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Abstract 

The Wavelet Finite Element Method (WFEM) involves combining the versatile wavelet analysis with 

the classical Finite Element Method (FEM) by utilizing the wavelet scaling functions as interpolating 

functions; providing an alternative to the conventional polynomial interpolation functions used in 

classical FEM. Wavelet analysis as a tool applied in WFEM has grown in popularity over the past 

decade and a half and the WFEM has demonstrated potential prowess to overcome some difficulties 

and limitations of FEM. This is particular for problems with regions of the solution domain where the 

gradient of the field variables are expected to vary fast or suddenly, leading to higher computational 

costs and/or inaccurate results. The properties of some of the various wavelet families such as 

compact support, multiresolution analysis (MRA), vanishing moments and the “two-scale” relations, 

make the use of wavelets in WFEM advantageous, particularly in the analysis of problems with strong 

nonlinearities, singularities and material property variations present. 

The wavelet based finite elements (WFEs) presented in this study, conceptually based on previous 

works, are constructed using the Daubechies and B-spline wavelet on the interval (BSWI) wavelet 

families. These two wavelet families possess the desired properties of multiresolution, compact 

support, the “two scale” relations and vanishing moments. The rod, beam and planar bar WFEs are 

used to study structural static and dynamic problems (moving load) via numerical examples. The 

dynamic analysis of functionally graded materials (FGMs) is further carried out through a new 

modified wavelet based finite element formulation using the Daubechies and BSWI wavelets, tailored 

for such classes of composite materials that have their properties varying spatially. Consequently, a 

modified algorithm of the multiscale Daubechies connection coefficients used in the formulation of 

the FGM elemental matrices and load vectors in wavelet space is presented and implemented in the 

formulation of the WFEs. The approach allows for the computation of the integral of the products of 

the Daubechies functions, and/or their derivatives, for different Daubechies function orders. The 

effects of varying the material distribution of a functionally graded (FG) beam on the natural 

frequency and dynamic response when subjected to a moving load for different velocity profiles are 

analysed. The dynamic responses of a FG beam resting on a viscoelastic foundation are also analysed 

for different material distributions, velocity and viscous damping profiles. 

The approximate solutions of the WFEM converge to the exact solution when the order and/or 

multiresolution scale of the WFE are increased. The results demonstrate that the Daubechies and B-

spline based WFE solutions are highly accurate and require less number of elements than FEM due to 

the multiresolution property of WFEM. Furthermore, the applied moving load velocities and viscous 

damping influence the effects of varying the material distribution of FG beams on the dynamic 

response. Additional aspects of WFEM such as, the effect of altering the layout of the WFE and 

selection of the order of wavelet families to analyse static problems, are also presented in this study. 
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1 

 

1. Introduction 

1.1.  Background  

It is generally very difficult to formulate and apply exact closed form solutions in the analysis 

of complex engineering problems, particularly in structural analysis; due to the general 

realistic nature of such problems which may exhibit varying complexities, high gradients and 

strong irregularities within the systems e.g., suddenly varying loading conditions, contrasting 

material composition or geometric variations. The existing mathematical tools may require 

the system model to be simplified via certain assumptions and generalizations for these 

complex structural problems. This may lead to inaccuracies, inefficiencies of the method or 

even the inability to correctly describe the properties and behaviour of the system under 

certain conditions. The preferred approach, instead of significantly simplifying the structural 

systems, is to try and retain these complexities and find an approximate numerical solution 

for the system. This is carried out to better predict the behaviour of such systems and has 

given rise to numerical methods such as the classical Finite Element Method (FEM). 

FEM is a numerical analysis technique used to solve various engineering problems by 

obtaining their approximate solutions. The method involves breaking down a system into 

many small interconnected sub-regions called finite elements and each element has an 

assumed approximate solution. Thus, the conditions for overall equilibrium of the structure 

are derived, yielding an approximate solution for the displacements and stresses [1]. The 

classical and adaptive FEMs where for example, the number of elements or the order of the 

polynomial basis in areas with high local gradients are increased to accurately approximate 

the solutions, may encounter significant difficulties in obtaining sufficient accuracy, 

efficiency and/or rapid convergence to the exact solution. This has led to the formulation of 

other numerical approximation techniques such as the wavelet based finite element method 

[2,3]. 

The concept of wavelet analysis stems from a blend of ideas by researchers, from a wide 

variety of disciplines, over the past few decades. However, the term as we now generally 

know it was introduced three decades ago by Grossman and Morlet [4]. Furthermore, given 

the evolution of this mathematical analysis tool, its definition is consistently being modified 

to cater for the new ideas and applications it is used for. The term wavelet can be generally 

defined as a class of basis functions that meet certain mathematical requirements to represent 
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functions locally, both in space (frequency) and time [5]. Moreover, wavelets allow for 

analysis of functions or data to be carried out at different resolutions (scales).  

They have some similar attributes to classical Fourier functions. Though wavelets are not 

deemed to be replacements for classical Fourier approaches, they provide an alternative due 

to the fact that the Fourier functions are localised in space but not in time (they are global). 

Therefore, time localised functions can be analysed both conveniently and accurately with 

wavelets. The use of wavelets is vastly growing due to their ideal general properties such as 

multiresolution, compact support and the “two scale relation”. They offer a considerable 

number of opportunities for design manipulation so as to be handcrafted to meet the desired 

requirements for specific applications. Therefore, new wavelet formulations are continually 

being developed for these applications and some of the common wavelets include: Haar 

wavelet, B-spline wavelet, Coiflets, Daubechies wavelet, and trigonometric wavelet families. 

The Wavelet Finite Element Method (WFEM) involves combining wavelet analysis with the 

classical FEM by utilizing the wavelet and scaling functions as interpolating functions, thus 

providing an alternative to the conventional polynomial interpolating functions used in FEM. 

The method offers vast potential for the accurate and efficient analysis of fast varying and 

complex problems through the implementation of the essential wavelet multiresolution 

property. Through multiresolution analysis, it is possible to alter the scale of a local Wavelet 

Finite Element (WFE) without changing the initial model mesh [6,7]. This is an advantageous 

property in the analysis of structures with high gradients and singularities present.  

To date, research has been carried out with regards to the formulation of different wavelet 

based finite elements using various wavelet families. Although these fundamental 

formulations have been described in literature, for instance, the Daubechies wavelet based 

FEM [6,8-10], the B-Spline Wavelet on the Interval (BSWI) [7,11,12] and the trigonometric 

wavelet based FEMs [13,14], a comparative study of the performance and implementation of 

the different WFEMs has not been conducted to date. Moreover, there are domains of 

structural analysis currently being developed where the use, understanding and scope of 

implementing WFEM remain partially or entirely unexplored. 

One such area is the formulation of a wavelet based finite element method for the static and 

dynamic structural analysis of functionally graded materials (FGM). Functionally graded 

materials are a relatively new class of composites which consists of two or more materials 
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(often metals and ceramics), that comprise of different material and physical properties, 

varying continuously with spatial coordinates.  

Therefore, this study describes and verifies not only the fundamental principles of the WFEM 

from previous work, but also the implementation of the method constructed using different 

wavelet families. Furthermore, the WFEMs are used in the static and dynamic analysis of 

structural systems under quick varying loading conditions, with an emphasis on moving load 

problems. Moreover, the research extends to the analysis and verification of this numerical 

approach to solve structures varying in composition, material properties and/or geometric 

properties. A new modified wavelet based finite element approach is proposed in the analysis 

of dynamic structural problems for FGMs. The wavelet based FGM finite elements are 

formulated using the Daubechies and BSWI wavelet families. This is a novel application of 

the method and there is no evidence suggesting it has been carried out or published, to the 

best of the author’s knowledge. 

1.2.  Research objectives 

The aim of this study is to analyse and verify the multiscale wavelet based finite element 

method applied to complex problems with strong singularities and/or variations in 

composition, loading conditions, geometry and material properties. This is achieved via the 

following objectives: 

 Review fundamental principles of the WFEM from past work for 2 wavelet families 

(Daubechies and BSWI wavelet families) based on their properties of multiresolution, 

compact support, “two-scale” relation and vanishing moments.  

 Develop algorithms to analyse and verify the implementation of WFEM with respect 

to the general rod, beam and plane bar elements using the different wavelet families 

for structural static and dynamic problems. 

 Compare the different WFEM formulations and solutions to ascertain the strengths 

and limitations for the different wavelet families while verifying, identifying 

discrepancies and clarifying aspects of WFEM with respect to past work. 

 Implement the WFEM formulations for the dynamic analysis of moving load 

problems due to fast or sudden variations of the loading conditions. 

 Develop and present a new modified multiscale wavelet based finite element 

approach for the analysis of functionally graded beams using the Daubechies and 

BSWI wavelet families. These WFE formulations are applied in free vibration and 
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dynamic response analysis of functionally graded beams, where regions of the 

solution domain are expected to vary fast or suddenly. 

 Develop a modified algorithm to evaluate the Daubechies integral of the products of 

scaling functions, and/or their derivatives (connection coefficients), for different 

orders of the wavelet family at any multiresolution scale. These connection 

coefficients are used to formulate the wavelet space elemental matrices and load 

vectors of not only a functionally graded beam, but also homogeneous rod, beam and 

plane bar elements. 

 Present guidelines with respect to the application of WFEM for problems where the 

variation of stiffness or loading conditions require a dense mesh in the h-method and 

compare the WFEM formulations with the classical FEM approach (h or p method). 

 Investigate the effects of varying the material distribution of a functionally graded 

material on the dynamic response of a functionally graded (FG) beam resting on a 

viscoelastic foundation for different velocity and damping profiles. 

1.3.  Thesis outline 

This thesis contains a detailed analysis on the implementation of wavelets with the classical 

finite element method to formulate a wavelet based finite element method. The derivation of 

the element formulations as well as the strengths and weaknesses of the method are 

discussed. Its implementation to moving load problems and application in the analysis of 

functionally graded materials is outlined. The structure of the thesis is as follows: 

Chapter 1 contains a brief introduction and overview of the study presented in this thesis. The 

wavelet finite element method is introduced and described, citing unexplored areas in which 

the method can be potentially implemented. The main aims and objectives of this study are 

defined; followed by an overview of the presented study. The main contributions of the study 

are also highlighted in this chapter. 

Chapter 2 includes a literature review focusing on the advancements made with respect to the 

wavelet based finite element method. Relevant related works that have contributed to the 

current state of research are discussed. The different wavelet families that have been 

employed to create various wavelet based finite elements are also presented. Their 

applications, limitations and strengths, as investigated by other researchers, are further 

highlighted. An overview of functionally graded beams and the current advancements made 

with respect to their analysis is also presented in this chapter.  
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The definition and key concepts of wavelets and the multiresolution analysis are discussed in 

Chapter 3. Key properties and requirements of multiresolution for general wavelet analysis 

are presented. Furthermore, a mathematical approach is outlined and discussed with respect 

to the derivation and formulation of the BSWI and Daubechies scaling functions, wavelet 

functions and corresponding derivatives of the scaling functions; based on previous works. 

The general properties of these wavelet families are also discussed and linked with the 

formulation of the WFEM. A new modified formulation of the Daubechies connection 

coefficients used in the evaluation of the elemental matrices and load vectors is also 

presented in this chapter. 

Chapter 4 highlights the key theories and aspects of the finite element method that are related 

to the formulation and implementation of the WFEM. The classical and p-h adaptive FEMs, 

which are to be compared with the WFEM solutions, are also briefly discussed. Fundamental 

theories and formulations relating to the dynamic analysis of structural problems are 

highlighted. 

Consequently, the derivation and detailed discussion of the wavelet based finite elements 

implemented for both BSWI and Daubechies wavelet families are presented in Chapter 5. 

The axial rod, Euler Bernoulli beam and plane bar wavelet based elements are formulated; 

with common loading conditions highlighted. The representation of a beam resting on a 

foundation is also illustrated and derived based on the wavelet finite element approach. 

Some numerical examples are outlined in Chapter 6 to validate and compare the wavelet 

based finite element method’s ability to analyse static structural problems with various 

analytical and FEM approaches. The examples include problems that possess varying loading 

and boundary conditions as well as geometric and material properties. A thorough 

comparison of results is carried out with those presented in previous studies. A 

comprehensive study based on wavelet order selection of the Daubechies and BSWI WFEM, 

specific to static problems, is also presented.   

In Chapter 7, the WFEM is used to solve moving load problems with the aim of validating, 

comparing and highlighting the ability of the method (in comparison to existing analytical, 

semi-analytical and classical FEM approaches). Numerical examples are presented, varying 

from a simply supported beam subjected to a moving point load to a beam on a viscoelastic 

foundation subjected to subcritical, critical and supercritical moving loads. The BSWI and 
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Daubechies based WFEM solutions are compared with each other to identify their strengths 

and/or limitations in the analysis of moving load problems.  

Chapter 8 focuses on the new modified wavelet based finite element approach used to analyse 

functionally graded materials. Key theoretical aspects, based on the gradation of the FG beam 

and the formulation of the proposed method, are presented in this chapter. The free vibration 

analysis of a steel-alumina functionally graded beam is carried out using the WFEM and the 

solutions are compared with the classical FEM and results obtained previously from similar 

studies. The effects of varying the material distribution on the dynamic response of the FG 

beam and moving load critical velocities are analysed. Different damping and moving load 

velocity profiles are implemented in the analysis when the FG beam is resting on a 

viscoelastic foundation. 

The concluding Chapter 9 contains an overview of the study and key findings of this 

research. Suggestions for further work are stated based on the current advancements of 

WFEM.  

1.4.  Main contributions 

The main contributions and aspects of novelty resulting from the work carried out in this 

thesis include the following, and to the best of the author’s knowledge, are presented for the 

first time: 

i. A comparative study of the Daubechies WFEM, BSWI WFEM and the classical finite 

element method is carried out for a variation of static and dynamic problems based on 

a generalized framework implemented. 

ii. Comparisons and the effects of altering the order and/or multiresolution of the 

wavelet based finite elements on the accuracy of approximation of the natural 

frequencies and dynamic responses for homogenous and FG beam systems. 

iii. The formulation and implementation of the Euler Bernoulli wavelet based 

functionally graded beam element. Furthermore, a modified algorithm that allows for 

the computation of Daubechies multiscale connection coefficients which have the 

products of different order scaling functions and/or their derivatives. These 

connection coefficients are used in the formulation of the Daubechies based 

functionally graded beam WFEs and are also implemented for homogeneous rod, 

beam and plane bar elements. 
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iv. Analysis of the moving load critical velocity and variation of the dynamic response 

with respect to different material distributions of a functionally graded beam on a 

viscoelastic foundation subjected to a moving point load. The analysis is carried out 

for different moving load velocity and system damping profiles using the Daubechies 

and BSWI based WFEMs. 

The analysis of moving load problems is of practical importance and relevance in the field of 

railway design and maintenance, while the use and analysis of functionally graded materials 

for many engineering applications is ever growing. The results and findings presented in this 

study verify the practical potential, relevance and importance of the wavelet finite element 

method as an analysis tool with respect to these fields of study. The diversity of the method, 

with respect to its application and formulation in the analysis of structural problems, is still 

limited. Therefore, there are opportunities for further investigation of the method. 
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2. Literature Review 

Summary 

In this chapter, a literature review is presented focusing on previous relevant research carried 

out on the wavelet finite element method and its current advancements. The applications of 

the method and outcomes of research carried out are discussed. The Daubechies and BSWI 

wavelet based finite element methods and their applications will be taken into consideration 

specifically. However, WFEMs that employ other wavelet families will also be mentioned in 

this chapter. A brief introduction into wavelet analysis and the finite element method is 

presented, which will be expounded further in Chapter 3 and Chapter 4 respectively. 

Furthermore, the current developments in the research of functionally graded beams are 

discussed.  

2.1.  Brief introduction of wavelet analysis 

Wavelets provide a tool for time-frequency localization and its transform is dependent on 

scale and location of a signal evolving in time [15]. In other words, functions can be 

represented simultaneously in frequency (space) and time; at different resolutions. The 

wavelet functions are therefore distinct to the space-localised Fourier functions; which are not 

localised in time [16]. The concept itself can be viewed as a unification of ideas in the various 

fields originating over the decades. The fundamental concepts and ideologies behind the 

wavelet transform have been around for many years and there has been some controversy 

about the origin of wavelet theory. Some of the recent “discoveries” by the researchers, who 

were at the core of establishing the wavelet theory as we now know it, came up with 

relatively similar work that had already been done a few decades back by others [17].  The 

development of the wavelet analysis came from separate efforts that were not part of a 

consistent theory and it was only recently realised that the work done was actually the 

foundation of modern wavelet theory. Grossman and Morlet [4] are credited with the 

introduction of the term and methodology of wavelets by means of wavelet analysis as a tool 

for signal analysis of seismic data. Further advances in the theory were later made in 1985 by 

Stephane Mallat [18] who presented a study on the theory and formulation of wavelet 

orthonormal bases, and related their properties to those of multiresolution approximations 

of L2(ℝ). Furthermore, the quadrature mirror filters and pyramid algorithms were related to 

these wavelet bases. He was able to present a more efficient and effective approach for the 



 

9 

 

wavelet orthonormal bases with respect to multiresolution analysis. This later on motivated 

Y. Meyer, a harmonic analyst at the time, to recognise numerous classical results in the 

theory and point out that there was indeed a connection between the powerful existing 

techniques in mathematical study of singular integral operators with signal analysis methods 

[19]. From this point on the concept caught the attention of other physicists and 

mathematicians which included Ingrid Daubechies. After taking keen interest in the work that 

was already done in the field by those before (particularly Mallat and Mayer’s work), 

Daubechies [20] made a major breakthrough in the field of wavelets towards the end of the 

1980s by constructing a family of orthonormal wavelets with compact support. Daubechies 

[15,20] was able to formulate the Daubechies family of wavelets which led to their success; 

proving to be the basis of wavelet analysis as we know it today. 

Daubechies [15] monitored the trend in publications with respect to modern wavelet analysis 

in the early 1980s and it was discovered that its implementation was limited, with only very 

few scientific papers being published. It was mainly used by mathematicians as a tool to 

decompose data, functions or operators into different components. From the 1990s, the 

interest in the use of the wavelet transform had seen an exponential increase and the growth 

in popularity was among researchers in various fields of study, particularly those in science 

and engineering.  

To date, wavelet analysis has diversified in application and this is evident from the research 

of its implementation in medicine [21,22], finance [23], signal processing and geophysics 

[24], astronomy [25]  and chemistry [26],  just to name a few. Subsequently, the subject is 

now vast and the wavelets are applied to handcrafted applications in various disciplines to 

cater for their specific requirements. This is attributed to the key desirable general properties 

of wavelets which offer numerous avenues for design manipulation to meet the necessary 

desired requirements. In other words, wavelets in general are versatile and can be easily 

manipulated, with new families being developed and tailored for specific applications. 

Furthermore, properties such as multiresolution, compact support and vanishing moments 

make various families of wavelets desirable. This demonstrates the importance and relevance 

of wavelet analysis, with many possible avenues for its application. 

2.2.  The finite element method 

It is common practice in the structural engineering field to analyse and predict the behaviour 

of various systems. A practical approach can be applied by carrying out experimental testing 
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under certain conditions and assumptions to obtain valid and realistic results. However, this 

can be a very complex and costly approach, especially if the analysis on the limitations of 

systems is carried out. Therefore, various theoretically and mathematically based approaches 

have been investigated to carry out the analysis of systems. In structural analysis, analytical 

and semi-analytical approaches are continually being developed to represent the physical 

systems. Nevertheless, it is generally very difficult to apply exact closed form solutions in the 

analysis of the engineering problems due to existing mathematical tools not being sufficient 

enough. Furthermore, it may be very difficult to mathematically represent the varying 

complexities and irregularities (e.g. geometry or material composition) which may be present 

[1]. 

Therefore, a number of numerical approaches have been developed to approximately describe 

the behaviour of engineering systems. One such approach is the finite element method 

(FEM), which has become the foundation for solving complex engineering problems, 

particularly in structural analysis due to its diversity as well as versatility. FEM uses trial 

functions, which are a combination of a class of functions, to obtain the approximate 

solutions over the system’s domain [27]. Discretization of a system into elements leads to the 

solution domain being broken down into sub-domains and the elements are regions of space 

where the displacement field exists. The nodes connect these elements and are therefore the 

locations in space where the displacement and its derivatives are evaluated. From a 

mathematical point of view, the finite element mesh is considered to be a spatial subdivision.  

Over the solution domain, continuous functions are expressed in terms of the field variable 

nodal values, or their derivatives, and are used to approximate the behaviour of the unknown 

field variables [28].  

The behaviour of the field variables is described by interpolating or approximating functions, 

defined over each finite element. A collection of these functions over the entire domain 

provide piecewise approximations to the field variables. The classical finite element methods 

use polynomials to represent these functions as they are convenient to apply mathematically 

and easy to manipulate. It is important that the selection of right interpolating functions is 

carried out to ensure convergence of the approximate solution to the exact solution [29]. 

The method is popular in various engineering fields and this is evident from the fact that the 

method is not only restricted to structural analysis, but can also be applied to analyse heat 

transfer [27-29], fluid flow [30,31], distribution of electric or electromagnetic potential [32] 

problems; giving rise to its vast growing popularity over the decades.  The digital computer 
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age has also advanced the use of the method as larger and more complex engineering 

problems can be solved with increased accuracy, while simultaneously reducing the 

computational costs. Furthermore, it has enhanced the manner of attaining the approximate 

solutions efficient and practically viable.  

However, it is important to note that there is a trade-off between computational costs and 

improving the approximate solution accuracy. Thus, for one to achieve higher levels of 

accuracy of the solution, more computational power is required to achieve this; which can be 

a costly drawback. This is particularly the case where the gradient of the field variables are 

expected to vary suddenly or quickly. Difficulties emerge when analysing such systems and 

sometimes lead to slow convergence, inaccurate results and/or higher computational costs, 

since finer meshes are required [7,28]. 

2.3.  The wavelet finite element method 

Different approaches have been developed to overcome some of the short comings of the 

finite element method such as the Boundary Element Method (BEM), adaptive Finite element 

methods, meshless methods, just to name a few [33]. Given that at the time computational 

power was not as high as it is currently, the need for efficiency in the method of analysis was 

necessary. One other approach that has been developed in recent years is the Wavelet Finite 

Element Method (WFEM). The method combines the attractive wavelets with the 

conventional finite element method. The desirable properties of wavelets allows for their 

utilisation in solving the Partial Differential Equations (PDEs).  

Multiresolution is one of the most outstanding features of wavelet theory and it is the 

backbone of WFEM [6,7]. Specific wavelet based finite elements can be selected and 

analysed at finer scales, without modifying the initial system model, via the multiresolution 

property. This is advantageous since the accuracy of the solution, particularly in areas with 

high gradients and singularities present, can be greatly improved. Furthermore, computational 

costs are reduced since fewer elements are required to achieve acceptable levels of accuracy 

due to rapid convergence of the method [6,7]. Multiresolution arises from the “two-scale” 

relation, which is another key property of wavelets [20]. It allows for the convenient and free 

transformation of scaling and wavelet functions between different resolutions, thus improving 

the analysis precision. Another key feature of majority of wavelets is compact support which 

is also achievable via the two scale relation. The scaling and wavelet functions are finitely 

bound (non-zero over a finite range) and this is attractive for WFEM formulations since the 
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elements generated have less degrees of freedom. This is an ideal feature, in terms of 

computational efficiency, accuracy and convenience, for analysing problems of areas with 

high local gradients [10].  

These are just but a few of the most common properties of wavelets. However, it is important 

to identify the requirements to be satisfied when choosing a particular wavelet basis for the 

WFEM. FEM requires that the compatibility and completeness requirements be satisfied, 

with the addition of convergence of the approximate solution, for accurate results. The 

wavelet basis should be able to ensure these requirements are met and furthermore, it should 

have good numerical performance to allow easy implementation and treatment of boundary 

conditions when used. Computational efficiency is another key factor and motivation for the 

development of WFEM. It is ideal to have low order polynomials generated by the wavelet 

basis as well as good decomposition and reconstruction of the field variable for 

multiresolution to be effective and improve on the efficiency of the method.  

For these reasons, the WFEM has become a potentially powerful tool in the analysis of 

problems with irregularities; which offer the classical FEM difficulties in their analysis. Due 

to the adaptability of the wavelets, different wavelet families are being developed and 

customised for specific problems. They are implemented in WFEM based on their properties, 

and advancements for their applications have been continually researched.  

2.3.1. The Daubechies wavelet finite element method 

The Daubechies wavelet is one of the families that have been used in the formulation of the 

WFEs. The scaling functions are used as interpolating functions due to the key desirable 

properties of the wavelet family. It is also one of the primary wavelet families initially used 

in solution of PDEs, and subsequently implemented in WFEM. The properties of the 

Daubechies wavelet include multiresolution, orthogonality, vanishing moments, compact 

support and the “two scale” relation [20]. However, the Daubechies scaling functions (and 

their derivatives) have no explicit expression; therefore requiring the evaluation of what is 

commonly referred to as connection coefficients, to solve PDEs [34-36]. The term connection 

coefficients, as described by Latto et al. [36], are the integral of the products of the wavelet 

scaling functions and/or their derivatives (including translates). A more detailed discussion 

into the formulation and theory of connection coefficients is presented in Chapter 3. 

Ko et al. [2,9] are credited with the conceptualization and development of the Daubechies 

wavelet based finite element method. They implement the Daubechies wavelet basis 
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functions to formulate a tensor product finite element, which is used solve a 1D and 2D 

second order Neumann problem. The rate of convergence of the results achieved by the 

wavelet based approach is found to be good, with the exception of the Daubechies order 𝐿 =

12, which is attributed to shortening the connection coefficients to a fixed number of accurate 

digits. Ko et al. [37]   also use the Daubechies wavelets to develop a class of triangular finite 

elements. The tensor-product wavelet elements in the geometry of the triangular elemental 

domain are characterized using a multivalued scaling equation. 

The wavelet Galerkin finite element method is implemented by Zhou et al. [38] to analyse the 

bending of plates and beams. The Daubechies wavelet is used to carry out this analysis, and 

the results obtained are of good accuracy. The accuracy of the results is improved by 

increasing the order of the wavelet scaling functions. 

Ma et al. [10] enhance the work carried out in Ko et al. [2,9]   by developing a wavelet based 

beam finite element using the Daubechies D12 (order 𝐿 = 12) wavelet for static analysis. The 

beam element is formulated in wavelet space and the corresponding elemental degrees of 

freedom are represented by wavelet coefficients. In their work, they present a layout of the 

beam element such that, for compatibility at the borders of adjacent elements to be ensured, 

the transverse displacement and rotation DOFs must be present at each elemental end node. 

In their formulation, the stiffness matrix in wavelet space is obtained via the connection 

coefficients bound on the interval [0,1], as described by Ko et al. [9], and is then transformed 

into physical space by the use of a wavelet based transformation matrix.  Two static problems 

are used to verify the correctness of the element and the results are compared with the 

classical FEM solutions. The results indicate the WFEM achieves high levels of accuracy 

with fewer elements. However, there is no clear indication or formulation of the wavelet 

based load vectors and multiresolution is not taken into consideration in their study. 

Moreover, there are no suggestions on whether the layout of the element presented can be 

altered or what the effects of this are on the accuracy of the results. Ma et al. [10] state that 

other orders of the Daubechies wavelet can be implemented in the formulation of the beam 

WFE and indicate that higher orders lead to more accurate results; but subsequently higher 

computational costs. However, there is no comparison of results with respect to the order of 

the Daubechies WFE implemented. 

Chen et al. [8]  formulate a two dimensional Daubechies wavelet finite element which is used 

to analyse the bending of a thin plate. Furthermore, a new formulation to evaluate the load 

vector on the interval [0,1] in wavelet space is presented and found to be more efficient than 
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the approach presented by Chen et al. [39]. The algorithms presented for the evaluation of the 

stiffness matrices and load vectors are carried out at multiresolution scale 𝑗 = 0. The results 

presented show that the approach leads to highly accurate results and could be improved by 

increasing the order or multiresolution of the WFE. Moreover, the numerical examples 

selected include [8]; the analysis of Cook’s plane stress problem, stress analysis of an L-

shaped plate and thermal analysis of a paper steady-state. Through these examples, the 

capability of the Daubechies WFEM to accurately solve problems with singularities present 

in higher dimensional elements is illustrated. 

Chen et al. [6]  present a novel algorithm to evaluate the connection coefficients at different 

multiresolution scales; bound on the interval [0,1]. The algorithm presented takes into 

consideration the Daubechies scaling functions of the same order L. The multiscale 

connection coefficients are then used to analyse a static plate problem, where the accuracy 

results are improved via a multiscale lifting scheme. The results show that increasing the 

multiresolution of the WFEs improves the accuracy of the results. 

Diaz et al. [40] implement the Daubechies WFEM based on the formulations described by 

Ma et al. [10] and Chen et al. [8] to analysis static beam and plate problems. The formulation 

of the plate is based on Mindlin-Reissner plate theory, where shear deformation is taken into 

consideration through the thickness of the plate. In their analysis, they conclude that in the 

application of beam problems, the convergence of the solutions for Daubechies wavelet 

family of order 𝐿 < 12 is obtained by increasing the number of elements. Furthermore, it is 

stated that the orders of the scaling functions used must be 𝐿 = 2𝑘 + 4 for 𝑘 ∈ 𝑧 and 𝑘 > 0, 

where L is the order of the Daubechies scaling function. Moreover, the results for 𝐿 ≥ 20 are 

inaccurate due to numerical deterioration when evaluating the connection coefficients. It is 

therefore unclear, based on these results and conclusions, which orders of the Daubechies 

WFEM can be implemented in the analysis of beam structures, considering the numerical 

examples carried out are for a Daubechies D12 wavelet beam, similar to Ma et al. [10]. 

Furthermore, their analysis does not include multiresolution and therefore, if their findings 

are valid, it is not clear what the effect of implementing multiresolution on the accuracy of 

results is. 

Diaz et al. [41] compare the Daubechies wavelet and B-spline wavelet formulated plate 

WFEM solutions. The plates are formulated based on Mindlin-Reissner and Kirchhoff plate 

theories for static analysis, under uniform loading. The D10 WFEM results are also compared 

with classic finite element method solutions, and it is stated that the wavelet based solutions 
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take a third of the time it takes for classical FEM solutions to achieve similar levels of 

accuracy. 

Zhang et al. [42] use the two dimensional Daubechies scaling functions to formulate the 

WFEM and apply it to analyse the fluid-saturated porous media elastic wave equation. The 

results are compared with the classical FEM and they are highly accurate, possessing a good 

convergence rate. 

The Daubechies wavelet is used to formulate Rayleigh-Euler and Rayleigh Timoshenko beam 

wavelet finite elements by Wang et al. [43]. These wavelet based beam elements are used 

with the genetic algorithm for crack detection and are validated with experimental data. The 

results are found to be accurate, and the method efficient. 

Zhao and Wang [44] use the Daubechies WFEM to analyse a tank and investigate the thermal 

stress distribution along the vertical direction of the tank wall. The results obtained for the 

high gradient problems analysed are accurate and performed better than the classical FEM; 

giving better accuracy and requiring fewer elements for the analysis. Zhao [45] uses the 

Daubechies WFEM to analyse a Liquefied Petroleum Gas (LPG) tank under fire based on the 

gas-liquid coupled theory. From his analysis, the WFEM is compared with experimental data 

and the classical FEM to obtain the variation of temperature and pressure of the gas/liquid in 

the tank. The results obtained via WFEM are in very good agreement with experimental 

results. Furthermore, the WFEM solutions are better in accuracy and computational 

efficiency than the classical FEM. Zhao [46] carries out a further analysis of a gate rotor shaft 

with multiple cracks based on the Daubechies WFEM. Zhao implements an identification 

procedure and evaluates the changing rate of the natural frequencies via free vibration 

analysis. According to the analysis, the WFEM approach is in very good agreement with the 

actual solutions obtained; thus illustrating that the method can be successfully implemented 

in identifying multi-cracks on the rotor shaft. 

Zhou Y. and Zhou J. [47] use independent wavelet coefficients to represent the boundary 

DOFs for beams and thin plates via a modified wavelet approximation. This enables the 

homogeneous and non-homogeneous boundary conditions to be treated in a similar manner as 

conventional FEM. They implement their approach to analyse the bending and dynamic 

response of thin plates using the Daubechies wavelet order D6 at multiresolution scale 3. The 

results presented are in good agreement with the compared FEM and analytical solutions, and 

the approach offers an avenue for handling general boundary conditions.  
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Mitra and Gopalakrishnan [48] propose a novel wavelet based spectral finite element to study 

elastic wave propagation in 1-D connected waveguides using Daubechies scaling functions 

for approximation in time. This approach reduces the PDEs to ODEs (Ordinary Differential 

Equations) in spatial dimensions, which are decoupled via an eigenvalue analysis; hence 

decreasing the computational costs. They indicate that the proposed method would work well 

with other compact supported wavelet bases such as B-splines. Mitra and Gopalakrishnan 

[49] then extract the wave characteristics via the Daubechies based spectrally formulated 

wavelet finite element. Numerical experiments are performed to study frequency-dependent 

wave characteristics in elementary rod, Euler-Bernoulli and Timoshenko beams. 

Furthermore, they formulate higher order composite beams to study wave propagation [50]. 

Numerical experiments are performed to investigate the wave propagation due to broad band 

impulse load and modulated sinusoidal pulse. In their analyses, they conclude the use of the 

Daubechies wavelets improves the accuracy and efficiency of the solutions. 

There are two key limitations of implementing the Daubechies wavelet for the formulation of 

WFEMs. The first of these is the lack of symmetry (symmetry of the wavelet or scaling 

function curve with respect to the y axis) and an explicit expression for the wavelet and 

scaling functions. This makes the evaluation of numerical integrals problematic due to the 

unusual smoothness characteristics. Therefore, in order to formulate the element matrices and 

load vectors, the connection coefficients must be evaluated. The second is with respect to the 

accuracy of the method. The results presented demonstrate that the solutions are highly 

accurate, but for certain orders of the Daubechies WFEs. However, it is not clear which 

orders the Daubechies WFE are restricted to; with respect to the type of element and problem 

being analysed. Moreover, the effects of altering the element layout are not clearly stated. 

Majority of the problems analysed are of a static nature and the implementation of the 

method for the analysis of dynamic problems is limited. Furthermore, the implementation and 

the performance analysis of the method in the dynamic response of structural problems, with 

fast varying loading conditions and material properties, are also limited. This offers an 

opportunity for further research, which is to be investigated in this study. 

2.3.2. The BSWI wavelet finite element method 

It was necessary to carry out further research to identify other wavelet families, which had 

explicit expressions and could be implemented in the WFEM, to overcome the limitations of 

the Daubechies WFEM. The spline wavelets were identified as a potential family of wavelets 
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that could be implemented in WFEM. The spline wavelets have uniform translation of the 

bases, explicit expressions, compact support and sufficient smoothness of low order 

polynomials [3].  

Chen et al. [3] combine the conventional finite element method with the accuracy of the 

spline functions as shape functions for free vibration analysis of frame structures.  Based on 

the properties of the spline wavelets, they are sufficient for the variational method to solve 

differential equations in a multi-level approach. They implement this proposed method on a 

Euler Bernoulli beam, with cubic splines used to approximate the variable function in the 

elements. The analysis of a Vierendeel frame and triangular structures are carried out via 

numerical examples. The results show that the accuracy of the solutions would increase with 

an increase in refinement. 

Pengcheng and Peixiang [51] present a multivariable spline element method and use the 

interpolation functions of cubic B-splines of duality in product form to construct the entire 

independent field functions for plates and flat spherical shells with a square base. Pengcheng 

and Peixiang [52]  later extend their work in [51], to analyse moderately thick plates (the 

effects of transverse shear and rotary inertia are taken into account). They derive the spline 

finite elements based on the potential energy principle. In both cases they are able to satisfy 

the natural boundary conditions using the variational principle and their results show good 

convergence and high accuracy. The interpolations of the bicubic splines have few unknowns 

while still maintaining strong continuity and high precision of approximation. Therefore, 

Pengcheng and Peixiang [53] use bicubic splines in the product form to construct multi-field 

functions for static analysis of a plate on elastic foundations. This is carried out via the 

multivariable spline element method. 

Chui and Quak [54]  construct the semi-orthogonal B-spline Wavelet on the Interval (BSWI) 

which has the desirable properties of multiresolution, compact support, explicit expressions, 

smoothness and symmetry. This implies that the scaling and wavelet functions can be 

evaluated with ease and used in the formulation of the WFEM.  

Xiang et al. [11] implement the BSWI to construct a wavelet based C
0
 type plane 

elastomechanics element and Mindlin plate based on 2-D tensor product of the BSWI wavelet 

family. They carry out a static analysis for moderately thick and thick square plates, under 

uniform and concentrated static loading.  The BSWI plate WFEM solutions for order 2 and 

scale 3 (BSWI23) are compared with that of order 4 and multiresolution scale 3 (BSWI43). 

The results indicate that the BSWI43 WFEM solution give more accurate results, however the 
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computational costs are significantly higher due to the subsequent increase in the number of 

knots of each element. The BSWI23 WFEM results are inaccurate, except when the 

thickness-span ratio is high. For the analysis of moderately thick and thick plates, the 

BSWI43 element is suitable for the analysis. They further conclude that the layout of the 

elemental nodes can be modified, provided that the wavelet transformation matrix is not 

singular.  

Thin and moderately thick truncated conical shell wavelet finite elements with independent 

slope-deformation are constructed by Xiang et al. [55] using the BSWI wavelet family. The 

static analysis is carried out for a thin truncated conical shell and the results obtained via 8 

BSWI23-43 (123 DOFs) WFEs are of significantly better accuracy when compared with the 

traditional finite element (723 DOFs) solutions. This demonstrates the efficiency and 

effectiveness of the BSWI WFEM in the analysis of thin and moderately thick shells. 

Xiang et al. [7]  proceed to construct a range of BSWI based WFEs, which include the axial 

rod, beam (Timoshenko and Euler Bernoulli), plane bar, spatial bar and plane truss WFEs. A 

lifting scheme for the corresponding elements is also presented. Numerical examples are 

carried out to validate the constructed WFEs and compared with classical finite elements. The 

Euler Bernoulli and Timoshenko BSWI23 and BSWI43 beam wavelet finite elements are 

analysed for static problems under a distributed and uniform load respectively. The results 

show that the BSWI43 WFEM results are highly accurate with significantly less DOFs than 

the classical FEM solution. Furthermore, provided the wavelet transformation matrix is non-

singular, the BSWI WFEs can freely be constructed.  

A new BSWI thin C
1
 plate element based on Kirchhoff plate theory is formulated and 

analysed by Xiang et al. [12,56]  for static and dynamic problems. A square plate formulated 

using BSWI43 WFEs is subjected to a static load and subsequently, a free vibration analysis 

is carried. The free vibration of the skew plate is also analysed for different boundary 

conditions and the results compared with those obtained from literature. The BSWI43 WFEM 

solutions are highly accurate for the thin plate but it is highlighted that when the lifting 

scheme is implemented to improve the accuracy, the process becomes complex. 

Rotor-bearing systems are analysed using a new BSWI rotating Rayleigh-Timoshenko shaft 

wavelet based finite element formulated by Xiang et al. [57]. The analysis demonstrates that 

the shear-locking phenomenon is significantly eliminated when using the BSWI based WFEs 

due to the attractive properties of the BSWI wavelet family.  
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The static and forced vibration analysis of a thin plate and a thin plate on an elastic 

foundation, using a multivariable BSWI thin plate WFEs formulation, are carried out by 

Zhang et al. [58]. It is concluded that increasing the number of kinds of variables not only 

increases the accuracy of the solution, but also the computational costs. The results show that 

the static and forced vibration results of both cases analysed are highly accurate. The BSWI 

based WFEM has also been recently used in the analysis of elastic wave propagation for a 

cracked arch. Yang et al. [59], formulate the arch based on Castigliano’s theorem and Paris 

equation to accurately describe the wave motion behaviour for curved structures. Yang et al. 

[60] progress their research and analyse curved beams using the BSWI based WFEM. In their 

numerical examples, they analyse the static behaviour of a pinched ring and cantilever curved 

beam. Furthermore, the carry out the free vibration analysis of a hinged arch, a thin circular 

ring, a three-span clamped arch and a 90° arch with different boundary conditions. Their 

findings indicate that the BSWI based WFEM is suitable to carry out the static and free 

vibration analysis of curved beams, attaining satisfactory levels of accuracy due to the BSWI 

wavelet properties. 

2.3.3. Other wavelet finite element methods 

There are other wavelet families that have been implemented to formulate the wavelet based 

finite element method for the analysis of various engineering problems. One such wavelet 

family that has been applied recently is the explicitly expressed trigonometric Hermite 

wavelet. He and Ren [13] present the formulation and theory of the trigonometric wavelet 

beam finite element. In their analysis they compare the solutions of the classical FEM and 

trigonometric based WFEM via numerical examples. They carry out a static, free vibration 

and stability (buckling) analysis of beams structures. They conclude that high levels of 

accuracy are achieved with fewer elements, particularly for free vibration analysis, due to the 

multiresolution property. Furthermore, the trigonometric wavelet family has good 

approximation characteristics, and the approach overcomes the limitations of the Daubechies 

and BSWI based WFEMs with respect to the application of boundary conditions. Moreover, 

adjacent WFEs can be connected conveniently without the use of a wavelet transformation 

matrix and this allows for the trigonometric WFEs to be implemented simultaneously with 

classical FEs within the same system. He and Ren [14] formulate thin plate trigonometric 

based WFEs using a two dimensional tensor product trigonometric Hermite wavelet. The 

results obtained from the static analysis of a thin plate subjected to a uniformly distributed 

load, free vibration analysis and buckling analysis for different boundary conditions, are 
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compared with the classical FEM solutions. The results obtained are highly accurate, with 

fewer WFEs implemented in comparison to the classical FEM solutions.  

 The Hermite Cubic Spline Wavelet on the Interval (HCSWI) based WFEM [61-63], 

polynomial WFEM [64,65] and the second generation WFEM [66,67], are other wavelet 

based finite element approaches that have been very recently introduced and researched on. 

Li and Chen [68] have very recently presented a synthesis and summary critical review, of 

not only the wavelet based finite element methods, but also other wavelet based numerical 

methods for engineering problems. It must be noted that the study presented in this thesis had 

already been initiated and significantly advanced when some of the relatively new WFEMs 

were emerging. Furthermore, the current developments of the BSWI based WFEM 

demonstrate the potential and how exceptional the approach is for the analysis of different 

structural problems. The high levels of accuracy and efficiency of the method have thus 

attracted the attention of researchers. This is attributed to the desirable properties of the 

BSWI wavelet family, which include: compact support, symmetry, explicit expressions, 

multiresolution and semi-orthogonality. However, majority of the problems analysed using 

the method are static and free vibration problems.  

2.4.  Functionally graded materials 

Over the past decades, the evolution of composite materials in various engineering 

applications, particularly in the defence, aerospace and automotive industries, has been 

keenly observed. The need for light weight materials that possess high strength to weight and 

stiffness to weight ratios has led to the fabrication and application of composite materials that 

combine two or more materials varying in properties [69]. However, there are several 

limitations of conventional composite material applications in highly intense conditions, 

particularly high temperature environments, where the desirable properties of these 

composites would diminish. Furthermore, complications arising from the interface such as; 

material debonding or increased stress concentration that would lead to weakening of the 

composite material or crack propagation at the interface, have led to further research being 

carried out to mitigate these inadequacies [70].   

Functionally graded materials (FGM) are a relatively new class of composite materials which 

consists of two or more materials (often metals and ceramics), with the continuous and 

gradual variation of material composition with respect to space. The individual constituent 

materials possess different properties, for example: chemical, physical, thermal, mechanical 
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and electrical properties [71]. Therefore, the effective properties of functionally graded 

materials vary according to the material distribution of the constituent materials. The term 

and concept was introduced in the mid 80s by a faction of Japanese material scientists [72] 

with an aim to develop thermal barrier materials capable of withstanding high temperature 

gradients between the surfaces whilst withstanding significant mechanical loading. In a bid to 

decrease some limitations of conventional composites, research into FGM is rapidly growing 

so as to have a better understanding and improve on these advanced materials.  

Research has been, and continues to be carried out on the analysis of FGMs to better 

understand their behaviour under certain conditions. Majority of the research presented in 

literature is in relation to plates and shells. The critical review provided by Jha et al. [73], on 

the recent developments and studies of functionally graded plates, is recommended by the 

author. The research carried out on functionally graded beams is not as widespread as 

functionally graded plates and shells, which have a wider range of applications. Nonetheless, 

the need to analyse the behaviour of functionally graded beams is rapidly growing for both 

practical and theoretical purposes. Furthermore, majority of the research presented with 

respect to functionally graded beams involves static and free vibration analysis. 

The research based on the effects of shear deformation and rotary inertia on the free vibration 

of functionally graded beams is carried out using different analytical and numerical 

approaches. The thermoelastic behaviour of FG beams is investigated by Chakraborty et al. 

[69], who implement a new exact shear deformable FG beam finite element formulation 

based on the Timoshenko beam theory. They carry out a static, free vibration and wave 

propagation analysis based on the exponential and power laws of gradation. According to 

their results, the FG beams have the stress jumps smoothened and the natural frequencies 

differ significantly with respect to the material distribution of the FGM. The free vibration of 

short functionally graded beams is compared by Aydogdu and Taskin [74]  for different beam 

theories. The analysis is carried out by implementing the Euler Bernoulli, parabolic shear 

deformation and exponential shear deformation beam theories based on Hamilton’s principle. 

The free vibration analysis of the FG beam, which is formulated using the power law and 

exponential law, is carried out and the results obtained via the different beam theories are 

compared. The Euler Bernoulli FG beam natural frequencies are found to be higher than the 

other higher order beam theory solutions when the value of the slenderness ratio is small (< 

20); for different material distributions. This is because the Euler Bernoulli beam theory does 

not take into consideration shear deformation and rotational inertia, unlike the higher order 
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shear deformation theories. Therefore, the Euler Bernoulli beam is stiffer, leading to higher 

values of natural frequencies when the slenderness ratio is small. Furthermore, the difference 

in the natural frequencies increases with the modes of vibrations.  

Kadoli et al. [75]  applied the classical finite element method to analyse the static deflection 

and stresses of a transversely varying functionally graded beam, based on higher-order shear 

deformation theory and power law of gradation. Through their analysis of static FG beams, it 

is found that the material distribution significantly influences the deflection, stresses and 

location of the neutral surface. Sina et al. [76] and Thai and Vo [77] implement analytical 

approaches to obtain the natural frequencies of transverse varying FG beams using different 

higher-order shear deformation theories. Their solutions are found to be consistent with other 

previously presented FG beam analysis approaches. 

Pradhan and Chakraverty [78] compare the natural frequencies of a Euler Bernoulli 

functionally graded beam with those of a Timoshenko FG beam using the Rayleigh-Ritz 

method. The beam material distribution variation is based on the power law and occurs in the 

transverse direction. In their analysis, they investigate the effect of varying the slenderness 

ratio on the natural frequencies and compare the results obtained via the classical and first 

order Timoshenko beam theories. Their results are consistent with the findings in [74,77]; 

where the Euler Bernoulli FG beam solution overestimates the natural frequencies for low 

values of the slenderness ratio. However, it is stated that when the value of the slenderness 

ratio is increased, the natural frequencies at each mode of vibration, based on the two beam 

theories, gradually converge. Therefore, the Euler Bernoulli beam theory can be used to 

accurately analyse the free and forced vibration of slender FG beams for different material 

distributions. 

A significant quantity of the research conducted on functionally graded materials, particularly 

beams, is based on transverse gradation of the material distribution. A limited number of 

studies have been carried out with respect to axially varying functionally graded beams. This 

is attributed to the fact that the practical use of axially varying functionally graded beams is, 

at present, very limited. However, the classical finite element method is implemented by 

Alshorbagy et al. [79]  to analyse the free vibration of a Euler Bernoulli FG beam. The results 

presented illustrate that the axial material distribution variation influences the natural 

frequencies of the FG beam. Haung and Li [80] obtain the natural frequencies of an axially 

varying tapered functionally graded beam by transforming the problem in to Fredholm 

integral equations. Their approach is verified for the analysis of axially varying FG beams via 
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numerical examples and the results are in good agreement with the classical FEM and 

Rayleigh method solutions. Shahba and Rajasekaran [81] use a differential transform element 

method to carry out a free vibration and buckling analysis of a tapered Euler Bernoulli FG 

beam. 

Although majority of the research conducted on functionally graded beams has been focused 

on free vibration analysis, there has been some research carried out on the dynamic response 

of FG beams subjected to a moving load. The free vibration and dynamic response of a Euler 

Bernoulli FG beam with open cracks, simultaneously subjected to a transverse moving load 

and axial compressive force, is investigated by Yang et al. [82]. The analysis is carried out 

using an analytical approach, and the transverse material gradation of the FG beam is 

approximated using the exponential law. In their findings, they conclude that the location of 

the edge cracks has a significant effect on the natural frequencies. 

Simsek and Kocaturk [83] analyse the free vibration and dynamic response of a Euler 

Bernoulli FG beam subjected to a concentrated moving harmonic load. The transverse 

variation of the material properties are based on the power law and exponential law. The 

Lagrange’s equations are used to derive the governing system of equations of motion. In their 

work, the effects of varying the material distributions, via the power law exponent, on the 

natural frequencies and dynamic response of the FG beam are investigated. Furthermore, the 

effects of the velocity and the excitation frequency of the moving harmonic load on the 

dynamic response of the FG beam are also analysed. The  dynamic responses of the FG 

beam, based on classical, first order shear deformation and third order shear deformation 

beam theories, both subjected to a moving mass, are subsequently carried out by Simsek [84]. 

Simsek [85] later extends this work to analyse the non-linear dynamic behaviour of a 

transversely varying Timoshenko FG beam subjected to a moving harmonic load.  

Khalili et al. [86] investigate the dynamic response of a simply supported FG beam subjected 

to a moving load by combining the Rayleigh-Ritz method and the Differential Quadrature 

Method (DQM). The FG beam is formulated based on the Euler Bernoulli beam theory and 

the dynamic response of the FG beam is analysed for different material distributions. The 

beam is subjected to a moving point load, and subsequently a moving mass, where the inertia 

effects of the load are taken into consideration. From their results, they conclude that the 

inertia effects of the load influence the dynamic behaviour of the FGM beam. Furthermore, 

the variation of the material distribution also influences the dynamic response of the 

functionally graded beam.  
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2.5.  Conclusion 

A critical review of the wavelet finite element method and functionally graded materials has 

been presented in this Chapter. The advancements that have led to the current state of 

research of the WFEM were discussed. The finite element method and wavelet theory were 

also introduced. There are avenues that exist for the implementation of the wavelet finite 

element method, which are yet to be explored.  Based on the popularity and desirable 

properties of the Daubechies and BSWI based WFEMs, the two approaches are selected for 

implementation in this study. Furthermore, given the limited research that has been carried 

out up to this point, there is an opportunity to investigate the application of the two wavelet 

based finite element methods with respect to dynamic problems, particularly moving load 

problems. Furthermore, additional clarity of their application with regards to selection, 

performance and implementation of the wavelet family orders and multiresolution scales in 

the analysis of beams, is an area that needs to be addressed and further investigated. 

Following a critical review of the research carried out on the analysis of functionally graded 

materials, particularly FG beams, it was ascertained that there are still opportunities for 

contribution in the subject area.  The dynamic response of FG beams on a viscoelastic 

foundation subjected to fast variations in loading conditions, such as moving loads, is one 

such avenue that can be further explored. Areas that can possibly be investigated include: the 

effects of damping and applied moving load for different velocity profiles on the dynamic 

response of functionally graded beams of varying material distributions. To the best of the 

author’s knowledge, no work has been presented or published with respect to the dynamic 

response of functionally graded beams on a viscoelastic foundation, subjected to fast moving 

loads, using WFEM. The efficiency and effectiveness of the WFEM allows for such an 

analysis to be carried out, given that the method accurately approximates field variables with 

fewer DOFs. 
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3. Wavelet Analysis and Multiresolution Analysis 

Summary 

The general theories and main principles of wavelet analysis are described in the first part of 

this chapter through the definition of key concepts of multiresolution analysis (MRA). The 

properties and conditions necessary for multiresolution to occur, as well as the resultant 

scaling and wavelet functions that satisfy these conditions, are discussed based on previous 

works. The reconstruction and decomposition aspects relating to multiresolution for wavelet 

analysis are presented in Appendix A.1 The two wavelet families used in the formulation of 

WFEs in this study; the Daubechies wavelet and B-Spline Wavelet on the Interval (BSWI), 

are introduced and presented in this chapter. 

The Daubechies wavelet family is defined with the key properties of the scaling and wavelet 

functions highlighted. The filter coefficients, scaling and wavelet functions and their 

derivatives are mathematically presented and discussed in this chapter. Solving partial 

differential equations (PDEs) using the Daubechies wavelets requires the evaluation of 

moments and connection coefficients. These coefficients are introduced and formulated in 

this chapter. A modified approach used to evaluate the multiscale connection coefficients 

implemented in the formulation of the wavelet based element matrices and general distributed 

load vectors are presented. The integral of the product of the multiscale Daubechies scaling 

functions and/or their derivatives of different orders can be computed using this approach. 

The detailed mathematical formulations used to evaluate the filter coefficients and moments 

are presented in Appendix A.2. 

The general and Cardinal B-spline families of wavelets are introduced and their properties 

presented. The evaluation of the scaling and wavelet functions of the general B-splines are 

carried out using knot sequences, which are also derived. The general splines are then used to 

formulate the BSWI scaling and wavelet functions. The properties of the BSWI scaling and 

wavelet functions and their derivatives are introduced and expressed mathematically. The 

cardinal B-splines are formulated and discussed in Appendix A.3.1.  

3.1.  Concepts of multiresolution and wavelet theory 

Wavelets are described a class of basis functions that represent functions locally; both in 

space (frequency) and time. Furthermore, wavelets allow for analysis of functions or data to 
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be carried out at different resolutions (scales). There are certain mandatory requirements that 

a function must satisfy so as to be classified as a wavelet function [5]. However, different 

wavelet families will exhibit different properties based on their formulation. There are 

similarities between wavelet functions and classical Fourier functions. However, the Fourier 

functions are localised only in space. This implies that the represented Fourier functions do 

not have a particular frequency (or location) associated over a particular time interval. This is 

a welcoming advantage of wavelets over classical Fourier representations as they can be used 

to represent time varying functions locally or analyse time-dependent data. 

The wavelet basis emanates from a set of wavelet coefficients associated at a particular 

location in time and exist in different multiresolution scales. In relation to data and frequency, 

the coefficients at coarse resolution scales are associated with low frequency features. As the 

resolution scales become finer, more information (detail) is added from the higher resolution 

coefficients. Therefore, the coefficients at very fine resolution scales are associated with high 

frequency details that are highly localized [68]. There are some functions associated with 

wavelets which include the scaling and wavelet functions emanating from multiresolution 

analysis (MRA). It is therefore important to begin by defining MRA and the properties of 

MRA that govern wavelet theory. The discussions and mathematical formulations presented 

in this section are based on general wavelet and MRA theory; similar to those presented in 

[15,16,19,20,87].  

Let 𝑓 be a function of the complete function space 𝐿2(ℝ), i.e., 𝑓 ∈ 𝐿2(ℝ). There exists a 

nested sequence of closed approximation subspaces 𝑉𝑗  (𝑗 ∈ ℤ) associated with the 

decomposition of 𝐿2(ℝ). There also exists an orthogonal complement subspace 𝑊𝑗  (𝑗 ∈ ℤ) of 

corresponding subspace 𝑉𝑗 . Multiresolution analysis refers to the simultaneous appearance of 

multiple scales in function decompositions in the Hilbert space 𝐿2 ℝ  (infinite vector space 

with natural inner product norm providing a distance function) using the sequence of closed 

subspaces 𝑉𝑗 . Therefore in principle, in order for multiresolution to occur, the subspaces 𝑉𝑗  

satisfy the following properties [19]: 

 ⋯ 𝑉−2 ⊂ 𝑉−1 ⊂ 𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 ⊂ ⋯ (3.1) 

 𝑉𝑗+1 = 𝑉𝑗 ⊕ 𝑊𝑗  (3.2) 

  𝑉𝑗
𝑗∈ℤ

       
= 𝐿2(ℝ) (3.3) 
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The first property from equation (3.1) implies that the closed subspace 𝑉𝑗  is included within 

the next subspace 𝑉𝑗 +1 and subsequently all other higher subspaces as illustrated in Figure 

3-1. Therefore, any function 𝑓 within subspace 𝑉𝑗  belongs in all higher spaces. The second 

condition from equation (3.2) states that the sum of the subspaces 𝑊𝑗  and 𝑉𝑗  produces the 

subspace at the next scale 𝑉𝑗 +1.  

 

Figure 3-1: Illustration of multiresolution subspaces 𝑉𝑗  and 𝑊𝑗 . 

In other words, the complement subspace 𝑊𝑗  contains the additional “detail” for 𝑉𝑗 +1 and can 

be described as the differences of subspaces 𝑉𝑗 +1 and 𝑉𝑗 . It is easy to deduce from equation 

(3.2) and Figure 3-1 that [16]  

  𝑉𝑗

𝑗 ∈ℤ

= {0} (3.4) 

 
𝑓2 𝑥 = 𝑓 2𝑥  ∀ 𝑥 

𝑓 ∈ 𝑉𝑗 ⇔ 𝑓2 ∈ 𝑉𝑗+1         𝑗 ∈ ℤ 
(3.5) 

 
𝑓𝑛 𝑥 = 𝑓(𝑥 − 𝑛) 

𝑓 ∈ 𝑉0 ⇔ 𝑓𝑛 ∈ 𝑉0        𝑛 ∈ ℤ 
(3.6) 

 𝑉𝑗+1 = 𝑉0 ⊕ 𝑊0 ⊕ 𝑊1 ⊕ 𝑊2 ⋯⊕ 𝑊𝑗  (3.7) 

𝑉𝑗 ⊂ 𝑉𝑗+1 ⊂ 𝑉𝑗+2 ⊂ 𝑉𝑗 +3 

𝑉0 

 

𝑊𝑗  𝑊𝑗 +1 𝑊𝑗 +2 
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The union of the subspaces 𝑉𝑗  leads to the space 𝐿2(ℝ) from the condition in (3.3) [87]. 

Consider the orthogonal projection 𝑃𝑗𝑓 of 𝑓 onto the corresponding subspace 𝑉𝑗 . The 

completeness property in equation (3.3) implies that [20]: 

Furthermore, from equation (3.4) the intersection of the subspaces 𝑉𝑗  is a null space. 

However, the crucial condition for multiresolution is expressed in equation (3.5) to which the 

subspaces 𝑉𝑗  are scale invariant. Therefore, at scale j, the finer resolution of a function  𝑓 in 

subspace 𝑉0 is 𝑓 2𝑗
  in 𝑉𝑗 . Equation (3.6) represents the shift invariance condition, meaning 

that the translates of any function in subspace 𝑉𝑗  remain in the same subspace [15]. Let the 

scaling function of the multiresolution analysis 𝜙 ∈ 𝐿2(ℝ). Thus, the orthonormal basis of 𝑉𝑗  

is defined as:  

Given that the above properties, including equation (3.9) are satisfied, there exists a wavelet 

function 𝜓 ∈ 𝐿2(ℝ) to which the wavelet orthonormal basis for subspace 𝑊𝑗  is defined as:  

The scaling and wavelet functions correspond to the subspaces 𝑉𝑗  and 𝑊𝑗  respectively. One 

can therefore identify the key properties of the wavelet and the corresponding subspace 𝑊𝑗  

from the conditions expressed in equations (3.1)-(3.6)  and (3.9) as follows [20]: 

Equation (3.11) implies that the orthogonal subspaces 𝑊𝑗  result from the decomposition 

of 𝐿2(ℝ). The wavelet subspaces 𝑊𝑗 , and subsequently the functions within these subspaces, 

inherit the scale and shift invariance properties from the scaling function subspaces 𝑉𝑗 ; as 

expressed in equations (3.12) and (3.13). The wavelet subspaces are orthonormal from the 

condition expressed in (3.14). Thus, if all the conditions described above are met, then the 

scaling and wavelet functions satisfy [20]: 

 lim𝑗→∞ 𝑃𝑗 𝑓 = 𝑓   for all    𝑓 ∈ 𝐿2(ℝ) (3.8) 

 𝜙𝑘
𝑗  𝑥 = 2

𝑗
2𝜙(2𝑗𝑥 − 𝑘)         𝑘 ∈ ℤ (3.9) 

 𝜓𝑘
𝑗  𝑥 = 2

𝑗
2𝜓(2𝑗𝑥 − 𝑘)         𝑘 ∈ ℤ (3.10) 

 
⊕ 𝑊𝑗 = 𝐿2(ℝ)

𝑗 ∈ ℤ
 (3.11) 

 𝑓 ∈ 𝑊𝑗 ⇔ 𝑓2 ∈ 𝑊𝑗+1         𝑗 ∈ ℤ (3.12) 

 𝑓 ∈ 𝑊𝑗 ⇔ 𝑓𝑛 ∈ 𝑊𝑗         𝑛 ∈ ℤ (3.13) 

 𝑊𝑗 ⊥ 𝑊𝑗 ′       𝑖𝑓    𝑗 ≠ 𝑗′  (3.14) 
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The decomposition and reconstruction of the wavelet functions and coefficients are presented 

in Appendix A.1 for a better understanding of how multiresolution in wavelets is achieved.  

3.2.  Daubechies wavelet  

The Daubechies wavelet, as earlier mentioned, is one of the popular wavelet families used as 

a mathematical analysis tool. This family of wavelets, developed by Ingrid Daubechies [20], 

have the properties of compact supported orthonormal wavelets. The presented formulations 

and discussions are based on her work published in [20,15].  

In this study, the Daubechies wavelet family order is denoted by DL, where the order L is an 

even integer greater than 0 and corresponds to the number of filter coefficients 𝑝𝐿 𝑘  for 𝑘 =

0,1, … , 𝐿 − 1. These coefficients govern the corresponding orders of the wavelet family 

through the two scale relation 

and the wavelet equation 

The normalized wavelet function filter coefficients 𝑞𝐿
 𝑘  and scaling function filter 

coefficients 𝑝𝐿
 𝑘  have the relation 𝑞𝐿

 𝑘 = (−1)𝑘𝑝𝐿
 1 − 𝑘 . The scaling functions 𝜙𝐿

 𝑥  

and wavelet functions 𝜓𝐿
 𝑥  of Daubechies family of order L are bound in the interval 

[0, 𝐿 − 1] and [1 −
𝐿

2
,
𝐿

2
] respectively. This is an attractive feature of compact support that the 

Daubechies family of wavelets possess. The scaling and wavelet functions defined in 

equations (3.18) and (3.20) satisfy the following properties: 

  𝜙(𝑥)𝑑𝑥 ≠ 0
∞

−∞

 (3.15) 

  𝜓 𝑥 𝑑𝑥 = 0
∞

−∞

 (3.16) 

 𝜙𝐿 𝑥 =  2  𝑕𝐿 𝑘 𝜙𝐿(2𝑥 − 𝑘)

𝐿−1

𝑘=0

 (3.17) 

 𝜙𝐿 𝑥 =  𝑝𝐿 𝑘 𝜙𝐿(2𝑥 − 𝑘)

𝐿−1

𝑘=0

 (3.18) 

 𝜓𝐿 𝑥 =  2  𝑔𝐿 𝑘 𝜙𝐿(2𝑥 − 𝑘)

𝑘

 (3.19) 

 𝜓𝐿 𝑥 =  𝑞𝐿 𝑘 𝜙𝐿(2𝑥 − 𝑘)

𝑘

 (3.20) 



 

30 

 

The multiresolution scaling and wavelet basis corresponding to the subspaces Vj and Wj for 

the Daubechies wavelet family of order L are defined as: 

Furthermore, the Daubechies family of wavelets satisfy the following orthogonal properties at 

a scale j:  

3.2.1. The Daubechies filter coefficients 𝒑𝑳(𝒌) 

Daubechies [20] in her monograph outlined and proved the properties and conditions satisfied 

by the Daubechies filter coefficients from the conditions of the scaling and wavelet functions 

in (3.21)-(3.24). The properties of these filter coefficients include:  

  𝜙𝐿 𝑥 𝑑𝑥
∞

−∞

= 1 (3.21) 

  𝜙𝐿 𝑥 − 𝑘 𝜙𝐿 𝑥 − 𝑙 𝑑𝑥
∞

−∞

= 𝛿𝑘,𝑙  (3.22) 

  𝜙𝐿 𝑥 𝜓𝐿 𝑥 − 𝑘 𝑑𝑥
∞

−∞

= 0 (3.23) 

  𝑥𝑚𝜓𝐿 𝑥 𝑑𝑥 
∞

−∞

= 0        𝑚 = 0,1, … ,
𝐿

2
− 1 (3.24) 

 𝜙𝐿,𝑘
𝑗  𝑥 = 2

𝑗
2𝜙𝐿(2𝑗𝑥 − 𝑘) (3.25) 

 𝜓𝐿,𝑘
𝑗  𝑥 = 2

𝑗
2𝜓𝐿(2𝑗𝑥 − 𝑘) (3.26) 

  𝜙𝐿,𝑘
𝑗  𝑥 𝜙𝐿,𝑙

𝑗  𝑥 𝑑𝑥
∞

−∞

= 𝛿𝑘,𝑙  (3.27) 

  𝜓𝐿,𝑘
𝑗  𝑥 𝜓𝐿,𝑙

𝑗  𝑥 𝑑𝑥
∞

−∞

= 𝛿𝑘,𝑙  (3.28) 

  𝜙𝐿,𝑘
𝑗  𝑥 𝜓𝐿,𝑙

𝑗  𝑥 𝑑𝑥
∞

−∞

= 0 (3.29) 

  𝑕𝐿 𝑘 

𝑘

=  2 (3.30) 

  𝑔𝐿 𝑘 

𝑘

= 0 (3.31) 

  𝑕𝐿 𝑘 𝑕𝐿 𝑘 − 2𝑙 

𝑘

= 𝛿0,𝑙  (3.32) 

  𝑔𝐿 𝑘 𝑕𝐿 𝑘 − 2𝑚 

𝑘

= 0 (3.33) 
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The property in equation (3.30) is commonly referred to as the normalization condition. It is 

as a result of the scaling function integral having the non vanishing property in equation 

(3.21). Equation (3.32) highlights the orthogonality property of the filter coefficients which 

ensures that the orthonormality condition of the scaling functions, as expressed in equation 

(3.22), is met. In order for the orthogonality property between the scaling and wavelet 

functions in equation (3.23) to be met, the filter coefficients used to construct these functions 

must themselves possess the orthogonality requirement expressed in equation (3.32). The 

Daubechies filter coefficient formulations, as described by Daubechies [20], Strang and 

Nguyen [16] and Hong et al. [88], are derived in greater detail in Appendix A.2.1. Table A-2 

contains the normalized filter coefficients  𝑝𝐿(𝑘)𝑘 = 2 for D4 to D16 as computed by the 

author using the Mathematica version 7 program. 

3.2.2. Evaluation of the Daubechies scaling and wavelet functions 

The Daubechies wavelet scaling functions are calculated by solving the refinement equation 

(3.18). The initial step is to obtain the values of 𝜙𝐿 𝑥  at integer points. We can express the 

refinement equation in matrix form as:  

where the (𝐿 x 1) column vector 𝚽𝑳 contains the scaling functions at integer points with the 

support [0, 𝐿 − 1] and the (𝐿 x 𝐿) matrix  𝐏𝑳  contains the filter coefficients for order DL. 

Equation (3.34) represents the eigenvalue problem for the matrix  𝐏𝑳 , to which the 

eigenvector corresponding to the eigenvalue 1 contains the scaling functions at integer points 

𝜙𝐿 𝑥  for 0 ≤ 𝑥 ≤ 𝐿 − 1. The normalisation condition (3.21) is obtained through the 

eigenvector normalisation  

Though the scaling functions have been obtained at integer points, it is necessary to evaluate 

the scaling functions 𝜙𝐿 𝑥   for  𝑥 ∈ ℝ. Therefore, from the two scale equation, the scaling 

functions are computed at half integer points and these values are used to evaluate 𝜙𝐿 𝑥  at 

quarter integer points and so on. This is achieved recursively at dyadic points 𝑥 =  
𝑘

2𝑖
 for 

 

 
 
 

 
 

𝜙𝐿 0 

𝜙𝐿 1 
⋮

𝜙𝐿 𝐿 − 2 

𝜙𝐿 𝐿 − 1  
 
 

 
 

=  

 
 
 
 
 
𝑝(0) 0 ⋯ 0 0
𝑝(2) 𝑝(1) ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑝(𝐿 − 2) 𝑝(𝐿 − 3)
0 0 ⋯ 0 𝑝(𝐿 − 1) 

 
 
 
 

 
 
 

 
 

𝜙𝐿 0 

𝜙𝐿 1 
⋮

𝜙𝐿 𝐿 − 2 

𝜙𝐿 𝐿 − 1  
 
 

 
 

 

 𝚽𝑳 (𝐿 x 1) =  𝐏𝑳 (𝐿 x 𝐿)  𝚽𝑳 (𝐿 x 1)  

(3.34) 

  𝜙
𝐿
 𝑥 = 1

𝑥

 (3.35) 
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𝑘, 𝑖 ∈ ℤ and 𝑖 ≥ 0. Thus, 𝜙𝐿 𝑥   for  𝑥 ∈ ℝ, can be approximated by the dyadic points to 

various degrees of accuracy as illustrated in Figure 3-2. 

