∂x2

− ∂
2γxy
∂x∂y

=

(
∂2w

∂x∂y

)2

− ∂
2w

∂x2
∂2w

∂y2
+

1

Ry

∂2w

∂x2
+

1

Rx

∂2w

∂y2
− 2

Rxy

∂2w

∂x∂y
(5)

Substituting equations (1) and (4) in the above equation, gives us the com-

patibility equation of the problem to be solved in terms of stress function and

transverse deflection as follows:

(6)

∂4F

∂x4
+ 2

∂4F

∂x2∂y2
+
∂4F

∂y4

− E

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2
+

1

Rx

∂2w

∂y2
+

1

Ry

∂2w

∂x2
− 2

Rxy

∂2w

∂x∂y

]

+
1

h

(
∂2Nθ

∂x2
+
∂2Nθ

∂y2

)
= 0

The equilibrium equation, however, relates the axial forces to the transverse

displacement of the shell as follows

(7)

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
+Nxx

∂2w

∂x2
+Nyy

∂2w

∂y2

+ 2Nxy
∂2w

∂x∂y
−
(
Nxx
Rx

+
Nyy
Ry

+
2Nxy
Rxy

)
+ q(x, y) = 0

where the moment resultants are

(8a)Mxx = −D
(
∂2w

∂x2
+ ν

∂2w

∂y2

)
−Mθ

(8b)Myy = −D
(
ν
∂2w

∂x2
+
∂2w

∂y2

)
−Mθ

(8c)Mxy = −D(1− ν)
∂2w

∂x∂y

and the thermal moment resultant Mθ is given by

Mθ =
Eα

1− ν

∫ h/2

−h/2
θ(z)z dz (9)
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After substitution from Eqs. (8a)-(8c) into Eq. (7), the equilibrium equation of

the shallow shell can be derived as follows

(10)

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
− h

[
∂2F

∂y2

(
∂2w

∂x2
− 1

Rx

)
+
∂2F

∂x2

(
∂2w

∂y2
− 1

Ry

)
− 2

∂2F

∂x∂y

(
∂2w

∂x∂y
− 1

Rxy

)]
+

(
∂2Mθ

∂x2
+
∂2Mθ

∂y2

)
− q(x, y) = 0

where D is the flexural rigidity of the shell (=Eh3/12(1− ν2)), q is the applied

mechanical load. The most common way of solving equations (6) and (10) is

to use trigonometric functions. In terms of how the support conditions are

specified, appropriate series solutions might be considered.

4. Solution method

In this study, two common types of support conditions are considered for

the shallow shell:

1. Edges laterally unrestrained thereby permitting lateral translation, while

transverse translations are restrained along the shell edges and rotations

about the edge axes are free.

2. Edges laterally restrained where all translations are restricted along the

shell edges while the rotation about the edge axes remains free.

These BCs are reasonable limiting cases bracketing the conditions that may

be found in real shell structures (except for cases where rotational restraints are

important). The transverse displacement can be expanded in a double Fourier

series as follows:

w(x, y) =

∞∑
m=1

∞∑
n=1

wmnSmn (11)

where Smn = sin(mπx/a) sin(nπy/b). The thermal resultants may also be taken

in the following forms: Nθ(x, y)

Mθ(x, y)

 =

∞∑
m=1

∞∑
n=1

 Nθ
mn

Mθ
mn

Smn (12)
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where the coefficients are calculated by performing the Fourier integration as

follows:  Nθ
mn

Mθ
mn

 =
4 [−1 + (−1)m] [−1 + (−1)n]

mnπ2

 Nθ

Mθ

 (13)

In a similar way, different transverse mechanical loading conditions can be

considered by expressing the traction q in a double Fourier series as

q(x, y) =

∞∑
m=1

∞∑
n=1

qmnSmn (14)

where the coefficient of the series is given by

qmn =
4

ab

∫ a

0

∫ b

0

q(x, y) sin
mπx

a
sin

nπy

b
dydx (15)

