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Abstract 

This paper analyses the implicit dynamics underlying the interest rate structure in 
Kenya. For this purpose we use data on four commercial banks’ interest rates (Deposits, 
Savings, Lending and Overdraft) together with the 91-Day Treasury Bill rate, for the 
time period July 1991 – August 2010, and apply various techniques based on long-range 
dependence and, in particular, on fractional integration. The results indicate that all 
series examined are nonstationary with orders of integration equal to or higher than 1 
when using parametric techniques, and slightly smaller than 1 when using 
semiparametric methods. The analysis of various spreads suggests that Lending – 
Saving and Deposits – Saving are also nonstationary I(1) variables; however,  the 
spreads vis-à-vis the Treasury Bill rate may be mean reverting if the errors are 
autocorrelated. The high level of dependence observed in some of these series could be 
the result of an incorrect interest rate policy, implying the desirability of a policy aimed 
at reducing interest rate volatility. 
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1. Introduction 

This paper examines the stochastic properties of interest rates in Kenya, shedding light 

on whether or not the effects of shocks are long-lived and appropriate policy actions are 

in order to restore equilibrium in the long run. Specifically, if the series of interest is 

stationary I(0), shocks affecting it will have transitory effects, which disappear in the 

long run. On the contrary, if the series is nonstationary I(1), the effects of shocks will be 

permanent and policy intervention will become necessary to recover their original 

trends. Therefore, to determine the order of integration of the series is crucial. However, 

in the case of interest rates the literature is very inconclusive with respect to this matter, 

finding empirical evidence supporting both stationarity I(0) and nonstationarity I(1). 

Interest rates play a key role at least in two very important relationships in 

macroeconomics, i.e., the Fisher hypothesis (FH) and uncovered interest rate parity 

(UIP). The former links nominal rates to expected inflation, requiring full adjustment of 

these two variables in the long run and implying stationarity of ex-ante real interest 

rates (a crucial variable for understanding investment and saving decisions as well as 

asset price determination). In the absence of a one-to-one adjustment, permanent shocks 

to either inflation or nominal rates would have permanent effects on real rates as well, 

which would be inconsistent with standard models of intertemporal asset pricing. If 

interest rates and inflation are found to be nonstationary I(1) processes, a long-run 

version of the FH can be tested within a cointegration framework (Mishkin, 1992).1 As 

for UIP, stationarity of nominal short-run interest rates is required for its empirical 

validity. Since nominal bilateral exchange rates contain unit roots, for the UIP relation 

to hold nominal short-run interest rates must be mean-reverting. In the literature 

stationarity and mean reversion have usually been identified with I(0) behaviour. 

                                                 
1  This literature has been extended in recent years to the case of fractional cointegration (Kasman et al., 
2006; Kiran, 2013). 
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However, these two properties may be satisfied in cases with positive orders of 

integration, i.e., with I(d) processes with d > 0: stationarity holds in the I(d) case as long 

as d < 0.5, and mean reversion is satistied if d < 1. Previous empirical studies using 

classical I(0)/I(1) methods conclude in most cases that short-run interest rates have this 

property in Europe and in the US (e.g. Rose, 1988; Stock and Watson, 1988; Wu and 

Chen, 2001), providing support for the UIP relationship, but not for long-run FH. The 

implication for monetary policy is that central banks are constrained in their ability to 

set interest rates by international capital flows. In the case of the African countries such 

issues are even more important since their financial markets are characterised by a high 

level of information asymmetry and their central banks are not perceived by markets as 

having credibility.   

The present study analyses the implicit dynamics underlying the interest rate 

structure in Kenya. For this purpose we use data on four commercial banks’ interest 

rates (Deposits, Savings, Lending and Overdraft) together with the 91-Day Treasury 

Bill rate, for the time period July 1991 – August 2010. We focus on these variables 

owing to the limited data availability for this country. However, instead of carrying out 

standard tests based on the dichotomy between stationarity I(0) or nonstationarity I(1), 

we use techniques based on long-range dependence and, in particular, on fractional 

integration that allows for integer as well as non-integer degrees of differentiation. Note 

that these commercial rates depend on the interest rates set by the central bank, whose 

stochastic properties in turn depend on those of the domestic and foreign shocks they 

are set to respond to. Therefore the nonstationarity of the commercial banks’ rates could 

depend on inappropriate policies followed by the central bank as well as the stochastic 

properties of the exogenous disturbances that hit the economy combined with the 

inability of the central bank to offset the shocks. Consequently, to the extent that 
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exogenous shocks and inadequate policies are not responsible for the nonstationarity of 

the commercial rates, an argument can be built to question Kenyan monetary policy. By 

contrast, the Treasury bill rate is directly related to fiscal policy and therefore analysing 

its stochastic properties is relevant to assess fiscal measures.  