 

Figure 3-2: Daubechies D4 scaling functions 𝜙4  
𝑘

2𝑖  for different values of i. 

The computational cost increases with an increase of the level of accuracy required through 

the increasing number of dyadic points. From Figure 3-2, it is observed that the values for 

𝜙4  
𝑘

2𝑖  at 𝑖 = 4 are almost as accurate as those obtained when 𝑖 = 16.  

 

 
Figure 3-3: Daubechies D6 scaling 𝜙6,0

𝑗  𝑥  and wavelet 𝜓6,0
𝑗  𝑥  function at different multiresolution levels j. 

(a) 

(b) 
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Therefore, in practice one can select a lower value of i that gives an acceptable level of 

accuracy, and then carry out an interpolation for the approximate values of 𝜙𝐿 𝑥   𝑓𝑜𝑟  𝑥 ∈ ℝ 

within these dyadic points to reduce the computational time. The wavelet functions are then 

computed from equation (3.20) once the scaling functions are evaluated. Subsequently, the 

scaling and wavelet functions at different multiresolution j can be calculated from the 

relations in equations (3.25) and (3.26) respectively. Figure 3-3 shows the comparison of the 

scaling and wavelet functions for D6 at different scales j. 

 

𝜙4 𝑥  

 

𝜙6 𝑥  

 

𝜙8 𝑥  

 

𝜙10 𝑥  

 

𝜙12 𝑥  

 

𝜙14 𝑥  

 

𝜙16 𝑥  

 

𝜙18 𝑥  

 

𝜙20 𝑥  

Figure 3-4: The Daubechies scaling functions 𝜙𝐿 𝑥  plots for order D4 – D20. 

Figure 3-4 and Figure 3-5 include graphic plots of the Daubechies scaling and wavelet 

functions respectively for order D4 – D20. The number of vanishing moments increases with 

an increase in the order DL and moreover, the support of both scaling and wavelet functions 

also increases. Therefore, if a function is approximated by a set of polynomials, the accuracy 

of 𝜙𝐿,𝑘 𝑥  to approximate the function increases with order DL. It is evident from the graphs 

in Figure 3-4 and Figure 3-5 that both 𝜙𝐿 𝑥  and 𝜓𝐿 𝑥  become smoother with an increase of 

the number of vanishing moments. This means that increasing the order of the wavelet 
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increases the order of the polynomials x
m
, where 0 ≤ 𝑚 ≤

𝐿

2
− 1, that can be represented 

exactly via the scaling function and its translates. 

 

𝜓4 𝑥  

 

𝜓6 𝑥  

 

𝜓8 𝑥  

 

𝜓10 𝑥  

 

𝜓12 𝑥  

 

𝜓14 𝑥  

 

𝜓16 𝑥  

 

𝜓18 𝑥  

 

𝜓20 𝑥  

Figure 3-5: The Daubechies wavelet functions 𝜓𝐿 𝑥  plots for order D4 – D20. 

3.2.3. The Daubechies scaling function derivatives 𝝓𝑳
(𝒎) 𝒙  

The derivatives of the Daubechies wavelet scaling functions are essential in the formulation 

and implementation of the Daubechies based wavelet finite elements. It is therefore necessary 

to highlight some key aspects related to the evaluation of these functions. Similar to the 

scaling functions, the derivatives have no explicit expression, thus the derivatives are 

calculated recursively by evaluating a system of equations. The approach highlighted in this 

section is similar to that provided by Zhou et al. [38]. Let the derivative of the scaling 

function of Daubechies family DL be denoted by   

 𝜙𝐿
(𝑚) 𝑥 =  

𝑑𝑚𝜙𝐿(𝑥)

𝑑𝑥𝑚
 (3.36) 
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By differentiating the refinement equation (3.18) m times, the derivative of the scaling 

function from equation (3.36) becomes 

The support for the scaling function is [0, 𝐿 − 1] and therefore the support of the m
th

 

derivative of the scaling function is also 𝜙𝐿
(𝑚) 𝑥 ⊆ [0, 𝐿 − 1]. Similar to the evaluation of 

the scaling functions, it is necessary to evaluate the derivatives first at integer points; within 

the support limits. This gives rise to a system of equations at all integer points within the 

corresponding support as shown below. 

This can be represented in matrix form as: 

This is rewritten as: 

where  𝚽𝐿
(𝑚)

 =  𝜙
 𝑚 

 0 , 𝜙
 𝑚 

 1 , ⋯ , 𝜙
 𝑚 

 𝑁 − 2 , 𝜙
 𝑚 

 𝑁 − 1  
T
 is the column matrix 

containing the derivatives at integer points,  𝑰  is an  𝐿 x 𝐿  identity matrix, and  𝑷𝑳  is the 

filter coefficient matrix with entries 𝑷𝑳𝑘,𝑙
= 𝑝𝐿(2𝑘 − 𝑙).  The matrix  𝑷𝑳  matrix is singular, 

and in order to determine a unique solution, a normalizing condition is necessary. The 

moment condition expressed in equation (3.24) (which is discussed further in the next 

section) gives rise to the equation presented by Beylkin [34] 

 𝜙𝐿
(𝑚)

 𝑥 =  2𝑚  𝑝 𝑘 

𝐿−1

𝑘=0

𝜙𝐿
(𝑚)

(2𝑥 − 𝑘) (3.37) 

 

𝜙𝐿
(𝑚) 0 = 2𝑚𝑝(0)𝜙𝐿

 𝑚 
(0)

𝜙𝐿
(𝑚) 1 = 2𝑚  𝑝 0 𝜙𝐿

(𝑚) 2 + 𝑝 1 𝜙𝐿
(𝑚) 1 + 𝑝 2 𝜙𝐿

(𝑚) 0  

⋮

𝜙𝐿
(𝑚) 𝐿 − 2 = 2𝑚  𝑝 𝐿 − 3 𝜙𝐿

(𝑚) 𝐿 − 1 + 𝑝 𝐿 − 2 𝜙𝐿
(𝑚) 𝐿 − 2 + 𝑝 𝐿 − 1 𝜙𝐿

(𝑚) 𝐿 − 3  

𝜙𝐿
(𝑚) 𝐿 − 1 = 2𝑚𝑝(𝐿 − 1)𝜙𝐿

(𝑚)
(𝐿 − 1)

 (3.38) 

 

 
 
 

 
 𝜙𝐿

(𝑚) 0 

𝜙𝐿
(𝑚) 1 

⋮

𝜙𝐿
(𝑚) 𝐿 − 2 

𝜙𝐿
(𝑚) 𝐿 − 1  

 
 

 
 

= 2𝑚  

 
 
 
 
 
𝑝(0) 0 ⋯ 0 0
𝑝(2) 𝑝(1) ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑝(𝐿 − 2) 𝑝(𝐿 − 3)

0 0 ⋯ 0 𝑝(𝐿 − 1) 
 
 
 
 

 
 
 

 
 𝜙𝐿

(𝑚) 0 

𝜙𝐿
(𝑚) 1 

⋮

𝜙𝐿
(𝑚) 𝐿 − 2 

𝜙𝐿
(𝑚) 𝐿 − 1  

 
 

 
 

 

 𝚽𝐿
(𝑚)

 
(𝐿 x 1)

= 2𝑚  𝐏𝑳 (𝐿 x 𝐿)  𝚽𝐿
(𝑚)

 
(𝐿 x 1)

 

(3.39) 

 (2𝑚  𝐏𝑳  𝐿 x 𝐿 −  𝑰 ) 𝐿 x 𝐿  𝚽𝐿
 𝑚 

 
 𝐿 x 1 

= {𝟎} 𝐿 x 1  (3.40) 

  𝑘𝑚𝜙(𝑥 − 𝑘)

𝑘=∞

𝑘=−∞

=  𝑥𝑚 +  (−1)𝑘  
𝑚
𝑘

 

𝑘=𝑚

𝑘=1

𝑥𝑚−𝑘  𝜙(𝑧)𝑧𝑘𝑑𝑧
∞

−∞

 (3.41) 
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 𝜙𝐿(𝑥)𝑥𝑚𝑑𝑥
∞

−∞
 is defined as the moment of the scaling functions. Differentiating equation 

(3.41) m times we obtain  

Therefore, adding the normalizing condition (3.42) to the set of equations in (3.40) allows the 

evaluation of 𝜙𝐿
(𝑚) 𝑥  at integer points. Through recursion, the values at dyadic points can be 

solved via equation (3.37) in an approach similar to that used to obtain the scaling functions.  

 

𝜙6
(1) 𝑥  

 

𝜙10
(1) 𝑥  

 

𝜙12
(1) 𝑥  

 

𝜙20
(1) 𝑥  

Figure 3-6: The Daubechies scaling function 1st derivative 𝜙𝐿
(1) 𝑥  plots for order D4, D10, D12 and D20. 

Figure 3-6 above contains the plot of the first derivative of the scaling functions for 

Daubechies D4, D10, D12 and D20 wavelets. It is observed that as the order of the wavelet 

increases, the first derivative of the scaling function becomes smoother. Furthermore, as the 

order of the derivative 𝑚 →
𝐿

2
− 1, the more irregular the curves of 𝜙𝐿

(𝑚) 𝑥  become. The m
th

 

derivative of the scaling functions at different multiresolution scales can also be computed by 

differentiating equation (3.25) m times. Thus, 

  𝑘𝑚𝜙 𝑚 (𝑥 − 𝑘)

𝑘=∞

𝑘=−∞

= 𝑚! (3.42) 

 𝜙𝐿,𝑘
𝑗 ,(𝑚) 𝑥 = 2𝑗 (𝑚+

1
2

)𝜙𝐿
(𝑚)

(2𝑗𝑥 − 𝑘) (3.43) 



 

37 

 

Equation (3.43) can be evaluated from the values obtained from equation (3.37). 

3.2.4. The Daubechies moments 

A vital property of the Daubechies wavelet family is the vanishing moment condition which 

is expressed in equation (3.24). The ability of the Daubechies wavelet to accurately represent 

a function is dependent on the number of vanishing moments. Daubechies wavelets of order 

L have 
𝐿

2
− 1 vanishing moments [20] and this property ensures that a polynomial x

m
, 

where 0 ≤ 𝑚 ≤
𝐿

2
− 1, is in the multiresolution spaces Vj. Furthermore, the vanishing 

moments describe the number of times the Daubechies wavelet DL is continuously 

differentiable. Therefore, the Daubechies wavelet DL belongs to  𝐶
𝐿

2
−1

. This vanishing 

moment property implies that the translates of the Daubechies scaling functions, 𝜙𝐿 𝑥 − 𝑘  

of order L, can directly represent a polynomial of order x
m
 where 0 ≤ 𝑚 ≤

𝐿

2
− 1 [36]. 

Mathematically, this is expressed as [36]: 

The coefficients 𝑀𝑘
𝑚  denote the moments of the scaling function and its translates at V0. 

Thus, the moments are evaluated from the expression  

where 𝑀0
𝑚  is the m

th
 moment of the scaling function and is evaluated as: 

The moments 𝑀𝑘
𝑗 ,𝑚

 of the scaling function translates, can also be evaluated in the 

multiresolution space Vj; where 

 𝑥𝑚 =  𝑀𝑘
𝑚

𝑘

𝜙𝐿 𝑥 − 𝑘  (3.44) 

 𝑀𝑘
𝑚 = 𝑀0,𝑘

𝑚 =  𝑥𝑚 , 𝜙𝐿 𝑥 − 𝑘  =   𝑥𝑚𝜙𝐿 𝑥 − 𝑘 𝑑𝑥 
∞

−∞

 (3.45) 

 𝑀𝑘
𝑚 =    

𝑚
𝑙
 𝑖𝑚−𝑙

𝑚

𝑙=0

𝑀0
𝑙  (3.46) 

 𝑀0
𝑚 = 𝑀0

0,𝑚 =  𝑥𝑚 , 𝜙𝐿 𝑥  =   𝑥𝑚𝜙𝐿 𝑥 𝑑𝑥 
∞

−∞

 (3.47) 

 𝑀0
𝑚 =

1

2(2𝑚 − 1)
  

𝑚
𝑙
 

𝑚−1

𝑙=0

𝑀0
𝑙  𝑝𝐿 𝑖 

𝐿−1

𝑖=0

𝑖𝑚−𝑙  (3.48) 

 𝑀𝑘
𝑗 ,𝑚

=   𝑥𝑚 , 𝜙𝐿,𝑘
𝑗

(𝑥) =   𝑥𝑚𝜙𝐿,𝑘
𝑗  𝑥 𝑑𝑥 

∞

−∞

 (3.49) 
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The function 𝑥𝑚  can be represented in terms of the moments and scaling functions at 

multiresolution scale j as:  

The moments described above are derived in more detail in Appendix A.2.2 using a similar 

approach as outlined by Latto et al. [36] for moments at scale 𝑗 ≥ 0. 

3.2.5. The Daubechies connection coefficients 

The Wavelet-Galerkin approximation is formulated via the integrals of the scaling and/or 

wavelet functions. However, the integrals can be expressed in terms of the scaling functions 

since the wavelet function is evaluated from the scaling function as shown in equation (3.26). 

In the case of some wavelet families such as the Daubechies wavelet, the scaling and wavelet 

functions have no explicit expression. Furthermore, the derivatives of the scaling functions 

are highly oscillatory, particularly for the low order wavelet families and/or the high order 

derivatives. This implies that the integrals cannot be evaluated directly in closed form and 

require the computation of what is commonly referred to as connection coefficients. There 

are different forms of connection coefficients described in the literature, however in this 

study, the term connection coefficients will refer to the integral of products of the scaling 

functions and/or derivatives of the scaling functions [36]. The general connection coefficients 

are defined as follows: 

1. The 2-term scaling function connection coefficients:  

2. The connection coefficients of the form  

Beylkin [34] computed the 2-term scaling function connection coefficients with the integral 

limits −∞ to ∞, denoted as: 

 𝑀𝑘
𝑗 ,𝑚

=  
1

2𝑗 (𝑚+
1
2

)
  

𝑚
𝑙
 𝑘𝑚−𝑙

𝑚

𝑙=0

𝑀0
0,𝑙

 (3.50) 

 𝑥𝑚 =  𝑀𝑘
𝑗 ,𝑚

𝑘

𝜙𝐿,𝑘
𝑗

(𝑥) (3.51) 

 Γ𝑘,𝑙
𝑑1 ,𝑑2 =   𝜙𝐿

(𝑑1)
(𝑥 − 𝑘)𝜙𝐿

(𝑑2)
(𝑥 − 𝑙)𝑑𝑥

𝑏

𝑎

 (3.52) 

 Υ𝑘
𝑚 =   𝒳 0,1 (𝑥)𝑥𝑚𝜙𝐿(𝑥 − 𝑘)𝑑𝑥

1

0

  (3.53) 

 Γ1
𝑘
0,𝑑2 =   𝜙𝐿(𝑥 − 𝑘)𝜙𝐿

(𝑑2)
(𝑥)𝑑𝑥

∞

−∞

 (3.54) 
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He applied the same algorithm to obtain the integral of products of the scaling and/or wavelet 

functions and the corresponding derivative operators. These functions were then applied to 

compute the nonstandard form of the Hilbert transform and functional derivatives. Dahmen 

and Micchelli [35] also used these connection coefficients to solve PDEs using the Wavelet-

Galerkin method. 

Latto et al. [36] presented an algorithm to evaluate the general n-term connection 

coefficients, with integral limits −∞ to ∞, by implementing the two-scale relation of the 

scaling functions and the moment equations to generate a set of homogeneous equations and 

normalizing equations respectively. They presented algorithms for the 2-term and 3-term 

connection coefficients which are expressed as:  

Chen et al. in [39] and [89] furthered Beylkin’s [34] work by presenting finite bound 

connection coefficients of the form 

Discussing key errors found in [39], Zhang et al. [90] corrected them giving a clearer 

conceptualization of these connection coefficients. The connection coefficients presented by 

Beylkin [34], Latto et al. [36] and Dahmen and Micchelli [35], with unbound integral limits, 

were classified by Romine and Peyton [91] as “improper” connection coefficients. In their 

technical report, they presented “proper” 2-term and 3-term connection coefficients to which 

the integral limits are on a finite bound domain 0 to y.  

They identified that the improper connection coefficients presented by Latto et al. [36] 

experienced inadequacies when implementing boundary conditions since they did not 

accurately solve the inner product near the limits of a finitely bound interval. Furthermore, 

the standard numerical quadrature of the integrals near the boundary using the improper 

 Γ1
𝑘,𝑙
𝑑1 ,𝑑2 =   𝜙𝐿

 𝑑1 
(𝑥 − 𝑘)𝜙𝐿

 𝑑2 
(𝑥 − 𝑙)𝑑𝑥

∞

−∞

 (3.55) 

 Λ1
𝑖,𝑘,𝑙
𝑑1 ,𝑑2 ,𝑑3 =  𝜙𝐿

 𝑑1 
(𝑥 − 𝑖)𝜙𝐿

 𝑑2 
(𝑥 − 𝑘)𝜙𝐿

 𝑑3 
(𝑥 − 𝑙)𝑑𝑥

∞

−∞

  (3.56) 

 Γ2
𝑘
𝑑1 ,0

=   𝜙𝐿
(𝑑1)

(𝑥 − 𝑘)𝜙𝐿(𝑥)𝑑𝑥
𝑦

0

 (3.57) 

 Γ3
𝑘,𝑙
𝑑1 ,𝑑2 =   𝜙𝐿

(𝑑1)
(𝑥 − 𝑘)𝜙𝐿

(𝑑2)
(𝑥 − 𝑙)𝑑𝑥

𝑦

0

 (3.58) 

 Λ2
𝑖,𝑘,𝑙
𝑑1 ,𝑑2 ,𝑑3 =  𝜙𝐿

 𝑑1 
(𝑥 − 𝑖)𝜙𝐿

 𝑑2 
(𝑥 − 𝑘)𝜙𝐿

 𝑑3 
(𝑥 − 𝑙)𝑑𝑥

𝑦

0

 (3.59) 
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connection coefficients, were unfeasible due to the highly oscillatory basis functions of the 

Daubechies wavelets. The proper connection coefficients were employed to solve a one 

dimensional Poisson problem with Dirichlet boundary conditions. Lin and Zhou [92] 

presented “proper” 2-term and 3-term connection coefficients for the Daubechies and Coiflets 

family of wavelets with the integral limits between 0 and 2
j
 of the form  

to solve Burgers equation. 

With regards to the formulation of the Daubechies based WFEs, the integrals in the 

formulation of the elemental matrices and load vectors are in the bounded domain [0,1]. Ko 

et al. [9] used a similar approach to Latto et al. [36] to derive connection coefficients bound 

on the unit interval by solving an eigenvalue problem formed from a set of homogenous 

equations.  

However, to uniquely solve for these connection coefficients, additional normalization 

conditions are generated from the moment condition of the Daubechies wavelets highlighted 

in equation (3.51). Ko et al. [9] applied these connection coefficients to solve a one 

dimensional, second order Neumann problem. Ma et al. [10] constructed a wavelet based 

beam element, Chen et al. [8] constructed a wavelet based thin plate and Diaz et al. [40] also 

constructed beam and plate WFEs using the connection coefficients (3.62); to formulate the 

elemental matrices. The formulation of the load vectors for distributed loading also requires 

the evaluation of the connection coefficients as expressed in equation (3.53) bound in the 

domain [0,1]. Ma et al. [10] outlined an algorithm to evaluate these connection coefficients, 

which were also employed by Chen et al. [8]. However, the connection coefficients expressed 

in equations (3.53) and (3.62) are formulated at multiresolution scale j = 0. In order to take 

advantage of the multiresolution properties, Chen et al. [6] presented connection coefficients 

computed at different multiresolution scale j, following a similar approach outlined by Ma et 

al. [10]  and Ko et al. [9]. 

 Γ4
𝑘,𝑙
𝑑1 ,𝑑2 =   𝜙𝐿

(𝑑1)
(𝑥 − 𝑘)𝜙𝐿

(𝑑2)
(𝑥 − 𝑙)𝑑𝑥

2𝑗

0

 (3.60) 

 Λ3
𝑖,𝑘,𝑙
𝑑1 ,𝑑2 ,𝑑3 =  𝜙𝐿

 𝑑1 
(𝑥 − 𝑖)𝜙𝐿

 𝑑2 
(𝑥 − 𝑘)𝜙𝐿

 𝑑3 
(𝑥 − 𝑙)𝑑𝑥

2𝑗

0

 (3.61) 

 Γ5
𝑘,𝑙
𝑑1 ,𝑑2 =   𝜙𝐿

(𝑑1)
(𝑥 − 𝑘)𝜙𝐿

(𝑑2)
(𝑥 − 𝑙)𝑑𝑥

1

0

 (3.62) 
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However this algorithm is for the evaluation of the connection coefficients of the same order 

L. In this study, it is necessary to evaluate the connection coefficients of different order 

scaling functions in order to obtain the wavelet space WFE matrices for beam elements with 

axial deformation taken into account as well as the Daubechies based functionally graded 

beam element presented in Chapter 8.  

Multiscale two-term connection coefficients of the form 𝜞𝒂,𝒃 𝒌,𝒍
𝒋,𝒎,𝒏

 

A modified connection coefficient algorithm which takes into account different orders of the 

scaling functions, at different multiresolution scale j, is presented. These connection 

coefficients, formulated following a similar algorithm presented by Chen et al. [6], are later 

implemented in the analysis of FG beams. To the best of the author’s knowledge this 

algorithm, and the consequent implementation in the formulation of FG beams, is presented 

for the first time. These connection coefficients allow for the evaluation of Daubechies based 

wavelet finite element matrices where integral of the products of the approximating scaling 

functions, with respect to the axial and transverse displacement functions, are of different 

wavelet order. We define the following two-term connection coefficient 

where a and b are the orders of the scaling function of the Daubechies wavelets at 

multiresolution j. The values 𝑑1 and 𝑑2 denote the order of the derivative of the scaling 

functions. Equation (3.64) can be rewritten as 

We define the characteristic function 𝒳 0,1 (𝑥): 

 Γ𝐿
6

𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 =   𝜙𝐿

(𝑑1)
(2𝑗𝑥 − 𝑘)𝜙𝐿

(𝑑2)
(2𝑗𝑥 − 𝑙)𝑑𝑥

1

0

 (3.63) 

 Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 =   𝜙𝑎,𝑘

𝑗 , 𝑑1 
(𝜉)𝜙𝑏,𝑙

𝑗 , 𝑑2 
(𝜉)𝑑𝜉

1

0

 (3.64) 

 Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 =  2𝑗  𝒳 0,1 (𝜉)𝜙𝑎

 𝑑1 
(2𝑗 𝜉 − 𝑘)𝜙𝑏

 𝑑2 
(2𝑗 𝜉 − 𝑙)𝑑𝜉

∞

−∞

  (3.65) 

  𝒳 0,1  𝑥 =  
1  0 ≤ 𝑥 ≤ 1
0 otherwise

  (3.66) 
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Figure 3-7: The characteristic function 𝒳 0,1  
𝛾

2
 . 

The characteristic function also satisfies a two-scale relation  

According to the two scale relation of the scaling function in equation (3.25), 

 Furthermore, differentiating equation (3.68) m times,  

Substituting (3.69) into equation (3.65) for derivatives of order d1 and d2 respectively, 

Let 2𝜉 =  𝛾 thus 𝑑𝑥 =
𝑑𝛾

2
 . Substituting into (3.70) 

Substituting the characteristic function in equation (3.67)  into equation (3.71) 

 

𝒳 0,1  
𝛾

2
 =  

1  0 ≤ 𝛾 ≤ 2

0 otherwise
  

𝒳 0,1  
𝛾

2
 = 𝒳 0,1  𝛾 + 𝒳 1,2  𝛾 = 𝒳 0,1  𝛾 + 𝒳 0,1  𝛾 − 1  

 

 

(3.67) 

 𝜙𝐿(2𝑗 𝜉 − 𝑘) =   𝑝 𝑟 𝜙𝐿 2𝑗+1𝜉 − 2𝑘 − 𝑟 

𝑟

 (3.68) 

 2𝑗𝑚 𝜙𝐿
 𝑚 

(2𝑗 𝜉 − 𝑘) =  2(𝑗+1)𝑚  𝑝 𝑟 𝜙𝐿
 𝑚 

 2𝑗+1𝜉 − 2𝑘 − 𝑟 

𝑟

 (3.69) 

 

Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 =  2𝑗  𝒳 0,1  𝜉 2𝑑1  𝑝 𝑟 𝜙𝑎

 𝑑1 
 2𝑗+1𝜉 − 2𝑘

𝑟

∞

−∞

− 𝑟 2𝑑2  𝑝 𝑠 𝜙𝑏
 𝑑2 

(2𝑗+1𝜉 − 2𝑙 − 𝑠)

𝑠

𝑑𝜉 

(3.70) 

 

Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 = 

2𝑗 +𝑑1+𝑑2  𝑝 𝑟 𝑝 𝑠 

𝑟,𝑠

 𝒳 0,1  
𝛾

2
  𝜙𝑎

 𝑑1 
(2𝑗 𝛾 − 2𝑘 − 𝑟)𝜙𝑏

 𝑑2 
(2𝑗 𝛾 − 2𝑙 − 𝑠)

𝑑𝛾

2

∞

−∞

 
(3.71) 

ξ 𝛾 

1 

1 2 

1 

1 2 

𝒳 0,1  
𝛾

2
  

𝒳 0,1  𝛾  
𝒳 0,1  𝛾 − 1  
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However, from equation (3.65) 

We can therefore substitute equations (3.73) and (3.74) into (3.72). 

Equation (3.75) can be rewritten as  

where 2 − 𝑎 ≤ 𝑘, 𝑟 ≤ 2𝑗  − 1 and 2 − 𝑏 ≤ 𝑙, 𝑠 ≤ 2𝑗  − 1. Equation (3.76) can be expressed 

in matrix form as follows: 

where Γ𝑗
𝑎,𝑏  is a vector of length   𝑎 + 2𝑗 − 2  𝑏 + 2𝑗 − 2  x 1  containing the connection 

coefficients, while the square matrix  𝑷𝒂,𝒃    contains the filter coefficients as expressed in 

equation (3.76) with the dimensions   𝑎 + 2𝑗 − 2  𝑏 + 2𝑗 − 2 ×  𝑎 + 2𝑗 − 2  𝑏 + 2𝑗 − 2  . 

Equation (3.77) can be rewritten as: 

 

 

 
Γ𝑎,𝑏 𝑘,𝑙

𝑗 ,𝑑1 ,𝑑2 =  2𝑗+𝑑1+𝑑2−1  𝑝 𝑟 𝑝 𝑠 

𝑟,𝑠

  𝒳 0,1  𝛾 + 𝒳 0,1  𝛾 − 1  𝜙
𝑎
 𝑑1 (2𝑗𝛾 − 2𝑘

∞

−∞

− 𝑟)𝜙𝑏

 𝑑2 (2𝑗𝛾 − 2𝑙 − 𝑠)𝑑𝛾 

 

 

Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 =  2𝑗+𝑑1+𝑑2−1  𝑝 𝑟 𝑝 𝑠 

𝑟,𝑠

 𝒳 0,1  𝛾 𝜙𝑎
 𝑑1 (2𝑗𝛾 − 2𝑘 − 𝑟)𝜙

𝑏

 𝑑2 (2𝑗𝛾 − 2𝑙

∞

−∞

− 𝑠)𝑑𝛾 +    𝒳 0,1  𝛾 − 1 𝜙
𝑎
 𝑑1 (2𝑗𝛾 − 2𝑘 − 𝑟)𝜙

𝑏

 𝑑2 (2𝑗𝛾 − 2𝑙 − 𝑠) 𝑑𝛾

∞

−∞

 

 (3.72) 

 Γ𝑎,𝑏 2𝑘+𝑟,2𝑙+𝑠
𝑗 ,𝑑1 ,𝑑2 = 2𝑗   𝒳 0,1  𝛾 𝜙𝑎

 𝑑1 
(2𝑗𝛾 − 2𝑘 − 𝑟)𝜙𝑏

 𝑑2 
(2𝑗𝛾 − 2𝑙 − 𝑠) 𝑑𝛾

∞

−∞

 (3.73) 

 Γ𝑎,𝑏 2𝑘+𝑟−2𝑗 ,2𝑙+𝑠−2𝑗
𝑗 ,𝑑1 ,𝑑2 = 2𝑗   𝒳 0,1  𝛾 − 1 𝜙𝑎

 𝑑1 
(2𝑗 𝛾 − 2𝑘 − 𝑟)𝜙𝑏

 𝑑2 
(2𝑗 𝛾 − 2𝑙 − 𝑠) 𝑑𝛾

∞

−∞

 (3.74) 

 Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 =   2𝑑1+𝑑2−1  𝑝𝑎 𝑟 𝑝𝑏 𝑠 

𝑟,𝑠

 Γ𝑎,𝑏 2𝑘+𝑟,2𝑙+𝑠
𝑗 ,𝑑1 ,𝑑2 + Γ𝑎,𝑏 2𝑘+𝑟−2𝑗 ,2𝑙+𝑠−2𝑗

𝑗 ,𝑑1 ,𝑑2   (3.75) 

 

Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 =  2𝑑1+𝑑2−1  [𝑝𝑎 𝑟 − 2𝑘 𝑝𝑏 𝑠 − 2𝑙 

𝑟,𝑠

+ 𝑝𝑎 𝑟 − 2𝑘 + 2𝑗  𝑝𝑏 𝑠 − 2𝑙 + 2𝑗  ] Γ𝑟,𝑠
𝑗 ,𝑑1 ,𝑑2  

(3.76) 

 

  Γ𝑗
𝑎,𝑏  

  𝑎+2𝑗−2  𝑏+2𝑗−2   × 1 
= 

2𝑑1+𝑑2−1  𝑷𝒂,𝒃   
  𝑎+2𝑗−2  𝑏+2𝑗−2 × 𝑎+2𝑗−2  𝑏+2𝑗−2  

 Γ𝑗
𝑎,𝑏  

  𝑎+2𝑗−2  𝑏+2𝑗−2  × 1 
   

(3.77) 



 

44 

 

I is the   𝑎 + 2𝑗 − 2  𝑏 + 2𝑗 − 2 ×  𝑎 + 2𝑗 − 2  𝑏 + 2𝑗 − 2   identity matrix. However, 

equation (3.78) cannot uniquely define the generalized connection coefficients since the 

matrix  (2𝑑1+𝑑2−1 𝑷𝒂,𝒃   − 𝑰) is singular. Therefore, it is necessary to employ the moment 

condition to formulate the normalizing conditions required to generate a sufficient number of 

inhomogeneous equations so as to uniquely determine the connection coefficients. These 

additional normalizing equations are formulated from the fact the Daubechies scaling 

functions of order a can exactly represent any polynomial of order m with 0 ≤ 𝑚 ≤
𝑎

2
− 1. 

𝑀𝑘
𝑗 ,𝑚

 are the moments described in equation (3.49). For the sake of uniformity of the 

formulation presented, let the moments associated with the scaling function of order a and b 

be denoted as 𝑀𝑎 𝑘
𝑗 ,𝑚

 and 𝑀𝑏 𝑙
𝑗 ,𝑛

 respectively. Differentiating equation (3.79) d1 times with 

𝐿 = 𝑎: 

Similarly, for a polynomial of order n with 0 ≤ 𝑛 ≤
𝑏

2
− 1,  

Differentiating equation (3.81) d2 times 

 

 2𝑑1+𝑑2−1  𝑷𝒂,𝒃  
  𝑎+2𝑗−2  𝑏+2𝑗−2 × 𝑎+2𝑗−2  𝑏+2𝑗−2  

−

𝑎+2𝑗−2𝑏+2𝑗−2×𝑎+2𝑗−2𝑏+2𝑗−2𝑰𝑎+2𝑗−2𝑏+2𝑗−2 × 1𝑎,𝑏Γ𝑗=𝑎+2𝑗−2𝑏+2𝑗−2 × 

10   
(3.78) 

 𝜉𝑚 = 2
𝑗
2  𝑀𝑗 ,𝑘

𝑚 𝜙𝐿 2𝑗 𝜉 − 𝑘 

𝑘

 (3.79) 

 

𝑚 𝜉𝑚−1 = 2
𝑗
22𝑗  𝑀𝑎 𝑘

𝑗 ,𝑚
𝜙𝑎

′  2𝑗 𝜉 − 𝑘 

𝑘

𝑚(𝑚 − 1) 𝜉𝑚−2 = 2
𝑗
222𝑗  𝑀𝑎 𝑘

𝑗 ,𝑚
𝜙𝑎

′′  2𝑗 𝜉 − 𝑘 

𝑘

⋮

𝑚 𝑚 − 1 ⋯𝑚 −  𝑑1 − 2  𝜉𝑚−𝑑1+1 = 2
𝑗
22 𝑑1−1 𝑗  𝑀𝑎 𝑘

𝑗 ,𝑚
𝜙𝑎

′′  2𝑗 𝜉 − 𝑘 

𝑘

𝑚 𝑚 − 1 ⋯ 𝑚 −  𝑑1 − 2   𝑚 −  𝑑1 − 1   𝜉𝑚−𝑑1 = 2𝑗 (𝑑1+
1
2

)  𝑀𝑎 𝑘
𝑗 ,𝑚

𝜙𝑎
 𝑑1 

 2𝑗 𝜉 − 𝑘 

𝑘

 (3.80) 

 𝜉𝑛 = 2
𝑗
2  𝑀𝑗 ,𝑘

𝑛 𝜙𝑏 2𝑗𝜉 − 𝑘 

𝑘

 (3.81) 
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Multiplying equation (3.80) by equation (3.82) and integrating the products: 

However, 

Thus, substituting equations (3.65) and (3.84) into equation into equation (3.83) 

For a Daubechies wavelet family at any scale j, there are  
𝑎𝑏

4
  number of normalizing 

equations that can be generated from equation (3.85). This can be expressed as: 

where matrix  𝑴𝒋
𝒂,𝒃    contains the corresponding moments as expressed in equation (3.86), 

 Γ𝑗
𝑎,𝑏   is the vector containing the connection coefficients and the vector  𝒏𝒄  contains the 

 

𝑛 𝑛 − 1 ⋯  𝑛 −  𝑑2 − 2   𝑛 −  𝑑2 − 1   𝜉𝑛−𝑑2

= 2
𝑗(𝑑2+

1

2
)  𝑀𝑏 𝑙

𝑗 ,𝑛
𝜙

𝑏

 𝑑2  2𝑗𝜉 − 𝑙 

𝑙

 
(3.82) 

 

 𝑛 𝑛 − 1 ⋯  𝑛 −  𝑑2 − 2   𝑛 −  𝑑2 − 1   𝜉𝑛−𝑑2𝑚 𝑚 − 1 ⋯ 𝑚 −  𝑑1 − 2   𝑚
1

0

−  𝑑1 − 1   𝜉𝑚−𝑑1  𝑑𝜉

= 2𝑗 2𝑗 𝑑1 2𝑗 𝑑2   𝑀𝑎 𝑘
𝑗 ,𝑚

𝜙𝑎
 𝑑1 

 2𝑗 𝜉 − 𝑘 𝑀𝑏 𝑙
𝑗 ,𝑛

𝜙𝑏
 𝑑2 

 2𝑗 𝜉 − 𝑙 

𝑘,𝑙

1

0

𝑑𝜉 

 

 

 𝑚 𝑚 − 1 ⋯  𝑚 −  𝑑1 − 2   𝑚 −  𝑑1 − 1  𝑛 𝑛 − 1 ⋯ 𝑛 −  𝑑2 − 2   𝑛
1

0

−  𝑑2 − 1    𝜉𝑚+𝑛−𝑑1−𝑑2  𝑑𝜉

= 2𝑗(𝑑1+𝑑2+1)
 𝑀𝑎 𝑘

𝑗,𝑚
𝑀𝑏 𝑙

𝑗,𝑛

𝑘,𝑙

 𝜙𝑎
 𝑑1 

 2𝑗
𝜉 − 𝑘 𝜙𝑏

 𝑑2 
 2𝑗

𝜉 − 𝑙 
1

0

𝑑𝜉 

(3.83) 

  𝜉𝑚+𝑛−𝑑1−𝑑2

1

0

𝑑𝜉 =  
1

𝑚 + 𝑛 − 𝑑1 − 𝑑2 + 1
 (3.84) 

 

𝑚 𝑚 − 1 ⋯ 𝑚 −  𝑑1 − 2   𝑚 −  𝑑1 − 1  𝑛 𝑛 − 1 ⋯ 𝑛 −  𝑑2 − 2   𝑛 −  𝑑2 − 1  

𝑚 + 𝑛 − 𝑑1 − 𝑑2 + 1

= 2𝑗 (𝑑1+𝑑2)  𝑀𝑎 𝑘
𝑗 ,𝑚

𝑀𝑏 𝑙
𝑗 ,𝑛

𝑘,𝑙

Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2  

 

 

𝑚! 𝑛!

 𝑚 − 𝑑1 − 1 !  𝑛 − 𝑑2 − 1 ! (𝑚 + 𝑛 − 𝑑1 − 𝑑2 + 1)

= 2𝑗 (𝑑1+𝑑2)  𝑀𝑎 𝑘
𝑗 ,𝑚

𝑀𝑏 𝑙
𝑗 ,𝑛

𝑘,𝑙

Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2  

(3.85) 

  𝑴𝒋
𝒂,𝒃  

  
𝑎𝑏
4

  ×  𝑎+2𝑗−2  𝑏+2𝑗−2   
 Γ𝑗
𝑎,𝑏  

  𝑎+2𝑗−2  𝑏+2𝑗−2  × 1 
=  𝒏𝒄 

  
𝑎𝑏
4

  × 1 
 (3.86) 
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left hand side entries corresponding values of equation (3.86). The normalizing system of 

equations in (3.86) can now be employed to uniquely determine the connection coefficients 

as expressed in equation (3.78). In order to reduce on computational costs, the connection 

coefficients are evaluated once and then stored. If the order of the Daubechies scaling 

functions is 𝐿 = 𝑎 = 𝑏, the connection coefficients are identical to those expressed in 

equation (3.62) as formulated by Chen et al. [6]. 

The multiscale connection coefficients of the form 𝜰𝒌
𝒋,𝒎

 

Chen et al. [6] also presented an algorithm to evaluate the multiscale connection coefficients 

of the form  

These connection coefficients are implemented to evaluate the wavelet space distributed load 

vector. Chen et al. [6] presented an algorithm to calculate these connection coefficients at 

different multiresolution scale j. However in this study, a simpler and more efficient approach 

is presented. The connection coefficient of the form Υ𝑘
𝑗 ,𝑚

 is formulated from a correlation of 

the 2-term connection coefficients Γ𝑎,𝑏 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2  and moments 𝑀𝑙

𝑗 ,𝑚
 at multiresolution scale j. 

Substituting equation (3.79) into (3.87), 

However, from equation (3.65) 

Thus, substituting equation (3.89) into equation (3.88) 

This can be expressed in matrix form as:  

 Υ𝑘
𝑗 ,𝑚

= 2
𝑗
2   𝑥𝑚𝜙𝐿(2𝑗 𝜉 − 𝑘)𝑑𝜉

1

0

= 2
𝑗
2  𝒳 0,1 (𝜉)𝜉𝑚𝜙𝐿(2𝑗 𝜉 − 𝑘)𝑑𝜉

∞

−∞

 (3.87) 

 Υ𝑘
𝑗 ,𝑚

=  2𝑗  𝒳 0,1 (𝑥)  𝑀𝑗 ,𝑙
𝑚𝜙𝐿 2𝑗𝑥 − 𝑙 

𝑙

𝜙𝐿(2𝑗𝑥 − 𝑘)𝑑𝑥
∞

−∞

  

 Υ𝑘
𝑗 ,𝑚

= 2𝑗   𝑀𝑙
𝑗 ,𝑚

𝑙

 𝒳 0,1 (𝑥)𝜙𝐿 2𝑗𝑥 − 𝑙 𝜙𝐿(2𝑗𝑥 − 𝑘)𝑑𝑥
∞

−∞

 (3.88) 

 2𝑗  𝒳 0,1 (𝑥)𝜙𝐿 2𝑗𝑥 − 𝑙 𝜙𝐿(2𝑗𝑥 − 𝑘)𝑑𝑥
∞

−∞

= Γ𝐿,𝐿 𝑘,𝑙

𝑗,0,0
 (3.89) 

 Υ𝑘
𝑗 ,𝑚

=   𝑀𝑙
𝑗 ,𝑚

𝑙

Γ𝐿,𝐿 𝑘,𝑙

𝑗,0,0
 (3.90) 
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Once the 2-term multiscale connection coefficients Γ𝐿,𝐿 𝑘,𝑙
𝑗 ,0,0

, corresponding to the mass matrix 

in wavelet space (discussed further in Chapter 5), and moments 𝑀𝑙
𝑗 ,𝑚

 have been evaluated 

and stored, it is more convenient and less computationally costly to use this approach to 

calculate the load vector connection coefficients in wavelet space. However, if the connection 

coefficients Γ𝐿,𝐿 𝑘,𝑙
𝑗 ,0,0

 are not already evaluated or required e.g., in the static analysis of the 

wavelet based rod or beam element, it is more convenient to compute Υ𝑘
𝑗 ,𝑚

 using the 

approach presented by Chen et al. [6]. 

3.3.  B-splines and B-spline wavelet on the interval (BSWI) 

Basis splines, commonly referred to as B-splines, for a given knot sequence can be 

constructed by taking the piecewise polynomials between the knots. The knots are joined in 

such a way that the B-splines obtain a certain order of overall smoothness. In this section, the 

formulation and discussion of the BSWI is presented. However, the inner scaling and wavelet 

functions of the BSWI wavelet family are obtained from general B-Splines and the B-

wavelet. Therefore, the formulation and properties of the cardinal B-splines, general B-

splines and the B-wavelet are presented in Appendix A.3.The mathematical representation is 

conceptually based on the general theory of B-splines as presented by [19,93,94].   

In order to derive the BSWI scaling and wavelet functions it is important to define and 

formulate the B-splines at multiresolution scale j. The B-splines formulated in Appendix 

 

 
  
 

  
 Υ2−𝐿

𝑗 ,0

Υ3−𝐿
𝑗 ,0

⋮

Υ
2𝑗−2

𝑗 ,0

Υ
2𝑗−1

𝑗 ,0
 
  
 

  
 

= 

 

 
 
 
 
 
 
 
 
 
 Γ𝐿,𝐿 2−𝐿,2−𝐿

𝑗 ,0,0
Γ𝐿,𝐿 2−𝐿,3−𝐿

𝑗 ,0,0
⋯ Γ𝐿,𝐿 2−𝐿,𝑙

𝑗 ,0,0
⋯ Γ𝐿,𝐿 2−𝐿,2𝑗−2

𝑗 ,0,0
Γ𝐿,𝐿 2−𝐿,2𝑗−1

𝑗 ,0,0

Γ𝐿,𝐿 3−𝐿,2−𝐿
𝑗 ,0,0

Γ𝐿,𝐿 3−𝐿,3−𝐿
𝑗 ,0,0

⋯ Γ𝐿,𝐿 3−𝐿,𝑙
𝑗 ,0,0

⋯ Γ𝐿,𝐿 3−𝐿,2𝑗−2

𝑗 ,0,0
Γ𝐿,𝐿 3−𝐿,2𝑗−1

𝑗 ,0,0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

Γ𝐿,𝐿 𝑘,2−𝐿
𝑗 ,0,0

Γ𝐿,𝐿 𝑘,3−𝐿
𝑗 ,0,0

⋯ Γ𝐿,𝐿 𝑘,𝑙
𝑗 ,0,0

⋯ Γ𝐿,𝐿 𝑘,2𝑗−2

𝑗 ,0,0
Γ𝐿,𝐿 𝑘,2𝑗−1

𝑗 ,0,0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

Γ𝐿,𝐿 2𝑗−2,2−𝐿

𝑗 ,0,0
Γ𝐿,𝐿 2𝑗−2,3−𝐿

𝑗 ,0,0
⋯ Γ𝐿,𝐿 2𝑗−2,𝑙

𝑗 ,0,0
⋯ Γ𝐿,𝐿 2𝑗−2,2𝑗−2

𝑗 ,0,0
Γ𝐿,𝐿 2𝑗−2,2𝑗−1

𝑗 ,0,0

Γ𝐿,𝐿 2𝑗−1,2−𝐿

𝑗 ,0,0
Γ𝐿,𝐿 2𝑗−1,3−𝐿

𝑗 ,0,0
⋯ Γ𝐿,𝐿 2𝑗−1,𝑙

𝑗 ,0,0
⋯ Γ𝐿,𝐿 2𝑗−1,2𝑗−2

𝑗 ,0,0
Γ𝐿,𝐿 2𝑗−1,2𝑗−1

𝑗 ,0,0
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 𝑀2−𝐿

𝑗 ,𝑚

𝑀3−𝐿
𝑗 ,𝑚

⋮

𝑀𝑙
𝑗 ,𝑚

⋮

𝑀
2𝑗−2

𝑗 ,𝑚

𝑀
2𝑗−1
𝑚

 
 
 
 
 

 
 
 
 

 

 

  𝚼
𝒋,𝒎

 
  𝐿+2𝑗−2  × 1 

=   𝚪𝒋,𝟎,𝟎 
  𝐿+2𝑗−2   ×  𝐿+2𝑗−2   

  𝑴𝒋,𝒎 
  𝐿+2𝑗−2  × 1 

 (3.91) 
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A.3.2, are at scale 𝑗 = 0. Therefore, the basis functions in subspace 𝑉𝑗  for B-splines of order 

m and scale 𝑗 > 0 are expressed as [54]: 

with the knot sequence 

Following the procedure for general B-splines in Appendix A.3, equation (3.92) can be 

expressed explicitly as:  

The support of the basis functions in equation (3.94) is 

B-splines with multiple y knots at a point within the knot sequence are defined as y-tuple 

knots. The B-spline basis of the knot sequence expressed in equation (3.93) has m-tuple knots 

at 0 and 1 and simple knots inside the unit interval. Therefore, for the knot sequence on 

interval [0,1], 𝑡𝑘
𝑗
 is given as [95]: 

At the boundary points 0 and 1, the knots coalesce and form multiple knots for the BSWI. 

Inside the interval though, the knots are simple and hence smoothness is unaffected. At any 

scale j, the discretization step is 
1

2𝑗  for j > 0; thus, there are 2
j
 segments in [0,1]. Given the 

limits 𝑘 ∈ [−𝑚 + 1, 2𝑗 + 𝑚 − 1], the number of knots at an end is 𝑚 − 1 (𝑚 − 1-tuple 

knots, 2𝑚 − 2 for both ends). The total number of knots is given by the difference of the 

maximum and minimum limits i.e., 2𝑗 + 𝑚 − 1 −  −𝑚 + 1 =  2𝑗 + 2𝑚 − 2. We can 

therefore find the number of inner knots as 2𝑗 + 2𝑚 − 2 −  2𝑚 − 2 =  2𝑗 . This gives rise 

to a condition for the minimum value of scale j that must be satisfied to ensure that there is at 

least one inner scaling function in the formulation of the BSWI scaling functions. Given that 

the number of end knots is 2𝑚 − 2, and total knots is 2𝑗 + 𝑚 − 2, then 

 𝐵𝑚,𝑘
𝑗  𝑥 =  𝑡𝑘+𝑚

𝑗
− 𝑡𝑘

𝑗
  𝑡𝑘

𝑗
, … , 𝑡𝑘+𝑚

𝑗
 
𝑓

(𝑡 − 𝑥)+
𝑚−1 (3.92) 

 
 𝑡𝑘

𝑗
 
𝑘=−𝑚+1

2𝑗 +𝑚−1
 

𝑡𝑘
𝑗

≤ 𝑡𝑘+1
𝑗

 

(3.93) 

 𝐵𝑚,𝑘
𝑗  𝑥 =

𝑥 − 𝑡𝑘
𝑗

𝑡𝑘+𝑚−1
𝑗

− 𝑡𝑘
𝑗
𝐵𝑚−1,𝑘

𝑗  𝑥 +
𝑡𝑘+𝑚
𝑗

− 𝑥

𝑡𝑘+𝑚
𝑗

− 𝑡𝑘+1
𝑗

𝐵𝑚−1,𝑘+1
𝑗  𝑥  (3.94) 

 𝐵1,𝑘
𝑗  𝑥 =  

1 𝑘 ≤ 𝑥 ≤ 𝑘 + 1
0   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒    

  (3.95) 

 𝐵𝑚,𝑘
𝑗  𝑥 𝑠𝑢𝑝𝑝 =  𝑡𝑘

𝑗
, 𝑡𝑘+𝑚

𝑗
  (3.96) 

 𝑡𝑘
𝑗

=  
0                −𝑚 + 1 ≤ 𝑘 < 1

2−𝑗𝑘                 1 ≤ 𝑘 < 2𝑗  
1        2𝑗 ≤ 𝑘 ≤ 2𝑗 + 𝑚 − 1

  (3.97) 
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Table 3-1 below gives the knot sequence  𝑡𝑘
𝑗
  for B-splines of order 𝑚 = 3 for different 

multiresolution scale j. The knots sequences at each multiresolution scale have 3-tuple knots 

at each boundary 0 and 1. The knots are increasing through the sequence and obey the 

property 𝑡𝑘
𝑗

≤ 𝑡𝑘+1
𝑗

. Furthermore, as the scale j increases, the number of inner knots 

increases; while the end multiple knots are not affected. 

j 𝑡𝒎
𝒋

= {𝒕𝒎,−𝒎+𝟏
𝒋

, … , 𝒕𝒎,𝒌
𝒋

, … , 𝒕
𝒎,𝟐𝒋+𝒎−𝟏

𝒋
} 

0 {0,0,0,1,1,1}  

1 {0,0,0,
1

2
, 1,1,1}  

2 {0,0,0,
1

4
,

1

2
,

3

4
, 1,1,1}  

3 {0,0,0,
1

8
,

1

4
,

3

8
,

1

2
,

5

8
,

3

4
,

7

8
, 1,1,1}  

4 {0,0,0,
1

16
,

1

8
,

3

16
,

1

4
,

5

16
,

3

8
,

7

16
,

1

2
,

9

16
,

5

8
,

11

16
,

3

4
,

13

16
,

7

8
,

15

16
, 1,1,1}  

Table 3-1: Knot sequence values for B-spline 𝑚 = 3  at multiresolution 0 ≤ 𝑗 ≤ 4. 

In general, 𝐵𝑚,𝑘
𝑗  𝑥  contains multiple knots at 0 for k = -m+1, ..., 1, and similarly at 1 for k = 

2
j
 –m+1, ..., 2

j
-1. The basis 𝐵𝑚,𝑘

𝑗  𝑥  from the inner knots corresponds to the m
th

 cardinal B-

splines at multiresolution j: 

The normalising factor 2
𝑗

2 is omitted for convenience and computation purposes. Let the 

scaling function of the BSWI be defined as: 

Given that the B-splines of order m are in C
m-2

, (for example cubic splines are in C
1
), the 

function f(x) bound by limits [𝑎, 𝑏] can be transferred to [0,1]. This transformation is carried 

out via the transformation formula 𝑡 =  
𝑥 – 𝑎

𝑏−𝑎
. Thus, only the m

th
 order B-spline space within 

the limits [0,1] is necessary [96]. The scaling function 𝜙𝑚,𝑘
𝑗  𝑥  can be differentiated 𝑚 − 1 

times. As earlier mentioned, the support of the B-splines without the multiple nodes are 

within m segments while the corresponding semi-orthogonal wavelet are within 2𝑚 − 1 

 2𝑗 ≥ 2𝑚 − 1 (3.98) 

 𝑁𝑚  𝑥 = 𝑚 0, 1, … , 𝑚 (𝑡 − 𝑥)+
𝑚−1 (3.99) 

 𝐵𝑚,𝑘
𝑗  𝑥 = 𝑁𝑚 2𝑗 𝑥 − 𝑘          0 ≤ 𝑘 < 2𝑗 − 𝑚 + 1 (3.100) 

 𝜙𝑚,𝑘
𝑗  𝑥 = 𝐵𝑚,𝑘

𝑗  𝑥          0 ≤ 𝑘 < 2𝑗 − 𝑚 + 1 (3.101) 
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segments at scale j = 0. Thus, the requirement 2𝑗 ≥ 2𝑚 − 1  must be met so as to have at 

least one inner wavelet at the interval [0,1] and multiresolution j [96]. We define the spline 

spaces [95]:   

Therefore, it is most convenient to use the B-wavelets as described in Appendix A.3.3 to 

formulate the inner BSWI wavelet functions from the relation 

where 𝐵2𝑚,𝑘
𝑗 +1,(𝑚)

(𝑥) is the m
th

 derivative for the B-spline of order 2m and scale 𝑗 + 1; which 

can be computed explicitly given the values of 𝐵𝑚,𝑘
𝑗

(𝑥) have been computed from equation 

(3.94). If j0 is the multiresolution scale for this requirement to have at least one inner B-

wavelet, the scaling and wavelet functions of the BSWI are obtained as [96]: 

Since BSWI scaling functions are expressed explicitly, the derivatives of the scaling 

functions can be obtained by directly differentiating equation (3.105). 

In this study, the BSWI of order m at scale j will be referred to as BSWImj for convenience. 

As an example, the formulation of the BSWI33 is presented. The knot sequence from equation 

(3.93) for m  = 3, j = 3 is:   

 

𝑆
𝑚,𝑡𝑚

(𝑗) ≔ 𝑠𝑚
𝑗

= {𝑠 ∈ 𝐶𝑚−2 0,1 : 𝑠
|𝑡𝑘

 𝑗 
,𝑡𝑘+1

 𝑗 ∈ Π𝑚−1 𝑘 =  0, … , 2𝑗 − 1 } 

𝑆 
2𝑚,𝑡𝑚

(𝑗+1) ≔  𝐵𝑚,𝑘
𝑗 +1

: 𝑘 = −𝑚 + 1, … , 2𝑗+1 − 𝑚 − 1  

𝑆 0
2𝑚,𝑡𝑚

(𝑗+1) ≔ {𝑠 ∈ 𝑆 
2𝑚,𝑡𝑚

 𝑗+1 : 𝑠  𝑡𝑘
 𝑗  

 = 0        𝑘 =  0, … , 2𝑗  } 

(3.102) 

 𝜓𝑚,𝑘
𝑗  𝑥 = 𝜓𝑚 2𝑗𝑥 − 𝑘  (3.103) 

 𝜓𝑚,𝑘
𝑗  𝑥 =

1

2𝑚−1
  −1 𝑙𝑁2𝑚 (𝑙 + 1)𝐵2𝑚,2𝑖+𝑙

𝑗 +1,(𝑚)
(𝑥)

2𝑚−2

𝑙=0

 (3.104) 

 𝜙𝑚,𝑘
𝑗

(𝑥) =

 
 
 

 
 𝐵𝑚,𝑘

𝑗0  2𝑗−𝑗0𝑥 

𝐵𝑚,0
𝑗0  2𝑗−𝑗0𝑥 − 2−𝑗0𝑘 

𝐵
𝑚,2𝑗−𝑘−𝑚

𝑗0  1 − 2𝑗−𝑗0𝑥 

−𝑚 + 1 ≤ 𝑘 ≤ −1
0 ≤ 𝑘 ≤ 2𝑗 − 𝑚

2𝑗 − 𝑚 + 1 ≤ 𝑘 ≤ 2𝑗 − 1

  (3.105) 

        𝜓𝑚,𝑘
𝑗

(𝑥) =

 
 
 

 
 𝜓𝑚,𝑘

𝑗0  2𝑗−𝑗0𝑥 

𝜓𝑚,0
𝑗0  2𝑗−𝑗0𝑥 − 2−𝑗0𝑘 

𝜓
𝑚,2𝑗−𝑘−2𝑚+1

𝑗0  1 − 2𝑗−𝑗0𝑥 

−𝑚 + 1 ≤ 𝑘 ≤ −1
0 ≤ 𝑘 ≤ 2𝑗 − 2𝑚 + 1

2𝑗 − 2𝑚 + 2 ≤ 𝑘 ≤ 2𝑗 − 𝑚

  

 

(3.106) 

 

 𝜙𝑚,𝑘
𝑗 , 𝑛 

 𝑥 =  
𝑑𝑛𝜙𝑚,𝑘

𝑗  𝑥 

𝑑𝑥𝑛
 (3.107) 
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Applying equations (3.94) and (3.105), we find the functions of the B-splines as: 

 

𝜙3,−1
3  𝑥 =  (1 − 8𝑥)2 0 ≤ 𝑥 <

1

8
 0                Otherwise

  
𝜙3,−1

3  𝑥 =

 
 
 

 
 −16𝑥(−1 + 6𝑥) 0 ≤ 𝑥 <

1

8

2 1 − 4𝑥 2           
1

8
≤ 𝑥 <

1

4
0                              Otherwise

  

𝜙3,0
3  𝑥 =

 
  
 

  
 32𝑥2                           0 ≤ 𝑥 <

1

8

−
3

2
+ 24𝑥 − 64𝑥2  

1

8
≤ 𝑥 <

1

4
1

2
(3 − 8𝑥)2               

1

4
≤ 𝑥 <

3

8
 0                                  Otherwise

  𝜙3,1
3  𝑥 =

 
  
 

  
 

1

2
(1 − 8𝑥)2                

1

8
≤ 𝑥 <

1

4

−
11

2
+ 40𝑥 − 64𝑥2

1

4
≤ 𝑥 <

3

8

8(1 − 2𝑥)2                 
3

8
≤ 𝑥 <

1

2
 0                                  Otherwise

  

𝜙3,2
3  𝑥 =

 
  
 

  
 2(1 − 4𝑥)2                

1

4
≤ 𝑥 <

3

8

−
23

2
+ 56𝑥 − 64𝑥2

3

8
≤ 𝑥 <

1

2
1

2
(5 − 8𝑥)2               

1

2
≤ 𝑥 <

5

8
 0                                  Otherwise

  𝜙3,3
3  𝑥 =

 
  
 

  
 

1

2
(3 − 8𝑥)2               

3

8
≤ 𝑥 <

1

2

−
39

2
+ 72𝑥 − 64𝑥2

1

2
≤ 𝑥 <

5

8

2(3 − 4𝑥)2                
5

8
≤ 𝑥 <

3

4
 0                                  Otherwise

  

𝜙3,4
3  𝑥 =

 
  
 

  
 8(1 − 2𝑥)2                

1

2
≤ 𝑥 <

5

8

−
59

2
+ 88𝑥 − 64𝑥2

5

8
≤ 𝑥 <

3

4
1

2
(7 − 8𝑥)2               

3

4
≤ 𝑥 <

7

8
 0                                  Otherwise

  𝜙
3,5
3  𝑥 =

 
  
 

  
 

1

2
(5 − 8𝑥)2                  

5

8
≤ 𝑥 <

3

4

−
83

2
+ 104𝑥 − 64𝑥2

3

4
≤ 𝑥 <

7

8

32(−1 + 𝑥)2                
7

8
≤ 𝑥 < 1

 0                                     Otherwise

  

𝜙3,6
3  𝑥 =

 
 
 

 
 2(3 − 4𝑥)2                   

3

4
< 𝑥 ≤

7

8

−16(5 − 11𝑥 + 6𝑥2)
7

8
< 𝑥 ≤ 1

0                                       Otherwise

  
𝜙3,7

3  𝑥 =  (7 − 8𝑥)2
7

8
< 𝑥 ≤ 1

 0                  Otherwise

  

 

 

The scaling functions of BSWI33 and its 1
st
  & 2

nd
 derivatives are presented in Figure 3-8. For 

order m = 3 at scale j = 3, the corresponding requirement scale j0 is 3 (for at least one inner 

wavelet function to exist). Therefore, it can be observed that there are 2 (i.e. 𝑚– 1) boundary 

scaling functions at 0 and 1, with a further 6 (i.e.,2𝑗–𝑚 + 1) inner scaling functions.  

 

𝑡𝑘
3 =  

0                −2 ≤ 𝑘 < 1
1

8
𝑘                 1 ≤ 𝑘 < 8 

1                     8 ≤ 𝑘 ≤ 10

  

𝑡𝑘
3 = { 0,0,0,

1

8
,
1

4
,
3

8
,
1

2
,
5

8
,
3

4
,
7

8
, 1,1,1} 
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Figure 3-8: BSWI33 a) scaling functions 𝜙3,𝑘
3  𝑥  b) 1st derivative 𝜙3,𝑘

3,(1) 𝑥  and c) 2nd derivative 𝜙3,𝑘
3,(2) 𝑥 . 

3.4.  Conclusion 

The key aspects of general wavelet theory and multiresolution analysis were introduced and 

discussed in this chapter. The Daubechies and BSWI wavelets both possess the key properties 

of multiresolution, compact support and the “two-scale” relation. They can therefore be used 

to accurately represent polynomial functions. Thus, based on these attractive properties, the 

two wavelet families are selected for the formulation of the wavelet based finite element 

method.  

The Daubechies scaling and wavelet functions, as well as their derivatives, are not expressed 

explicitly. It is therefore necessary to evaluate the connection coefficients to solve partial 

differential equations (PDEs) using the Daubechies wavelets. A modified formulation to 

evaluate the multiscale connection coefficients was presented, to the best of the author’s 

a) 

b) c) 
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knowledge, for the first time in this chapter. The integral of the product of the multiscale 

Daubechies scaling functions and/or their derivatives that differ in wavelet order L, can be 

computed using this approach. Furthermore, a simplified algorithm to evaluate the connection 

coefficients employed to evaluate the distributed load vector in wavelet space was also 

presented. The connection coefficients are necessary to evaluate Daubechies wavelet based 

finite element matrices and load vectors in wavelet space. The theoretical and mathematical 

representation of the BSWI scaling functions and wavelet functions were also described and 

discussed in this chapter. 
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4. The Finite Element Method and Adaptive Finite 

Element Methods 

Summary 

The WFEM is based on the implementation of key properties of wavelet analysis and the 

finite element method. In this chapter, the significant aspects of FEM are discussed, with 

some of the common approaches used in the generation of the system matrices and equations 

highlighted. This chapter is based on general finite element theory and contains concepts and 

discussions as presented in [27,29-31,97,98]. The general static and dynamic FEM analysis 

theory is briefly presented. A brief overview of adaptive refinement finite element methods, 

used to improve the accuracy of results in FEM, is also discussed. Finally, aspects such as, 

the damping and direct time integration methods for dynamic analysis, are briefly described. 

The formulations and discussions presented in this chapter are necessary to give a 

preliminary introduction and understanding of the concepts behind the WFEM; including key 

requirements necessary to ensure convergence of the approximation solutions. Furthermore, 

the examples and discussions presented in later chapters will also entail a comparison of 

WFEM and FEM formulations and solutions. In this study, the problems analysed and 

discussed are of a structural nature and therefore, emphasis will be given to the method’s 

implementation to structural static and dynamic problems. The finite element matrices and 

load vectors, associated with this chapter and numerical examples to be carried out in later 

chapters, are highlighted in Appendix B. 

4.1.  Finite element approximation functions 

The classical finite element method employs polynomials as interpolating/approximation 

functions. The field variable 𝑢 𝑥  is approximated by a polynomial of order n [30]: 

The vector  𝐩  𝑇 = {1, 𝑥, 𝑥2 , … 𝑥𝑛} contains the basis functions 𝑥𝑖  and the vector  𝛼   contains 

the unknown coefficients 𝛼 𝑖  corresponding to the degrees of freedom within the element. 

There are certain conditions these functions must satisfy in order to ensure correct 

 
𝑢 𝑥 =  𝛼 𝑖𝑥

𝑖

𝑛

𝑖=0

 

𝑢 𝑥 =  𝐩  𝑇 𝛼   

 (4.1) 
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approximation of the field variable and convergence to the exact solution. These include 

[27,30,31]: 

1. The approximation functions must be represented by the complete order of the 

polynomial to ensure convergence to the exact solution without omitting any lower 

order terms. 

2. The approximation functions representing the field variable should vary smoothly and 

be continuous for all DOFs within the finite element; thus preventing discontinuities. 

3. The approximation functions should be continuous between adjacent elements for all 

DOFs at boundary nodes and/or surfaces; thus preventing discontinuities between 

elements. 

The above fundamental requirements of the approximation functions can be summed up as 

the completeness condition 1 and continuity conditions 2 and 3. The continuity of a piecewise 

function is described by C
m
 for the m

th
 order derivative of the function. In a case where the 

field variable in itself is continuous within both the element and across adjacent elements, the 

element is said to be C
0
 continuous e.g., one dimensional rod element. However, if the field 

variable and its first derivative are continuous between adjacent elements, then this is a C
1
 

element e.g., beam or plate elements where the continuity of the rotation is ensured [31]. 

4.2.  Formulation of element matrices  

There are different approaches that are used in the evaluation and analysis of different 

engineering problems using FEM. The type of approach selected mainly depends on the 

nature of the problem to be analysed, to ensure that the modelling and formulation of the 

system(s) representation is fundamentally carried out correctly and efficiently. Some of these 

approaches include the direct equilibrium method, work and energy methods and weight 

residual methods [27]. The direct equilibrium method is a convenient and simplified 

approach to analyse one dimensional static elements, where the force equilibrium conditions 

of the elements are used to obtain the element nodal force-displacement equations via the 

stiffness matrix [31]. This method is limited to simple elements and problems, therefore in 

this study, attention will be focused on the multifaceted and commonly used work/energy 

methods and weight residual methods.  

In accordance to the work and formulations of FEM and WFEM presented in this thesis, the 

principle of minimum potential energy and the Hamilton principle are introduced and briefly 

discussed. These two approaches are used to describe the governing equations of the basic 
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axial rod elements, Euler-Bernoulli beam elements and planar bar elements for both FEM and 

WFEM; for static and dynamic problems respectively. 

4.2.1. Principle of minimum potential energy 

For generally linear elastic elements, the principle of minimum potential energy approach is 

applicable to obtain the static system equations. The principle states that [31]:  

“Of all admissible displacements that a body can assume, the true one, 

corresponding to the satisfaction of stable equilibrium of the body, is 

identified by a minimum value of the total potential energy.”  

The term admissible requires that the displacement doesn’t contravene the compatibility 

properties and boundary conditions. In general, the total potential energy 𝛱𝑝  is the sum of the 

internal strain energy 𝑈𝑠 within the system and the work done by external forces Ω𝑓 . 

Mathematically this is expressed as [29]: 

The strain energy is the internal energy stored due to deformation of the linearly elastic 

material from external work done by external loads acting on the material. In this 

formulation, the strain energy is taken to be positive and the work done by external loads is 

negative. Therefore, the strain energy for an elastic structure is described mathematically as 

[29]: 

where σ is the stress, ε the strain and 𝑉  is the volume of the element. The work done by 

external forces is dependent on the external forces acting on the system. For example, a 

system subjected to surface loading (𝑓𝑠), body loading (𝑓𝑏 ) and nodal point loads (fi), the total 

work done by the external forces is given by: 

where u is the displacement. Then at equilibrium, according to the principle of minimum 

potential energy 

 𝛱𝑝 = 𝑈𝑠 + Ω𝑓   (4.2) 

 𝑈𝑠 =
1

2
 𝜀𝑇𝜍 𝑑𝑉 

𝑣𝑜𝑙

 (4.3) 

 Ω𝑓 =  −  𝑢𝑖𝑓𝑖

𝑖

+  𝑢𝑇𝑓𝑠
𝑆

𝑑𝑆 +  𝑢𝑇𝑓𝑏𝑑𝑉 

𝑉𝑜𝑙

  (4.4) 

 δ𝛱𝑝 = 𝛿𝑈𝑠 + δΩ𝑓 = 0  (4.5) 
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4.2.2. Hamilton’s principle 

Hamilton’s principle is an approach used to obtain the system equations for dynamic analysis. 

In the case of the principle of minimum potential energy, the equilibrium equations of the 

system are not time variant. However, when the state of the system changes with respect to 

time, the Hamilton’s principle is applied. The principle states that [1]: 

“Of all the admissible time histories of displacement, the history 

corresponding to the actual solution makes the Lagrangian functional a 

minimum.” 

The term admissible requires that the displacement doesn’t contravene the compatibility 

properties, the boundary conditions and conditions of the system at initial and final times, ti 

and tf, respectively. Mathematically the principle is expressed as [1]: 

where ℒ is the Langranian functional given by 

𝑈𝑠, 𝛬𝑘, and Ω𝑓  denote entire system’s strain energy, kinetic energy and work done by external 

forces respectively. The strain energy and work by external forces are as described in the 

Section 4.2.1. The kinetic energy is represented mathematically as  

where 𝑢 =
𝑑𝑢

𝑑𝑡
 is the velocity. 