The following loading conditions are then obtained:

For uniform loading of magnitude q:

qmn =
4 [−1 + (−1)m] [−1 + (−1)n]

mnπ2
q (16)

For sinusoidal loading of magnitude q where m = n = 1:

qmn = q (17)

For point load of q applied at coordinates (x0,y0):

qmn =
4q0
ab

sin
mπx0
a

sin
nπy0
b

(18)

For the Airy stress function, an expression satisfying the stress-free edges

case (for the laterally unrestrained BC) and undeformed edges case (for the

laterally restrained BC) may then be taken as

F (x, y) =
Pxy

2

2bh
+
Pyx

2

2ah
+

∞∑
m=1

∞∑
n=1

FmnSmn (19)

where Px and Py are the total loads applied on the sides x = 0, a and y =

0, b, respectively. For the laterally unrestrained BC, such loads are zero. In

contrast, if the support conditions corresponding to the laterally restrained BC
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are imposed, then the following expressions can be obtained from the elongation

of the shell in the x direction

(20)

∫ a

0

∂u

∂x
dx =

∫ a

0

[
1

E

(
∂2F

∂y2
− ν ∂

2F

∂x2

)
− 1

2

(
∂w

∂x

)2

− w

Rx
+
Nθ

Eh

]
dx

and in the y direction

(21)

∫ b

0

∂v

∂y
dy =

∫ b

0

[
1

E

(
∂2F

∂x2
− ν ∂

2F

∂y2

)
− 1

2

(
∂w

∂y

)2

− w

Ry
+
Nθ

Eh

]
dy

where setting the edge displacements to zero after substituting Eqs. (11) and

(19) into Eqs. (20) and (21), and performing the integration, yields the following

expressions for Px

(22)
Px =

Ebhπ2w2
mn

8(1− ν2)

(
m2

a2
+ ν

n2

b2

)
+
hn [−1 + (−1)m] [−1 + (−1)n]Fmn

mb

+
Eah [−1 + (−1)m] [−1 + (−1)n]wmn

mnπ2(1− ν2)

(
1

Rx
+

ν

Ry

)
− bNθ

(1− ν)

and Py

(23)
Py =

Eahπ2w2
mn

8(1− ν2)

(
ν
m2

a2
+
n2

b2

)
+
hm [−1 + (−1)m] [−1 + (−1)n]Fmn

na

+
Eah [−1 + (−1)m] [−1 + (−1)n]wmn

mnπ2(1− ν2)

(
ν

Rx
+

1

Ry

)
− aNθ

(1− ν)

By taking account of the mathematical coupling between higher order terms

in the governing equations more than two indices must be used for representing

the series solution terms. Substituting Eqs. (11)-(19) into Eqs. (6) and (10)

leads to the the following compatibility equation

(24)

(
m2

a2
+
n2

b2

)2

FmnSmn −
(
m2

a2
+
n2

b2

)
Nθ
mnSmn
hπ2

− E

a2b2
(
mnrs CmnCrs −m2s2 SmnSrs

)
wmnwrs

+
E

π2

(
n2Smn
b2

1

Rx
+
m2Smn
a2

1

Ry
+
mnCmn
ab

2

Rxy

)
wmn = 0
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and equilibrium equation

(25)

[
D

(
m2

a2
+
n2

b2

)2

+
1

abπ2

(
m2Px
a

+
n2Py
b

)]
wmnSmn

−
(
m2

a2
+
n2

b2

)
Mθ
mnSmn
π2

−
h
[
(m2s2 + r2n2) SmnSrs − 2mrns CmnCrs

]
a2b2

Frswmn

− h

π4

[(
−Px
bh

+
s2π2

b2
FrsSrs

)
1

Rx
+

(
−Py
ah

+
r2π2

a2
FrsSrs

)
1

Ry

+
2rsπ2Crs

ab
Frs

1

Rxy

]
− qmnSmn

π4
= 0

where Cmn = cos(mπx/a) cos(nπy/b). As can be seen, considering the math-

ematical coupling raises the computational time needed to solve the derived

system of equations. Moreover, its contribution to the final solution might be

negligible as it has been shown for flat shells in Khazaeinejad et al. [19]. Hence,

ignoring the mathematical coupling (i.e., m = r and n = s) results in a simpli-

fied version of the compatibility equation

(26)

