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Abstract 

In this paper, we address the question of generic simulation models and their role in 

improving emergency care around the world.  After reviewing the development of 

ambulance models and the contexts in which they have been applied, we report the 

construction of a reusable model for ambulance systems.  Further, we describe the 

associated parameters, data sources, and performance measures, and report on the 

collection of information, as well as the use of optimisation to configure the service to 

best effect. Having developed the model, we have validated it using real data from 

the emergency medical system in a Brazilian city, Belo Horizonte. To illustrate the 

benefits of standardisation and reusability we apply the model to a UK context by 

exploring how different rules of engagement would change the performance of the 

system.  Finally, we consider the impact that one might observe if such rules were 

adopted by the Brazilian system. 
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1. Introduction 

The reuse of models is a topic of considerable interest in healthcare because, 

although most care delivery systems are specifically designed for the local context, 

many share common design elements.  As an example, emergency departments 

share common operational principles but the configuration, management and layout 

of one department will differ from another. In this paper, we use an example from 

emergency medicine – ambulance control – as an exemplar with which to explore the 

question of reuse and standardisation of models. 

Ambulance services are attractive to model for a number of reasons.  First, the start 

and end of each task is well defined, tasks are self-contained and take place over 
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short periods of time.  Moreover, the processes lend themselves to a logistic analysis 

well-suited to modelling.  This is not the case for all medical services, many of which 

are open ended, run concurrently with other medical interventions and stretch over 

long periods of time.  Second, as we shall see, although there are many dimensions 

of uncertainty to modelling an ambulance service, these dimensions can be 

partitioned with relative ease and changed when moving from one ambulance service 

to another. 

The ability to expand a model by interfacing it to another, even off-the-shelf, model is 

a third feature of reuse and standardisation.  The geographical spread of ambulance 

services provides an opportunity to explore geographical information systems (GIS) 

and thus to extend a model’s applicability from one city to another.  Fourth, the high 

number of variables and the random nature of demand make the analysis for 

decision-making a combinatorial problem with a high number of alternatives and 

renders deterministic methods unattractive. 

Finally, setting appropriate metrics is a case of assessing complex trade-offs, rather 

than applying measures that have been derived from first principles.  For instance, an 

ambulance in front of every house would minimise the response time (the elapsed 

time from the call to the arrival of an ambulance on the scene), but at prohibitive cost.  

To satisfy such demand with a high quality service, it is required a redundant system, 

with a low utilisation of resource in consequence. Meanwhile, system managers are 

pressed to operate the system within cost constraints, which implies maximising the 

utilisation of resource. 

For all these reasons, simulation modelling is an attractive way of analysing such 

scenarios.  Section 2 surveys the vast literature on modelling and simulation that has 

been applied to ambulance services. However, most Discrete Event Simulation 

(DES) models are built for a specific city in order to analyse a specific aspect of the 

system, making reuse hard if not impossible. 

In this paper, we propose a generic DES modelling for ambulance services. The 

proposed modelling is comprehensive and emphasises the use of modular approach 

in order to build generic models. The methodology describes in detail, all stages we 

usually take during a simulation analysis of an Emergency Medical System (EMS).  

As a basis, we have taken a specific model [1, 2] and generalised it to capture 

features of other systems. Section 3 describes ambulance services in generic terms, 

the overall structure of the model and the associated parameters, the data sources 

and collection, and the construction of an optimising loop around the simulation. In 
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section 4 we explain the validation of the model and the results are discussed in 

section 5, with a short conclusion to clarify the findings (section 6). 

 

2. Literature review 

Ambulance services have been analysed in a variety of ways, including queuing 

theory and hypercube models [3, 4, 5, 6, 7, 8, 9], mixed integer programming [10, 

11], stochastic optimization [12] and dynamic programming [13].  By contrast, 

simulation modelling presents a high cost of implementation, but gives a more 

detailed description of the system [3] and allows the analysis of dynamic effects [14, 

15]. These features make the simulation approach a powerful decision-making tool 

for analysing such systems. 

Simulation models have been used to analyse ambulance services since the ‘60s 

[16, 17, 18, 19, 20].  Since then, there have been many studies focused on a 

particular city or region.   

Fujiwara et al. [21] analysed deployment policies for Bangkok, Thailand, combining a 

simulation model informed by a location model (a mathematical programming model). 

Meanwhile, Henderson and Mason [22] built a simulation model to refine the 

solutions proposed by a queue model for the ambulance service of Auckland, New 

Zealand.  

Kock and Weigl [23] used simulation to analyse ambulance logistics in Austria, with 

the main objective of comparing centralised and decentralised policies of 

transportation for the Austrian Red Cross. Su and Shih [24] developed a simulation 

model of the ambulance service system of Taipei, Taiwan and used it to explore 

alternative scenarios that might improve the operation of the system.     

Wu and Hwang [25] built a wide-ranging simulation model to analyse the ambulance 

system of Tainan, Taiwan. This model was used to estimate the threshold for 

expanding the ambulance fleet and to evaluate ambulance-dispatching strategies 

during large public events such as concerts and marathon races.   

Silva and Pinto [2] developed a model to analyse the ambulance service of Belo 

Horizonte, Brazil. The model was used to analyse two aspects of the service: its 

response to increased demand and what expansion of the fleet would be needed to 

reduce the average response time significantly.   