4.2.3. Weighted residual methods 

The finite element method can be applied using a different approach known as the weighted 

residual method, to obtain the finite element equations for a system. In general, the basic 

principle of weighted residual methods involves obtaining an approximate solution of the 

independent variable (displacement, temperature etc.), via governing differential equations 

describing the system behaviour, using trial functions [31]. Consider a function 𝑝 that is 

produced from the function 𝑢 via the differential operator D 

 𝛿  ℒ
𝑡𝑓

𝑡𝑖

𝑑𝑡 = 0  (4.6) 

 ℒ = 𝛬𝑘 − 𝑈𝑠 + Ω𝑓   (4.7) 

 𝛬𝑘 =
1

2
 𝜌𝑢 𝑇𝑢 𝑑𝑉 

𝑣𝑜𝑙

 (4.8) 

 𝐷 [𝑢] = 𝑝  (4.9) 



 

58 

 

Let the function 𝑢 , made up of the linear combination of basis functions 𝜙𝑖 , be the 

approximate of 𝑢 [1]: 

where 𝑎𝑖  are unknown constants. It follows that when 𝑢  is substituted into equation (4.9), the 

result is not exactly 𝑝 and the difference, what is referred to the error or residual, R. 

Mathematically, this can be expressed as [29]:  

The idea of weighted residual methods is to ensure that the error or residual 𝑅 from 𝐷  𝑢   is 

reduced to a minimum by averaging it over the entire domain [31]. Thus, in order to obtain 

the exact solution, then R must be zero [27]  

This is achieved by applying a weight function 𝑊𝑖  to equation (4.12) [29] 

where the number of weight functions 𝑊𝑖  correspond exactly to the number of coefficients 

𝑎𝑖 . This leads to n number of equations. Equation (4.13) describes the general fundamentals 

of the weighted function method. The weight functions may be applied differently and this 

leads to different weight residual numerical approximation methods. The most common of 

these methods in FEM include: sub-domain method, collocation method, least squares 

method and Galerkin method.  

The collocation method or point collocation method, applies the Dirac delta function 𝛿𝑖  as the 

weight function [1].  

where  

 𝑢 ≅ 𝑢 =  𝑎𝑖𝜙𝑖

𝑛

𝑖=1

  (4.10) 

 
𝐷 [𝑢 ] ≠ 𝑝 

𝑅 = 𝐷  𝑢  − 𝑝 ≠ 0 

 

 (4.11) 

  𝑅𝑑𝑉 

𝑣𝑜𝑙

= 0  (4.12) 

  𝑊𝑖𝑅𝑑𝑉 

𝑣𝑜𝑙

= 0    for    𝑖 = 1,2, … , 𝑛  (4.13) 

  𝛿𝑖𝑅𝑑𝑉

𝑣𝑜𝑙

= 0    for    𝑖 = 1,2, … , 𝑛  (4.14) 
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The residuals are forced to zero at a number of specified discrete points i corresponding to the 

unknown coefficients 𝑎𝑖 . Although the method is computationally inexpensive, the method 

does not lead to the formulation of symmetric element matrices nor positive definite matrices. 

Furthermore, the residual isn’t guaranteed to be zero at the specified points unless the more 

and more points are employed in the approximation function [27]. 

The sub-domain method involves dividing the domain V into smaller sub-domains 𝑉𝑖  and 

subsequently setting the integral of the residual within these sub-domains to zero [31]. This is 

mathematically expressed as: 

where the weight function  

The sub-domains correspond to the number of unknown coefficients. 

The least squares approach in contrast requires that the integral of the squared residuals, with 

respect to the n number of unknown coefficients 𝑎𝑖 , is minimized over the entire domain. 

Therefore, the weight function is [27]:  

and thus,  

Although the FEM element matrices are positive definite and symmetric when formulated 

using the least squares approach, the method is computationally involving and tedious as it is 

difficult to control the weight functions. 

The Galerkin method 

The Galerkin method applies the shape functions 𝑁𝑖  as the weight functions. This implies that 

[27]: 

 𝛿𝑖 = 𝛿 𝑥 − 𝑥𝑖 =  
1         𝑥 = 𝑥𝑖

0 otherwise
   (4.15) 

   𝑊𝑖𝑅𝑑𝑉 𝑖
𝑉𝑖

= 0

𝑖

    for    𝑖 = 1,2, … , 𝑛  (4.16) 

 𝑊𝑖 =  
1 𝑥 ∈  𝑉𝑖

0 𝑥 ∉  𝑉𝑖

   (4.17) 

 𝑊𝑖 =
𝜕𝑅

𝜕𝑎𝑖
  (4.18) 

 
𝜕

𝜕𝑎𝑖
 𝑅2𝑑𝑉 

𝑣𝑜𝑙

= 0    for    𝑖 = 1,2, … , 𝑛  (4.19) 
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where n corresponds to the total number of unknown coefficients 𝑎𝑖  linked to the DOFs 

within the element. Thus, the residual 𝑅𝑒  of all DOFs within each element is evaluated as 

[30]: 

where 𝑓(𝜙𝑖) is a function describing the governing differential equations. The residuals are 

obtained for all elements within the system and assembled. The system equations are then 

obtained by forcing the system residual to zero. If the same approximating function in 

equation (4.10) is used in the Galerkin method as in the energy methods, provided a 

functional is obtained to describe the governing differential equations of the system, then 

both methods yield the same results [29].  

Given that the shape functions are used as the weighted functions, then the levels of accuracy 

necessary for the solution of the problem will dictate the number of terms of the shape 

functions used; i.e., the order of the interpolating functions used to approximate the function 

in equation (4.10).  

4.3.  The adaptive refinement finite element techniques 

The primary and/or secondary field variables evaluated from the finite element procedures 

are an approximation of the exact solution for the given mesh generated; specific to the 

problem being evaluated. In general engineering practice, the level of accuracy for most 

engineering problems allows for a 5% error deviation of the approximation solution [29]; 

although this may vary. Therefore, if the desired level of accuracy is not achieved from FEM 

solutions, there are techniques applicable to improve the accuracy of the solutions. These 

procedures in general require that after the initial analysis is carried out, the error of the 

existing solution is evaluated and compared with the predetermined acceptable level of 

accuracy. If the solution has not met the permissible accuracy levels, these procedures are 

implemented and another comparison of the improved solution is carried out again. This is 

achieved until the desired accuracy levels are met. These procedures are what shall be 

referred to as adaptive refinement finite element techniques in this thesis.  The most common 

of these procedures are highlighted below. 

  𝑁𝑖𝑅𝑑𝑉

𝑣𝑜𝑙

= 0    for    𝑖 = 1,2, … , 𝑛  (4.20) 

  𝑅𝑒 =   𝑁 𝑇𝑓(𝜙𝑖)𝑑𝑉

𝑣𝑜𝑙

  (4.21) 
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h-refinement 

The h-refinement procedure involves changing the size of existing elements in the FEM 

mesh, by either increasing or decreasing the size of the elements, leading to an increase or 

decrease in the number of elements respectively within the system [31]. It is important to note 

that the element types and order of the approximating functions remain the same. There are a 

number of ways to which this can be achieved. Firstly, one can subdivide already existing 

elements into smaller elements to ensure that the original element boundaries remain 

throughout refinement. However, in the case of an element that is subdivided adjacent to one 

that is not, particularly for 2D or 3D models, there are hanging points that exist and must 

have local constraints implemented, which can be computationally expensive. Secondly, the 

entire original mesh can be regenerated by changing the size of the elements.  

p-refinement 

The p-refinement approach involves changing the degree of the approximation functions, 

while still ensuring the conditions highlighted in Section 4.1 are met. However, the element 

sizes remain the same, and therefore the original mesh remains unchanged. This can be 

achieved by either increasing the order of the approximation function uniformly through the 

domain or locally via hierarchical refinement [1]. The method is desirable due to the higher 

rate of convergence, yet it is computationally more demanding than the h-refinement 

approach. Given that the rate of convergence is better, this means that the number of 

refinements, and re-evaluated solutions corresponding to these refinements, are less in 

number than h-refinement. 

The h-refinement and p-refinement methods can be combined by simultaneously altering the 

mesh size and order of the approximation functions. This is commonly referred to as the hp-

refinement method.  

It must be noted that though the discussed adaptive procedures are mainly carried out to 

improve the accuracy of the results, there may be instances where the acceptable levels of 

accuracy are met, yet the mesh is coarsened over the entire problem domain, or locally, so as 

to reduce the computational cost and increase efficiency.  
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4.4.  The finite element shape functions 

The FEM shape functions, specific to the axial rod, Euler-Bernoulli beam and planar bar 

element, have been defined in Appendix B. However, the conditions set for the 

approximation function polynomials in Section 4.1 lead to the general properties of shape 

functions in FEM. 

  

  

  

Figure 4-1 : Axial rod element a) 1st degree b) 3rd degree c) 5th degree polynomial based shape functions 𝑁𝑘 𝜉  and 𝑁𝑘 𝜉𝑖 . 

4.4.1. Delta function property 

The delta function property of the shape function is expressed mathematically as [30]: 

where 𝛿𝑘,𝑖  is the Kronecker delta function, 𝑁𝑘 𝜉  is the shape function corresponding to DOF 

1 ≤ 𝑘 ≤ 𝑛 within element e and 𝜉𝑖  is the natural coordinate corresponding to nodes 1 ≤ 𝑖 ≤ 𝑟 

 𝑁𝑘 𝜉𝑖 = 𝛿𝑘,𝑘 =  
1 𝑘 = 𝑖
0 𝑘 ≠ 𝑖

  (4.22) 

(a) 

(b) 

(c) 
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within the element. The total number of DOFs within the element is n and the total number of 

nodes is r. The property means that the value of 𝑁𝑘 𝜉  is 1 at the node at which its 

corresponding DOF is located and 0 at all other nodes.  

In the case of the axial rod formulated via m degree polynomials, the shape functions for m = 

a) 1, b) 3 and c) 5 are presented on the left hand side of Figure 4-1. The plots illustrating the 

delta function property for the corresponding shape functions are on the right hand side. 

Figure 4-2 illustrates the beam finite element shape functions 𝑁𝑘 𝜉  and 𝑁𝑘 𝜉𝑖  (left hand 

side and right hand respectively) of polynomial order m = a) 3, b) 5 and c) 7. The shape 

functions corresponding to the vertical displacement DOFs all meet the delta function 

property as shown in the plots on the right hand side.  

  

  

  

Figure 4-2 : Beam element a)3rd degree b) 5th degree c) 7th degree polynomial based shape functions 𝑁𝑘 𝜉  and 𝑁𝑘 𝜉𝑖 . 

(a) 

(b) 

(c) 
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4.4.2. Completeness 

The completeness property of the shape functions is exemplified by two conditions. The first 

of these is referred to as the partition of unity condition, which requires that at any point 𝜉 

along the element (one dimensional element in this case), the sum of all the shape functions 

corresponding to the DOFs within the element equals 1 [30]. Mathematically this is expressed 

as: 

This implies that the field variable approximation function selected should ensure that for any 

displacements resulting from the rigid body motion, there isn’t any straining within the 

element [31]. It must be mentioned that although the sum of the shape functions equals 1 

from equation (4.23), the shape functions do not have to be bound by 0 ≤ 𝑁𝑘 𝜉 ≤ 1 within 

the element. 

The second condition is called the linear field reproduction and is expressed mathematically 

as [30]: 

This effectively implies that the approximation function of the field variable should allow the 

shape functions to reproduce the linear field. This in turn allows for constant strain through 

the element to be obtained, provided the nodal field variables are compatible with a constant 

strain condition [30]. 

4.4.3. Compatibility 

The compatibility property is ensured when the field variable approximation function is 

continuous between adjacent element boundaries [29]. The shape functions emanating from 

these approximation functions must also ensure this condition is satisfied.  

Combining all these properties leads to the convergence of the approximate field variables to 

the exact solution; with increase of elements or order of the polynomial functions. 

4.5.  Dynamic vibration 

The analysis of static structural problems does not take into account the variation of the field 

variables with time [31]. However, there are many structural engineering problems that 

  𝑁𝑘 𝜉 

𝑛

𝑖=0

= 1 (4.23) 

  𝑁𝑘 𝜉 

𝑛

𝑖=0

𝜉𝑘 = 𝜉 (4.24) 
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require the analysis of the variable fields with respect to time. This is commonly referred to 

as dynamic analysis and it involves analysing the behaviour of a system within a given time 

frame; while subjected to certain conditions. It is important to carry out such an analysis since 

the mass within a structural system accelerates over time, contributing inertial effects within 

the system that may cause an increase or decrease of the statically analysed field variables 

[27]. Furthermore, the frequencies and mode shapes associated with a system, enable 

structural analysts to predict the behaviour of the system when subjected to various time-

dependent loading conditions [1]. Application of such external loading that corresponds to 

the natural frequencies of the system leads to resonance, where the system begins to oscillate 

significantly with high displacements; which can lead to local failure or even entire failure of 

the system. Thus, it is important to ensure that the external loading frequencies are remote to 

the natural frequencies of the structure. In this section key dynamic analysis theories related 

to FEM and WFEM are discussed.  

4.5.1. Eigenvalue analysis of free undamped vibration 

The natural frequencies and modes shapes of a system are evaluated by carrying out an 

eigenvalue analysis of the system matrices. An undamped system made up of a total of n 

DOFs, with the global stiffness matrix  𝐾 , mass matrix  𝑀  and load vector  𝐹𝑡 , is governed 

by the dynamic global system equation [27]: 

where  𝑈 
𝑡  and  𝑈𝑡  are the system nodal acceleration and displacement vectors respectively. 

The free undamped vibration analysis of the system is carried out when no external load is 

applied on the system, thus  𝐹𝑡 =  0  and equation (4.25) becomes:  

The displacements at time t can be expressed with respect to vibration as [29]: 

where  𝑈   contains the normal modes corresponding to the natural angular frequency 𝜔. 

Differentiating equation (4.27) with respect to t 

  𝑀  𝑈 
𝑡 +  𝐾  𝑈𝑡 =  𝐹𝑡  (4.25) 

  𝑀  𝑈 
𝑡 +  𝐾  𝑈𝑡 =  0  (4.26) 

  𝑈𝑡 =  𝑈  sin 𝜔𝑡 (4.27) 

  𝑈 
𝑡 = 𝜔 𝑈  cos 𝜔𝑡 (4.28) 

  𝑈 
𝑡 = −𝜔2 𝑈  sin 𝜔𝑡 (4.29) 
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Substituting equations (4.27) and (4.29) into equation (4.26) 

Equation (4.30) is the eigenvalue equation. For the vector  𝑈   to be none-zero,  

  𝐾 − 𝜔2 𝑀  =  0 . Thus, the determinant of   𝐾 − 𝜔2 𝑀   is zero [97]. 

From the eigenvalue equation, the eigenvalues are the squared natural frequencies 𝜔2 and the 

eigenvectors contain the vibration normal modes  𝑈  . The total number of eigenvalues and 

corresponding eigenvectors obtained from the eigenvalue equation is 𝑛. Thus, for the i
th

 mode 

of vibration [99], 

The eigenvector of another j
th

 mode of vibration is denoted by  𝑈  
𝑗
. Premultiplying equation 

(4.32) by the transpose of  𝑈  
𝑗
, we obtain 

Similarly, 

Given that the mass and stiffness matrices are symmetric, 

and  

If equation (4.34) is subtracted from equation (4.33) with equations (4.35) and (4.36) implied, 

then [99]: 

From equation (4.37) it is apparent that if 𝜔𝑖
2 ≠ 𝜔𝑗

2, then 

and from the relation in equation (4.33) 

  𝐾  𝑈  − 𝜔2 𝑀  𝑈  =  0   

   𝐾 − 𝜔2 𝑀   𝑈  =  0  (4.30) 

 Det   𝐾 − 𝜔2 𝑀  = 0 (4.31) 

  𝐾  𝑈  
𝑖

= 𝜔𝑖
2 𝑀  𝑈  

𝑖
 (4.32) 

  𝑈  
𝑗

𝑇
 𝐾  𝑈  

𝑖
= 𝜔𝑖

2 𝑈  
𝑗

𝑇
 𝑀  𝑈  

𝑖
 (4.33) 

  𝑈  
𝑖

𝑇
 𝐾  𝑈  

𝑗
= 𝜔𝑗

2 𝑈  
𝑖

𝑇
 𝑀  𝑈  

𝑗
 (4.34) 

  𝑈  
𝑗

𝑇
 𝐾  𝑈  

𝑖
=  𝑈  

𝑖

𝑇
 𝐾  𝑈  

𝑗
 (4.35) 

  𝑈  
𝑗

𝑇
 𝑀  𝑈  

𝑖
=  𝑈  

𝑖

𝑇
 𝑀  𝑈  

𝑗
 (4.36) 

  𝜔𝑖
2 − 𝜔𝑗

2
  𝑈  

𝑗

𝑇
 𝑀  𝑈  

𝑖
= 0 (4.37) 

  𝑈  
𝑗

𝑇
 𝑀  𝑈  

𝑖
= 0 (4.38) 
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The orthogonality properties of the eigenvectors with respect to the system’s mass and 

stiffness matrices are evident from equations (4.38) and (4.39) respectively [99]. When 𝑖 = 𝑗; 

where 𝑚𝑗  and 𝑘𝑗  are defined as the modal mass and modal stiffness scalar values 

corresponding to the i
th

 mode of vibration for an undamped system. Therefore, equation 

(4.33) becomes: 

4.5.2. Damping and finite elements 

The amplitude of vibration in dynamic system analysis may decay with time due to the 

dissipation of the energy within the system. This is commonly referred to as damping and 

may be caused intentionally, so as to limit excessive and/or peak vibrations, or may originate 

from within the dynamic system. The cause and type of damping in a physical problem is a 

contributing factor as to how the influence of damping within the system is represented in the 

mathematical model. There are different classes of damping, and the most common include 

[29]: 

Viscous damping: This is the most common form of damping found in structural dynamics 

problems. It is the cyclic dissipation of energy proportional to the frequency and square of the 

amplitude of vibration. The damping originates from viscous dampers and/or fluids adjacent 

to the system. 

Hysteresis damping: This is also commonly referred to as material or solid damping which 

originates from within the element material and is independent of the frequency. 

Furthermore, the cyclic energy dissipation is proportional to the square of the amplitude of 

vibration. 

Coulomb damping: This is damping that is caused due to dry friction and can be represented 

in terms of the viscous damping coefficient by drawing a comparison between the energy lost 

in the system due to viscous effects and to that lost due to the dry friction. 

  𝑈  
𝑗

𝑇
 𝐾  𝑈  

𝑖
= 0 (4.39) 

  𝑈  
𝑗

𝑇
 𝑀  𝑈  

𝑖
= 𝑚𝑖  (4.40) 

  𝑈  
𝑗

𝑇
 𝐾  𝑈  

𝑖
= 𝑘𝑖  (4.41) 

 𝑘𝑖 = 𝜔𝑖
2𝑚𝑖  (4.42) 
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The viscous damping is of greater significance to the dynamic analysis carried out in this 

study, and for this reason shall be described in greater detail than the other forms of damping. 

Proportional viscous damping 

Proportional viscous damping is a common form of damping that is used in structural 

analysis; the damping matrix is proportional to the stiffness and mass matrices of the element. 

This is expressed mathematically as [27]: 

where 𝛽𝑑  and 𝛼𝑑  are the proportional viscous damping coefficients. The orthogonality of the 

damping matrix gives: 

From the orthogonality properties of the stiffness and mass matrices in equation (4.34), 

multiply equation (4.43) by  𝑈  
𝑖

𝑇
 𝑈  

𝑖
: 

𝜁𝑖  and 𝜔𝑖  are the damping ratios and angular frequencies corresponding to the i
th

 mode of 

vibration. In general [100]: 

The damping ratio 𝜁 is the damping value 𝑑𝑑  relative to critical damping 𝑑𝑐𝑟 .  

 In order to obtain the damping coefficients multiple DOF system, a system of n equations 

corresponding to the first n modes is evaluated [100]. 

  𝐶 = 𝛽𝑑 K +  𝛼𝑑  [𝑀] (4.43) 

  𝑈  
𝑖

𝑇
 𝐶  𝑈  

𝑖
= 2𝜔𝑖𝜁𝑖  (4.44) 

  𝑈  
𝑖

𝑇
 𝐶  𝑈  

𝑖
= 𝛽𝑑 𝑈  

𝑖

𝑇
 𝐾  𝑈  

𝑖
+ 𝛼𝑑 𝑈  

𝑖

𝑇
 𝑀  𝑈  

𝑖
  

 2𝜔𝑖𝜁𝑖 = 𝛽𝑑𝜔𝑖
2 + 𝛼𝑑   

 𝜁𝑖 =
𝛼𝑑

2𝜔𝑖
+

𝛽𝑑𝜔𝑖

2
 (4.45) 

 𝜁 = 𝛼𝑑  
1

2𝜔
+ 𝛽𝑑

𝜔

2
 (4.46) 

 𝜁 =
𝑑𝑑

𝑑𝑐𝑟
 (4.47) 

 

𝜁1  = 𝛼𝑑  
1

2 𝜔1
+ 𝛽𝑑

𝜔1
2

2

𝜁2  = 𝛼𝑑  
1

2 𝜔2
+ 𝛽𝑑

𝜔2
2

2
⋮

𝜁𝑛  = 𝛼𝑑  
1

2 𝜔𝑛
+ 𝛽𝑑

𝜔𝑛
2

2

 (4.48) 
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Damping of a dynamic system is categorized as either under-damped, critically damped or 

over damped. An under-damped system is one that has damping significantly less than the 

value of the critical damping; thus the damping ratio is 𝜁 < 1 and the system vibration is 

expected to decay while oscillating. A critically damped system is one that has the damping 

equal to the critical damping value i.e., 𝜁 = 1. Finally an over-damped system is a system 

whose damping is significantly larger than the critical damping, therefore 𝜁 > 1, and it is 

expected that the decay of vibration will occur without oscillation.  

4.6.  Direct time integration 

Various engineering structural problems may require a system to be analysed over a given 

period of time to investigate the system’s behaviour as various conditions of the system vary 

with time e.g., time dependent external loading conditions. This is often referred to as the 

response history of the system. The general finite element equation of equilibrium governing 

the dynamic behaviour of a structural system is defined as [27]: 

where  𝑀 ,  𝐶  and  𝐾  are the global system mass, damping and stiffness matrices 

respectively, and the vector  𝐹𝑡  denotes the applied external loads at time t. The vectors 

 𝑈 
𝑡 ,  𝑈 

𝑡  and  𝑈𝑡  are the acceleration, velocity and displacement vectors of the finite 

element system at nodal points at time t.  

The direct time integration method is one of the most popular and applied approaches used to 

evaluate the vectors  𝑈 
𝑡 ,  𝑈 

𝑡  and  𝑈𝑡  at time intervals ∆𝑡. The term direct refers to the fact 

that the method is used to evaluate equation (4.49) directly without any transformation of the 

governing equation. This is an advantage of the method over other approaches, such as the 

modal method, where the governing system equations are transformed into modal 

displacements [27]. In general, the initial vectors  𝑈 
𝑡 ,  𝑈 

𝑡  and  𝑈𝑡  at time t = 0 are known, 

and the direct time integration method is applied to solve equation (4.49) at the next time step 

𝑡 + ∆𝑡 by using the solutions from the previous time steps. The direct time integration 

methods are generally classified into two main categories: explicit and implicit methods. The 

explicit time integration methods require a critical time step ∆𝑡𝑐𝑟 , which if exceeded, the 

solution becomes unstable [29]. Explicit time integration schemes, such as the central 

difference method, are commonly used. The method is therefore referred to as conditionally 

stable and the time step ∆𝑡𝑐𝑟  is significantly small; consequently computationally intensive. 

  𝑀  𝑈 
𝑡 +  𝐶  𝑈 

𝑡 +  𝐾  𝑈𝑡 =  𝐹𝑡  (4.49) 
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In contrast, the implicit time integration schemes do not have a requirement on the size of the 

time step ∆𝑡 to ensure the stability of the solution. The approach is therefore unconditionally 

stable and the time step applied only affects the accuracy of the solution [27]. The Houbolt 

method, Newmark method and Wilson θ method are common implicit time integration 

schemes. 

The implicit time integration methods are computationally more costly than the explicit 

methods at each time step. However, given that implicit methods are unconditionally stable, 

the time intervals are significantly larger and thus require less number of iterations than 

explicit methods. Furthermore, implicit time integration approaches are preferred in the 

analysis of structural dynamic problems; where the time dependent variations are relatively 

slow over a longer time span. In contrast, explicit methods are preferred to analyse short time 

span problems; where the variation of conditions within the system is relatively fast e.g., 

impact problems. 

Majority of the numerical examples involving dynamic analysis in this study will involve 

moving load problems. The implicit time integration approach is therefore preferred to the 

explicit approach. The Newmark time integration method (Linear Multistep Method (LMS)), 

which is the most commonly applied approach, is defined and discussed in this section. It will 

be used as a time integration scheme in the analysis of the dynamic system numerical 

examples in this thesis. 

4.6.1. The Newmark (Linear Multistep) Method 

The Newmark time integration method is outlined in this section in a similar approach as 

described by Bathe [27]. The following initial assumptions are made with regards to the 

velocity 𝑈  and lateral displacement 𝑈 at time 𝑡 + ∆𝑡, where ∆𝑡 is the time interval between 

time steps. 

where the Newmark time integration parameters 𝛿  and 𝛾  are selected to ensure accuracy and 

stability. The general outline to obtain the parameters is given as 𝛿 ≥ 0.5 and 𝛾 ≥

0.25(0.5 + 𝛿 )2. The acceleration 𝑈 
𝑡+∆𝑡  can be expressed from equation (4.51) as:  

 𝑈 
𝑡+∆𝑡 = 𝑈 

𝑡 +   1 − 𝛿  𝑈 
𝑡 + 𝛿 𝑈 

𝑡+∆𝑡 ∆𝑡 (4.50) 

 𝑈𝑡+∆𝑡 = 𝑈𝑡 + 𝑈 
𝑡∆𝑡 +   

1

2
− 𝛾  𝑈 

𝑡 + 𝛾 𝑈 
𝑡+∆𝑡 ∆𝑡2  (4.51) 
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Substituting equation (4.52) into (4.49)  

The equilibrium equation in (4.49) at time 𝑡 + ∆𝑡 is  

Thus, substituting the acceleration 𝑈 
𝑡+∆𝑡  and velocity 𝑈 

𝑡+∆𝑡  from equations (4.52) and (4.53) 

respectively into the equilibrium equation (4.54) 

The effective load vector 𝐹 𝑡+∆𝑡  at time 𝑡 + ∆𝑡 is 

and the corresponding effective stiffness matrix 𝐾  

Therefore, substituting equation (4.56) into (4.55), the effective load vector can be expressed 

as:  

 

𝑈𝑡+∆𝑡 = 𝑈𝑡 + 𝑈 
𝑡∆𝑡 +  

∆𝑡2

2
− 𝛾∆𝑡2 𝑈 

𝑡 + 𝛾𝑈 
𝑡+∆𝑡∆𝑡2 

𝑈 
𝑡+∆𝑡 =

1

𝛾∆𝑡2  𝑈𝑡+∆𝑡 − 𝑈𝑡 − 𝑈 
𝑡∆𝑡 −

∆𝑡2

2
𝑈 

𝑡 + 𝛾𝑈 
𝑡∆𝑡2  

𝑈 
𝑡+∆𝑡 =

1

𝛾∆𝑡2
𝑈𝑡+∆𝑡 −

1

𝛾∆𝑡2
𝑈𝑡 −

1

𝛾∆𝑡
𝑈 

𝑡 −
1

2𝛾
𝑈 

𝑡 + 𝑈 
𝑡  

𝑈 
𝑡+∆𝑡 =

1

𝛾∆𝑡2
𝑈𝑡+∆𝑡 −

1

𝛾∆𝑡2
𝑈𝑡 −

1

𝛾∆𝑡
𝑈 

𝑡 −  
1

2𝛾
− 1 𝑈 

𝑡  

 

 

 

 

 

(4.52) 

 

𝑈 
𝑡+∆𝑡 = 𝑈 

𝑡 +   1 − 𝛿 𝑈 
𝑡 + 𝛿  

1

𝛾∆𝑡2
𝑈𝑡+∆𝑡 −

1

𝛾∆𝑡2
𝑈𝑡 −

1

𝛾∆𝑡
𝑈 

𝑡 +  1 −
1

2𝛾
 𝑈 

𝑡  ∆𝑡 

𝑈 
𝑡+∆𝑡 = 𝑈 

𝑡 +  1 − 𝛿 𝑈 
𝑡∆𝑡 +

𝛿

𝛾∆𝑡
𝑈𝑡+∆𝑡 −

𝛿

𝛾∆𝑡
𝑈𝑡 −

𝛿

𝛾
𝑈 

𝑡 +  1 −
1

2𝛾
 𝛿∆𝑡𝑈 

𝑡  

𝑈 
𝑡+∆𝑡 =  1 −

𝛿

𝛾
 𝑈 

𝑡 −
𝛿

𝛾∆𝑡
𝑈𝑡 +   1 − 𝛿 ∆𝑡 +  1 −

1

2𝛾
 𝛿∆𝑡 𝑈 

𝑡 +
𝛿

𝛾∆𝑡
𝑈𝑡+∆𝑡  

𝑈 
𝑡+∆𝑡 =  1 −

𝛿

𝛾
 𝑈 

𝑡 −
𝛿

𝛾∆𝑡
𝑈𝑡 +  1 −

𝛿

2𝛾
 ∆𝑡𝑈 

𝑡 +
𝛿

𝛾∆𝑡
𝑈𝑡+∆𝑡  

 

 

 

 

 

(4.53) 

 𝑀𝑈 
𝑡+∆𝑡 + 𝐶𝑈 

𝑡+∆𝑡 + 𝐾𝑈𝑡+∆𝑡 = 𝐹𝑡+∆𝑡  (4.54) 

 

𝑀  
1

𝛾∆𝑡2 𝑈𝑡+∆𝑡 −
1

𝛾∆𝑡2 𝑈𝑡 −
1

𝛾∆𝑡
𝑈 

𝑡 +  1 −
1

2𝛾
 𝑈 

𝑡 

+ 𝐶   1 −
𝛿

𝛾
 𝑈 

𝑡 −
𝛿

𝛾∆𝑡
𝑈𝑡 +  1 −

𝛿

2𝛾
 ∆𝑡𝑈 

𝑡 +
𝛿

𝛾∆𝑡
𝑈𝑡+∆𝑡 + 𝐾𝑈𝑡+∆𝑡 = 𝐹𝑡+∆𝑡  

 
1

𝛾∆𝑡2 𝑀 +
𝛿

𝛾∆𝑡
𝐶 + 𝐾 𝑈𝑡+∆𝑡 − 𝑀  

1

𝛾∆𝑡2 𝑈𝑡 +
1

𝛾∆𝑡
𝑈 

𝑡 +  
1

2𝛾
− 1 𝑈 

𝑡 

− 𝐶   
𝛿

𝛾
− 1 𝑈 

𝑡 +
𝛿

𝛾∆𝑡
𝑈𝑡 +  

𝛿

2𝛾
− 1 ∆𝑡𝑈 

𝑡 = 𝐹𝑡+∆𝑡  

 

 

 

 

(4.55) 

  
1

𝛾∆𝑡2
𝑀 +

𝛿

𝛾∆𝑡
𝐶 + 𝐾 𝑈𝑡+∆𝑡 = 𝐹 𝑡+∆𝑡  (4.56) 

 
1

𝛾∆𝑡2
𝑀 +

𝛿

𝛾∆𝑡
𝐶 + 𝐾 = 𝐾  (4.57) 

 𝐹 𝑡+∆𝑡 − 𝑀  
1

𝛾∆𝑡2
𝑈𝑡 +

1

𝛾∆𝑡
𝑈 

𝑡 +  
1

2𝛾
− 1 𝑈 

𝑡 − 𝐶   
𝛿

𝛾
− 1 𝑈 

𝑡 +
𝛿

𝛾∆𝑡
𝑈𝑡 +  

𝛿

2𝛾
− 1 ∆𝑡𝑈 

𝑡 = 𝐹𝑡+∆𝑡   
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We define the integration constants  

Hence, substituting the integration constants from equation (4.59) into equations (4.50) and 

(4.52), we obtain the acceleration and velocity at time 𝑡 + ∆𝑡 as:  

Similarly, substituting the constants into equations (4.57) and (4.56), the effective stiffness 

matrix and load vector can be expressed as:  

Furthermore, substituting equation (4.59) into equation (4.58) 

A summary of the step by step solution of the dynamic analysis of systems using the 

Newmark time integration method is highlighted in the flowchart in Figure 4-3. 

𝐹 𝑡+∆𝑡 = 𝐹𝑡+∆𝑡 + 𝑀  
1

𝛾∆𝑡2
𝑈𝑡 +

1

𝛾∆𝑡
𝑈 𝑡 +  

1

2𝛾
− 1 𝑈 𝑡 

+ 𝐶   
𝛿

𝛾
− 1 𝑈 𝑡 +

𝛿

𝛾∆𝑡
𝑈𝑡 +  

𝛿

2𝛾
− 1 ∆𝑡𝑈 𝑡  

 

(4.58) 

 

𝑎0 =
1

𝛾∆𝑡2
, 𝑎1 =

𝛿

𝛾∆𝑡
, 𝑎2 =

1

𝛾∆𝑡
, 𝑎3 =  

1

2𝛾
− 1  

𝑎4 =  
𝛿

𝛾
− 1 , 𝑎5 =  

𝛿

2𝛾
− 1 ∆𝑡, 𝑎6 =  1 − 𝛿 ∆𝑡 ,𝑎7 = 𝛿∆𝑡 

(4.59) 

 
𝑈 

𝑡+∆𝑡 = 𝑎0 𝑈𝑡+∆𝑡 − 𝑈𝑡 − 𝑎2𝑈 
𝑡 − 𝑎3𝑈 

𝑡  

𝑈 
𝑡+∆𝑡 = 𝑈 

𝑡 + 𝑎6𝑈 
𝑡 + 𝑎7𝑈 

𝑡+∆𝑡  

(4.60) 

(4.61) 

 
𝑎0𝑀 + 𝑎1𝐶 + 𝐾 = 𝐾  

 𝑎0𝑀 + 𝑎1𝐶 + 𝐾 𝑈𝑡+∆𝑡 = 𝐹 𝑡+∆𝑡  

(4.62) 

(4.63) 

 𝐹 𝑡+∆𝑡 = 𝐹𝑡+∆𝑡 + 𝑀 𝑎0𝑈𝑡 + 𝑎2𝑈 
𝑡 + 𝑎3𝑈 

𝑡 + 𝐶 𝑎1𝑈𝑡 + 𝑎4𝑈 
𝑡 + 𝑎5𝑈 

𝑡  (4.64) 
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Figure 4-3: Newmark time integrating method flowchart 

Start 

Form system stiffness, mass and damping matrices, K, M and C 

respectively. 

Apply boundary conditions. 

Initialise values for 𝑈0 , 𝑈 
0 and 𝑈 

0 

Initialise system load vector, F0 at time t = 0. 

 

 

 

Define integration parameters and corresponding constants ai. 

Calculate effective stiffness matrix 𝐾 . 

Select time interval ∆𝑡. 

 

Define system load vector, Ft+∆t. 

 

Is load vector Ft+∆t =  Ft  

Is t = t0 + n ∆t 

Calculate effective load vector, 𝐹 𝑡+∆𝑡 . 

Calculate displacement, 𝑈𝑡+∆𝑡 = 𝐾 −1𝐹 𝑡+∆𝑡 . 

Calculate acceleration vector, 𝑈 
𝑡+∆𝑡 = 𝑎0 𝑈𝑡+∆𝑡 − 𝑈𝑡 − 𝑎2𝑈 

𝑡 − 𝑎3𝑈 
𝑡 . 

Calculate velocity vector, 𝑈 
𝑡+∆𝑡 = 𝑈 

𝑡 + 𝑎6𝑈 
𝑡 + 𝑎7𝑈 

𝑡+∆𝑡. 

End 

YES 

YES 

NO 

NO 
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4.7.  Conclusion 

Key aspects of the classical finite element method were presented in this chapter. Brief 

discussions on the approximation functions and the different theories/methods used to 

evaluate engineering problems using FEM were included. Furthermore, different refinement 

techniques implemented in FEM to improve on the accuracy of the approximated solutions 

were outlined. The classical FEM will in this study be compared with the WFEM and it was 

therefore necessary to discuss the various properties and requirements associated with the 

method. The static and dynamic analyses of different structural problems are later presented 

in this thesis. Thus, key aspects dealing with vibration analysis, damping of systems and time 

integration methods, used to solve for the dynamic response of systems, are outlined. The key 

areas that were focused on included: free undamped vibration, proportional viscous damping 

and the Newmark time integration method (Linear Multistep Method). 

The content in this chapter was not only presented to aid in understanding future discussions 

carried out in this study when comparing the FEM to WFEM. The aspects outlined form a 

basis for the formulation of the wavelet based finite element method for different structural 

problems. The formulations for the mass matrix, stiffness matrix and load vectors associated 

with rod, beam and plane bar finite elements are derived in Appendix B.  
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5. The Wavelet Based Finite Element Method 

Summary 

In this chapter, the formulation of the wavelet based finite elements is carried out and 

discussed. The formulations presented are unified and can be implemented for both BSWI 

and Daubechies WFEM based on the general wavelet and finite element theory discussed in 

Chapter 3 and Chapter 4 respectively. Furthermore, the formulations described at length in 

this chapter are conceptually based on Daubechies [6,8,10] and BSWI [7] WFEMs described 

in literature. The rod element, Euler Bernoulli beam element and plane bar element, for frame 

structure analysis, are formulated using the Daubechies and BSWI wavelet families for static 

and dynamic analysis. Moreover, the general formulations of the moving load wavelet based 

vector and foundation matrices are presented in this chapter. Key aspects and properties of 

the wavelet based finite elements with respect to wavelet families, shape functions, layout of 

the elements and order selection, are also discussed.  

5.1.  Axial rod wavelet finite element 

The general formulation of a multiscale one dimensional axial rod WFE is carried out in this 

section. The layout of the rod wavelet based element of length Le is described in Figure 5-1. 

 

Figure 5-1 : Axial rod wavelet finite element layout. 

Each WFE is divided into ns equal elemental segments (indicated with brackets) and 𝑟 =

𝑛𝑠 + 1 elemental nodes, formulated in the local x-y coordinate. Each elemental node within 

ns ns - 1 

x 

ns +1 

xr 

... 

Le 

y 

1 2 3 4 

(1) (2) (3) (ns) (ns-1) (ns-2) 

) 

x1

1 

x2 x3 xr-3 x4 

0 1 ξ 

ns - 2 

xr-2 xr-1 

... 

u1, fx1 u2, fx2 u3, fx3 ur-2, fxr-2 ur-1, fxr-1 ur, fxr 
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the rod element only has one degree of freedom (DOF) corresponding to the axial 

deformation 𝑢𝑖 . The axial nodal point force in local coordinates is denoted by 𝑓𝑥𝑖 . The total 

number of DOFs within each WFE is denoted by n, which in this case corresponds to the total 

number of elemental nodes i.e., 𝑛 = 𝑟 for 𝑛, 𝑟 ∈ ℕ. The vector containing all the axial DOFs 

in physical space within the rod WFE is denoted by {𝒖𝒆}: 

where 𝑢𝑖 = 𝑢 𝑥𝑖  represents the elemental node axial deformation DOF at node i 

corresponding to coordinate position xi. Therefore, at node i 

One can therefore describe the general and nodal natural coordinates as:  

In classical FEM formulations, polynomial functions are used as interpolating functions to 

approximate the corresponding DOFs. However, for the BSWI and Daubechies WFEMs, the 

respective wavelet scaling functions of the wavelet families are used instead [7,9,10]. Given 

that a wavelet family scaling function of order z at multiresolution scale j is employed, the 

unknown axial deformations in physical space at natural coordinate 𝜉, for (0 ≤ 𝜉 ≤ 1), can 

be defined as: 

where  𝚽𝒛
𝒋 𝜉    is a vector containing the scaling functions of order z and at multiresolution 

scale j. The vector {𝒂𝒆} contains wavelet coefficients 𝑎𝑧,𝑘
𝑗

, which represent the elemental 

DOFs in wavelet space. The dimensions of the vectors in equation (5.5), the wavelet 

elemental matrices and load vectors are dependent on the wavelet family, the order z of the 

 {𝒖𝒆} = {𝑢1 𝑢2 ⋯ 𝑢𝑟−1  𝑢𝑟 }
𝑇  (5.1) 

 𝑥𝑖 ∈  𝑥1, 𝑥𝑟      𝑖 ∈ ℕ and (1 ≤ i ≤ r)  (5.2) 

       𝜉 =  
𝑥−𝑥1

𝑥𝑟−𝑥1
=

𝑥−𝑥1

𝐿𝑒
          (0 ≤ ξ ≤ 1)   (5.3) 

                                         𝜉𝑖 =  
𝑥𝑖−𝑥1

𝐿𝑒
               (0 ≤ ξi ≤ 1, 1 ≤ i ≤ r) (5.4) 

 𝑢 𝜉 =  𝑎𝑧,𝑘
𝑗

 𝜙𝑧,𝑘
𝑗  𝜉 

2𝑗−1

𝑘=𝑕

  

 𝑢 𝜉 =  𝜙𝑧,𝑕
𝑗  𝜉 𝜙𝑧,𝑕+1

𝑗  𝜉 ⋯ 𝜙
𝑧,2𝑗−2

𝑗  𝜉 𝜙
𝑧,2𝑗−1

𝑗  𝜉   

 
  
 

  
 𝑎𝑧,𝑕

𝑗

𝑎𝑧,𝑕+1
𝑗

⋮

𝑎
𝑧,2𝑗−2

𝑗

𝑎
𝑧,2𝑗−1

𝑗
 
  
 

  
 

  

 𝑢 𝜉 =  𝚽𝒛
𝒋 𝜉    

 1 x 𝑛 
{𝒂𝒆} 𝑛 x 1  (5.5) 
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wavelet family and the multiresolution scale j implemented. The physical space axial 

deformation at a particular elemental node i can be obtained from the relation in equation 

(5.5) as: 

Therefore, the axial deformation in physical space for all elemental nodes as described in 

equation (5.1) can be represented in form of equation (5.6) as follows: 

The matrix  𝑹𝒓
𝒘  contains the scaling function vectors  𝚽𝒛

𝒋 𝜉𝑖   approximating the axial 

deformation at the corresponding elemental nodes. The wavelet coefficients 𝑎𝑧,𝑘
𝑗

 can then be 

obtained from equation (5.7). 

Therefore, by substituting equation (5.8) into (5.6), the axial deformation at node i can be 

expressed as 

 𝑢𝑖 = 𝑢 𝜉𝑖 =  𝑎𝑧,𝑘
𝑗

 𝜙𝑧,𝑘
𝑗  𝜉𝑖 

2𝑗 −1

𝑘=𝑕

=  𝚽𝒛
𝒋 𝜉𝑖    

 1 x 𝑛 
{𝒂𝒆} 𝑛 x 1  (5.6) 

 

 
 
 

 
 

𝑢1 

𝑢2 

⋮
𝑢𝑟−1

𝑢𝑟  
 
 

 
 

=

 
 
 
 
 
 
 𝜙𝑧,𝑕

𝑗  𝜉1 𝜙𝑧,𝑕+1
𝑗  𝜉1 ⋯ 𝜙

𝑧,2𝑗−2

𝑗  𝜉1 𝜙
𝑧,2𝑗−1

𝑗  𝜉1 

𝜙𝑧,𝑕
𝑗  𝜉2 𝜙𝑧,𝑕+1

𝑗  𝜉2 ⋯ 𝜙
𝑧,2𝑗−2

𝑗  𝜉2 𝜙
𝑧,2𝑗−1

𝑗  𝜉2 

⋮ ⋮ ⋱ ⋮ ⋮

𝜙𝑧,𝑕
𝑗  𝜉𝑟−1 𝜙𝑧,𝑕+1

𝑗  𝜉𝑟−1 ⋯ 𝜙
𝑧,2𝑗−2

𝑗  𝜉𝑟−1 𝜙
𝑧,2𝑗−1

𝑗  𝜉𝑟−1 

𝜙𝑧,𝑕
𝑗  𝜉𝑟 𝜙𝑧,𝑕+1

𝑗  𝜉𝑟 ⋯ 𝜙
𝑧,2𝑗−2

𝑗  𝜉𝑟 𝜙
𝑧,2𝑗−1

𝑗  𝜉𝑟  
 
 
 
 
 
 

 
  
 

  
 𝑎𝑧,𝑕

𝑗

𝑎𝑧,𝑕+1
𝑗

⋮

𝑎
𝑧,2𝑗−2

𝑗

𝑎
𝑧,2𝑗−1

𝑗
 
  
 

  
 

  

 {𝒖𝒆} =

 
 
 
 
 
  𝚽𝒛

𝒋 𝜉1  

 𝚽𝒛
𝒋 𝜉2  

⋮

 𝚽𝒛
𝒋 𝜉𝑟−1  

 𝚽𝒛
𝒋 𝜉𝑟   

 
 
 
 
 

 
  
 

  
 𝑎𝑧,𝑕

𝑗

𝑎𝑧,𝑕+1
𝑗

⋮

𝑎
𝑧,2𝑗−2

𝑗

𝑎
𝑧,2𝑗−1

𝑗
 
  
 

  
 

  

 {𝒖𝒆} 𝑛 x 1 =  𝑹𝒓
𝒘  𝑛 x 𝑛  {𝒂𝒆} 𝑛 x 1  (5.7) 

 {𝒂𝒆} 𝑛 x 1 =  𝑹𝒓
𝒘 −1

 𝑛 x 𝑛  {𝒖𝒆} 𝑛 x 1   (5.8) 

 

𝑢𝑖 =  𝜙𝑧,𝑕
𝑗  𝜉𝑖 𝜙𝑧,𝑕+1

𝑗  𝜉𝑖 ⋯ 𝜙
𝑧,2𝑗−2

𝑗  𝜉𝑖 𝜙
𝑧,2𝑗−1

𝑗  𝜉𝑖  × 

×

 
 
 
 
 
 
 𝜙

𝑧,𝑕
𝑗  𝜉

1
 𝜙

𝑧,𝑕+1
𝑗  𝜉

1
 ⋯ 𝜙

𝑧,2𝑗−2

𝑗
 𝜉

1
 𝜙

𝑧,2𝑗−1

𝑗
 𝜉

1
 

𝜙
𝑧,𝑕
𝑗  𝜉

2
 𝜙

𝑧,𝑕+1
𝑗  𝜉

2
 ⋯ 𝜙

𝑧,2𝑗−2

𝑗
 𝜉

2
 𝜙

𝑧,2𝑗−1

𝑗
 𝜉

2
 

⋮ ⋮ ⋱ ⋮ ⋮

𝜙
𝑧,𝑕
𝑗  𝜉

𝑟−1
 𝜙

𝑧,𝑕+1
𝑗  𝜉

𝑟−1
 ⋯ 𝜙

𝑧,2𝑗−2

𝑗
 𝜉

𝑟−1
 𝜙

𝑧,2𝑗−1

𝑗
 𝜉

𝑟−1
 

𝜙
𝑧,𝑕
𝑗  𝜉

𝑟
 𝜙

𝑧,𝑕+1
𝑗  𝜉

𝑟
 ⋯ 𝜙

𝑧,2𝑗−2

𝑗
 𝜉

𝑟
 𝜙

𝑧,2𝑗−1

𝑗
 𝜉

𝑟
  

 
 
 
 
 
 
−1

 
 
 

 
 

𝑢1 

𝑢2 

⋮
𝑢𝑟−1

𝑢𝑟  
 
 

 
 

 

 

 

 

 𝑢𝑖 =  𝚽𝒛
𝒋 𝜉𝑖   

 1 x 𝑛 
 𝑻𝒓

𝒘  𝑛 x 𝑛   {𝒖𝒆} 𝑛 x 1 =  𝑵𝒓,𝒆 𝜉𝑖  {𝒖𝒆} (5.9) 
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The general axial deformation at any point along the rod element can be generalised as   

The matrix  𝑻𝒓
𝒘 =   𝑹𝒓

𝒘 −1 is the axial rod wavelet transformation matrix with the scripts r 

and w denoting rod and wavelet respectively. The vector containing the wavelet based axial 

rod shape functions is denoted by  𝑵𝒓,𝒆 𝜉  , where  

5.1.1. Stiffness matrix formulation 

In general, the total potential energy within an axial rod 𝛱𝑎 , is described as [31]: 

where 𝑈𝑎  is the axial strain energy and 𝛺𝑎  is the work potential via externally applied axial 

loads. Suppose the axial rod is subjected to nodal point loads 𝑓𝑥𝑖  and distributed 

loading 𝑓𝑑(𝑥), then the potential energy within the axial rod can be generally expressed as 

[27,31]: 

where E is the Young’s modulus, A is the cross-sectional area and l is the length of the rod. 

Therefore, according to the principle of minimum potential energy, 

Following the discretization of the rod into elements, the axial stain energy within each WFE 

of length 𝐿𝑒  is expressed in natural coordinate system as:  

Substituting equation (5.10) into equation (5.15): 

One can now obtain the stiffness matrix of the rod element in wavelet space,  𝒌𝒓,𝒆
𝒘  , as: 

 𝑢 𝜉 =  𝚽𝒛
𝒋 𝜉   

 1 x 𝑛 
 𝑻𝒓

𝒘  𝑛 x 𝑛   {𝒖𝒆} 𝑛 x 1  (5.10) 

  𝑵𝒓,𝒆 𝜉  
 1 x 𝑛 

=  𝚽𝒛
𝒋 𝜉  

 1 x 𝑛 
  𝑻𝒓

𝒘  𝑛 x 𝑛  (5.11) 

 𝛱𝑎 = 𝑈𝑎 + 𝛺𝑎   (5.12) 

 
𝛱𝑎 =  

𝐸𝐴

2
 
𝑑𝑢(𝑥)

𝑑𝑥
 

2

 𝑑𝑥
𝑙

0

−  𝑢(𝑥𝑖)𝑓𝑥𝑖

𝑖

−  𝑓𝑑 𝑥 𝑢(𝑥) 𝑑𝑥
𝑙

0

  (5.13) 

 δ𝛱𝑎 = δ𝑈𝑎 + δ𝛺𝑎 = 0  (5.14) 

 𝑈𝑒
𝑎 =

1

2

𝐸𝐴

𝐿𝑒
  

𝑑𝑢(𝜉)

𝑑𝜉
 

𝑇

 
𝑑𝑢(𝜉)

𝑑𝜉
  𝑑𝜉

1

0

 (5.15) 

 𝑈𝑒
𝑎 =

1

2

𝐸𝐴

𝐿𝑒
{𝒖𝒆}𝑇   𝑻𝒓

𝒘 𝑇  
𝑑𝚽𝒛

𝒋 𝜉 

𝑑𝜉
 

𝑇

 
𝑑𝚽𝒛

𝒋 𝜉 

𝑑𝜉
   𝑻𝒓

𝒘  𝑑𝜉
1

0

  {𝒖𝒆} (5.16) 
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The wavelet space stiffness matrix of the rod WFE formulated using a wavelet family of 

order z at multiresolution scale j is symmetric and has the general form  

where   

Given that the stiffness matrix described in equation (5.18) is in wavelet space, it is important 

to transform the matrix into physical space via the wavelet transformation matrix  𝑻𝒓
𝒘  and 

apply the relevant material properties of the rod. Therefore, the rod WFE stiffness matrix in 

physical space (denoted by superscript p) for an element e is given by: 

5.1.2. Load vector formulation 

Assuming the rod element is subjected to nodal axial point forces 𝑓𝑥𝑖  and a distributed force 

𝑓𝑑(𝜉), the total work potential within each axial rod WFE, expressed in natural coordinates, 

is  

Substituting equation (5.10) into (5.21) 

 [𝒌𝒓,𝒆
𝒘 ] =   

𝑑𝚽𝒛
𝒋 𝜉 

𝑑𝜉
 

𝑇

 
𝑑𝚽𝒛

𝒋 𝜉 

𝑑𝜉
 𝑑𝜉

1

0

 

 

 

 

 [𝒌𝒓,𝒆
𝒘 ] 𝑛 x 𝑛 =  {𝚽′𝒛

𝒋  𝜉 }𝑇{𝚽′𝒛
𝒋 𝜉 }𝑑𝜉

1

0

 (5.17) 

 [𝒌𝒓,𝒆
𝒘 ] =

 
 
 
 
 
 
 
 𝑘𝑕,𝑕

𝑧,𝑗

𝒓
𝑘𝑕,𝑕+1

𝑧,𝑗

𝒓
⋯ 𝑘

𝑕,2𝑗−2

𝑧,𝑗

𝒓
𝑘

𝑕,2𝑗−1

𝑧,𝑗

𝒓

𝑘𝑕+1,𝑕
𝑧,𝑗

𝒓
𝑘𝑕+1,𝑕+1

𝑧,𝑗

𝒓
⋯ 𝑘

𝑕+1,2𝑗−2

𝑧,𝑗

𝒓
𝑘

𝑕+1,2𝑗−1

𝑧,𝑗

𝒓

⋮ ⋮ ⋱ ⋮ ⋮

𝑘
2𝑗−2,𝑕
𝑧,𝑗

𝒓
𝑘

2𝑗−2,𝑕+1
𝑧,𝑗

𝒓
⋯ 𝑘

2𝑗−2,2𝑗−2

𝑧,𝑗

𝒓
𝑘

2𝑗−2,2𝑗−1

𝑧,𝑗

𝒓

𝑘
2𝑗−1,𝑕
𝑧,𝑗

𝒓
𝑘

2𝑗−1,𝑕+1
𝑧,𝑗

𝒓
⋯ 𝑘

2𝑗−1,2𝑗−2

𝑧,𝑗

𝒓
𝑘

2𝑗−1,2𝑗−1

𝑧,𝑗

𝒓 
 
 
 
 
 
 
 

 (5.18) 

 𝑘𝑘,𝑙
𝑧,𝑗

𝒓
=  𝜙′

𝑧,𝑘

𝑗  𝜉 𝜙′
𝑧,𝑙

𝑗  𝜉 𝑑𝜉
1

0

  (5.19) 

 [𝒌𝒓,𝒆
𝒑

] =
𝐸𝐴

𝐿𝑒

 𝑻𝒓
𝒘 𝑇  {𝚽′𝒛

𝒋  𝜉 }𝑇{𝚽′𝒛
𝒋  𝜉 }  𝑑𝜉

1

0

 𝑻𝒓
𝒘   

 [𝒌𝒓,𝒆
𝒑

] 𝑛 x 𝑛 =
𝐸𝐴

𝐿𝑒

 𝑻𝒓
𝒘  𝑛 x 𝑛  

𝑇 [𝒌𝒓,𝒆
𝒘 ] 𝑛 x 𝑛  𝑻𝒓

𝒘  𝑛 x 𝑛   (5.20) 

 Ω𝑒
𝑎 =  −   𝑢(𝜉𝑖)𝑓𝑥𝑖

𝑟

𝑖=1

+ 𝐿𝑒  𝑓𝑑(𝜉)𝑢 𝜉 𝑑𝜉
1

0

  (5.21) 

 Ω𝑒
𝑎 =  − {𝒖𝒆}𝑇   𝑻𝒓

𝒘 𝑇 𝚽𝒛
𝒋 𝜉𝑖  

𝑇
𝑓𝑥𝑖

𝑟

𝑖=1

+ {𝒖𝒆}𝑇𝐿𝑒  𝑓𝑑(𝜉) 𝑻𝒓
𝒘 𝑇 𝚽𝒛

𝒋 𝜉  
𝑇
𝑑𝜉

1

0

  (5.22) 
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From equation (5.22), the load vector containing the element axial point loads in wavelet 

space is obtained as:  

and subsequently in physical space, after applying the wavelet transformation matrix,  

Similarly, the equivalent nodal load vector for the distributed load in wavelet space is 

and in physical space 

The total force vector of the external forces acting on the rod element in physical space 

 𝒇𝒓,𝒆
𝒑

 , is sum of the axial nodal point forces and the distributed nodal equivalents given in 

equations (5.24) and (5.26) respectively. Thus, 

5.1.3. Mass matrix formulation 

The axial kinetic energy, 𝛬𝑒
𝑎 , within the rod element is defined as [27]: 

where 𝑢  𝜉 =
𝜕𝑢  𝜉 

𝜕𝑡
 is the axial velocity. The wavelet based approximation for the axial 

deformation from equation (5.10) is substituted into equation (5.28).  

It is therefore possible to acquire the mass matrix for the rod element in wavelet space from 

equation (5.29) as: 

  𝒇𝒓,𝒆
𝒏,𝒘 

 𝑛 x 1 
=   𝚽𝒛

𝒋 𝜉𝑖  
𝑇

𝑟

𝑖=1

 (5.23) 

  𝒇𝒓,𝒆
𝒏,𝒑

 
 𝑛 x 1 

=   𝑻𝒓
𝒘 𝑇 𝑛 x 𝑛  𝚽𝒛

𝒋 𝜉𝑖  
𝑇

 𝑛 x 1 
𝑓𝑥𝑖

𝑖

 (5.24) 

  𝒇𝒓,𝒆
𝒅,𝒘 

 𝑛 x 1 
=  𝑓𝑑(𝜉) 𝚽𝒛

𝒋 𝜉  
𝑇
𝑑𝜉

1

0

 (5.25) 

  𝒇𝒓,𝒆
𝒅,𝒑

 
 𝑛 x 1 

= 𝐿𝑒  𝑻𝒓
𝒘 𝑇 𝑛 x 𝑛  𝒇𝒓,𝒆

𝒅,𝒑
 

 𝑛 x 1 
 (5.26) 

  𝒇𝒓,𝒆
𝒑

 
 𝑛 x 1 

=  𝒇𝒓,𝒆
𝒏,𝒑

 
 𝑛 x 1 

+  𝒇𝒓,𝒆
𝒅,𝒑

 
 𝑛 x 1 

 (5.27) 

 𝛬𝑒
𝑎 =

1

2
𝜌𝐴𝐿𝑒  𝑢  𝜉 𝑇  𝑢  𝜉 𝑑𝜉

1

0

 (5.28) 

 𝛬𝑒
𝑎 =  {𝒖 𝒆}𝑇

1

2
𝜌𝐴𝐿𝑒   𝑻𝒓

𝒘 𝑇 𝚽𝒛
𝒋 𝝃  

𝑇
 𝚽𝒛

𝒋 𝝃    𝑻𝒓
𝒘  𝑑𝜉

1

0

 {𝒖 𝒆} (5.29) 
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The mass matrix of the axial rod WFE of order z and multiresolution scale j is also symmetric 

and takes the form 

where  

Carrying out a similar procedure as outlined in equation (5.20), one can formulate the mass 

matrix in physical space via the transformation of equation (5.30) using the wavelet transform 

matrix for the rod element. 

It is therefore possible to express the kinetic energy of the rod element in terms of the mass 

matrix evaluated in equation (5.33) as:  

5.1.4. Two dimensional global transformation 

In the WFEM, each element is formulated in its own arbitrary local coordinate system, which 

is relative to the system’s global coordinate system. When an axial rod has all the elements 

sharing the same local and global axes, the system is analysed using the element matrices and 

force vectors directly. However, if the local coordinate system of an element or group of 

elements within the system does not coincide with the global coordinate system as illustrated 

in Figure 5-2, the element matrices and load vectors need to be expressed in relation to the 

overall global coordinate system. The axial deformation at an elemental node i with respect to 

the local coordinate is denoted by ui and the corresponding equivalent global coordinate 

 [𝒎𝒓,𝒆
𝒘 ] 𝑛 x 𝑛 =   𝚽𝒛

𝒋 𝝃  
𝑇
 𝚽𝒛

𝒋 𝝃  𝑑𝜉
1

0

 (5.30) 

 [𝒎𝒓,𝒆
𝒘 ] =

 
 
 
 
 
 
 
 𝑚𝑕,𝑕

𝑧,𝑗

𝒓
𝑚𝑕,𝑕+1

𝑧,𝑗

𝒓
⋯ 𝑚

𝑕,2𝑗−2

𝑧,𝑗

𝒓
𝑚

𝑕,2𝑗−1

𝑧,𝑗

𝒓

𝑚𝑕+1,𝑕
𝑧,𝑗

𝒓
𝑚𝑕+1,𝑕+1

𝑧,𝑗

𝒓
⋯ 𝑚

𝑕+1,2𝑗−2

𝑧,𝑗

𝒓
𝑚

𝑕+1,2𝑗−1

𝑧,𝑗

𝒓

⋮ ⋮ ⋱ ⋮ ⋮

𝑚
2𝑗−2,𝑕

𝑧,𝑗

𝒓
𝑚

2𝑗−2,𝑕+1

𝑧,𝑗

𝒓
⋯ 𝑚

2𝑗−2,2𝑗−2

𝑧,𝑗

𝒓
𝑚

2𝑗−2,2𝑗−1

𝑧,𝑗

𝒓

𝑚
2𝑗−1,𝑕

𝑧,𝑗

𝒓
𝑚

2𝑗−1,𝑕+1

𝑧,𝑗

𝒓
⋯ 𝑚

2𝑗−1,2𝑗−2

𝑧,𝑗

𝒓
𝑚

2𝑗−1,2𝑗−1

𝑧,𝑗

𝒓 
 
 
 
 
 
 
 

 (5.31) 

 𝑚𝑘,𝑙
𝑧,𝑗

𝒓
=  𝜙

𝑧,𝑘
𝑗  𝜉 𝜙

𝑧,𝑙
𝑗  𝜉 𝑑𝜉

1

0

  (5.32) 

 [𝒎𝒓,𝒆
𝒑

] = 𝜌𝐴𝐿𝑒 𝑻𝒓
𝒘 𝑇   𝚽𝒛

𝒋 𝜉  
𝑇
 𝚽𝒛

𝒋 𝜉   𝑑𝜉
1

0

 𝑻𝒓
𝒘   

 [𝒎𝒓,𝒆
𝒑

] 𝑛 x 𝑛 = 𝜌𝐴𝐿𝑒    𝑻𝒓
𝒘  𝑛 x 𝑛  

𝑇  [𝒎𝒓,𝒆
𝒘 ] 𝑛 x 𝑛  𝑻𝒓

𝒘  𝑛 x 𝑛   (5.33) 

 𝛬𝑒
𝑎 =  

1

2
{𝒖 𝒆} 1 x 𝑛 

𝑇 [𝒎𝒓,𝒆
𝒑

] 𝑛 x 𝑛 {𝒖 𝒆} 𝑛 x 1  (5.34) 
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DOFs are Ui (longitudinal) and Vi (transverse) respectively. The axial force component acting 

along the element in the local x axis at node i is fxi, while FXi and FYi denote the force 

components acting in the global X and Y axes respectively. 

 

Figure 5-2 : Local and global nodal displacements of axial rod wavelet finite element. 

The arbitrary angle of orientation between the local coordinate and global coordinate system 

is denoted by α and is assumed to remain unchanged for each elemental node within the same 

WFE. This is because the axial deformation and elemental nodal forces are assumed to act 

along the same local axial axis through all elemental nodes within the same WFE. The 

relationship between the local and global displacements for any elemental node i is: 

where  

Xi and Yi are the global coordinate values corresponding to the local coordinate value xi at 

node i. The length Le of the element can be evaluated from the two element end node global 

coordinate values. 

 

𝑢𝑖 = 𝑈𝑖 cos 𝛼 + 𝑉𝑖 sin 𝛼 

𝑢𝑖 =  cos 𝛼 sin 𝛼  
𝑈𝑖

𝑉𝑖
  

(5.35) 

 

cos 𝛼 =
𝑋𝑟 − 𝑋1

𝐿𝑒
 

sin 𝛼 =
𝑌𝑟 − 𝑌1

𝐿𝑒
 

(5.36) 

 𝐿𝑒 =   𝑋𝑟 − 𝑋1 2 +  𝑌𝑟 − 𝑌1 2 (5.37) 

u2, fx2 

2 

Vr ,FYr 

1 

ur-2, fxr-2 

u3, fx3 

α 

α 

U1,FX1 

ur, fxr 

 ur-1, fxr-1 

u1, fx1 

r-2 

Le 

 

x 

X 

y 

1 

3 

r-1 

r 
V1,FY1 

Ur,FXr 

y 

x 

Y 



 

83 

 

Let the vector containing the WFE DOFs in the global coordinate system be expressed as: 

From the relation of the local and global coordinate systems highlighted in equation (5.35), 

the relationship between the local and global coordinate displacement vectors for the two 

dimensional axial rod WFE is 

 𝑻𝒓
𝑮  is the rotation matrix or global transformation matrix for the rod WFE. Therefore, the 

element physical stiffness matrix [𝑲𝒓,𝒆
𝒑

], mass matrix [𝑴𝒓,𝒆
𝒑

] and load vector  𝑭𝒓,𝒆
𝒑

  of the 

WFE rod element in global coordinates are evaluated by applying the rotation matrix  𝑻𝒓
𝑮 .  

5.1.5. Assembly and application of boundary conditions  

In general, the assembly of the wavelet based finite elements is carried out in a similar 

manner to the classical finite element method. For an axial rod with a total of ne WFEs, the 

total global stiffness and mass matrices and load vector in physical space are given by: 

  𝑼𝒆 =

 
 
 
 
 

 
 
 
 

𝑈1

𝑉1

𝑈2

𝑉2

⋮

𝑈𝑟−1

𝑉𝑟−1

𝑈𝑟

𝑉𝑟  
 
 
 
 

 
 
 
 

 (5.38) 

 

 
 
 

 
 

𝑢1 

𝑢2 

⋮
𝑢𝑟−1 

𝑢𝑟  
 
 

 
 

=

 
 
 
 
 
cos 𝛼 sin 𝛼 0 0 ⋯ 0 0 0 0

0 0 cos 𝛼 sin 𝛼 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ cos 𝛼 sin 𝛼 0 0
0 0 0 0 ⋯ 0 0 cos 𝛼 sin 𝛼 

 
 
 
 

 
 
 
 
 

 
 
 
 

𝑈1

𝑉1

𝑈2

𝑉2

⋮
𝑈𝑟−1

𝑉𝑟−1

𝑈𝑟

𝑉𝑟  
 
 
 
 

 
 
 
 

 

 

 

 {𝒖𝒆} 𝑛 x 1 =  𝑻𝒓
𝑮  𝑛 x 2𝑛  {𝑼𝒆} 2𝑛 x 1  (5.39) 

 [𝑲𝒓,𝒆
𝒑

] 2𝑛 x 2𝑛 =   𝑻𝒓
𝑮 𝑇 2𝑛 x 𝑛  [𝒌𝒓,𝒆

𝒑
] 𝑛 x 𝑛  𝑻𝒓

𝑮  𝑛 x 2𝑛   (5.40) 

 [𝑴𝒓,𝒆
𝒑

] 2𝑛 x 2𝑛 =   𝑻𝒓
𝑮 𝑇 2𝑛 x 𝑛  [𝒎𝒓,𝒆

𝒑
] 𝑛 x 𝑛  𝑻𝒓

𝑮  𝑛 x 2𝑛   (5.41) 

  𝑭𝒓,𝒆
𝒑

 
 2𝑛 x 1 

=  𝑻𝒓
𝑮 𝑇 2𝑛 x 𝑛   𝒇𝒓,𝒆

𝒑
 

 𝑛 x 1 
 (5.42) 

 [𝑲𝒓] =  [𝑲𝒓,𝒆
𝒑

]

𝑛𝑒

𝑒=1

 (5.43) 



 

84 

 

The boundary conditions are applied similar to classical FEM by omitting the corresponding 

affected rows and columns, thus reducing the size of the overall system matrices and load 

vectors. Therefore, the governing equation describing the static behaviour of the system is 

expressed as: 

5.1.6. Axial stresses and strains 

The axial strains and stresses at the nodal points, for a static case, can be evaluated from the 

solved axial deformations obtained in equation (5.46). From the strain-displacement 

relationship 𝜀 =  
𝑑𝑢 (𝑥)

𝑑𝑥
 , the axial strain 𝜀𝑒

𝑎(𝜉) and stress 𝜍𝑒
𝑎(𝜉) at a point 𝜉 within a given 

element e, is obtained as [30]: 

where  𝑵′𝒓,𝒆 𝜉   is first derivative of the rod WFE shape function vector obtained in equation 

(5.11) and thus 

The vector  
𝑑𝚽𝒛

𝒋
 𝜉 

𝑑𝜉
  is the derivative of the scaling functions used to approximate the axial 

deformation. Therefore, the element vectors containing the axial strains  𝜀𝑒
𝑎  and stresses 

 𝜍𝑒
𝑎  at the elemental nodes within a wavelet based rod element are evaluated as follows: 

 [𝑴𝒓] =  [𝑴𝒓,𝒆
𝒑

]

𝑛𝑒

𝑒=1

 (5.44) 

  𝑭𝒓 =   𝑭𝒓,𝒆
𝒑

 

𝑛𝑒

𝑒=1

  (5.45) 

  𝑲𝒓  𝑼𝒓 =  𝑭𝒓   (5.46) 

 𝜀𝑒
𝑎(𝜉) =  

𝑑𝑢(𝜉)

𝑑𝑥
 =

1

𝐿𝑒

𝑑𝑢(𝜉)

𝑑𝜉
=

1

𝐿𝑒

𝑑

𝑑𝜉
 𝑵𝒓,𝒆 𝜉   𝒖𝒆   

 𝜀𝑒
𝑎(𝜉) =

1

𝐿𝑒
 𝑵′𝒓,𝒆 𝜉   𝒖𝒆  (5.47) 

 𝜍𝑒
𝑎(𝜉) = 𝐸𝜀𝑒

𝑎(𝜉) = 𝐸
1

𝐿𝑒
 𝑵′𝒓,𝒆 𝜉   𝒖𝒆  (5.48) 

  𝑵′𝒓,𝒆 𝜉  
 1 x 𝑛 

=  
𝑑𝚽𝒛

𝒋
(𝜉)

𝑑𝜉
 

 1 x 𝑛 

  𝑻𝒓
𝒘  𝑛 x 𝑛  (5.49) 
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5.1.7. Daubechies axial rod wavelet finite element 

A Daubechies wavelet family of order L can represent any polynomial whose order is up to 

but not greater than 
𝐿

2
− 1 [10,36]. Hence for a static case, the lowest Daubechies family that 

is theoretically applicable in the formulation of a one dimensional axial rod WFE is D4. For a 

general axial rod with n DOFs formulated using the Daubechies wavelet DL at 

multiresolution scale j, the axial displacement field is given by:  

Thus, in the formulation of the axial rod, the Daubechies WFE has a total of 𝑛 = 2𝑗 + 𝐿 − 2 

DOFs. The shape functions of the Daubechies based axial rod WFE are obtained from 

equation (5.11) as  

where  𝑻𝒓
𝒘 𝐷  is the Daubechies wavelet transformation matrix for the axial rod WFE. The 

number of shape functions within a given rod element correspond to the number of DOFs i.e., 

𝑛 = 2𝑗 + 𝐿 − 2. Figure 5-3 illustrates the (a) D60 and (b) D61 Daubechies wavelet based 

axial rod element shape functions in physical space; 𝑁𝑘 𝜉  and 𝑁𝑘 𝜉𝑖  for 1 ≤ 𝑖, 𝑘 ≤ 𝑛. The 

Daubechies wavelet based axial rod elements of order 𝐷𝐿 ≥ 𝐷4 at multiresolution j, possess 

the delta function, completeness and compatibility properties as highlighted in Section 4.4. 

