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The change of resonance widths in an open system under a perturbation of its interior has been
recently introduced by Fyodorov and Savin [Phys. Rev. Lett. 108, 184101 (2012)] as a sensitive
indicator of the nonorthogonality of resonance states. We experimentally study universal statistics
of this quantity in weakly open two-dimensional microwave cavities and reverberation chambers
realizing scalar and electromagnetic vector fields, respectively. We consider global as well as local
perturbations, and also extend the theory to treat the latter case. The influence of the perturbation
type on the width shift distribution is more pronounced for many-channel systems. We compare
the theory to experimental results for one and two attached antennas and to numerical simulations
with higher channel numbers, observing a good agreement in all cases.

PACS numbers: 05.45.Mt, 03.65.Nk, 05.60.Gg

The most general feature of open quantum or wave
systems is the set of complex resonances. They manifest
themselves in scattering through sharp energy variations
of the observables and correspond to the complex poles
of the S matrix. Theoretically, the latter are given by the
eigenvalues En = En− i

2Γn of the effective non-Hermitian
Hamiltonian Heff of the open system [1–4]. The anti-
Hermitian part of Heff originates from coupling between
the internal (bound) and continuum states, giving rise to
finite resonance widths Γn > 0. The other key feature is
that the eigenfunctions of Heff are nonorthogonal [2, 4].
Their nonorthogonality is crucial in many applications; it
influences nuclear cross sections [5], features in decay laws
of quantum chaotic systems [6], and yields excess quan-
tum noise in open laser resonators [7]. For systems in-
variant under time reversal, like open microwave cavities
studied below, the nonorthogonality is due to the com-
plex wave functions, yielding the so-called phase rigidity
[8–10] and mode complexness [11, 12]. Nonorthogonal
mode patterns also appear in reverberant dissipative bod-
ies [13], elastic plates [14], optical microstructures [15]
and lossy random media [16].

Recently, such nonorthogonality was identified as the
root cause for enhanced sensitivity to perturbations in
open systems [17], see also Ref. [18]. Consider the para-
metric motion of complex resonances under internal per-
turbations. This can be modeled by a Hermitian term V
added to Heff , so H′eff = Heff + V . The complex energy
shift δEn = E ′n−En of the nth resonance is then given by
perturbation theory for non-Hermitian operators [17, 19],
yielding in the leading order δEn = 〈Ln|V |Rn〉, where
〈Ln| and |Rn〉 are the left and right eigenfunctions ofHeff

corresponding to En. They form a biorthogonal system;
in particular, 〈Ln|Rm〉 = δnm but Unm ≡ 〈Ln|Lm〉 6=

δnm in general. U is known in nuclear physics as the
Bell-Steinberger nonorthogonality matrix [2, 5], see also
[20]. Crucially, a nonzero width shift δΓn = −2Im δEn is
induced solely by the off-diagonal elements of U [17]

δΓn = i
∑
m

(UnmVmn − VnmUmn) , (1)

where Vnm = 〈Rn|V |Rm〉 = V ∗mn. It vanishes only if the
resonance states were orthogonal (all Um 6=n = 0).

Note that the nonorthogonality measures studied in
Refs. [7–12] are related to the diagonal elements Unn.
Those and the width shift contain complementary in-
formation on nonorthogonality. In particular, the off-
diagonal elements Unm are parametrically stronger for
weakly open systems, when the widths are small com-
pared to the level spacing ∆ (Γ� ∆): then, Un 6=m ∼ Γ

∆

[17], whereas Unn − 1 is of the order of
(

Γ
∆

)2
[12]. This

leads to a higher sensitivity of δΓn to nonorthogonality
effects.

In this Letter, we report the first experimental study
of the width shift statistics for fully chaotic systems us-
ing microwave cavities of different kinds. We consider
both local and global perturbations and also investigate
whether a different behavior occurs in the cases of scalar
and vectorial fields.

Global versus local perturbations.— We consider only
weakly open systems with time-reversal symmetry and
model them by random matrix theory [21, 22]. The
energy levels are then induced by the eigenvalues of a
random matrix drawn from the Gaussian orthogonal en-
semble (GOE). Those N levels are coupled through the
anti-Hermitian part of Heff to M equivalent open chan-
nels [1, 2], characterized by the same coupling κ� 1. In
such a regime, the resonance positions En are given by
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those eigenvalues and reveal universal fluctuations on the
local scale of ∆ ∼ 1

N in the limit N � 1. The resulting
Gaussian statistics of the GOE eigenvectors (correspond-
ing to the wave functions of the closed system) yields the
well-known χ2

M distribution

PM (γ) =
1

2M/2Γ(M/2)
γM/2−1e−γ/2 (2)

for the rescaled resonance widths γn = πΓn/(2κ∆) [2, 3].