Meanwhile, Berchi et al. [14] proposed a five-step methodology to planning the 

ambulance service system of Milan, Italy. The proposed method was used to 

estimate the preferred locations of ambulances depots and number of ambulances. 
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More recently, Aboueljinane et al. [26] developed a simulation study to improve the 

system of Val-de-Marne department, a small administrative district located in the 

southeast of Paris, France. Zhen et al. [27] proposed a simulation optimisation 

method in order to evaluate the performance of ambulance deployment and 

relocations plans. The authors run a demo example using the system of Shanghai, 

China. Morohosi and Furuta [9] built and applied a simulation model to a large-scale 

ambulance system in the Tokyo metropolis. 

It will be noted that many of these exercises involved another mathematical 

technique in conjunction with the simulation model. Morohosi and Furuta [15] applied 

the MEXCLP (maximum expected covering location problem) location model to 

ambulance data in Tokyo metropolis and they verified the assumptions of the model 

via simulation. Aringhieri [28] took this further by developing a hybrid approach that 

integrated Agent Based Simulation (ABS) and Discrete Event Simulation (DES) to 

analyse the ambulance service system, again in Milan. The author states that the 

model is quite flexible and could be used in other cities of Lombardy. Zhen et al. [27] 

proposed a simulation-optimisation method in order to evaluate the performance of 

ambulance deployment plans. The authors used a genetic algorithm to guide the 

search process. The key point is that simulation within a geographical context has 

been routinely demonstrated, but geographic reusability remains an elusive, but 

attractive goal. 

More broadly, the application of simulation modelling and other OR techniques to 

healthcare has been widely discussed in the literature.  This is driven by such factors 

as the increasing and aging population, especially in urban centres [29,30] with a 

knock-on effect for ambulance services. Comparisons with manufacturing and 

military usage have revealed a significant lack impact for healthcare modelling [31, 

32], and there has been a discussion of the barriers faced in healthcare [33, 34]. 

Notwithstanding, the number of simulation and modelling papers in healthcare has 

increased since than 2004 [35]. The pressure for better services, the low availability 

of resources and the need to assess the impact of changes before its actual 

implementation can be seen as an opportunity to increase Modelling and Simulation 

(M&S) in healthcare [36]. 

Young et al. [34] have suggested the use of generic models as a strategy to 

improve the adoption of OR techniques in healthcare, enabling service managers to 

set up models or reuse them in analysing their specific systems.  This work is 

consonant with earlier findings. Fone et al. [37] presented an extended literature 
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review of OR applications in healthcare and concluded that the quality of models had 

improved from 1980 until 1999 but noted that most models analyse the micro level of 

the system: specific aspects of some part of healthcare systems, such as Accident 

and Emergency (A&E) or the departments of a hospital. They point to the lack of 

more generic models with wider applicability. 

In the same vein, Gunal and Pidd [35] concluded that despite the increasing number 

of publications in healthcare since 2004 there is still a lack of generic methodologies 

to analyse healthcare systems. They argue that the models are very specific for each 

case and the reuse of the models is difficult. Again, we are able to draw a general 

conclusion that generic models are an elusive aspiration of the wider simulation and 

modelling community in healthcare.   

In terms of optimisation, amongst the cited papers only Silva and Pinto [2] and Zhen 

et al. [27] have optimised the model’s performance in integrated way [38]. In all other 

cases, when simulation and optimisation models were used together, the models are 

run separately using the following general algorithm.  First, the model is run with any 

stochastic parameter replaced by an average value. Second, the simulation model is 

run to evaluate the proposed solutions in a dynamic and more realistic context, 

where the stochastic parameters are represented by probabilistic distribution. On 

such a basis, the optimisation models are used as an initial approximation and their 

solutions should be checked and/or refined in a simulation model. 

This paper proposes a generic method to develop simulation models of ambulance 

service systems. Models found in literature are usually built for a specific system and 

could not be reused without great relative effort. 

The method is comprehensive and it proposes the following guidelines: (i) analysis of 

the main input parameters, (ii) development of the simulation model, (iii) analysis of 

the performance measures, and (iv) use of optimisation for simulation to analyse 

scenarios. 

This method can improve the development of decision-making tools in order to 

analyse ambulance systems. Furthermore, we will be able to build models in an easy 

and quick way and the models can be tailored and then reused. In order to ease the 

input setup of the model, the method proposes a standardization of input parameters. 

We give an example of reusability in a practical way, applying some policies used for 

an EMS of UK in an EMS of Brazil in order to investigate likely improvements. 

We believe that this method takes many steps towards filling the gaps that still exist 

in modelling and simulation (M&S) of ambulance service systems. 
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3. The ambulance model 

A generic model to illustrate how ambulance systems work is shown in Fig. 1. The 

model represented by solid and dotted lines is the static dispatch model where 

ambulances are only dispatched from bases. On the other hand, the model 

represented by a combination of solid and dashed lines is a multi-location dispatch 

model, where the ambulances may be dispatched from wherever they are. Another 

approach, which is not represented here, is the dynamic dispatch, where the 

ambulance may be rerouted at any time in order to serve a higher priority call. In this 

case the system needs to know the position of the ambulance at all times, in order to 

effect an appropriate dispatch, i.e., the system should use a Geographical 

Information System – GIS. 