(
m2

a2
+
n2

b2

)2

FmnSmn −
(
m2

a2
+
n2

b2

)
Nθ
mnSmn
hπ2

− Em2n2(C2
mn − S2

mn)

a2b2
w2
mn

+
E

π2

(
n2Smn
b2

1

Rx
+
m2Smn
a2

1

Ry
+
mnCmn
ab

2

Rxy

)
wmn = 0

and the equilibrium equation

(27)

[
D

(
m2

a2
+
n2

b2

)2

+
1

abπ2

(
m2Px
a

+
n2Py
b

)]
wmnSmn

−
(
m2

a2
+
n2

b2

)
Mθ
mnSmn
π2

− 2hm2n2(S2
mn − C2

mn)

a2b2
Fmnwmn

− h

π4

[(
−Px
bh

+
n2π2

b2
FmnSmn

)
1

Rx

+

(
−Py
ah

+
m2π2

a2
FmnSmn

)
1

Ry
+

2mnπ2Cmn
ab

Fmn
1

Rxy

]
− qmnSmn

π4
= 0
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It should be noted that in the case of untwisted shallow shells, the twist

radius Rxy should be infinite and therefore the whole terms containing 1/Rxy

vanish. Using the expansion theorem [20], if the left part of the equation (26) is

denoted by X1 and of the equation (27) by X2, then from the following equations

(28a)

∫ a

0

∫ b

0

 X1

X2

Smn = 0

the following algebraic equations can be derived:

(29)

(
m2

a2
+
n2

b2

)2

Fmn −
(
m2

a2
+
n2

b2

)
Nθ
mn

hπ2

− 4EHmn

(mn
ab

)2
w2
mn +

E

π2

(
n2

b2
1

Rx
+
m2

a2
1

Ry

)
wmn = 0

(30)

[
D

(
m2

a2
+
n2

b2

)2

+
1

abπ2

(
m2Px
a

+
n2Py
b

)]
wmn

−
(
m2

a2
+
n2

b2

)
Mθ
mn

π2
+ 8hHmnFmn

(mn
ab

)2
wmn

+
4 [−1 + (−1)m] [−1 + (−1)n]

mnπ6

(
Px
b

1

Rx
+
Py
a

1

Ry

)
− h

π2

(
n2

b2
1

Rx
+
m2

a2
1

Ry

)
Fmn −

qmn
π4

= 0

where

Hmn =
−1 + 2(−1)m + 2(−1)n − (−1)3m − (−1)3n − 3(−1)m+n + (−1)3m+n + (−1)m+3n

3mnπ2

(31)

Substituting Eq. (29) into Eq. (30), gives the following characteristic load-

deflection equation for the shell

ς1 w
3
mn + ς2 w

2
mn + ς3 wmn + ς4 = 0 (32)

where

(33a)ς1 =
32Ehm4n4H2

mn

(m2b2 + n2a2)
2

(33b)ς2 = − 12EhHmna
2b2

π2 (m2b2 + n2a2)
2

(
m2n4

b2
1

Rx
+
m4n2

a2
1

Ry

)
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(33c)
ς3 = D

(
m2

a2
+
n2

b2

)2

+
8Nθ

mnHmnm
2n2

π2(m2b2 + n2a2)
+

1

abπ2

(
m2Px
a

+
n2Py
b

)
+

Eh

π4 (m2b2 + n2a2)
2

(
n2a2

1

Rx
+m2b2

1

Ry

)2

(33d)
ς4 = −

(
m2

a2
+
n2

b2

)
Mθ
mn

π2
− Nθ

mna
2b2

π4 (m2b2 + n2a2)