This implies that increasing the order of the Daubechies wavelet, multiresolution scale and/or 

number of elements within the system ensures the approximate solution converges to the 

exact solution.  

  𝜀𝑒
𝑎 =

1

𝐿𝑒

 
 
 
 
 
 

 𝑵′𝒓,𝒆 𝜉1  

 𝑵′𝒓,𝒆 𝜉2  

⋮
 𝑵′𝒓,𝒆 𝜉𝑟−1  

 𝑵′𝒓,𝒆 𝜉𝑟   
 
 
 
 
 

 𝒖𝒆  (5.50) 

  𝜍𝑒
𝑎 = 𝐸  𝜀𝑒

𝑎 =
𝐸

𝐿𝑒

 
 
 
 
 
 

 𝑵′𝒓,𝒆 𝜉1  

 𝑵′𝒓,𝒆 𝜉2  

⋮
 𝑵′𝒓,𝒆 𝜉𝑟−1  

 𝑵′𝒓,𝒆 𝜉𝑟   
 
 
 
 
 

 𝒖𝒆  (5.51) 

 𝑢 𝜉 =  𝑎𝐿,𝑘
𝑗

 𝜙𝐿,𝑘
𝑗  𝜉 

2𝑗 −1

𝑘=2−𝐿

 (5.52) 

  𝑵𝒓,𝒆 𝜉  
 1 x 𝑛 

𝐷
=  𝚽𝑳

𝒋 𝜉  
 1 x 𝑛 

𝐷
  𝑻𝒓

𝒘  𝑛 x 𝑛 
𝐷  (5.53) 
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Figure 5-3 : Axial rod Daubechies based wavelet element shape functions 𝑁𝑘 𝜉  and 𝑁𝑘 𝜉𝑖  for (a) D60 (b) D61. 

The Daubechies scaling functions and derivatives of the scaling functions cannot be 

expressed explicitly. Therefore, the computation of the element matrices and load vectors 

cannot be calculated directly. This requires the evaluation of the Daubechies connection 

coefficients so as to carry out the calculation of the integral of the products of the scaling 

functions and/or their derivatives [36]. Defining the two term connection coefficients 

necessary to evaluate the element matrices as  

The connections coefficients Γ𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 = Γ𝐿,𝐿 𝑘,𝑙

𝑗 ,𝑑1 ,𝑑2  are the entries of the element matrices in 

wavelet space for the limits 2 − 𝐿 ≤ 𝑘, 𝑙 ≤ 2𝑗 − 1. 

 Γ𝐿,𝐿 𝑘,𝑙
𝑗 ,𝑑1 ,𝑑2 =   𝜙𝐿

 𝑑1 
(2𝑗 𝜉 − 𝑘)𝜙𝐿

 𝑑2 
(2𝑗 𝜉 − 𝑙)𝑑𝜉

1

0

  (5.54) 

  𝚪𝑗 ,𝑑1 ,𝑑2 = 
  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2  

 
 
 
 
 
 
 Γ2−𝐿,2−𝐿

𝑗 ,𝑑1 ,𝑑2 Γ3−𝐿,2−𝐿
𝑗 ,𝑑1 ,𝑑2 ⋯ Γ

2𝑗−2,2−𝐿

𝑗 ,𝑑1 ,𝑑2 Γ
2𝑗−1,2−𝐿

𝑗 ,𝑑1 ,𝑑2

Γ2−𝐿,3−𝐿
𝑗 ,𝑑1 ,𝑑2 Γ3−𝐿,3−𝐿

𝑗 ,𝑑1 ,𝑑2 ⋯ Γ
2𝑗−2,3−𝐿

𝑗 ,𝑑1 ,𝑑2 Γ
2𝑗−1,3−𝐿

𝑗 ,𝑑1 ,𝑑2

⋮ ⋮ ⋱ ⋮ ⋮

Γ
2−𝐿,2𝑗−2

𝑗 ,𝑑1 ,𝑑2 Γ
3−𝐿,2𝑗−2

𝑗 ,𝑑1 ,𝑑2 ⋯ Γ
2𝑗−2,2𝑗−2

𝑗 ,𝑑1 ,𝑑2 Γ
2𝑗−1,2𝑗−2

𝑗 ,𝑑1 ,𝑑2

Γ
2−𝐿,2𝑗−1

𝑗 ,𝑑1 ,𝑑2 Γ
3−𝐿,2𝑗−1

𝑗 ,𝑑1 ,𝑑2 ⋯ Γ
2𝑗−2,2𝑗−1,

𝑗 ,𝑑1 ,𝑑2 Γ
2𝑗−1,2𝑗−1

𝑗 ,𝑑1 ,𝑑2
 
 
 
 
 
 
 

  (5.55) 

(a) 

(b) 
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Therefore, the Daubechies wavelet space stiffness and mass matrices, from equations (5.17) 

and (5.30) respectively, are expressed as: 

When carrying out the evaluation of the connection coefficients, as presented in Section 

3.2.5, the normalizing factor 2𝑗𝑚  of the m
th

 derivative of the Daubechies scaling function 

present on the left hand side of equation (5.58) was omitted from the calculations for 

convenience. 

It is for this reason that a normalizing factor  22𝑗   is introduced in the wavelet based stiffness 

matrix formulation. The Daubechies wavelet transformation matrix  𝑻𝒓
𝒘 𝐷  is then applied to 

transform the stiffness and mass matrices from wavelet space into physical space. 

Similarly, the distributed forces acting on the element require another form of connection 

coefficients to be evaluated; depending on the function of the forces. In the case of a 

uniformly distributed load, the function representing the force is a constant. Therefore, given 

an axial uniformly distributed load 𝑓𝑑 𝜉 = 𝑃 Nm
-1

, the Daubechies force vector in wavelet 

space is 

The values within the force vector are obtained from the connection coefficients of the form 

Υ𝑘
𝑗 ,0

, 2 − 𝐿 ≤ 𝑘, 𝑙 ≤ 2𝑗 − 1 as described in Section 3.2.5, for 𝑚 = 0. 

Thus, the uniformly distributed load equivalent column vector in wavelet space is  

 [𝒌𝒓,𝒆
𝒘 ]

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2  

𝐷 = 22𝑗  𝚪𝑗 ,1,1  (5.56) 

 [𝒎𝒓,𝒆
𝒘 ]

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2  

𝐷 =  𝚪𝑗 ,0,0  (5.57) 

 2𝑗𝑚 𝜙𝐿
 𝑚 

(2𝑗 𝜉 − 𝑘) =  2(𝑗 +1)𝑚  𝑝 𝑟 𝜙𝐿
 𝑚 

 2𝑗 +1𝜉 − 2𝑘 − 𝑟 

𝑟

 (5.58) 

  𝒇𝒓,𝒆
𝒅,𝒘 

𝐷
=   𝚽𝑳

𝒋 𝜉  
𝑇
𝑑𝜉

1

0

=  𝜉0  𝚽𝑳
𝒋 𝜉  

 1 x  2𝑗 +𝐿−2  

𝑇

𝑑𝜉
1

0

 (5.59) 

 Υ𝑘
𝑗 ,0

=   𝜉0𝜙𝐿(2𝑗 𝜉 − 𝑘)𝑑𝜉
1

0

  (5.60) 

  𝒇𝒓,𝒆
𝒅,𝒘 

  2𝑗 +𝐿−2  x 1 

𝐷
=  𝚼𝒋,𝟎 =

 
 
 

 
 Υ2−𝐿

𝑗 ,0

Υ3−𝐿

𝑗 ,0

⋮

Υ
2𝑗−2

𝑗 ,0

Υ
2𝑗−1

𝑗 ,0
 
 
 

 
 

 (5.61) 
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Likewise, for a linearly varying load given by the function 𝑓𝑑 𝜉 = 𝑃 𝜉 Nm
-1

, the force 

vector in wavelet space is obtained from the same connection coefficients but with 𝑚 = 1, 

i.e., 

In general, if a distributed load is represented by a function 𝑓𝑑 𝜉 = 𝑃 𝜉𝑚  Nm
-1

 for example, 

one must evaluate the connection coefficients  Υ𝑘
𝑗 ,𝑚

 so as to obtain the Daubechies wavelet 

space nodal force vector equivalent. This vector can be transformed into physical space via 

the Daubechies wavelet transformation matrix and subsequently transformed into global 

coordinates by applying the rotation matrix, if necessary.  

5.1.8. BSWI axial rod wavelet finite element 

In the case where the axial rod WFE is formulated using the BSWI family of order m and 

scale j, the unknown physical space axial deformation in natural coordinates 𝜉 may be 

represented as [7]:  

Hence, the total number of elemental nodes in relation to the order and scale of the BSWI is 

𝑛 = 2𝑗 + 𝑚 − 1 and the total number of elemental segments is 𝑛𝑠 = 2𝑗 + 𝑚 − 2. Figure 5-4 

illustrates the (a) BSWI21 and (b) BSWI22 WFEs axial rod shape functions 𝑁𝑘 𝜉  and 

𝑁𝑘 𝜉𝑖 . Figure 5-4 (a) exemplifies the impact of a BSWI wavelet that does not meet the 

requirement 𝑗 ≥ 𝑗0 as discussed in Section 3.3. To have at least one inner scaling function, 

BSWI of order 𝑚 = 2 must have 𝑗0 ≥ 2. In a case where 𝑗 < 𝑗0, as illustrated in Figure 5-4 

(a), the completeness requirement within the element is not met. Therefore, in the 

formulation of BSWI based WFEs in general, the condition 𝑗 ≥ 𝑗0 must be satisfied [7] as 

shown in Figure 5-4 (b). Furthermore, taking into consideration that the BSWI wavelet of 

order m is in C
m-2

, for an axial rod element which is in C
0
, the orders that can be implemented 

in the formulation of the WFEs must be 𝑚 ≥ 2. 

 Υ𝑘
𝑗 ,1

=   𝜉1𝜙𝐿(2𝑗 𝜉 − 𝑘)𝑑𝜉
1

0

  

  𝒇𝒓,𝒆
𝒅,𝒘 

  2𝑗 +𝐿−2  x 1 

𝐷
=  𝚼𝐣,𝟏 =

 
 
 

 
 Υ2−𝐿

𝑗 ,1

Υ3−𝐿

𝑗 ,1

⋮

Υ
2𝑗−2

𝑗 ,1

Υ
2𝑗−1

𝑗 ,1
 
 
 

 
 

  (5.62) 

 𝑢 𝜉 =  𝑎𝑚,𝑘
𝑗

 𝜙𝑚,𝑘
𝑗  𝜉 

2𝑗−1

𝑘=−𝑚+1

 (5.63) 
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Figure 5-4 : Axial rod BSWI based wavelet element shape functions 𝑁𝑘 𝜉  and 𝑁𝑘 𝜉𝑖 : (a) BSWI21 (b) BSWI22. 

Figure 5-5 illustrates the shape functions (a) 𝑁𝑘 𝜉  and (b) 𝑁𝑘 𝜉𝑖  for the BSWI33 axial rod 

WFE. Provided the conditions 𝑗 ≥ 𝑗0 and 𝑚 ≥ 2 are satisfied, the BSWI wavelet based rod 

element satisfies the delta function, completeness and compatibility properties highlighted in 

Section 4.4. The BSWI scaling functions and their derivatives are expressed explicitly, unlike 

the Daubechies wavelet family. Therefore, the integrals of the products of the BSWI scaling 

functions and/or their derivatives, used in the formulation of the element matrices and load 

vectors, can be evaluated directly without having to calculate the connection coefficients [7]. 

This is one of the advantages that BSWI based WFEs have over their Daubechies based 

counterparts. 

Therefore in wavelet space, the mass and stiffness matrices of the BSWI axial rod element 

are obtained as: 

 [𝒎𝒓,𝒆
𝒘 ]

  2𝑗 +𝑚−1   x  2𝑗 +𝑚−1   

𝐵𝑆 =  {𝚽𝒎
𝒋  𝜉 }𝑇{𝚽𝒎

𝒋  𝜉 }𝑑𝜉
1

0

 (5.64) 

 [𝒌𝒓,𝒆
𝒘 ]

  2𝑗 +𝑚−1   x  2𝑗 +𝑚−1   

𝐵𝑆 =  {𝚽′𝒎
𝒋  𝜉 }𝑇{𝚽′𝒎

𝒋  𝜉 }𝑑𝜉
1

0

 (5.65) 

(b) 

(a) 
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Figure 5-5 : Axial rod BSWI33 based wavelet element shape functions (a) 𝑁𝑘 𝜉  and (b) 𝑁𝑘 𝜉𝑖 . 

(a) 

(b) 
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The BSWI equivalent wavelet force vectors are also simpler to obtain than the Daubechies 

based element since they can be evaluated directly in wavelet space without the need to 

obtain connection coefficients. Therefore, it is possible to conveniently evaluate more 

complicated loading expressions. Thus, for a uniformly distributed load, for example 

𝑓𝑑 𝜉 = 𝑃 Nm
-1

 acting along the length of the rod, the force vector in wavelet space of the 

BSWI element is  

while for a linearly varying load 𝑓𝑑 𝜉 = 𝑃 𝜉 Nm
-1

, the BSWI load vector is given as 

The BSWI based WFE matrices and the total load vectors are then transformed into physical 

space via the use of the BSWI wavelet transformation matrix  𝑻𝒓
𝒘 𝐵𝑆 .  

5.2.  Euler Bernoulli beam wavelet finite element 

In this section, the wavelet based beam finite element is derived according to Euler Bernoulli 

beam theory. It is assumed that before and after bending occurs, the plane cross-sections 

remain plane and perpendicular to the axial centroidal axis of the beam. Therefore, the shear 

deformation effects are neglected. This assumption is valid for long or thin beams, which will 

be used in the analysis of different numerical examples within this study. The beam WFE of 

length Le, is divided into ns equally spaced elemental segments, connected by r elemental 

nodes at coordinate values 𝑥𝑖 ∈  𝑥1 , 𝑥𝑟  and 𝑖 ∈ ℕ, in the local x-y coordinate as illustrated in 

Figure 5-6 below. The total number of DOFs within each beam element is n. The beam WFE 

has the transverse displacement v and rotation θ taken into account, with corresponding 

transverse forces 𝑓𝑦  and moments 𝑚  respectively. It is not mandatory for the rotation DOF to 

be present at each elemental node but the transverse displacement and rotation must be 

present at each elemental end node to ensure inter-element compatibility [6,7,10]. The inter-

element compatibility is ensured when the transverse displacement and rotation fields are 

continuous and satisfy boundary conditions [27]. It is therefore necessary for the wavelet 

family implemented to satisfy the not only inter-element compatibility, but also internal 

compatibility. It is also important to mention that the number of elemental segments and 

nodes within each WFE depends on the number of DOFs at each elemental node. 

  𝒇𝒓,𝒆
𝒅,𝒘 

𝐵𝑆
=   𝚽𝒎

𝒋  𝝃  
 1  x  2𝑗 +𝑚−1   

𝑇

𝑑𝜉
1

0

 (5.66) 

  𝒇𝒓,𝒆
𝒅,𝒘 

𝐵𝑆
=  𝜉1  𝚽𝒎

𝒋  𝝃  
 1  x  2𝑗 +𝑚−1   

𝑇

𝑑𝜉
1

0

 (5.67) 
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Figure 5-6 : Euler Bernoulli beam wavelet finite element layout. 

In this case, the WFE beam has a transverse displacement DOF at each elemental node and a 

rotation DOF at each elemental end node i.e., 𝑛 − 2 displacement DOFs and 2 rotation DOFs 

in total for each WFE. Therefore, there are 𝑟 = 𝑛 − 2 elemental nodes and 𝑛𝑠  =  𝑛 − 3 

elemental segments. Let the vector {𝒗𝒆} denote all the physical DOFs within the beam 

element. 

where 𝑣𝑖 = 𝑣 𝑥𝑖  and 𝜃𝑖 = 𝜃 𝑥𝑖  denote the nodal transverse displacement and rotation  

DOFs in local coordinates at elemental node i, corresponding to coordinate position xi. The 

elemental node position coordinates within each WFE are expressed as: 

The general and nodal natural coordinates for the beam element are defined as: 

By applying the wavelet family scaling functions of order z and at multiresolution scale j as 

interpolating functions, the deflection at any point of the WFE beam element can be 

approximated as: 

 {𝒗𝒆} =  𝑣1 𝜃1 𝑣2 𝑣3 ⋯ 𝑣𝑟−2 𝑣𝑟−1 𝑣𝑟 𝜃𝑟  
𝑇  (5.68) 

 𝑥𝑖 ∈  𝑥1 , 𝑥𝑟     𝑖 ∈ ℕ and (1 ≤  𝑖 ≤  𝑟)  (5.69) 

 𝜉 =  
𝑥 − 𝑥1

𝑥𝑟 − 𝑥1
=

𝑥 − 𝑥1

𝐿𝑒
          (0 ≤  𝜉 ≤  1)   (5.70) 

                                  𝜉𝑖 =  
𝑥𝑖 − 𝑥1

𝐿𝑒
              (0 ≤  𝜉𝑖  ≤  1, 1 ≤  𝑖 ≤  𝑟)  (5.71) 

θr, 𝑚 r 

x 

ns  + 1 

xr 

... 

Le 

y 
1 2 3 4 

(1) (2) (3) (ns) (ns-1) (ns-2) 

) 

x1

1 

x2 x3 xr-3 x4 

0 1 ξ 

ns - 2 ns - 1 ns 

xr-2 xr-1 

θ1, 𝑚 1 

... 

v1, fy1 v2, fy2 v3, fy3 vr-2, fyr-2 vr-1, fyr-1 vr, fyr 
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The rotation at any point of the beam WFE is also approximated as: 

The vectors  𝚽𝒛
𝒋 𝜉   and  𝚽′𝒛

𝒋  𝜉   contain the scaling functions and first derivatives of the 

scaling functions respectively, while the vector {𝒃𝒆} contains the unknown wavelet 

coefficients 𝑏𝑧,𝑘
𝑗

 representing the beam DOFs in wavelet space. The transverse displacement 

and rotation DOFs for elemental node i, at coordinate position xi, can therefore be expressed 

as: 

The DOFs for the entire beam WFE in equation (5.68) can be represented in terms of 

equations (5.74) and (5.75). Therefore,  

 𝑣 𝜉 =  𝑏𝑧,𝑘
𝑗

 𝜙𝑧,𝑘
𝑗  𝜉 

2𝑗−1

𝑘=𝑕

  

 𝑣 𝜉 =  𝜙𝑧,𝑕
𝑗  𝜉 𝜙𝑧,𝑕+1

𝑗  𝜉 ⋯ 𝜙
𝑧,2𝑗−2

𝑗  𝜉 𝜙
𝑧,2𝑗−1

𝑗  𝜉   

 
  
 

  
 𝑏𝑧,𝑕

𝑗

𝑏𝑧,𝑕+1
𝑗

⋮

𝑏
𝑧,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−1

𝑗
 
  
 

  
 

  

 𝑣 𝜉 =  𝚽𝒛
𝒋
 𝜉    

 1 x 𝑛 
{𝒃𝒆} 𝑛 x 1  (5.72) 

 𝜃 𝜉 =
𝜕𝑣 𝜉 

𝜕𝑥
=

1

𝐿𝑒

𝜕𝑣 𝜉 

𝜕𝜉
 =

1

𝐿𝑒
 𝑏𝑧,𝑘

𝑗
 
𝜕𝜙𝑧,𝑘

𝑗  𝜉 

𝜕𝜉
 

2𝑗−1

𝑘=𝑕

  

 𝜃 𝜉 =
1

𝐿𝑒
 𝜙′

𝑧,𝑕
𝑗  𝜉 𝜙′

𝑧,𝑕+1
𝑗  𝜉 ⋯ 𝜙′

𝑧,2𝑗−2

𝑗
 𝜉 𝜙′

𝑧,2𝑗−1

𝑗
 𝜉   

 
  
 

  
 𝑏𝑧,𝑕

𝑗

𝑏𝑧,𝑕+1
𝑗

⋮

𝑏
𝑧,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−1

𝑗
 
  
 

  
 

  

 𝜃 𝜉 =
1

𝐿𝑒
 𝚽′𝒛

𝒋  𝜉    
 1 x 𝑛 

{𝒃𝒆} 𝑛 x 1  (5.73) 

 𝑣𝑖 =  𝚽𝒛
𝒋 𝜉𝑖    

 1 x 𝑛 
{𝒃𝒆} 𝑛 x 1  (5.74) 

 𝜃𝑖 =
1

𝐿𝑒
 𝚽′𝒛

𝒋  𝜉𝑖    
 1 x 𝑛 

{𝒃𝒆} 𝑛 x 1  (5.75) 

 

 
  
 

  
 

𝑢1 

𝜃1 

𝑢2 

⋮
𝑢𝑟−1

𝑢𝑟 

𝜃𝑟  
  
 

  
 

=

 
 
 
 
 
 
 
 
 
 
 
 𝜙𝑧,𝑕

𝑗  𝜉1 𝜙𝑧,𝑕+1
𝑗  𝜉1 ⋯ 𝜙

𝑧,2𝑗−2

𝑗  𝜉1 𝜙
𝑧,2𝑗−1

𝑗  𝜉1 

1

𝐿𝑒
𝜙′𝑧,𝑕

𝑗  𝜉1 
1

𝐿𝑒
𝜙′𝑧,𝑕+1

𝑗  𝜉1 ⋯
1

𝐿𝑒
𝜙′

𝑧,2𝑗−2

𝑗  𝜉1 
1

𝐿𝑒
𝜙′

𝑧,2𝑗−1

𝑗  𝜉1 

𝜙𝑧,𝑕
𝑗  𝜉2 𝜙𝑧,𝑕+1

𝑗  𝜉2 ⋯ 𝜙
𝑧,2𝑗−2

𝑗  𝜉2 𝜙
𝑧,2𝑗−1

𝑗  𝜉2 

⋮ ⋮ ⋱ ⋮ ⋮

𝜙𝑧,𝑕
𝑗  𝜉𝑟−1 𝜙𝑧,𝑕+1

𝑗  𝜉𝑟−1 ⋯ 𝜙
𝑧,2𝑗−2

𝑗  𝜉𝑟−1 𝜙
𝑧,2𝑗−1

𝑗  𝜉𝑟−1 

𝜙𝑧,𝑕
𝑗  𝜉𝑟 𝜙𝑧,𝑕+1

𝑗  𝜉𝑟 ⋯ 𝜙
𝑧,2𝑗−2

𝑗  𝜉𝑟 𝜙
𝑧,2𝑗−1

𝑗  𝜉𝑟 

1

𝐿𝑒
𝜙′𝑧,𝑕

𝑗  𝜉𝑟 
1

𝐿𝑒
𝜙′𝑧,𝑕+1

𝑗  𝜉𝑟 ⋯
1

𝐿𝑒
𝜙′

𝑧,2𝑗−2

𝑗  𝜉𝑟 
1

𝐿𝑒
𝜙′

𝑧,2𝑗−1

𝑗  𝜉𝑟  
 
 
 
 
 
 
 
 
 
 
 

 
  
 

  
 𝑏𝑧,𝑕

𝑗

𝑏𝑧,𝑕+1
𝑗

⋮

𝑏
𝑧,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−1

𝑗
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The wavelet coefficients 𝑏𝑧,𝑖
𝑗

, representing the DOFs in wavelet space, can be obtained from 

equation (5.76). 

Substituting equation (5.77) into equation (5.74)  

and (5.75) 

where  𝑻𝒃
𝒘 =   𝑹𝒃

𝒘 −1 is the beam wavelet transformation matrix with the scripts b and w 

denoting beam and wavelet respectively. The wavelet based shape functions vector for the 

beam WFE in natural coordinates, is given as: 

5.2.1. Stiffness matrix formulation 

The potential energy within the Euler Bernoulli beam 𝛱𝑏  is [31]: 

 {𝒗𝒆} 𝑛 x 1 =

 
 
 
 
 
 
 
 
 
 
 𝚽𝒛

𝒋
 𝜉

1
 

1

𝐿𝑒

𝚽′𝒛
𝒋 𝜉

1
 

𝚽𝒛
𝒋
 𝜉

2
 

⋮

𝚽𝒛
𝒋
 𝜉

𝑟−1
 

𝚽𝒛
𝒋
 𝜉

𝑟
 

1

𝐿𝑒

𝚽′𝒛
𝒋 𝜉

𝑟
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 

  
 𝑏𝑧,𝑕

𝑗

𝑏𝑧,𝑕+1
𝑗

⋮

𝑏
𝑧,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−1

𝑗
 
  
 

  
 

=  𝑹𝒃
𝒘  𝑛 x 𝑛  {𝒃𝒆} 𝑛 x 1   (5.76) 

 {𝒃𝒆} 𝑛 x 1 =  𝑹𝒃
𝒘 −1

 𝑛 x 𝑛  {𝒗𝒆} 𝑛 x 1   (5.77) 

 

𝑣𝑖 =  𝜙𝑧,𝑕
𝑗  𝜉𝑖 𝜙

𝑧,𝑕+1
𝑗  𝜉𝑖 ⋯ 𝜙

𝑧,2𝑗−2

𝑗
 𝜉𝑖 𝜙

𝑧,2𝑗−1

𝑗
 𝜉𝑖  × 

×

 
 
 
 
 
 
 
 
 
 
 𝜙

𝑧,𝑕

𝑗
 𝜉

1
 𝜙

𝑧,𝑕+1

𝑗
 𝜉

1
 ⋯ 𝜙

𝑧,2𝑗−2

𝑗
 𝜉

1
 𝜙

𝑧,2𝑗−1

𝑗
 𝜉

1
 

1

𝐿𝑒

𝜙′
𝑧,𝑕
𝑗  𝜉

1
 

1

𝐿𝑒

𝜙′
𝑧,𝑕+1
𝑗  𝜉

1
 ⋯

1

𝐿𝑒

𝜙′
𝑧,2𝑗−2

𝑗
 𝜉

1
 

1

𝐿𝑒

𝜙′
𝑧,2𝑗−1

𝑗
 𝜉

1
 

𝜙
𝑧,𝑕

𝑗
 𝜉

2
 𝜙

𝑧,𝑕+1

𝑗
 𝜉

2
 ⋯ 𝜙

𝑧,2𝑗−2

𝑗
 𝜉

2
 𝜙

𝑧,2𝑗−1

𝑗
 𝜉

2
 

⋮ ⋮ ⋱ ⋮ ⋮

𝜙
𝑧,𝑕

𝑗
 𝜉

𝑟−1
 𝜙

𝑧,𝑕+1

𝑗
 𝜉

𝑟−1
 ⋯ 𝜙

𝑧,2𝑗−2

𝑗
 𝜉

𝑟−1
 𝜙

𝑧,2𝑗−1

𝑗
 𝜉

𝑟−1
 

𝜙
𝑧,𝑕

𝑗
 𝜉

𝑟
 𝜙

𝑧,𝑕+1

𝑗
 𝜉

𝑟
 ⋯ 𝜙

𝑧,2𝑗−2

𝑗
 𝜉

𝑟
 𝜙

𝑧,2𝑗−1

𝑗
 𝜉

𝑟
 

1

𝐿𝑒

𝜙′
𝑧,𝑕
𝑗  𝜉

𝑟
 

1

𝐿𝑒

𝜙′
𝑧,𝑕+1
𝑗  𝜉

𝑟
 ⋯

1

𝐿𝑒

𝜙′
𝑧,2𝑗−2

𝑗
 𝜉

𝑟
 

1

𝐿𝑒

𝜙′
𝑧,2𝑗−1

𝑗
 𝜉

𝑟
 
 
 
 
 
 
 
 
 
 
 
 
−1

 
  
 

  
 

𝑢1 

𝜃1 

𝑢2 

⋮
𝑢𝑟−1

𝑢𝑟 

𝜃𝑟  
  
 

  
 

 
 

 𝑣𝑖 =  𝚽𝒛
𝒋
 𝜉𝑖   

 1 x 𝑛 
 𝑻𝒃

𝒘  𝑛 x 𝑛   {𝒗𝒆} 𝑛 x 1  (5.78) 

 𝜃𝑖 =
1

𝐿𝑒
 𝚽′𝒛

𝒋  𝜉𝑖   
 1 x 𝑛 

 𝑻𝒃
𝒘  𝑛 x 𝑛   {𝒗𝒆} 𝑛 x 1   (5.79) 

  𝑵𝒃,𝒆 𝜉  
 1 x 𝑛 

=  𝚽𝒛
𝒋 𝜉  

 1 x 𝑛 
  𝑻𝒃

𝒘  𝑛 x 𝑛  (5.80) 

 𝛱𝑏 = 𝑈𝑏 + 𝛺𝑏  (5.81) 
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where 𝑈𝑏  is the strain energy and 𝛺𝑏  is the work potential of the beam. For a beam subjected 

to concentrated forces 𝑓𝑦𝑖 , distributed force 𝑓𝑑(𝑥), and bending moments 𝑚 𝑖 , the potential 

energy within the Euler Bernoulli beam can be generally expressed as [27,31]: 

where E is the Young’s modulus, I is the moment of inertia and l is the length of the beam. 

According to the principle of minimum potential energy, 

and following the discretization of the beam into elements, the stain energy within each WFE 

of length 𝐿𝑒  is expressed in natural coordinates as: 

 Expressing the strain energy equation in terms of the approximation of the transverse 

displacement via wavelet scaling functions, then 

The stiffness matrix of the beam WFE in wavelet space,  𝒌𝒃,𝒆
𝒘  , is derived from equation 

(5.85) as:  

where the vector  𝚽′′
𝒛
𝒋  𝜉  =  𝜙′′

𝑧,𝑕

𝑗  𝜉 𝜙′′
𝑧,𝑕+1

𝑗  𝜉 ⋯ 𝜙′′
𝑧,2𝑗−2

𝑗  𝜉 𝜙′′
𝑧,2𝑗−1

𝑗  𝜉   contains 

the second derivative of the scaling functions. Therefore, the stiffness matrix of the beam 

element formulated using a wavelet family of order z, at multiresolution scale j, is 

 𝛱𝑏 =  
𝐸𝐼

2
 
𝑑2𝑣

𝑑𝑥2
 

2

 𝑑𝑥
𝑙

0

−  𝑓𝑦𝑖𝑣(𝑥𝑖)

𝑖

−  𝑓𝑑(𝑥)𝑣𝑑𝑥
𝑙

0

−  𝑚 𝑘
𝑑𝑣(𝑥𝑘)

𝑑𝑥
𝑘

  (5.82) 

 δ𝛱𝑏 = δ𝑈𝑏 + δ𝛺𝑏 = 0  (5.83) 

 𝑈𝑒
𝑏 =

1

2 

𝐸 𝐼

𝐿𝑒
3   

𝑑2𝑣 𝜉 

𝑑𝜉2  

𝑇

 
𝑑2𝑣 𝜉 

𝑑𝜉2   𝑑𝜉
1

0

 (5.84) 

 𝑈𝑒
𝑏 =

1

2

𝐸 𝐼

𝐿𝑒
3 {𝒗𝒆}𝑇   𝑻𝒃

𝒘 𝑇  
𝑑2𝚽𝒛

𝒋
 𝜉 

𝑑𝜉2  

𝑇

 
𝑑2𝚽𝒛

𝒋
 𝜉 

𝑑𝜉2    𝑻𝒃
𝒘  𝑑𝜉{𝒗𝒆}

1

0

   (5.85) 

 [𝒌𝒃,𝒆
𝒘 ] =   

𝜕2𝚽𝒛
𝒋
 𝜉 

𝜕𝜉2  

𝑇

 
𝜕2𝚽𝒛

𝒋
 𝜉 

𝜕𝜉2  𝑑𝜉
1

0

  

 [𝒌𝒃,𝒆
𝒘 ] 𝑛 x 𝑛 =  {𝚽′′𝒛

𝒋  𝜉 }𝑇{𝚽′′𝒛
𝒋  𝜉 }𝑑𝜉

1

0

  (5.86) 

 [𝒌𝒃,𝒆
𝒘 ] =

 
 
 
 
 
 
 
 𝑘𝑕,𝑕

𝑧,𝑗

𝒃
𝑘𝑕,𝑕+1

𝑧,𝑗

𝒃
⋯ 𝑘

𝑕,2𝑗−2

𝑧,𝑗

𝒃
𝑘

𝑕,2𝑗−1

𝑧,𝑗

𝒃

𝑘𝑕+1,𝑕
𝑧,𝑗

𝒃
𝑘𝑕+1,𝑕+1

𝑧,𝑗

𝒃
⋯ 𝑘

𝑕+1,2𝑗−2

𝑧,𝑗

𝒃
𝑘

𝑕+1,2𝑗−1

𝑧,𝑗

𝒃

⋮ ⋮ ⋱ ⋮ ⋮

𝑘
2𝑗−2,𝑕

𝑧,𝑗

𝒃
𝑘

2𝑗−2,𝑕+1

𝑧,𝑗

𝒃
⋯ 𝑘

2𝑗−2,2𝑗−2

𝑧,𝑗

𝒃
𝑘

2𝑗−2,2𝑗−1

𝑧,𝑗

𝒃

𝑘
2𝑗−1,𝑕

𝑧,𝑗

𝒃
𝑘

2𝑗−1,𝑕+1

𝑧,𝑗

𝒃
⋯ 𝑘

2𝑗−1,2𝑗−2

𝑧,𝑗

𝒃
𝑘

2𝑗−1,2𝑗−1

𝑧,𝑗

𝒃 
 
 
 
 
 
 
 

 (5.87) 
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where  

The wavelet space stiffness matrix is transformed into physical space via the wavelet 

transformation matrix for the beam WFE. Therefore, taking into account the material 

properties of the element, the stiffness matrix of the element in physical space is   

Therefore, the strain energy within the beam element is obtained by substituting equation 

(5.89) into (5.85). 

5.2.2. Load vector formulation 

Similarly, the total work potential, Ω𝑒
𝑏 , within each beam WFE in the natural coordinate 

system, for a beam subjected to nodal moments, concentrated transverse forces and a 

distributed load, is expressed as: 

Substituting equation (5.72) into (5.91) 

Thus, from equation (5.92), the vector containing the element concentrated point loads in 

wavelet space is obtained as: 

 𝑘𝑘,𝑙
𝑧,𝑗

𝒃
=  𝜙′′

𝑧,𝑘
𝑗  𝜉 𝜙′′

𝑧,𝑙
𝑗  𝜉 𝑑𝜉

1

0

 (5.88) 

 [𝒌𝒃,𝒆
𝒑

] =
𝐸 𝐼

𝐿𝑒
3
 𝑻𝒃

𝒘 𝑇  {𝚽′′𝒛
𝒋
 𝜉 }𝑇{𝚽′′𝒛

𝒋
 𝜉 } 𝑑𝜉

1

0

 𝑻𝒃
𝒘   

 [𝒌𝒃,𝒆
𝒑

] 𝑛 x 𝑛 =
𝐸 𝐼

𝐿𝑒
3

 𝑻𝒃
𝒘  𝑛 x 𝑛  

𝑇 [𝒌𝒃,𝒆
𝒘 ] 𝑛 x 𝑛  𝑻𝒃

𝒘  𝑛 x 𝑛   (5.89) 

 𝑈𝑒
𝑏 =

1

2
{𝒗𝒆}𝑇[𝒌𝒃,𝒆

𝒑
] {𝒗𝒆} (5.90) 

 Ω𝑒
𝑏 = −   𝑣(𝜉𝑖)𝑓𝑦𝑖

𝑟

𝑖=1

+ 𝐿𝑒  𝑓𝑑(𝜉)𝑣 𝜉 𝑑𝜉
1

0

+  𝑚 𝑘
𝑑𝑣(𝜉𝑘)

𝑑𝑥
𝑘

   (5.91) 

 

Ω𝑒
𝑏 = − {𝒗𝒆}𝑇   𝑻𝒃

𝒘 𝑇 𝚽𝒛
𝒋 𝜉𝑖  

𝑇
𝑓𝑦𝑖

𝑟

𝑖=1

+ 𝐿𝑒{𝒗𝒆}𝑇  𝑓𝑑(𝜉) 𝑻𝒃
𝒘 𝑇 𝚽𝒛

𝒋 𝜉  
𝑇
𝑑𝜉

1

0

+
1

𝐿𝑒
{𝒗𝒆}𝑇   𝑻𝒃

𝒘 𝑇 𝚽′𝒛
𝒋  𝜉𝑘  

𝑇
𝑚 𝑘

𝑘

  

 (5.92) 

  𝒇𝒃,𝒆
𝒏,𝒘 

 𝑛 x 1 
=   𝚽𝒛

𝒋 𝜉𝑖  
𝑇

𝑟

𝑖=1

 (5.93) 
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By applying the WFE beam wavelet transformation matrix, the vector containing the 

concentrated point loads, in physical space is 

Similarly, the elemental bending moment vector in physical space, from equation (5.92), is 

given as: 

The equivalent elemental load vector with respect to the distributed load in wavelet space is 

In this case the equivalent concentrated loads are a combination of elemental node forces and 

moments at each elemental end node. It must be therefore noted that the equivalent 

concentrated loads are dependent on the representation of the beam element DOFs and layout 

initially selected. By applying the beam wavelet transformation matrix  𝑻𝒃
𝒘 , the load vector 

in equation (5.96) is transformed into physical space and is expressed as: 

The total force vector of the external loads in physical space acting on the beam element, 

 𝒇𝒃,𝒆
𝒑

 , is sum of the nodal concentrated forces, nodal bending moments and the distributed 

force nodal equivalents given in equations(5.94), (5.95) and (5.97) respectively. 

5.2.3. Mass matrix formulation 

The transverse kinetic energy, 𝛬𝑒
𝑏 , of the beam element is  

where 𝑣  𝜉 =
𝜕𝑣 𝜉 

𝜕𝑡
, 𝜌 is the density of the beam and A is the cross-sectional area of the 

beam. The wavelet based approximations of the displacements, via the scaling functions, are 

substituted into equation (5.99). Thus, the kinetic energy becomes 

  𝒇𝒃,𝒆
𝒏,𝒑

 
 𝑛 x 1 

=   𝑻𝒃
𝒘 𝑇 𝑛 x 𝑛  𝚽𝒛

𝒋 𝜉𝑖  
𝑇

 𝑛 x 1 
𝑓𝑦𝑖

𝑟

𝑖=1

 (5.94) 

  𝒇𝒃,𝒆
𝒎,𝒑

 
 𝑛 x 1 

=   𝑻𝒃
𝒘 𝑇 𝑛 x 𝑛  𝚽′𝒛

𝒋 𝜉𝑘  
𝑇

 𝑛 x 1 
𝑚 𝑘

𝑘

 (5.95) 

  𝒇𝒃,𝒆
𝒅,𝒘 

 𝑛 x 1 
=  𝑓𝑑(𝜉) 𝚽𝒛

𝒋 𝜉  
𝑇
𝑑𝜉

1

0

 (5.96) 

  𝒇𝒃,𝒆
𝒅,𝒑

 
 𝑛 x 1 

= 𝐿𝑒  𝑻𝒃
𝒘 𝑇 𝑛 x 𝑛  𝒇𝒃,𝒆

𝒅,𝒑
 

 𝑛 x 1 
 (5.97) 

  𝒇𝒃,𝒆
𝒑

 
 𝑛 x 1 

=  𝒇𝒃,𝒆
𝒏,𝒑

 
 𝑛 x 1 

+  𝒇𝒃,𝒆
𝒎,𝒑

 
 𝑛 x 1 

+  𝒇𝒃,𝒆
𝒅,𝒑

 
 𝑛 x 1 

 (5.98) 

 𝛬𝑒
𝑏 =

1

2
𝜌𝐴𝐿𝑒  𝑣  𝜉 𝑇 𝑣  𝜉 𝑑𝜉

1

0
 (5.99) 



 

98 

 

The mass matrix for the beam element in wavelet space from equation (5.100) is 

Therefore, the mass matrix of the Euler Bernoulli beam WFE, formulated using a wavelet 

family of order z and multiresolution scale j, is given as: 

where  

The mass matrix in physical space is therefore, 

and subsequently the kinetic energy of the beam WFE becomes 

It is worth mentioning that the stiffness and mass matrices, both in wavelet and physical 

space, are symmetric. 

5.2.4. Assembly and application of boundary conditions  

The global system wavelet based beam stiffness matrix, mass matrix and load vector in 

physical space, for a beam made up of ne elements, are given by: 

 𝛬𝑒
𝑏 =  {𝒗 𝒆}

𝑇 1

2
𝜌𝐴𝐿𝑒   𝑻𝒃

𝒘
 
𝑇
 𝚽𝒛

𝒋  𝜉  
𝑇
 𝚽𝒛

𝒋  𝜉    𝑻𝒃
𝒘
  𝑑𝜉

1

0
 {𝒗 𝒆} (5.100) 

 [𝒎𝒃,𝒆
𝒘 ] 𝑛 x 𝑛 =   𝚽𝒛

𝒋 𝜉  
𝑇
 𝚽𝒛

𝒋 𝜉  𝑑𝜉
1

0

 (5.101) 

 [𝒎𝒃,𝒆
𝒘 ] =

 
 
 
 
 
 
 
 𝑚𝑕,𝑕

𝑧,𝑗

𝒃
𝑚𝑕,𝑕+1

𝑧,𝑗

𝒃
⋯ 𝑚

𝑕,2𝑗−2

𝑧,𝑗

𝒃
𝑚

𝑕,2𝑗−1

𝑧,𝑗

𝒃

𝑚𝑕+1,𝑕
𝑧,𝑗

𝒃
𝑚𝑕+1,𝑕+1

𝑧,𝑗

𝒃
⋯ 𝑚

𝑕+1,2𝑗−2

𝑧,𝑗

𝒃
𝑚

𝑕+1,2𝑗−1

𝑧,𝑗

𝒃

⋮ ⋮ ⋱ ⋮ ⋮

𝑚
2𝑗−2,𝑕

𝑧,𝑗

𝒃
𝑚

2𝑗−2,𝑕+1

𝑧,𝑗

𝒃
⋯ 𝑚

2𝑗−2,2𝑗−2

𝑧,𝑗

𝒃
𝑚

2𝑗−2,2𝑗−1

𝑧,𝑗

𝒃

𝑚
2𝑗−1,𝑕

𝑧,𝑗

𝒃
𝑚

2𝑗−1,𝑕+1

𝑧,𝑗

𝒃
⋯ 𝑚

2𝑗−1,2𝑗−2

𝑧,𝑗

𝒃
𝑚

2𝑗−1,2𝑗−1

𝑧,𝑗

𝒃 
 
 
 
 
 
 
 

 (5.102) 

 𝑚𝑘,𝑙
𝑧,𝑗

𝒃
=  𝜙𝑧,𝑘

𝑗  𝜉 𝜙𝑧,𝑙
𝑗  𝜉 𝑑𝜉

1

0

 
 

(5.103) 

 [𝒎𝒃,𝒆
𝒑

] = 𝜌𝐴𝐿𝑒 𝑻𝒃
𝒘 𝑇   𝚽𝒛

𝒋 𝜉  
𝑇
 𝚽𝒛

𝒋 𝜉   𝑑𝜉
1

0

 𝑻𝒃
𝒘   

 [𝒎𝒃,𝒆
𝒑

] 𝑛 x 𝑛 = 𝜌𝐴𝐿𝑒    𝑻𝒃
𝒘  𝑛 x 𝑛  

𝑇  [𝒎𝒃,𝒆
𝒘 ] 𝑛 x 𝑛  𝑻𝒃

𝒘  𝑛 x 𝑛   (5.104) 

 𝛬𝑒
𝑏 =  

1

2
{𝒗 𝒆} 1 x 𝑛 

𝑇 [𝒎𝒃,𝒆
𝒑

] 𝑛 x 𝑛 {𝒗 𝒆} 𝑛 x 1  (5.105) 

 [𝑲𝒃] =  [𝑲𝒃,𝒆
𝒑

]

𝑛𝑒

𝑒=1

  
(5.106) 
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The boundary conditions can then be applied by omitting the corresponding rows and 

columns, thus reducing the size of the overall system matrices and load vectors. The 

deflection and rotation DOFs at corresponding nodal points are obtained by solving the 

system equations describing the Euler-Bernoulli beam static behaviour, which is expressed 

as:  

where the vector  𝑽𝒃  contains the system DOFs. The dynamic response of an undamped 

beam system is obtained by evaluating the global system governing equation described by: 

where  𝑽 𝒃  is the vector containing the accelerations at the nodal points of the beam.  

5.2.5. Beam stresses and strains 

According to the Euler-Bernoulli beam theory, the relation of the axial and transverse 

displacement within the wavelet based beam elements is expressed as 𝑢(𝑥) = −𝑦
𝜕𝑣 𝑥 

𝜕𝑥
 [31].  

The strain, at a point 𝜉 within the beam WFE e, for a static case, is given as:  

The normal bending stress is evaluated from the strain as follows: 

where  𝑵′′𝒃,𝒆 𝜉   is the second derivative of the WFE shape function vector obtained in 

equation (5.80). Thus, 

  [𝑴𝒃] =  [𝑴𝒃,𝒆
𝒑

]

𝑛𝑒

𝑒=1

  
(5.107) 

 

  𝑭𝒃 =   𝑭𝒃,𝒆
𝒑

 

𝑛𝑒

𝑒=1

  (5.108) 

  𝑲𝒃  𝑽𝒃 =  𝑭𝒃  (5.109) 

  𝑴𝒃  𝑽 𝒃 +  𝑲𝒃  𝑽𝒃 =  𝑭𝒃  (5.110) 

 𝜀𝑒
𝑏(𝜉) =

𝜕𝑢 𝑥 

𝜕𝑥
= −

𝑦

𝐿𝑒
2

𝜕2𝑣(𝜉)

𝜕𝜉2
= −

𝑦

𝐿𝑒
2

𝜕2

𝜕𝜉2
 𝑵𝒃,𝒆 𝜉   𝒗𝒆   

 𝜀𝑒
𝑏(𝜉) = −

𝑦

𝐿𝑒
2  𝑵′′𝒃,𝒆 𝜉   𝒗𝒆  (5.111) 

 𝜍𝑒
𝑏(𝜉) = 𝐸𝜀𝑒

𝑏(𝜉) = −
𝑦𝐸

𝐿𝑒
2  𝑵′′𝒃,𝒆 𝜉   𝒗𝒆  (5.112) 

  𝑵′′𝒃,𝒆 𝜉  
 1 x 𝑛 

=  𝚽′′𝒛
𝒋  𝜉  

 1 x 𝑛 
  𝑻𝒃

𝒘  𝑛 x 𝑛  (5.113) 
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The strain and stress vectors for the beam WFE, containing the strains and stresses at each 

elemental node, can be evaluated as follows: 

The curvature of the WFE beam is evaluated from the relation 𝜅𝑒
𝑏 𝜉 =

1

𝐿𝑒
2

𝜕2𝑣(𝜉)

𝜕𝜉2 . Therefore, 

The bending moment at natural coordinate 𝜉 within the beam WFE is expressed as:  

Furthermore, the shear force within the Euler Bernoulli beam wavelet based finite element is 

given as: 

where  

The vectors containing the curvature, bending moments and shear forces within the beam 

WFE, at elemental nodes, can be evaluated by implementing the matrix containing the 

corresponding derivatives of shape functions. 

5.2.6. Wavelet based moving load vector 

Moving load problems are often characterised by the loading conditions varying in location 

and/or magnitude with respect to time. Consider a simply supported beam subjected to a 

moving load, represented by the function 𝑞 𝑥, 𝑡 = 𝑃𝛿(𝑥 − 𝑥0), where P is the magnitude of 

the moving point load, 𝛿(𝑥) is the Dirac Delta function and 𝑥0 is the distance travelled by the 

moving load at time t from the left edge of the beam. The strain and kinetic energy of the 

  𝜀𝑒
𝑏 = −

𝑦

𝐿𝑒
2

 
 
 
 
 
 

 𝑵′′𝒃,𝒆 𝜉1  

 𝑵′′𝒃,𝒆 𝜉2  

⋮
 𝑵′′𝒃,𝒆 𝜉𝑟−1  

 𝑵′′𝒃,𝒆 𝜉𝑟   
 
 
 
 
 

 𝒗𝒆  (5.114) 

  𝜍𝑒
𝑏 = 𝐸  𝜀𝑒

𝑏 = −
𝑦𝐸

𝐿𝑒
2

 
 
 
 
 
 

 𝑵′′𝒃,𝒆 𝜉1  

 𝑵′′𝒃,𝒆 𝜉2  

⋮
 𝑵′′𝒃,𝒆 𝜉𝑟−1  

 𝑵′′𝒃,𝒆 𝜉𝑟   
 
 
 
 
 

 𝒗𝒆  (5.115) 

 𝜅𝑒
𝑏 𝜉 =

1

𝐿𝑒
2  𝑵′′𝒃,𝒆 𝜉   𝒗𝒆  (5.116) 

 𝑀 𝑒
𝑏 𝜉 = −

𝐸𝐼

𝐿𝑒
2  𝑵′′𝒃,𝒆 𝜉   𝒗𝒆  (5.117) 

 𝑄𝑒
𝑏 𝜉 = −

𝐸𝐼

𝐿𝑒
3  𝑵′′′𝒃,𝒆 𝜉   𝒗𝒆  (5.118) 

  𝑵′′′𝒃
𝒆  1 x 𝑛 =  

𝜕3𝚽𝒛
𝒋 𝜉𝑖 

𝜕𝜉3
 

 1 x 𝑛 

  𝑻𝒃
𝒘  𝑛 x 𝑛  (5.119) 
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beam WFE are evaluated as presented in Sections 5.2.1 and 5.2.3 respectively. In order to 

demonstrate the evaluation of the wavelet based moving load vectors, consider a moving 

point load travelling across a beam wavelet finite element as illustrated in Figure 5-7.  

Figure 5-7: Layout of a beam WFE subjected to a moving point load.  

Assuming the beam is modelled using one wavelet based finite element, the moving load 

travelling at a constant speed of c ms
-1

 is expressed as: 

where 𝑥0 = 𝑐𝑡 is the distance travelled by the load at time t. The position of the moving load 

in natural coordinates, within the WFE at time t s is  

 

Figure 5-8: The Dirac Delta function. 

The Dirac Delta function δ(x), or otherwise known as the unit impulse function, is defined by 

the following properties [101]: 

 𝑞(𝑥, 𝑡) = 𝑃𝛿(𝑥 − 𝑥0) (5.120) 

 𝜉0 =
𝑥0

𝐿𝑒
 (5.121) 

0 x x 0 a 

δ(x) δ(x - a) 

y 

x 0 a 

δ(x - a) 

y 

p q 

ns - 1 

Le 

 

ns+1 ns 4 3 2 1 

𝑥0 = 𝑐𝑡 
c 

1 2 s ns - 1 ns 

𝑞 𝑥, 𝑡 = 𝑃𝛿(𝑥 − 𝑥0) 
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Alternatively, the Dirac function may be defined as the derivative of the unit step Heaviside 

function, H(x), as follows [102]: 

From equation (5.124), the Dirac function has a unit area. Therefore, as illustrated in Figure 

5-8, given that p < a < q [102], 

The n
th

 derivative of the Dirac function is expressed as: 

Furthermore, 

At a given time t, the moving load is at position 𝜉0 and the potential work of the load at that 

instant is therefore expressed as: 

Thus, the element load vector in wavelet space is obtained from equation (5.130) as  

 𝛿 𝑥 =  
0
∞

          
𝑥 ≠ 0
𝑥 = 0

 (5.122) 

 𝛿 𝑥 − 𝑎 =  
0
∞

          
𝑥 ≠ 𝑎
𝑥 = 𝑎

 (5.123) 

  𝛿 𝑥 𝑑𝑥
∞

−∞

=  𝛿 𝑥 − 𝑎 𝑑𝑥
∞

−∞

= 1 (5.124) 

  𝑓(𝑥) 𝛿 𝑥 𝑑𝑥
∞

−∞

= 𝑓(𝑥) (5.125) 

 𝛿 𝑥 =
𝑑𝐻(𝑥)

𝑑𝑥
 (5.126) 

  𝑓(𝑥) 𝛿 𝑥 − 𝑎 𝑑𝑥
∞

−∞

= 𝑓(𝑎)  

  𝑓(𝑥) 𝛿 𝑥 − 𝑎 𝑑𝑥
𝑞

𝑝

=  
0

𝑓(𝑎)
0

          

𝑎 < 𝑝 < 𝑞
𝑝 < 𝑎 < 𝑞
𝑝 < 𝑞 < 𝑎

 (5.127) 

  𝑓(𝑥) 𝛿𝑛 𝑥 − 𝑎 𝑑𝑥
𝑞

𝑝

=  
0

(−1)𝑛𝑓(𝑛)(𝑎)
0

          

𝑎 < 𝑝 < 𝑞
𝑝 < 𝑎 < 𝑞
𝑝 < 𝑞 < 𝑎

 (5.128) 

 𝛿 𝑎𝑥 =
1

𝑎
𝛿 𝑥  (5.129) 

 Ω𝑒
𝑏(𝜉0) =  𝑃𝛿(𝜉 − 𝜉0)𝑣 𝜉 𝑑𝜉

1

0
= 𝑃{𝒗𝒆}𝑇

  𝑵𝒃,𝒆 𝜉  
 1 x 𝑛 

𝑇

𝛿(𝜉 − 𝜉0)𝑑𝜉
1

0
  

 Ω𝑒
𝑏 𝜉0 = 𝑃 {𝒗𝒆}𝑇

 𝑵𝒃,𝒆 𝜉0   1 x 𝑛 

𝑇

= 𝑃 {𝒗𝒆}𝑇
 𝑻𝒃

𝒘
 
𝑇
 𝚽𝒛

𝒋
 𝜉0  

𝑇
 (5.130) 
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and subsequently in physical space as: 

The vector  𝒇𝒃,𝒆
𝒑,𝒑

(𝒕)  contains the equivalent WFE nodal forces and moments of the moving 

load, acting on element e in physical space, corresponding to the moving load position 𝜉0 at 

time t, as illustrated in Figure 5-7. Given that the location and/or magnitude of the load varies 

with time and assuming at a new time the moving load is still acting within the same WFE, 

the new load vector is obtained via the scaling functions in equation (5.131) with respect to 

the new location of the moving load in natural coordinates i.e., the new value of position 𝜉0. 

The numerical values of the shape functions, and consequently the load vector in wavelet 

space, will change according to this new external force location. Subsequently, the load 

vector in physical space corresponding to the new location with respect to time is evaluated 

by implementing the wavelet transformation matrix to the new wavelet space load vector. 

The other WFEs within the system that have no action of an external load at a particular time 

t have zero entries within the load vectors. When the moving load is acting on a new WFE, 

the scaling functions corresponding to the WFE subjected to the moving load are used to 

obtain the load vector for that particular element. Hence, it is evident that as the moving load 

travels from one WFE to the next, there is a shift in position of the equivalent WFE load 

vector with nonzero entries. 

It is important to note that the forces and moments within the WFE load vector are dependent 

on the layout of the element selected, which in this case has the rotation DOFs only at the 

elemental end nodes and thus, the moments are only present at these corresponding nodes. 

Therefore, if the layout is altered and a rotation DOF is present within an inner elemental 

node, then a moment DOF will be present at the corresponding nodal position within the 

wavelet based element.   

  𝒇𝒃,𝒆
𝒑,𝒘

(𝑡) 
 𝑛 x 1 

=  𝚽𝒛
𝒋 𝜉0  

𝑇
 (5.131) 

  𝒇𝒃,𝒆
𝒑,𝒑

(𝑡) 
 𝑛 x 1 

=

 
 
 
 
 

 
 
 
 

𝑓𝑦1

𝑚 1
𝑓𝑦2

𝑓𝑦3

⋮
𝑓𝑦𝑟−1

𝑓𝑦𝑟

𝑚 𝑟  
 
 
 
 

 
 
 
 

= 𝑃  𝑻𝒃
𝒘 𝑇 𝚽𝒛

𝒋 𝜉0  
𝑇
 (5.132) 



 

104 

 

5.2.7. Beam on elastic foundation subjected to a moving load 

Figure 5-9 is a diagram illustrating a simply supported beam resting on an elastic foundation. 

A beam of length l, is assumed to have a uniform cross-sectional area A, Young’s modulus E, 

moment of inertia I and mass per unit length 𝜇. 𝑘𝑓  is the stiffness of the elastic foundation. 

The beam is subjected to a moving point load of magnitude P travelling at c ms
-1

.  

 

Figure 5-9: Simply supported uniform beam on an elastic foundation subjected to a moving point load. 

The foundation is assumed to be a Winker foundation where force-deflection relationship is 

linear. Therefore, the beam wavelet finite element, as described in Figure 5-6, is resting on a 

series of closely spaced linear elastic springs representing the stiffness of the elastic 

foundation [103]. The total potential energy of the system is generalised as [104]: 

while the kinetic energy within each WFE of length Le is given as  

and the strain energy due to bending of the beam WFE is  

The work potential of the moving load travelling on the WFE is expressed as  

 𝛱𝑏 =  
𝐸𝐼

2
 
𝑑2𝑣

𝑑𝑥2
 

2

 𝑑𝑥 −  𝑃𝛿(𝑥 − 𝑥0)𝑣𝑑𝑥
𝑙

0

+  
𝑘𝑓

2
𝑣2  𝑑𝑥

𝑙

0

𝑙

0

 (5.133) 

 𝛬𝑒
𝑏 =

1

2
𝜌𝐴  𝑣 2 𝑑𝑥

𝐿𝑒

0

 (5.134) 

 𝑈𝑒
𝑏 =  

𝐸𝐼

2
 
𝑑2𝑣

𝑑𝑥2
 

2

 𝑑𝑥
𝐿𝑒

0

 (5.135) 

 𝛺𝑒
𝑏 =  𝑃𝛿(𝑥 − 𝑥0)𝑣𝑑𝑥

𝐿𝑒

0

 (5.136) 

l 

EI, μ 

𝑘𝑓  

c
 

P
 

𝑥0 = 𝑐𝑡 
v 
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The strain energy, kinetic energy and work potential of the moving load for the WFE can be 

evaluated as described in Sections 5.2.1, 5.2.3 and 5.2.6 respectively. The potential energy of 

the elastic foundation on which the beam WFE is resting on is expressed as [104]: 

The displacement field variable is expressed in terms of the wavelet scaling functions and 

therefore equation (5.137) becomes: 

Therefore, the foundation stiffness matrix in wavelet space is evaluated as:  

Hence, the stiffness matrix of the foundation formulated using a wavelet family of order z and 

at multiresolution scale j is given as: 

where  

The matrix in equation (5.140) is equivalent to the wavelet space mass matrix of the beam as 

described in equation (5.102). Therefore, once the wavelet space mass matrices of the beam 

are evaluated for different wavelet orders and multiresolution scales, the matrices can be 

stored and used in the evaluation of the stiffness matrix for the elastic foundation so as to 

reduce the computational costs. The wavelet space foundation stiffness matrix is also 

transformed into physical space via the wavelet transformation matrix and is obtained as: 

 𝑈𝑒
𝑓

=
𝑘𝑓𝐿𝑒

2
 𝑣 𝜉 𝑇  𝑣 𝜉 𝑑𝜉

1

0

 (5.137) 

 𝑈𝑒
𝑓

=
𝑘𝑓𝐿𝑒

2
{𝒗𝒆}𝑇   𝑻𝒃

𝒘 𝑇 𝚽𝒛
𝒋 𝜉  

𝑇
 𝚽𝒛

𝒋 𝜉    𝑻𝒃
𝒘 𝑑𝜉

1

0

{𝒗𝒆} (5.138) 

 [𝒌𝒇,𝒆
𝒘 ] =   𝚽𝒛

𝒋
 𝜉  

𝑇
 𝚽𝒛

𝒋
 𝜉  𝑑𝜉

1

0

 (5.139) 

 [𝒌𝒇,𝒆
𝒘 ] =

 
 
 
 
 
 
 
 𝑘𝑕,𝑕

𝑧,𝑗

𝒇
𝑘𝑕,𝑕+1

𝑧,𝑗

𝒇
⋯ 𝑘

𝑕,2𝑗−2

𝑧,𝑗

𝒇
𝑘

𝑕,2𝑗−1

𝑧,𝑗

𝒇

𝑘𝑕+1,𝑕
𝑧,𝑗

𝒇
𝑘𝑕+1,𝑕+1

𝑧,𝑗

𝒇
⋯ 𝑘

𝑕+1,2𝑗−2

𝑧,𝑗

𝒇
𝑘

𝑕+1,2𝑗−1

𝑧,𝑗

𝒇

⋮ ⋮ ⋱ ⋮ ⋮

𝑘
2𝑗−2,𝑕

𝑧,𝑗

𝒇
𝑘

2𝑗−2,𝑕+1

𝑧,𝑗

𝒇
⋯ 𝑘

2𝑗−2,2𝑗−2

𝑧,𝑗

𝒇
𝑘

2𝑗−2,2𝑗−1

𝑧,𝑗

𝒇

𝑘
2𝑗−1,𝑕

𝑧,𝑗

𝒇
𝑘

2𝑗−1,𝑕+1

𝑧,𝑗

𝒇
⋯ 𝑘

2𝑗−1,2𝑗−2

𝑧,𝑗

𝒇
𝑘

2𝑗−1,2𝑗−1

𝑧,𝑗

𝒇 
 
 
 
 
 
 
 

 (5.140) 

 𝑘𝑘,𝑙
𝑧,𝑗

𝒇
=  𝜙

𝑧,𝑘
𝑗  𝜉 𝜙

𝑧,𝑙
𝑗  𝜉 𝑑𝜉

1

0

 (5.141) 

 [𝒌𝒇,𝒆
𝒑

] = 𝑘𝑓𝐿𝑒   𝑻𝒃
𝒘 𝑇 𝚽𝒛

𝒋 𝜉  
𝑇
 𝚽𝒛

𝒋 𝜉    𝑻𝒃
𝒘 𝑑𝜉

1

0
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Therefore, the strain energy within the section of the foundation on which the wavelet based 

beam element is resting on is obtained by substituting equation (5.142) into (5.138). 

When a system is damped, energy is dissipated from the system. Therefore, the dissipated 

energy of a viscoelastic foundation section, which has viscous damping effects taken into 

consideration with a WFE resting on it, is given as: 

where 𝑑𝑓  is the viscous damping of the foundation. Substituting equation (5.72) into (5.144) 

The foundation viscous damping matrix in wavelet space is evaluated as:  

The damping matrix in equation (5.146) can also be evaluated from the already stored 

wavelet space mass matrix of the beam as described in equation (5.102). The physical space 

foundation damping matrix is obtained via the transformation of the wavelet space damping 

matrix using the wavelet transformation matrix. 

5.2.8. Daubechies Euler Bernoulli beam wavelet finite element 

For a Daubechies wavelet of order L and multiresolution scale j, the lowest order that can be 

theoretically implemented to formulate the Euler Bernoulli C
1
 WFE is D6; since a 

Daubechies wavelet of order L can represent a polynomial of order equal to but not greater 

than 
𝐿

2
− 1 [10,36]. The vertical displacement and rotation within the WFE, with respect to 

the natural coordinates, are given as [6,10]:  

 [𝒌𝒇,𝒆
𝒑

] 𝑛 x 𝑛 = 𝑘𝑓𝐿𝑒  𝑻𝒃
𝒘  𝑛 x 𝑛  

𝑇 [𝒌𝒇,𝒆
𝒘 ] 𝑛 x 𝑛  𝑻𝒃

𝒘  𝑛 x 𝑛   (5.142) 

 𝑈𝑒
𝑓

=
1

2
{𝒗𝒆}𝑇[𝒌𝒇,𝒆

𝒑
]  {𝒗𝒆} (5.143) 

 𝐷𝑒
𝑓

=
𝑑𝑓

2
 𝑣 𝑥 𝑇  𝑣 𝑥 𝑑𝑥

𝐿𝑒

0

=
𝑑𝑓𝐿𝑒

2
 𝑣 𝜉 𝑇  𝑣 𝜉 𝑑𝜉

1

0

 (5.144) 

 𝐷𝑒
𝑓

=
𝑑𝑓𝐿𝑒

2
{𝒗𝒆}𝑇   𝑻𝒃

𝒘 𝑇 𝚽𝒛
𝒋 𝜉  

𝑇
 𝚽𝒛

𝒋 𝜉    𝑻𝒃
𝒘 𝑑𝜉

1

0

{𝒗𝒆} (5.145) 

 [𝒄𝒇,𝒆
𝒘 ] =   𝚽𝒛

𝒋 𝜉  
𝑇
 𝚽𝒛

𝒋 𝜉  𝑑𝜉
1

0

 (5.146) 

 [𝒄𝒇,𝒆
𝒑

] = 𝑑𝑓𝐿𝑒   𝑻𝒃
𝒘 𝑇 𝚽𝒛

𝒋 𝜉  
𝑇
 𝚽𝒛

𝒋 𝜉    𝑻𝒃
𝒘 𝑑𝜉

1

0

  

 [𝒄𝒇,𝒆
𝒑

] 𝑛 x 𝑛 = 𝑑𝑓𝐿𝑒  𝑻𝒃
𝒘  𝑛 x 𝑛  

𝑇 [𝒄𝒇,𝒆
𝒘 ] 𝑛 x 𝑛  𝑻𝒃

𝒘  𝑛 x 𝑛   (5.147) 
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The total DOFs within a single Daubechies based element is 𝑛 = 2𝑗 + 𝐿 − 2. Therefore, 

specific to this case with the rotation DOFs present only at the elemental end nodes, the total 

number of elemental nodes is 𝑟 = 2𝑗 + 𝐿 − 4 and corresponding elemental segments 𝑛𝑠 =

2𝑗 + 𝐿 − 5. The Daubechies based beam WFE shape functions are obtained from equation 

(5.80) as  

where  𝑻𝒃
𝒘 𝐷  is the Daubechies wavelet transformation matrix for the beam WFE. Figure 

5-10 includes the plots of the shape functions 𝑁𝑘 𝜉  and 𝑁𝑘 𝜉𝑖 , where 1 ≤ 𝑘 ≤ 𝑛 and 

1 ≤ 𝑖 ≤ 𝑟, for the D100 beam WFE. It is observed that although the shape functions are not 

bound by 0 ≤ 𝑁𝑘 𝜉 ≤ 1, the completeness, compatibility and delta function properties are 

satisfied. This is the case for the Daubechies based beam WFE of order 𝐿 ≥ 6; at any 

multiresolution scale 𝑗 ≥ 0. This implies that convergence of the approximate field variables 

to the exact solution is ensured. 

