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We study a class of network growth models in which the choice of attachment by new nodes is
governed by intrinsic attractiveness, or fitness, of the existing nodes. The key feature of the models
is a feedback mechanism whereby the distribution from which fitnesses of new nodes are drawn
derives from the evolving instantaneous node degree distribution. In the case of linear mapping
between fitnesses and degrees, the fixed point degree distribution is asymptotically power-law, while
in the non-linear case the distributions converge to the stretched exponential form.
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I. INTRODUCTION.

Models of dynamically evolving complex networks have proved to be powerful tools for describing arrays of interact-
ing agents in various studies of natural and societal phenomena [1]. Network growth models can be broadly separated
into two classes. Models belonging to the first class can be generally characterized as having the growth rules gov-
erned by the (dynamically evolving) current network topology. The paradigmatic example of this type of model is
the preferential attachment mechanism [1–3] where a new node finds a parent to which it attaches depending on the
parent’s number of connections (degree) at the time of attachment. Models of this type are well-known to generate the
topological characteristics, such as power-law degree distributions, that are frequently observed in empirical network
systems.

A significant requirement of the preferential attachment rules is that every new node joining the network must
possess complete and updated information about the degrees of every existing node in the network. In a practical
setting, such information may not always be readily available. For example, when concluding a business deal or
establishing a partnership, information about the overall reputation of a company may be more accessible than the
number of their current suppliers and clients. Similarly, research collaborations are typically established on the
basis of prospective collaborators’ expertise and reputations rather than simply the total number of past (or current,
depending on how a link is defined) collaborations.

Such considerations provided one of the motivations for the study of a different class of growth mechanisms, variously
known as hidden variable or fitness-based models [4–7]. The models of this type are characterized by probabilistic
rules for forming connections between nodes based on a static measure of intrinsic node attractiveness, usually termed
fitness. Both the distribution of fitnesses and the connection rules are given by a priori arbitrary functions, thus
allowing a considerable amount of tuning in such models. This feature enables fitness-based models to mimic a
variety of network topologies, in particular, subject to some constraints, they can be tuned to reproduce a given type
of degree distributions and even degree correlation functions [4, 5, 7]. This tunability makes fitness-based models
useful as a modeling tool, but also imparts a degree of arbitrariness which makes them less attractive as a robust
explanation for the universality of naturally observed behaviors. Neither of the above two classes of models is likely to
be observed empirically in a pure form. However, many realistic models would contain elements of both mechanisms:
The degree of a node is indeed a realistic measure of attractiveness, but the relation of the actual proxy used to guide
new connections to instantaneous node degrees may be indirect.

As shown in [7], distributions of node degrees in fitness-based network growth models are generically broader than
the “input” distributions of fitnesses. For example, if all nodes have equal fitnesses (a delta-peaked distribution) the
resulting degree distribution is exponential, while an exponential distribution of fitnesses leads to stretched exponential
distribution of degrees. Crucially, however, this broadening saturates at power-law distributions, so that a fitness
distribution that asymptotically behaves as a power law generates a degree distribution with a matching asymptotic
power law tail [6, 7].

A natural question therefore arises whether power-law behavior can be generated in fitness-based models as a fixed
point. Quite generally, ubiquitous power-law degree distributions of observed networks are likely to be enforced by
fixed point behaviors insensitive to microscopic details of diverse network growth mechanisms, and it is therefore of
interest to identify the possible fixed point scenarios. This consideration motivates the models considered in this
paper: The central goal in constructing the models is to retain the concept of node fitness as separate from the node
degree, while allowing for feedback from the dynamically evolving network topology to the fitness distribution.