The system has three main cores: (i) call generation (A), (ii) dispatch of ambulances 

(B), and (iii) ambulance journey (C). Although the three cores have complex 

processes, they follow similar rules for all systems, and we will provide some 

directions to build the simulation model. 

 

Figure 1: Model of ambulance system 
 

The overall structure of the simulation model is shown in Fig. 2, and the 

characteristics of all system parameters are explained in Table 1 and details of such 

parameters are shown in Table A.1. 
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Figure 2: Description of the structure of the model 
 

Ambulances and calls are the main entities of the system. Ambulances are 

permanent entities whilst calls are temporary. 

Firstly, the inputs related to the characteristics of the system are read. Secondly, 

simulation starts and all ambulances are generated and attributes are assigned for 

each one. Thirdly, calls are generated based on schedule of call arrival and attributes 

are assigned to characterise each one. Operators receive calls and health 

technicians make triage based on the attributes of each one. Then emergency calls 

that require ambulance are routed to a dispatcher in order to choose the best 

ambulance to serve the emergency. After dispatch, ambulances perform tasks 

related to travel, service at the scene, delivery at hospital, and restocking. 

Ambulances may perform all these tasks or just some of them on each trip. 

Finally, after the simulation runs, the output analysis is processed in order to check 

the performance variables. The most important performance variables are: (i) general 

average response time; (ii) average response time for each category of call c; (iii) 

percentage of response time less than a threshold for each category of call c; and 

(iv) utilisation of ambulances of each type u. 

In this section, we focus on input data because a minimum level of standardisation is 

required in order to allow the reuse of the models. 

 

3.1. Call features 

The calls have several random and seasonal features related to arrival rates, 

geographical distribution, nature of health problem, level of threat to life, and the type 

of ambulance required. Calls can pass through three stages. First, it is necessary to 

eliminate the non-emergency and non-medical calls. Secondly, the emergency calls 
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are classified take in account the nature of health problem, category of emergency, 

the ambulance needs, and types of units required. Finally, if dispatch is required, one 

ambulance is chosen based on the judgement of incident. Operators, technicians, 

and dispatchers in call centre are in charge of all these triage tasks. 

 
Table 1 

Input parameters 

Group Parameter Description 
Calls �� Arrival rate of calls for each hour t of the week (calls/h) 
 ��� Fraction of calls for area a during time range r 
 �� Fraction of non-emergency calls (non-medical and/or hoax calls) 
 �� Fraction of emergency calls that require an ambulance dispatch 
 	� Fraction of calls that cause missing dispatches 
 
� Fraction of calls that require delivery patients at hospitals 
 ��� Fraction of emergency calls for each category c (life-threatening classes) 
 �� Fraction of emergency calls for each nature e (nature of emergency) 
 ��� Fraction of emergency calls that require ambulance of type u 

RRV requirement ��� Fraction of each category c that requires an RRV 
Traffic ��� Starting time of time range r (1 ≤ r ≤ 4 for weekdays and 5 ≤ r ≤ 8 for weekends) 
Ambulance and ��� Average ambulance speed for ambulance type u  and time range r (km/h) 
Journey ��� Speed factor for area a 

 ��� Number of trips between restocking for ambulance type u 
 � Distance conversion factor to correct Euclidian distance for the city 
 �� Total number of ambulances of type u 
 ����� Number of ambulance of type u in each base b during the hour t of the week 

Personnel, Areas, ��� Number of resource f at call centre (operators, technicians and dispatchers) 
Bases and ���� Coordinates p (lower-left and upper-right corners) of each area a 
Hospitals ���� Value of the parameter k for base b 

 �
�  Value of the parameter j for hospital h 
 !�� Notify whether base b can dispatch ambulances to area a (Boolean) 

Time to perform �"� Expression for spent time by Operator (category c) (seconds) 
Tasks ��� Expression for spent time  by Technician (ambulance of type u) (seconds) 
 �!� Expression for spent time by Dispatcher (ambulance of type u) (seconds) 
 ��� Expression for spent time on scene (ambulance of type u) (minutes) 
 �
 Expression for spent time to delivery patients at hospitals (minutes) 
 ��� Expression for spent time to replenish first aid materials and products 

(ambulance type u) (minutes) 

 

3.1.1. Arrival rates 

Demand for emergency medical services differs for each city along with cycles. The 

most common of which, reflects differences within hours and days of week. Many 

cities also have peak demands in winter [14] and on special days such as New 

Year’s Day. The weekly cycle, at least, with hourly structure must be taken into 

account to capture this seasonality.  

Many studies have been carried out to forecast arrival rates in EMS. Matteson et al. 

[39] proposed a method using an hourly structure taking into account the day-of-

week and week-of-year effects. That was successful tested in Toronto, Canada. 

The assumption that incoming calls are a non-homogeneous Poisson process with 

an hourly structure is widely used. We assume this hypothesis using a day-of-week 

effect to improve the quality of the simulation. 
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3.1.2. Geographical distribution of calls 

Calls have a non-uniform distribution around the city. The arrival rate may vary and it 

is time-dependent. Furthermore, calls may be related with socioeconomic conditions 

of the population. Earnest et al. [40] explored the relationship between 

socioeconomic status and the spatial distribution of ambulance calls in Singapore. 