We also look at the spreads between the commercial rates. This is important to 

assess the effectiveness of monetary policy: nonstationary spreads hint at the inability of 

the central bank to keep commercial rates under tight control, since if the policies 

adopted by the monetary authorities were effective all such rates should follow those set 

by the central bank, and therefore their behaviour over time should be very similar and 

their differentials should be stationary variables. Such an interpretation cannot be 

applied in the same way to the spreads between the Treasury bill rate which, as 

mentioned above, is mainly driven by fiscal factors, and commercial rates which the 

central bank is trying to influence and are therefore, at least to some extent, affected 

directly by monetary policy: since the determinants of the former and the latter are not 

the same there is no compelling reason to expect narrow and stationary spreads; there 

might be a linkage only in specific policy regimes, when fiscal and monetary policy are 

more tightly linked (for instance, Simon (1990) reports that in the US the Treasury bill 

rate forecasts most accurately federal funds rates when the Fed adopts a clearly defined 

policy rule that does not smooth the impact of shocks on the federal funds rate). A study 

on this topic by Cook and Lawler (1983) finds that the spreads between Treasury bill 

rates and rates on private money market securities are volatile and this can be explained 

within a model assuming that investors can choose freely between these different type 

of securities; variable default-risk premia and differences in taxation appear to be the 

main factors affecting the spreads. Ours is in any case the first study to analyse these 

spreads using long memory techniques. 
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The outline of the paper is as follows. Section 2 briefly reviews the literature on 

interest rate models with I(d) variables, including some studies on African countries. 

Section 3 outlines the econometric approach employed for the analysis. Section 4 

describes the data and presents the univariate results, whilst Section 5 focuses on the 

spreads. Section 6 offers some concluding remarks. 

 

2. Literature review 

 A variety of interest rate models have been suggested in the literature. The crucial issue 

has been to determine the order of integration of the series, namely whether interest 

rates are stationary I(0) (and thus mean-reverting) or nonstationary I(1). Some studies 

have investigated the mean reversion property of interest rates in the context of fixed 

income modelling – see, for example, the papers by Chapman and Pearson (2000), 

Jones (2003), Bali and Wu (2006), and Koutmos and Philappatos (2007) among others.  

In a famous paper Rose (1988) investigated the integration properties of nominal 

interest rate and inflation rate using post-war data for 18 OECD countries. Conventional 

unit root tests did not reject the nonstationarity of interest rates, but did so for the 

inflation rate. This implied nonstationarity of real interest rates, which was problematic 

for consumption-based asset-pricing models. This controversy was partly solved using 

cointegration models; as Mishkin and Simon (1995) argued: “any reasonable model of 

the macro economy would surely suggest that real interest rates have mean reverting 

tendencies which make them stationary” and stationarity of interest rates is often 

assumed in the empirical work. 

In the last two decades more attention has been paid to the possibility of long 

memory in interest rates. For instance, Shea (1991) investigated this issue in the context 

of the expectations hypothesis of the term structure. He found that allowing for the 
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possibility of long memory significantly improves the performance of the model, even 

though the expectations hypothesis cannot be fully resurrected. In related work, Backus 

and Zin (1993) observed that the volatility of bond yields does not decline exponentially 

when the maturity of the bond increases; in fact, they noticed that the decline was 

hyperbolic, which is consistent with a fractionally integrated specification. Lai (1997) 

and Phillips (1998) provided evidence based on semiparametric methods that ex-ante 

and ex-post US real interest rates are fractionally integrated. Tsay (2000) employed an 

ARFIMA model and concluded that the US real interest rate can be described as an I(d) 

process. Further evidence can be found in Barkoulas and Baum (1997), Meade and 

Maier (2003) and Gil-Alana (2004a, b). Sun and Phillips (2004) employed a 

multivariate Whittle estimator and found that the order of integration of ex-post and ex-

ante real interest rates as well as expected inflation is the same, with the memory 

parameter in the range (0.75, 1), and therefore cointegration does not hold and there is 

no support for a long-run Fisher relationship. On the other hand, Couchman, Gounder 

and Su (2006) estimated ARFIMA models for ex-post and ex-ante real interest rates in 

sixteen countries. Their results suggest that, for the majority of countries, the fractional 

differencing parameter lies between 0 and 1, and is considerably smaller for the ex-post 

than for the ex-ante rates. 