II. THE LINEAR MODEL.

A. The tree model.

The growth models are formulated in discrete time: at every integer time step a new node joins the network,
attaching to a parent node chosen according to the probabilistic rule specified below. We first consider the simplest
version of the model which results in a tree network: Each new node has a single parent node to which it attaches
at the time of joining the network, and there are no rewiring mechanisms. Therefore the total number of nodes at
time t is deterministic: Nt = t+N0, where N0 ∼ O(1) is the number of nodes in the seed network. In the following,
all consideration is restricted to the asymptotic t ≫ 1 regime, and sub-leading N0-dependent terms are consistently
dropped.

Denoting the fitness of the existing i-th node as xi, the probability that the new node joining at time t+1 chooses
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node i as its parent is linear in fitness:

πt(i) =
xi∑t
j=1 xj

. (1)

In the asymptotic long-time limit the normalizing denominator simplifies:
∑t

j xj → tx̄t, where x̄t is the expectation
of node fitness at time t.
The key element of the model which implements the feedback feature is the following modeling assumption: the

fitness of each new node xt+1 is drawn at random from the instantaneous degree distribution pt(k) at time t. The
core theoretical motivation for studying this feedback mechanism is the fact that the “power law generates power
law” results in Refs. [6, 7] provide a strong hint that this type of feedback may generate a power-law fixed point. As
will be shown below, this conjecture is indeed confirmed by an explicit calculation, with the fixed point characterized
by a unique power-law exponent. On the empirical side, fitness of a new node can be thought of as a credential. The
proposed model corresponds to the situation where the credential of a node is fixed at the time of entry into the
network, as it may happen in, e.g., some professional networks where the reputation of a mentor or an alma mater
may be determinative of a new entrant’s credentials.
Analysis of the model is simplified by the fact that x̄t = k̄, where k̄ is the average node degree. Since the growth

mechanism generates a tree, up to O(1) corrections inherited from the seed value N0, the total number of edge endings
is twice the number of nodes, and hence k̄ = 2 independent of t.
Let pt(k|x, τ) be the probability that a node which joined the network at time τ with fitness x has degree k at time

t > τ . It follows from Eq. (1) that pt(k|x, τ) satisfies the following rate equation in the t ≫ 1 regime:

pt+1(k|x, τ) = pt(k − 1|x, τ) x
2t
[1− δk,1] + pt(k|x, τ)

(
1− x

2t

)
, (2)

where δi,j is the Kronecker symbol. In the continuous time limit, the corresponding generating function G(t, s|x, τ) =∑∞
k=1 pt(k|x, τ)sk satisfies

∂

∂ ln t
G(t, s|x, τ) = x

2
(s− 1)G(t, s|x, τ). (3)

The boundary condition is determined by the fact that a newly-joined node is connected only to its parent, and
therefore has degree equal to 1: limt→τ+ pt(k|x, τ) = δk,1, hence G(τ+, s|x, τ) = s. The equation on G(t, s|x, τ) is
solved by

G(t, s|x, τ) = s
(τ
t

)x(1−s)/2

. (4)

The global generating function G(t, s) =
∑∞

k=1 pt(k)s
k is obtained by averaging G(t, s|x, τ) over the fitness x and the

time of joining τ . The feedback mechanism in the model dictates that x is distributed according to pτ , therefore

G(t, s) =

∫ t

0

dτ

t

∞∑
x=1

pτ (x)s
(τ
t

)x(1−s)/2

= s

∫ 1

0

dzG
(
zt, z

1−s
2

)
, (5)

where the second equality is obtained by changing the integration variable to z = τ/t, and substituting the definition
of the global generating function.
The generating function G(s) =

∑∞
k=1 p(k)s

k of the corresponding stationary distribution p(k) therefore satisfies
the following integral equation:

G(s) = s

∫ 1

0

dzG
(
z

1−s
2

)
. (6)

It is convenient to transform this equation back to the distribution p(k) itself:

p(k) =
∞∑

n=1

2p(n)

n

(
n

n+ 2

)k

. (7)

The matrix operator on the right is positive, and it is easy to see that it possesses an eigenvalue equal to 1 corresponding
to a positive eigenvector:

∞∑
k=1

2

n

(
n

n+ 2

)k

= 1. (8)
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It is also easy to check that this equation automatically satisfies the k̄ = 2 property, which is enforced by the growth
rules:

k̄ =
∞∑
k=1

kp(k) =
∞∑
k=1

∞∑
n=1

2p(n)

n
k

(
n

n+ 2

)k

=
∞∑

n=1

2p(n)

n+ 2

1(
1− n

n+2

)2 =
∞∑

n=1

1

2
(n+ 2)p(n) = 1 + k̄/2, (9)

hence k̄ = 2.
The calculation above can be generalized to calculate the second and the third moments of p(k). For example,

expressing the second moment of pk via the l.h.s. of Eq. (7) gives

k2 =
∞∑
k=1

k2p(k) =
∞∑
k=1

∞∑
n=1

2p(n)

n
k2

(
n

n+ 2

)k

=
∞∑

n=1

1

2
p(n)(n+ 1)(n+ 2), (10)

hence

k2 =
1

2
k2 +

3

2
k̄ + 1, (11)

so that k2 = 8. Similarly,

k3 =
∞∑

n=1

1

4
p(n)(n+ 2)(3n2 + 6n+ 2) =

3

4
k3 + 3k2 +

7

2
k̄ + 1, (12)

thus k3 = 128.
The technique, however, runs into a seeming contradiction if an attempt is made to calculate the 4th moment:

the coefficient of k4 in the r.h.s. is greater than 1, seemingly implying that the moment is negative. The latter
is impossible, however, since Krein-Rutman theorem together with Eq. (8) ensures that the dominant eigenvector

of Knk = 2
n

(
n

n+2

)k

corresponding to the eigenvalue 1 is positive. It follows that the fourth moment of the degree

distribution does not exist, thus confirming the asymptotic power-law nature of the distribution. The precise exponent
of the power-law decay of p(k) can be obtained by asymptotic matching of the coefficient of the fractional moment.
Consider the fractional moment of the distribution defined as

µβ =
∞∑
k=1

kβp(k). (13)

Substituting this definition into Eq. (7), we find

µβ =

∞∑
k=1

kβ
∞∑

n=1

2p(n)

n

(
n

n+ 2

)k

=

∞∑
n=1

2p(n)

n
Li−β

(
n

n+ 2

)
. (14)

Let us assume that β is close to the critical value α at which the moment becomes divergent. In this regime the
sum is dominated by large values of n, and their contribution is obtained by using the leading asymptotics of the
polylogarithm Li−β(z) ∼ Γ(1 + β)(− ln z)−β−1 +O(1) [8]. Equation (14) takes the form

µβ =
∞∑

n=1

Γ(1 + β)

2β
nβp(n) + rβ =

Γ(1 + β)

2β
µβ + rβ , (15)

where rβ is ∼ O(1). For any value β such that Γ(1+β)
2β

< 1, the above expression relates µβ and rβ : µβ = rβ/(1 −
Γ(1+β)/2β). Since µβ is positive by definition for all values β such that µβ exists, this implies that rβ > 0 for β < α,
where α is defined by

1 = Γ(1 + α)/2α, (16)

or α ≈ 3.45987. On the other hand, rβ is given by a convergent series, hence it is regular at β = α, and therefore µβ

exhibits a 1/(α− β) divergence as β → α, and does not exist for β ≥ α. It follows that p(k) asymptotically behaves
as k−α−1. The asymptotic power-law behavior of the degree distribution confirms the core conjecture stated earlier:
if the fitness distribution of newly joined nodes dynamically tracks the degree distribution, the latter converges to
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a fixed point characterized by a power-law decay with a unique value of the exponent. The 1/(α − β) decay is also
consistent with absence of any logarithmic corrections to k−α−1, since it matches the first-order pole of the Riemann
zeta-function ζ(s) at s → 1. This will also be demonstrated below using an explicit calculation.
The full shape of the distribution is reasonably well approximated by the discrete analog of the power-law function