We propose to divide the entire area of the city covered by ambulance system in 

cells as shown in Fig. 3. 

 

 

Figure 3: Area covered by the service 

 

Each cell is identified by the coordinates of its lower-left corner and upper-right 

corner. We assume an empirical discrete distribution for distributing calls on cells. 

This distribution can vary according to time of day and day-of-week. When the area 

covers the entire rectangle (cell A) the coordinates of the call are assigned randomly 

inside the rectangle. Otherwise (cell B) the coordinates of the call are assigned 

randomly inside the partial area. Some systems, such those in the UK, use the 

postcode area instead of regular size areas. 

 

3.1.3. Types of emergency and ambulance requirements 

We have found distinct classes of emergency in the literature [41, 42, 43] but we 

propose group them in four main classes related to nature of emergency and other 

four classes related to life-threatening. As some hospitals are not able to treat all 

kinds of emergency, the nature of emergency may be used to choose the hospital to 

deliver the patient. Classes related to life-threatening are used to prioritise the 

service.    

On the other hand, each call requires a specific care unit, i.e., a specific type of 

ambulance and staff. We can group the ambulance and staff in classes, for example: 

(i) BLS: basic life support units, used to serve the simplest cases, (ii) ALS: advanced 
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life support units, used to cover heart disease, cardiovascular / stroke and complex 

trauma and many others complex cases, (iii) MCS: mental care support units, used to 

serve complex psychiatric / drug cases, and (iv) RRV: rapid response vehicle used to 

make the first aids whist the patient wait for another type of ambulance. 

 

3.1.4. Other important attributes 

All these attributes are Booleans and the probabilities of occurrence are empirical. 

These attributes notify: i) whether the emergency requires an ambulance (some 

incidents do not require ambulance dispatch); ii) whether the call is not an 

emergency (hoax calls or non-emergency calls); iii) whether the incident requires the 

delivery of patient at hospital; and iv) whether the call will cause a missing dispatch, 

i.e., the care on scene is no longer necessary and the ambulance will make a 

missing travel.  

 

3.1.5. Calls generator 

The model generates entities calls based on arrival rate �� and parameters shown in 

Table 1, are used to assign attributes to distinguish each one.  

The first attributes, based on ��� and ����, are coordinates of the call and its type 

(based on ��). The spent time by operators (�"�) may depend of type of emergency. 

All non-emergency calls are disposed and emergency calls will receive an attribute to 

inform the dispatch needs (based on ��). Technicians spent some time (���) to 

triage calls and dispose those that do not require dispatch. All others calls will receive 

attributes, based on parameters in brackets, concerning the nature of emergency 

(#��), category of the call (���), type of ambulance required (���), RRV requirement 

(���), delivery requirement (
�), and an attribute used to decide if the dispatch will 

be missed or not (	�). After the screening process, the call is routed to dispatcher, 

who spent some time (�!�) to choose the unit. The number of operators, technicians, 

and dispatchers are given by ���. 

  

3.2. Ambulance features 

The entities ambulances are generated using �� and the model uses a calendar 

schedule, based on �����, to allocate ambulances at bases around the city. 

 

3.2.1. Ambulance dispatch 
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In static dispatch, the ambulance will go to scene from the nearest base, which has 

the requested type of ambulance. After the service on scene, the ambulance goes 

back to the base and stay there waiting for the next dispatch. Osborne et al. [44] 

analysed the real needs for advanced life support in seizure occurrences and the 

impact of these allocations on the system’s performance. In multi-location dispatch, 

the allocation to new service can take place as soon after the ambulance finishing 

the current service, i.e., the ambulances become available just after they deliver the 

patient at hospital or after finishing the service on scene. In this approach, 

ambulances do not have to return to their bases before the next dispatch. 

In dynamic dispatch, ambulances may be rerouted after the dispatch to serve a more 

critical call, i.e., the ambulances remain available even after dispatched. Billhardt et 

al. [45] proposed a strategy that combines a dynamic redeployment and allocation of 

ambulances in order to improve the performance of an EMS in the region of Madrid. 

Lim et al. [46] made a review of dynamic dispatch policies and they compared the 

advantages and disadvantages of each type. Dynamic dispatch requires fewer 

ambulances because it is more efficient but if the actual number of trips rerouted is 

not significant, the performance is not much better than multi-location dispatch. If 

rerouting does not occur frequently, we can use a multi-location dispatch as a good 

approximation for dynamic dispatch. Advantages of this approach are simple 

modelling and no GIS tools requirement. 

In our model, we use a multi-location dispatch. The dispatch system maintains a list 

of every available ambulance and it determines the estimated time for each one to 

arrive on scene. The dispatched ambulance should belong to a base that allows 

dispatching to the area of the incident (parameter !��). 

For each ambulance in the list, there is an associated release time and an associated 

release location. The ambulance may be released from a prior scene, from hospital 

or from base depending of the current time and characteristics of prior served 

emergency. If the ambulance is on the base, the release time is the current 

simulation time; otherwise, the release time will be greater than current simulation 

time. The system calculates the Euclidian distance between the releasing point of 

each ambulance and point of emergency site. We use a factor � to correct the 

Euclidian distance and estimate the real distance. This factor take in account the 

topography and street design of the city and it is estimated using a GIS [1]. The 

average speed, used to estimate the travel time, can be time-dependent and different 
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for each type of unit and each area of the city (���). Then, we should correct it using 

a speed factor (���).  