To describe local and global perturbations on an equal
footing, we follow Refs. [23, 24] and represent the per-
turbation term as V =

∑r
q=1 αq|q〉〈q|. Its rank r gov-

erns the transition between the local (r small) and global
(r � 1) case. One can interpret V as r point scatter-
ers characterized by the strength coefficients αq, where
q corresponds to their positions. For example, a single
scatterer added to the (closed) system induces an en-
ergy shift δEn = 〈n|V |n〉 = αψ2

n(q) for the nth level,
with ψn(q) = 〈q|n〉 being the wave function component
at point q. However, moving the scatterer from point q to
q′, which we did in our experiment (see Fig. 1), results in
the shift δEn = α(ψn(q)2−ψn(q′)2). The latter is equiva-
lent to a rank-2 perturbation with V = α(|q〉〈q|−|q′〉〈q′|)
[24]. Generally, the variance of the energy shifts is given
by var(δEn) = 2

N2 tr(V 2), which sets up a scale for the
parametric level dynamics [25]. Importantly, the rescaled
energy shifts (“level velocities”) ∼ δEn/

√
var(δEn) ac-

quire universal fluctuations of a distinct type in the case
of local and global perturbations, being given by a K0

distribution (for r = 2) [26] and a Gaussian distribution,
respectively. A gradual transition between the two occurs
quickly as the perturbation rank r grows [24].

In the same limit κ � 1, Gaussian distributed wave
functions result in the following representation for the
rescaled width shifts (“width velocities”) [17]:

yn ≡
δΓn

2κ
√

2var(δEn)
=

√
γn

π

∑
m6=n

zmvm∆

En − Em
. (3)

Here, real zm are normally distributed random variables
(stemming from coupling to the channels) whereas real
vm = N〈m|V |n〉/

√
Tr(V 2) are the normalized matrix

elements (m 6=n) of the perturbation. These quantities
are statistically independent of En and γn, which is a
result of separating independent fluctuations in spectra
and in wave functions of weakly open chaotic systems.

To characterize the universal statistics of the width
velocities (3), we compute their probability distribution

(at the spectrum center) PM (y) = ∆〈
∑N
n=1 δ(En)δ(y −

yn)〉, where 〈· · ·〉 denotes the ensemble average. Making
use of the convolution theorem, it can be cast as follows
[17]

PM (y) =

∫ ∞
0

dγ
√
γ
PM (γ)φ

(
y
√
γ

)
, (4)
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FIG. 1. (color online). The experimental setup (left)
for two microwave cavities with one antenna (positioned at
×) together with the parametric dependence (right) of the
Weyl normalized energies (+) and widths (red vertical lines):
(a) Sinai stadium with a movable wall (R1=W=240 mm,
R2=50 mm), L ranging from 1.5 to 70.5 mm in steps of
0.5 mm. (b) Rectangular billiard (L=340 mm, W=240 mm)
with 19 randomly placed scatterers (black dots) of radius
rc=2.3 mm. One additional scatterer (red open circle) with
radius rp1=2.3 mm or rp2=9.75 mm was moved along the line
xs (green arrow) in steps of δr=1 mm or 0.5 mm, respectively.

where the function φ(y) is defined by

φ(y) =

∫ ∞
−∞

dω

2π
eiωy

〈∏
m6=n

exp

{
−i ωzmvm
πEm/∆

}〉
. (5)

For global perturbations, the quantities vm become
normally distributed random variables [17], making the
integration over {zm, vm} straightforward. It results in
the GOE average of certain spectral determinants, which
was also derived in Ref. [17], with the explicit form of φ
being

φ(gl)(y) =
4 + y2

6(1 + y2)5/2
. (6)

When substituted into Eq. (4), it leads to the distribution

of the width velocities in the global case, P(gl)
M (y).

For local perturbations, vm have more complicated
statistics. However, an exact result can be found in the
particular case of r equivalent scatterers (all |αq| = α),
which is of interest here. To this end, we first treat vm =
N√
r
(~ψm · ~ψn) as a scalar product of two r-dimensional

vectors of the corresponding wave function components.