(
n2

b2
1

Rx
+
m2

a2
1

Ry

)
− qmn

π4
+

4 [−1 + (−1)m] [−1 + (−1)n]

mnπ6

(
Px
b

1

Rx
+
Py
a

1

Ry

)

There are three solutions for the equation 32, one real solution and two

complex solutions. The deflection must be calculated for adequate series terms

to make the final solution more accurate for both BCs. The membrane tractions

of the shell can then be calculated from

Nxx =
Px
b
−
∞∑
m=1

∞∑
n=1

hn2π2

b2
Smn Fmn (34)

Nyy =
Py
a
−
∞∑
m=1

∞∑
n=1

hm2π2

a2
Smn Fmn (35)

Nxy = −
∞∑
m=1

∞∑
n=1

hmnπ2

ab
Cmn Fmn (36)

It should be noted that in order to quantify the evolution of the membrane

action in the shallow shells, a limited number of terms should be retained in the

above series.

5. Results and discussion

The good accuracy of the proposed method for flat shells under different

thermo-mechanical actions has already been confirmed [20]. To investigate its

accuracy and performance for shallow shells, a number of examples are solved in

the following for square shallow shells with both the chosen BCs. In the exam-

ples considered, the Poisson’s ratio is equal to 0.3 and the shells are subjected to

a UDL and/or through-depth thermal gradients. The dimensionless quantities

used are listed in Table 1.
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First, the results of dimensionless deflection for a shallow spherical shell with

the laterally unrestrained BC under thermal loading are compared with results

obtained from a meshless local Petrov-Galerkin method (MLPG) formulation

[21] and a finite element method (FEM) analysis [21]. The results are plotted

in Figure 3. The shell has elastic modulus of 0.6895× 1010 N/m2, coefficient of

thermal expansion of 1× 10−5 1/◦C, thickness to span ratio of 0.05, and radius

of curvature to span ratio of 10. A uniformly distributed temperature of 1◦C

is applied at the top surface of the shell, while the temperature at the bottom

surface of the shell is zero. It can be seen that the solutions of the proposed

method are in close agreement with the solutions obtained from both the MLPG

method and FEM with a rather rapid convergence (with considering only one

series term in the solutions).

The results of dimensionless deflection of a shallow spherical shell with the

laterally unrestrained BC subjected to a UDL are also compared with the results

obtained from the MLPG formulation [5], as shown in Figure 4a. The bottom

surface of the shell is subjected to a UDL of 2.07× 106 N/m2 directed upwards

(bottom surface loading). The shell has the same material and geometrical

properties as the previous example. Only for this example, the deflection is

presented in a different dimensionless form, dividing the deflection of shallow

shell by the deflection of its corresponding flat shell (Rx = Ry =∞). Figure 4a

shows that the maximum deflection at the centre of the laterally unrestrained

Table 1: Definitions of dimensionless quantities

Description Definition

Thickness to span ratio h/a

Rise to thickness ratio H/h

Dimensionless UDL qa4/Eh4

Radius of curvature to span ratio Rx/a and Ry/a

Dimensionless deflection w/h

Dimensionless x-coordinate parameter x/a
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Figure 3: Variation of dimensionless deflection with the dimensionless x-coordinate parameter

for a shallow spherical shell with the laterally unrestrained BC subject to thermal loading.

shallow shell differ by 20 percent from the deflection of its corresponding flat

shell. The convergence of the solution for the central deflection is demonstrated

in Figure 4b.

As can be seen, the present solutions (for both thermal and mechanical load-

ing) match well with those solutions obtained from the MLPG method. It may

also be noticed that this reasonable accuracy may be achieved by considering

only one series term in the solutions.