 Only a few studies on African countries exist. Nandwa (2006) examined whether 

nominal interest rates in a sample of Sub-Saharan countries follow stochastic trends (or 

unit root processes) and whether the Fisher hypothesis holds in the area. The results 

indicate that while the Fisher effect does not hold either for the entire sample period 

(1980:1 – 2005:2) or the period before the economic reforms, it does hold for the period 

1995:1 -2005:2 following the economic reforms. More recently, Aboagye et al. (2008) 

investigated the question of the optimal spread between bank lending rates and rates that 
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banks pay on deposits in Ghana. They found that increases in bank market power, bank 

size, staff costs among other factors significantly increase net interest margins, while 

increases in bank excess cash reserves and central bank lending rate decrease them. 

More evidence is available in the case of Kenya. Musila and Rao (2002) applied 

cointegration methods to develop a macro model for forecasting purposes. Their results 

suggest that the exchange rate and fiscal policy are relatively more effective in Kenya 

than monetary policy. Concerning specifically interest rates, they found that they are not 

stationary; however, there is a long-run cointegrating relationship linking money 

demand to real GDP and nominal interest rates. In another study, Durewall and 

Ndung’u (1999) proposed a dynamic model of inflation for Kenya for the time period 

1974-1996, studying the stationary/nonstationary nature of several variables, including 

interest rates, and finding evidence of nonstationary I(1) behaviour in all cases. 

Ndung’u (2000) examined the relationship between exchange rates and interest 

rate differentials in Kenya using a time-varying parameters approach. He finds that 

nominal exchange rates deviate from their long-run equilibrium level, which is given by 

purchasing power parity, with the deviations being determined by the interest rate 

differentials. Finally, in a more recent paper, Odhiambo (2009) investigated the impact 

of interest rate reforms on financial deepening and economic growth in Kenya. He 

found a positive relationship in both cases using standard (I(0)/I(1)) cointegration 

techniques. However, none of the above papers analysing African data employs 

fractional integration methods. By applying such techniques we allow for a much richer 

degree of flexibility in the dynamic specification of the series including fractional 

values in the degree of differentiation of the series. This will also allow us to show that 

in fact interest rates in a developing economy such as Kenya are non-stationary (d  ≥ 
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0.5) and in many cases non-mean-reverting (d ≥ 1), contrary to what is normally found 

in the case of the developed countries. 

 

3. Econometric methodology 

As already mentioned we employ methods based on long-range dependence. In 

particular we focus our attention on fractionally integrated or I(d) models. A time series 

{xt, t = 1, 2, …} is said to be fractionally integrated of order d, and denoted by xt ~ I(d) 

if it can be represented as 

       ...,,2,1t,ux)L1( tt
d ==−          (1) 

with xt = 0, t ≤  0,2 where L  is the lag-operator ( 1tt xLx −= ): d can be any real value, 

and ut is an I(0) process, being defined as a covariance stationary process with a spectral 

density function that is positive and finite at any frequency. This includes a wide range 

of model specifications such as the white noise, the stationary autoregression (AR), 

moving average (MA), stationary ARMA etc. 

 The polynomial appearing on the left hand side in equation (1) can be defined in 

terms of its Binomial expansion, such that for all real d, 

,L
)d()1j(

)dj()L1( j
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d ∑
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∞

= ΓΓ
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where Γ(x) is the Gamma function. For d < 0.5, it is also well known that the 

autocovariance function of this process (γu) satisfies: 

,uc 1d2
1u

−≈γ  as u → ∞,    for │c1│ < ∞,  (2) 

and, assuming that xt has an absolute continuous spectral distribution function, so that it 

has a spectral density function f(λ), defined as 

                                                 
2 This is a standard assumption in applied studies involving fractional integration (see the types I and II 
definitions of fractional integration in Gil-Alana and Hualde (2009) and Davidson and Hashimzade 
(2009)). 
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it can also be proved that 

          ,c)(f d2
2

−≈ λλ     as  λ → 0+,    for 0  <  c2  < ∞,  (3) 

where the symbol “ ≈ “ indicates that the ratio of the left-hand side and the right-hand 

side tends to 1, as u → ∞ in (2) and as λ → 0+ in (3)3 (see Granger and Joyeux, 1980; 

Hosking (1981), Brockwell and Davis, 1993; Baillie, 1996; etc.).  