It has a natural parametrization vm =
√
ηn√
r
νm in terms

of the vector length |~ψn| =
√
ηn and the projection νm.

The advantage of such a parametrization is that ν and η
are statistically independent [12], with a normal and χ2

r
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distribution [cf. Eq. (2)], respectively. Then, a Gaussian
integration over {zm, νm} in Eq. (5) yields

φ(loc)
r (y) =

〈√
r
√
η
φ(gl)

(√
ry
√
η

)〉
η

, (7)

where φ(gl) is given by Eq. (6) and the remaining average
over η is left at the end [27]. Combination of Eqs. (4)
and (7) solves the problem exactly at arbitrary rank r.

Functional dependencies of φ
(loc)
r (y) and φ(gl)(y) are

the same in the tails and differ only in the bulk, but
their difference diminishes quickly as r grows. For small
channel numbers, the difference becomes even less notice-
able for the width velocity distribution PM (y), e.g. see
Fig. 2, due to the additional integration in Eq. (4) over
the widths. Since the width distribution (2) tends to

δ(γ−M) asM →∞, one has PM�1(y) = 1√
M
φ

(loc)
r ( y√

M
)

as the limiting distribution of the width velocities in this
case. Hence, many-channel systems turn out to be more
sensitive to the impact of finite r than their few channel
analogues. We also mention the general power-law decay
PM (y) ∝ |y|−3 of the distribution at |y| � 1, which can
be linked to the linear level repulsion [17]. Such tails get
exponentially suppressed in systems with rigid spectra
without spectral fluctuations [12, 28].

Scalar experiments.— To investigate the statistics of
the width velocity for scalar fields we use cylindrical (two-
dimensional) microwave cavities, where the z component
of the electric field corresponds to the quantum wave
function ψ and the wave number k2 to the energy E [29].
Their heights are 8 mm, leading to a cutoff frequency of
νcut = 18.75 GHz and the frequency range used around
5 GHz (wavelength 6 cm). Figure 1 shows the three dif-
ferent systems. The first one is a chaotic Sinai-stadium
billiard [see Fig. 1(a)], which we will denote as the global
perturbation. We used the range from the 50th to 100th
resonance for the width velocity distribution. The second
(third) system is a rectangular cavity with 19 scatterers,
where an additional scatterer with the same (a larger)
radius was moved [see Fig. 1(b) and Ref. [26] for further
details], being denoted by local 1 (local 2). Again we took
resonances from the 50th to 100th (85th) for the local 1
(2) case. All three systems are chaotic and in the ballistic
regime, showing no level crossings experimentally.

The complex energies of the isolated resonances have
been obtained by Lorentzian fitting. In all cases the ener-
gies and widths are normalized to the mean level spacing
∆ by the Weyl formula En/∆ = πA(νn/c)

2 + P (νn/c),
where νn, A, and P are the eigenfrequency, area, and
circumference, respectively. In case of the global per-
turbation, this unfolding also removes the global energy
shift due to the area change.

The parametric dependence of the complex resonances
for these systems is shown in Fig. 1. Blue crosses indi-
cate the resonance positions and the length of the red
vertical lines corresponds to their widths. A distinct dif-
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FIG. 2. (color online). Distribution of the experimental
normalized width velocities y for three systems corresponding
to Fig. 1: global (N), local 1, (•) and local 2 (�). The solid
(dashed) curve stands for the theoretical prediction for the
global (local, r=2) perturbation with M = 1. The lower inset

shows the behavior of φ(gl) and φ
(loc)
2 , see Eqs. (6) and (7).

ference in the parametric level dynamics for the global
and local perturbations is already visible here. This is
further reflected in the level velocity distribution, which
is a Gaussian distribution (K0 distribution) in the global
(local) case; both cases have been experimentally studied
in Refs. [26, 30]. Notably, such differences are much less
pronounced for the width changes, as already discussed.

Obtaining the normalized width shifts (3) from the
measured data requires two parameters: the antenna cou-
pling and the variance of δEn. Both can be fixed in ad-
vance. The antenna coupling can be calculated by [31]

κ =
|1− 〈S11〉ν,p|2

1− |〈S11〉ν,p|2
, (8)

where S11 is the complex reflection amplitude and spe-
cial care has been taken to remove global phase shifts
induced by the antennas. The average 〈· · ·〉ν,p was per-
formed over the whole investigated frequency range and
for all parameters p, giving κ = 0.180 (global), κ = 0.065
(local 1), and κ = 0.098 (local 2). We also took into ac-

count the absorption width Γ
(w)
n due to the finite conduc-

tivity of the metallic walls, but neglected its variations,

since Γ
(w)
n as a function of the parameter induces much

smaller changes than those due to the coupled antennas.