As earlier mentioned, the Daubechies WFE formulation requires the evaluation of the 

connection coefficients to obtain the wavelet based element matrices and distributed load 

vectors. The stiffness matrix in wavelet space is obtained from the two-term connection 

coefficients of the form: 

 for the limits 2 − 𝐿 ≤ 𝑘, 𝑙 ≤ 2𝑗 − 1. The mass matrix is obtained from the two-term 

connection coefficients  

 

 𝑣 𝜉 =  𝑏𝐿,𝑘
𝑗

 𝜙𝐿,𝑘
𝑗  𝜉 

2𝑗−1

𝑘=2−𝐿

 (5.148) 

 𝜃 𝜉 =
1

𝐿𝑒
 𝑏𝐿,𝑘

𝑗
 
𝜕𝜙𝐿,𝑘

𝑗  𝜉 

𝜕𝜉
 

2𝑗−1

𝑘=2−𝐿

 (5.149) 

  𝑵𝒃,𝒆 𝜉  
 1 x 𝑛 

𝐷
=  𝚽𝑳

𝒋 𝜉  
 1 x 𝑛 

𝐷
  𝑻𝒃

𝒘  𝑛 x 𝑛 
𝐷  (5.150) 

 Γ𝐿,𝐿 𝑘,𝑙
𝑗 ,2,2

=   𝜙𝐿
 2 

(2𝑗 𝜉 − 𝑘)𝜙𝐿
 2 

(2𝑗𝜉 − 𝑙)𝑑𝜉
1

0

  (5.151) 

 Γ𝐿,𝐿 𝑘,𝑙
𝑗 ,0,0

=   𝜙𝐿
 0 

(2𝑗 𝜉 − 𝑘)𝜙𝐿
 0 

(2𝑗𝜉 − 𝑙)𝑑𝜉
1

0

  (5.152) 
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Figure 5-10 : Daubechies wavelet based beam element shape functions 𝑁𝑘 𝜉  and 𝑁𝑘 𝜉𝑖  for D100 WFE. 

Therefore, the wavelet space stiffness and mass matrices of the Euler Bernoulli beam WFE 

from equations (5.86) and (5.101) can be expressed as:  

 [𝒌𝒃,𝒆
𝒘 ]

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2  

𝐷 = 24𝑗  𝚪𝑗 ,2,2  (5.153) 
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In physical space, the Daubechies Euler Bernoulli beam WFE stiffness and mass matrices are 

evaluated as:  

For a distributed load, the equivalent nodal load vector in wavelet space is obtained via the 

connection coefficients of the form Υ𝑘
𝑗 ,𝑚

, for  2 − 𝐿 ≤ 𝑘 ≤ 2𝑗 − 1. The function representing 

the distribution of the load may vary. However, if the load 𝑓𝑑 𝜉 = 𝑃 Nm
-1

 is uniformly 

distributed along the element, then the load vector in wavelet space is given as:  

Similarly, for a linearly varying distributed load given by the function 𝑓𝑑 𝜉 = 𝑃 𝜉 Nm
-1

, the 

force vector in wavelet space is obtained from the connection coefficients  

Thus, for a general distributed load function 𝑓𝑑 𝜉 = 𝑃 𝜉𝑚  Nm
-1

, the connection coefficients 

Υ𝑘
𝑗 ,𝑚

 are employed to determine the Daubechies wavelet space load vectors for the beam 

WFE. The Daubechies wavelet transformation matrix  𝑻𝒃
𝒘 𝐷  is then applied to evaluate the 

 [𝒎𝒃,𝒆
𝒘 ]

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2  

𝐷 =  𝚪𝑗 ,0,0  (5.154) 

 

[𝒌𝒃,𝒆
𝒑

]
  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2  

𝐷

=
𝐸 𝐼

𝐿𝑒
3

 𝑻𝒃
𝒘 

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2   

𝐷 𝑇 [𝒌𝒃,𝒆
𝒘 ]

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2  

𝐷  𝑻𝒃
𝒘 

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2   

𝐷  

(5.155) 

 

[𝒎𝒃,𝒆
𝒑

]
  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2  

𝐷

= 𝜌𝐴𝐿𝑒  𝑻𝒃
𝒘 

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2   

𝐷 𝑇 [𝒎𝒃,𝒆
𝒘 ]

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2  

𝐷  𝑻𝒃
𝒘 

  2𝑗 +𝐿−2  x  2𝑗 +𝐿−2   

𝐷  
(5.156) 

 Υ𝑘
𝑗 ,0

=   𝜉0𝜙𝐿(2𝑗 𝜉 − 𝑘)𝑑𝑥
1

0

  

  𝒇𝒃,𝒆
𝒅,𝒘 

  2𝑗 +𝐿−2  x 1 

𝐷
=  𝚼𝐣,𝟎 =

 
  
 

  
 Υ2−𝐿

𝑗 ,0

Υ3−𝐿
𝑗 ,0

⋮

Υ
2𝑗−2

𝑗 ,0

Υ
2𝑗−1

𝑗 ,0
 
  
 

  
 

 
 

(5.157) 

 Υ𝑘
𝑗 ,1

=   𝜉1𝜙𝐿(2𝑗 𝜉 − 𝑘)𝑑𝑥
1

0

  

  𝒇𝒃,𝒆
𝒅,𝒘 

  2𝑗 +𝐿−2  x 1 

𝐷
=  𝚼𝐣,𝟏 =

 
 
 

 
 Υ2−𝐿

𝑗 ,1

Υ3−𝐿

𝑗 ,1

⋮

Υ
2𝑗−2

𝑗 ,1

Υ
2𝑗−1

𝑗 ,1
 
 
 

 
 

 (5.158) 
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element load vectors in physical space. Furthermore, the stiffness and damping matrices for a 

viscoelastic foundation in wavelet space are obtained from the two term connection 

coefficients described in equation (5.152). The Daubechies wavelet transformation matrix 

and corresponding foundation coefficients are then applied to the matrices so as to obtain the 

physical foundation matrices. 

5.2.9. BSWI Euler Bernoulli beam wavelet finite element 

The unknown transverse displacement and rotation, with respect to the natural coordinate of 

the Euler Bernoulli beam element, can be expressed using the BSWI family of order m and at 

scale j in the formulation of the WFE as [7]:  

The total DOFs within the BSWI beam WFE is 𝑛 = 2𝑗 + 𝑚 − 1, while the total number of 

elemental nodes is  𝑟 = 2𝑗 + 𝑚 − 3 and the total number of elemental segments is 𝑛𝑠 = 2𝑗 +

𝑚 − 4. 

Figure 5-11 contains the Euler-Bernoulli beam shape functions 𝑁𝑘 𝜉  and 𝑁𝑘 𝜉𝑖 , where 

1 ≤ 𝑘 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 𝑟, for the BSWI33 WFE. For a C
1
 beam element, the order of the 

BSWI scaling function that can be implemented in the formulation of the WFEs must 

be 𝑚 ≥ 3.  

Moreover, the multiresolution scale must be such that the requirement 𝑗 ≥ 𝑗0 is satisfied. The 

BSWI beam WFEs possess the delta function, completeness and compatibility properties of 

the shape functions as illustrated in Figure 5-11. This ensures the convergence of the 

approximation field variables to the exact solution. The stiffness and mass matrices in 

wavelet space can be evaluated directly without calculating connection coefficients and are 

obtained as: 

 𝑣 𝜉 =  𝑏𝑚,𝑘
𝑗

 𝜙𝑚,𝑘
𝑗  𝜉 

2𝑗−1

𝑘=−𝑚+1

 (5.159) 

 𝜃 𝜉 =
1

𝐿𝑒
 𝑏𝑚,𝑘

𝑗
 
𝜕𝜙𝑚,𝑘

𝑗  𝜉 

𝜕𝜉
 

2𝑗−1

𝑘=−𝑚+1

 (5.160) 

 [𝒌𝒃,𝒆
𝒘 ]

  2𝑗 +𝑚−1   x  2𝑗 +𝑚−1   

𝐵𝑆 =  {𝚽′′𝒎
𝒋  𝝃 }𝑇{𝚽′′𝒎

𝒋  𝝃 }𝑑𝜉
1

0

 (5.161) 

 [𝒎𝒃,𝒆
𝒘 ]

  2𝑗 +𝑚−1   x  2𝑗 +𝑚−1   

𝐵𝑆 =  {𝚽𝒎
𝒋  𝝃 }𝑇{𝚽𝒎

𝒋  𝝃 }𝑑𝜉
1

0

 (5.162) 
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Figure 5-11 : BSWI wavelet based beam element shape functions 𝑁𝑖 𝜉  and 𝑁𝑖 𝜉𝑘  for BSWI33 WFE. 
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In physical space, the BSWI Euler Bernoulli beam WFE stiffness and mass matrices are 

expressed as:  

Furthermore, for a uniformly distributed load for example 𝑓𝑑 𝜉 = 𝑃 Nm
-1

 acting along the 

length of the beam, the equivalent load vector in wavelet space of the BSWI element is  

while for a linearly varying load 𝑓𝑠 𝜉 = 𝑃 𝜉 Nm
-1

, the equivalent load vector is given as: 

The BSWI wavelet space foundation stiffness and damping matrices are computed from 

equation (5.162). The BSWI based WFE matrices and the total load vectors, are then 

transformed into physical space via the use of the BSWI wavelet beam transformation matrix 

 𝑻𝒃
𝒘 𝐵𝑆 . 

5.3.  Two dimensional plane bar wavelet finite element 

The two dimensional plane bar element takes into account the axial deformation, transverse 

deflection and rotation DOFs; it can therefore be subjected to axial and transverse loading as 

well as bending moments. The plane bar analysed and formulated in this section is assumed 

to be linearly elastic. Therefore, the two dimensional plane bar WFE is a superposition of the 

rod and Euler Bernoulli beam WFEs as described in Sections 5.1 and 5.2 respectively. 

Consider a two dimensional bar WFE, of length Le, partitioned into ns equally spaced 

elemental segments with r number of elemental nodes, at coordinate values xi in the local x-y 

coordinate as illustrated in Figure 5-12.  

 

[𝒌𝒃,𝒆
𝒑

]
  2𝑗+𝑚−1   x  2𝑗+𝑚−1  

𝐵𝑆

=
𝐸 𝐼

𝐿𝑒
3

 𝑻𝒃
𝒘 

  2𝑗+𝑚−1   x  2𝑗+𝑚−1   

𝐵𝑆 𝑇 [𝒌𝒃,𝒆
𝒘 ]

  2𝑗+𝑚−1   x  2𝑗+𝑚−1  

𝐵𝑆  𝑻𝒃
𝒘 

  2𝑗+𝑚−1   x  2𝑗+𝑚−1   

𝐵𝑆  

(5.163) 

 

 

[𝒎𝒃,𝒆
𝒑

]
  2𝑗+𝑚−1   x  2𝑗+𝑚−1  

𝐵𝑆

= 𝜌𝐴𝐿𝑒  𝑻𝒃
𝒘 

  2𝑗+𝑚−1   x  2𝑗+𝑚−1   

𝐵𝑆 𝑇 [𝒎𝒃,𝒆
𝒘 ]

  2𝑗+𝑚−1   x  2𝑗+𝑚−1  

𝐵𝑆  𝑻𝒃
𝒘 

  2𝑗+𝑚−1   x  2𝑗+𝑚−1   

𝐵𝑆  
(5.164) 

  𝒇𝒃,𝒆
𝒅,𝒘 

𝐵𝑆
=  𝜉0  𝚽𝒎

𝒋
 𝝃  

 1  x  2𝑗 +𝑚−1   

𝑇

𝑑𝜉
1

0

 (5.165) 

  𝒇𝒃,𝒆
𝒅,𝒘 

𝐵𝑆
=  𝜉1  𝚽𝒎

𝒋
 𝝃  

 1  x  2𝑗 +𝑚−1   

𝑇

𝑑𝜉
1

0

 (5.166) 
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Figure 5-12 : Two dimensional plane bar wavelet finite element layout. 

Each elemental node has an axial deformation in the x axis, ui, and transverse displacement in 

the y axis, vi. Furthermore, only the two end elemental nodes have the rotation about the z 

axis, 𝜃𝑖 . The vector {𝒉𝒆} is defined as the vector containing all the physical DOFs within the 

plane bar WFE in the local coordinate system. 

The transverse deflection and rotation of the WFE is approximated using scaling functions as 

described in equations (5.72) and (5.73) for a wavelet family of order z and at multiresolution 

scale j. However, in order to ensure that the axial DOFs correspond to each elemental node, 

at multiresolution scale j, the order of wavelet family used in (5.5) is 𝑧 − 2. The total number 

of DOFs within the WFE is given by n. Therefore, the element DOFs in equation (5.167) can 

be expressed in terms of the wavelet scaling functions as: 

 {𝒉𝒆} =  𝑢1 𝑣1 𝜃1 𝑢2 𝑣2 𝑢3 𝑣3 ⋯ 𝑢𝑟−2 𝑣𝑟−2 𝑢𝑟−1 𝑣𝑟−1 𝑢𝑟 𝑣𝑟 𝜃𝑟  
𝑻 (5.167) 

ur, fxr ur-1, fxr-1 ur-2, fxr-2 u3, fx3 u2, fx2 u1, fx1 

θr, 𝑚 r 

 

θ1, 𝑚 1 

 

x 

ns + 1 

xr 

... 

Le 

y 

1 2 3 4 

(1) (2) (3) (ns) (ns-1) (ns-2) 

) 

x1

1 

x2 x3 xr-3 x4 

0 1 ξ 

ns - 2 ns - 1 ns 

xr-2 xr-1 

... 

v1, fy1 v2, fy2 v3, fy3 vr-2, fyr-2 vr-1, fyr-1 vr, fyr 
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 𝜙𝑧−2,𝑕

𝑗  𝜉1 0 0 𝜙𝑧−2,𝑕+1
𝑗  𝜉1 0 𝜙𝑧−2,𝑕+2

𝑗  𝜉1 ⋯ 0 𝜙
𝑧−2,2𝑗−2

𝑗  𝜉1 0 𝜙
𝑧−2,2𝑗−1

𝑗  𝜉1 0 0

0 𝜙𝑧,𝑕
𝑗  𝜉1 𝜙𝑧,𝑕+1

𝑗  𝜉1 0 𝜙𝑧,𝑕+2
𝑗  𝜉1 0 ⋯ 𝜙
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𝜙′
𝑧,2𝑗−3

𝑗  𝜉1 0
1

𝐿𝑒

𝜙′
𝑧,2𝑗−2

𝑗  𝜉1 
1

𝐿𝑒

𝜙′
𝑧,2𝑗−1

𝑗  𝜉1 

𝜙𝑧−2,𝑕
𝑗  𝜉2 0 0 𝜙𝑧−2,𝑕+1

𝑗  𝜉2 0 𝜙𝑧−2,𝑕+2
𝑗  𝜉2 ⋯ 0 𝜙

𝑧−2,2𝑗−2

𝑗  𝜉2 0 𝜙
𝑧−2,2𝑗−1

𝑗  𝜉2 0 0

0 𝜙𝑧,𝑕
𝑗  𝜉2 𝜙𝑧,𝑕+1

𝑗  𝜉2 0 𝜙𝑧,𝑕+2
𝑗  𝜉2 0 ⋯ 𝜙

𝑧,2𝑗−4

𝑗  𝜉2 0 𝜙
𝑧,2𝑗−3

𝑗  𝜉2 0 𝜙
𝑧,2𝑗−2

𝑗  𝜉2 𝜙
𝑧,2𝑗−1

𝑗  𝜉2 

𝜙𝑧−2,𝑕
𝑗  𝜉3 0 0 𝜙𝑧−2,𝑕+1

𝑗  𝜉3 0 𝜙𝑧−2,𝑕+2
𝑗  𝜉3 ⋯ 0 𝜙

𝑧−2,2𝑗−2

𝑗  𝜉3 0 𝜙
𝑧−2,2𝑗−1

𝑗  𝜉3 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 𝜙𝑧,𝑕
𝑗  𝜉𝑟−2 𝜙𝑧,𝑕+1

𝑗  𝜉𝑟−2 0 𝜙𝑧,𝑕+2
𝑗  𝜉𝑟−2 0 ⋯ 𝜙

𝑧,2𝑗−4

𝑗  𝜉𝑟−2 0 𝜙
𝑧,2𝑗−3

𝑗  𝜉𝑟−2 0 𝜙
𝑧,2𝑗−2

𝑗  𝜉𝑟−2 𝜙
𝑧,2𝑗−1

𝑗  𝜉𝑟−2 

𝜙𝑧−2,𝑕
𝑗  𝜉𝑟−1 0 0 𝜙𝑧−2,𝑕+1

𝑗  𝜉𝑟−1 0 𝜙𝑧−2,𝑕+2
𝑗  𝜉𝑟−1 ⋯ 0 𝜙

𝑧−2,2𝑗−2

𝑗  𝜉𝑟−1 0 𝜙
𝑧−2,2𝑗−1

𝑗  𝜉𝑟−1 0 0

0 𝜙𝑧,𝑕
𝑗  𝜉𝑟−1 𝜙𝑧,𝑕+1

𝑗  𝜉𝑟−1 0 𝜙𝑧,𝑕+2
𝑗  𝜉𝑟−1 0 ⋯ 𝜙

𝑧,2𝑗−4

𝑗  𝜉𝑟−1 0 𝜙
𝑧,2𝑗−3

𝑗  𝜉𝑟−1 0 𝜙
𝑧,2𝑗−2

𝑗  𝜉𝑟−1 𝜙
𝑧,2𝑗−1

𝑗  𝜉𝑟−1 

𝜙𝑧−2,𝑕
𝑗  𝜉𝑟 0 0 𝜙𝑧−2,𝑕+1

𝑗  𝜉𝑟 0 𝜙𝑧−2,𝑕+2
𝑗  𝜉𝑟 ⋯ 0 𝜙

𝑧−2,2𝑗−2

𝑗  𝜉𝑟 0 𝜙
𝑧−2,2𝑗−1

𝑗  𝜉𝑟 0 0

0 𝜙𝑧,𝑕
𝑗  𝜉𝑟 𝜙𝑧,𝑕+1

𝑗  𝜉𝑟 0 𝜙𝑧,𝑕+2
𝑗  𝜉𝑟 0 ⋯ 𝜙

𝑧,2𝑗−4

𝑗  𝜉𝑟 0 𝜙
𝑧,2𝑗−3

𝑗  𝜉𝑟 0 𝜙
𝑧,2𝑗−2

𝑗  𝜉𝑟 𝜙
𝑧,2𝑗−1

𝑗  𝜉𝑟 

0
1

𝐿𝑒

𝜙′𝑧,𝑕
𝑗  𝜉𝑟 

1

𝐿𝑒

𝜙′𝑧,𝑕+1
𝑗  𝜉𝑟 0

1

𝐿𝑒

𝜙′𝑧,𝑕+2
𝑗  𝜉𝑟 0 ⋯

1

𝐿𝑒

𝜙′
𝑧,2𝑗−4

𝑗  𝜉𝑟 0
1

𝐿𝑒

𝜙′
𝑧,2𝑗−3

𝑗  𝜉𝑟 0
1

𝐿𝑒

𝜙′
𝑧,2𝑗−2

𝑗  𝜉𝑟 
1

𝐿𝑒

𝜙′
𝑧,2𝑗−1

𝑗  𝜉𝑟  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑎𝑧−2,𝑕

𝑗

𝑏𝑧,𝑕
𝑗

𝑏𝑧,𝑕+1
𝑗

𝑎𝑧−2,𝑕+1
𝑗

𝑏𝑧,𝑕+2
𝑗

𝑎𝑧−2,𝑕+2
𝑗

⋮

𝑏
𝑧,2𝑗−4

𝑗

𝑎
𝑧−2,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−3

𝑗

𝑎
𝑧−2,2𝑗−1

𝑗

𝑏
𝑧,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−1

𝑗
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

(5.168) 



 

115 

 

which can be expressed in matrix form as:  

The wavelet transformation matrix for the two dimensional plane bar is obtained from 

equation (5.169) as:  

5.3.1. Mass matrix formulation 

The plane bar mass matrix is obtain via a superposition of the axial rod and Euler Bernoulli 

beam mass matrices in wavelet space from equations (5.31) and (5.102) respectively.  

The mass matrix is then transformed into physical space by implementing the wavelet 

transformation matrix for the plane bar. 

Alternatively, the elemental matrices of the plane bar element can be computed by the 

superposition of the axial rod and Euler Bernoulli beam respective elemental matrices 

directly in physical space in order to reduce the computation time of the higher order wavelet 

family WFE, at larger scales, during transformation from wavelet space. 

 

5.3.2. Stiffness matrix formulation 

The stiffness matrix is also obtained as a superposition of the axial rod stiffness matrix in 

equation (5.18) and Euler Bernoulli beam stiffness matrix in equation (5.87). 

 

 

 {𝒉𝒆} 𝑛 x 1 =  𝑹𝒑
𝒘 

 𝑛 x 𝑛  
{𝒄𝒆} 𝑛 x 1  (5.169) 

  𝑻𝒑
𝒘 =   𝑹𝒑

𝒘 
−1

 (5.170) 

 

 𝒎𝒑,𝒆
𝒘  = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑚𝑕,𝑕

𝑧−2,𝑗

𝒓
0 0 𝑚𝑕,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑚𝑕,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑚

𝑕,2𝑗 −2

𝑧−2,𝑗

𝒓
0 𝑚

𝑕,2𝑗 −1

𝑧−2,𝑗

𝒓
0 0

0 𝑚𝑕,𝑕
𝑧,𝑗

𝒃
𝑚𝑕,𝑕+1

𝑧,𝑗

𝒃
0 𝑚𝑕,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑚

𝑕,2𝑗 −3

𝑧,𝑗

𝒃
0 𝑚

𝑕,2𝑗−2

𝑧,𝑗

𝒃
𝑚

𝑕,2𝑗−1

𝑧,𝑗

𝒃

0 𝑚𝑕+1,𝑕
𝑧,𝑗

𝒃
𝑚𝑕+1,𝑕+1

𝑧,𝑗

𝒃
0 𝑚𝑕+1,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑚

𝑕+1,2𝑗−3

𝑧,𝑗

𝒃
0 𝑚

𝑕+1,2𝑗 −2

𝑧,𝑗

𝒃
𝑚

𝑕+1,2𝑗 −1

𝑧,𝑗

𝒃

𝑚𝑕+1,𝑕
𝑧−2,𝑗

𝒓
0 0 𝑚𝑕+1,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑚𝑕+1,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑚

𝑕+1,2𝑗 −2

𝑧−2,𝑗

𝒓
0 𝑚

𝑕+1,2𝑗−1

𝑧−2,𝑗

𝒓
0 0

0 𝑚𝑕+2,𝑕
𝑧,𝑗

𝒃
𝑚𝑕+2,𝑕+1

𝑧,𝑗

𝒃
0 𝑚𝑕+2,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑚

𝑕+2,2𝑗−3

𝑧,𝑗

𝒃
0 𝑚

𝑕+2,2𝑗 −2

𝑧,𝑗

𝒃
𝑚

𝑕+2,2𝑗 −1

𝑧,𝑗

𝒃

𝑚𝑕+2,𝑕
𝑧−2,𝑗

𝒓
0 0 𝑚𝑕+2,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑚𝑕+2,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑚

𝑕+2,2𝑗 −2

𝑧−2,𝑗

𝒓
0 𝑚

𝑕+2,2𝑗−1

𝑧−2,𝑗

𝒓
0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

𝑚
2𝑗 −2,𝑕

𝑧−2,𝑗

𝒓
0 0 𝑚

2𝑗 −2,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑚

2𝑗 −2,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑚

2𝑗 −2,2𝑗 −2

𝑧−2,𝑗

𝒓
0 𝑚

2𝑗 −2,2𝑗 −1

𝑧−2,𝑗

𝒓
0 0

0 𝑚
2𝑗 −3,𝑕

𝑧,𝑗

𝒃
𝑚

2𝑗 −3,𝑕+1

𝑧,𝑗

𝒃
0 𝑚

2𝑗 −3,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑚

2𝑗 −3,2𝑗 −3

𝑧,𝑗

𝒃
0 𝑚

2𝑗−3,2𝑗 −2

𝑧,𝑗

𝒃
𝑚

2𝑗 −3,2𝑗 −1

𝑧,𝑗

𝒃

𝑚
2𝑗 −1,𝑕

𝑧−2,𝑗

𝒓
0 0 𝑚

2𝑗 −1,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑚

2𝑗 −1,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑚

2𝑗 −1,2𝑗 −2

𝑧−2,𝑗

𝒓
0 𝑚

2𝑗 −1,2𝑗 −1

𝑧−2,𝑗

𝒓
0 0

0 𝑚
2𝑗 −2,𝑕

𝑧,𝑗

𝒃
𝑚

2𝑗 −2,𝑕+1

𝑧,𝑗

𝒃
0 𝑚

2𝑗 −2,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑚

2𝑗 −2,2𝑗 −3

𝑧,𝑗

𝒃
0 𝑚

2𝑗−2,2𝑗 −2

𝑧,𝑗

𝒃
𝑚

2𝑗 −2,2𝑗 −1

𝑧,𝑗

𝒃

0 𝑚
2𝑗 −1,𝑕

𝑧,𝑗

𝒃
𝑚

2𝑗 −1,𝑕+1

𝑧,𝑗

𝒃
0 𝑚

2𝑗 −1,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑚

2𝑗 −1,2𝑗 −3

𝑧,𝑗

𝒃
0 𝑚

2𝑗−1,2𝑗 −2

𝑧,𝑗

𝒃
𝑚

2𝑗 −1,2𝑗 −1

𝑧,𝑗

𝒃 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(5.171) 

 [𝒎𝒑,𝒆
𝒑

] 𝑛 x 𝑛 = 𝜌𝐴𝐿𝑒  𝑻𝒑
𝒘 

 𝑛 x 𝑛  

𝑇

[𝒎𝒑,𝒆
𝒘 ] 𝑛 x 𝑛  𝑻𝒑

𝒘 
 𝑛 x 𝑛  

 (5.172) 
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The stiffness matrix in wavelet space, from equation (5.173), is transformed into physical 

space via the plane bar wavelet transformation matrix  𝑻𝒑
𝒘 . 

where the diagonal matrix  𝑩𝒑,𝒆
𝒑

  contains the element material values and is given by 

5.3.3. Force vector formulation  

The axial and bending loads described in Sections 5.1.2 and 5.2.2 respectively, are combined 

to obtain the equivalent load vectors for the plane bar WFE. The equivalent load vectors are 

superimposed once they have been transformed in to physical space for each element. 

 

 𝒌𝒑,𝒆
𝒘  = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑘𝑕,𝑕

𝑧−2,𝑗

𝒓
0 0 𝑘𝑕,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑘𝑕,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑘

𝑕,2𝑗−2

𝑧−2,𝑗

𝒓
0 𝑘

𝑕,2𝑗−1

𝑧−2,𝑗

𝒓
0 0

0 𝑘𝑕,𝑕
𝑧,𝑗

𝒃
𝑘𝑕,𝑕+1

𝑧,𝑗

𝒃
0 𝑘𝑕,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑘

𝑕,2𝑗−3

𝑧,𝑗

𝒃
0 𝑘

𝑕,2𝑗−2

𝑧,𝑗

𝒃
𝑘

𝑕,2𝑗−1

𝑧,𝑗

𝒃

0 𝑘𝑕+1,𝑕
𝑧,𝑗

𝒃
𝑘𝑕+1,𝑕+1

𝑧,𝑗

𝒃
0 𝑘𝑕+1,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑘

𝑕+1,2𝑗−3

𝑧,𝑗

𝒃
0 𝑘

𝑕+1,2𝑗−2

𝑧,𝑗

𝒃
𝑘

𝑕+1,2𝑗−1

𝑧,𝑗

𝒃

𝑘𝑕+1,𝑕
𝑧−2,𝑗

𝒓
0 0 𝑘𝑕+1,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑘𝑕+1,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑘

𝑕+1,2𝑗−2

𝑧−2,𝑗

𝒓
0 𝑘

𝑕+1,2𝑗−1

𝑧−2,𝑗

𝒓
0 0

0 𝑘𝑕+2,𝑕
𝑧,𝑗

𝒃
𝑘𝑕+2,𝑕+1

𝑧,𝑗

𝒃
0 𝑘𝑕+2,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑘

𝑕+2,2𝑗−3

𝑧,𝑗

𝒃
0 𝑘

𝑕+2,2𝑗−2

𝑧,𝑗

𝒃
𝑘

𝑕+2,2𝑗−1

𝑧,𝑗

𝒃

𝑘𝑕+2,𝑕
𝑧−2,𝑗

𝒓
0 0 𝑘𝑕+2,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑘𝑕+2,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑘

𝑕+2,2𝑗−2

𝑧−2,𝑗

𝒓
0 𝑘

𝑕+2,2𝑗−1

𝑧−2,𝑗

𝒓
0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

𝑘
2𝑗−2,𝑕

𝑧−2,𝑗

𝒓
0 0 𝑘

2𝑗−2,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑘

2𝑗−2,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑘

2𝑗−2,2𝑗−2

𝑧−2,𝑗

𝒓
0 𝑘

2𝑗−2,2𝑗−1

𝑧−2,𝑗

𝒓
0 0

0 𝑘
2𝑗−3,𝑕

𝑧,𝑗

𝒃
𝑘

2𝑗−3,𝑕+1

𝑧,𝑗

𝒃
0 𝑘

2𝑗−3,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑘

2𝑗−3,2𝑗−3

𝑧,𝑗

𝒃
0 𝑘

2𝑗 −3,2𝑗−2

𝑧,𝑗

𝒃
𝑘

2𝑗−3,2𝑗−1

𝑧,𝑗

𝒃

𝑘
2𝑗−1,𝑕

𝑧−2,𝑗

𝒓
0 0 𝑘

2𝑗−1,𝑕+1

𝑧−2,𝑗

𝒓
0 𝑘

2𝑗−1,𝑕+2

𝑧−2,𝑗

𝒓
⋯ 𝑘

2𝑗−1,2𝑗−2

𝑧−2,𝑗

𝒓
0 𝑘

2𝑗−1,2𝑗−1

𝑧−2,𝑗

𝒓
0 0

0 𝑘
2𝑗−2,𝑕

𝑧,𝑗

𝒃
𝑘

2𝑗−2,𝑕+1

𝑧,𝑗

𝒃
0 𝑘

2𝑗−2,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑘

2𝑗−2,2𝑗−3

𝑧,𝑗

𝒃
0 𝑘

2𝑗 −2,2𝑗−2

𝑧,𝑗

𝒃
𝑘

2𝑗−2,2𝑗−1

𝑧,𝑗

𝒃

0 𝑘
2𝑗−1,𝑕

𝑧,𝑗

𝒃
𝑘

2𝑗−1,𝑕+1

𝑧,𝑗

𝒃
0 𝑘

2𝑗−1,𝑕+2

𝑧,𝑗

𝒃
0 ⋯ 0 𝑘

2𝑗−1,2𝑗−3

𝑧,𝑗

𝒃
0 𝑘

2𝑗 −1,2𝑗−2

𝑧,𝑗

𝒃
𝑘

2𝑗−1,2𝑗−1

𝑧,𝑗

𝒃 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(5.173) 

 [𝒌𝒑,𝒆
𝒑

] 𝑛 x 𝑛 =  𝑩𝒑,𝒆
𝒑

 
 𝑛 x 𝑛 

 𝑻𝒑
𝒘 

 𝑛 x 𝑛  

𝑇

[𝒌𝒑,𝒆
𝒘 ] 𝑛 x 𝑛  𝑻𝒑

𝒘 
 𝑛 x 𝑛  

 (5.174) 

  𝑩𝒑,𝒆
𝒑

 
 𝑛  x 𝑛 

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿𝑒
0 0 0 0 0 0 0 0 0 0 0

0
𝐸𝐼

𝐿𝑒
3 0 0 0 0 0 0 0 0 0 0

0 0
𝐸𝐼

𝐿𝑒
3 0 0 0 0 0 0 0 0 0

0 0 0
𝐸𝐴

𝐿𝑒
0 0 0 0 0 0 0 0

0 0 0 0
𝐸𝐼

𝐿𝑒
3 0 0 0 0 0 0 0

0 0 0 0 0
𝐸𝐴

𝐿𝑒
0 0 0 0 0 0

0 0 0 0 0 0 ⋱ 0 0 0 0 0

0 0 0 0 0 0 0
𝐸𝐴

𝐿𝑒
0 0 0 0

0 0 0 0 0 0 0 0
𝐸𝐼

𝐿𝑒
3 0 0 0

0 0 0 0 0 0 0 0 0
𝐸𝐴

𝐿𝑒
0 0

0 0 0 0 0 0 0 0 0 0
𝐸𝐼

𝐿𝑒
3 0

0 0 0 0 0 0 0 0 0 0 0
𝐸𝐼

𝐿𝑒
3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (5.175) 
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Therefore, the total load vector of the plane bar WFE in physical space is given as the sum of 

the total axial and bending loads, i.e.,  

5.3.4. Two dimensional global transformation 

Given that each plane bar WFE is formulated in its own arbitrary local coordinate system, it 

is important to transform each element into the system’s global coordinates, if the two 

systems do not coincide. The relation of the local coordinate system to the two dimensional 

global coordinate system is shown in Figure 5-13.  

 

Figure 5-13 : Local and global coordinate system of a plane bar wavelet finite element. 

The axial deformation, transverse displacement and rotation at an elemental node i, with 

respect to local coordinates, are denoted by ui, vi and θi respectively. The corresponding axial 

and transverse nodal forces and bending moments at node i are denoted by fxi, fyi and 𝑚 𝑖 . The 

arbitrary angle of orientation between the local coordinate and global coordinate system is 

denoted by α and is assumed to remain unchanged for each elemental node within the same 

plane bar WFE. This is because all the elemental nodes are assumed to be along the same 

local axial axis. The component displacements in the global X and Y axes at node i are 

denoted by Ui and Vi respectively, while the force components are denoted by FXi and FYi. 

The rotation and corresponding moments in the global coordinates are denoted as θi and 𝑀 𝑖  

  𝒇𝒑,𝒆
𝒑

 
 𝑛 x 1 

=  𝒇𝒓,𝒆
𝒑

 
 𝑛 x 1 

+  𝒇𝒃,𝒆
𝒑

 
 𝑛 x 1 

 (5.176) 

θr, 𝑀 𝑟  
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u1, fx1 

vr-1, fyr-1 

θ1, 𝑀 1 

vr-2, fyr-2 

v3, fy3 
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U1,FX1 
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respectively. From the figure above, the relationship between the local and global 

displacements at any elemental node i is  

where  

Xi and Yi are the global coordinate values at node i. The length Le of the element can be 

evaluated from the two extreme elemental node global coordinate values. 

Therefore, the relation of the elemental nodes between the local and global coordinate system 

can be expressed as: 

 

𝑢𝑖 = 𝑈𝑖 cos 𝛼 + 𝑉𝑖 sin 𝛼 

𝑣𝑖 = −𝑈𝑖 sin 𝛼 + 𝑉𝑖 cos 𝛼 

𝜃𝑖 = Θ𝑖 

 

  

𝑢𝑖

𝑣𝑖

𝜃𝑖

 =  
cos 𝛼 sin 𝛼 0

− sin 𝛼 cos 𝛼 0
0 0 1

  
𝑈𝑖

𝑉𝑖

Θ𝑖

  (5.177) 

 

cos 𝛼 =
𝑋𝑟 − 𝑋1

𝐿𝑒
 

sin 𝛼 =
𝑌𝑟 − 𝑌1

𝐿𝑒
 

(5.178) 

 𝐿𝑒 =   𝑋𝑟 − 𝑋1 2 +  𝑌𝑟 − 𝑌1 2 (5.179) 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑢1 

𝑣1 

𝜃1

𝑢2 

𝑣2 

𝑢3 

𝑣3 

⋮
𝑢𝑛−1 

𝑣𝑛−1 

𝑢𝑛 

𝑣𝑛 

𝑢𝑛+1 

𝑣𝑛+1 

𝜃𝑛+1  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cos 𝛼 sin 𝛼 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0
− sin 𝛼 cos 𝛼 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0

0 0 1 0 0 0 0 ⋯ 0 0 0 0 0 0 0
0 0 0 cos 𝛼 sin 𝛼 0 0 ⋯ 0 0 0 0 0 0 0
0 0 0 − sin 𝛼 cos 𝛼 0 0 ⋯ 0 0 0 0 0 0 0
0 0 0 0 0 cos 𝛼 sin 𝛼 ⋯ 0 0 0 0 0 0 0
0 0 0 0 0 − sin 𝛼 cos 𝛼 ⋯ 0 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 ⋯ cos 𝛼 sin 𝛼 0 0 0 0 0
0 0 0 0 0 0 0 ⋯ − sin 𝛼 cos 𝛼 0 0 0 0 0
0 0 0 0 0 0 0 ⋯ 0 0 cos 𝛼 sin 𝛼 0 0 0
0 0 0 0 0 0 0 ⋯ 0 0 − sin 𝛼 cos 𝛼 0 0 0
0 0 0 0 0 0 0 ⋯ 0 0 0 0 cos 𝛼 sin 𝛼 0
0 0 0 0 0 0 0 ⋯ 0 0 0 0 − sin 𝛼 cos 𝛼 0
0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑈1

𝑉1

Θ1

𝑈2

𝑉2

𝑈3

𝑉3

⋮
𝑈𝑛−1

𝑉𝑛−1

𝑈𝑛

𝑉𝑛

𝑈𝑛+1

𝑉𝑛+1

Θn+1 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  

 {𝒉𝒆} 𝑛 × 1 =  𝑻𝒑
𝑮 

 𝑛 × 𝑛  
{𝑯𝒆} 𝑛 × 1  (5.180) 

  𝑯𝒆 =

 
 
 
 
 
 
 

 
 
 
 
 
 

𝑈1

𝑉1

𝜃1

𝑈2

𝑉2

𝑈3

⋮

𝑉𝑟−2

𝑈𝑟−1

𝑉𝑟−1

𝑈𝑟

𝑉𝑟

𝜃𝑟  
 
 
 
 
 
 

 
 
 
 
 
 

 (5.181) 
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 𝑻𝒑
𝑮  is the plane bar WFE rotation matrix or global transformation matrix. Transforming the 

elemental mass matrix, stiffness matrix and load vectors in equations (5.171), (5.174), and 

(5.176) from local to global coordinates, we have 

5.3.5. Assembly and application of boundary conditions  

Once the element matrices and load vectors have been transformed in to physical space and 

further transformed into global coordinates, assembly of the system is carried out. For a plane 

bar with a total of ne WFEs, the total global system stiffness matrix, mass matrix and load 

vector in physical space are given by: 

Assembly of the matrices and load vectors is carried out via the superposition approach, 

where the element matrices are expanded to the size of the system DOFs once transformation 

into the global coordinate system is carried out. The DOFs to which an element is not 

associated within the expanded matrix are replaced by zeros. The summations expressed in 

equations (5.185) - (5.187) are then applied to the expanded matrices. The boundary 

conditions are also applied by omitting the corresponding constrained rows and columns, thus 

reducing the size of the overall system matrices and load vectors.  

5.3.6. Daubechies plane bar wavelet finite element 

As earlier discussed in Sections 5.1.7 and 5.2.8, the Daubechies wavelet family of order L can 

represent any polynomial whose order is up to, but not greater than 
𝐿

2
− 1 [10,36]. Therefore, 

the axial deformation and the bending of the Daubechies plane bar WFE may only be 

 [𝑲𝒑,𝒆
𝒑

] 𝑛 x 𝑛 =   𝑻𝒑
𝑮 

𝑇

 𝑛 x 𝑛  
[𝒌𝒑,𝒆

𝒑
] 𝑛 x 𝑛  𝑻𝒑

𝑮 
 𝑛 x 𝑛  

 (5.182) 
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𝑇
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𝒑
] 𝑛 x 𝑛  𝑻𝒑
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 𝑛 x 𝑛  

 (5.183) 
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 𝑛 x 1 

=  𝑻𝒑
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𝑇

 𝑛 x 𝑛  
 𝒇𝒑,𝒆

𝒑
 

 𝑛 x 1 
 (5.184) 

 [𝑲𝒑] =  [𝑲𝒑,𝒆
𝒑

]

𝑛𝑒

𝑒=1

 (5.185) 

 [𝑴𝒑] =  [𝑴𝒑,𝒆
𝒑

]

𝑛𝑒

𝑒=1

 (5.186) 

  𝑭𝒑 =   𝑭𝒑,𝒆
𝒑

 

𝑛𝑒

𝑒=1

  (5.187) 
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approximated theoretically by the Daubechies scaling functions of order not less than D4 and 

D6 respectively. Furthermore, if the order of the wavelet family chosen to approximate the 

transverse deflection and rotation is DL, then the axial deformation is approximated by the 

Daubechies wavelet DL-2 at scale j. This is specific to this formulation taking into 

consideration that the bending of the plane bar WFE, based on the Euler Bernoulli beam 

theory, has only rotations at the elemental end nodes. Therefore in general, the order of the 

Daubechies scaling function that is used to approximate the axial deformation is dependent 

on the DOFs at each elemental node with respect to the bending of the plane bar. Thus, the 

order should be selected to ensure that the axial deformation is present at each elemental 

node. 

Specific to this formulation, the total number of elemental nodes is 𝑟 = 2𝑗 + 𝐿 − 4 and the 

number of elemental segments is 𝑛𝑠 = 2𝑗 + 𝐿 − 5. The total number of DOFs corresponding 

to the transverse deflection and rotation within the Daubechies planar bar WFE is 2𝑗 + 𝐿 − 2, 

while the axial deformation total DOFs is 2𝑗 + (𝐿 − 2) − 2. Hence, the total number of DOFs 

within each plane bar WFE at scale j is 𝑛 = 2𝑗 +1 + 2𝐿 − 6, where L is the order of the 

Daubechies wavelet family used to approximate the transverse deflection and rotation. 

The elemental matrices are obtained via the evaluation of the connection coefficients for the 

axial rod and corresponding Euler Bernoulli beam WFE in wavelet space. They are then 

superimposed and transformed in to physical space via the wavelet transformation matrix for 

the bar WFE. 

5.3.7. BSWI plane bar wavelet finite element 

The BSWI based plane bar wavelet finite element via this approach requires that the least 

order of the BSWI wavelet family that can be used to approximate the axial and bending 

DOFs is BSWI2j and BSWI4j respectively. Furthermore, similar to the Daubechies 

formulation, if the order BSWImj is used to approximate the transverse deflection and 

rotation DOFs, then the BSWI wavelet of order (𝑚 − 2) and at multiresolution scale j is used 

to approximate the axial deformation of the plane bar element. In accordance to this 

approach, where each elemental node has the axial and transverse deformation DOFs present 

and the rotation DOFs only present at each elemental end node, the total number of elemental 

nodes is 𝑟 = 2𝑗 + 𝑚 − 3 and corresponding number of elemental segments is 𝑛𝑠 = 2𝑗 +

𝑚 − 4. The total number of DOFs corresponding to the transverse deflection and rotation 

within the BSWI plane bar WFE is 2𝑗 + 𝑚 − 1 and axial deformation is 2𝑗 + (𝑚 − 2) − 1. 
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Thus, for the BSWI of order m and at scale j, the total number of DOFs for each plane bar 

WFE is 𝑛 = 2𝑗 +1 + 2𝑚 − 4. 

5.4.  Conclusion 

The general unified formulations of the wavelet based axial rod, Euler Bernoulli beam and 

plane bar finite elements were presented in this chapter. The wavelet based elements were 

described in detail with the elemental matrices and load vectors presented; conceptually 

based on wavelet theory, finite element theory and previous works. The shape functions of 

the mentioned wavelet based elements were illustrated and discussed in this chapter, 

highlighting the conditions necessary for the implementation of the wavelet families with 

respect to the order selection. Furthermore, the formulations of the wavelet based moving 

load vectors, elastic foundation stiffness matrix and the foundation damping matrix were also 

discussed. The formulations presented can be implemented using the Daubechies and BSWI 

wavelet families. The scaling functions of the wavelet families were used to approximate the 

displacement field variables.  

Due to the attractive properties of the wavelet families, which include; compact support, the 

“two-scale” relation and multiresolution, the WFEs presented possess the delta function, 

compatibility and completeness requirements necessary to ensure convergence of the 

approximate solution to the exact solution. Moreover, it was observed that in order to 

formulate the Daubechies wavelet based elements, the evaluation of the connection 

coefficients was necessary since the scaling functions and their derivatives cannot be 

expressed explicitly. However, this was not the case for the BSWI wavelet elements as the 

matrices and load vectors can be computed directly. This was consistent with the findings of 

Chen et al. [6], Xiang et al. [7] and Ma et al. [10]. 

The layout of the wavelet based elements, particularly for the beam and plane bar, can be 

altered for a wide variety of problems. Furthermore, the multiresolution aspect of the 

formulations makes the use of WFEM attractive in the analysis of structural static and 

dynamic problems. 
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6. The Wavelet Finite Element Method for Static Analysis 

Summary 

In this chapter, a number of simulated numerical examples are presented in order to highlight 

key features in implementing WFEM with respect to structural static analysis. Some of the 

numerical examples presented have been used in previous research as benchmarks in the 

analysis of some wavelet finite element methods. The algorithms of the different approaches, 

for all the simulated examples, are carried out using the Mathematica version 7 program. The 

examples in this chapter are analysed using the BSWI and Daubechies based wavelet finite 

element formulations and include the following: 

Example 1: An axial rod subjected to a varying distributed load is analysed to 

illustrate the implementation of the WFEM with respect to static axial loading. 

Example 2 [10,40]: A fixed-fixed uniform beam subjected to a linear varying load on 

the right half of the beam is analysed to investigate the WFEMs ability to analyse 

problems with fast variations in transverse loading. Furthermore, different layouts of 

the beam wavelet based element are implemented, compared and discussed.   

Example 3 [10,40]: A simply supported stepped beam subjected to a uniformly 

distributed load is presented. The WFEMs are used to analyse a beam that has a 

flexural singularity present due to an abrupt change in flexural stiffness. 

Example 4: The buckling of a two-stepped and three-stepped plane bar element is 

carried out to investigate the WFEM’s ability to analyse linear buckling and attain the 

critical buckling loads when different boundary conditions are imposed. 

The Daubechies and BSWI WFEs, for the various element formulations, are analysed and 

compared with h and p adaptive FE formulations, and in some cases, exact analytical 

solutions. A detailed analysis and discussion of the results is carried out for each case, with 

emphasis being drawn on the strengths, limitations and key features of the two wavelet based 

finite element methods. Some aspects of the method are clarified based on the findings from 

previous research.  
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6.1.  Axial rod subjected to varying distributed Load 

A uniform axial cantilever rod subjected to linear varying load q(x), as illustrated in Figure 

6-1, is analysed. The rod has a uniform cross sectional area 𝐴 = 𝐴0, Young’s Modulus 

𝐸 = 𝐸0 and length l. The varying load 𝑞 𝑥 = −𝑞0 𝑥 is subjected along the free-fixed axial 

rod. One element is used to represent the rod using Daubechies and BSWI WFEM 

approaches. The results are compared with the classical FEM and an exact analytical 

approach.  

 

Figure 6-1: A uniform cantilever axial rod subjected to a varying load q(x).  

The exact solution for displacement at a particular point x can be obtained by solving [31] 

where 𝑃  𝑥 = 𝑞 𝑥 
𝑥

2
. Therefore, substituting the force function 𝑞 𝑥  into (6.1), 

The constant C1 is obtained from the boundary conditions. Therefore, for this particular 

cantilever example, the displacement on the right hand end is zero. Thus, C1 is given 

as 
−𝑞0

6𝐸𝐴
𝑙3. Substituting into equation  (6.2), the axial deformation across the bar is: 

The exact solution for axial stress and strain, at a point x on the rod, are obtained as:   

 𝑢(𝑥) =
1

𝐸𝐴
 𝑃 (𝑥)𝑑𝑥

𝑥

𝑜

 (6.1) 

 𝑢 𝑥 =
1

𝐸0𝐴0
 𝑞0

𝑥2

2
 𝑑𝑥 =

𝑞0

6𝐸0𝐴0
𝑥3 + 𝐶1  (6.2) 

 𝑢(𝑥) =
𝑞0

6𝐸0𝐴0
(𝑥3 − 𝑙3) (6.3) 

 𝜍 𝑥 =
𝑃 𝑥 

𝐴
= 𝑞0

𝑥2

2𝐴0
  (6.4) 

l 

 

𝐸0, 𝐴0  

x 

𝑞 𝑥 = −𝑞0𝑥 
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The number of elements, 𝑛𝑒 , implemented in the FE model will be denoted by FEM-𝑛𝑒 . The 

rod finite element matrices and load vectors are described in Appendix B.1. The p-FEM rod 

is made up of only one element in this example. The potential energy of the axial rod is given 

by [31]: 

Following a similar procedure as highlighted in Section 5.1, the wavelet based stiffness 

matrix and load vector for the axial rod can be evaluated and then used to solve the governing 

equation of the system:  

where  𝑲𝒓  is the global system stiffness matrix in physical space,  𝑼𝒓  is the global system 

vector containing the DOFs and  𝑭𝒓  is the global loading vector containing the equivalent 

nodal loads of the system. 

The deformation of the axial rod evaluated using one Daubechies WFE is plotted in Figure 

6-2 for (a) different multiresolution scales j and (b) different orders DL, which is denoted as 

DLj. The results of the axial deformation for the D6j (0 ≤ 𝑗 ≤ 2) WFE solution are in good 

agreement with the analytical solution, as presented in Figure 6-2 (a). Furthermore, 

increasing the scale increases the accuracy of the solution as the D62 WFE solution gives a 

better approximation than both D60 and D61. The DL0 WFE axial deformation is plotted in 

Figure 6-2 (b), for the different wavelet orders 6 ≤ 𝐿 ≤ 18  (with the exception of D10 and 

D14) at scale j = 0. The results are also in good agreement with the exact solution and 

increasing the order of the WFEs improves the accuracy of the solution. It is also observed 

from Figure 6-2 (c) that the solutions of the axial deformation at arbitrary point 0.1 𝑙 for 

wavelet based elements D6j, D8j, D10j, D12j and D16j, at scale 0 ≤ 𝑗 ≤ 2, have an absolute 

error below 1.5%. This shows that the Daubechies wavelet based element solution gives a 

very good approximation of the axial deformation for the range of Daubechies orders 6 ≤

𝐿 ≤ 18. Furthermore, convergence of the Daubechies WFEM solution to the exact solution is 

observed when the order and/or multiresolution scale are increased. 

 

 𝜖 𝑥 =
𝜍 𝑥 

𝐸
= 𝑞0

𝑥2

2𝐸0𝐴0
  (6.5) 

 𝛱𝑎 =  
𝐸𝐴

2
 
𝑑𝑢(𝑥)

𝑑𝑥
 

2

 𝑑𝑥
𝑙

0

−  𝑞 𝑥 𝑢(𝑥)𝑑𝑥
𝑙

0

  (6.6) 

  𝑲𝒓  𝑼𝒓 =  𝑭𝒓   (6.7) 
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Figure 6-2: Axial deformation of a uniform cantilever rod subjected to a linear varying load q(x) for Daubechies WFEM. (a)  

D6j, (b) DL0 and (c) Absolute relative error at x = 0.1l for Daubechies WFEM. 

Figure 6-3 (a) shows the axial deformation across the rod using the BSWI2j WFE. The results 

are also in good agreement with the exact analytical solution and increasing the 

multiresolution scale j increases the levels of accuracy. Furthermore, increasing the order of 

the BSWI wavelet subsequently results in a better approximation of the solution as observed 

in Figure 6-3 (b). Thus, with an increase in the order and/or scale of the WFE solution, the 

results converge to the exact solution as observed in Figure 6-3 (c). In general, the BSWI 

WFEM performs particularly well due to the fact that the scaling functions and their 

derivatives are expressed explicitly. There is therefore no need to evaluate connection 

coefficients and consequently the element matrices can be obtained directly, at high levels of 

accuracy.  

(a) (b) 

(c) 
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Figure 6-3: Axial deformation of a uniform cantilever rod subjected to a linear varying load q(x) for BSWI WFEM. (a)  

BSWI2j, (b) BSWIm3. (c) Absolute relative error at x = 0.1l for BSWI WFEM. 

The convergence of the axial deformation at point 0.1𝑙 is compared in Figure 6-4 for the 

different approaches. The plot shows the absolute relative error of the axial deformation 

corresponding to the number of DOFs. The rates of convergence of all the methods are 

similar, though the WFEM approaches have a slightly improved rate. The small peak 

observed for the p-FEM formulation in the graph is attributed the fact that the location on the 

rod being analysed does not coincide with an elemental node point. Therefore, the 

approximate axial deformation at this point is obtained via interpolation. 

(a) (b) 

(c) 
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Figure 6-4: Comparison of the convergence of the axial deformation at point x = 0.1 l. 

The strain behaviour of the rod is similar to the stress; given that the rod has a uniform cross 

section and constant Young’s modulus. Figure 6-5 illustrates the axial stress along the length 

of the rod using (a) the FEM approach and (b) higher order p-FEM approach. From Figure 

6-5(a), the FEM approach with lower number of elements is not very accurate. This is due to 

the fact that the axial stress is evaluated from the first derivative of the axial deformation and 

is therefore constant within each element since the axial deformation is a linear function. 

Furthermore, the equilibrium across the element boundaries is not satisfied and this is evident 

from the discontinuities observed across the element boundaries. Therefore, so as to increase 

the accuracy of the axial stress approximation across the rod via the FEM solution, it is 

necessary to increase the number of elements. 

  

Figure 6-5: Axial stress of a uniform cantilever rod subjected to a linear varying load q(x). (a)  FEM. (b) p-FEM. 

(a) (b) 
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The results of the axial stress for the initial low order polynomial formulations do not exhibit 

high accuracy levels for the p-FEM, as observed in Figure 6-5(b). For p-FEM-1, the axial 

stress is constant along the entire rod element since the axial deformation is a linear function. 

In addition, the axial stress for p-FEM-2 is linear since the axial deformation is expressed as a 

quadratic function. Therefore, the results converge to the exact solution as the order of the 

polynomial m increases. This implies that if lower order polynomial FEM formulations are 

used, such as 𝑚 = 1 or 2, the results converge by increasing the number of elements. 

  

 
 

Figure 6-6: Axial stress of a uniform cantilever rod subjected to a linear varying load q(x). (a) BSWI3j. (b) BSWIm3. (c) 

D8j. (d) DLj elements. 

Figure 6-6 illustrates the variation of the axial stress across the rod element using the WFEM 

approaches for different orders and multiresolution scales. In Figure 6-6 (a), the axial stress 

across the rod for the BSWI3j (3 ≤ 𝑗 ≤ 5) WFE solution are in very good agreement with the 

exact solution and better approximations are obtained by increasing the multiresolution scale 

j. In Figure 6-6 (b), the axial stress is in good agreement with the exact solution for BSWI33 

and BSWI43 elements. The BSWI23 element is not as accurate, with discontinuities observed 

at the elemental end nodes. However, increasing the scale for BSWI2j leads to a convergence 

of the results as the approximation of the stresses at the inner elemental nodes increase in 

accuracy. The BSWI2j rod element is in C
0
, therefore making it the lowest order of the BSWI 

that can be used to meet the completeness and continuity requirements of the field variable, 

(a) (b) 

(c) (d) 
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which in this case is the axial deformation. However, there are discontinuities present at the 

end elemental nodes, thus the stresses and strains across element boundaries are not 

continuous. It is therefore necessary to apply a higher order BSWI wavelet to ensure 

continuity of the inter element stresses and strains, as is the case for BSWImj for m ≥ 3. 

In the case of the Daubechies WFEM, the axial stresses across the rod for the D8j element 

(0 ≤ 𝑗 ≤ 2) are presented in Figure 6-6 (c). The results are highly accurate when compared 

with the exact solution. Furthermore, increasing the scale j leads to the convergence of the 

results. Similarly, increasing the order of the Daubechies wavelet based element also leads to 

an increase in accuracy levels as observed in Figure 6-6 (d). Even though continuity 

requirements within and between the WFEs are met, the stress variation across the rod 

obtained from the D60 element is not as precise and this is due to the highly oscillatory nature 

of the first derivative of the scaling functions employed to obtain axial the stresses. 

Therefore, for static analysis of axial rods using the WFEMs, the axial deformation can be 

accurately solved using the D6j and BSWI22 WFEs. However, the axial stress and stain 

solutions at the elemental end nodes require the higher order D8j and BSWI33 WFEs. It is 

also important to mention that the BSWI WFEM requires that the coarsest multiresolution 

scale 𝑗 ≥ 𝑗0 for the accurate formulation of the elemental matrices, which is consistent with 

the findings of Xiang et al. [7]. This is in contrast to the Daubechies WFE matrices which are 

accurately computed at multiresolution scale 𝑗 ≥ 0. 

6.2.  Fixed end Euler Bernoulli uniform beam subjected to a varying 

distributed load 

An elastic Euler Bernoulli beam of uniform cross section A, bending stiffness 𝐸𝐼 and length 

2l, is subjected to a varying distributed load as illustrated in Figure 6-7. The beam is fixed at 

both ends and the varying load 𝑞 𝑥 = 480𝑞0(
𝑥

𝑙
 –  1) is subjected at the right half of the 

beam. The example is one that has been implemented by Ma et al. [10] and Diaz et al. [40] to 

carry out a static analysis of a beam using the Daubechies WFEM. However, the example is 

presented in this study to aid in the comparison of the Daubechies and BSWI wavelet beam 

solutions as well as the h and p adaptive FEM approaches. Furthermore, some aspects 

relating to the application of the Daubechies and BSWI WFEMs need to be further discussed 

for static beam analysis, such as: the effects of altering the layout of the wavelet based beam 

finite element and the implementation of the orders of the wavelet based elements. 
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Figure 6-7: Fixed-fixed beam of uniform cross section subjected to a linear varying load on the right half of the beam. 

The deflection of the beam without the implementation of boundary conditions can be 

obtained analytically via the double integration method and is given as: 

while the slope of the beam is 

The integration constants 𝑐𝑖  are obtained by imposing the boundary conditions. The beam is 

fixed at both ends and therefore, the rotations and displacements at both ends are zero. Thus, 

for this particular case, the constants are evaluated as: 

By substituting (6.10) into (6.8) and (6.9), the deflection can be evaluated as: 

and the slope function 

The strains and stresses can therefore be computed as: 

 𝑤(𝑥) =  

1

𝐸𝐼
 4 𝑞0  𝑙 𝑥3 − 7 𝑞0  𝑙2 𝑥2 + 𝑐1𝑥 + 𝑐2 for 0 ≤ 𝑥 < 𝑙 

1

𝐸𝐼
 20 𝑞0  𝑥4 −

4 𝑞0   𝑥5

𝑙
− 36𝑞0  𝑙 𝑥3 + 33𝑞0 𝑙2 𝑥2 + 𝑐3𝑥 + 𝑐4 for 𝑙 ≤ 𝑥 ≤ 2𝑙

      (6.8) 

 𝑤′(𝑥) =

 
 

 
1

𝐸𝐼
 12 𝑞0 𝑙 𝑥2 − 14 𝑞0  𝑙2 𝑥 + 𝑐1 for 0 ≤ 𝑥 < 𝑙 

1

𝐸𝐼
 80 𝑞0  𝑥3 −

20 𝑞0   𝑥4

𝑙
− 108𝑞0  𝑙 𝑥2 + 66𝑞0 𝑙2 𝑥 + 𝑐3 for 𝑙 ≤ 𝑥 ≤ 2𝑙

  (6.9) 

 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = −20 𝑞0 𝑙3, 𝑐3 = 4 𝑞0 𝑙4 (6.10) 

 𝑤(𝑥) =

 
 

 
1

𝐸𝐼
 4 𝑞0 𝑙 𝑥3 − 7 𝑞0 𝑙2 𝑥2 for 0 ≤ 𝑥 < 𝑙 

1

𝐸𝐼
 20 𝑞0 𝑥4 −

4 𝑞0  𝑥5

𝑙
− 36𝑞0 𝑙 𝑥3 + 33𝑞0 𝑙2 𝑥2 − 20 𝑞0 𝑙3𝑥 + 4 𝑞0 𝑙4 for 𝑙 ≤ 𝑥 ≤ 2𝑙

  (6.11) 

 𝑤′(𝑥) =

 
 

 
1

𝐸𝐼
 12 𝑞0 𝑙 𝑥2 − 14 𝑞0 𝑙2 𝑥 for 0 ≤ 𝑥 < 𝑙 

1

𝐸𝐼
 80 𝑞0 𝑥3 −

20 𝑞0  𝑥4

𝑙
− 108𝑞0 𝑙 𝑥2 + 66𝑞0 𝑙2 𝑥 − 20 𝑞0 𝑙3 for 𝑙 ≤ 𝑥 ≤ 2𝑙

  (6.12) 

l l 

 

EI EI 

w 

x 

𝑞(𝑥) = 480𝑞0(𝑥 𝑙  −  1) 
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Consequently, the curvature, bending moments and shear force across the beam can be 

obtained by differentiating equation (6.11). The curvature of the beam is given as: 

The bending moments: 

The shear force:  

The generalised potential energy function for the Euler Bernoulli beam is [31]: 

Following a similar procedure as presented in Section 5.2, the equation governing the static 

behaviour of the system can be expressed as: 

where  𝑲𝒃  is the system global stiffness matrix,  𝑽𝒃  is the system vector containing the 

global DOFs and  𝑭𝒃  is the system global force vector. 

The Daubechies and BSWI wavelet based beam finite elements derived in Section 5.2 have 

the vertical displacement (and corresponding force) DOFs at each elemental node and 

rotation (and corresponding moments) DOFs at the elemental end nodes only. However, the 

WFEM allows for the alteration of the elemental DOFs and corresponding number and/or 

position of the elemental nodes, depending on the nature of the problem and results sort after. 

The layout used in the formulation of the beam WFE in Section 5.2 will be referred to as 

layout 1 for convenience and simplicity. A second layout of the wavelet based beam finite 

 𝜀 𝑥 = −𝑦𝑢′′ 𝑥 =

 
 

 −
𝑦

𝐸𝐼
 24 𝑞0 𝑙 𝑥 − 14 𝑞0 𝑙2

 for 0 ≤ 𝑥 < 𝑙 

−
𝑦

𝐸𝐼
 240 𝑞0 𝑥2 −

80 𝑞0  𝑥3

𝑙
− 216𝑞0 𝑙 𝑥 + 66𝑞0 𝑙2

 for 𝑙 ≤ 𝑥 ≤ 2𝑙

  (6.13) 

 𝜍 𝑥 = 𝐸𝜀 𝑥 =

 
 

 −
𝑦

𝐼
 24 𝑞0 𝑙 𝑥 − 14 𝑞0 𝑙2

 for 0 ≤ 𝑥 < 𝑙 

−
𝑦

𝐼
 240 𝑞0 𝑥2 −

80 𝑞0  𝑥3

𝑙
− 216𝑞0 𝑙 𝑥 + 66𝑞0 𝑙2

 for 𝑙 ≤ 𝑥 ≤ 2𝑙

  (6.14) 

 
1

𝑅
=

 
 

 
1

𝐸𝐼
 24 𝑞0 𝑙 𝑥 − 14 𝑞0 𝑙2 for 0 ≤ 𝑥 < 𝑙 

1

𝐸𝐼
 240 𝑞0  𝑥2 −

80 𝑞0  𝑥3

𝑙
− 216𝑞0 𝑙 𝑥 + 66𝑞0 𝑙2 for 𝑙 ≤ 𝑥 ≤ 2𝑙

   (6.15) 

 𝑀(𝑥) =
𝐸𝐼

𝑅
=   

 24 𝑞0 𝑙 𝑥 − 14 𝑞0 𝑙2 for 0 ≤ 𝑥 < 𝑙 

 240 𝑞0  𝑥2 −
80 𝑞0   𝑥3

𝑙
− 216𝑞0 𝑙 𝑥 + 66𝑞0  𝑙2 for 𝑙 ≤ 𝑥 ≤ 2𝑙

     (6.16) 

  𝑉(𝑥) = 𝐸𝐼 𝑤′′′(𝑥) =  
24 𝑞0  𝑙 for 0 ≤ 𝑥 < 𝑙 

1

𝐸𝐼
 480 𝑞0 𝑥 −

240 𝑞0  𝑥2

𝑙
− 216𝑞0 𝑙 for 𝑙 ≤ 𝑥 ≤ 2𝑙

    (6.17) 

 𝛱𝑏 =  
𝐸𝐼

2
 
𝑑2𝑣(𝑥)

𝑑𝑥2
 

2

 𝑑𝑥
2𝑙

0

−  𝑞 𝑥 𝑣(𝑥)𝑑𝑥
2𝑙

0

  (6.18) 

  𝑲𝒃  𝑽𝒃 =  𝑭𝒃   (6.19) 
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element, referred to as layout 2, is used to formulate a beam element for comparison and 

illustration purposes. The wavelet beam formulated using layout 2, as illustrated in Figure 

6-8, contains the vertical displacement and rotation DOFs, and corresponding force and 

moment DOFs, at each elemental node. In this analysis, the Daubechies D101 and BSWI33 

beam WFEs are formulated using both layouts. 

 

Figure 6-8: Euler Bernoulli beam wavelet finite element layout with rotation DOFs at each elemental node. 