When d = 0 in equation (1), xt = ut, and therefore xt is I(0), and possibly “weakly 

autocorrelated” (also known as “weakly dependent”), with the autocorrelations 

decaying exponentially if the underlying disturbances are autoregressive. If 0 < d < 0.5, 

xt is still covariance stationary, but its lag-u autocovariance γu decreases very slowly, in 

fact hyperbolically, according to equation (2), and therefore the γu are absolutely non-

summable. In that case xt is said to exhibit long memory given that its spectral density 

f(λ) is unbounded at the origin (see equation (3)). Finally, it is important to note that as d 

in (1) increases beyond 0.5 and towards 1 (the unit root case), the variance of the partial 

sums of xt increases in magnitude. This is also true for d > 1, so a large class of 

nonstationary processes may be described by (1) with d ≥  0.5.4 Note that this fractional 

integration approach is more general than the standard one which is based exclusively 

on integer degrees of differentiation (0 for stationarity and 1 for nonstationarity), and 

includes both as particular cases of interest within the AutoRegressive Fractionally 

Integrated Moving Average (ARFIMA) approach.  The method employed in this paper 

to estimate the fractional differencing parameter d is based on the Whittle function in 

the frequency domain (Dahlhaus, 1989) along with a testing Lagrange Multiplier (LM) 

                                                 
3 Equation (3) requires d < 0.5 and t = …, -1, 0, 1, …. On the other hand, conditions (2) and (3) are not 
always equivalent but Zygmund (1995) and, in a more general case, Yong (1974) both give conditions 
under which both expressions are equivalent. 
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procedure developed by Robinson (1994) that allows to test the null hypothesis Ho: d = 

do in equation (1) for any real value do, where xt can be the errors in a regression model 

of the form: 

,...,2,1t,xzy tt
T

t =+= β   (4) 

where yt is the observed time series, β is a (kx1) vector of unknown coefficients and zt is 

a set of deterministic terms that might include an intercept (i.e., zt = 1), an intercept with 

a linear time trend (zt = (1, t)T), or any other type of deterministic processes. Although 

there exist more recent procedures to estimate parametrically d either in the time or in 

the frequency domain (Lobato and Velasco, 2007; Demetrescu, Kuzin and Hassler, 

2008), they generally require a consistent estimate of d, and therefore the LM test of 

Robinson (1994) seems computationally more attractive. Moreover, the limit 

distribution of the estimator used here is standard normal, independently of the 

regressors used for zt in (4) and the type of I(0) error term ut in (1). Additionally, 

Gaussianity is not necessary, with a moment condition of only two being required 

instead. A semiparametric approach devised by Robinson (1995) will also be applied 

here; although other versions of this method have been suggested (Velasco, 1999; 

Velasco and Robinson, 2000; Phillips and Shimotsu, 2004; Shimotsu and Phillips, 2005; 

Abadir et al., 2007; Shimotsu, 2010), they require additional user-chosen parameters, 

with the estimates of d possibly being very sensitive to the choice of these parameters. 

In this respect, the method of Robinson (1995), which is computationally simpler, 

seems preferable.5 

 

                                                                                                                                               
4 See Diebold and Rudebusch (1989), Sowell (1992a) and Gil-Alana and Robinson (1997) for 
applications involving I(d) processes in macroeconomic time series. 
5 In addition to the methods discussed in the text, we also employed other conventional parametric 
approaches such as Sowell’s (1992b) and Beran’s (1995) maximum likelihood methods and the results 
were completely in line with those reported in the paper. 
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4. Data and empirical results 

The series used are from the Central Bank of Kenya database and can be downloaded 

from: http://www.centralbank.go.ke/index.php/interest-rates/time-series-data. Their 

frequency is monthly, and the sample goes from July 1991 to August 2010. The series 

are the commercial banks’ weighted average interest rates for Deposit, Savings, 

Lending and Overdraft, and the 91-day Treasury bill rate. We will focus on the spreads 

in particular. As Treasury bills are generally considered risk-free (though as a result of 

the recent financial crisis this is now arguable), T-bill spreads can be seen as an 

indication of the perceived risk of default, whilst the spread between deposit and 

lending rates provides some information about banks’ profit margins. On the other 

hand, the spread Lending – Saving may be considered as an approximate measure for 

the bank’s interest margins. Finally, Deposits – Lending rate spreads are clearly related 

to the banking sector’s ability to channel savings into productive uses. 