[9],

pfit(k) ≈ CαΓ(k + a)/Γ(k + a+ α+ 1), (17)

where Cα = αΓ(a + α + 1)/Γ(a + 1), and numerical fitting gives a ≈ 1.0731. Fig. 1 shows the degree distribution
obtained after 4× 109 time steps of direct simulation of this model, together with the fitting function Eq. (17), and
its the asymptotic power law tail Cαk

−α−1.
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FIG. 1: Log-log plots of the degree distribution function: simulation (dots), the fitting function pfit(k) (solid line),
and the asymptotic power law (dashed line) in the linear model.

Although Eq. (6) does not appear to possess a closed form analytic solution, the kernel in Eq. (6) is a compact
operator with spectral radius equal to 1, hence the solution can be obtained via a convergent sequence of iterations.
Changing variables in Eq. (6) from z to y = z(1−s)/2, we obtain the following iterative relation:

Gn+1(s) =
2s

1− s

∫ 1

0

y
1+s
1−sGn(y)dy. (18)

Choosing G0(s) = (sα/(1 + α + a)) 2F1(1, 1 + a; 2 + a + α; s) (corresponding to the fitted distribution (17)) as the
zeroth order approximation, the first iteration can be performed analytically, giving

G1(s) =
2sα

(3− s)(1 + a+ α)
3F2

(
1, 1 + a,

3− s

1− s
; 2 + a+ α, 1 +

3− s

1− s
; 1

)
. (19)

The results of subsequent iterations do not have closed form expressions in terms of standard special functions, and
have to be performed numerically. Figure 2 shows G0(s) and the (numerical approximation to) the fixed point solution
G∞(s).
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FIG. 2: The zeroth order (dashed), and the fixed-point (solid line) generating functions in the linear model.

In order to restore the coefficients p(k) from G∞(s), Eq. (18) is interpreted as an integral representation of
G(s) = G∞(s), which therefore allows to perform its analytical continuation from [0, 1] to the unit circle. The degree
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FIG. 3: The logarithm of the node degree distribution in the linear model: analytical results complemented by
numerical evaluation of the fixed point generating function (solid line) vs. direct numerical simulation of the

network growth process.

distribution p(k) now straightforwardly follows from the application of the residue theorem. Figure 3 shows the degree
distribution obtained using this method, plotted together with the outcome of the direct simulation of the model.
We now demonstrate explicitly that the power-law asymptotics of p(k) is not augmented by any logarithmic cor-

rections. Figure 4 shows the the plot of p(k)kα+1/Cα. It is worth remarking that, although the ratio p(k)kα+1/Cα

is seen numerically to approach saturation, the approach is sufficiently slow that it is not feasible to unambiguously
demonstrate the absence of logarithmic corrections using numerical results. However, this can be achieved analytically
by analyzing the asymptotic behavior of truncated divergent moments of p(k).
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FIG. 4: Node degree distribution in the linear model scaled by the inverse asymptotic power-law ansatz.

Consider truncated fractional moments of degree β > α:

Mβ(K) =
K∑

k=1

kαp(k). (20)

Substituting this into the self-consistency condition on p(n) given by Eq. (7), we obtain

Mβ(K) =
K∑

k=1

∞∑
n=1

kβ
(

n

n+ 2

)k
2p(n)

n
=

∞∑
n=1

2p(n)

n

[
Li−β

(
n

n+ 2

)
−

(
n

n+ 2

)K+1

Φ

(
n

n+ 2
,−β,K + 1

)]
, (21)

where Φ is the Lerch zeta-function. In the asymptotic K → ∞ regime, the behavior of this truncated moment is
controlled by the large-k asymptotics of p(k). More precisely, for a fixed β, we require (β − α)K ≫ 1. We now

substitute for p(k) an asymptotic ansatz p(k) ∼ C̃k−α−1f(ln k), where C̃ is a proportionality constant, and f(x) is
slower than exponential so that f(ln k) is slower than any power of k. Consistently utilizing the large-K approximation,
we find the dominant behavior of Mβ(k) to be given by