As earlier mentioned, the beam WFE total DOFs corresponding to a particular order of 

wavelet at scale j remain the same irrespective of the layout selected. The total DOFs for the 

Daubechies DLj beam WFEs are obtained as 2𝑗 + 𝐿 − 2 and 2𝑗 + 𝑚 − 1 for the BSWImj 

beam WFEs. Thus, the total DOFs for both the D101 and BSWI33 beam WFEs are equal to 

10. In order to satisfy the desired requirement of having a vertical displacement and rotation 

DOF at each elemental node in layout 2, the WFEs have 4 elemental segments and 5 

elemental nodes. In contrast, layout 1 has 7 elemental segments and 8 corresponding 

elemental nodes. The vertical displacement and rotation DOFs at node i for the Daubechies 

beam D101 WFE are given as:  

 

 

 𝑣𝑖 = 𝑣 𝜉𝑖 =  𝑏𝐿,𝑘
𝑗

 𝜙𝐿,𝑘
𝑗  𝜉𝑖 

2𝑗−1

𝑘=2−𝐿

=  𝚽𝑳
𝒋 𝜉𝑖    

 1 x 10 
{𝒃𝒆} 10 x 1  (6.20) 

 𝜃𝑖 = 𝜃 𝜉𝑖 =
1

𝐿𝑒
 𝑏𝐿,𝑘

𝑗
 𝜙′𝐿,𝑘

𝑗  𝜉𝑖 

2𝑗−1

𝑘=2−𝐿

=
1

𝐿𝑒
 𝚽′𝑳

𝒋  𝜉𝑖    
 1 x 10 

{𝒃𝒆} 10 x 1  (6.21) 

𝜉 

𝜃1, 𝑚 1  

x 

y 

𝜃2, 𝑚 2  𝜃3, 𝑚 3  𝜃4, 𝑚 4  𝜃5, 𝑚 5  

𝑣1, 𝑓𝑦1  𝑣2, 𝑓𝑦2  𝑣3, 𝑓𝑦3  𝑣4, 𝑓𝑦4  𝑣5 , 𝑓𝑦5  

0 1 
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The D101 beam wavelet transformation matrices for layout 1 and layout 2 are obtained as: 

where  𝑻𝒃
𝒘  

𝐷101 ,1  and  𝑻𝒃
𝒘  

𝐷101 ,2  denote the D101 wavelet transformation matrices for layout 

1 and layout 2 respectively. Similarly, the BSWI33 element vertical displacement and rotation 

DOFs are obtained as: 

and the wavelet transformation matrices are 

 

 𝑻𝒃
𝒘  10 x 10  

𝐷101 ,1
= 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜙10,−8
1  0 𝜙10,−7

1  0 𝜙10,−6
1  0 ⋯ 𝜙10,−1

1  0 𝜙10,0
1  0 𝜙10,1

1  0 

1

𝐿𝑒
𝜙′10,−8

1  0 
1

𝐿𝑒
𝜙′10,−7

1  0 
1

𝐿𝑒
𝜙′10,−6

1  0 ⋯
1

𝐿𝑒
𝜙′10,−1

1  0 
1

𝐿𝑒
𝜙′10,0

1  0 
1

𝐿𝑒
𝜙′10,1

1  0 

𝜙10,−8
1  

1

7
 𝜙10,−7

1  
1

7
 𝜙10,−6

1  
1

7
 ⋯ 𝜙10,−1

1  
1

7
 𝜙10,0

1  
1

7
 𝜙10,1

1  
1

7
 

𝜙10,−8
1  

2

7
 𝜙10,−7

1  
2

7
 𝜙10,−6

1  
2

7
 ⋯ 𝜙10,−1

1  
2

7
 𝜙10,0

1  
2

7
 𝜙10,1

1  
2

7
 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝜙10,−8
1  

6

7
 𝜙10,−7

1  
6

7
 𝜙10,−6

1  
6

7
 ⋯ 𝜙10,−1

1  
6

7
 𝜙10,0

1  
6

7
 𝜙10,1

1  
6

7
 

𝜙10,−8
1  1 𝜙10,−7

1  1 𝜙10,−6
1  1 ⋯ 𝜙10,−1

1  1 𝜙10,0
1  1 𝜙10,1

1  1 

1

𝐿𝑒
𝜙′10,−8

1  1 
1

𝐿𝑒
𝜙′10,−7

1  1 
1

𝐿𝑒
𝜙′10,−6

1  1 ⋯
1

𝐿𝑒
𝜙′10,−1

1  1 
1

𝐿𝑒
𝜙′10,0

1  1 
1

𝐿𝑒
𝜙′10,1

1  1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−1

 
(6.22) 

 

 𝑻𝒃
𝒘  10 x 10  

𝐷101 ,2
= 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜙10,−8
1  0 𝜙10,−7

1  0 𝜙10,−6
1  0 ⋯ 𝜙10,−1

1  0 𝜙10,0
1  0 𝜙10,1

1  0 

1

𝐿𝑒
𝜙′10,−8

1  0 
1

𝐿𝑒
𝜙′10,−7

1  0 
1

𝐿𝑒
𝜙′10,−6

1  0 ⋯
1

𝐿𝑒
𝜙′10,−1

1  0 
1

𝐿𝑒
𝜙′10,0

1  0 
1

𝐿𝑒
𝜙′10,1

1  0 

𝜙10,−8
1  

1

4
 𝜙10,−7

1  
1

4
 𝜙10,−6

1  
1

4
 ⋯ 𝜙10,−1

1  
1

4
 𝜙10,0

1  
1

4
 𝜙10,1

1  
1

4
 

1

𝐿𝑒
𝜙′10,−8

1  
1

4
 

1

𝐿𝑒
𝜙′10,−7

1  
1

4
 

1

𝐿𝑒
𝜙′10,−6

1  
1

4
 ⋯

1

𝐿𝑒
𝜙′10,−1

1  
1

4
 

1

𝐿𝑒
𝜙′10,0

1  
1

4
 

1

𝐿𝑒
𝜙′10,1

1  
1

4
 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝜙10,−8
1  

3

4
 𝜙10,−7

1  
3

4
 𝜙10,−6

1  
3

4
 ⋯ 𝜙10,−1

1  
3

4
 𝜙10,0

1  
3

4
 𝜙10,1

1  
3

4
 

1

𝐿𝑒
𝜙′10,−8

1  
3

4
 

1

𝐿𝑒
𝜙′10,−7

1  
3

4
 

1

𝐿𝑒
𝜙′10,−6

1  
3

4
 ⋯

1

𝐿𝑒
𝜙′10,−1

1  
3

4
 

1

𝐿𝑒
𝜙′10,0

1  
3

4
 

1

𝐿𝑒
𝜙′10,1

1  
3

4
 

𝜙10,−8
1  1 𝜙10,−7

1  1 𝜙10,−6
1  1 ⋯ 𝜙10,−1

1  1 𝜙10,0
1  1 𝜙10,1

1  1 

1

𝐿𝑒
𝜙′10,−8

1  1 
1

𝐿𝑒
𝜙′10,−7

1  1 
1

𝐿𝑒
𝜙′10,−6

1  1 ⋯
1

𝐿𝑒
𝜙′10,−1

1  1 
1

𝐿𝑒
𝜙′10,0

1  1 
1

𝐿𝑒
𝜙′10,1

1  1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−1

 
(6.23) 

 𝑣𝑖 = 𝑣 𝜉𝑖 =  𝑏𝑚,𝑘
𝑗

 𝜙𝑚,𝑘
𝑗  𝜉𝑖 

2𝑗−1

𝑘=−𝑚+1

=  𝚽𝒎
𝒋  𝜉𝑖    

 1 x 10 
{𝒃𝒆} 10 x 1  (6.24) 

 𝜃𝑖 = 𝜃 𝜉𝑖 =
1

𝐿𝑒
 𝑏𝑚,𝑘

𝑗
 𝜙′𝑚,𝑘

𝑗  𝜉𝑖 

2𝑗−1

𝑘=−𝑚+1

=
1

𝐿𝑒
 𝚽′𝒎

𝒋  𝜉𝑖    
 1 x 10 

{𝒃𝒆} 10 x 1  (6.25) 
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where  𝑻𝒃
𝒘  

𝐵𝑆𝑊𝐼33 ,1  and  𝑻𝒃
𝒘  

𝐵𝑆𝑊𝐼33 ,2  denote the BSWI33 beam wavelet transformation 

matrices corresponding to layout 1 and layout 2 respectively. The stiffness and mass 

matrices, as well as the loading vectors in wavelet space, for both Daubechies and BSWI 

based beam elements remain unchanged irrespective of which layout is selected. The D101 

and BSWI33 stiffness matrices in wavelet space  𝒌𝒃,𝒆
𝒘  

𝐷101
 and  𝒌𝒃,𝒆

𝒘  
𝐵𝑆𝑊𝐼33

 are obtained as: 

  𝑻𝒃
𝒘  10 x 10  

𝐵𝑆𝑊𝐼33 ,1
=

 
 
 
 
 
 
 
 
 
 
 
 

𝜙3,−2
3  0 𝜙3,−1

3  0 … 𝜙3,6
3  0 𝜙3,7

3  0 

1

𝐿𝑒

𝜙′3,−2
3  0 

1

𝐿𝑒

𝜙′3,−1
3  0 ⋯

1

𝐿𝑒

𝜙′3,6
3  0 

1

𝐿𝑒

𝜙′3,7
3  0 

𝜙3,−2
3  

1

7
 𝜙3,−1

3  
1

7
 ⋯ 𝜙3,6

3  
1

7
 𝜙3,7

3  
1

7
 

⋮ ⋮ ⋱ ⋮ ⋮

𝜙3,−2
3  

6

7
 𝜙3,−1

3  
6

7
 … 𝜙3,6

3  
6

7
 𝜙3,7

3  
6

7
 

𝜙3,−2
3  1 𝜙3,−1

3  1 ⋯ 𝜙3,6
3  1 𝜙3,7

3  1 

1

𝐿𝑒

𝜙′3,−2
3  1 

1

𝐿𝑒

𝜙′3,−1
3  1 ⋯

1

𝐿𝑒

𝜙′3,6
3  1 

1

𝐿𝑒

𝜙′3,7
3  1 

 
 
 
 
 
 
 
 
 
 
 
 
−1

 (6.26) 

  𝑻𝒃
𝒘  10 x 10  

𝐵𝑆𝑊𝐼33 ,2
=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜙3,−2
3  0 𝜙3,−1

3  0 … 𝜙3,6
3  0 𝜙3,7

3  0 

1

𝐿𝑒

𝜙′3,−2
3  0 

1

𝐿𝑒

𝜙′3,−1
3  0 ⋯

1

𝐿𝑒

𝜙′3,6
3  0 

1

𝐿𝑒

𝜙′3,7
3  0 

𝜙3,−2
3  

1

4
 𝜙3,−1

3  
1

4
 ⋯ 𝜙3,6

3  
1

4
 𝜙3,7

3  
1

4
 

1

𝐿𝑒

𝜙′3,−2
3  

1

4
 

1

𝐿𝑒

𝜙′3,−1
3  

1

4
 ⋯

1

𝐿𝑒

𝜙′3,6
3  

1

4
 

1

𝐿𝑒

𝜙′3,7
3  

1

4
 

⋮ ⋮ ⋱ ⋮ ⋮

𝜙3,−2
3  

3

4
 𝜙3,−1

3  
3

4
 … 𝜙3,6

3  
3

4
 𝜙3,7

3  
3

4
 

1

𝐿𝑒

𝜙′3,−2
3  

3

4
 

1

𝐿𝑒

𝜙′3,−1
3  

3

4
 ⋯

1

𝐿𝑒

𝜙′3,6
3  

3

4
 

1

𝐿𝑒

𝜙′3,7
3  

3

4
 

𝜙3,−2
3  1 𝜙3,−1

3  1 ⋯ 𝜙3,6
3  1 𝜙3,7

3  1 

1

𝐿𝑒

𝜙′3,−2
3  1 

1

𝐿𝑒

𝜙′3,−1
3  1 ⋯

1

𝐿𝑒

𝜙′3,6
3  1 

1

𝐿𝑒

𝜙′3,7
3  1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−1

 (6.27) 

 

 𝒌𝒃,𝒆
𝒘  

 10 x 10  

𝐷101
= 

 
 
 
 
 
 
 
 
 
 

 1.48E − 6 −1.30E − 5 −6.05E − 4 2.48𝐸 − 3 −2.99E − 3 −3.11E − 6 3.59E − 3 −2.97E − 3 8.21𝐸 − 4 0
1.30𝐸 − 5 8.18𝐸 − 3 −1.92𝐸 − 2 −1.12𝐸 − 1 5.57𝐸 − 1 −1.01𝐸0 9.38𝐸 − 1 −4.60𝐸 − 1 9.61𝐸 − 2 8.21𝐸 − 4
−6.05E − 4 −1.92𝐸 − 2 9.23𝐸 − 1 −2.46𝐸0 −8.73𝐸 − 1 1.03𝐸1 −1.52𝐸1 9.93𝐸0 −2.71𝐸0 9.90𝐸 − 2
2.48𝐸 − 3 −1.12𝐸 − 1 −2.46𝐸0 1.39𝐸1 −2.66𝐸1 1.84𝐸1 7.38𝐸0 −1.96𝐸1 1.14𝐸1 −2.25𝐸0
−2.99E − 3 5.57𝐸 − 1 −8.73𝐸 − 1 −2.66𝐸1 1.25𝐸2 −2.32𝐸2 2.21𝐸2 −1.06𝐸2 1.71𝐸1 2.43𝐸0
−3.11E − 6 −1.01𝐸0 1.03𝐸1 1.84𝐸1 −2.32𝐸2 5.97𝐸2 −7.59𝐸2 5.31𝐸2 −1.88𝐸2 2.31𝐸0
3.59E − 3 9.38𝐸 − 1 −1.52𝐸1 7.38𝐸0 2.21𝐸2 −7.59𝐸2 1.20𝐸3 −1.05𝐸3 4.76𝐸2 −8.42𝐸1

−2.97E − 3 −4.60𝐸 − 1 9.93𝐸0 −1.96𝐸1 −1.06𝐸2 5.31𝐸2 −1.05𝐸3 1.12𝐸3 −6.31𝐸2 1.46𝐸2
8.21𝐸 − 4 9.61𝐸 − 2 −2.71𝐸0 1.14𝐸1 1.71𝐸1 −1.88𝐸2 4.76𝐸2 −6.31𝐸2 4.49𝐸2 −1.32𝐸2

0 8.21𝐸 − 4 9.90𝐸 − 2 −2.25𝐸0 2.43𝐸0 2.31𝐸0 −8.42𝐸1 1.46𝐸2 −1.32𝐸2 4.62𝐸2  
 
 
 
 
 
 
 
 
 

 

(6.28) 

 

 𝒌𝒃,𝒆
𝒘  

 10 x 10  

𝐵𝑆𝑊𝐼33
= 

 
 
 
 
 
 
 
 
 
 

2.048𝐸3 −3.072𝐸3 1.024𝐸3 0 0 0 0 0 0 0
−3.072𝐸3 5.120𝐸3 −2.560𝐸3 5.12𝐸2 0 0 0 0 0 0
1.204𝐸3 −2.560𝐸3 3.072𝐸3 −2.048𝐸3 5.12𝐸2 0 0 0 0 0

0 5.12𝐸2 −2.048𝐸3 3.072𝐸3 −2.048𝐸3 5.12𝐸2 0 0 0 0
0 0 5.12𝐸2 −2.048𝐸3 3.072𝐸3 −2.048𝐸3 5.12𝐸2 0 0 0
0 0 0 5.12𝐸2 −2.048𝐸3 3.072𝐸3 −2.048𝐸3 5.12𝐸2 0 0
0 0 0 0 5.12𝐸2 −2.048𝐸3 3.072𝐸3 −2.048𝐸3 5.12𝐸2 0
0 0 0 0 0 5.12𝐸2 −2.048𝐸3 3.072𝐸3 −2.560𝐸3 1.024𝐸3
0 0 0 0 0 0 5.12𝐸2 −2.560𝐸3 5.120𝐸3 −3.072𝐸3
0 0 0 0 0 0 0 1.024𝐸3 −3.072𝐸3 2.048𝐸3  

 
 
 
 
 
 
 
 
 

 

(6.29) 
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The Daubechies and BSWI wavelet based stiffness matrices in physical space are then 

evaluated by applying the wavelet transformation matrices for each corresponding layout. 

  

  

Figure 6-9: Comparison of beam wavelet based finite element layouts for BSWI33 WFEM (a) deflection and (b) rotation; 

D101 WFEM (c) deflection and (d) rotation of a fixed-fixed end beam of uniform cross section subjected to a varying load 

on the right half of the beam. 

The deflections and rotations evaluated using the D101 and BSWI33 wavelet elements, 

formulated for both layouts, are compared with the analytical solution and presented in 

Figure 6-9. The approximation of the deflection in Figure 6-9 for; (a) BSWI33 and (c) D101 

beam wavelet finite elements show that layout 1 leads to more accurate results in comparison 

to  layout 2. This is expected since there are more inner elemental nodal points and 

consequently, vertical displacement DOFs associated with these points. Therefore, it is 

concluded that the number of DOFs relating to the order and multiresolution scale of a 

specific WFE will remain the same. However, the types and positions of the DOFs assigned 

to the inner elemental nodes affect the number of elemental nodes, layout of the WFEs and 

the accuracy of the solution. This is consistent with Xiang et al. [7] formulation of the BSWI 

beam WFEM, where it is stated that only the wavelet transformation matrices are modified 

with a change in layout of the BSWI WFE; provided the wavelet transformation matrix is 

non-singular. This is not restricted to the BSWI formulation of the WFEs, but also applies to 

the Daubechies based WFEM. Thus, the elemental matrices and loading vectors in wavelet 

space can be evaluated and stored so as to minimise computational costs. Furthermore, the 

(a) (b) 

(c) (d) 
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positions of the inner elemental nodes need not be equidistant and can be positioned such that 

areas with fast variations have the inner nodes closer together. The ability of the WFEM to 

allow for the modification of the location and number of inner elemental nodes, as well as 

DOFs, exhibits the versatility of the WFEM. One can manipulate the element layout in order 

to maximise on the efficiency and accuracy of the solutions. 

If the variation of the slope along the beam is desired, it is difficult to accurate describe this 

variation via layout 1 by implementing the rotations obtained directly from the solutions. The 

rotation DOFs for both WFE approaches via layout 1 are only present at the elemental end 

nodes. Thus, for a case such as this where the beam is modelled using two WFEs, there are 

only a total of 3 rotation DOFs present, two of which are restricted by the fixed-end boundary 

conditions. Therefore, the 3 rotation DOFs are insufficient to accurately describe the variation 

of the slope across the beam. 

One approach to circumvent this is to increase the number of WFEs However, this will 

increase the computation cost significantly. Another approach is to modify the beam WFE to 

include the rotation DOFs at the inner nodes, similar to layout 2. This will lead to fewer 

elemental nodes within the WFE, which is undesirable as it will reduce the accuracy levels 

and efficiency for the deflection approximation as observed earlier. 

The third approach involves using the displacement solution to evaluate the rotations at each 

corresponding elemental node via the formulation: 

where {𝒗𝒆} is the vector containing the solved wavelet element DOFs in physical space. This 

approach is used to obtain the rotation approximations across the beam for layout 1; which is 

compared with the rotations obtain directly from layout 2 in Figure 6-9 for the (b) BSWI33 

and (d) D101 WFEs. According to the results layout 1 provides a better approximation to 

layout 2 since there are more elemental nodes within the WFEs 

The subsequent results in this section are obtained via layout 1. The Daubechies based WFE 

solutions for the variation of the deflection and rotation along the beam are presented in 

Figure 6-10; for different orders and multiresolution. Figure 6-10 (a) illustrates via the D10j 

WFE that increasing the multiresolution of the wavelet element increases the accuracy of the 

deflection approximation. Increasing the order also improves the accuracy of the deflection 

since higher order Daubechies wavelets are able to exactly represent higher order 

 𝜃𝑖 = 𝜃 𝜉𝑖 =
1

𝐿𝑒
 
𝜕

𝜕𝜉
𝚽𝒛

𝒋 𝜉𝑖    𝑻𝒃
𝒘  {𝒗𝒆} =

1

𝐿𝑒
 𝑵′𝒃,𝒆 𝜉   𝒗𝒆  (6.30) 
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polynomials. The results for D10, D12, D14, D16 and D18 at scale j = 0 are in good 

agreement with the exact analytical solution as presented in Figure 6-10 (b). The results are 

not as precise for the D200 element due to the numerical instabilities that affect higher order 

Daubechies wavelets, which are also highlighted in [40]. 

  

  

Figure 6-10: Deflection and rotation of a fixed-fixed end beam of uniform cross section subjected to a varying load on the 

right half of the beam for Daubechies WFEM. (a) Deflection D10j. (b) deflection DLj. (c) rotation D10j. (d) rotation DL0 

elements. 

The rotation of the beam for the Daubechies WFEM is illustrated in Figure 6-10 for (c) D10j 

and (d) DL0 element beams. From these graphs, the accuracy of the rotation improves as the 

order and/or multiresolution scale of the WFE is increased. However, since the 

approximation of the beam displacements is not as accurate for D200, the rotation across the 

beam is also not as accurate.  

Figure 6-11 (a) and (b) show the variation of the displacement across the beam using the 

BSWI based WFEM for different orders and different scales j. The results are observed to be 

in very good agreement with the exact solution. Figure 6-11 (c) and Figure 6-11 (d) show that 

the rotation approximations across the beam obtained via the BSWI WFEM are highly 

accurate for the different orders and resolution scales j.  

(a) (b) 

(c) (d) 
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Figure 6-11: Deflection and rotation of a fixed-fixed end beam of uniform cross section subjected to a varying load on the 

right half of the beam for BSWI WFEM. (a) Deflection BSWI3j, (b) deflection BSWIm4, (c) rotation BSWI3j and (d) 

rotation BSWIm4 elements. 

To expound further on the accuracy of the results of the beam displacements via the different 

formulations, the absolute percentage error at point 1.168 l is plotted in Figure 6-12 for: (a) 

FEM with varying number of elements, (b) p-FEM at different polynomial orders, (c) BSWI 

based finite element method and (d) Daubechies based wavelet finite element method. The 

approximate point 1.168 l is the location on the beam that the rotation is zero and is therefore 

the point at which maximum deflection is expected to occur. 

Figure 6-12 (a) and Figure 6-12 (b) illustrates the effect of increasing the number of elements 

and/or order of the polynomial on the accuracy of results for FEM. Figure 6-12 (c) illustrates 

that BSWI based WFEM converges to the exact solution by either increasing the order or the 

scale of the BSWI wavelet element; which is consistent with the findings of Xiang et al. [7] 

This is also the case for Daubechies based WFEs as shown in Figure 6-12 (d); apart from 

D20j where the effects of numerical instability for higher order Daubechies wavelets are 

evident and divergence of the solutions begins to occur. It is noted that for the FEM-10 (22 

DOFs), p-FEM-11(22 DOFs), D121 (22 DOFs) and BSWI43 (19 DOFs) solutions, the errors 

obtained are 1.08374, 1.08374, 0.661155 and 0.766358 respectively. It is therefore evident 

(a) (b) 

(c) (d) 
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that the WFEM solutions lead to better approximations of the results in comparison to FEM 

solutions. Given the simple nature of this static problem, the computational costs for the WFE 

solutions as a whole are higher than the h and p FEMs. This is due to the fact that the wavelet 

elemental matrices and load vectors must be evaluated and transformed into physical space, 

particularly for Daubechies WFEM where the connection coefficients must be solved. 

However, fewer elements and DOFs are required to attain higher levels of accuracy with 

respect to WFEM and the evaluation of system equations alone is computational faster. 

  

  

Figure 6-12: Comparison of the absolute percentage deflection error for the beam subjected to a varying load at point x = 

1.168 l. (a) FEM. (b) p-FEM. (c) Daubechies WFEM and (d) BSWI WFEM. 

Figure 6-13 contains graphs illustrating the stress variation across the beam for (a) FEM with 

different number of elements, (b) FEM with varying polynomial order, (c) BSWI4j element 

for different multiresolution scales j, (d) BSWIm4 element for different orders m, (e) D12j 

element for different multiresolution j and (e) DL0 element for different orders L. The stress 

and strains are both evaluated from the double derivative of the vertical displacement of the 

beam as described in Section 5.2. The displacement function in the FEM approach is a cubic 

function, hence the stresses and strains vary linearly across the beam element. The elements 

on the left half of the beam, which are not subjected to loading, have the stresses and strains 

varying linearly. Therefore, the approximation of the stress variation on this half of the beam 

via FEM, from Figure 6-13 (a), is accurate for any number of elements. However, on the 

(a) 

 
 (a) 

(b) 

(c) (d) 
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right hand half of the beam that is subjected to the linear varying load, the stresses and strains 

vary cubically.  

  

  

  

Figure 6-13: Normal stress across a fixed-fixed end beam of uniform cross section subjected to a varying load on the right 

end of the beam. (a) h-FEM. (b) p-FEM. (c) BSWI4j WFEM. (d) BSWIm4 WFEM. (e) Daub D12j WFEM. (f) Daub DL0 

WFEM. 

(a) (b) 

(c) (d) 

(e) (f) 
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This explains the discontinuities at element boundaries and the poor approximations obtained 

via the FEM with lower number of elements; such as FEM-2 and FEM-4. However, 

increasing the number of element increases the levels of accuracy with respect to the stress 

and strain solutions, particularly in the regions subjected to the varying load. The lower order 

p-FEM solutions, such as p-FEM-5 and p-FEM-7 modelled using only two elements, do not 

describe the variation of the stresses and strains on the right hand half of the beam as 

accurately. However, increasing the order of the approximation functions results in better 

accuracy as observed in Figure 6-13 (b).  

The BSWI based wavelet finite element approach approximates the stresses and strains very 

accurately. Increasing the level of multiresolution leads to the convergence of the 

approximate solution to the exact solution, as observed in Figure 6-13 (c) for BSWI4j element 

solutions. Increasing the order of the BSWI also leads to improved approximations of the 

stresses and strains across the beam as observed in Figure 6-13 (d). It is also noted that for 

BSWI3j elements, the inner elemental nodes approximate the stresses accurately on both 

halves of the beam. There are discontinuities present at the boundaries of the adjacent 

elements. However, these discontinuities are not present for BSWI based elements of 

order 𝑚 ≥ 4. 

It is also observed in Figure 6-13 (e) and Figure 6-13 (f) that the Daubechies based WFEM 

solutions for D12j are good at both halves of the beam. The results of the stresses and strains 

using the Daubechies based WFEM agree very well with the exact solution for elements of 

order 12 ≤ 𝐷𝐿 ≤ 18; subsequently, for the higher multiresolution scales for these wavelet 

families. However, there is a slight discontinuity present at the elemental end node 

boundaries coinciding with the midpoint of the beam for the D100 elements.  

In addition to the deflection, rotation, stress and strain variations of the beam, the (a) bending 

moments (b) curvature and (c) shear force variations can be evaluated and compared for the 

different approaches as presented in Figure 6-14. The bending moments and curvature of the 

beam are obtained from the double derivative of the beam displacement function, while the 

shear force is obtained from the third derivative of the displacement function. The bending 

moment and curvature at the unloaded region of the beam vary linearly while the shear force 

variation is constant. However, at the right end region of the beam, the bending moments and 

curvature of the beam vary cubically, while the shear force varies quadratically. The 

variations of the bending moments (linear), curvature (linear) and shear force (constant) 

along the left half of the beam are in good agreement with the exact solution for all the 
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approaches. The main focus is the capability of the different approaches to accurately obtain 

the solutions for the bending moments, curvature and shear force variations along the loaded 

right hand segment of the beam.   

 

 

 
Figure 6-14: (a) Bending moments, (b) Curvature and (c) Shear force across a fixed-fixed end beam of uniform cross 

section subjected to a varying load on the right end of the beam. 

(a) 

(b) 

(c) 
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The FEM approach has the variation of the bending moments and curvature in this region 

varying linearly rather than the actual cubic variation. Therefore, more finite elements are 

required for better approximations. The shear force varies constantly within the finite element 

rather than as a quadratic function (exact solution) in this region. Therefore, the mesh 

requires further refinement to improve the accuracy of the solution, as is the case in Figure 

6-14 (c) where 20 finite elements are required. Alternatively, increasing the order of the field 

variable approximation improves the results. 

However, for one to accurately approximate the variation of the shear force, curvature and 

bending moments without discontinuities at the end element nodes, for both WFEMs, higher 

order WFEs should be implemented. The D120 WFE is found to be the least order for the 

Daubechies WFEs that can accurately approximate the bending moments, curvature and shear 

force in this case.  Similarly, in order to accurately approximate the variations of the bending 

moment and curvature, the least order for the BSWI based WFEM is BSWI43 and BSWI54 

for the shear force. The results presented in Figure 6-14 show the good performance with 

respect to accuracy of the BSWI and Daubechies WFEMs in approximating the variation of 

the bending moments, curvature and shear force along the beam. 

6.3.  Simply supported Euler Bernoulli stepped beam with uniformly 

distributed load (UDL) 

A simply supported two-stepped beam of length 2l is subjected to a uniformly distributed 

load q(x) = 1 as illustrated in Figure 6-15. The non-uniform flexural stiffness of the beam is 

represented by the unequal cross sections of the left and right segments; their bending 

stiffness is given as 𝐸1𝐼1  =  𝐸0𝐼0 and 𝐸2𝐼2  = 4 𝐸0𝐼0 respectively. 

 

Figure 6-15: Simply supported stepped beam subjected to uniformly distributed load q(x) = 1. 

𝑞(𝑥) = 1 

l l 

 

𝐸1𝐼1  = 𝐸0𝐼0 𝐸2𝐼2= 4 𝐸0𝐼0 

 

y 

x  
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This numerical example is carried out to have a clearer understanding of how the BSWI and 

Daubechies based WFEMs compare to one another, and other formulations, when a sudden 

flexural stiffness discontinuity is present in a beam. A similar example was carried out by Ma 

et al. [10] and later Diaz et al. [40], to compare the Daubechies WFEM, at scale j = 0, with 

the classical FEM solutions. An analytical solution for Euler-Bernoulli beams that have 

discontinuities in the flexural stiffness was presented by Bondi and Caddemi [105]. The 

flexural stiffness function is expressed as: 

where 𝛾 = 0.75 is defined as the decrement of discontinuity intensity and satisfies the 

condition 0 ≤ 𝛾 ≤ 1 to ensure positivity of the flexural stiffness [105]. 𝐻  𝑥 − 𝑥0  is the 

Heaviside function for 0 ≤ 𝑥0 ≤ 2𝑙. The general governing equation is  

The potential energy of the beam is expressed as [27]: 

Following the principle of minimum potential energy, based on the formulations of the Euler 

Bernoulli beam stiffness matrix and uniformly distributed load vectors for the WFE as 

described in Section 5.2, the system equation is defined as: 

where the vector  𝑽𝒃  contains the displacement and rotation DOFs within the entire beam, 

 𝑲𝒃  is the beam stiffness matrix in physical space and  𝑭𝒃  is the equivalent load vector in 

physical space for the system. 

Figure 6-16 describes the variation of the (a) deflection and (b) slope of the stepped beam, 

when subjected to a uniformly distributed load 𝑞 𝑥 = 1, via the different approaches. The 

classical FEM solution with 8 elements (18 DOFs), p-FEM solution for order 𝑚 = 9 (18 

DOFs), Daubechies D101 WFEM solution (18 DOFs) and BSWI33 WFEM solution (18 

DOFs) with 2 elements, are compared. The different solutions are in good agreement with the 

exact solution from Figure 6-16(a). The maximum deflection occurs on the left half of the 

beam since its stiffness is a quarter of the flexural stiffness of the right hand side. The slope is 

 𝐸 𝑥 𝐼 𝑥 = 𝐸0𝐼0 1 − 𝛾 𝐻  𝑥 − 𝑥0   (6.31) 

  𝐸0𝐼0 1 − 𝛾 𝐻  𝑥 − 𝑥0  𝑣
′′  𝑥  ′′ = 𝑞(𝑥) (6.32) 
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𝑑𝑥 (6.33) 

  𝑲𝒃  𝑽𝒃 =  𝑭𝒃   (6.34) 



 

145 

 

also generally well approximated by all approaches. It is also observed that the slope 

variation significantly changes at the point of the discontinuity at 𝑥 = 𝑙. 

  

Figure 6-16: (a) Deflection and (b) rotation across a simply supported stepped beam subjected to a uniformly distributed 

load q(x) = 1. 

The percentage error of the deflection across the beam using the BSWI wavelet based beam 

elements is presented in Figure 6-17 for different orders m and multiresolution scales j. From 

the results, it is observed that the BSWI33 element formulation has the highest error 

variations across the beam in comparison to the other higher order and/or multiresolution 

BSWI WFEs. Increasing the order to BSWI43 reduces the error since increasing the order of 

the wavelet family improves the smoothness of the scaling functions and subsequently 

improves the accuracy of the function approximation. Furthermore, increasing the 

multiresolution scale from BSWI33 to BSWI34 means that the additional detail is included in 

the approximation, thus increasing the levels of accuracy. 

 

Figure 6-17: Deflection percentage error across a simply supported stepped beam subjected to a uniformly distributed load 

q(x) = 1 for the BSWImj WFE. 

(a) (b) 
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Similarly, the percentage error of the deflection across the beam for the Daubechies WFEM 

is illustrated in Figure 6-18. The observations made from the results confirm that increasing 

the order and/or the multiresolution scale of the Daubechies WFEs increases the levels of 

accuracy significantly.  

 

Figure 6-18: Deflection percentage error across a simply supported stepped beam subjected to a uniformly distributed load 

q(x) = 1 for the Daubechies based DLj WFE. 

A comparison of the deflection percentage errors for the different formulations is presented in 

Figure 6-19. All the formulations have a total number of 18 DOFs within the entire beam and 

this value is selected to ensure that the maximum error via any of the formulations falls below 

5% at any point across the beam. This is the commonly accepted error threshold in common 

engineering practices. It is observed that the wavelet based elements perform very well in 

comparison to the FEM and p-FEM solutions, having maximum errors of: 1.28% (D101 

WFEM), 1.28% (BSWI33 WFEM), 3.82% (FEM-8) and 3.82% (pFEM-9). This is implies 

that the results via WFEM are more accurate, with fewer elements and DOFs, than classical 

FEM and p-FEM approaches.  

This is mainly attributed to the selected layout and the multiresolution property of the wavelet 

formulations, which improve the approximation accuracy. It is also observed that the errors 

are relatively higher at the more flexible left hand side of the beam since the flexural stiffness 

is lower than on the right hand side. This implies that for stiffer elements, lower order and/or 

multiresolution scale of WFEs can be selected in order to attain acceptable levels of accuracy. 

Correspondingly, higher orders and/or scales may be required to solve for highly flexible 

structures that are characterised by larger deflections. 
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Figure 6-19: Comparison of the deflection percentage error across a simply supported stepped beam subjected to a 

uniformly distributed load q(x) = 1. 

Aside from the deflection and the slope of the beam, the (a) normal stress, (b) bending 

moments (c), curvature and (d) shear force variations across the beam are presented in Figure 

6-20. 

 
 

  

Figure 6-20: (a) Normal stress, (b) bending moments, (c) curvature and (d) shear force across a simply supported stepped 

beam subjected to a uniformly distributed load q(x) = 1. 

(a) (b) 

(c) (d) 
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The stress across the more flexible left side of the beam is significantly higher than the right 

end from Figure 6-20 (a). The sudden change in stress coincides to the point where the 

singularity in the flexural stiffness occurs within the element. All formulations are in good 

agreement with the analytical solution for the normal stress, accurately detect the singularity 

location. The bending moment variation across the beam is characterised by a smooth 

symmetric curve as observed in Figure 6-20 (b). The curvature variation from Figure 6-20 

(c), exhibiting a discontinuity at the point 𝑥 = 𝑙, where the flexural stiffness suddenly 

changes in the beam. The shear force, from Figure 6-20 (d), varies linearly across the beam 

since the uniformly distributed load is characterised by a constant variation across the beam. 

The p-FEM and both the Daubechies WFE and BSWI WFE solutions accurately approximate 

the shear force variation across the beam. However, the classical finite element approach has 

the shear force constant within each element. This is the reason for the discontinuities present 

at the boundaries of adjacent elements. It is therefore necessary to increase the number of 

elements to better approximate the shear force across the beam. 

6.4.  Buckling analysis of stepped planar bars under various boundary 

conditions 

The buckling analysis of a (a) two-stepped and (b) three-stepped planar (plane) bar of length l 

and uniform Young’s modulus E, as illustrated in Figure 6-21, is carried out in this section. 

For the two-stepped bar, as illustrated in Figure 6-21 (a), the moment of inertia for the bottom 

and top half of the bar are given as 𝐼1 = 𝐼0 and 𝐼2 =
𝐼0

2
 respectively. In Figure 6-21 (b), the 

three-stepped bar is divided into three sections; according to the variation of the cross-

sectional area and moment of inertia. The top segment of length 
𝑙

4
, middle segment of length 

𝑙

2
 

and bottom segment of length 
𝑙

4
 have the moment of inertia as 𝐼1 =

𝐼0

2
, 𝐼2 = 𝐼0 and 𝐼3 =

𝐼0

2
  

respectively. An analysis of the critical buckling load 𝑃 , under compressive axial loading and 

different boundary conditions at points A and B, is carried out via the Daubechies and BSWI 

based WFEMs. The buckling analysis using WFEM involves solving the system equation 

[27] 

where  𝐾𝐸  and  𝐾𝐺  are the system elastic and geometric stiffness matrices which are 

obtained by assembling the corresponding element matrices derived in Section 5.3. 

   𝐾𝐸 + 𝜆  𝐾𝐺   𝑉  = 0 (6.35) 
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Figure 6-21: (a) Two-stepped and (b) three-stepped planar bar of length l. 

The eigenvectors  𝑉   contain the buckling modes shapes, while the eigenvalues 𝜆 = −
1

𝑃 
 are 

used to obtain the corresponding buckling loads. The critical buckling load is obtained from 

the first eigenvalue. The approximate solutions obtained are compared with the exact results 

as achieved by Wang and Li [106]. Furthermore, the first buckling mode shapes for each case 

are presented. The buckling analysis is carried out with various boundary conditions at A and 

B, with the notation A-B used for simplicity. In addition, the boundary conditions: free, 

clamped and pinned are denoted by F, C and P respectively. Thus, F-C signifies the boundary 

condition, free at A and clamped at B. 

 Two-stepped planar bar  Three-stepped planar bar  

 F-C P-C C-C P-P F-C P-C C-C P-P 

Exact [106] 2.0671 12.5914 25.8120 6.4075 1.6326 14.5520 28.6765 8.2685 

BSWI43 WFE 2.06723 12.5917 25.8103 6.40772 1.63264 14.5521 28.6769 8.2689 

% Error (1.06E-3) (2.24E-3) (1.35E-2) (1.74E-3) (3.46E-4) (8.32E-4) (3.00E-3) (3.50E-3) 

Daub D100 WFE 2.06725 12.5973 26.2083 6.40867 1.63268 14.5542 28.6856 8.26901 

% Error (1.19E-3) (4.66E-2) (3.15E0) (9.26E-3) (6.49E-4) (1.76E-2) (7.24E-2) (4.08E-3) 

Table 6-1: Critical buckling load of a two-stepped and three-stepped planar bar under axial compressive loading. 
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Figure 6-22: First buckling mode shapes of the two-stepped planar bar of length l. (a) F-C (b) P-C (c) C-C and (d) P-P 

boundary conditions. 

Two and three planar bar WFEs are used to model the two-stepped and three-stepped planar 

bars respectively, for both the Daubechies and BSWI WFEMs. The Daubechies D100 and 

BSWI43 bar WFEs were selected in this analysis since they are the lowest order and 

multiresolution scale wavelet finite elements that can be applied to model the planar bar 

elements. The total DOFs for the two-stepped and three-stepped Daubechies WFE bars are 29 

and 42 respectively, while for the BSWI43 bars are 37 and 54 correspondingly. The buckling 

critical loads for both bars under different boundary conditions are presented in Table 6-1.  

It is observed both WFE approaches give highly accurate solutions for the critical buckling 

load of the two-stepped and three-stepped planar bar; under different boundary conditions. 

All results, with the exception of the Daubechies D100 two-stepped bar WFE C-C (3.15%), 

have a percentage error of below 0.075%. In general, the results using the BSWI43 WFE are 

slightly better than D100 elements since it has a higher number of DOFs. 

 

(a) (b) 

(c) (d) 
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Figure 6-23: First buckling mode shapes of the three-stepped planar bar of length l. (a) F-C (b) P-C (c) C-C and (d) P-P 

boundary conditions. 

The first buckling mode shapes of the two-stepped and three-stepped bar obtained via the 

D100 and BSWI43 are presented in Figure 6-22 and Figure 6-23 respectively; under (a) F-C 

(b) P-C (c) C-C and (d) P-P boundary conditions. Taking into account that the first buckling 

load is of importance, the first buckling mode shapes associated with the buckling load is 

presented for each boundary condition. The Daubechies and BSWI WFEM solutions are in 

relatively good agreement with each other. Increasing the order and/or multiresolution of the 

WFEs improves the accuracy of the solutions. 

6.5.  Additional remarks  

The static analysis of a uniform beam subjected to a varying load and un-uniform beam 

subjected to a uniformly distributed load, as presented in Section 6.2 and Section 6.3 

respectively, are also carried out by Ma et al. [10] and Diaz et al. [40] using the Daubechies 

WFEM. Ma et al. [10] indicate that different orders of the Daubechies wavelet can be applied 

to formulated the WFEs. However, in their study they implement the D12 wavelet at 

(a) (b) 

(c) (d) 
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multiresolution scale 𝑗 = 0. Although their analysis is also carried out using Daubechies 

wavelet beam finite elements at multiresolution scale 𝑗 = 0, Diaz et al. [40] in a later study 

state that D12 is the lowest applicable order of the Daubechies wavelet to achieve accuracy 

for the beam element formulation. However, the connection coefficients and the wavelet 

transformation matrices described in this thesis facilitate the use of other orders of the 

Daubechies wavelet family to formulate the beam WFEs. The results in chapter provide 

evidence that D10 beam WFEs can be in fact implemented and attain sufficiently high levels 

of accuracy. The accuracy of the results can be improved further by increasing the 

multiresolution scale j without having to increase the number of WFEs.  

Furthermore, in the analysis by Diaz et al. [40], it is further stated that only certain orders of 

the Daubechies wavelet are applicable to model a beam WFE. The layout of the beam 

implemented is similar to layout 1, where the rotation DOFs are only present at the element 

extreme nodes and displacement DOFs at each elemental node. Diaz et al. [40] suggest that 

Daubechies order L must be such that 𝐿 = 2𝑘 + 4, for 𝑘 ∈ ℤ, 𝑘 > 0. This is to ensure that the 

location of the elemental nodes coincide exactly with the scaling functions’ and their 

derivatives’ dyadic points, 𝑥 =  
𝑘

2𝑖 for 𝑘, 𝑖 ∈ ℤ and 𝑖 ≥ 0 for 𝜙𝐿(𝑥). Therefore, according to 

their findings the orders that can be implemented to model the beam WFE are restricted to L 

= 6, 8, 12, 20,....  

However, from the results presented in this chapter, the Daubechies WFEM formulation 

allows for the implementation of the beam WFEs using the other orders D10j, D14j, D16j and 

D18j, while still achieving high levels of accuracy. This is made possible by selecting a value 

of i that gives an acceptable level of accuracy and then carrying out an interpolation for the 

approximate values of 𝜙𝐿 𝑥 , 𝑓𝑜𝑟  𝑥 ∈ ℝ, within these dyadic points to reduce the 

computational time. The value of i selected in this study to obtain the scaling functions and 

derivatives at dyadic points is 15. Interpolation is then carried out to obtain the real values 

that are not exactly situated at these dyadic points. The values are then stored to reduce 

computational costs. The results presented in this and subsequent chapters prove that this 

approach is indeed feasible and sufficient for the application of other Daubechies wavelets 

whose order does not meet the suggested requirement 𝐿 = 2𝑘 + 4 for 𝑘 ∈ ℤ, 𝑘 > 0. This is 

not only restricted to the Daubechies beam WFEs and can be applied to the rod and plane bar 

elements as analysed in this study, irrespective of the element layout selected. Moreover, this 

approach also allows for the variation of the WFE layout for the different orders of the 
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wavelet. Thus, the DOFs at the inner nodes can be modified for different structural analysis 

problems. 

In this chapter, the results begin to diverge for 𝐷𝐿 ≥ 20 due to numerical instabilities and 

errors arising when evaluating the connection coefficients. This is consistent with the 

findings presented by Diaz et al. [40]. 

Given the simple nature of these static problems presented in this chapter, the computational 

costs of the WFEMs are higher than the classical FEM due to the evaluation of the element 

matrices and load vectors in wavelet space as well as the further transformation into physical 

space. However, as the complexity of problems increases, particularly for dynamic problems, 

the computational costs of the WFEMs are lower than the classical FEM. This is further 

discussed in following chapter. 

6.6.  Conclusion 

The numerical examples presented in this chapter were carried out with the main intention of 

verifying, comparing and analysing the performance of the BSWI and Daubechies wavelet 

based finite element methods for static and buckling analysis. The wavelet based finite 

element approaches were highly accurate and demonstrate their capability to analyse various 

structural problems; with a variety of loading conditions, boundary conditions and/or 

geometric properties. 

Furthermore, the BSWI and Daubechies based solutions attained better levels of accuracy, 

with fewer elements and degrees of freedom, than the classical and p-adaptive FEMs. This 

was mainly attributed to the multiresolution aspect of wavelet analysis, to which refining the 

scale provided additional information and subsequently reduces the level of errors of the 

approximate solution. Moreover, the original discretization of the system did not need 

modification when altering the order and/or multiresolution scale of the wavelet based 

functions. This was consistent with the findings presented in [6,7,10,40].  

The algorithms formulated and implemented in this study allowed for the accurate 

formulation of the Daubechies wavelet based beam finite elements for orders D10, D12, D14, 

D16 and D18, at different multiresolution scales j, irrespective of the layout selected. To the 

best of the author’s knowledge, the implementation and extensive comparison of the different 

Daubechies wavelet finite elements formulated using these different orders, at various scales, 

was carried out for the first time in this study. Furthermore, the wavelet based finite elements 

can be formulated using different layouts, where the nodal DOFs can be varied in location. 
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Consequently, the location and number of elemental nodal points can be varied using the 

approach implemented to formulate the WFEM in this study.  

The elemental matrices and load vectors in wavelet space were evaluated only once and 

stored to reduce computational costs since only the wavelet transformation matrix is modified 

when altering the wavelet based element layouts. This capability to modify the WFEs 

enhances the versatility of the WFEM to maximize on efficiency and increase levels of 

accuracy in the analysis of a wide variety of structural problems. The same also applies to the 

BSWI WFEM, as stated by Xiang et al. [7], and the results presented in this study were 

consistent with their findings. 

Wavelet based finite element Daub WFEM BSWI WFEM 

Rod element Axial deformation D60 BSWI22 

Axial stress/strain D80 BSWI33 

Beam element subjected to varying 

load 

Vertical deflection D100 BSWI33 

Rotation D100 BSWI33 

Stress/strain, Bending 

moment, curvature  

D120 BSWI43 

Shear force D120 BSWI54 

Beam element with flexural 

discontinuities 

Vertical deflection D100 BSWI33 

Rotation D100 BSWI33 

Stress/strain, Bending 

moment, curvature  

D120 BSWI43 

Shear force D120 BSWI54 

Table 6-2: Summary of least wavelet orders and multiresolution scales implemented for various wavelet based finite 

elements. 

The order of the wavelet family to be used mainly depends on the problem to be analysed, the 

nature of required results and the necessary levels of accuracy to be achieved. It is therefore 

up to the analyst to decide what order and/or multiresolution scale to implement in the 

analysis. However, the order of the wavelet families employed must at least satisfy the 

necessary requirements of the approximating functions to ensure convergence i.e., 

compatibility and continuity within and between elements. Though it may not be 
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categorically stated which order and scale of the wavelet based finite elements is best suited 

for the analysis of various engineering structural problems, the results presented in this 

chapter provide the least orders and scales that may be implemented based on the field 

variables. Although lower order WFEs may accurately approximate the variations of these 

field variables within the elements, this criterion is based on the order of the field variable 

function to ensure inter-element compatibility; thus ensuring no inter-element discontinuities 

are present. Furthermore, the least value of multiresolution scale that can be implemented for 

the Daubechies WFEs is 𝑗 = 0. However, for the BSWI WFEM, the requirement 𝑗 ≥ 𝑗0 must 

be met. Table 6-2 presents a summary of the least order and multiresolution scale that can be 

implemented for various Daubechies and BSWI based wavelet finite elements. It must be 

mentioned that for the Daubechies WFEM, the results of the wavelet based finite elements of 

order > D18 were inaccurate due to numerical instabilities. This was consistent with the 

findings of Diaz et al. [40]. 

In general, improving the accuracy of the results can be carried out by increasing the order of 

the wavelet family since higher order functions are better approximated due to the increased 

smoothness of the wavelet scaling functions. Moreover, increasing the multiresolution scale, 

which provides additional information, also increases accuracy. Alternatively, it is possible to 

increase the accuracy by refining the mesh and increasing the number of wavelet based finite 

elements. This was consistent with Xiang et al. [7] and Chen et al. [6] findings. 
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7. Wavelet Finite Element Method in Dynamic Analysis of 

Moving Load Problems  

Summary 

In this chapter, the wavelet based finite element method is implemented in the dynamic 

analysis of moving load problems. The results obtained via numerical examples for the 

Daubechies and BSWI based wavelet finite element methods are compared for different WFE 

orders and multiresolution scales. The numerical examples presented and discussed in this 

chapter include: 

Example 1: The dynamic response generated by a locomotive travelling over a large-

span bridge modelled as a simply supported WFE beam subjected to a harmonic 

moving load. This analysis is similar to an example carried out by Fryba [102] and is 

necessary to validate and verify the WFEM moving load formulation used in the 

analysis of moving load problems. The damping component within the WFE system 

is modelled as viscous damping. In this example the response of the beam is analysed 

for subcritical, critical and supercritical velocity profiles of the moving load. 

Example 2: The free vibration analysis of a Vierendeel frame based on the 

Daubechies and BSWI WFEMs is initially carried out. The dynamic responses of the 

frame subjected to a moving point load, for different moving load velocities, are 

presented using the Daubechies and BSWI based WFEMs and compared with FEM.  

Example 3: The dynamic response of a high speed locomotive travelling over a track 

is analysed as a long simply supported beam resting on: a) elastic and b) viscoelastic 

foundations, subjected to moving point load. The WFE beam is formulated based on 

Euler-Bernoulli beam theory and the dynamic response is analysed for subcritical, 

critical and supercritical velocities of the moving load. Furthermore, the analysis is 

carried out for subcritical, critical and supercritical viscous damping of the 

foundation. The BSWI and Daubechies WFEM solutions are compared with the 

classical FEM approach.  

The effects of altering the multiresolution scales and/or orders of the Daubechies and BSWI 

wavelet based element formulations, on the accuracy of the response for the different moving 

load problems, are presented and discussed. 
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A comparative study is carried out for the first time based on the implementation of the 

Daubechies and BSWI based WFEM and the classical FEM formulations for the dynamic 

analysis of structural beam moving load problems.  

7.1.  Simply supported beam subjected to a moving harmonic load 

The BSWI and Daubechies based wavelet finite element methods are used to analyse a 

simply supported beam subjected to a moving harmonic load, as presented in Figure 7-1. The 

simplified model is used to represent the dynamic effects of a steam locomotive travelling 

across long span bridges and this analysis is classified as vehicle-bridge interaction [107]. 

The wavelet based finite element solutions are compared to analytical solutions presented by 

Fryba [102]  and the classical FEM. The example is carried out to primarily validate the 

WFEM moving load approach and carry out a comparative study of the different approaches 

implemented in this section.  

 

Figure 7-1: Simply supported uniform beam subjected to a harmonic moving load. 

The Euler Bernoulli beam theory is used to describe the behaviour of the elastic beam with 

the assumptions that the beam undergoes small deformations and therefore shear 

deformations are neglected; the cross-sectional area and material properties are uniform 

across its length. Furthermore, the beam is assumed to be at rest at time 𝑡 = 0 when the load 

arrives on to the bridge; thus the velocity and displacement of the beam is zero at this instant. 

The load is assumed to travel cross the simply supported beam from the left edge to the right 

edge at a constant velocity c ms
-1

. The analysis is carried out from the time the moving load 

arrives to the time it departs from the beam. 

Therefore, the governing equation describing the dynamic behaviour of the damped system is 

given as [27]: 

  𝑴𝒃  𝑽 𝒃(𝑡) +  𝑪𝒃  𝑽 𝒃(𝑡) +  𝑲𝒃  𝑽𝒃(𝑡) =  𝑭𝒃(𝑡)  (7.1) 

x0 = ct 

 

v 

𝑞(𝑥, 𝑡) = 𝑃(𝑡)𝛿(𝑥 −x0) 

l 

EI, μ 

x 

 

c ms
-1 
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where the matrices  𝑴𝒃 ,  𝑪𝒃  and  𝑲𝒃  are the Euler Bernoulli beam global mass, damping 

and stiffness matrices respectively and  𝑭𝒃(𝑡)  is the time-dependent harmonic moving load 

vector, as formulated in Section 5.2, in physical space. The vectors  𝑽𝒃(𝑡) ,   𝑽 𝒃(𝑡)  and 

 𝑽 𝒃(𝑡)  contain the system global DOFs, velocities and accelerations of the beam 

respectively. 

The beam has a bending stiffness 𝐸𝐼 = 2.163x1011  Nm
2
 and mass per unit length 𝜇 =

2.957x 103  
kgm

-1
. The angular frequency of damping of the beam is given as 𝜔𝑑 =

9.62 x 10−2 rads
-1

. The dynamics response of the beam is evaluated using the Newmark 

direct time integration method, as described in Section 4.6.1. The values of the Newmark 

parameters used in this example, and subsequently for dynamic response analysis within this 

study to ensure accuracy and stability are, 𝛿 = 0.5 and 𝛾 = 0.25(0.5 + 𝛿 )
2
. 

The locomotive characteristics are given by Fryba [102] in chapter 2 of his monograph. The 

weight of the locomotive is represented by a moving point load 𝑅(𝑡)  =  9.7x105 N as it 

travels across the bridge of length l = 56.56 m. 

  

Figure 7-2: The variation of the a) angular frequency Ω and b) magnitude of the harmonic load 𝑄 with respect to the 

velocity of the moving load. 

The locomotive produces a harmonic force when in motion due to the unbalanced 

counterweights of the driving wheels, which is given as 𝑄 Sin Ω𝑡. Ω is the angular frequency 

of the harmonic force and 𝑄 is the amplitude of the load. The a) angular frequency Ω and b) 

amplitude of the harmonic load component 𝑄 vary linearly and quadratically with respect to 

the velocity of the locomotive respectively, as shown in Figure 7-2. They are expressed as 

[102]:  

a) b) 
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where the radius of the driving wheels 𝑟 = 0.63 m. The mass per unit length of the loaded 

beam, 𝜇 = 6.454 x 103  
kg∙m

-1
, takes into account the mass effects of the locomotive and its 

position causes a variation of the natural frequency for the loaded beam [102]. Therefore, 𝜇  is 

evaluated when the locomotive is assumed to be stationary at the mid-span of the bridge since 

the variation of the natural frequency at this location is relatively small. When carrying out 

the free vibration analysis of the beam, 𝜇 will be taken into consideration. However, when 

carrying out the dynamic response of the moving load problem, 𝜇  will be used in place of 𝜇. 

The beam is modelled using only 1 WFE for both Daubechies and BSWI wavelet based 

approaches, The results are compared with the solutions obtained using 8 classical Euler 

Bernoulli beam finite elements and an analytical approach from Fryba [102]. 

The free vibration analysis of the unloaded beam is carried out by solving the eigenvalue 

problem [27] 

The vector  𝑉   represents modal displacements and 𝜔 is the corresponding natural 

frequencies of the system. 

Natural Frequency ωj 

j Analytical FEM – 8 elements D181 WFEM BSWI44 WFEM 

1 26.4 26.4 26.4 26.4 

2 105.6 105.6 105.6 105.6 

3 237.5 237.8 237.6 237.5 

4 422.2 423.9 424.2 422.4 

5 659.7 665.9 671.0 660.3 

6 950.0 967.4 1026.9 951.7 

7 1293.1 1333.4 1469.8 1297.8 

8 1688.9 1874.6 1746.2 1700.5 

9 2137.5 2333.9 3105.7 2163.7 

10 2638.9 2979.6 4257.2 2693.8 

Table 7-1: Comparison of the analytical, classical FEM, D181 WFEM and BSWI44 WFEM natural frequencies ωj of a 

simply supported beam. 

The first 10 natural frequencies of the unloaded beam obtained via the analytical, FEM (18 

DOFs), Daubechies D181 (18 DOFs) and BSWI44 (19 DOFs) WFEM solutions are presented 

 𝑄 =
1.5 𝑐2

 𝜋 𝑟 2
, Ω =

𝑐

𝑟
 (7.2) 

   𝑲𝒃 − 𝜔2 𝑴𝒃   𝑉  = 0 (7.3) 
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in Table 7-1. The orders and scales of the WFEs are selected to aid in the comparison of the 

results obtained via the different approaches. According to the results presented, the lower 

mode natural frequencies of the simply supported beam are obtained accurately when only 

one element is used for both the Daubechies and BSWI based WFE solutions. The classical 

FEM approach approximates the first 3 natural frequencies accurately, with 8 elements 

employed in the analysis. This is in accordance to general FEM practice where the number of 

elements required to accurately approximate the natural frequencies is 3-5 times the number 

of the modes associated with the natural frequencies.  

The Daubechies WFEM results indicate that the lower mode natural frequencies are 

accurately obtained, where the first 3 natural frequencies correspond to those obtained 

analytically. However, for the higher mode natural frequencies, the results do not perform as 

well as the BSWI and FEM solutions with a similar number of DOFs. This is attributed to the 

fact that the Daubechies scaling function and/or their derivatives have no closed form 

solution and the method requires the evaluation of the connection coefficients to formulate 

the elemental matrices. The numerical errors present in the evaluation of the connection 

coefficients result in a slow rate of convergence for the higher mode natural frequencies when 

the free vibration analysis is evaluated, particularly for lower order Daubechies based WFEM 

solutions. The results can however be improved by increasing the order and/or 

multiresolution scale of the Daubechies WFE without increasing the number of elements or 

subsequently altering the original model as illustrated in Figure 7-3. This verifies that the 

Daubechies WFEM solution converges to the exact solution by increasing the element order 

and/or scale. 

Figure 7-3: The first 10 natural frequencies ωj of a simply supported beam for different Daubechies based WFEs. 
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At lower multiresolution scales, increasing the order of the Daubechies WFE improves the 

results more significantly than increasing the multiresolution scale. For example, from Figure 

7-3, increasing the order from D100 to D120 leads to a better approximation of the natural 

frequencies, particularly at higher modes, than increasing the multiresolution from 𝑗 = 0 to 

𝑗 = 1 for D10. However, for the different orders of the Daubechies WFE solutions, it is 

observed that as the multiresolution scale increases from 𝑗 = 1 to 𝑗 = 2, the improvement of 

the accuracy of the natural frequencies is significantly greater than altering the 

multiresolution from 𝑗 = 0 to 𝑗 = 1. This is because increasing the scale of the Daubechies 

wavelet based beam finite element from j to 𝑗 + 1 increases the number of corresponding 

DOFs for each element by 2
j
. However, increasing the order of the Daubechies WFE from L 

to 𝐿 + 2, increases the DOFs per WFE by 2. Moreover, it was also noted while carrying out 

the analysis that the approximation of the natural frequencies diverged significantly for 

multiresolution scale 𝑗 ≥ 3. The inaccuracies of the approximations result from numerical 

instability and errors that arise when evaluating the elemental matrices in wavelet space, 

particularly for high values of j. Considering that increasing the order leads to a better 

approximation of the results, it is more effective and efficient to first increase the order of the 

WFE then increase the multiresolution scale so as to improve the approximation of the higher 

mode natural frequencies of the system.  

Figure 7-4: The first 10 natural frequencies ωj of a simply supported beam for different BSWI based WFEs. 

Figure 7-4 illustrates the effect of increasing the order and/or multiresolution scale on the 

accuracy of the first 10 natural frequencies for the BSWI based WFEM. In addition to the 
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observations made from the results presented in Table 7-1, the general BSWI based WFEM 

solutions are highly accurate for the first 10 natural frequencies in comparison to the 

Daubechies WFEM and classical FEM solutions, for a similar number of DOFs. Increasing 

the order and/or multiresolution scale leads to the convergence of the approximate solution to 

the exact solution as illustrated in Figure 7-4. For example, the percentage error of the 10
th

 

natural frequency via the BSWI55 WFE solution is 2.24 x 10−3 %; in comparison to the 

analytical solution. 

The damping of the beam is represented by Rayleigh viscous damping and the element 

damping matrix in physical space  𝒄𝒃,𝒆
𝒑

  is expressed as [100]: 

where the matrices  𝒎𝒃,𝒆
𝒑

  and  𝒌𝒃,𝒆
𝒑

  are the wavelet based mass and stiffness element 

matrices in physical space respectively. 𝛼𝑑  and 𝛽𝑑  are the damping coefficients which are 

obtained from solving the system of equations [100]: 

where 𝜁𝑖  and  𝜔𝑖  are the i
th

 mode damping ratio and corresponding natural frequency 

respectively. The variation of the damping ratios with respect to the natural frequencies for 

the first 12 modes of vibration is presented in Figure 7-5. The variations obtained via both the 

Daubechies D181 and BSWI44 WFEM approaches, with one element modelling the beam, are 

in good agreement with the solution obtained analytically. According to the results obtained, 

the damping ratio decreases with an increase in the mode number due to an increase in the 

natural frequency of the beam. In general, the modal mass participation in a given system 

decreases significantly with a corresponding increase in the mode number i. This leads to the 

assumption that for the dynamic analysis of systems, although the natural frequency is 

increasing, only the first few modes of vibration are considered important and effectively 

contribute to the dynamic behaviour of the system [100]. Furthermore, for high values of n 

number of equations for large complex systems, it may be difficult to obtain solutions for the 

coefficients that satisfy the relations in equation (7.5) [100]. The values of the viscous 

  𝒄𝒃,𝒆
𝒑

 =  𝛼𝑑  𝒌𝒃,𝒆
𝒑

 +  𝛽𝑑  [𝒎𝒃,𝒆
𝒑

] (7.4) 

 

𝜁1  = 𝛼𝑑  
1

2 𝜔1
+ 𝛽𝑑

𝜔1
2

2

𝜁2  = 𝛼𝑑  
1

2 𝜔2
+ 𝛽𝑑

𝜔2
2

2
⋮

𝜁𝑛  = 𝛼𝑑  
1

2 𝜔𝑛
+ 𝛽𝑑

𝜔𝑛
2

2

 (7.5) 
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damping coefficients 𝛼𝑑  and 𝛽𝑑  are obtained via the different approaches as 0.192402 and 0 

respectively. These values are similar for n = 3 and n = 10. 

Figure 7-5: Plot of the modal damping ratio variation with respect to the corresponding natural frequency of a simply 

supported beam. 

The static deflection mid-span of the simply supported, when subjected to a static point load 

P at the centre of the beam, is defined as [102]:  

where EI is the bending stiffness of the beam and l is the length of the beam. The point load P 

in this case represents the weight of the locomotive stationary at the centre of the beam and is 

assigned the value of 𝑃 = 9.7x105 N. The deflection of the beam at a point x as the harmonic 

moving load travels across the beam at time t is denoted by 𝑣(𝑥, 𝑡). Taking into consideration 

that the maximum deflection occurs at the centre of the simply supported beam, the dynamic 

response of the beam 𝑣(
𝑙

2
, 𝑡) is analysed. The normalised non-dimensional deflection, or 

dynamic coefficient, is defined as the ratio of the dynamic deflection to the static deflection at 

the centre of the beam and is expressed as 𝑣(
𝑙

2
, 𝑡) 𝑣0 . 

According to Fryba [102], the critical velocity of the harmonic moving load is described as 

the velocity of the locomotive at which its dynamic effects are maximum and is given by the 

simple relation 𝑐𝑐𝑟 = 2𝜋𝑟𝑓 
1. The first natural frequency of the loaded beam in Hz and radius 

 

 𝑣0 =
𝑃𝑙3

48𝐸𝐼
 (7.6) 
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of the driving wheels are denoted by 𝑓 
1 and r respectively. However, for more complicated 

systems it may be difficult to describe and obtain the critical velocity directly via analytical 

or semi-analytical formulations.  

 

Figure 7-6: The maximum non-dimensional vertical displacement at the centre of a simply supported beam subjected to a 

moving harmonic load at different velocities. 

Therefore, the WFEM is used to acquire the critical velocity by obtaining the maximum 

normalized vertical displacement at the centre of the beam, for different velocities of the 

moving harmonic load, as presented in Figure 7-6. The analysis is carried out for the range of 

velocities 1 ≤ 𝑐 ≤ 20 ms
-1

 of the harmonic moving load, with increments of 0.1 ms
-1

. The 

results obtain via the BSWI44 and Daubechies D181 WFEM solutions, with only one element 

used to describe the entire beam, are in good agreement with the classical FEM (8 elements). 

The critical velocity is approximated as 11.5 ms
-1

 via the D181 and BSWI44 WFEM 

solutions. The critical velocity obtained via the analytical formulation is 𝑐𝑐𝑟 = 11.28 ms
-1

. 

This validates the use of the WFEM to obtain the critical velocity of the moving harmonic 

load. 

It is important to mention that, the evaluation of the critical velocity via FEM and WFEM 

approaches for more complicated cases requires the evaluation of the maximum deflections 

associated with corresponding velocities of the moving load. This implies that for each 

moving load velocity, the dynamic response of the system must be evaluated at each time 

step to identify the maximum deflection. This is computationally expensive and time 
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consuming, if the number of DOFs and time steps required to attain acceptable levels of 

accuracy is high. Given that the solutions can be approximated via the WFEM with fewer 

elements than the classical FEM approach, the computational and time costs are reduced 

significantly when carrying out the evaluation of the moving load critical velocity based on 

the size of the system matrices.  

As mentioned earlier, the dynamic response of the beam is evaluated using the Newmark 

direct time integration method. The time step ∆𝑡 does not need to be set at a minimum value 

to ensure stability for this implicit time integration scheme and is therefore selected over 

other explicit time integration methods. However, the accuracy of the solution may be poor if 

too large a time step is selected. With this in mind, as the time step decreases, the cost of 

computation increases since the number of time iterations also increases. It is therefore 

necessary to ensure when carrying out the dynamic analysis of a system via WFEM, that the 

time step selected leads to results that are accurate enough and efficient. It is common 

practice in classical FEM to initially select at time step within the range 0.1𝑇𝑛 ≤ ∆𝑡 ≤ 0.3𝑇𝑛  

[29], where 𝑇𝑛 =
1

𝑓 𝑛
 is the period of the n

th
 mode of vibration. If the level of accuracy is not 

acceptable then the size of the time step can be decreased incrementally until the solution 

attains the desired level of accuracy. This approach is implemented for the WFEM dynamic 

response analysis in this example and subsequent solutions in this study. The time step 

employed for this analysis is ∆𝑡 = 3.9 x 10−3s, which is approximately ∆𝑡 ≈ 0.1𝑇3. The time 

taken for the load to travel over the beam is 𝑡𝑓 =
𝑙

𝑐
; this is used to normalise the time t into a 

non-dimensional time parameter. 

The BSWI44 and D181 WFEM solutions for the non-dimensional displacement at the centre 

of the beam, as the harmonic moving load travels across the beam, are compared with the 

analytical solution from Fryba [102] and the classical FEM solution obtained with 8 beam 

elements; for a)  𝑐 = 9.64 ms
-1

, b) 𝑐 = 𝑐𝑐𝑟 = 11.28 ms
-1

 and c) 𝑐 = 12.92 ms
-1

 as 

presented in Figure 7-7. These velocities correspond to subcritical, critical and supercritical 

velocity profiles respectively. The Daubechies and BSWI WFEMs accurately approximate 

the displacement for the 3 different velocities and are in very good agreement with the 

analytical solution. This validates the implementation of WFEM formulation in the analysis 

of moving load problems. 
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Figure 7-7: The non-dimensional vertical displacement at the centre of a simply supported beam subjected to a harmonic 

moving load travelling at a) 9.64 ms-1  b) 11.28 ms-1 and c) 12.92 ms-1. 

a) 

b) 

c) 
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Furthermore, the lateral velocity at the centre of the beam, as the harmonic moving load 

travels across, is analysed using the WFEMs. The BSWI44 and D181 wavelet solutions are 

again compared with the analytical and the classical FEM solutions and the results are 

presented in Figure 7-8 for the three moving load velocities. The results obtained via both the 

WFEMs are in very good agreement with the analytical solution, with only one WFE 

implemented for all velocity profiles. Similarly, the acceleration at the centre of the beam is 

presented in Figure 7-9 as the harmonic load travels at a) 𝑐 = 9.64 ms
-1

, b) 𝑐 = 𝑐𝑐𝑟 = 11.28 

ms
-1

 and c) 𝑐 = 12.92 ms
-1

. The results presented illustrate that once again both WFEM 

solutions are in very good agreement with the analytical solution.  

 
 

  

Figure 7-8: The vertical velocity at the centre of a simply supported beam subjected to a moving harmonic load travelling at 

a) 9.64 ms-1  b) 11.28 ms-1 and c) 12.92 ms-1. 

Further analysis is carried out to investigate the effects of increasing the order and/or 

multiresolution scale of the WFEs on the accuracy of the solutions with respect to the 

displacement of the beam. The non-dimensional vertical displacement at the centre of the 

beam, as the harmonic moving load travels across at 𝑐 = 12.92 ms
-1

, is presented in Figure 

7-10; a) BSWI3j and b) BSWIm4 for 3 ≤ 𝑗, 𝑚 ≤ 5 WFEM solutions. It is observed from 

Figure 7-10 a) that the results converge to the analytical solution as the multiresolution scale 

a) b) 

c) 
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increases from BSWI33 (red dashed curve) to BSWI34 (blue dashed curve) and subsequently 

to BSWI35 (green dashed curve).  

  

  

Figure 7-9: The vertical acceleration at the centre of a simply supported beam subjected to a moving harmonic load 

travelling at a) 9.64 ms-1  b) 11.28 ms-1 and c) 12.92 ms-1. 

Likewise, the accuracy of the approximate solution improves when the order of the BSWI 

wavelet element is increased, as observed from Figure 7-10 b). The order of the BSWI based 

WFE is increased from 𝑚 = 3 to 𝑚 = 5, at multiresolution scale 𝑗 = 4. It can therefore be 

concluded that increasing the multiresolution and/or order of the BSWI WFE improves the 

accuracy of the approximate solution and the results converge to the analytical solution. 

A similar analysis is carried out for the Daubechies wavelet based finite element solution as 

presented in Figure 7-11. The results are obtained from the a) D10j and b) DL0 WFE 

formulations for 0 ≤ 𝑗 ≤ 2 and 10 ≤ 𝐿 ≤ 18 (L is an even integer) respectively. 

Observations made from Figure 7-11 a) indicate that increasing the multiresolution scale j 

improves the accuracy of the approximate solution. Although the results improve as j is 

increased, the D102 WFEM solution is not in perfect agreement with the analytical solution. 

c) 

a) b) 
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Figure 7-10: The non-dimensional vertical displacement at the centre of a simply supported beam subjected to a harmonic 

moving load travelling at 12.92 ms-1 for a) BSWI3j and b) BSWIm4 WFEs. 

Increasing the order of the wavelet family also improves the accuracy of the solution as 

observed in Figure 7-11 b). The results obtained from the D100 WFE formulation are not as 

accurate in comparison to the other higher order Daubechies WFE solutions. However, the 

solution accuracy improves as the order is increased. It is therefore better to first increase the 

order of the WFE to improve the approximation of the dynamic response of the system. If the 

desired levels of accuracy are stilled not attained, the multiresolution scale can then be 

improved.  

a) 

b) 
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Figure 7-11: The non-dimensional vertical displacement at the centre of a simply supported beam subjected to a moving 

harmonic load travelling at 12.92 ms-1 for a) D10j and b) DL0 WFEs. 