When an emergency requires an ambulance RRV (usually category A – immediately 

life-threatening), the system search for a RRV and a regular ambulance for the same 

emergency. Both ambulances are sent to the site, but RRV probably will arrive 

sooner and it will wait on scene until the arrival of second ambulance. Thereafter, 

RRV returns to its base or to another scene. 

The system chooses the nearest hospital that supplies the required care for the 

emergency (based on �
� ). The system also estimates the travel time between the 

scene and the hospital and between the hospital and the base. Such times are used 

to estimate the next release time of the ambulance. 

 

3.2.2. Ambulance journey 

A regular journey has three sections: i) from the base to the scene, ii) from the scene 

to the hospital and iii) from the hospital to the base. Hospitals have a pre-defined 

capacity of beds to receive each type of emergency. If the hospital has no beds 

available, the ambulance will be diverted to other hospital. Ambulance diversion - AD 

causes delays in the system and must be avoided. AD has impact in transport times 

[47] and strategies to minimise its effects have been studied using simulation [48, 49, 

50, 51, 52]. Usually models of ambulance services do not capture this phenomenon 

because it is more pertinent for models of Emergency Departments that aim 

analysing the waiting time for admission in hospitals. 

 

3.2.3. Traffic 

The car traffic follows typical weekly seasonality patterns and it influences the speed 

of ambulances. It is not necessary an hourly structure neither day-of-week effect to 

capture such seasonality. We divide the week into two types of days: weekdays and 

weekends. The time ranges for car traffic should take on account night-time hours, 

morning peak hours, daytime hours and evening peak hours. Obviously the starting 

time (���) of each range depends on habits, culture and transportation infrastructure 

of the city. Fig. 4 shows an example of car traffic seasonality. 
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Figure 4: Example of traffic seasonality 
 

3.2.4. Service on scene, delivery at hospital and restocking 

The service is processed (duration ���) when ambulance arrives on scene. After the 

service on scene, the most likely destination is the hospital in order to deliver the 

patient (duration �
), but the ambulance may go back to its base or may be 

dispatched to serve a new event.  

First aid materials and other products used in the ambulance should be replenished 

(duration ���) after a certain number of journeys (���). 

 

3.3. Data Collection 

The most important and most used performance measure for EMS is the average 

response time – �� [20]. The response time is widely used because this performance 

measure is usually associated with patient survival [53, 54, 55, 56, 57, 58].  

From a manager’s point of view, the objective is operating the system with minimum 

cost and providing services of good quality, e.g., a high percentage of response 

times less than a threshold. Managers closely monitor all performance measures, 

such as utilisation of ambulances and utilisation of resource of call centres. 

  

3.4. Optimisation for simulation  

Managers have to choose the lowest cost configuration of the system to provide high 

quality services. They have to decide where locate the bases, the allocation of 

ambulances (calendar schedules), and number of personnel involved in operations of 

call centre. Many times they have to choose the best configuration using scarce 

resources. This decision is quite complex because the problem is combinatorial.  
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In order to the simulation model estimate the best configurations for the system, we 

have to implement a simulation-optimisation strategy. We can use a classical 

strategy [38] to evaluate the best configuration. The schematic design of this strategy 

can be seen in Fig. 5. 

 

 

Figure 5: Optimisation for simulation scheme 
 

The optimisation model cannot be written in the standard way, i.e., as a deterministic 

optimisation model, because some constraints are implicitly embedded into the 

simulation model and the evaluation of objective value and/or constraints can only be 

obtained by simulation. The candidate solution shown in Fig. 5 is obtained by 

heuristics, i.e., it has not been optimised in a formal sense.    

The objective function given by (1), is to find the “best” (quotes is to denote non-

formal sense) configuration for the system. 

 

Min
θϵΘ

Κ'θ( ) *κ'θ,ω(,  (1) 

 

where θ is the set of input variables (candidate solution); ω is the replication; κ'θ,ω( 

is the sample performance measurement; *κ'θ,ω(, is the expected value of κ'θ,ω(. 

The set of input variables is known as controls and performance measurements are 

known as responses. The objective of optimisation for simulation is searching for the 

best set of inputs θ that optimises the performance of the system under specific 

conditions (constraints). This objective often involves costs or performance of the 

system. Let ���� be the set of characteristics of ambulance bases. ���- is a Boolean 

to inform if the base b will be activated. ���. and ���/ are coordinates of base b. Let 

�� be the total number of ambulance type u. Let 0� be the costs of activation of each 

base b, let 1� be the cost of ambulance type u, and let φf be the costs of resources 2 

at call centre. 
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If we have many possible locations to set bases on the city and we wish the best 

configuration for the system, we can use the optimisation for simulation model given 

by (2) to (13).     