[Insert Figure 1 about here] 

We start by considering a model of the form given by equations (1) and (4) with 

zt = (1,t )T, i.e., 

,...,2,1t,ux)L1(;xty tt
d

tt ==−++= βα       (5) 

assuming first that the error term ut is white noise and then that it is autocorrelated. In 

the latter case, we assume that ut follows the exponential spectral model of Bloomfield 

(1973). This is a non-parametric approach that produces autocorrelations decaying 

exponentially as in the AR(MA) case. Its main advantage is that it mimics the behaviour 

of ARMA structures with a small number of parameters. Moreover, it is stationary 

independently of the values of its coefficients in contrast to the AR case.6 

                                                 
6 See Gil-Alana (2004c) for the advantages of the model of Bloomfield (1973) in the context of 
Robinson’s (1994) tests. 

http://www.centralbank.go.ke/index.php/interest-rates/time-series-data
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For each series, we consider the three standard cases examined in the literature, 

i.e., no regressors (i.e., α = β = 0 a priori in (5)), an intercept (α unknown and β = 0 a 

priori), and an intercept with a linear time trend (i.e., α and β unknown). Table 1 reports 

the (Whittle) estimates of d under the assumption of white noise errors. Table 2 refers to 

the model of Bloomfield (1973). In both cases we display along with the estimates the 

95% interval of the non-rejection values of d using Robinson’s (1994) parametric 

approach. 

 

[Insert Tables 1 and 2 about here] 

 

Starting with the results based on white noise disturbances, it can be seen that 

the estimates of d are above 1 in all cases, and the unit root null hypothesis is practically 

always rejected; the only exceptions, when the unit root cannot be rejected, are 

“Savings” and “Overdraft” if no deterministic terms are included in the model. 

Concerning the specification with an intercept (which is the most data congruent in 

view of the t-values of the time trend coefficients, not reported), the estimated values of 

d range between 1.147 (for “Savings”) and 1.881 (for the “91-day Treasury Bill rate”). 

As for the case of autocorrelated (Bloomfield) errors (in Table 2), the results are fairly 

similar to those displayed in Table 1 with the exception of the “Treasury Bill rate”. For 

this series, the estimated value of d is found to be below 1, although the unit root null 

cannot be rejected. For the remaining four series, the estimated value of d is strictly 

above 1 in all cases.7 

                                                 
7 The results of several diagnostic tests on the residuals under the white noise specification support the 
hypothesis of autocorrelated errors. For the model of Bloomfield, we set q (the nuisance parameter) equal 
to 1, 2 and 3. Table 2 reports the results for q = 1. Very similar values were obtained with q = 2 and 3. 
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To corroborate the above results, we also implement a semiparametric approach 

to estimate d that is due to Robinson (1995). This is a “local“ Whittle estimate in the 

frequency domain, based on a band of frequencies that degenerates to zero. It is 

implicitly defined by:       

 ,log
m
1d2)d(Clogminargd̂

m

1j
jd 









∑−=
=

λ (6) 

,0
T
m

m
1,

T
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m
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=
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where T is the sample size, m is the bandwidth parameter, and I(λj) is the periodogram 

of the time series, xt, given by: 

.ex
T2

1)(I
2T

1t

ti
tj

j∑=
=

λ

π
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Under finiteness of the fourth moment and other mild conditions, Robinson (1995) 

proved that: 

,Tas)4/1,0(N)dd̂(m do ∞→→−  

where do is the true value of d and with the only additional requirement that m → ∞ 

slower than T. 

 

[Insert Figure 2 about here] 

 

 The results based on the above approach are displayed in Figure 2. Given the 

nonstationary nature of the series examined, the values are estimated using first 

(second)- differenced data, then adding 1 (2)- to obtain the proper orders of integration 

of the series. It can be seen that the values are similar across the series. Along with the 

estimates we also present the 95% confidence interval of the non-rejection values 
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corresponding to the I(1) hypothesis. We display the estimates for the whole range of 

values of the bandwidth parameter m (= 1, 2, ...T/2). It can be seen that, for small 

bandwidth parameters, some of the estimates are below 1 although still within the I(1) 

interval.8 

[Insert Table 3 about here] 

 

 Table 3 displays the estimates of d for specific bandwidth parameters, in 

particular for m = 5, 10, 15 ( = T0.5), 25, 50 and 100. The unit root null is rejected in the 

majority of cases in favour of higher orders of integration if the bandwidth parameter is 

equal to or higher than 25. However, for the more realistic cases of m = 10 or m = 15 

(=(T)0.5), the estimated values of d are now below 1 and mean reversion is found to be 

statistically significant for the Treasury Bill rate. Mean reversion has in fact rarely been 

discussed in the case of such “risk-free” assets, often being thought that it is a stock-

only concept. One possible explanation for differences between Treasury bill and 

commercial rates is the different frequency of fiscal and monetary policy respectively 

(to which the latter rates are associated). For the remaining series, the fractional 

differencing parameter is found to be below 1, although the unit root null hypothesis 

cannot be rejected. 

 It could be argued that the finding of nonstationarity reported here reflects 

unaccounted breaks in the data. In fact, fractional integration and structural breaks are 

intimately related issues (Diebold and Inoue, 2001; Granger and Hyung, 2001). Visual 

inspection of the series in Figure 1 suggests that there might a break at the very 

beginning of the sample period. Thus, we obtained estimates of d for each series using 

different subsamples, in a recursive manner.  