The implementation of the Daubechies and BSWI based WFE formulations for the free 

vibration and dynamic response analyses of a beam subjected to a harmonic load are 

validated. The convergence of the solutions via both methods, by increasing the order and/or 

multiresolution scale, is further verified. A single WFE is used to model the beam and the 

results are in perfect agreement with the analytical solutions. The comparative study 

demonstrates that the BSWI WFEM solutions are superior to both classical FEM and 

Daubechies WFEM for the analysis of free vibration and vehicle-bridge interaction.  

b) 

a) 
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The computational costs for carrying out this analysis are not highlighted for this relatively 

simple moving load problem since the comparison of the WFEMs with classical FEM is 

carried out for a similar number of DOFs. This is the case so as to analyse the accuracy of the 

different methods with similar number of DOFs. The computational costs will be compared 

later in this chapter. 

7.2.  Vierendeel frame subjected to a moving load 

The dynamic response of a steel Vierendeel frame made up of 8 main uniform plane bar 

wavelet based finite elements is analysed when subjected to a moving point load 𝑃 = 20 N, 

travelling across elements 1 – 6, as illustrated in Figure 7-12. The moving load is initiated at 

node 1 and departs the frame at node 7. The plane bar elements (beam with axial 

deformations taken into consideration) have uniform geometrical and material properties 

which include: Young’s modulus 𝐸 = 2.07 x 1011  Nm
-2

, area 𝐴 = 8.06 x 10−5  
m

2
, density 

𝜌 = 7.81 x 103  
kgm

-3
, moment inertia 𝐼 = 2.71 x 10−10m

4
 and length of each major element 

𝑙 = 0.305 m. The boundary conditions of the frame are fixed at both nodes 1 and 7, with 

damping neglected in the analysis. This example is carried out to present the capabilities of 

WFEM to solve the dynamic response of a structure comprising of elements arranged in 

different spatial orientations while subjected to rapidly varying loading conditions.  

 

Figure 7-12: Vierendeel frame subjected to a moving load. 

The free vibration analysis is carried out by solving the eigenvalue problem [27]  

    𝑲𝒑 − 𝜔2 𝑴𝒑    𝐻  = 0 (7.7) 

c ms
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where the matrices  𝑴𝒑  and  𝑲𝒑  are the plane bar global system mass and stiffness 

matrices as formulated in Section 5.3. The vector  𝐻   represents modal displacements and 𝜔 

is the corresponding natural frequencies of the system.  

 Frequency ωi 

Mode i Ref[108] FEM (48 elem) D120 (8 elem) BSWI43 (8 elem) 

1 107 107.101 107.101 107.101 

2 377 377.122 377.121 377.121 

3 397 396.903 396.9 396.9 

4 476 475.313 475.308 475.309 

5 1099 1098.37 1098.62 1098.33 

6 1316 1315.18 1315.64 1315.1 

7 1504 1502.87 1503.62 1502.75 

8 1912 1910.26 1912.54 1910.03 

9 2061 2060.06 2063.17 2059.76 

10 2248 2445.94 2453.74 2445.53 

11 2695 2693.62 2704.75 2692.97 

12 2904 2902.4 2919.78 2901.59 

13 4171 4170.97 4184.59 4168.7 

14 4618 4619.06 4648.85 4615.97 

15 4944 4945.24 5004.99 4941.47 

16 5613 5616.18 5683.59 5610.87 

17 5885 5890.07 5979.09 5883.82 

18 6405 6411.3 6514.93 6404.13 

19 6950 6959.95 7300.75 6950.2 

20 7227 7239.32 7580.26 7228.48 

21 9558 9256.95 11415.7 9235.98 

22 9649 9681.56 11889.3 9658.45 

23 10349 10393.4 12533 10364.6 

24 11343 11401.7 13509.1 11365.8 

25 11550 11608.5 14076 11572.8 

26 11931 11974.2 15736.7 11947.2 

27 12249 12313.6 15925.3 12276.6 

28 12862 12895.4 17554.3 12875.1 

29 13650 13755.4 18334.8 13700.8 

30 14191 14267.2 19038.5 14229.9 
Table 7-2: First 30 angular frequencies ωi of the Vierendeel frame obtained via FEM, D120 WFEM and BSWI43 WFEM 

formulations. 

The first 30 natural frequencies obtained from the Daubechies D120 and BSWI43 wavelet 

based element formulations, are presented in Table 7-2. The results are compared to values 



 

173 

 

obtained by Jara-Almonte and Mitchell [108] and the classical FEM solutions. To aid in the 

comparison of the different approaches, given that the BSWI43 (136 DOFs) is the lowest 

BSWI WFE that can be used to formulate the planar bar element, the Daubechies D120 (136 

DOFs) WFE and 48 classical FE (144 DOFs) solutions are employed. So as to ensure 

uniformity during discretization of the frame, 6 classical finite elements correspond to 1 

WFE. It is observed from the results that the wavelet based finite element natural frequency 

solutions for both Daubechies and BSWI formulations are in good agreement with solutions 

obtained in [108]; for the lower modes of vibration. In comparison to the classical FEM 

solution, the frequencies obtained via the WFEM are highly accurate, particularly for the 

BSWI43 solutions. The Daubechies D120 WFE solutions for the higher mode frequencies are 

not approximated as accurately as the other solutions.  

 

Figure 7-13: Comparison of the Vierendeel frame first 52 angular frequencies ωi obtained via D120 WFEM and BSWI43 

WFEM. 

This is further evident when the D120 solution for the first 52 angular frequencies are 

compared with the BSWI43 solution and results obtained by Jara-Almonte and Mitchell 

[108]; as observed from Figure 7-13. The lower modes of vibration natural frequencies (first 

20) are approximated very accurately by the D120 solution. However, the BSWI43 solution 

approximates all the first 52 frequencies very accurately with the same number of DOFs 

(136) as the D120 element formulation. The accuracy of the results can be improved by 

increasing the order and/or the multiresolution scale of the Daubechies based wavelet finite 

elements without increasing the number of elements, which would require an alteration in 
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discretization of the entire system. This is apparent from the solutions of the first 52 angular 

frequencies obtained via the Daubechies based WFEM for different orders DL and 

multiresolution scales j as presented in Figure 7-14. It is observed that increasing the order 

and/or the multiresolution of the Daubechies wavelet leads to better approximations of the 

higher mode frequencies. This confirms the convergence of the Daubechies WFEM solutions 

to the exact solution with respect to increasing the order and/or multiresolution scale. 

Furthermore, it is also seen that increasing the order of the Daubechies based elements has a 

more significant effect on the accuracy of the approximation than increasing the 

multiresolution, particularly for the higher mode frequencies. 

 

Figure 7-14: First 52 angular frequencies ωi of the Vierendeel frame obtained via the Daubechies DLj WFEM. 

The comparison of the BSWI based WFEM solutions for the first 52 natural frequencies of 

the Vierendeel frame are illustrated in Figure 7-15, for the different orders and 

multiresolution scales. The BSWI based WFEM approximate solutions for all 52 angular 

frequencies are observed to be very accurate with respect to the different wavelet orders and 

multiresolution scales. This implies that the lower order and/or multiresolution scales of the 

BSWI based WFEM accurately approximate the Vierendeel frame’s natural frequencies at 

higher modes. Furthermore, the BSWI based WFEM gives significantly better results when 

compared to the solutions obtained, not only via the classical FEM, but also with respect to 

the Daubechies based WFEM; with approximately similar number of DOFs. 
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Figure 7-15: First 52 angular frequencies ωi of the Vierendeel frame obtained via the BSWImj WFEM. 

The governing equation describing the dynamic behaviour of the undamped system when 

subjected to a moving load is given as [27]:  

where the matrices  𝑴𝒑  and  𝑲𝒑  are the system mass and stiffness matrices in physical 

space as formulated in Section 5.3.  𝑭𝒑(𝑡)  is the time-dependent moving load vector and 

 𝑯𝒑(𝑡)  and  𝑯 
𝒑(𝑡)  contain the system global displacement DOFs and accelerations 

respectively. 

The maximum normalized lateral deflection at point A of the frame 
𝛿(𝑥,𝑡)

𝛿0
, for different 

moving point load velocities, is obtained via the Daubechies and BSWI WFEMs and 

compared with the FEM as presented in Figure 7-16. The normalizing factor 𝛿0 is the static 

lateral deflection at point A (Figure 7-12) when the frame is subjected to a point load of 

magnitude 𝑃 = 20 N. The static deflection at this point is obtained by solving the governing 

static equation of the frame [31] 

 𝑭𝒑  is the static force vector in physical space and  𝑯𝒑  is the vector containing the DOFs of 

the system. 

  𝑴𝒑  𝑯 
𝒑(𝑡) +  𝑲𝒑  𝑯𝒑(𝑡) =  𝑭𝒑(𝑡)  (7.8) 

  𝑲𝒑  𝑯𝒑 =  𝑭𝒑  (7.9) 
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The moving load is assumed to travel across the frame from node 1 to node 7, across 

elements 1 – 6, at a constant speed c ms
-1

. The plot presented in Figure 7-16 is for the range 

of speeds 0 < 𝑐 ≤ 200 ms
-1

, at intervals of 1 ms
-1

, with respect to the corresponding 

maximum normalised lateral deflections at point A. This is carried out to give an accurate 

approximation of the critical speed of the frame structure since the structure is made up of 

elements in different spatial orientations. Simplified models such as a simply supported beam 

subjected to a moving load, as discussed in the previous section, may employ simple 

analytical or semi-analytical expressions to evaluate the critical speed of the load. In contrast, 

for structures of higher complexity, it may be difficult or impossible to obtain an analytical 

expression. It may therefore require numerical approaches, for instance the WFEM or FEM, 

to be used to approximate the critical speed.  

 

Figure 7-16: The maximum normalized lateral deflection of the frame at point A for different moving point load velocities. 

The results obtained from both WFEM solutions are in good agreement with the FEM 

solution, accurately depicting the variation of the maximum normalised lateral deflection at 

point A and the critical speed. The highest value of the maximum normalised lateral 

deflection at point A is 1.97926 and corresponding moving load critical speed 𝑐𝑐𝑟 = 52 ms
-1

.  

An analysis of the frame subjected to a moving point load is carried out for subcritical, 

critical and supercritical velocities. The non-dimensional moving load velocity parameter is 

defined as 𝛼𝑠 =
𝑐

𝑐𝑐𝑟
. When 𝛼𝑠 = 1, the load is moving at a critical speed, while  𝛼𝑠 < 1 and 

𝛼𝑠 > 1 correspond to subcritical and supercritical speeds respectively. The values of 𝛼𝑠 used 

in this analysis to represent the subcritical, critical and supercritical speed profiles are 10
-3

, 1 

and 2 respectively. 
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The dynamic response of the frame is carried out via the Newmark direct time integration 

method with the parameters 𝛿 = 0.5 and 𝛾 = 0.25(0.5 + 𝛿 )
2
. The time step ∆𝑡 used in the 

analysis for both the FEM and WFEM approaches is ∆𝑡 = 0.1𝑇15 ≈ 1.27 x 10−4 s. The time 

step is also small enough to ensure that the action of the moving load is subjected to each 

classical finite element, along its described path, at least once during the analysis for all the 3 

speed profiles. 

The normalised vertical displacements at point A, 
𝛿(𝑡)

𝛿0
,  for a) subcritical b) critical and c) 

supercritical speeds, are plotted in Figure 7-17 for the D100 WFEM, BSWI43 WFEM and  

FEM solutions. The time taken for the load to travel over the frame is 𝑡𝑓 =
6𝑙

𝑐
 and this is used 

to normalise the time t into a non-dimensional time parameter. 

The wavelet based elements presented are of the lowest order and multiresolution for the 

Daubechies and BSWI planar bar elements. The results obtained, when 8 of these WFEs are 

used to model the Vierendeel frame, are compared with the FEM (48 elements) solutions and 

it is observed that the wavelet solutions are in very good agreement. The higher order and/or 

multiresolution wavelet based element solutions are similar to the presented solutions and it 

is therefore not necessary to present these results. 

The Daubechies D100 (104 DOFs) WFE solution gives a similar approximation of the 

dynamic response of the frame at point A as the BSWI43 (136 DOFs) WFE solution for the 3 

different moving load speed profiles analysed. Although the higher modes of vibration 

natural frequencies are not accurately approximated via the Daubechies WFEM, the dynamic 

response is very accurately described. This is because the significant contribution to the 

dynamic response of the system is from the first few modes of vibration, which are accurately 

described via the Daubechies WFEM.  

Furthermore, the Daubechies based WFEs can be formulated from the minimum 

multiresolution scale 𝑗 = 0. However, with respect to the BSWI based WFEM, the condition 

2𝑗 ≥ 2𝑚 − 1, must be satisfied. Hence, the minimum multiresolution scale is dependent on 

order of the BSWI wavelet family. Consequently, as the order increases, the value of the 

minimum multiresolution scale j0 also increases. The BSWI43 (20 DOFs per WFE) is the 

minimum WFE plane bar element that is applicable in this analysis. In contrast, the lowest 

order and scale corresponding to the Daubechies plane bar WFE is D100 (16 DOFs). This 

difference may not be of great consequence for one wavelet finite element. However, when a 
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significant number of WFEs are required, not based on accuracy but due to different spatial 

orientations of the WFEs within the system, the dynamic response of the system using the 

BSWI may be highly accurate yet inefficient.  

 

 

 
Figure 7-17: The normalized lateral displacement of the frame at point A as a moving point load travels at a) subcritical, b) 

critical and c) supercritical velocities. 

a) 

b) 

c) 
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Figure 7-18: The variation of lateral velocities of the frame at point A as a moving point load travels at a) subcritical, b) 

critical and c) supercritical velocities. 

a) 

b) 

c) 
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According to the results presented in Figure 7-17 a), the maximum normalized lateral 

deflection at point A is 1 and occurs when the moving load is at point A. This is due to the 

fact that  𝛼𝑠 ≪ 1 and the deflection is similar to that of the frame under a static load P at 

point A. However, when the speed of the moving point load is increased, the maximum 

normalized deflection occurs once the moving load has travelled past point A. When 𝛼𝑠 = 1, 

the maximum normalised lateral deflection at point A is almost double the static deflection 

𝛿0; from Figure 7-17 b). When 𝛼𝑠 = 2, 
𝛿(𝑡)

𝛿0
 is maximum after the moving load departs A. 

The lateral velocity at point A, as the moving load moves over the frame, is presented in 

Figure 7-18 for the 3 speed profiles of the moving load. The WFEMs and FEM solutions 

approximate the velocity of the frame, for all speed profiles, very similarly. However, for the 

Daubechies WFEM solution, the order of the WFE is increased so as to better approximate 

the lateral velocity of the frame for 𝛼𝑠 = 2. In this case the order is increased from D100 

(subcritical and critical speeds), to the D120 WFEs for the supercritical speeds. 

  

  
Figure 7-19: The lateral acceleration of the frame at point A as a moving point load travels on the frame at a) subcritical, b) 

critical and c) supercritical velocities. 

This is also evident from Figure 7-19 where the Daubechies D140 WFEs are used to obtain 

solutions for the lateral acceleration of the frame at point A so as to improve on the accuracy 

a) b) 

c) 
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of the results. This implies that, although the deflection of a given dynamic system may be 

accurately approximated via a certain order of the Daubechies wavelet formulation, it may be 

necessary to increase the order so as to improve the approximation of the velocity and 

acceleration solutions. 

The BSWI WFEM solution on the other hand, is in very good agreement with the classical 

FEM solution without alterations in scale and/or order of the wavelet based element. This 

implies that the BSWI wavelet based finite element formulations are better suited to the 

Daubechies based WFEM for the general dynamic analysis of structures. 

7.3.  Beam on viscoelastic foundation subjected to a moving load 

The moving load problem presented in Section 7.1 involves the dynamic response analysis of 

a bridge as a locomotive travels across the span of the bridge, commonly referred to as 

vehicle-bridge interaction. Another important category of the moving load problem 

researched on and presented in this section is train-track interaction. This area of study is of 

great importance and interest for high-speed rail transportation to monitor and investigate the 

dynamic response of the rail system as the train/locomotive travels across the track 

[107,109,110]. Significant displacements, particularly in the lateral upward direction are a 

contributing factor in the weakening and degradation of railway track systems. 

The track comprises of the rails resting on sleepers, ballast, sub-ballast, subgrade and soil. 

The complexity of mathematical model describing the behaviour of the system varies based 

on the assumptions made. Furthermore, the approach of analysis also varies based on the 

simplification of the system via the made assumptions and it is common to find that 

analytical or semi-analytical approaches are preferred in the analysis of simplified models. 

However, for more complicated models numerical approaches such as WFEM and FEM are 

preferred to accurately approximate the dynamics response of such systems when subjected 

to a moving load. 

In this example, the track system is simplified into a beam resting on a viscoelastic 

foundation represented by a series of elastic springs and dashpots as illustrated in Figure 5-9. 

The beam represents a UIC60 standard type rail [109,110], while the viscoelastic foundation 

represents the sleepers, ballast, sub-ballast, subgrade and soil. 
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Figure 7-20: Simply supported uniform beam on a viscoelastic foundation subjected to a moving load point load. 

Dimitrovova and Rodrigues [109] analysed the critical velocity of moving loads applied on 

beams resting on a viscoelastic foundation, comparing results obtained via a finite and a 

corresponding infinite beam. The results revealed that the extreme displacements increased 

gradually for the finite beam, in contrast to the significantly sharp increases exhibited by the 

infinite beam responses for a soft foundation. Furthermore, the reflections from the supports 

were significant and could therefore not be ignored for the finite beam case. However, for 

this example, the foundation is of significant stiffness and the dynamic response of the 

infinite beam model can be approximated using a long simply supported beam of finite length 

𝑙 = 200 m. The beam is sufficiently long enough to accurately obtain the dynamic response 

of the system since the effect of the moving load is localised. 

The behaviour of the elastic beam is described based on the Euler-Bernoulli beam theory. 

The cross-sectional area, 𝐴 = 7.684 x 10−3 m
2
, is assumed to be uniform along the length of 

the beam. The beam has the following material properties: Young’s modulus 𝐸 = 2.1 x 1011  

Pa and moment of inertia 𝐼 = 3.055 x 10−5 m
4
. The elastic stiffness of the foundation is 

𝑘𝑓 = 3.416 x 106 Nm
-2

. 

In this analysis, the Thalys high speed train locomotive travels over the track at c ms
-1

 and 

has a total axle mass of 1.7 x 104 kg. The locomotive is assumed to be of a significantly 

shorter span with respect to the length of the rail system and is represented by a moving point 

load to aid in the calculations of the system. The moving point load 𝑃 = 8.34 x 104  N acts on 

each of the rails with the assumption that its weight is equally supported by the two rails. The 

analysis is of an individual rail represented by a beam assumed to rest on the foundation. For 

l 

EI, μ 

𝑘𝑓 , d 

c
 

P
 

𝑥0 = 𝑐𝑡 
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a beam resting on an elastic Winkler foundation, with the system undamped,  the critical 

velocity of the moving load can be obtained analytically for an infinite beam as [102]: 

where 𝐸𝐼 is the bending rigidity and 𝜇 is the mass per unit length of the beam. The non-

dimensional moving load velocity parameter is defined as 𝛼𝑠 =
𝑐

𝑐𝑐𝑟
. The critical velocity of 

the system can be obtained as [111]:  

where 𝑗𝑐𝑟 =
𝑙

𝜋
 

𝑘𝑓

𝐸𝐼

4
 is the critical mode of vibration corresponding to the lowest resonant 

velocity and is rounded off to the nearest integer. The critical velocity of the finite beam is 

obtained as 395.26 ms
-1

, with the 54
th

 mode of vibration being critical. The critical velocity 

obtained via equation (7.10) for an infinite beam is 395.24 ms
-1

. The critical velocity obtain 

via the finite beam formulation is 0.00253% higher than the infinite beam formulation. In this 

analysis, 3 moving load velocities are taken into consideration i.e.: 80 ms
-1

 (subcritical), 

395.26 ms
-1

 (critical) and 500 ms
-1

 (supercritical). It is worth mentioning that the critical 

and supercritical velocities are currently impractical and significantly higher than current 

maximum operating speeds for high-speed railway travel. These velocities are taken into 

account for theoretical purposes to investigate the dynamic response analysis of the presented 

system using WFEM.  

When taking damping into consideration, it is assumed that the critical damping for the finite 

beam is approximated similar to an infinite beam and is expressed as [112]: 

The viscous damping coefficient of the foundation is evaluated as 𝑑 = 𝜁𝑑𝑐𝑟 , with 𝜁 being the 

damping ratio. The dynamic behaviour of the system is described by the governing equation 

[29,113]: 

 𝑐𝑐𝑟 =  
4𝑘𝑓𝐸𝐼

𝜇2

4

 (7.10) 

 𝑐𝑐𝑟 =
𝑙

𝑗𝑐𝑟𝜋
  

𝑗𝑐𝑟𝜋

𝑙
 

4 𝐸𝐼

𝜇
+

𝑘𝑓

𝜇
 (7.11) 

 𝑑𝑐𝑟 = 2 𝑘𝑓𝜇 (7.12) 

  𝑴𝒃  𝑽 𝒃(𝑡) +  𝑪𝒇  𝑽 𝒃(𝑡) +   𝑲𝒃 +  𝑲𝒇   𝑽𝒃(𝑡) =  𝑭𝒃(𝑡)  (7.13) 
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where  𝑴𝒃  is the global mass matrix of the beam,  𝑲𝒃  is the global stiffness matrix of the 

beam,  𝑪𝒇  is the damping matrix of the foundation,  𝑲𝒇  is the global stiffness matrix of the 

foundation and the vector  𝑭𝒃(𝑡)  is the time-dependent load vector. The element and 

foundation matrices, as well as the moving load vector, are described in Section 5.2. The 

system DOFs, velocities and accelerations at time t are contained in the vectors  𝑽𝒃(𝑡) , 

 𝑽 𝒃(𝑡)  and  𝑽 𝒃(𝑡)  respectively. 

The dynamic response of the described system is carried and compared for 6 BSWI beam 

WFEs, 14 Daubechies WFEs and 150 classical finite elements used to model the beam. 

Furthermore, the dynamic analysis is carried out using the Newmark time integration method 

with the time step ∆𝑡 selected in correlation with each moving load velocity i.e., 4.3 x 10−4 s, 

8.7 x 10−5 s and 6.9 x 10−5 s for subcritical, critical and supercritical moving load velocities 

respectively. These values ensure that the analysis is carried out efficiently and accurately 

while maintaining the stability of the Newmark method for each moving load velocity. 

Moreover, for the FEM analysis, the time steps ensure that the effect of the moving load is 

subjected to each element at least once during the analysis. 

The beam is simply supported at both ends and since the beam material and foundation 

properties are uniform across the length of the beam, the maximum deflection will occur at 

the centre of the beam. Hence, the analysis of the dynamic response is carried out at the 

location 𝑥 =
𝑙

2
. The vertical displacement at this location is analysed as the moving load 

travels across the finite beam on an elastic foundation (no damping), at subcritical, critical 

and supercritical velocities a) 80 ms
-1

, b) 395.26 ms
-1

 and c) 500 ms
-1

 respectively (Figure 

7-21). 

In Figure 7-21 a), a subcritical moving point load travels across the beam and the 

displacement at the centre of the beam is observed to be symmetric since there is no damping 

present within the system. However, when the moving load travels at a critical velocity 

(Figure 7-21 b)), the beam is excited and begins to oscillate. The dynamic response has a 

harmonic characteristic, and the amplitude of the deflection increases gradually in magnitude 

until the load just leaves the centre of the beam. When the load just departs from the centre of 

the beam, the upward and downward deflections are at maximum. As the moving load travels 

away from the mid-point of the beam, the amplitude of the oscillations begin to decrease, but 

the beam does not come to rest by the time the moving load departs from the system.  
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Figure 7-21: The vertical displacement at the centre of a simply supported beam on an elastic foundation (no damping) 

subjected to a moving point load travelling at a) 80 ms-1 b) 395.26 ms-1 and c) 500 ms-1. 

In Figure 7-21 c), the beam is initially stationary but begins to rapidly vibrate as the moving 

load approaches the centre. When the moving load arrives at the centre of the beam, there is 

a) 

b) 

c) 
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an abrupt increase in the magnitude of the deflection amplitude. The deflection amplitude is 

maintained as the load leaves the centre, until it departs the beam. The maximum 

displacement value when the load travels at a critical velocity (55.13 mm) is significantly 

larger than that achieved at subcritical (7.57 mm) and supercritical (19.09 mm) velocities. 

The dynamic behaviour of the train-track system at critical velocities and the rapid rate of 

vibrations experienced at supercritical velocities are of great importance for predicting and 

identifying responses that may lead to the deterioration of the track system [109]. The 

analysis is also important to identify the nature of the response that may lead to wear, failure 

or in extreme cases derailment of the train.     

The BSWI55 and D182 WFEM solutions are compared with the classical FEM solution. The 

approximations of the dynamic responses for the system are in excellent agreement with each 

other for the 3 different moving load velocity scenarios; as observed in Figure 7-21. 

Furthermore, only 6 BSWI55 and 14 D182 WFEs are implemented, in comparison to 150 

classical finite elements. The WFEMs accurately approximate the maximum deflection at the 

mid-span as the load travels across the beam. This demonstrates that the WFEM can be 

implemented with significantly less number of elements in the analysis of such problems and 

achieve very high levels of accuracy in comparison to the classical FEM. The classical FEM 

would require a significant number of elements to accurately obtain the response of the 

system. The number of elements, and consequently the number of DOFs implemented in the 

analysis, is of importance in dynamic analysis, taking into account that the responses are 

evaluated at each time step.  

The required number of time steps implemented to achieve stability and acceptable levels of 

accuracy may be large and this translates to high computational costs and time consumption. 

It is also worth mentioning that the BSWI55 WFEM results (206 DOFs, 6 elements) are 

considerably better than the D182 (254 DOFs, 14 elements) WFEM solution, with 

significantly less number of elements, and consequently DOFs. Therefore, these initial results 

suggest that the BSWI based WFEM is better suited to analyse train-track interaction than the 

Daubechies based WFEM. This is commented on further towards the end of this section. 

The variations of the lateral velocity at the centre of the beam, for the 3 moving load velocity 

profiles, are presented in Figure 7-22. The results show the BSWI55 WFEM solution is in 

very good agreement with the FEM solution. However, the Daubechies D182 solution is not 

as highly accurate in comparison to the other solutions, particularly after the moving load 

departs from the centre of the beam for the subcritical case. Nevertheless, the results of the 
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Daubechies based WFEM for the moving load travelling at critical and supercritical 

velocities are approximated quite well.  

 
 

  

Figure 7-22: The vertical velocity at the centre of a simply supported beam on an elastic foundation (no damping) subjected 

to a moving point load travelling at a) 80 ms-1  b) 395.26 ms-1 and c) 500 ms-1. 

The effect of increasing the a) order and b) multiresolution of the Daubechies based WFE on 

the solution of the vertical displacement is illustrated in Figure 7-23. The beam is resting on a 

viscoelastic foundation (5% damping) and the moving load is travelling at 395.26 ms
-1

. In 

Figure 7-23 a), it is observed that the D100 WFEM solution does not accurately describe the 

dynamic response of the beam. However, increasing the order to D140 improves the 

approximation of the solution considerably, although the response still differs from the 

correct solution. Increasing the order further to D180 leads to a very good approximation of 

the solution. Likewise, increasing the multiresolution scale j from 0 to 2 for the D14 WFEM 

solution slightly improves the results as observed in Figure 7-23 b); but not as notably as 

increasing the order of the wavelet family.  

It was also observed while carrying out the analysis that for majority of the Daubechies based 

wavelet finite element formulations of varying orders, the approximation of the response 

diverged significantly for multiresolution scale 𝑗 ≥ 3. The inaccuracies of the approximations 

are attributed to the numerical instability and errors that arise when evaluating the elemental 

c) 

a) b) 
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and foundation matrices in wavelet space for higher values of j.  Although the Daubechies 

approach slightly converges for lower values of j, it is better to increase the order of the 

WFEs so as to improve the accuracy of the results. Increasing the order alone may not lead to 

the desired levels of accuracy since only the Daubechies wavelet finite elements of order 

D10, D12, D14, D16 and D18 at multiresolution scale 0 ≤ 𝑗 ≤ 2 can be implemented for 

dynamic analysis of beam elements. Thus, increasing the number of wavelet based elements 

may be necessary, as is the case in this example, where more Daubechies WFEs (14 WFEs) 

are required to accurately solve the dynamic response compared to the 6 BSWI WFEs. 

 

 

Figure 7-23: The vertical displacement at the centre of a simply supported beam on a viscoelastic (5% damping) foundation 

subjected to a moving point load travelling at 395.26 ms-1 (Daubechies WFEM). 

A similar investigation is carried out for the BSWI WFEM and the results are presented in 

Figure 7-24. From Figure 7-24 a) it is observed that the BSWI34 WFE solution does not 

accurately describe the response of the beam as the moving load travels across at critical 

velocity. The BSWI44 solution leads to a better approximation, which is further improved by 

b) 

a) 
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increasing the order of the WFEs to BSWI54. Consequently, increasing the order of the BSWI 

based WFEs better approximates the dynamic response of the beam; the approximate solution 

converges to the exact solution. 

 

 

Figure 7-24: The vertical displacement at the centre of a simply supported beam on a viscoelastic foundation (5% damping) 

subjected to a moving point load travelling at 395.26 ms-1 (BSWI WFEM).  

In Figure 7-24 b), the multiresolution scale j (3 ≤ 𝑗 ≤ 5) is varied for the BSWI3j WFEM 

formulation. It is observed that for the lower order BSWI based WFE formulations, 

increasing the multiresolution scales significantly improves the results. It is also noted that 

although the results of the BSWI35 WFEM formulation improve the approximation of the 

response, the solution is not precise. The multiresolution scale can be further increased but 

this leads to a considerable increase in computational costs.  

b) 

a) 
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In general, increasing the scale of a wavelet based beam element from j to 𝑗 + 1, for either 

Daubechies or BSWI WFEs, increases the number of corresponding DOFs for each element 

by 2𝑗 . However, for a BSWI wavelet based beam finite element, increasing the order from m 

to 𝑚 + 1 only increases the number of DOFs per WFE by 1. Increasing the order of the 

Daubechies WFE from L to 𝐿 + 2 only increases the number of DOFs per WFE by 2. In order 

to effectively and efficiently improve the accuracy of the solutions for dynamic analysis, it is 

better to use higher order wavelet elements and then refine the solutions by increasing the 

multiresolution scale. 

  

 
 

Figure 7-25: The vertical displacement at the centre of a simply supported beam on a viscoelastic foundation (light 

damping) subjected to a moving point load travelling at a) 80 ms-1 b) 395.26 ms-1  and c) 500 ms-1.  

The variation of the deflection of the simply supported beam, resting on a viscoelastic 

foundation with 5% global damping, is presented in Figure 7-25. The damping value of 5% is 

a more practical and realistic value. It is therefore implemented in the analysis since the 

effects of slight damping are easily observed and it is close to the damping range of 1-3% for 

geomaterials [109]. The analysis of the dynamic response is extended for critical and 

supercritical damping values 100% and 200% respectively, for theoretical purposes.  

b) a) 

c) 
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The analysis is carried out using the BSWI55 WFEs, D182 WFEs and 150 classical FEs, for 

the moving load velocities a) 80 ms
-1

, b) 395.26 ms
-1

 and c) 500 ms
-1

. In general, the 

results presented demonstrate that both WFEM solutions are in very good agreement with the 

FEM solution for the different velocity profiles. 

In the analysis of the displacement for the subcritical moving point load (Figure 7-25 a)), the 

introduction of the light damping factor has smoothened out the low amplitude vibrations that 

were present in Figure 7-21 a) (elastic foundation). The centre of the beam virtually remains 

static until the moving load almost reaches the mid-span of the beam. Furthermore, the 

deflection curve is slightly asymmetrical with light damping and the maximum deflection at 
𝑙

2
  

slightly decreases in comparison to the elastic foundation results. 

When the moving load travels at a critical velocity as presented in Figure 7-25 b), the 

deflection at mid-span of the beam is initially negligible. The beam is excited and the 

amplitude of the vibration gradually increases in magnitude as the moving load advances 

towards the centre of the beam. The beam oscillations are fewer than in the case with no 

damping and rapidly decrease as the moving load departs the centre of the beam; the centre of 

the beam coming to a rest before the moving load departs from the beam. This is in contrast 

to the elastic case from Figure 7-21 b) where the centre of the beam is still oscillating after 

the moving load has departed from the beam. Moreover, the magnitude of the maximum 

deflection with light damping is approximately half that of the elastic foundation case (Figure 

7-21 b)). Therefore, the light damping has a significant effect on the dynamic response of a 

beam when the moving load travels at critical velocities. 

In Figure 7-25 c), the analysis of the lightly damped viscoealstic foundation is carried out at a 

supercritical velocity of 500ms
-1

. In comparison to the response of the elastic foundation at a 

similar moving load velocity, as presented in Figure 7-21 c), the beam gradually gets excited 

until the moving load arrives at the centre. At this time, the displacement increases abruptly, 

then gradually decreases in magnitude and rate of vibration as the moving load leaves the 

beam. The maximum deflection at the centre of the beam slightly decreases when damping is 

introduced. This implies that the effect of damping is more significant on the magnitude of 

the maximum deflection when the moving load is travelling at/or close to the critical velocity 

than at subcritical or supercritical velocities. 

An analysis on computational cost is also carried out to investigate the performance of each 

approach based on the time taken to evaluate the dynamic response of the system. It must be 
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noted that the computer algorithms, written to carry out the simulations by the author, were 

not primarily focused on optimizing the efficiency of the different approaches. Furthermore, 

the manner in which certain sections of the algorithms were implemented varied for the 

different approaches. Therefore, the computational time was only analysed for sections of the 

algorithms that were similar for all approaches. The vital sections taken into account 

included: assembly of the stiffness, mass and damping matrices for the beam elements and 

viscoelastic foundation, evaluation of the moving load vectors at each time step, application 

of boundary conditions on the system matrices and load vectors and the implementation of 

the Newmark time integration method to obtain the dynamic response of the system. The 

WFE matrices were already evaluated in wavelet space, transformed into physical space and 

then stored. This was carried out to improve on the computational efficiency and reduce the 

computational costs when evaluating the system matrices. The moving load section taken into 

account in the analysis involved obtaining the force vectors in wavelet space at each time step 

and transforming them into physical space. The FEM matrices were calculated and stored; 

though the evaluation of the force vectors at each time step was taken into consideration.  

The analysis of the computational efficiency was carried out for the case of the beam resting 

on the viscoelastic foundation (5% damping); subjected to a moving point load travelling at a 

constant velocity of 395.26 ms
-1

. The time required to carry out the analysis via the FEM 

(302 DOFs, 150 elements), D182 WFEM (254 DOFs, 14 elements) and BSWI55 WFEM (206 

DOFs, 6 elements) was 38.937 s, 30.624 s and 21.044 s respectively. The BSWI55 WFEM 

solution was obtained by taking 68.72% and 54.05% of the time taken by the Daubechies 

D182 WFEM and FEM approaches respectively. The Daubechies WFEM took 78.65% of the 

time it took the FEM to attain the solution. This therefore confirms that the BSWI WFEM is 

significantly more computationally efficient and highly accurate than the other approaches. 

The Daubechies WFEM also has a better performance than the FEM. The simulations were 

carried out using Mathematica version 7 on a Pentium (R) Dual core CPU with: 4GB RAM, 

64 bit Operating System, 2.10 GHz running on Windows 8.  

The deflection at the centre of the beam is analysed for the critical damped system for the 3 

velocity profiles. The results are presented in Figure 7-26. The maximum deflection for the 3 

moving load velocity profiles are 7.23 mm (subcritical), 4.95 mm (critical) and 4.13 mm 

(supercritical). It is observed from these results that when the system is critically damped, the 

maximum deflection at mid-span of the beam occurs for the subcritical moving load velocity 

and continues to decrease as the velocity of the moving load increases. From the results 
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presented in Figure 7-26 a) it is also observed that the response, for critical damping at 

subcritical velocity, is more asymmetric and the maximum beam deflection slightly reduces 

as the damping factor is increased.  

When the moving load velocity is critical (395.26 ms
-1

), it is observed from Figure 7-26 b) 

that the effect of critical damping results in a significant decrease in maximum deflection 

(4.95 mm); in comparison to results obtain for no damping (55.13 mm) and light damping 

(27.50 mm) from Figure 7-21 a) and Figure 7-25 b) respectively. 

  

 
 

Figure 7-26: The vertical displacement at the centre of a simply supported beam on a viscoelastic foundation (critical 

damping) subjected to a moving point load travelling at a) 80 ms-1 b) 395.26 ms-1 and c) 500 ms-1.  

The effect of the moving load on the mid-span displacement is also more localised when the 

damping is critical. Furthermore, there is a very small but rapid harmonic component in the 

deflection variation as the moving load almost arrives at the centre of the beam. The 

maximum deflection is observed to occur just after the moving load passes the centre of the 

beam. Moreover, the beam comes to rest without any harmonic component as the moving 

load departs. Similar observations are also noticed in the displacement variation when the 

moving load is travelling at supercritical velocity from Figure 7-26 c). The results obtained 

via the BSWI55 and D182 WFEs are in excellent agreement with the FEM solution and 

achieve high levels of accuracy. 

a) b) 

c) 
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Figure 7-27 illustrates the deflection at the centre of the beam when supercritical (200%) 

damping is applied for the 3 velocity profiles. It is observed that a further increase in 

damping reduces the maximum deflection to 6.54 mm (subcritical), 2.93mm (critical) and 

2.41mm (supercritical). The maximum displacement at the centre of the beam also occurs 

when the moving load is travelling at subcritical velocity 80 ms
-1

. Furthermore, the beam 

takes a bit longer to come to rest once maximum displacement is achieved; just after the 

moving load passes the centre of the beam. 

  

 
 

Figure 7-27: The vertical displacement at the centre of a simply supported beam on a viscoelastic foundation (supercritical 

damping) subjected to a moving point load travelling at a) 80 ms-1  b) 395.26 ms-1 and c) 500 ms-1.  

It is evident from Figure 7-25 that the light damping of the system leads to a slight decrease 

in the magnitude of the maximum displacement for the 3 different moving load velocity 

cases. The displacement at the centre of the beam is at its maximum when the moving load is 

travelling at a critical velocity due to the excitation of the beam at that velocity; as is the case 

when the system is not damped. However, when the system is critically or supercritcally 

damped, the effect of damping is more significant on the maximum displacement for the 

critical and supercritical velocities than for the subcritical velocity, as illustrated in Figure 

7-26  and Figure 7-27. Thus, the focus of the maximum deflection at mid-span of the beam 

shifts from the analysis of the moving load at critical and supercritical velocities to subcritical 

a) b) 

c) 
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velocities. This is because the maximum deflection is observed to be achieved when the 

moving load is travelling at the subcritical velocity. Furthermore, as the velocity of the 

moving load increases, the maximum deflection decreases for critical and supercritical 

damping of the system.     

From the results presented in this section, the versatility and potential of both the wavelet 

based finite element methods is exhibited for the analysis of a finite beam on an elastic and 

viscoelastic foundation; for subcritical, critical and supercritical velocity and damping 

profiles. For moving load problems, such as the one presented in this section, the system 

requires large number of finite elements and time steps to accurately describe the dynamic 

response of the system, which is computationally demanding. However, the solutions 

obtained from both wavelet formulations give highly accurate results, with significantly 

fewer elements implemented in comparison to the classical FEM. Thus reducing the number 

of DOFs implemented in the analysis at each times step and decreasing the computational 

costs involved when implementing time integration. Furthermore, the BSWI WFEM achieves 

superior approximate solutions for the dynamic response in comparison to the Daubechies 

WFEM. This is achieved with significantly fewer elements implemented and the method is 

less computationally demanding. The BSWI WFEM is also not limited by numerical 

instabilities when higher order and/or multiresolution values are implemented since the 

scaling functions and their derivatives have a closed form solution. This is an added 

advantage of the BSWI based WFEM and it is therefore the preferred choice of wavelet 

based formulation to analyse train-track interaction and general structural dynamic problems.   

7.4.  Conclusions 

The implementation of the Daubechies and BSWI based WFEMs in the analysis of moving 

load problems was presented in this chapter. The dynamic response analysis was carried out 

for three different moving load profiles via numerical examples that were of practical or 

theoretical importance. The accuracy and the performance of both the WFEMs for free 

vibration and moving load analysis were discussed and compared with the classical FEM, and 

in some cases, analytical solutions.  

Analytical and semi-analytical solutions have been carried out and presented in literature to 

solve various moving load problems. However, these formulations are specific to certain 

systems or various assumptions are carried out to simplify the mathematical models, which 
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may lead to inaccurate results. The more complicated systems require numerical methods, 

such as FEM and WFEM, to analyse and solve for the dynamic response of the systems.  

The results presented showed that the wavelet finite element methods approximated the 

dynamic response of systems very accurately, particularly in the analysis of moving load 

problems. Furthermore, the solutions obtained via the WFEMs were achieved with 

significantly fewer elements and consequently, less number of DOFs. The computational 

costs were not only related to the DOFs required to achieve the desired levels of accuracy but 

it was also shown in Section 7.3 that the WFEM solutions were obtained faster than the FEM 

solutions. This was due to the main properties of the wavelet families implemented, such as 

compact support, multiresolution analysis and vanishing moments, which allow for an 

accurate approximation of the field variables.  

The impact of implementing fewer elements in the analysis was far greater in the dynamic 

analysis of systems rather than static cases, particularly for the identification and evaluation 

of the moving load critical velocities. This was because the system matrices and loading 

vectors were analysed at each time step to approximate the dynamic response of the system 

over a period of time. Larger dimensions of the elemental matrices and load vectors required 

additional computational and time resources to accurately describe the dynamic behaviour of 

the system. The results also illustrated that the accuracy of the WFEM solutions can be 

improved by increasing the order and/or multiresolution scale of the WFEs without altering 

the original system discretization.  

When carrying out free vibration analysis, it was found that the BSWI WFEM natural 

frequency solutions were highly accurate and converged rapidly to the exact solution, 

particularly for higher modes of vibration as observed in Section 7.1 and Section 7.2. The 

BSWI WFEM solutions were also found to be of superior accuracy in comparison to both the 

classical FEM and Daubechies WFEM solutions, with fewer elements and DOFs applied. 

This was also the case in the analysis of the dynamic response for the systems presented in 

this chapter. The Daubechies WFEM accurately approximated the lower modes of vibration 

natural frequencies, but it was necessary to increase the order and/or scale to improve the 

accuracy of the higher mode natural frequencies. 

In general, it was concluded that it is more efficient and effective to first increase the orders 

of the wavelet based finite elements, and then increase the multiresolution scales to improve 

the approximation of results when carrying out the dynamic analysis of systems via WFEM. 
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Increasing the order gives a better approximation of results, particularly for the Daubechies 

based WFEM.  

The implementation of the Daubechies based WFEM is limited to the orders D10, D12, D14, 

D16 and D18 for the beam and planar bar WFEs as mentioned in Chapter 6. However, for the 

dynamic response of the systems presented, it was found that the solutions obtained when the 

multiresolution scale 𝑗 ≥ 3 were inaccurate and diverged from the exact solution. This was 

due to the numerical errors and numerical instabilities that arise when evaluating the 

connection coefficients of the Daubechies wavelet, particularly for higher multiresolution 

scales. This is a key limitation of the Daubechies WFEM. 

Furthermore, it was also concluded from the results that the Daubechies WFEM may require 

the implementation of a higher order/and or multiresolution scale to accurately describe the 

velocity and acceleration responses than that used to obtain the lateral displacement of a 

moving load system; this was particularly observed from the results in Section 7.1 and 

Section 7.2. 

The BSWI based WFEM does not have the limitations of numerical instability or significant 

numerical errors since the scaling functions and their derivatives have an explicit expression 

and does not require the evaluation of the connection coefficients. Furthermore, the results 

presented showed that the BSWI WFEM gave more accurate approximations of the natural 

frequencies and dynamic response descriptions, with fewer elements in comparison to the 

Daubechies WFEM solutions. The BSWI WFEM was also shown to be more efficient with 

regards to computational speed, as was discussed in Section 7.3. Therefore, it was concluded 

that in the evaluation of moving load problems, particularly those associated with vehicle-

bridge and train-track interaction, the BSWI based WFEM is preferred to the Daubechies 

WFEM.  

The BSWI and Daubechies WFEM solutions, for the vehicle-bridge interaction and 

Vierendeel frame subjected to subcritical, critical and supercritical moving load velocities, 

were highly accurate and fewer elements were implemented when compared with the 

classical FEM. Moreover, the dynamic responses for the high speed locomotive travelling 

over a rail track system were very accurately described for all the cases of damping 

introduced in the system and velocity profiles.  
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8. The Analysis of Functionally Graded Materials using 

the Wavelet Finite Element Method 

Summary 

In this chapter, the dynamics analysis of functionally graded beams is carried out and 

presented via the implementation of the wavelet finite element method. The functionally 

graded beam material constituents, and consequently material properties, vary continuously 

with respect to the spatial coordinates. This variation in material distribution is modelled 

based on one of the gradation laws; the power law. The power law allows the composition 

distribution of the FGMs to be altered continuously by changing the value of the non-

negative volume fraction power law exponent, n. The power law and material distribution 

variations are briefly described and presented in this chapter. The formulation of a new 

modified wavelet based FG beam finite element formulation is presented. The variation of the 

functionally graded beam gradation is analysed in the transverse direction for two material 

constituents (metal and ceramic). The Daubechies and BSWI based WFEMs are implemented 

to carry out the analysis and compared with the solutions obtained using the classical FEM 

via numerical examples, which include: 

 A free vibration analysis of the wavelet based functionally graded beam is carried out 

for different values of Eratio (ratio of the Young’s modulus of the constituent 

materials), for transverse gradation. The results obtained are compared with those 

presented by Simsek and Kocaturk [83] and Alshorbagy et al. [79], who carried out a 

similar free vibration analysis. This comparison will not only serve as a means to 

verify the wavelet based functionally graded beam formulations, but also evaluate 

their performances. 

 A steel-alumina functionally graded beam free vibration analysis is carried out using 

the WFEM to investigate the variation of the natural frequencies with respect to 

variations in material distribution, slenderness ratio 
𝑙

𝑕
 and boundary conditions; for 

transverse gradation. 

 The dynamic response of a simply supported wavelet based FG steel-alumina beam 

when subjected to a moving point load is analysed. The beam constituents vary in the 
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transverse direction for different power law exponent values while subjected to 

different moving load velocity profiles. 

 Finally, the dynamic response analysis of a functionally graded beam resting on a 

viscoelastic foundation, subjected to a moving point load, is carried out using the 

WFEMs. This is an extension of the analysis carried out in Chapter 7 for the long 

homogeneous steel beam resting on a viscoelastic foundation. The results presented 

show the effect of altering the FGM composition distribution, via the power law 

exponent, on the dynamic response of the functionally graded beam on the 

viscoelastic foundation. The analysis is carried out for subcritical, critical and 

supercritical moving load velocities and different viscous damping profiles. 

The implementation of the Daubechies and BSWI based WFEMs in the analysis of 

functionally graded beams represents a novel development of this thesis. Most importantly, 

the dynamic response of a functionally graded beam resting on a viscoelastic foundation, 

while subjected to a moving load, is presented for the first time; to the best of the author’s 

knowledge. 

8.1.  The FGM transverse gradation power law 

By definition, the volume fractions of two phases of materials vary gradually in the gradation 

direction(s) of FGMs. This consequently implies that the material properties also vary along 

this direction(s).  

 

Figure 8-1: Cross-section of an FG beam composed of a metal and ceramic illustrating the transverse gradation. (a) 

Continuous variation model and (b) quasi-homogeneous layers model. 
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Consider, for example, the gradation of a functionally graded beam in the transverse 

direction, as illustrated in Figure 8-1. In Figure 8-1 (a) it is assumed that the volume fraction 

varies continuously for both materials from one surface to the other. Alternatively, a 

piecewise variation can be assumed, as illustrated in Figure 8-1 (b), where the volume 

fraction is taken to be constant in each layered region i.e., quasi-homogeneous layers [114].  

It is vital for the model representing the gradation of the material constituents, and 

consequently the material properties, to be as accurate as possible and simple to implement in 

analysis. In this study, the volume fraction of the FG beam is assumed to vary continuously, 

allowing for a smooth transition of the material properties from one surface to another. 

The power law was introduced by Wakashima et al. [115] and is an ideal approach for 

representing the gradation of the materials in a continuous, yet simplified manner. It is 

therefore selected in this study to approximate the material composition variation of the FG 

beam. The variation in material distributions and properties is described in this section 

according to Wakashima et al. [115]. The volume fractions of the upper surface 𝑉𝑢  and lower 

surface 𝑉𝑙  of the constituent materials are defined as [70]: 

where 𝛼 and 𝛽 are coefficients and n is the non-negative power law exponent, 0 ≤ 𝑛 ≤ ∞. 

The power law allows for the variation of the composition distribution of the FGMs by 

altering the volume fraction exponent n continuously. This is advantageous since the analysis 

of the FGM can be carried out for different variations of gradation of the materials. 

The subscripts u and l denote the upper and lower material surfaces respectively. Therefore, 

the volume fractions of the upper and lower surface materials are: 

For simplicity and in conformity with this study based on the presented examples in this 

chapter, the lower surface is considered to be metallic while the upper surface ceramic. 

Figure 8-2 illustrates the (a) lower surface material (metal) and (b) upper surface material 

(ceramic) volume fraction variations of the FG beam through its thickness from equation 

(8.3). When n is zero, the volume fraction of the metal in the FG beam is zero and the 

 𝑉𝑢 𝑦 =  𝛼 𝑦 + 𝛽 𝑛   (8.1) 

 𝑉𝑙 𝑦 = 1 − 𝑉𝑢 𝑦  (8.2) 

 
𝑉𝑢 𝑦 =  

𝑦

𝑕
+

1

2
 
𝑛

 

𝑉𝑙 𝑦 = 1 −  
𝑦

𝑕
+

1

2
 
𝑛

 

(8.3) 
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corresponding volume fraction of the ceramic is 1. Therefore, the effective material 

properties of the beam correspond to that of the ceramic. When 𝑛 = ∞, the volume fraction 

of metal equals 1 and the FG beam is considered to be fully metallic. Furthermore, when 𝑛 =

1, the variation from the metallic to ceramic phase is linear. The rate of material distribution 

variation also influences the effective material properties of the FG beam. 

 

 

Figure 8-2: The power law variation of the volume fractions for (a) lower surface material (b) upper surface material, 

through the thickness of the FG beam.  

The transverse variation of the material properties of the FG beam containing two 

constituents, according to the power gradation law, is expressed as [115]: 

(a) 

(b) 
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Substituting equation (8.3) into (8.4), the expression becomes: 

where 𝑃𝑟𝑎𝑡𝑖𝑜  is the ratio of the upper and lower surface material properties, 𝑃𝑢  and 𝑃𝑙  

respectively. The effective material properties P(y) that can be described via the power law 

include: Young’s modulus E, density ρ, Poisson’s ratio υ, shear modulus G and bulk modulus 

K. Figure 8-3 illustrates the variation of the (a) effective Young’s modulus E(y) and (b) 

effective density ρ(y) of a steel-alumina FG beam, for different values of n. The beam is fully 

steel (𝐸𝑙 = 2.1 x 1011  Pa, 𝜌𝑙 = 7.8 x 103 kgm
-3

) at the bottom surface and alumina (𝐸𝑢 =

3.9 x 1011  Pa, 𝜌𝑢 = 3.96 x 103 kgm
-3

) at the top surface. It is observed from Figure 8-3 (a) 

that when 𝑛 = ∞, 𝐸(𝑦) = 𝐸𝑙  since the volume fraction of the steel is 1 and when 𝑛 = 0, 

𝐸(𝑦) = 𝐸𝑢 . When 𝑛 < 1 and 𝑛 → 1 the effective Young’s modulus begins to decrease since 

the volume fraction of the alumina is decreasing and that of steel is increasing; given that 

𝐸𝑢 > 𝐸𝑙 . When 𝑛 = 1, the variation of the effective Young’s modulus is directly proportional 

through the thickness of the beam. The Young’s modulus at the neutral axis of the beam is 

the mean of 𝐸𝑢  and 𝐸𝑙 , given that the volume fractions of steel and alumina are equal (Vl = Vu 

= 0.5). As 𝑛 → ∞, the effective modulus decreases until 𝐸(𝑦) = 𝐸𝑙 , where the entire FG 

beam is fully steel (𝑛 = ∞). 

The effective density at 𝑛 = 0 corresponds to the density of alumina (𝜌 𝑦 = 𝜌𝑢 ) as 

illustrated in Figure 8-3 (b). Increase in the value of n leads to an increase in the effective 

density of the FG beam. When 𝑛 = ∞, the effective density 𝜌 𝑦 = 𝜌𝑙  since the functionally 

graded beam is fully steel. 

In reality, it is unlikely for the variation and transition of the FGM constituents to occur in a 

smooth continuous manner. However, the power law can be used to approximate the 

variation of the FGMs by assigning the correct value of n. This is a further advantage over 

other FGM modelling schemes such as; the exponential law [70], Mori Tanaka scheme [116] 

or Hill’s self-consistent method [117]. Furthermore, the material distributions of such models 

can also be approximated using the power law approach. 

 

 𝑃 𝑦 = 𝑉𝑢 𝑦  𝑃𝑢 − 𝑃𝑙 + 𝑃𝑙  (8.4) 

 
𝑃 𝑦 =  𝑃𝑢 − 𝑃𝑙  

𝑦

𝑕
+

1

2
 

𝑛

+ 𝑃𝑙   

 𝑃 𝑦 = 𝑃𝑙   𝑃𝑟𝑎𝑡𝑖𝑜 − 1  
𝑦

𝑕
+

1

2
 

𝑛

+ 1  (8.5) 
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Figure 8-3: The effective (a) Young’s modulus and (b) mass density, through the thickness of a steel-alumina FG beam for 

different power law exponents n.  

 

 

(a) 

(b) 
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8.2.  The wavelet based functionally graded beam finite element 

formulation 

The functionally graded beam is formulated using the wavelet finite element method based 

on the Euler-Bernoulli beam theory. The beam has axial and bending deformation, as well as 

corresponding loading effects, taken into consideration.  

 

Figure 8-4 : Two dimensional FG beam wavelet finite element layout. 

The variation of the material properties is analysed in the transverse direction based on the 

power law. The layout selected for the WFE has the axial and transverse displacement DOFs 

at each elemental node and the rotation DOFs only at the elemental end nodes; as presented 

in Figure 8-4. The total number of DOFs within each WFE is denoted by 𝑠 and the total 

number of elemental segments is ns. 

The nodal natural coordinates within the wavelet based finite element of the FGM beam is 

expressed as:  

 𝜉 =  
𝑥−𝑥1

𝑥𝑟−𝑥1
=

𝑥−𝑥1

𝐿𝑒
         (0 ≤ ξ ≤ 1)  (8.6) 

 𝜉𝑖 =  
𝑥𝑖−𝑥1

𝐿𝑒
 (0 ≤ ξi ≤ 1, 1 ≤ i ≤ r) (8.7) 

ur, fxr ur-1, fxr-1 ur-2, fxr-2 u3, fx3 u2, fx2 u1, fx1 

x 

y 

0 1 ξ 

ns +1 

xr 

... 

Le 

1 2 3 4 

(1) (2) (3) (ns) (ns-1) (ns-2) 

) 

x1

1 

x2 x3 xr-3 x4 

ns-2 ns-1 ns 

xr-2 xr-1 

... 

v1, fy1 v2, fy2 v3, fy3 vr-2, fyr-2 vr-1, fyr-1 vr, fyr 

𝜃𝑟 , 𝑚 𝑟  

𝜃1, 𝑚 1  
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The axial and transverse displacements are approximated using the wavelet scaling functions 

as earlier described in Section 5.1 and 5.2. For a particular multiresolution scale j, the axial 

and transverse displacements at any point, in natural coordinates, are approximated as: 

where z is the order of the wavelet scaling functions; 𝑎𝑧−2,𝑘
𝑗

 and 𝑏𝑧,𝑘
𝑗

 are wavelet coefficients 

corresponding to the elemental node axial and bending DOFs in wavelet space respectively. 

In general, the order of the scaling functions used to approximate the axial displacement will 

differ from the order approximating the transverse and rotation DOFs. The selection of the 

orders of the scaling functions is dependent on the element layout selected, so as to ensure 

that the defined DOFs are positioned at the correct elemental nodes. Thus, the order of the 

scaling functions selected to approximate the axial displacement, if the scaling function order 

approximating the transverse and rotational DOFs is 𝑧, must be 𝑧 − 2 for this layout. 

Furthermore, the multiresolution scale of the scaling functions representing the axial and 

bending deformations is j. 

Therefore, the axial deformation, transverse displacement and rotation at any point across the 

wavelet based finite element, specific to the layout implemented in this formulation, are 

described as: 

 

𝑢 𝜉 =  𝑎𝑧−2,𝑘
𝑗

 𝜙𝑧−2,𝑘
𝑗  𝜉 

2𝑗−1

𝑘=𝑕

 

𝑣 𝜉 =  𝑏𝑧,𝑘
𝑗

 𝜙𝑧,𝑘
𝑗  𝜉 

2𝑗−1

𝑘=𝑖

 

(8.8) 

 

𝑢 𝜉 = 

 𝜙𝑧−2,𝑕
𝑗  𝜉 0 0 𝜙𝑧−2,𝑕+1

𝑗  𝜉 0 𝜙𝑧−2,𝑕+2
𝑗  𝜉 ⋯ 0 𝜙

𝑧−2,2𝑗 −2

𝑗  𝜉 0 𝜙
𝑧−2,2𝑗 −1

𝑗  𝜉 0 0  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑎𝑧−2,𝑕

𝑗

𝑏𝑧,𝑖
𝑗

𝑏𝑧,𝑖+1
𝑗

𝑎𝑧−2,𝑕+1
𝑗

𝑏𝑧,𝑖+2
𝑗

𝑎𝑧−2,𝑕+2
𝑗

⋮

𝑏
𝑧,2𝑗 −4

𝑗

𝑎
𝑧−2,2𝑗 −2

𝑗

𝑏
𝑧,2𝑗 −3

𝑗

𝑎
𝑧−2,2𝑗 −1

𝑗

𝑏
𝑧,2𝑗 −2

𝑗

𝑏
𝑧,2𝑗 −1

𝑗
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 𝑢 𝜉 =  𝚽𝒛−𝟐
𝒋  𝜉    

 1 x 𝑠 

𝑎
{𝒄𝒆} 𝑠 x 1  (8.9) 
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The vector  𝒄𝒆  contains the coefficients corresponding to the DOFs within the wavelet based 

finite element in wavelet space. Furthermore, the vectors  𝚽𝐳−𝟐
𝒋  𝜉    

𝑎
and  𝚽𝐳

𝒋 𝜉    
𝑡

contain 

the scaling functions approximating the axial deformation and transverse displacements, at 

the positions corresponding to the related DOFs within the element, respectively. The vector 

 𝚽′𝐳
𝒋 𝜉    

𝑡
contains the first derivative of the scaling functions implemented to approximate 

the rotation DOFs. The relations expressed in (8.9) - (8.11) are employed to formulate the 

wavelet transformation matrix of the wavelet based beam element. 

In physical space, the DOFs within each wavelet finite element are expressed as the vector 

 𝒉𝒆 : 

Therefore, the relation between the physical space and wavelet space DOFs is formulated as: 

 

𝑣 𝜉 = 

 0 𝜙𝑧,𝑖
𝑗  𝜉 𝜙𝑧,𝑖+1

𝑗  𝜉 0 𝜙𝑧,𝑖+2
𝑗  𝜉 0 ⋯ 𝜙

𝑧,2𝑗 −4

𝑗  𝜉 0 𝜙
𝑧,2𝑗−3

𝑗  𝜉 0 𝜙
𝑧,2𝑗 −2

𝑗  𝜉 𝜙
𝑧,2𝑗−1

𝑗  𝜉  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑎𝑧−2,𝑕

𝑗

𝑏𝑧,𝑖
𝑗

𝑏𝑧,𝑖+1
𝑗

𝑎𝑧−2,𝑕+1
𝑗

𝑏𝑧,𝑖+2
𝑗

𝑎𝑧−2,𝑕+2
𝑗

⋮

𝑏
𝑧,2𝑗−4

𝑗

𝑎
𝑧−2,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−3

𝑗

𝑎
𝑧−2,2𝑗−1

𝑗

𝑏
𝑧,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−1

𝑗
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 𝑣 𝜉 =  𝚽𝒛
𝒋 𝜉    

 1 x 𝑠 

𝑡
{𝒄𝒆} 𝑠 x 1  (8.10) 

 𝜃 𝜉 =
𝜕𝑣 𝜉 

𝜕𝑥
=

1

𝐿𝑒

𝜕𝑣 𝜉 

𝜕𝜉
=

1

𝐿𝑒
 𝚽′𝐳

𝒋 𝜉    
 1 x 𝑠 

𝑡
{𝒄𝒆} 𝑠 x 1  (8.11) 

  𝒉𝒆 =  𝑢1 𝑣1 𝜃1 𝑢2 𝑣2 𝑢3 𝑣3 ⋯ 𝑢𝑟−1 𝑣𝑟−1 𝑢𝑟 𝑣𝑟 𝜃𝑟  
𝑇  (8.12) 
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The vector  𝒄𝒆 , containing the wavelet space element DOFs, can be expressed as:  

where the wavelet transformation matrix  𝑻𝒑
𝒘  is the inverse of the matrix  𝑹𝒑

𝒘 . The axial 

deformation, transverse displacement and the rotation DOFs at any elemental node i can then 

be evaluated by substituting equation (8.14) into equations (8.9) - (8.11). Thus, 

The relation of the transverse 𝑣 𝑥  and axial 𝑢 𝑥  displacements at any point on the mid-

plane of the beam at time t, based on Euler Bernoulli beam theory, is defined as [83]: 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

𝑢1 

𝑣1 

𝜃1 

𝑢2 

𝑣2 

𝑢3 

⋮
𝑣𝑟−2 

𝑢𝑟−1 

𝑣𝑟−1 

𝑢𝑟

𝑣𝑟 

𝜃𝑟  
 
 
 
 
 
 

 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  𝚽𝒛−𝟐

𝒋  𝜉1    
𝑎

 𝚽𝐳
𝒋 𝜉1    

𝑡

1

𝐿𝑒

 𝚽′𝐳
𝒋  𝜉1    

𝑡

 𝚽𝒛−𝟐
𝒋  𝜉2    

𝑎

 𝚽𝐳
𝒋 𝜉2    

𝑡

 𝚽𝒛−𝟐
𝒋  𝜉3    

𝑎

⋮

 𝚽𝒛−𝟐
𝒋  𝜉𝑟−2    

𝑡

 𝚽𝒛−𝟐
𝒋  𝜉𝑟−1    

𝑎

 𝚽𝐳
𝒋 𝜉𝑟−1    

𝑡

 𝚽𝒛−𝟐
𝒋  𝜉𝑟    

𝑎

 𝚽𝐳
𝒋 𝜉𝑟    

𝑡

1

𝐿𝑒

 𝚽′𝐳
𝒋  𝜉𝑟    

𝑡

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑎𝑧−2,𝑕

𝑗

𝑏𝑧,𝑖
𝑗

𝑏𝑧,𝑖+1
𝑗

𝑎𝑧−2,𝑕+1
𝑗

𝑏𝑧,𝑖+2
𝑗

𝑎𝑧−2,𝑕+2
𝑗

⋮

𝑏
𝑧,2𝑗−4

𝑗

𝑎
𝑧−2,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−3

𝑗

𝑎
𝑧−2,2𝑗−1

𝑗

𝑏
𝑧,2𝑗−2

𝑗

𝑏
𝑧,2𝑗−1

𝑗
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  

 {𝒉𝒆} 𝑠 x 1 =  𝑹𝒑
𝒘 

 𝑠 x 𝑠  
{𝒄𝒆} 𝑠 x 1  (8.13) 

  𝒄𝒆 =  𝑹𝒑
𝒘 

−1
 𝒉𝒆 =  𝑻𝒑

𝒘  𝒉𝒆   (8.14) 

 𝑢 𝜉𝑖 =  𝚽𝒛
𝒋
 𝜉𝑖    

 1 x 𝑠 

𝑎
 𝑻𝒑

𝒘
 

 𝑠 x 𝑠  
{𝒉𝒆} 𝑠 x 1  (8.15) 

 𝑣 𝜉𝑖 =  𝚽𝒛
𝒋 𝜉𝑖    

 1 x 𝑠 

𝑡
 𝑻𝒑

𝒘
 

 𝑠 x 𝑠  
{𝒉𝒆} 𝑠 x 1  (8.16) 

 𝜃 𝜉𝑖 =
1

𝐿𝑒
 𝚽′𝐳

𝒋 𝜉    
 1 x 𝑠 

𝑡
 𝑻𝒑

𝒘
 

 𝑠 x 𝑠  
{𝒉𝒆} 𝑠 x 1  (8.17) 

 𝑢0 𝑥, 𝑦, 𝑡 = 𝑢 𝑥, 𝑡 − 𝑦
𝜕𝑣 𝑥, 𝑡 

𝜕𝑥
 (8.18) 

 𝑣0 𝑥, 𝑦, 𝑡 = 𝑣 𝑥, 𝑡  (8.19) 
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where x, y and t represent the axial direction, transverse direction and time respectively. 𝑢0 

and 𝑣0 are the axial and transverse displacements at any point of the beam. Equations (8.18) 

and (8.19) can also be expressed in matrix form. 

The FG beam is assumed to undergo small deformations, thus the normal strain in the x 

direction, εxx, can be expressed in terms of the displacement. 