Mβ(K) ∼ C̃

∫ K

nβ−α−1f(lnn)dn ∼ Kβ−α

∫ ∞

0

e−t(β−α)f(lnK − t)dt. (22)
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In order to extract the dominant large-K behavior of the r.h.s. in Eq. (21), we approximate the double sum in r.h.s.
in Eq. (21) by integrals over variables scaled by K. This gives the following leading asymptotics:

C̃Kβ−α2−β

∫ ∞

0

dζζβe−ζ

∫ ∞

ζ/2

dy

y
yα−βf(lnK − ln y), (23)

where ζ corresponds to 2k/n, and y corresponds to K/n. The same procedure gives the following representation for
the moment in the l.h.s. of (21):

Mβ(K) ∼ C̃Kβ−α

∫ ∞

0

dy

y
yα−βf(lnK − ln y) (24)

To check consistency, we first substitute the simplest ansatz f(lnK) = 1, corresponding to a pure power-law

asymptotic tail in p(k). This immediately gives in the l.h.s. of Eq. (20) Mβ(K) ∼ C̃Kβ−α/(β − α). The inner
integral in the r.h.s. is (ζ/2)α−β/(β − α), and therefore the outer integral over ζ takes the form

C̃
Kβ−α

β − α
2−α

∫ ∞

0

dζζαe−ζ = C̃
Kβ−α

β − α

Γ(α+ 1)

2α
, (25)

the last factor being equal to 1 by virtue of the definition of α, Eq. (16). This result shows that a pure asymptotic
power-law form of p(n), which was originally conjectured by identifying the critical index α separating convergent and
divergent moments is indeed consistent with the dominant asymptotic behavior of the truncated divergent moments.
Returning now to the full structure involving the conjectured logarithmic corrections given by f , we note that if

the condition K(β − α) ≫ 1 is satisfied, the integrals are dominated by values of y such that ln y ≪ lnK. Therefore
an asymptotic expansion can be obtained by expanding f in powers of ln y near lnK. Since f(x) is assumed slower
than exponential to ensure that it cannot affect the overall exponent of the power law, each subsequent derivative of
f is parametrically (in lnK) smaller than the preceding one. (This argument, of course, pre-supposes the existence
of the derivatives, however, f(x) can be assumed to be obtained by analytic continuation from discrete points lnn.)
The moment in the l.h.s. now takes the form

Mβ(K) ∼ C̃Kβ−α

[
f(lnK)

β − α
+

f ′(lnK)

(β − α)2
+

f ′′(lnK)

(β − α)3
+ . . .

]
.

The expansion on the right, on the other hand, has a more complicated structure. E.g., in the first order, the inner
integral gives f ′(lnK)(ζ/2)α−β

[
1/(β − α)2 + ln(ζ/2)/(β − α)

]
. After the second integration, the first term exactly

matches the corresponding term in the expansion of Mβ(K), however, the second term gives an additional contribution

proportional to f ′(lnK) with a positive coefficient
∫∞
0

exp(−ζ)
(

ζ
2

)α

ln
(

ζ
2

)
dζ ≈ .6857. Therefore, f ′(lnK) = 0.

Similarly, at all higher orders m ≥ 1,
∫∞
ζ/2

dy
y yα−β lnm y gives (ζ/2)α−β/(β − α)m+1 times a polynomial in powers

of (β − α) ln(ζ/2) with positive coefficients, and each resulting integral
∫∞
0

exp(−ζ)
(

ζ
2

)α

lnl
(

ζ
2

)
dζ with integer l’s

is also positive for the given value of α. Hence, all derivatives of f must vanish, and its constant value is absorbed in
C̃. We have thus shown that the asymptotic decay of p(k) at large k is a pure power law with the exponent α+ 1.