As stated earlier, the curvature allows a thin shell to deliver useful load-

carrying capacity. To better understand this feature, the influence of the curva-

ture of a shallow cylindrical shell (with elastic modulus of 27 × 109 N/m2 and

thickness to span ratio of 0.03) on its nonlinear response to a UDL is investi-

gated using the proposed model and the finite element software ABAQUS. This

is shown in Tables 2 and 3, for shallow cylindrical shells subjected to a UDL

of 10 directed downwards (top surface loading) with the laterally unrestrained

and restrained BCs, respectively. The shell is modelled in ABAQUS using 1764

S4R5 elements. The rise of the shell above its planform is denoted by H and is
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Figure 4: Comparison of deflection for a shallow spherical shell with the laterally unrestrained

BC subjected to UDL. Figure (a) shows the variation of dimensionless deflection (i.e. deflection

of the shallow shell over deflection of its corresponding flat shell) with the dimensionless

x-coordinate parameter and Figure (b) demonstrates the convergence of the dimensionless

central deflection. Note that, the denominator of the MLPG and the proposed solutions are

determined from the same method used for the calculation of the deflection of the curved

shell.
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Table 2: Comparison of dimensionless nonlinear central deflection for a shallow cylindrical

shell with the laterally unrestrained BC under UDL using one series term

Radius of

curvature

to span

ratio

Rise to

thickness

ratio

Angle subtendeda Proposed

approachb

ABAQUS simulation

1 4.47 60 -0.053

2 2.12 28.95 -0.172

3 1.40 19.2 -0.297

5 0.83 11.5 -0.427

a
See Figure 1.

b
The present formulation is only valid for extremely shallow shells (e.g. R/a = 5) with the laterally unrestrained BC.

17



Table 3: Comparison of dimensionless nonlinear central deflection for a shallow cylindrical

shell with the laterally restrained BC under UDL using three series terms

Radius of

curvature

to span

ratio

Rise to

thickness

ratio

Angle subtendeda Proposed ap-

proach

ABAQUS simulation

1 4.47 60 -0.010

2 2.12 28.95 -0.055

3 1.40 19.2 -0.122

5 0.83 11.5 -0.278

a
See Figure 1.
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calculated from R−
√
R2 − a2/4, as illustrated in Figure 1. It can be observed

that the deflection values decrease with an increase in the curvature of the shell.

This is due to increasing flexural rigidity of the shell caused by the curvature.

To justify this, in Figure 5, error in the proposed solutions with respect to the

ABAQUS solutions are plotted against the mean squared shell curvature over

the plate. As can be seen, the error in both the unrestrained and restrained

BCs are increased by an increase in the shell curvature.

The accuracy of the proposed method decreases significantly for relatively

deep shells with the laterally unrestrained BC. Therefore, the present approach

is not accurate enough for determining the nonlinear responses of such shells.

However, in the case of shells with the laterally restrained BC, the proposed

method has a very good performance when compared with the ABAQUS so-

lutions. This is very promising since the laterally restrained BC is practically

more useful than the laterally unrestrained BC.

The load-deflection relationship for various types of shallow shells (i.e. hy-

perbolic paraboloidal, spherical, and cylindrical) is depicted in Figures 6 and

7 for both the chosen BCs. The shell has the same material properties as the

previous example and is subjected to a UDL at its either top or bottom surface.

For both BCs, the maximum deflection of the shell (at the centre) increases

nonlinearly as the UDL increases. It is clear that the top surface loading pro-

duces a downwards deflection whereas the bottom surface loading produces an

upwards deflection, according to the sign convention in Figure 2. It is also in-

teresting to note how the nonlinear behaviour of shallow shells changes due to

a change in the radius of the shell curvature. As can be seen in Figures 6 and

7, under both upwardly and downwardly directed mechanical loading, the shal-

low spherical shell is deflected less than the other two types of shallow shells.