                                                 
8 When choosing the bandwidth there is a trade-off between bias and variance: the asymptotic variance is 
decreasing whilst the bias is increasing with m. 
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[Insert Figure 3 about here] 

 Figure 3 displays the estimates of d (and the 95% confidence intervals) with 

white noise disturbances, first for the whole sample and then removing one observation 

at a time from the beginning of the sample to the observation corresponding to 

December 1993. It can be seen that for Deposits, Savings and Lending the values of d 

are relatively stable; for Overdraft there is an increase from approximately 1.15 to 1.3 at 

the end of 1993, and finally, for the 91-Day Treasury Bill rate, a decrease of about 0.2, 

from 1.8 to 1.6, after removing the first two years of data. Very similar results (not 

reported) were obtained for the case of autocorrelated errors, the estimates for Deposits, 

Saving and Lending being very stable, whilst they are less so in the case of the other 

two series. Overall, the results confirm our hypothesis that the five series are 

nonstationary with orders of integration around 1. Therefore, the effects of shocks will 

either die out extremely slowly or even be permanent and thus decisive policy 

intervention will be necessary to bring interest rates back to their original levels as long 

as the shocks result from exchange rate changes, interest rate changes abroad etc. rather 

than policy measures of the national central bank itself.  The high level of dependence 

observed in some of these series could be the result of an incorrect interest rate policy, 

implying the desirability of a policy aimed at reducing interest rate volatility. As already 

mentioned in the introduction, the stochastic properties of the commercial rates depend 

on the interest rates set by the central bank and how they are used to respond to shocks, 

and consequently both the stochastic properties of those and the adequacy of monetary 

policy will determine their path over time (whilst the Treasury bill rate is directly 

related to fiscal policy).  In particular, the stochastic behaviour of spreads is informative 

about the (in)ability of the central bank to control commercial rates. It should be 
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stressed that the nonstationary nature of the series implies that shocks will have 

permanent effects requiring policy action to bring the variables back to their pre-shock 

equilibrium values, but does not provide any information about the nature of the shocks, 

specifically whether they are real or monetary. 

 

5. Analysing the spreads 

In this section we focus on the spreads, and in particular we examine the following 

differences: Lending – 91 Day Treasury Bill rate; Lending – Saving rate; Deposit – 91 

Day Treasury Bill rate, Saving – 91 Day Treasury Bill rate, and Deposits - Lending (see 

Figure 4).  

[Insert Figure 4 and Tables 4 and 5 about here] 

 

Tables 4 and 5 report the estimates for the two cases of white noise and 

autocorrelated (with Bloomfield) errors respectively. Starting with the case of 

uncorrelated errors (Table 4), it can be seen that the estimates of d are extremely large 

(around 1.8) for three of the spreads (Lending - Treasury Bill; Deposit - Treasury Bill; 

and Saving - Treasury Bill), and around 1 (with the unit root not being rejected at 

conventional statistical levels) for the Lending – Saving, and Deposits – Lending 

spreads. However, in the more realistic case of autocorrelated errors,9 the values are 

much smaller; the unit root cannot be rejected for Lending – Treasury Bill, Lending – 

Saving, Saving – Treasury Bill and Deposits - Lending, and evidence of mean reversion 

(i.e., orders of integration strictly smaller than 1) is only found in the case of the 

Deposits – Treasury Bill rate spread.  

                                                 
9 Several diagnostic tests for serial correlation conducted on the estimated residuals under the white Boise 
specification reject the null of no serial correlation in all cases examined. 
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The results for the spreads based on the semiparametric estimation method of 

Robinson (1995) are displayed in Figure 5. For the Lending –Saving and Deposits – 

Lending spreads, the estimates are within the I(1) interval; however, for the remaining 

three spreads (related with the 91 Day Treasury Bill rate) the values are significantly 

above 0 and below 1, implying long memory and mean-reverting behaviour. Table 6 

shows the estimates for specific bandwidth parameters confirming that mean reversion 

takes place in the cases of the Lending – Treasure Bill rate, Deposits – Treasure Bill 

rate, and Saving – Treasure Bill rate, but not for the Lending – Saving and Deposits – 

Lending spreads. Taking into account the possible presence of outliers, specifically one 

at the beginning of the sample (see again Figure 4), did not affect the conclusions. 

Overall, the structure of interest rates in Kenya is found to display a high degree of 

persistence, implying the need for policy actions to make markets more flexible and 

competitive. This is in contrast to the evidence for Europe and other developed markets 

(see, e.g., Rose, 1988; Stock and Watson, 1988; Wu and Chen, 2001) which suggests 

that the standard parity conditions linking interest rates in the long run hold instead in 

these countries.  