   	34 6 ) ∑ 0����- + ∑ '1�. ��( +:
�;-

<=
�;-  ∑ >?� . ���@/

�;-   (2) 

Subject to: 

�� − ∑ ����� ≥ 0<=
�;-        ∀ E, ∀F  (3) 

��� ≤ ���
∗      ∀I    (4)  

��� ≤ ���
∗       ∀E   (5) 

��� ≥ ���
∗      ∀I    (6) 

��� ≥ ���
J     ∀2    (7) 

����� ≥ �����
J    ∀K, ∀E, ∀F   (8) 

�� ≥ ��
J    ∀E     (9) 

��� ≤ ���
L     ∀2    (10) 

����� ≤ �����
L    ∀K, ∀E, ∀F   (11) 

�� ≤ ��
L    ∀E     (12) 

���- 3M �NNOPQ4    ∀K    (13) 

 

In this model, ���-, ��, ���, and �����, are the controls and ���, ���, and ��� are 

the responses. Constraint (3) denotes the relationship between �� and ����� (the 

maximum number of available ambulances type u in each hour-of-week should be 

��). Constraints (4) and (5) set upper bounds to response time ��� for each category 

c and utilisation of ambulances ���. Constraint (6) set lower bound to percentage of 

response time ��� less than a threshold for each category c. Constraints (7) to (12) 

set lower and upper bounds to controls. Constraint (13) denotes PBb1 is Boolean 

variable.  

As we can see, this is not an optimisation model in formal sense. There are no 

explicit analytical relationship between some controls and responses because the 

evaluation of responses is possible only by simulation and there are implicit 

dependence between such responses and controls. The simulation-optimisation loop 

works as follows: the results of each simulation are the input data for optimisation 

model, which solution is a new set of input for simulation model, which estimate new 

results and so on. The loop stops when pre-established condition is reached. We can 

use a commercial framework to implement this loop or we can developed a specific 

heuristics for this purpose.  
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Obviously, the model shown here is only an illustration and we can write others 

models depending of our actual objective and constraints. 

 

4. Validation of the proposed method 

We developed a simulation model in Arena using the propositions explained in 

section 3 and the model was validated using real data from Belo Horizonte, a city 

located in Minas Gerais state, Brazil. We use MS Excel as interface between the 

simulation model and the users. All input and output data are read or written in a 

spreadsheet in order to ease the analysis. We use the blocks from ARENA templates 

rather than SIMAN language, but we had to use some Visual Basic code to 

implement the dispatch rules. The data, extracted from Silva [1], are from 

October/2006 until August/2009. The population of the city is around 2,500,000 

inhabitants and the area covered by the system is 331 Km2. The difference between 

the model proposed here and the model developed by Silva [1] is that his model is 

not generic and it was built specifically to analyse some aspects of EMS of Belo 

Horizonte. The city has nine administrative regions and the ambulance service used, 

on that occasion, 21 hospitals and emergency care units and 23 ambulances, which 

are spread around the bases in the city. The system does not use a calendar 

schedule to change the allocation of ambulances throughout the day or week. Table 

A.2 show the number of ambulances ALS, BLS and MCS in each base. 

 

4.1 Call features 

In this case, time ranges for weekdays and weekends are the same. The 

geographical distribution of calls in each region is shown in Fig. 6. The hourly arrival 

rate of the calls on each day-of-week is shown in Fig. 7. 
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Figure 6: Distribution of calls for regions 1 to 9  
 

 

 

Figure 7: Arrival rates - λ (calls/h) 
 

The system receives more than 600,000 calls per year, including emergency calls 

and non-emergency calls. About 31.93% of calls are asking for ambulances, of which 

40.84% resulting in an ambulance dispatch. About 90% of ambulance services 

deliver a patient at hospital, but in 5.21% of cases, the patient no longer requires the 

ambulance when it arrives. 

The nature of emergency is split in four types and such classification is used by the 

system to choose the appropriate hospital for the emergency. The database of this 

EMS does not maintain registers regarding life-threatening, but emergencies 

requiring ALS have higher priority. 

The computational implementation of the arrival of calls used an arrival schedule in 

order to contemplate the seasonality shown on Fig. 7. We modelled the geographical 

distribution of calls using the empirical distribution obtained through the data shown 

in Fig. 6. All others characteristics of calls are modelled using empirical distributions 

based on historical data. 

 

4.2 Ambulance features 

The average speed for each region is shown in Table A.3, estimated using Google 

Maps. We can see that the city has heavy car traffic and speed is not high. These 

estimations are for regular cars, not for ambulances. We use these speeds only for 

peak hours on weekdays. Ambulances travel faster than cars because they do not 

stop on red lights and the other vehicles give the way. Then, for other time ranges, 
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we use speeds 10% to 30% faster. The ambulance system of this city does not use 

RRVs. 

The first aid materials in ambulance should be replenished after a certain number of 

journeys as we can see in Table A.4. In the model, we consider ambulances always 

restock at a hospital just after finishing their journey. 

  

4.3 Call centre 

The human resources of the operational centre are six call operators, five physicians 

and three dispatchers. Firstly, operators receive the calls and they forward only the 

medical calls (31.97%) to the physicians, who analyse the emergency and decide if 

an ambulance is necessary. If physicians decide to dispatch an ambulance, they also 

decide the type of ambulance should supply the event and forward their decision to 

dispatchers, who choose the best ambulance. Table A.4 shows the percentage of 

each type of ambulance is dispatched. All times required to execute tasks inside and 

outside call centres can be found in Silva [1]. 