B. Generalization to models with re-wiring.

We now generalize the model considered in the previous subsection by allowing for addition of new edges connecting
existing nodes. At each discrete time t+1 either (with probability q) a new node joins the network, acquiring a fitness
value as described above, and connecting to an existing node according to Eq. (1), or (with probability 1− q) a new
edge is added connecting existing nodes i and j with probability

Πt(i, j) =
xixj

1
2

∑Nt

n=1

∑Nt

m=1 xnxm

. (26)

The total number of nodes Nt is now a stochastic variable, however, in the t ≫ 1/q limit it can be replaced by its
expectation qt, corrections being sub-leading in 1/t. It is also immediately evident that the expected node degree is
k̄q = 2t/qt = 2/q (again neglecting sub-leading terms in 1/t). The relation x̄t = k̄q is still true, and therefore the
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denominator in Eq. (26) asymptotically converges to 1
2N

2
t x̄

2
t → 2t2, while the denominator in Eq. (1) still converges

to Ntx̄t → 2t. Consequently, the total probability that a node with fitness x acquires a link at time t+ 1 is

q
x

2t
+ (1− q)

x
∑

j xj

2t2
→ x

2t
(2− q).

Denoting ν = 2− q for brevity, equation (2) now takes the form

pt+1(k|x, τ) = pt(k − 1|x, τ)xν
2t

[1− δk,1] + pt(k|x, τ)
(
1− xν

2t

)
. (27)

Repeating the steps leading to Eq. (6) leads to

G(s) = s

∫ 1

0

dzG
(
zν

1−s
2

)
, (28)

and the analog of Eq. (7) is

p(k) =

∞∑
n=1

2p(n)

nν

(
nν

nν + 2

)k

. (29)

As an example, Fig. 5 and Fig. 6 show the generating function and the corresponding degree distribution for the case
q = 1/2 obtained by employing the iteration procedure outlined in the previous subsection.
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FIG. 5: The fixed-point generating function in the case q = 1/2.
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FIG. 6: Degree distribution in the case q = 1/2.

Calculation of the second moment of p(k) gives

k2q =
1 + ν

(1− ν2/2)(1− ν/2)
, (30)

so that it exists only if 2 −
√
2 < q ≤ 1. Generalizing the derivation that led to Eq. (16) one now finds that the

exponent αq of the asymptotic decay pk ∼ k−αq−1 is given by the solution of the equation

1 = Γ(1 + αq)(ν/2)
αq . (31)
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The absence of logarithmic corrections is established straightforwardly using the results of the previous subsection.
Since 1 ≤ ν < 2, solutions of Eq. (31) lie in the interval 1 < αq ≤ α. This is the range where the estimated exponents
of most of the empirically observed networks can be found. Figure 7 shows the graph of the exponent αq + 1 plotted
against the expected node degree k̄q = 2/q. The dots on the graph correspond to the empirically observed values for
a number of networks that have been compiled by KONECT (the Koblenz Network Collection) [10]. Only the data
corresponding to undirected networks with simple edges are shown [11].
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FIG. 7: Exponent of the power-law decay against the expected node degree, together with empirically observed
values.

III. THE NONLINEAR MODELS.

A natural generalization of the models considered in the previous Section is to allow for non-linear mapping between
fitnesses and degrees. For technical reasons, it is convenient to transfer the non-linearity into the definition of the
attachment probability:

πt(i) =
f(xi)∑t
j=1 f(xj)

, (32)

where f(x) is the linking function that implements the mapping. The fitnesses xi, as before, are assigned to each new
node probabilistically from the instantaneous distribution of degrees. To avoid cluttering the calculation, only the
tree version of the model is considered here. Repeating the steps leading to Eq. (6), we obtain the following equation
on the average stationary generating function of the degree distribution:

G(s) = s

∫ 1

0

dz
∑
n

p(n)z(f(n)/f̄)(1−s), (33)

where a crucial assumption has been made that in the long-time limit the average linking function

f̄ = lim
t→∞

(1/t)
t∑

j=1

f(xj)

is finite. The limits of validity of this assumption will be discussed below.
Expanding in the powers of s, we find the analog of Eq. (7):

p(k) =
∞∑

n=1

f̄p(n)

f(n)

(
f(n)

f̄ + f(n)

)k

. (34)

It is straightforward to verify that the sum rule k̄ = 2, enforced by the growth rules, is satisfied. The assumption that f̄
is finite is automatically true for any f(x) that grows asymptotically at large x no faster than linear. This follows from
the fact that k̄ =

∑
k kpt(k) is finite and equal to 2 for any distribution, whether stationary or not. Therefore, if f(x) <

Ax for some finite constant A, then E[(1/t)
∑t

j=1 f(xj)] =
∫ t

0
(dτ/t)

∑∞
k=1 f(k)pτ (k) ≤ A

∫ τ

0
(dτ/t)

∑∞
k=1 kpτ (k) = 2A,

and it can be similarly shown that the variance vanishes as t → ∞ [12].



10

Let us first consider the case where f(x) ∼ x as x → ∞. The coefficient of proportionality can be set to one since
it is scaled out of Eq. (32). Using again the fractional moment method, we find the analog of Eq. (16):

1 = Γ(αf + 1)/f̄αf (35)

which determines the critical index αf separating convergent and divergent moments and therefore determines the
power-law asymptotics of the node degree distribution. Unlike the closed form structure of Eq. (16), the equation on αf

involves f̄ whose value has to be determined self-consistently from the full stationary distribution p(k). Qualitatively,
f̄ decreases if the the weight of the linking function is moved away from lower values of k. It is easy to see from Eq.
(35) that f̄ = (αf/e)(2παf )

1/2αf asymptotically at large αf , and numerically the relation is approximately linear at
all f̄ ≥ 1, as seen in Fig. 8.
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FIG. 8: Solution of Eq. (35) as a function of f̄ .

For a given choice of f(k) the degree distribution p(k) can be found numerically using iterations of the matrix
kernel in Eq. (34) which, as before, has the spectral radius equal to 1. The two examples shown in Fig. 9 and Fig.
10 below correspond to the choices

f (1)(x) =

{
1/4, x = 1
x, x ≥ 2

(36)

and

f (2) =

 1/4, x = 1
1/2, x = 2
x, x ≥ 3.

(37)

The exponents of the corresponding asymptotic power laws are α
(1)
f = 2.152 and α

(2)
f = 1.488, which are found by

numerically evaluating f̄ and substituting the values f̄ (1) = 1.478 and f̄ (2) = 1.204 into Eq. (35).

1 2 3 4 5 6 7
log k

-20

-15

-10

-5

log pHkL

FIG. 9: Logarithm of the node degree distribution in the nonlinear model with the linking function f (1) together

with the asymptotic power law with the exponent α
(1)
f = 2.152. The constant offset is found by numerical fitting.

Let us now consider the cases when f(x) is asymptotically nonlinear. If f(x) grows faster than x, the degree
distribution does not possess a stationary fixed point, as can be seen from the following argument. Suppose f(x) ∼
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FIG. 10: Logarithm of the node degree distribution in the nonlinear model with the linking function f (2) together

with the asymptotic power law with the exponent α
(2)
f = 1.488. The constant offset is found by numerical fitting.

x1+ϵ, ϵ > 0, and p(k) converges to a stationary distribution with the asymptotic behavior k−2−γ (the sum rule k̄ = 2
requires γ > 0). Consider Eq. (34) in the limit k ≫ 1. The factor [f(n)/(f̄ + f(n))]k suppresses all contributions to
the sum over n below nk such that f(nk) ∼ kf̄ . Therefore the sum in the r.h.s. of Eq. (34) can be estimated as

f̄
∞∑

n∼nk

p(n)/f(n) ∼ f̄
∑
n∼nk

n−3−γ−ϵ ∝ k−(2+ϵ+γ)/(1+ϵ). (38)