As such, the largest deflection has been produced by the shallow hyperbolic

paraboloidal and cylindrical shells, depending upon the intensity of the UDL

applied. For instance, under downwardly directed UDL of 20, the shallow cylin-

drical shell has produced the largest deflection while under the same UDL when

upwardly directed, the shallow hyperbolic paraboloidal shell has produced the
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Figure 5: Variations of the mean squared shell curvature over the plate against the error in the

central nonlinear deflection (with respect to the ABAQUS solutions) for a cylindrical shallow

shell under UDL; (a) laterally unrestrained BC and (b) laterally restrained BC.
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largest deflection.
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Figure 6: Dimensionless central deflection for various types of shallow shells with the laterally

unrestrained BC subjected to UDL. The data are calculated using only one series term.
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Figure 7: Dimensionless central deflection for various types of shallow shells with the laterally

restrained BC subjected to UDL. The data are calculated using three series terms.
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As another example, the central deflection of a shallow hyperbolic paraboloidal

shell (i.e Rx/a = −Ry/a = −5) subjected to UDL and linear thermal gradient

is considered. The temperature at the top surface of the shell was assumed to

be the ambient temperature (20◦C) and it assumed to vary linearly through the

depth of the shell to temperatures of 20◦C, 100◦C, and 200◦C at the bottom

surface. Such temperature profiles may also be represented by an equivalent

thermal gradient of ∆θ/z and an equivalent mean temperature of ∆θ. The

coefficient of thermal expansion of the shell is taken as 8 × 10−6 1/◦C. Other

material and geometrical properties are the same as those stated in the previ-

ous example. The dimensionless maximum deflection of the shell is depicted in

Figures 8 and 9 for both the chosen BCs. The figures show that for the cases

where a downwardly directed UDL is applied at the top surface of the shell,

larger temperature gradients result in larger deflections. However, the opposite

behaviour is seen where an upwardly directed UDL is applied at the bottom

surface of the shell. Moreover, as expected, adding lateral restraint at the shell

edges has resulted in lower values for the shell maximum deflections as compared

with those obtained for the laterally unrestrained shells.

6. Conclusions

A theoretical model was developed for the geometrically nonlinear analy-

sis of shallow shells in rectangular planforms subjected to thermo-mechanical

loadings. Two types of support conditions were assumed, bracketing reasonable

conditions that may be found in real shell structures applications. It was found

that using three terms in the series solutions gives results that are reasonably

accurate for laterally restrained shallow shells. However, for a shallow shell that

is laterally unrestrained, only one term in the series solutions might be adequate,

but the solutions were only accurate for extremely shallow shells with a compar-

atively small rise above their rectangular planform. The reason for this could

be the curvature change with respect to the unrestrained boundaries which was

related to the structure moving from larger to smaller curvature. Nevertheless,
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Figure 8: Dimensionless central deflection for a shallow hyperbolic paraboloidal shell with the

laterally unrestrained BC subjected to UDL and linear temperature gradient. The data are

calculated using one series term.
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Figure 9: Dimensionless central deflection for a shallow hyperbolic paraboloidal shell with

the laterally restrained BC subjected to UDL and linear temperature gradient. The data are

calculated using three series terms.
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the model may be applied to snap-through problems. There is no doubt that

the change of curvature is greater during snap-through as there is reversal of

curvature, however the phenomena can still be captured as just before and just

after snap-through the absolute value of the curvatures is very small and within

the range where the model has good predictive capability.

Acknowledgement

The authors are grateful for the financial support for this research through

the Edinburgh Research Partnership in Engineering (ERPE) funding.

References

[1] K.-J. Bathe, P.-S. Lee, J.-F. Hiller, Towards improving the MITC9 shell

element, Computers & Structures 81 (2003) 477–489.

[2] Y. Zhang, K. Kim, Linear and geometrically nonlinear analysis of plates

and shells by a new refined non-conforming triangular plate/shell element,

Computational Mechanics 36 (2005) 331–342.