 

4.4 Dispatch rules and ambulance features 

The dispatching is under multi-location rules. The model estimates the time required 

to each ambulance arrive on scene using Euclidian distance corrected by factor F, 

estimated using Google Maps and average speed for the region. 

The hospital in which the patient will be delivered is the nearest and it must provide 

the care required by the nature of emergency. 

We supposed that maintenance of ambulances occurs on the same way proposed by 

Silva [1], i.e., average of three maintenances per day for all ambulance fleet. 

The complex rules of dispatch make its implementation almost impossible if we use 

exclusively the ordinary blocks of ARENA. To implement the dispatch system we use 

a special block that allow us to include Visual Basic code inside it. 

 

5. Results and discussion 

5.1. Results for current system 

After we run some pilot projects, we decide to run a simulation using a warm-up of 15 

days and ten replications of 30 days. Fig. 8 shows that the system reaches the 

steady state even before 15 days (360 hours). We used response time and utilisation 

of ambulances (BLS and ALS) to evaluate the performance of the system. We did not 



19 

 

use the utilisation of mental care units because the number of emergencies supplied 

by this unit is insignificant and the utilisation is very low. 

Table 2 shows the values of response time (minutes); utilisation of BLS units (%) and 

utilisation of ALS units (%) for each replication. The average values (Avg), standard 

deviation (SD), and confidence interval (CI) are shown as well.  

The response time found by Silva [1] for a similar scenario is equivalent. The 

response time obtained by our model is only 2.06% greater than the actual average 

response time, which is 19.92 min [1]. Utilization of ambulances are slightly greater 

than the results of Silva [1]. 

 

 

Figure 8: Warm-up period 

 

As we can see, the response time in Belo Horizonte in 2009 was very high compared 

to international standards. The model does not estimate the response time by 

category of call (life-threatening) because we have no information about category of 

call in the database of the system. There is a low percentage of �� within 15 minutes 

(41.96%) for all categories of calls. This fact occurs due to the delay until dispatching 

and very large travel times. The tasks in call centre spend too much time and travel is 

time-consuming due to network design of streets and heavy traffic. 

Thus, to reduce the response time it is necessary to increase the number of 

ambulances and spread them around several bases in the city, or to adopt a 

schedule to change the base of ambulances during the hour-of-day and day-of-week 

in order to improve the ambulance logistics. Furthermore, the tasks in call centre 

should be changed in order to reduce the elapsed time between the arrival of call and 

the dispatch of an ambulance.  
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Table 2 

Results 

 Proposed Model Silva Model (2010) 
Replication RT(min) UB (%) UA (%) RT(min) UB (%) UA (%) 

1 20.53 58.19 13.44 19.40 56.33 10.39 
2 20.04 56.73 12.41 21.12 54.48 11.84 
3 20.04 56.38 11.73 21.93 56.53 10.84 
4 20.16 57.31 13.28 19.95 53.24 12.98 
5 22.11 58.23 11.79 20.38 58.95 13.14 
6 20.52 57.30 13.17 21.44 54.12 12.09 
7 20.88 57.97 12.38 20.57 55.59 10.77 
8 19.67 56.53 12.74 19.11 54.28 11.61 
9 19.59 56.98 11.57 20.07 54.87 12.64 

10 19.79 56.96 13.36 20.18 54.79 11.24 
Avg (min) 20.33 57.26 12.59 20.42 55.32 11.75 
SD (min) 0.75 0.67 0.72 0.88 1.63 0.96 

CI (α = 0.05) ±0.53 ±0.48 ±0.51 ±0.63 ±1.16 ±0.69 

 

In London, for example, the current target for category A (immediately threatening-

life) calls is 75% of response times must be within 8 minutes and 95% of response 

times must be within 19 minutes. Between April 2011 and March 2012, the London 

Ambulance Service reached 75.74% of category A calls within 8 minutes. The UK 

system uses RRVs and the number of ambulances in each base may vary 

throughout the day and week. 

The Brazilian government and the City of Belo Horizonte have worked together in 

order to improve the ambulance service. New ambulances units were acquired since 

2010 and the ambulance system and fire brigade system have been integrated in 

order to improve the quality of service. Unfortunately, we have no data to analyse the 

system after those changes.     

 

5.2. Results using rules applied in UK system 

One important feature of a generic modelling is the ability to expand the model by 

interfacing it to another. As the proposed model is quite generic, it is possible to 

investigate the effects of the adoption of some rules applied in ambulance systems of 

UK in the system of Belo Horizonte. We try two rules by way of illustration. Firstly, we 

adopt a calendar schedule to define ambulance availability and secondly, we explore 

the use of RRV for emergencies that require advanced life support units (ALS). 

In the first experiment, we simulate the ambulance system of Belo Horizonte with no 

increase in the number of ambulances but we use a calendar schedule to define the 

number of ambulance in each base during each hour of the week. After an analysis 

based on demand, base locations and allocations of ambulances, we decide to 

change the static allocation of ambulance shown in Table A.4 for a scenario using 

the following calendar schedule: 
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• Removing 1 BLS from base 14 and allocate it to base 4 between 11:00h and 

13:00h and between 17:00h and 19:00h all days of week; 

• Removing 1 BLS from base 7 and allocate it to base 4 between 00:00h and 

07:00h and on base 5 between 07:00h and 10:00h all days of week; 

• Removing 1 BLS from base 6 and allocate it to base 5 between 07:00h and 

10:00h all days of week; 

• Removing 1 BLS from base 6 and allocate it to base 5 between 11:00h and 

13:00h on Mondays and Tuesdays. 