Since the sum is equal to pk, we have (2 + ϵ+ γ)/(1 + ϵ) = 2+ γ, or 0 = ϵ(1 + γ). This equation cannot be solved for
ϵ > 0 and γ > 0, thus the assumption that a stationary distribution exists leads to a contradiction.
Finally, if f(x) is asymptotically sub-linear, f(x) ∼ x1−ϵ with ϵ > 0, we assume the following ansatz of p(k) at large

k:

p(k) ∼ exp{−γkδ} (39)

with some positive constants γ and δ < 1. The sum in the r.h.s. of Eq. (34) in the large-k regime can be approximated
by the corresponding integral,

∑
n

f̄

f(n)

(
f(n)

f̄ + f(n)

)k

∼
∫

dn
f̄

n1−ϵ
exp{−kf̄/n1−ϵ − γnδ}, (40)

and evaluated in the saddle-point approximation. The saddle-point equation is solved by

n0 =

[
(1− ϵ)kf̄

γδ

]1/(1−ϵ+δ)

. (41)

Equation (34) requires γkδ = kf̄/n1−ϵ
0 + γnδ

0, from where it follows that δ = ϵ, and γ = f̄
ϵ (1− ϵ)1−1/ϵ. Therefore sub-

linear growth of f(x) leads to the stationary distribution acquiring the form of stretched exponential. The graphs in
Figs. 11 and 12 show the linear behavior of ln2 p(k), and ln4 p(k), respectively corresponding to the choices f(x) ∼

√
x

and f(x) ∼ x3/4.

IV. CONCLUSION

Universal features of diverse empirically observed large networks imply the existence of some universal drivers of their
behavior that are to some extent insensitive to the microscopic details of the network evolution mechanisms. The most
likely mathematical expression of such a mechanism is convergence to a fixed point, which necessitates a feedback
process whereby the current (or, more generally, the history of the) network topology affects the current network
evolution rules. The classical preferential attachment model [2] achieves this by identifying the instantaneous value
of the node degree itself as a proxy for node attractiveness. Once the assumption is made that a separate measure of
attractiveness, fitness, plays a role in the network evolution, the feedback mechanism needs to be introduced explicitly,
as in its absence most fitness-based mechanisms possess a high degree of arbitrariness [7].
The goal of the present study was to investigate a simple class of such models which combine a fitness-based growth

mechanism with input from dynamic information about network topology. Of course, such models do not fully catch
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FIG. 11: Square of the logarithm of the node degree distribution in the nonlinear model with the linking function
f(x) =

√
x together with the linear fit.
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FIG. 12: Square of the logarithm of the node degree distribution in the nonlinear model with the linking function
f(x) = x3/4 together with the linear fit.

the complexities of realistic growing networks. Most importantly, the fitness of an existing node is taken to be fixed
at the time of its creation, disallowing dynamic updating of whatever proxy measure of attractiveness is in operation.
(In a sense, the classical preferential attachment model can be viewed as a limiting case of dynamic fitness being
instantaneously updated to be equal to the current node degree.) Within these limitations, it was demonstrated that
models characterized by dynamic updating of the distribution of the incoming node fitnesses exhibit convergence to
power-law asymptotics provided that mapping between fitness and attachment probability is linear, and more general
stretched exponential behavior in the non-linear case.
The sensitivity of the power-law exponent to the details of attachment rules at low k is similar to the one seen in the

preferential attachment model. One could view this feature as an indication that pure fitness-based growth models,
even in the presence of the dynamic feedback mechanism studied here, lack some essential stabilization through
feedback from network topology. Further study of more realistic fitness-based models with feedback that allow for
some fitness dynamics and for edge and node deaths may point towards more robust stabilization mechanisms.
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