Note that we do not assume that Γ
(w)
n is the same for all

resonances [11, 32, 33].
The experimental distributions of the width velocities

are presented in Fig. 2. After the normalization described
above, there is no free parameter when comparing with
the theoretical result (4), as M is fixed by the number
of attached antennas, i.e. M = 1 here. In all cases, we
find a good agreement with the corresponding theory.
However, the amount of statistics is not sufficient to dis-
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tinguish between the global and local perturbations in
the width velocity distribution. At the only point where
this would be possible statistically (y close to 0), the ex-
perimental approximation of neglecting effects induced
by absorption is no longer valid.

Vectorial electromagnetic cavities.— To support the
universality of width shift fluctuations in the three-
dimensional case of electromagnetic vector fields, we
present experimental results as well as numerical sim-
ulations in a chaotic reverberation chamber (RC). We
emphasize for this case the dependence on the channel
number M through various types of losses induced in
the cavity either through antennas (experiments) or lo-
cally distributed Ohmic dissipation at walls (numerical
simulations). The experiments were performed in a com-
mercial RC of the approximate volume 19 m3 that was
made chaotic by adding three metallic half spheres on
the walls [34] (inset of Fig. 3). The parametric varia-
tion corresponds to the rotation of an asymmetric stirrer
acting as a global perturbation. The measurements were
performed via either one single dipole antenna connected
in a wall (M = 1) or between the latter antenna and a
monopole antenna (M = 2) placed inside the cavity far
from all walls. The mean quality factor was about 2500,
corresponding to a moderate average modal overlap of
d = 〈Γ〉/∆ ' 0.4−0.5. By applying the harmonic inver-
sion [35], we extracted around 70 resonance frequencies
and their widths for each of 128 (90) positions of the ro-
tating stirrer at M = 1 (M = 2). The resulting distribu-
tions of the width velocities are shown in Fig. 3, demon-
strating a good agreement with the theoretical predic-
tions (4) and (6) in both cases [36]. Thus the width shift
distribution, theoretically obtained for quantum chaotic
systems, i.e. scalar fields, appears to be valid also for
vectorial electromagnetic fields.

It is difficult to investigate the role of higher channel
numbers experimentally, since the coupling of each an-
tenna would have to be reduced, leading to too small
signal-to-noise ratios for any practical extraction of the
complex resonances. Moreover, in such a case, all dissi-
pative losses would become of the same order as those
induced by antennas. Therefore, we performed numer-
ical simulations using a finite-element method and cal-
culated the resonances of two different configurations of
the chaotic RC described in Refs. [34, 37], where the cou-
pling was mimicked by local absorption at the bound-
aries through Ohmic dissipative square patches scattered
over the walls. By tuning the conductivity, size, and
number of the patches, we can control the quality fac-
tor and hence the effective number of weak absorptive
channels, which can be estimated as M = 2〈Γ〉2/var(Γ)
[38]. With the coupling strength given by κ ' πd/(2M),
we obtained M = 10, d = 0.34, and κ10 = 0.05 in
one configuration investigated and M = 35, d = 0.51,
and κ35 = 0.024 in the other. For both configurations,
the width velocity distributions are presented in Fig. 3,
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FIG. 3. (color online). Distribution of the width veloc-
ities for several configurations of the chaotic reverberation
chamber (shown in the inset) with rotating stirrer acting as
a global perturbation. Experimental results correspond to
M=1 and M=2 (circles), and numerical simulations to M=10
and M=35 (squares). The lines stand for the corresponding
analytical results. For the normalization of the width shifts a
fitted value of the coupling was used, yielding κM=1 = 0.45,
κM=2 = 0.16, κM=10 = 0.049, and κM=35 = 0.019.

showing an excellent agreement with the theoretical pre-
dictions.

In conclusion, we experimentally verified the theoreti-
cal results for the width shift distribution [17] for global
perturbations for scalar as well as for electromagnetic
vector fields, supporting the universality of width shift
statistics in weakly open chaotic systems. Additionally,
we extended the theoretical approach to arbitrary rank
perturbation, which was also found to be in good agree-
ment with our experimental findings.
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(Berlin) 8, 733 (1999).
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