This calendar schedule increases the number of ambulances on bases 4 and 5, 

mainly on peak hours and on weekdays with high demands. Those bases are located 

in the region that has the higher demand all the time (area 3). Then, this change is 

supposed to improve the performance of the system. The simulation corroborates 

this supposition and we find an average �� reduced in 9 of 10 replications. The 

average �� was reduced by 3.79% (46.2 seconds). 

In the second experiment, we used the same calendar schedule and we suppose the 

use of 5 RRV’s units working together 5 ALS units. ALS is supposed to supply the 

most complex cases and an RRV would work in order to reduce the average �� for 

this type of unit (15.72 ± 0.14 minutes). We supposed RRV moves 25% faster than a 

regular ambulance. In a similar way of UK, RRV units would be dispatch always an 

emergency requires an ALS and it should stay on scene until the arrival of ALS. The 

simulation results show an average �� = 13.25 ± 0.03 minutes, i.e., a decrease of 

15.71% (2.47 minutes) on �� of ALS units. The general response time (for all types 

of ambulances) in this scenario was 18.97 ± 0.33 minutes, i.e., 6.69% less than the 

original scenario (20.33 ± 0.53 minutes). 

These preliminary results must be confirmed by further experiments but we can see 

some possibilities to improve the performance of the system making simple changes 

and some of them require no additional cost. Furthermore, this scenario analysis was 

useful to show how we can take advantage of generic models to expand the system 

capability.  

 

6. Conclusions 

In this work, we propose a method to build generic simulation models to analyse 

ambulance service system by simulation and we have applied it to compare two 

aspects of provision between Brazil and UK. We explain the most important input 

data and how we should handle them and the main guidelines to build simulation 
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models regardless of the simulation framework being used. We explain the main 

performance measures under point of view of patients and managers. In addition, we 

proposed some guidelines to build optimisation for simulation models to check 

alternatives in order to get good configurations for the system. Furthermore, we built 

a simulation model using the proposed method and implement it using a commercial 

simulation framework. The model was validated using real data and results were 

quite satisfactory. The proposed model seems be comprehensive and easy to use. 

We take the advantage of reuse and standardisation to check the impact of rules 

from UK on Brazilian system in order to investigate likely improvements.   

We believe that the guidelines proposed in this paper will be useful for building 

simulation models more quickly so that the models can be easily reused with minor 

adjustment. In doing this, we have demonstrated model reuse in two regions which 

use very different systems and policies. To the best of our knowledge, this is the first 

time that this has been done.           
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APPENDIX 

 

Table A.1 

Sets of input data 

Set Range Description 
A 1, 2 … na Area (cell) of the city 
B 1, 2 … nb Ambulance bases 
H 1, 2 … nh Hospitals 
R 1,2, … 8 Time ranges: 1 to 4 for Weekdays and 5 to 8 for Weekends 

1 and 5 (Night-times), 2 and 6 (Morning Peak), 3 and 7 (Daytime hours), 4 and 8 (Evening Peak)  
T 1, 2, … 168 Hour-of-week (1 = Sun 00:00h – Sun 01:00h to 168 = Sat 23:00h – Sun 00:00h) 
U 1, 2, … 4 Type of ambulance (1 = BLS, 2 = ALS, 3 = MCS and 4 = RRV) 
E 1, 2, … 4 Nature of emergency (medical class) 
C 1, 2, … 4 Category of emergency (life-threatening level) 
P 1, 2 … 4 Geographical coordinates of areas (lower-left and upper-right corner) 
K 1, 2 … 3 Base settings: (1 = Base status (1 = Active, 0 = Deactivate), 2 and 3 (Geographical coordinates 

of the base)) 
J 1, 2 … 7 Hospital settings: (1 = Hospital Status (1 = Active, 0 = Deactivate), 2 and 3 (Geographical 

coordinates of the hospital), 4 to 7 (Availability for emergency types 1 to 4 respectively: 1 = 
Available, 0 = Unavailable) ) 

 

Table A.2 

Number of ambulances 

Base BLS ALS MCS 
1 0 1 0 
2 1 1 0 
3 1 1 0 
4 0 1 0 
5 0 1 0 
6 1 0 0 
7 1 0 0 
8 1 0 0 
9 1 0 0 
10 1 0 0 
11 2 0 0 
12 1 0 0 
13 1 0 0 
14 1 0 0 
15 1 0 0 
16 1 0 0 
17 1 0 0 
18 1 0 0 
19 1 0 0 
20 0 0 1 

Total 17 5 1 

 

Table A.3 

Average speed for each cell 

Region 1 2 3 4 5 6 7 8 9 Average 
Speed (km/h) 30.61 24.16 23.79 24.32 26.53 25.64 28.39 27.36 27.77 26.51 

 

Table A.4 

Ambulance data 

Type of ambulance % Ambulance Dispatched Number of trips between restocking 
BLS 95.11 14 
ALS 4.66 1 
MCS 0.23 1 

 