 

[Insert Figure 5 and Table 6 about here] 

 

6. Conclusions 

This paper has investigated the interest rate structure in Kenya using procedures based 

on long-range dependence. In particular, it has examined the orders of integrations of 

four commercial banks’ interest rates (Deposits, Savings, Lending and Overdraft) along 

with the 91-Day Treasury Bill rate for the period July, 1991 – August, 2010. The results 

suggest that, regardless of the estimation method used, the T-Bill rate is likely to exhibit 
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mean reversion, while evidence for mean reversion is weak for the commercial bank 

rates. 

The evidence for the spreads is similar, mean reversion being found only in the case of 

the spreads vis-à-vis the 91 Day Treasure Bill rate under the assumption of 

autocorrelated errors. The implication of these results is that shocks to interest rates 

have permanent or long-lived effects and therefore decisive policy measures will need 

to be implemented to achieve mean reversion in interest rates.  

It should be noted that the primary objective of the Central Bank of Kenya is 

price stability, and therefore fiscal and monetary policy have been independent over the 

sample span analysed. The focus of monetary authorities has been on maintaining high 

interest rates so as to reduce the inflation rate and also to avoid a significant 

depreciation of the Kenya shilling. This tight monetary policy stance is thought to 

reduce inflationary pressure and also to promote portfolio investment inflows into 

Kenya, thus improving the capital account. It could also have a detrimental effect on 

growth, but the findings in Caporale et al. (2012) suggest that a less contractionary 

monetary policy by the Central Bank of Kenya could be combined with an appropriate 

exchange rate policy (i.e., a moderate depreciation of the Kenyan shilling) to achieve 

more effectively the objectives of internal and external balance in Kenya.   

The results reported here are in sharp contrast to what is typically observed in 

the case of the developed economies, where interest rates are generally found to be 

mean-reverting, at least when using the same I(d) techniques as those employed in this 

study. Since any breaks seem to occur at either end of the sample, formal tests for 

structural change cannot be carried out within an I(d) framework such as ours. Non-

linear methods might be informative in this respect. Work in this direction is in 

progress. 
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Figure 1: Time series plots of the commercial bank’s weighted average interest 
rates and the 91-day Treasury Bill rate 
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Figure 2: Estimates of d based on the semiparametric method of Robinson (1995)  
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The horizontal axis refers to the bandwidth parameter, while the vertical one reports the estimated value of 
d.  The dotted lines represent the 95% confidence interval for the I(1) hypothesis. 
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Figure 3: Recursive estimates of d 
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Figure 4: Time series plots of the spreads 
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Figure 5: Estimates of d for the spreads based on Robinson (1995) 
Lending  -  91-day Treasury Bill rate Lending  -  Savings 
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The horizontal axis refers to the bandwidth parameter, while the vertical one reports the estimated value of 
d. The dotted lines represent the 95% confidence interval for the I(0) and I(1) hypotheses. 
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Table 1: Estimates of d based on Robinson (1994) using white noise disturbances 
 No regressors An intercept A linear time trend 

Deposits 1.082 
(1.007,   1.180) 

1.311 
(1.224,   1.416) 

1.311 
(1.224,   1.416) 

Savings 1.039 
(0.967,   1.135) 

1.147 
(1.069,   1.245) 

1.147 
(1.069,   1.245) 

 
Lending  1.090 

(1.019,   1.184) 
1.292 

(1.207,   1.399) 
1.291 

(1.206,   1.398) 

Overdraft  1.049 
(0.988,   1.128) 

1.158 
(1.084, 1.252) 

1.158 
(1.084,   1.251) 

91-day Treasury Bill 1.651 
(1.482,   1.851) 

1.881 
(1.679,   2.121) 

1.881 
(1.679,   2.121) 

The reported values are Whittle estimates of d in the frequency domain. Those in parentheses are the 95% 
confidence intervals of non-rejection values of d using Robinson’s (1994) tests. 
 