[3] M. Brunet, F. Sabourin, Analysis of a rotation-free 4-node shell element, In-

ternational Journal for Numerical Methods in Engineering 66 (2006) 1483–

1510.

[4] N. Nguyen-Thanh, T. Rabczuk, H. Nguyen-Xuan, S. Bordas, A smoothed

finite element method for shell analysis, Computer Methods in Applied

Mechanics and Engineering 198 (2008) 165–177.

[5] J. Sladek, V. Sladek, C. Zhang, P. Solek, Static and dynamic analysis of

shallow shells with functionally graded and orthotropic material properties,

Mechanics of Advanced Materials and Structures 15 (2008) 142–156.

[6] D. Benson, Y. Bazilevs, M.-C. Hsu, T. Hughes, A large deformation,

rotation-free, isogeometric shell, Computer Methods in Applied Mechanics

and Engineering 200 (2011) 1367–1378.

24



[7] M. Cinefra, C. Chinosi, L. Della Croce, MITC9 shell elements based on re-

fined theories for the analysis of isotropic cylindrical structures, Mechanics

of Advanced Materials and Structures 20 (2013) 91–100.

[8] T. Sussman, K.-J. Bathe, 3D-shell elements for structures in large strains,

Computers & Structures 122 (2013) 2–12.

[9] Y. Lee, P.-S. Lee, K.-J. Bathe, The MITC3+ shell element and its perfor-

mance, Computers & Structures 138 (2014) 12–23.

[10] J. Woo, S. Meguid, Nonlinear analysis of functionally graded plates and

shallow shells, International Journal of Solids and Structures 38 (2001)

7409–7421.

[11] G. Nie, Analysis of non-linear behaviour of imperfect shallow spherical

shells on pasternak foundation by the asymptotic iteration method, Inter-

national Journal of Pressure Vessels and Piping 80 (2003) 229–235.

[12] R. Heuer, F. Ziegler, Thermoelastic stability of layered shallow shells,

International Journal of Solids and Structures 41 (2004) 2111–2120.

[13] M. Amabili, Non-linear vibrations of doubly curved shallow shells, Inter-

national Journal of Non-Linear Mechanics 40 (2005) 683–710.

[14] N. D. Duc, H. Van Tung, Nonlinear response of pressure-loaded functionally

graded cylindrical panels with temperature effects, Composite Structures

92 (2010) 1664–1672.

[15] A. Sofiyev, N. Kuruoglu, Buckling analysis of nonhomogeneous orthotropic

thin-walled truncated conical shells in large deformation, Thin-Walled

Structures 62 (2013) 131–141.

[16] J. Jiang, P. Khazaeinejad, A. Usmani, Nonlinear analysis of shell structures

in fire using opensees, in: Proceedings of the 20th UK Conference of the

Association for Computational Mechanics in Engineering (ACME2012).

25



[17] L. H. Donnell, Beams, plates and shells, volume 8, McGraw-Hill New York,

1976.

[18] M. S. Qatu, Vibration of laminated shells and plates, Elsevier, Amsterdam.,

2004.

[19] P. Khazaeinejad, A. Usmani, O. Laghrouche, Nonlinear stress analysis of

plates under thermo-mechanical loads, in: Journal of Physics: Conference

Series, volume 382, IOP Publishing, p. 012022.

[20] P. Khazaeinejad, A. Usmani, O. Laghrouche, An analytical study of the

nonlinear thermo-mechanical behaviour of thin isotropic rectangular plates,

Computers & Structures 141 (2014) 1–8.

[21] J. Sladek, V. Sladek, P. Solek, P. Wen, S. Atluri, Thermal analysis

of Reissner-Mindlin shallow shells with FGM properties by the MLPG,

CMES: Computer Modeling in Engineering & Sciences 30 (2008) 77–97.

26