 
 
 
Table 2: Estimates of d based on Robinson (1994) using Bloomfield disturbances 
 No regressors An intercept A linear time trend 

Deposits 1.110 
(0.967,   1.308) 

1.429 
(1.179,   1.750) 

1.429 
(1.179,   1.751) 

Savings 1.039 
(0.923,   1.231) 

1.228 
(1.038,   1.501) 

1.228 
(1.038,   1.501) 

Lending  1.138 
(1.004,   1.337) 

 

1.308 
(1.112,   1.588) 

1.322 
(1.112,   1.587) 

Overdraft  1.260 
(1.102,   1.530) 

1.308 
(1.114,   1.570) 

1.308 
(1.114,   1.568) 

90-day Treasury Bill 0.909 
(0.710,   1.242) 

0.759 
(0.563,   1.101) 

0.751 
(0.525,   1.101) 

The reported values are Whittle estimates of d in the frequency domain. Those in parentheses are the 95% 
confidence intervals of non-rejection values of d using Robinson’s (1994) tests. Q = 1 in all cases. 
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Table 3: Estimates of d based on Robinson (1995) for various bandwidth 
parameter values 
 5 10 15 = T0.5 25 50 100 

Deposits 0.560* 0.651* 0.833 1.156 1.369 1.302 

Savings 0.657* 0.741 0.889 1.241 1.268 1.129 

Lending  1.084 0.842 0.966 1.294 1.365 1.268 

Overdraft  1.004 0.834 0.951 1.251 1.300 1.136 

91-day Treasury Bill 0.500 0.500 0.513* 0.560* 1.237 1.129 

95% I(1) 
Confidence Interval 

(0.739, 
1.367) 

(0.739,  
1.260) 

(0.787,  
1.212) 

(0.835,   
1.164) 

(0.883,  
1.116) 

(0.917,   
1.082) 

“ * “ indicates that the null hypothesis of a unit root cannot be rejected at the 5% level.
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Table 4: Estimates of d based on Robinson (1994) using white noise disturbances 
 No regressors An intercept A linear time trend 

Lending – 91 T Bill 1.815 
(1.628,   2.032) 

1.815 
(1.629,   2.032) 

1.815 
(1.629,   2.032) 

Lending – Saving 1.006 
(0.943,   1.089) 

1.006 
(0.941,   1.093) 

1.006 
(0.943,   1.091) 

Deposit – 91 T Bill 1.815 
(1.605,   2.066) 

1.833 
(1.619,   2.088) 

1.833 
(1.619,   2.088) 

Saving – 91 T  Bill 1.832 
(1.636,   2.063) 

1.855 
(1.656,   2.092) 

1.856 
(1.656,   2.092) 

Deposits - Lending 0.937 
(0.875,   1.020) 

0.917 
(0.853,   1.002) 

0.920 
(0.859,   1.002) 

The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 
95% confidence intervals of the non-rejection values of d using Robinson’s (1994) tests. 
 
 
 
 
Table 5: Estimates of d based on Robinson (1994) using Bloomfield disturbances 
 No regressors An intercept A linear time trend 

Lending – 91 T Bill 0.793 
(0.519,   1.175) 

0.794 
(0.525,   1.176) 

0.786 
(0.523,   1.176) 

Lending – Saving 1.113 
(0.993,   1.324) 

1.108 
(0.978,   1.308) 

1.098 
(0.979,   1.297) 

Deposit – 91 T Bill 0.793 
(0.519,   1.175) 

0.599 
(0.371,   0.930) 

0.579 
(0.327,   0.931) 

Saving – 91 T  Bill 0.728 
(0.511,   1.086) 

0.711 
(0.456,   1.039) 

0.711 
(0.452,   1.039) 

Deposits - Lending 1.027 
(0.911,   1.182) 

0.994 
(0.872,   1.157) 

0.994 
(0.884,   1.146) 

The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 
95% confidence intervals of the non-rejection values of d using Robinson’s (1994) tests. Q = 1 in all 
cases. 
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Table 6: Estimates of d in the spreads based on Robinson (1995) for various 
bandwidth parameter values  
 5 10 15 = T0.5 25 50 100 

Lending – 91 T Bill 0.230* 0.283* 0.340* 0.452* 0.500 0.500 

Lending – Saving 1.500 0.993 1.099 1.052 1.135 1.011 

Deposit – 91 T Bill 0.198* 0.213* 0.298* 0.442* 0.500 0.500 

Saving – 91 T  Bill 0.157* 0.162* 0.272* 0.465* 0.500 0.500 

Deposits - Lending 1.500 1.127 0.975 1.070 0.947 0.945 

95% I(0) 
Confidence Interval 

(-0.367, 
0.367) 

(-0.260, 
0.260) 

(-0.212, 
0.212) 

(-0.164, 
0.164) 

(-0.116, 
0.116) 

(-0.082, 
0.082) 

95% I(1) 
Confidence Interval 

(0.739, 
1.367) 

(0.739,  
1.260) 

(0.787,  
1.212) 

(0.835,   
1.164) 

(0.883,  
1.116) 

(0.917,   
1.082) 

“ * “ indicates that the null hypothesis of a unit root is rejected at the 5% level. 