The FG beam is also assumed to be fully elastic; therefore obeys Hooke’s law. The normal 

stress in the x direction, 𝜍𝑥𝑥 , is defined as: 

The Young’s modulus varies in the transverse direction according to the power law and the 

value 𝐸 𝑦  is obtained from equation (8.5), where 

𝐸𝑢  and 𝐸𝑙  denote the Young’s modulus of the upper and lower material respectively. The 

strain energy of the beam element, 𝑈𝑒 , is given as:  

 Substituting equations  (8.21) and (8.22) into (8.24), 

Expressing equation (8.25) in terms of the local natural coordinates of the beam element, 

  
𝑢0

𝑣0
 =   

1 0 −𝑦
0 1 0

  

𝑢
𝑣
𝜕𝑣

𝜕𝑥

   

  𝑑 =  
𝑢0

𝑣0
  (8.20) 

 
𝜀𝑥𝑥 =

𝜕𝑢0

𝜕𝑥
=

𝜕(𝑢 𝑥, 𝑡 − 𝑦
𝜕𝑣 𝑥, 𝑡 

𝜕𝑥
)

𝜕𝑥
=

𝜕𝑢 𝑥, 𝑡 

𝜕𝑥
− 𝑦

𝜕2𝑣 𝑥, 𝑡 

𝜕𝑥2
 

 

 𝜀𝑥𝑥 =  1 −𝑦  

𝜕𝑢

𝜕𝑥
𝜕2𝑣

𝜕𝑥2

   (8.21) 

 𝜍𝑥𝑥 = 𝐸 𝑦 𝜀𝑥𝑥 = 𝐸 𝑦   1 −𝑦  

𝜕𝑢

𝜕𝑥
𝜕2𝑣

𝜕𝑥2

  (8.22) 

 𝐸 𝑦 =  𝐸𝑢 − 𝐸𝑙  
𝑦

𝑕
+

1

2
 

𝑛

+ 𝐸𝑙  (8.23) 

 𝑈𝑒 =
1

2
 𝜍𝑥𝑥

𝑇𝜀𝑥𝑥  𝑑𝑉
𝑣𝑜𝑙

=
1

2
 𝜍𝑥𝑥

𝑇𝜀𝑥𝑥  𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑣𝑜𝑙

 (8.24) 

 𝑈𝑒 =
1

2
 𝐸 𝑦  

𝜕𝑢 𝑥, 𝑡 

𝜕𝑥
− 𝑦

𝜕2𝑣 𝑥, 𝑡 

𝜕𝑥2
 

𝑇

 
𝜕𝑢 𝑥, 𝑡 

𝜕𝑥
− 𝑦

𝜕2𝑣 𝑥, 𝑡 

𝜕𝑥2
  𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑣𝑜𝑙

 (8.25) 
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However,  𝑑𝑧
𝑏

0
= 𝑏 is the width of the FG beam. Therefore, 

The elemental stiffness matrix for the wavelet based FG beam finite element is evaluated 

from equation (8.27). Let 

where 𝐸𝑒
𝐴 , 𝐸𝑒

𝐵  and 𝐸𝑒
𝐶  denote the axial, axial-bending coupling and bending stiffness of 

the wavelet based finite element respectively. From equation (8.27), the wavelet space axial 

stiffness matrix [𝒌𝒆
𝒘]𝐴  of the WFE is evaluated by substituting equation (8.9) into (8.27) 

The axial-bending coupling stiffness matrices [𝒌𝒆
𝒘]𝐵  and [𝒌𝒆

𝒘]𝐶  in wavelet space are given 

as:  

and the wavelet space bending stiffness matrix [𝒌𝒆
𝒘]𝐷  is  

 

𝑈𝑒 =
1

2
 𝑑𝑧

𝑏

0

  𝐸 𝑦  
1

𝐿𝑒

 
𝜕𝑢 𝜉 

𝜕𝜉
 

𝑇

 
𝜕𝑢 𝜉 

𝜕𝜉
 −

𝑦

𝐿𝑒
2  

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
𝜕𝑢 𝜉 

𝜕𝜉
 

1

0

𝑕
2

−
𝑕
2

−
𝑦

𝐿𝑒
2  

𝜕𝑢 𝜉 

𝜕𝜉
 

𝑇

 
𝜕2𝑣 𝜉 

𝜕𝜉2
 +

𝑦2

𝐿𝑒
3  

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
𝜕2𝑣 𝜉 

𝜕𝜉2
   𝑑𝜉 𝑑𝑦  

(8.26) 

 

𝑈𝑒 =
𝑏

2
  𝐸 𝑦  

1

𝐿𝑒

 
𝜕𝑢 𝜉 

𝜕𝜉
 

𝑇

 
𝜕𝑢 𝜉 

𝜕𝜉
 −

𝑦

𝐿𝑒
2  

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
𝜕𝑢 𝜉 

𝜕𝜉
 

1

0

𝑕
2

−
𝑕
2

−
𝑦

𝐿𝑒
2  

𝜕𝑢 𝜉 

𝜕𝜉
 

𝑇

 
𝜕2𝑣 𝜉 

𝜕𝜉2
 +

𝑦2

𝐿𝑒
3  

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
𝜕2𝑣 𝜉 

𝜕𝜉2
   𝑑𝜉 𝑑𝑦  

(8.27) 

 𝐸𝑒
𝐴 =  𝐸 𝑦 𝑑𝑦

𝑕
2

−
𝑕
2

=   𝐸𝑢 − 𝐸𝑙  
𝑦

𝑕
+

1

2
 
𝑛

+ 𝐸𝑙𝑑𝑦

𝑕
2

−
𝑕
2

 (8.28) 

 𝐸𝑒
𝐵 =  𝑦 𝐸 𝑦 𝑑𝑦

𝑕
2

−
𝑕
2

=  𝑦   𝐸𝑢 − 𝐸𝑙  
𝑦

𝑕
+

1

2
 
𝑛

+ 𝐸𝑙 𝑑𝑦

𝑕
2

−
𝑕
2

 (8.29) 

 𝐸𝑒
𝐶 =  𝑦2𝐸 𝑦 𝑑𝑦

𝑕
2

−
𝑕
2

=   𝑦2 𝐸𝑢 − 𝐸𝑙  
𝑦

𝑕
+

1

2
 
𝑛

+ 𝐸𝑙 𝑑𝑦

𝑕
2

−
𝑕
2

 (8.30) 

 [𝒌𝒆
𝒘] 𝑠 x 𝑠 

𝐴 =   
𝜕𝚽𝒛−𝟐

𝒋  𝜉 

𝜕𝜉
 

𝑇

  

𝑎

 
𝜕𝚽𝒛−𝟐

𝒋  𝜉 

𝜕𝜉
   

𝑎

𝑑𝜉
1

0

 (8.31) 

 [𝒌𝒆
𝒘] 𝑠 x 𝑠 

𝐵 =   
𝜕2𝚽𝒛

𝒋 𝜉 

𝜕𝜉2  

𝑇

  

𝑡

 
𝜕𝚽𝒛−𝟐

𝒋  𝜉 

𝜕𝜉
   

𝑎

𝑑𝜉
1

0

 (8.32) 

 [𝒌𝒆
𝒘] 𝑠 x 𝑠 

𝐶 =   
𝜕𝚽𝒛−𝟐

𝒋  𝜉 

𝜕𝜉
 

𝑇

  

𝑎

 
𝜕2𝚽𝒛

𝒋 𝜉 

𝜕𝜉2    

𝑡

𝑑𝜉
1

0

 (8.33) 
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The matrices expressed in equations (8.31) - (8.34) are transformed into the physical space 

via the transformation matrix  𝑻𝒑
𝒘 ,  which is obtained from the relation in (8.14). Thus,  

The elemental stiffness matrix in physical space for the wavelet based FG beam is therefore: 

The kinetic energy of the wavelet based FG beam element, 𝛬𝑒 , is defined as:  

vel is the velocity of the FG beam. ρ(y) represents the effective density of the FG beam 

element, which is obtained from equation (8.5) as: 

The velocity components of the beam in axial and transverse directions can be expressed as: 

The velocity components can then be defined in terms of the wavelet scaling functions from 

equations (8.15) and (8.16). 

 [𝒌𝒆
𝒘] 𝑠 x 𝑠 

𝐷
=   

𝜕2𝚽𝒛
𝒋  𝜉 

𝜕𝜉2
 

𝑇

  

𝑡

 
𝜕2𝚽𝒛

𝒋  𝜉 

𝜕𝜉2
   

𝑡

𝑑𝜉

1

0

 (8.34) 

 [𝒌𝒆
𝒑

] 𝑠 x 𝑠 
𝐴

=
𝑏 𝐸𝑒

𝐴

𝐿𝑒

 𝑻𝒑
𝒘 

𝑇
[𝒌𝒆

𝒘]𝐴  𝑻𝒑
𝒘  (8.35) 

 [𝒌𝒆
𝒑

] 𝑠 x 𝑠 
𝐵

=
𝑏 𝐸𝑒

𝐵

𝐿𝑒
2

 𝑻𝒑
𝒘 

𝑇
[𝒌𝒆

𝒘]𝐵  𝑻𝒑
𝒘  (8.36) 

 [𝒌𝒆
𝒑

] 𝑠 x 𝑠 
𝐶

=
𝑏 𝐸𝑒

𝐵

𝐿𝑒
2

 𝑻𝒑
𝒘 

𝑇
[𝒌𝒆

𝒘]𝐶  𝑻𝒑
𝒘  (8.37) 

 [𝒌𝒆
𝒑

] 𝑠 x 𝑠 
𝐷

=
𝑏 𝐸𝑒

𝐶

𝐿𝑒
3

 𝑻𝒑
𝒘 

𝑇
[𝒌𝒆

𝒘]𝐷  𝑻𝒑
𝒘  (8.38) 

 [𝒌𝒆
𝒑

] 𝑠 x 𝑠 = [𝒌𝒆
𝒑

]𝐴 − [𝒌𝒆
𝒑

]𝐵 − [𝒌𝒆
𝒑

]𝐶 + [𝒌𝒆
𝒑

]𝐷
 (8.39) 

 𝛬𝑒 =  𝜌(𝑦) 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑣𝑜𝑙

 𝑣𝑒𝑙 (8.40) 

 𝜌 𝑦 =  𝜌𝑢 − 𝜌𝑙  
𝑦

𝑕
+

1

2
 

𝑛

+ 𝜌𝑢  (8.41) 

  
𝜕 𝑣0(𝑥, 𝑡)

𝜕𝑡
 = {𝑣 (𝑥, 𝑡)}  

  
𝜕 𝑢0(𝑥, 𝑡)

𝜕𝑡
 =  𝑢 0(𝑥, 𝑡) = 𝑢  𝑥, 𝑡 − 𝑦

𝜕𝑣  𝑥, 𝑡 

𝜕𝑥
 (8.42) 

 𝑢  𝜉 =  𝚽𝒛
𝒋 𝜉    

 1 x 𝑠 

𝑎
 𝑻𝒑

𝒘
 

 𝑠 x 𝑠  
{𝒉 𝒆} 𝑠 x 1  (8.43) 
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Substituting equation (8.42) into (8.40), 

Equation (8.45) can be expressed in the natural coordinate system as:  

Let the inertial coefficients be denoted as: 

Substituting equations (8.43) and (8.44) into (8.46), the mass matrix components in wavelet 

space are evaluated as follows: 

 𝑣  𝜉 =  𝚽𝒛
𝒋 𝜉    

 1 x 𝑠 

𝑡
 𝑻𝒑

𝒘
 

 𝑠 x 𝑠  
{𝒉 𝒆} 𝑠 x 1  (8.44) 

 𝛬𝑒 =
1

2
 𝜌(𝑦)  𝑢 0(𝑥, 𝑡) 𝑇 𝑢 0(𝑥, 𝑡) +  𝑣 0(𝑥, 𝑡) 𝑇 𝑣 0(𝑥, 𝑡)   𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑣𝑜𝑙

  

 𝛬𝑒 =
1

2
 𝜌(𝑦)   𝑢  𝑥, 𝑡 − 𝑦

𝜕𝑣  𝑥, 𝑡 

𝜕𝑥
  𝑢  𝑥, 𝑡 − 𝑦

𝜕𝑣  𝑥, 𝑡 

𝜕𝑥
 +  𝑣 (𝑥, 𝑡)𝑣 (𝑥, 𝑡)   𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑣𝑜𝑙

 (8.45) 

 

𝛬𝑒 =
1

2
 𝑑𝑧

𝑏

𝑜
  𝜌(𝑦)  𝐿𝑒 𝑢  𝜉, 𝑡 𝑢  𝜉, 𝑡  − 𝑦  𝑢  𝜉, 𝑡 

𝜕𝑣  𝜉, 𝑡 

𝜕𝑥
 − 𝑦 

𝜕𝑣  𝜉, 𝑡 

𝜕𝜉
𝑢  𝜉, 𝑡  

1

0

𝑕
2

−
𝑕
2

+
𝑦2

𝐿𝑒
 
𝜕𝑣  𝜉, 𝑡 

𝜕𝑥

𝜕𝑣  𝜉, 𝑡 

𝜕𝑥
 + 𝐿𝑒 𝑣 (𝜉, 𝑡)𝑣 (𝜉, 𝑡)   𝑑𝜉 𝑑𝑦  

 

(8.46) 

 𝜌𝑒
𝐴 =  𝜌 𝑦 𝑑𝑦

𝑕
2

−
𝑕
2

=   𝜌𝑢 − 𝜌𝑙  
𝑦

𝑕
+

1

2
 
𝑛

+ 𝜌𝑙𝑑𝑦

𝑕
2

−
𝑕
2

 (8.47) 

 𝜌𝑒
𝐵 =  𝑦𝜌 𝑦 𝑑𝑦

𝑕
2

−
𝑕
2

=  𝑦   𝜌𝑢 − 𝜌𝑙  
𝑦

𝑕
+

1

2
 
𝑛

+ 𝜌𝑙 𝑑𝑦

𝑕
2

−
𝑕
2

 (8.48) 

 𝜌𝑒
𝐶 =  𝑦2𝜌 𝑦 𝑑𝑦

𝑕
2

−
𝑕
2

=   𝑦2 𝜌𝑢 − 𝜌𝑙  
𝑦

𝑕
+

1

2
 
𝑛

+ 𝜌𝑙 𝑑𝑦

𝑕
2

−
𝑕
2

 (8.49) 

 [𝒎𝒆
𝒘] 𝑠 x 𝑠 

𝐴
=   𝚽𝒛−𝟐

𝒋  𝜉  
𝑇

  
𝑎

 𝚽𝒛−𝟐
𝒋  𝜉    

𝑎
𝑑𝜉

1

0

 (8.50) 

 [𝒎𝒆
𝒘] 𝑠 x 𝑠 

𝐵
=   𝚽𝒛−𝟐

𝒋  𝜉  
𝑇

  
𝑎

 
𝜕𝚽𝒛

𝒋 𝜉 

𝜕𝜉
   

𝑡

𝑑𝜉

1

0

 (8.51) 

 [𝒎𝒆
𝒘] 𝑠 x 𝑠 

𝐶
=   

𝜕𝚽𝒛
𝒋 𝜉 

𝜕𝜉
 

𝑇

  

𝑡

 𝚽𝒛−𝟐
𝒋  𝜉    

𝑎
𝑑𝜉

1

0

 (8.52) 

 [𝒎𝒆
𝒘] 𝑠 x 𝑠 

𝐷
=   

𝜕𝚽𝒛
𝒋 𝜉 

𝜕𝜉
 

𝑇

  

𝑡

 
𝜕𝚽𝒛

𝒋 𝜉 

𝜕𝜉
   

𝑡

𝑑𝜉

1

0

 (8.53) 

 [𝒎𝒆
𝒘] 𝑠 x 𝑠 

𝐸
=   𝚽 𝒛

𝒋 𝜉  
𝑇

  
𝑡

 𝚽 𝒛
𝒋 𝜉    

𝑡
𝑑𝜉

1

0

 (8.54) 
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The mass matrix components are then transformed from wavelet space into physical space 

via the wavelet transformation matrix  𝑻𝒑
𝒘 . Thus, the matrices expressed in equations (8.50) 

- (8.54), after transformation into physical space, are expressed as: 

The total element mass matrix in physical space for the wavelet based FG beam element is 

therefore: 

The FG beam stiffness and mass matrices are evaluated in the local coordinate system. The 

elemental matrices can then be transformed in global coordinates via the global 

transformation matrix  𝑻𝒑
𝑮 . The relation of the local and global coordinate systems for the 

FG beam WFE is  

The stiffness and mass matrices in global coordinates for the FG beam are therefore defined 

as: 

 [𝒎𝒆
𝒑

] 𝑠 x 𝑠 
𝐴 = 𝑏 𝜌𝑒

𝐴 𝐿𝑒 𝑻𝒑
𝒘 

𝑇
[𝒎𝒆

𝒘]𝐴  𝑻𝒑
𝒘  (8.55) 

 [𝒎𝒆
𝒑

] 𝑠 x 𝑠 
𝐵 = 𝑏 𝜌𝑒

𝐵  𝑻𝒑
𝒘 

𝑇
[𝒎𝒆

𝒘]𝐵  𝑻𝒑
𝒘  (8.56) 

 [𝒎𝒆
𝒑

] 𝑠 x 𝑠 
𝐶 = 𝑏 𝜌𝑒

𝐵  𝑻𝒑
𝒘 

𝑇
[𝒎𝒆

𝒘]𝐶  𝑻𝒑
𝒘  (8.57) 

 [𝒎𝒆
𝒑

] 𝑠 x 𝑠 
𝐷 =

𝑏 𝜌𝑒
𝐶

𝐿𝑒
 𝑻𝒑

𝒘 
𝑇

[𝒎𝒆
𝒘]𝐷  𝑻𝒑

𝒘  (8.58) 

 [𝒎𝒆
𝒑

] 𝑠 x 𝑠 
𝐸 = 𝑏 𝜌𝑒

𝐴 𝐿𝑒 𝑻𝒑
𝒘 

𝑇
[𝒎𝒆

𝒘]𝐸  𝑻𝒑
𝒘  (8.59) 

 [𝒎𝒆
𝒑

] 𝑠 x 𝑠 = [𝒎𝒆
𝒑

]𝐴 − [𝒎𝒆
𝒑

]𝐵 − [𝒎𝒆
𝒑

]𝐶 + [𝒎𝒆
𝒑

]𝐷 + [𝒎𝒆
𝒑

]𝐸
 (8.60) 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑢1 

𝑣1 

𝜃1

𝑢2 

𝑣2 

𝑢3 

𝑣3 

⋮
𝑢𝑛−1 

𝑣𝑛−1 

𝑢𝑛 

𝑣𝑛 

𝑢𝑛+1 

𝑣𝑛+1 

𝜃𝑛+1  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cos 𝛼 sin 𝛼 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0
− sin 𝛼 cos 𝛼 0 0 0 0 0 ⋯ 0 0 0 0 0 0 0

0 0 1 0 0 0 0 ⋯ 0 0 0 0 0 0 0
0 0 0 cos 𝛼 sin 𝛼 0 0 ⋯ 0 0 0 0 0 0 0
0 0 0 − sin 𝛼 cos 𝛼 0 0 ⋯ 0 0 0 0 0 0 0
0 0 0 0 0 cos 𝛼 sin 𝛼 ⋯ 0 0 0 0 0 0 0
0 0 0 0 0 − sin 𝛼 cos 𝛼 ⋯ 0 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 ⋯ cos 𝛼 sin 𝛼 0 0 0 0 0
0 0 0 0 0 0 0 ⋯ − sin 𝛼 cos 𝛼 0 0 0 0 0
0 0 0 0 0 0 0 ⋯ 0 0 cos 𝛼 sin 𝛼 0 0 0
0 0 0 0 0 0 0 ⋯ 0 0 − sin 𝛼 cos 𝛼 0 0 0
0 0 0 0 0 0 0 ⋯ 0 0 0 0 cos 𝛼 sin 𝛼 0
0 0 0 0 0 0 0 ⋯ 0 0 0 0 − sin 𝛼 cos 𝛼 0
0 0 0 0 0 0 0 ⋯ 0 0 0 0 0 0 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑈1

𝑉1

Θ1

𝑈2

𝑉2

𝑈3

𝑉3

⋮
𝑈𝑛−1

𝑉𝑛−1

𝑈𝑛

𝑉𝑛

𝑈𝑛+1

𝑉𝑛+1

Θn+1 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  

 {𝒉𝒆} 𝑠 × 1 =  𝑻𝒑
𝑮 

 𝑠× 𝑠  
{𝑯𝒆} 𝑠 × 1  (8.61) 

 [𝑲𝒆
𝒑

] 𝑠 x 𝑠 =   𝑻𝒑
𝑮 

𝑇

 𝑠 x 𝑠  
[𝒌𝒆

𝒑
] 𝑠 x 𝑠  𝑻𝒑

𝑮 
 𝑠 x 𝑠  

 (8.62) 

 [𝑴𝒆
𝒑

] 𝑠 x 𝑠 =   𝑻𝒑
𝑮 

𝑇

 𝑠 x 𝑠  
[𝒎𝒆

𝒑
] 𝑠 x 𝑠  𝑻𝒑

𝑮 
 𝑠 x 𝑠  

 (8.63) 
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8.3.  Free vibration analysis of a transverse varying functionally graded 

beam  

 

Figure 8-5: Simply supported functionally graded beam.  

The free vibration analysis of a simply supported functionally graded beam is carried out 

using the Daubechies and BSWI based WFEMs. The functionally graded beam comprises of 

two constituent materials varying in the transverse direction based on the power law; as 

illustrated in Figure 8-5. The FG beam of length l and uniform cross-sectional area A (width b 

and height h), has a Young’s modulus 𝐸𝑢 , 𝐸𝑙  and density 𝜌𝑢 , 𝜌𝑙  at the upper and lower 

surfaces respectively. The effective material properties are evaluated for the different material 

distributions from equation (8.5). 

The free vibration analysis is carried out by solving the eigenvalue problem [27]: 

where the matrices  𝑀  and  𝐾  are the mass and stiffness matrices of the system in physical 

space respectively. They are computed by assembling the elemental stiffness and mass 

matrices in equations (8.62) and (8.63) respectively, with the imposed boundary conditions 

applied. The vector  𝑈   represents modal displacements and 𝜔 is the corresponding natural 

frequencies of the system. 

   𝐾 − 𝜔2 𝑀   𝑈  = 0 (8.64) 

b 

y 

x 

𝐸𝑢 , 𝜌𝑢  

 𝐸𝑙 , 𝜌𝑙  

h 

l 
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The effect of varying Eratio (𝐸ratio =
𝐸𝑢

𝐸𝑙
) on the natural frequencies of the FG beam is carried 

out using both the Daubechies and BSWI WFEMs. This analysis was also presented by 

Simsek and Kocaturk [83] using Euler-Bernoulli theory and Lagrange’s equations to derive 

the governing equations of motion for the system. In their initial analysis, they investigate the 

effect of varying the Young’s modulus ratio, power law exponent n and slenderness ratio 
𝑙

𝑕
, 

on the non-dimensional frequencies of the FG beam. In their study, the material gradation 

varies in the transverse direction. Alshorbagy et al. [79] also use the classical FEM to carry 

out this analysis, although it is not indicated how many elements are implemented to obtain 

their results. Therefore, the FEM solutions presented in this chapter are evaluated based on 

the classical FEM formulation for FG beams presented in Appendix B.4. Alshorbagy et al. 

[79] also analyse the free vibration of the FG beam with axial gradation, for different 

boundary conditions.  

In this section, the results obtained via the Daubechies and BSWI based WFEMs are 

compared with those presented in [83] to verify the wavelet based FG beam formulations. In 

this analysis, the upper surface material is alumina of Young’s modulus 𝐸𝑢 = 390 GPa and 

density 𝜌𝑢 = 3960 kgm
-3

. The density ratio of the two surfaces is assumed to be equal to 

one i.e., 𝜌ratio =
𝜌𝑢

𝜌 𝑙
= 1. Given that 𝐸ratio =

𝐸𝑢

𝐸𝑙
, the Young’s modulus of the lower surface is 

evaluated from the relation 𝐸𝑙 =
𝐸𝑢

𝐸ratio
. The FG beam of length l is of uniform cross-sectional 

area A; height 𝑕 = 0.9 m and width 𝑏 = 0.4 m. 

The non-dimensional frequencies 𝜆𝑖  of the FG beam are evaluated from the relation 

where 𝜔𝑖  is the i
th

 mode natural frequency of the beam in radians per second. 

The simply supported wavelet based functionally graded beam is modelled using 2 

Daubechies D120 WFEs (37 DOFs), while for the BSWI WFEM, one BSWI54 (38 DOFs) 

WFE is implemented. The results are compared with the classical FEM, where 12 elements 

(39 DOFs) are employed. The number of elements used, order and multiresolution scale of 

the wavelet based elements employed allow for a comparison of the results with a similar 

number of DOFs within the entire FG beam. The results for the first 3 non-dimensional 

frequencies are obtained for different values of n and Eratio. 

 𝜆𝑖
2 = 𝜔𝑖𝑙

2  
12 𝜌𝑙  

𝐸𝑙𝑕2
 

1
2
 (8.65) 
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Table 8-1 contains the non-dimensional fundamental frequency of the FG beam, 𝜆1, with 

slenderness ratio 
𝑙

𝑕
= 20, for different values of Eratio and n. The Daubechies and BSWI based 

WFEM solutions are in excellent agreement with the results presented in [83]; with only two 

and one WFEs used in the analysis respectively. Furthermore, the WFEM results are 

noticeably better than those obtained via the classical FEM approach. 

E Ratio  n = 0 n = 0.1 n = 0.2 n = 0.5 n = 1 n = 2 n = 5 n = 10 n = 104 

 

 

0.1 

Ref 

[83] 
- - - - - - - - - 

FEM 1.76574 2.04374 2.17085 2.37367 2.53917 2.69652 2.87467 2.9776 3.13977 

Daub 1.76574 2.04338 2.17023 2.37283 2.53836 2.69594 2.87444 2.97752 3.13977 

BSWI 1.76574 2.04338 2.17023 2.37283 2.53836 2.69694 2.87444 2.97752 3.13977 

 

 

0.25 

Ref 

[83] 
2.2203 2.3739 2.4606 - 2.7035 2.8053 - 3.0084 - 

FEM 2.2203 2.37469 2.46153 2.59816 2.70437 2.80598 2.93031 3.00855 3.13981 

Daub 2.2203 2.37459 2.46113 2.59773 2.7039 2.80562 2.93016 3.0085 3.1398 

BSWI 2.2203 2.37459 2.46113 2.59773 2.7039 2.80562 2.93016 3.0085 3.1398 

 

 

0.5 

Ref 

[83] 
2.6403 2.7104 2.7573 - 2.8944 2.9459 - 3.0562 - 

FEM 2.6404 2.71075 2.75767 2.83636 2.89474 2.94622 3.01105 3.05632 3.13987 

Daub 2.6404 2.71073 2.75762 2.83624 2.89459 2.94609 3.01099 3.05629 3.13986 

BSWI 2.6404 2.71073 2.75762 2.83623 2.89459 2.94609 3.01198 3.05629 3.13986 

 

 

1 

Ref 

[83] 
3.1399 3.1399 3.1399 - 3.1399 3.1399 - 3.1399 3.1399 

FEM 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 

Daub 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 

BSWI 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 3.13998 

 

 

2 

Ref 

[83] 
3.734 3.6775 3.6301 - 3.4421 3.3765 - 3.2725 - 

FEM 3.73409 3.67727 3.62998 3.52966 3.44245 3.3769 3.31975 3.27269 3.14022 

Daub 3.73409 3.67726 3.62994 3.52955 3.44226 3.37668 3.31959 3.27262 3.14022 

BSWI 3.73409 3.67726 3.62994 3.52955 3.44226 3.37668 3.31959 3.27262 3.14022 

 

 

4 

Ref 

[83] 
4.4406 4.337 4.2459 - 3.8234 3.6485 - 3.4543 - 

FEM 4.44061 4.33664 4.24558 4.03478 3.82455 3.65012 3.533 3.45511 3.14069 

Daub 4.4406 4.33661 4.2455 4.03446 3.82389 3.64923 3.5323 3.45473 3.14069 

BSWI 4.4406 4.33661 4.2455 4.03446 3.82489 3.64923 3.5323 3.45473 3.14069 

 

 

10 

Ref 

[83] 
- - - - - - - - - 

FEM 5.58377 5.42438 5.28008 4.92294 4.51536 4.10325 3.8225 3.73252 3.1421 

Daub 5.58376 5.42433 5.27992 4.92228 4.51392 4.10109 3.82039 3.73103 3.1421 

BSWI 5.58376 5.42433 5.27992 4.92228 4.51392 4.10109 3.82039 3.73103 3.14209 

Table 8-1: The non-dimensional fundamental frequency of a simply supported FGM beam of varying composition 

distributions; for different Eratio.(
𝝆𝒖

𝝆𝒍
= 𝟏,

𝒍

𝒉
= 𝟐𝟎). 

When Eratio < 1, it is observed that as n increases, the fundamental frequency also increases. 

For example, at Eratio = 0.1, 𝐸𝑙 =
𝐸𝑢  

0.1
 and thus the lower surface material has a higher bending 

rigidity than the alumina surface. When n = 0, the beam composition is considered fully 
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alumina. Therefore, as n increases, the effective modulus, and subsequently overall bending 

stiffness of the FG beam, also increases. This results in an increase of the non-dimensional 

fundamental frequency until n is infinity, where the fundamental frequency is equivalent to 

that of the lower material; since its volume fraction is 1. 

When Eratio = 1, the upper and lower surfaces have material constituents of the same stiffness; 

hence the beam is also fully homogenous. Therefore, variation of the power law exponent n 

does not alter the material distribution and the non-dimensional fundamental frequency 

remains constant for all values of n. 

 

 

Figure 8-6: The non-dimensional fundamental frequency variation with respect to (a) power law exponent n for different 

Eratio and (b) Eratio for different n. l/h = 100. (−) FEM, (−𝒐 −) D120 WFEM, (−𝐱 −) BSWI54 WFEM.  

(a) 

(b) 
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It is further observed from Table 8-1 that increasing n when Eratio > 1 results in a decrease in 

the non-dimensional fundamental frequency until n reaches infinity; since 𝐸𝑙 < 𝐸𝑢 . These 

described aspects are also noticed in Figure 8-6 (a) where the non-dimensional fundamental 

frequency is plotted against the power law exponent n, for different values of Eratio. 

The non-dimensional frequency of the FG beam increases as the value of Eratio increases for 

all values of n; with the exception of when 𝑛 = ∞. This is because as Eratio increases the FG 

beam has a higher bending stiffness and consequently the fundamental frequency increases. 

The rate of increase of the non-dimensional frequency with Eratio decreases as 𝑛 → ∞. This is 

due to the fact that the normalised non-dimensional fundamental frequency 𝜆1 is evaluated 

with respect to the Young’s modulus and density of the lower surface material. Increasing the 

value of n means the effective Young’s modulus of the FG beam 𝐸 𝑦 → 𝐸𝑙 . Therefore, at 

𝑛 = ∞, where 𝐸 𝑦 = 𝐸𝑙 , the non-dimensional frequencies will be constant (approx 3.13999) 

for all Eratio. This is also observed from Figure 8-6 (b) where the non-dimensional 

fundamental frequency is plotted against Eratio for different values of n.  

 

Figure 8-7: 3D plot of the non-dimensional fundamental frequency variation with respect to Eratio and n for l/h = 100 using 

the BSWI54 WFEM. 

A 3D plot representation of the non-dimensional fundamental frequency variation, with 

respect to Eratio and n, is presented in Figure 8-7 for 
𝑙

𝑕
= 100. This plot is obtained based on 

the results of the BSWI54 wavelet based element solution.  

The plot further implies that the highest non-dimensional fundamental frequency is obtained 

as 𝑛 = 0 and Eratio = 10. However, the lowest fundamental frequency is when Eratio = 0 
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and 𝑛 = 0. The 3D plot for the D120 WFE solution is not presented since the results are 

similar to the BSWI54 WFEM solutions. 

The second and third non-dimensional frequencies are presented in Table 8-2 and Table 8-3. 

The results obtain using both wavelet based finite element formulations are in very good 

agreement with those presented in [83]. However, it is observed that the non-dimensional 

frequencies obtained via the BSWI based WFEM are more accurate in comparison to the 

Daubechies based WFEM and classical FEM solutions. This difference of accuracy further 

increases as the modes of vibration increase.  

E Ratio  n = 0 n = 0.1 n = 0.2 n = 0.5 n = 1 n = 2 n = 5 n = 10 n = 104 

 

 

0.1 

Ref 

[83] 
- - - - - - - - - 

FEM 3.52616 4.08259 4.33731 4.74328 5.0738 5.38725 5.74158 5.94654 6.27007 

Daub 3.52646 4.08008 4.33282 4.73696 5.06779 5.38309 5.74029 5.94643 6.27061 

BSWI 3.52607 4.07963 4.33233 4.73643 5.06721 5.38248 5.73965 5.94576 6.26991 

 

 

0.25 

Ref 

[83] 
4.4338 4.7398 4.912 - 5.3955 5.5997 - 6.0073 - 

FEM 4.43391 4.74259 4.91646 5.19004 5.40236 5.60492 5.85238 6.00824 6.27014 

Daub 4.43429 4.7422 4.91508 5.18712 5.39913 5.60254 5.85172 6.00834 6.27068 

BSWI 4.43379 4.74167 4.91453 5.18654 5.39852 5.60192 5.85106 6.00767 6.26998 

 

 

0.5 

Ref 

[83] 
5.2726 5.4124 5.5058 - 5.7789 5.882 - 6.103 - 

FEM 5.27284 5.41339 5.5072 5.6646 5.78134 5.88407 6.01324 6.10351 6.27026 

Daub 5.27329 5.41371 5.50728 5.66414 5.78061 5.88353 6.01329 6.10385 6.2708 

BSWI 5.2727 5.41311 5.50667 5.66351 5.77997 5.88287 6.01262 6.10317 6.2701 

 

 

1 

Ref 

[83] 
6.2703 6.2703 6.2703 - 6.2703 6.2703 - 6.2703 - 

FEM 6.27049 6.27049 6.27049 6.27049 6.27049 6.27049 6.27049 6.27049 6.27049 

Daub 6.27103 6.27103 6.27103 6.27103 6.27103 6.27103 6.27103 6.27103 6.27103 

BSWI 6.27033 6.27033 6.27033 6.27033 6.27033 6.27033 6.27033 6.27033 6.27033 

 

 

2 

Ref 

[83] 
7.4567 7.3437 7.249 - 6.8723 6.741 - 6.5346 - 

FEM 7.45692 7.34348 7.24911 7.04905 6.87521 6.74442 6.62993 6.53573 6.27096 

Daub 7.45755 7.34404 7.24951 7.04886 6.87434 6.74327 6.62942 6.5358 6.2715 

BSWI 7.45672 7.34323 7.2487 7.04808 6.87358 6.74252 6.62868 6.53507 6.2708 

 

 

4 

Ref 

[83] 
8.8675 8.6607 8.4784 - 7.6304 7.2788 - 6.8946 - 

FEM 8.86782 8.66028 8.47867 8.05865 7.64009 7.29247 7.05766 6.90106 6.2719 

Daub 8.86858 8.66084 8.47876 8.05679 7.63552 7.28599 7.05272 6.89862 6.27244 

BSWI 8.86759 8.65987 8.47781 8.05589 7.63466 7.28517 7.05193 6.89785 6.27174 

 

 

10 

Ref 

[83] 
- - - - - - - - - 

FEM 11.1507 10.8326 10.5448 9.8336 9.02264 8.20172 7.63969 7.45788 6.27472 

Daub 11.1516 10.8331 10.5445 9.82925 9.01194 8.18528 7.62351 7.44665 6.27525 

BSWI 11.1504 10.8319 10.5433 9.82815 9.01092 8.18435 7.62264 7.44581 6.27455 

Table 8-2: The second non-dimensional frequency of a simply supported FG beam of varying composition distributions for 

different Eratio.(
𝜌𝑢

𝜌 𝑙
= 1,

𝑙

𝑕
= 20). 
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The variation of the natural frequencies of the FG beam, for different values of Eratio and n, 

are similar as those discussed for the fundamental non-dimensional frequency. Increasing 

Eratio at lower values of n has the most significant effect on the natural frequencies than 

varying the values of n. Thus, the material constituents selected in FGMs are important in 

free vibration analysis of structures due to the differences in material and physical properties. 

This subsequently has a considerable effect on the dynamic response and mechanical 

properties of such structures. 

E Ratio  n = 0 n = 0.1 n = 0.2 n = 0.5 n = 1 n = 2 n = 5 n = 10 n = 104 

 

 

0.1 

Ref [83] - - - - - - - - - 

FEM 5.27639 6.11226 6.49565 7.10545 7.60005 8.0671 8.59375 8.89894 9.38226 

Daub 5.28152 6.10863 6.48569 7.08988 7.5859 8.05951 8.59615 8.9055 9.39138 

BSWI 5.2757 6.10182 4.47841 7.08187 7.57735 8.05051 8.58664 8.89569 9.38104 

 

 

0.25 

Ref [83] 6.6338 7.0866 7.3383 - 8.0556 8.36658 - 8.9863 - 

FEM 6.63471 7.09754 7.35887 7.77011 8.08834 8.39053 8.75872 8.99099 9.38236 

Daub 6.64115 7.10177 7.36 7.76641 8.08384 8.38916 8.76336 8.99834 9.39148 

BSWI 6.63385 7.09393 7.35185 7.75777 8.07484 8.37984 8.75368 8.98842 9.38115 

 

 

0.5 

Ref [83] 7.889 8.0971 8.2354 - 8.6399 8.7956 - 9.1305 - 

FEM 7.89004 8.10053 8.24119 8.47739 8.65242 8.80596 8.99853 9.13323 9.38254 

Daub 7.89771 8.10793 8.24791 8.48247 8.65674 8.81102 9.00572 9.14153 9.39166 

BSWI 7.88902 8.099 8.23882 8.47311 8.64718 8.80129 8.9958 9.13146 9.38132 

 

 

1 

Ref [83] 9.3816 9.3816 9.3816 - 9.3816 9.3816 - 9.3816 9.3816 

FEM 9.38289 9.38289 9.38289 9.38289 9.38289 9.38289 9.38289 9.38289 9.38289 

Daub 9.39201 9.39201 9.39201 9.39201 9.39201 9.39201 9.39201 9.39201 9.39201 

BSWI 9.38168 9.38168 9.38168 9.38168 9.38168 9.38168 9.38168 9.38168 9.38168 

 

 

2 

Ref [83] 11.1567 10.9872 10.8499 - 10.2747 10.0756 - 9.77344 - 

FEM 11.1582 10.9885 10.8475 10.5489 10.2895 10.0941 9.92196 9.78035 9.38359 

Daub 11.169 10.999 10.8573 10.5565 10.2947 10.0981 9.928 9.7882 9.39271 

BSWI 11.1568 10.9869 10.8454 10.5448 10.2833 10.087 9.91705 9.77742 9.38238 

 

 

4 

Ref [83] 13.2676 12.9571 12.6821 - 11.3924 10.8527 - 10.2862 - 

FEM 13.2694 12.9591 12.6879 12.0617 11.4386 10.9203 10.5667 10.3297 9.385 

Daub 13.2823 12.9711 12.6981 12.065 11.4323 10.9072 10.5583 10.3295 9.39412 

BSWI 13.2677 12.9568 12.6841 12.0516 11.4195 10.8949 10.5466 10.3181 9.38378 

 

 

10 

Ref [83] - - - - - - - - - 

FEM 16.6854 16.2098 15.7803 14.721 13.515 12.2919 11.4476 11.1702 9.38921 

Daub 16.7016 16.2244 15.7916 14.718 13.4898 12.2466 11.4024 11.1412 9.39834 

BSWI 16.6832 16.2065 15.7742 14.7016 13.4746 12.2326 11.3893 11.1286 9.38779 

Table 8-3: The third non-dimensional frequency of a simply supported FG beam of varying composition distributions for 

different Eratio.(
𝜌𝑢

𝜌 𝑙
= 1,

𝑙

𝑕
= 20). 

These general observations are consistent with those presented by Simsek and Kocaturk [83]. 

The results presented in this section show that the WFEM approaches approximate the FG 
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beam natural frequencies very accurately when compared with those obtained by Simsek and 

Kocaturk [83] and the formulations are therefore validated.  

l/h = 20  n = 0 n = 0.1 n = 0.2 n = 0.5 n = 1 n = 2 n = 5 n = 10 n = 104 

𝜆1 

BSWI55 4.34248 4.19217 4.07584 3.84697 3.65598 3.50318 3.36974 3.29347 3.14022 

FEM 4.34249 4.19219 4.07587 3.84706 3.65614 3.50336 3.36985 3.29352 3.14023 

D120 4.34248 4.19217 4.07584 3.84697 3.65598 3.50318 3.36974 3.29347 3.14022 

BSWI54 4.34248 4.19217 4.07584 3.84697 3.65598 3.50318 3.36974 3.29347 3.14022 

𝜆2  

BSWI55 8.67165 8.37112 8.13856 7.68111 7.29967 6.99492 6.7292 6.57712 6.27081 

FEM 8.67187 8.3714 8.13898 7.68204 7.30113 6.99654 6.73023 6.57768 6.27098 

D120 8.67262 8.37205 8.13946 7.68197 7.30048 6.9957 6.72995 6.57786 6.27151 

BSWI54 8.67165 8.37112 8.13856 7.68112 7.29967 6.99492 6.7292 6.57712 6.27081 

𝜆3  

BSWI55 12.9745 12.524 12.1754 11.4899 10.9191 10.4641 10.0683 9.84139 9.3824 

FEM 12.9762 12.5258 12.1777 11.4939 10.9249 10.4704 10.0726 9.84398 9.38361 

D120 12.9888 12.5278 12.1888 11.5026 10.9312 10.4756 10.0795 9.85225 9.38273 

BSWI54 12.9745 12.524 12.1754 11.49 10.9191 10.4641 10.0683 9.8414 9.3824 

l/h = 50           

𝜆1 

BSWI55 4.34436 4.19403 4.07769 3.84877 3.6577 3.50478 3.37119 3.29485 3.14157 

FEM 4.34436 4.19404 4.07772 3.84886 3.65787 3.50497 3.3713 3.2949 3.14157 

D120 4.34436 4.19403 4.07769 3.84877 3.6577 3.50478 3.37119 3.29485 3.14157 

BSWI54 4.34436 4.19403 4.07769 3.84877 3.6577 3.50478 3.37119 3.29485 3.14157 

𝜆2  

BSWI55 8.68657 8.38593 8.15326 7.69548 7.31343 7.00733 6.74072 6.58811 6.663 

FEM 8.68679 8.38621 8.15368 7.69638 7.31486 7.00932 6.74173 6.58866 6.66376 

D120 8.68754 8.38687 8.15417 7.69634 7.31425 7.00851 6.74147 6.58885 6.66374 

BSWI54 8.68657 8.38593 8.15326 7.69548 7.31343 7.00733 6.74072 6.58812 6.663 

𝜆3  

BSWI55 13.0245 12.5736 12.2246 11.5381 10.9652 10.507 10.107 9.87823 9.99049 

FEM 13.0262 12.5754 12.2269 11.5419 10.9708 10.5131 10.1111 9.88077 9.99375 

D120 13.0389 12.5875 12.2381 11.5508 10.9774 10.5187 10.1181 9.88915 10.0015 

BSWI54 13.0245 12.5736 12.2246 11.5381 10.9652 10.507 10.107 9.87824 9.9905 

l/h = 100           

𝜆1 

BSWI55 4.34462 4.1943 4.07795 3.84903 3.65795 3.50501 3.37139 3.29504 3.33251 

FEM 4.34463 4.19431 4.07798 3.84912 3.65811 3.50519 3.3715 3.2951 3.33258 

D120 4.34462 4.1943 4.07795 3.84903 3.65795 3.50501 3.37139 3.29504 3.33251 

BSWI54 4.34462 4.1943 4.07795 3.84903 3.65795 3.50501 3.37139 3.29504 3.33251 

𝜆2  

BSWI55 8.68871 8.38806 8.15537 7.69754 7.31541 7.00956 6.74237 6.58969 6.66461 

FEM 8.68894 8.38834 8.15579 7.69844 7.31684 7.01115 6.74338 6.59024 6.66537 

D120 8.68968 8.389 8.15628 7.6984 7.31623 7.01035 6.74313 6.59043 6.66535 

BSWI54 8.68871 8.38806 8.15537 7.69754 7.31541 7.00957 6.74238 6.58969 6.66461 

𝜆3  

BSWI55 13.0317 12.5808 12.2317 11.545 10.9719 10.5132 10.1125 9.88355 9.99591 

FEM 13.0334 12.5826 12.234 11.5489 10.9774 10.5192 10.1166 9.88608 9.99915 

D120 13.0461 12.5947 12.2453 11.5578 10.984 10.5249 10.1237 9.88448 10.007 

BSWI54 13.0317 12.5808 12.2317 11.545 10.9719 10.5132 10.1125 9.88356 9.99592 

Table 8-4: The first 3 non-dimensional frequencies of a simply supported steel-alumina FG beam for different transverse 

varying composition distributions and slenderness ratios. 
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However, it must be pointed out that the assumptions made on the variations of Eratio and ρratio 

by Simsek and Kocaturk [83], and subsequently Alshorbagy [79], are incorrect. It is 

impractical to assign the value of 𝜌ratio =
𝜌𝑢

𝜌 𝑙
= 1 throughout the analysis when varying 

values of Eratio. This assumption implies that the densities of both the top and bottom surface 

materials are equal and remain constant as the ratio of the Young’s modulus is varying. It is 

noted that Eratio and 𝜌ratio  cannot be assumed to have the same value since the density ratio 

and Young’s modulus ratio will vary differently based on the constituent material properties. 

Thus, given that the wavelet based FGM formulation is verified, the analysis carried out in 

the rest of this chapter will be specific to a steel-alumina FG beam. 

The Young’s modulus and density of steel (bottom surface material) are 𝐸𝑙 = 210 GPa and 

𝜌𝑙 = 7800 kgm
-3

 respectively. In this section, and subsequent sections of this chapter, the 

effective material properties are assumed to be approximately that of steel when power law 

exponent 𝑛 = 104. The variation of the first 3 non-dimensional frequencies with respect to n 

are presented in Table 8-4; for slenderness ratio 
𝑙

𝑕
= 20, 50, 100. The results are obtained 

using two Daubechies D120 (37 DOFs) WFEs, one BSWI54 (38 DOFs) WFE and 12 classical 

FEs (39 DOFs). Furthermore, the solutions obtained using 2 BSWI55 WFEs (137 DOFs) are 

also presented since the solutions have converged. Thus, the results of BSWI55 WFEs are 

used as a reference for the comparison of the different solutions.  

 

Figure 8-8: The non-dimensional fundamental frequency variation with respect to n for l/h = 100.  

The non-dimensional frequencies of the steel-alumina beam decrease as the value of n 

increases from 0 to infinity; since the effective bending stiffness decreases. This is further 

evident from Figure 8-8, which illustrates the variation of the normalised fundamental 

frequency for different values of n. 
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Figure 8-9 shows the first 20 non-dimensional frequencies for different values of n via (a) the 

BSWI54 and (b) D120 WFEMs. The natural frequencies of the steel-alumina FG beam 

increase as the mode of vibration increases for the different values of n. The non-dimensional 

fundamental frequencies obtained via the D120 and BSWI54 WFEMs are in excellent 

agreement with the BSWI55 solution from Table 8-4. However, for the higher mode 

frequencies, the BSWI54 WFEM solutions are most accurate in comparison to D120 WFEM 

and classical FEM approaches. This is further evident from Figure 8-10 where the variation 

of the non-dimensional frequencies with respect to the first 20 modes of vibration, for 𝑛 = 5 

and 
𝑙

𝑕
= 100, is presented. 

 

 

Figure 8-9: The variation of the non-dimensional frequencies for different values of n for l/h = 100. (a) BSWI54 and (b) 

D120 WFEM.  

(a) 

(b) 
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Figure 8-10: Comparison of the non-dimensional frequencies using D120, BSWI54 WFEs and 12 FEs for n = 5, l/h = 100. 

It is observed that the normalised frequencies obtained via the Daubechies WFEM, for the 

higher modes, are not as accurate as the FEM and BSWI based WFEM solutions due to the 

numerical inaccuracies resulting from the evaluation of the connection coefficients. However, 

the results can be improved by increasing the order and/or multiresolution scale of the 

Daubechies based WFE; the results converge as observed in Figure 8-11. The normalised 

frequencies are plotted for the different orders and multiresolution scales of the Daubechies 

based wavelet finite elements, for 𝑛 = 5 and 
𝑙

𝑕
= 100. The black solid line indicated by 

“Ref” refers to the 2 element BSWI55 WFEM solution used for comparison. Once again it is 

observed that increasing the order of the Daubechies element has a more significant effect on 

improving the accuracy of the FG beam natural frequencies than increasing the 

multiresolution scale, particularly for the higher modes of vibration.  

Figure 8-12 shows the non-dimensional frequencies 𝜆𝑖  of the FG beam analysed using 

different orders m and multiresolution scale j of one BSWImj wavelet based finite element; 

𝑛 = 5, and 
𝑙

𝑕
= 100. The results demonstrate the convergence of BSWI based WFEM 

solution in the analysis of the functionally graded beam when the order and/or the 

multiresolution scale are increased. Increasing the order and/or multiresolution scale of the 

BSWI wavelet element leads to better approximations of the non-dimensional frequencies, 

particularly those associated with the higher modes of vibration. The BSWI43 element 

solution is very accurate for the first 7 non-dimensional frequencies. The frequencies are 
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better approximated by increasing the multiresolution scale. The BSWI44 solution 

approximates the first 17 non-dimensional frequencies very accurately. Similarly, increasing 

the order of the wavelet element from BSWI45 to BSWI55 improves the approximation of the 

non-dimensional frequencies.  

 

Figure 8-11: Comparison of the non-dimensional frequencies using different orders and scales of the DLj WFE for n = 5 and 

l/h = 100. 

 

 

Figure 8-12: The comparison of the non-dimensional frequencies using different orders and scales of the BSWImj WFE for 

n = 5 and l/h = 100. 
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Figure 8-13 graphically represents the variation of 𝜆1 for the steel-alumina FG beam with 

respect to the slenderness ratio 
𝑙

𝑕
 and 𝑛 = 0.5. The classical FEM, BSWI and Daubechies 

based WFEM solutions are all in good agreement. The formulation of the beam elements are 

based on Euler-Bernoulli beam theory (the shear deformation effects are neglected). Thus, for 

values of  
𝑙

𝑕
> 20, the variation of the fundamental frequency are small. This is also observed 

in Table 8-4, where for example, 𝜆1 when 𝑛 = 0.5 are 3.84697, 3.84877 and 3.84903 for 

𝑙

𝑕
= 20, 50 and 100 respectively (BSWI55 WFEM solution). 

 

Figure 8-13: The non-dimensional fundamental frequency variation with respect to l/h for n = 0.5. 

Pradhan and Chakraverty [78] analysed the impact of the slenderness ratio on the dynamic 

analysis of a functionally graded beam by comparing classical beam theory to Timoshenko 

beam theory solutions. In their analysis they conclude that for short beams (
𝑙

𝑕
< 20), the 

results of the non-dimensional frequencies vary considerably for the two different beam 

theories. However, for 
𝑙

𝑕
> 20, lower mode non-dimensional frequencies are similar for both 

approaches. Increasing the slenderness ratio decreases the disparities between the two beam 

theory solutions for the higher mode frequencies. The results presented in Figure 8-13 are 

consistent with their findings. 

The free vibration of the steel-alumina FG beam is analysed when different boundary 

conditions are applied, for different values of n. The boundary conditions are pinned-pinned 

(PP), pinned-clamped (PC), clamped-clamped (CC) and clamped-free (CF). Table 8-5 - Table 

8-7 contain the results of the first 3 non-dimensional frequencies. The results demonstrate 
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that the wavelet based finite element approaches give accurate results for the different 

boundary conditions. In general, the different boundary restraints affect the non-dimensional 

frequencies of the FG beam. The highest corresponding fundamental frequencies are 

observed when both ends are fixed, while the least fundamental frequencies are obtained 

when the beam is clamped-free.  

l/h = 20  n = 0 n = 0.1 n = 0.2 n = 0.5 n = 1 n = 2 n = 5 n = 10 n = 104 

PP 

BSWI55 4.34248 4.19217 4.07584 3.84697 3.65598 3.50318 3.36974 3.29347 3.14022 

FEM 4.34249 4.19219 4.07587 3.84706 3.65614 3.50336 3.36985 3.29352 3.14023 

D120 4.34248 4.19217 4.07584 3.84697 3.65598 3.50318 3.36974 3.29347 3.14022 

BSWI54 4.34248 4.19217 4.07584 3.84697 3.65598 3.50318 3.36974 3.29347 3.14022 

PC 

BSWI55 5.4271 5.23923 5.09384 4.80779 4.56909 4.37814 4.2114 4.11608 3.92455 

FEM 5.42712 5.23928 5.09395 4.80811 4.56965 4.37877 4.21178 4.11626 3.92457 

D120 5.42711 5.23924 5.09384 4.80779 4.56909 4.37814 4.21141 4.11609 3.92456 

BSWI54 5.4271 5.23923 5.09384 4.80779 4.56909 4.37814 4.2144 4.11608 3.92455 

CC 

BSWI55 6.5373 6.31099 6.13585 5.79127 5.50374 5.27374 5.07291 4.9581 4.72738 

FEM 6.53735 6.3111 6.13609 5.79199 5.50498 5.27513 5.07375 4.95849 4.72742 

D120 6.5373 6.31099 6.13585 5.79127 5.50374 5.27374 5.07291 4.9581 4.72738 

BSWI54 6.5373 6.31099 6.13585 5.79127 5.50374 5.27374 5.07291 4.9581 4.72738 

CF 

BSWI55 2.59258 2.50286 2.43342 2.29679 2.18277 2.09152 2.01182 1.96627 1.87479 

FEM 2.59258 2.50286 2.43342 2.29682 2.18281 2.09157 2.01185 1.96628 1.87479 

D120 2.59258 2.50286 2.43342 2.29679 2.18277 2.09152 2.01182 1.96627 1.87479 

BSWI54 2.59258 2.50286 2.43342 2.29679 2.18277 2.09152 2.01182 1.96627 1.87479 

l/h = 100           

PP 

BSWI55 4.34462 4.1943 4.07795 3.84903 3.65795 3.50501 3.37139 3.29504 3.33251 

FEM 4.34463 4.19431 4.07798 3.84912 3.65811 3.50519 3.3715 3.2951 3.33258 

D120 4.34462 4.1943 4.07795 3.84903 3.65795 3.50501 3.37139 3.29504 3.33251 

BSWI54 4.34462 4.1943 4.07795 3.84903 3.65795 3.50501 3.37139 3.29504 3.33251 

PC 

BSWI55 5.43022 5.24233 5.09692 4.81079 4.57197 4.38082 4.21381 4.11838 3.92681 

FEM 5.43024 5.24238 5.09702 4.81112 4.57253 4.38144 4.21419 4.11856 3.92682 

D120 5.43023 5.24234 5.09692 4.8108 4.57197 4.38082 4.21382 4.11839 3.92681 

BSWI54 5.43022 5.24233 5.09692 4.81079 4.57197 4.38082 4.21381 4.11839 3.92681 

CC 

BSWI55 6.54131 6.31498 6.13981 5.79514 5.50745 5.27718 5.07601 4.96105 4.73028 

FEM 6.54137 6.31509 6.14005 5.79585 5.50867 5.27856 5.07685 4.96145 4.73028 

D120 6.54132 6.31498 6.13981 5.79514 5.50745 5.27719 5.07601 4.96106 4.73028 

BSWI54 6.54131 6.31498 6.13981 5.79514 5.50745 5.27718 5.07601 4.96105 4.73028 

CF 

BSWI55 2.59318 2.50345 2.43401 2.29737 2.18333 2.09204 2.01229 1.96671 1.87523 

FEM 2.59318 2.50346 2.43402 2.2974 2.18337 2.09209 2.01232 1.96673 1.87523 

D120 2.59318 2.50345 2.43401 2.29737 2.18333 2.09204 2.01229 1.96671 1.87523 

BSWI54 2.59318 2.50345 2.43401 2.29737 2.18333 2.09204 2.01229 1.96671 1.87523 

Table 8-5: The non-dimensional fundamental frequency of a steel-alumina FG beam of different transverse varying 

distributions and boundary conditions. 
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l/h = 20  n = 0 n = 0.1 n = 0.2 n = 0.5 n = 1 n = 2 n = 5 n = 10 n = 104 

PP 

BSWI55 8.67165 8.37112 8.13856 7.68111 7.29967 6.99492 6.7292 6.57712 6.27081 

FEM 8.67187 8.3714 8.13898 7.68204 7.30113 6.99654 6.73023 6.57768 6.27098 

D120 8.67262 8.37205 8.13946 7.68197 7.30048 6.9957 6.72995 6.57786 6.27151 

BSWI54 8.67165 8.37112 8.13856 7.68112 7.29967 6.99492 6.7292 6.57712 6.27081 

PC 

BSWI55 9.75388 9.4158 9.15417 8.63959 8.21052 7.8678 7.56902 7.39799 7.05342 

FEM 9.75429 9.41632 9.15498 8.64142 8.21344 7.87104 7.57106 7.39907 7.05371 

D120 9.75566 9.41751 9.15584 8.64117 8.21203 7.86924 7.5704 7.39934 7.0547 

BSWI54 9.75388 9.4158 9.15417 8.63959 8.21053 7.8678 7.56902 7.39799 7.05342 

CC 

BSWI55 10.8348 10.4592 10.1686 9.59688 9.12026 8.7396 8.40781 8.21787 7.83508 

FEM 10.8355 10.4601 10.1699 9.59999 9.12521 8.7451 8.41129 8.21971 7.83557 

D120 10.8388 10.4631 10.1723 9.60042 9.12363 8.74283 8.41091 8.2209 7.83796 

BSWI54 10.8348 10.4592 10.1686 9.59689 9.12027 8.73961 8.40782 8.21787 7.83508 

CF 

BSWI55 6.48085 6.25631 6.08254 5.74073 5.45565 5.22783 5.02912 4.91543 4.68656 

FEM 6.4809 6.2564 6.08271 5.74121 5.45647 5.22875 5.02968 4.9157 4.68659 

D120 6.48086 6.25632 6.08256 5.74074 5.45567 5.22784 5.02913 4.91544 4.68657 

BSWI54 6.48085 6.25631 6.08254 5.74073 5.45566 5.22783 5.02912 4.91543 4.68656 

l/h = 100           

PP 

BSWI55 8.68871 8.38806 8.15537 7.69754 7.31541 7.00956 6.74237 6.58969 6.66461 

FEM 8.68894 8.38834 8.15579 7.69844 7.31684 7.01115 6.74338 6.59024 6.66537 

D120 8.68968 8.389 8.15628 7.6984 7.31623 7.01035 6.74313 6.59043 6.66535 

BSWI54 8.68871 8.38806 8.15537 7.69754 7.31541 7.00957 6.74238 6.58969 6.66461 

PC 

BSWI55 9.77473 9.4365 9.17473 8.65966 8.22977 7.8857 7.58512 7.41335 7.06849 

FEM 9.77513 9.43702 9.17552 8.66145 8.23263 7.88888 7.58713 7.41442 7.06879 

D120 9.7765 9.43821 9.17639 8.66124 8.23127 7.88714 7.5865 7.4147 7.06977 

BSWI54 9.77473 9.4365 9.17473 8.65967 8.22977 7.8857 7.58512 7.41335 7.06849 

CC 

BSWI55 10.8597 10.4839 10.1931 9.62083 9.14322 8.76096 8.42702 8.23619 7.85305 

FEM 10.8604 10.4848 10.1944 9.62387 9.14808 8.76636 8.43044 8.238 7.85355 

D120 108636 10.4877 10.1968 9.62433 9.14655 8.76416 8.43009 8.23918 7.8559 

BSWI54 10.8597 10.4839 10.1931 9.62083 9.14322 8.76097 8.42702 8.23619 7.85305 

CF 

BSWI55 6.49133 6.26671 6.092287 5.75083 5.46534 5.23684 5.03722 4.92315 4.69413 

FEM 6.49138 6.2668 6.092305 5.75131 5.46615 5.23775 5.03778 4.92342 4.69417 

D120 6.49134 6.26673 6.092289 5.75084 5.46535 5.23686 5.03723 4.92316 4.69415 

BSWI54 6.49133 6.26671 6.092287 5.75083 5.46534 5.23684 5.03722 4.92315 4.69413 

Table 8-6: The second non-dimensional frequency of a steel-alumina FG beam of different transverse varying distributions 

and boundary conditions. 

 

Therefore, increasing the number of restrained DOFs increases the fundamental frequencies 

of the FG beam for the different values of n. This is important in the dynamic analysis of 

structures as higher values of the fundamental frequencies imply a reduction in vibrations 

when subjected to different loading conditions; such as harmonic or moving loads. 
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l/h = 20  n = 0 n = 0.1 n = 0.2 n = 0.5 n = 1 n = 2 n = 5 n = 10 n = 104 

PP 

BSWI55 12.9745 12.524 12.1754 11.4899 10.9191 10.4641 10.0683 9.84139 9.3824 

FEM 12.9762 12.5258 12.1777 11.4939 10.9249 10.4704 10.0726 9.84398 9.38361 

D120 12.9888 12.5378 12.1888 11.5026 10.9312 10.4756 10.0795 9.85225 9.38273 

BSWI54 12.9745 12.524 12.1754 11.49 10.9191 10.4641 10.0683 9.8414 9.3824 

PC 

BSWI55 14.052 13.5639 13.1862 12.4437 11.8254 11.3327 10.9043 10.6586 10.1616 

FEM 14.0545 13.5667 13.1898 12.4501 11.8347 11.3428 10.911 10.6627 10.1634 

D120 14.079 13.59 13.2116 12.4677 11.8483 11.3546 10.9253 10.6791 10.1811 

BSWI54 14.0252 13.5639 13.1863 12.4438 11.8254 11.3327 10.9043 10.6587 10.1616 

CC 

BSWI55 15.1292 14.6036 14.1969 13.3974 12.7317 12.2013 11.7404 11.4759 10.9405 

FEM 15.1328 14.6077 14.2021 13.4067 12.7454 12.2163 11.7503 11.4818 10.9431 

D120 15.1928 14.665 14.2567 13.454 12.7855 12.253 11.7899 11.5242 10.9865 

BSWI54 15.1292 14.6036 14.1969 13.3975 12.7317 12.2014 11.7404 11.4759 10.9405 

PC 

BSWI55 10.8196 10.444 10.1534 9.58194 9.10587 8.72624 8.39595 8.20664 7.82405 

FEM 10.8202 10.4448 10.1545 9.5843 9.10954 8.7303 8.39856 8.20808 7.82453 

D120 10.8251 10.4493 10.1586 9.58684 9.11054 8.73072 8.40026 8.21084 7.82805 

BSWI54 10.8196 10.444 10.1534 9.58194 9.10587 8.72625 8.39596 8.20664 7.82405 

l/h = 100           

PP 

BSWI55 13.0317 12.5808 12.2317 11.545 10.9719 10.5132 10.1125 3.29504 3.33251 

FEM 13.0334 12.5826 12.234 11.5489 10.9774 10.5192 10.1166 3.2951 3.33258 

D120 13.0461 13.5947 12.2453 11.5578 10.984 10.5249 10.1237 3.29504 3.33251 

BSWI54 13.0317 12.5808 12.2317 11.545 10.9719 10.5132 10.1125 3.29504 3.33251 

PC 

BSWI55 14.1176 13.629 13.2509 12.507 11.8861 11.3892 10.9551 10.7071 10.209 

FEM 14.1201 13.6318 13.2544 12.5131 11.895 11.3989 10.9617 10.711 10.2108 

D120 14.1444 13.655 13.2762 12.5308 11.9088 11.411 10.9761 10.7275 10.2284 

BSWI54 14.1176 13.629 13.2509 12.507 11.8861 11.3892 10.9551 10.7071 10.209 

CC 

BSWI55 15.2034 14.6773 14.2701 13.4689 12.8003 12.2652 11.7977 11.5306 10.9942 

FEM 15.2071 14.6813 14.2752 13.4779 12.8135 12.2796 11.8074 11.5364 10.9968 

D120 15.2662 14.7379 14.329 13.5247 12.8533 12.3161 11.8466 11.5783 11.0396 

BSWI54 15.2034 14.6773 14.2701 13.469 12.8003 12.2652 11.7978 11.5306 10.9942 

PC 

BSWI55 10.8611 10.4853 10.1944 9.62205 9.14437 8.76209 8.42814 8.2373 7.85409 

FEM 10.8618 10.4861 10.1955 9.62437 9.14797 8.76606 8.4307 8.23872 7.85458 

D120 10.8667 10.4907 10.1996 9.62702 9.1491 8.76662 8.43249 8.24155 7.85814 

BSWI54 10.8611 10.4853 10.1944 9.62206 9.14438 8.7621 8.42815 8.2373 7.8541 

Table 8-7: The third non-dimensional frequency of a steel-alumina FG beam of different transverse varying distributions 

and boundary conditions. 

A graphical representation of these results is presented in Figure 8-14. The variation of 𝜆1 

with respect to n, for the different boundary conditions, is presented. It can also be observed 

that 𝜆1 varies more rapidly for values of 𝑛 ≪ 1, as 𝑛 → 2, than when 𝑛 > 2 as 𝑛 → ∞. 
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Figure 8-14: The non-dimensional fundamental frequency variation with respect to n for different boundary conditions. (−) 

FEM, (−𝒐 −) D120 WFEM, (−𝐱 −) BSWI54 WFEM. 

8.4.  Simply supported functionally graded beam subjected to a moving 

load 

A simply supported steel-alumina functionally graded beam is subjected to a moving point 

load of magnitude 𝑃 = 1 x 105 N, travelling across at c ms
-1

, as described in Figure 8-15. 

The FG beam, of length 𝑙 = 20 m, has a uniform cross-sectional area 𝐴 = 0.36 m
2
 and 

moment of inertia 𝐼 = 2.43 x 10−2 m
4
. The upper surface is fully alumina and the lower 

surface fully steel, with material properties 𝐸𝑢 = 3.9 x 1011  Pa, 𝜌𝑢 = 3.96 x 103 kgm
-3

 and 

𝐸𝑙 = 2.1 x 1011  Pa, 𝜌𝑙 = 7.8 x 103 kgm
-3

 respectively. E and ρ denote the Young’s modulus 

and density respectively. The behaviour of the beam is described using Euler Bernoulli beam 

theory and is assumed to be undamped. The transverse gradation of the constituent materials 

is governed by the power law. 

The governing equation describing the dynamic behaviour of the system is given by [102]: 

which can also be expressed as: 

where the matrices  𝑴  and  𝑲  are the assembled functionally graded beam mass and 

stiffness matrices in physical space.  𝑭(𝒕  is the time-dependent moving load vector. The 

 𝐸𝐼
𝜕𝑣4(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕𝑣2(𝑥, 𝑡)

𝜕𝑡2
+ 2𝜇𝜔𝑑

𝜕𝑣

𝜕𝑡
= 𝑃 𝛿(𝑥 − 𝑥0) (8.66) 

  𝑴  𝑯 (𝒕) +  𝑲  𝑯(𝒕) =  𝑭(𝒕)  (8.67) 
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acceleration and displacement vectors of the system are denoted by  𝑯 (𝒕) , and  𝑯(𝒕)  

respectively. 

 
Figure 8-15: Simply supported functionally graded beam subjected to a moving point load travelling at c m∙s-1.  

The dynamic response of the system is carried out via the Newmark time integration method 

with a time step of ∆𝑡 = 1.0 x 10−5 s. This value ensures numerical stability and sufficient 

numerical accuracy for the dynamic response analysis. The deflection of the beam 𝑣(𝑥, 𝑡), as 

the moving load travels across, is normalised as a non dimensional parameter 𝑣(𝑥, 𝑡) 𝑣0  

where: 

This is the deflection at the centre of a similar simply supported steel beam when a static load 

of magnitude P is acting at the mid-span. The dynamic response of the beam is carried out at 

the centre of the beam, 𝑥 =
𝑙

2
, which corresponds to the position at which maximum 

deflection is expected to occur. The analysis is carried out using 2 BSWI43 (37 DOFs) and 2 

D120 (37 DOFs) WFEs. The WFEM results are compared with the classical FEM solution 

formulated using 12 elements (39 DOFs). 

Simsek and Kocaturk [83] carry out the analysis of a simply supported FG beam subjected to 

a moving harmonic load. The critical velocity of the moving load is initially based on the 

resonance of the beam due to the harmonic component of the load. In their study, they 

determine the velocity of the moving point load, with no harmonic component, that gives the 

highest maximum displacement at the centre of the beam. The focus of their study is the 

dynamic response when the frequency of the harmonic load corresponds with the 

fundamental frequency of the FG beam for a specific value of n. In the present study 

however, the moving load has no harmonic component and the analysis of the dynamic 

 𝑣0 =
𝑃𝑙3

48𝐸𝑙𝐼
 (8.68) 

c 

 

𝑞(𝑥, 𝑡) = 𝑃(𝑡)𝛿(𝑥 −x0) 

x 

steel, 𝐸𝑙 , 𝜌𝑙  

x0 

 
v 

l 

 

alumina, 𝐸𝑢 , 𝜌𝑢  
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response is carried out for subcritical, critical and supercritical velocity profiles. The term 

critical load velocity corresponds to the maximum displacement attained by the moving load 

for different values of n. 

 

Figure 8-16: The variation of the maximum non-dimensional vertical displacement at the centre of a simply supported FG 

beam subjected to a moving load, with respect to the load velocities, for different n. 

The variation of the maximum normalised deflection at mid-span, with respect to the moving 

load velocity, is presented in Figure 8-16 for different values of n. The graph is obtained for 

the velocity range 0 < 𝑐 ≤ 300 ms
-1

 at increments of 1 ms
-1

. The results presented are 

obtained via the BSWI43 WFEM solution. The results of the Daubechies D120 WFEM and 

classical FEM solutions are similar and are therefore not presented. 

Initially, the maximum non-dimensional vertical displacement increases as the moving load 

velocity increases; for all the values of n. However, this maximum displacement reaches a 

peak value which corresponds to the critical velocity of the moving load. All the velocities 

below this critical velocity will be referred to as subcritical velocities in the present study. As 

the velocity of the moving point load further increases, the maximum deflection at the centre 

of the beam begins to decrease. The velocities higher than the critical velocities will be 

referred to as the supercritical velocities of the moving load. 

The maximum normalised deflection of the FG beam also increases as 𝑛 → ∞. When 𝑛 = 0, 

the beam is fully alumina and the effective Young’s modulus 𝐸 𝑦 = 𝐸𝑢 . The maximum 

normalised deflection therefore increases when the value of n is increased since there is a 

decrease in stiffness. Thus, the highest values of the maximum vertical displacement are 
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obtained when the beam is fully steel (𝑛 = 104 ≅ ∞) since 𝐸𝑙 < 𝐸𝑢 . This is consistent with 

the findings of Simsek and Kocaturk [83]. 

 
Critical velocity  

c m/s 
Max[ 

𝒗(
𝒍

𝟐
,𝒕)

𝒗𝟎
] 

n Ref [83] FEM D120 BSWI43 Ref [83] FEM D120 BSWI54 

0 252 252 252 252 0.9328 0.9322 0.9323 0.9322 

0.1 - 235 235 235 - 0.9863 0.9864 0.9863 

0.2 222 222 222 222 1.0344 1.0340 1.0340 1.0340 

0.5 198 198 198 198 1.1444 1.1435 1.1437 1.1436 

1 179 178 178 178 1.2503 1.2491 1.2495 1.2493 

2 164 164 164 164 1.3376 1.3363 1.3368 1.3365 

3 - 157 158 158 - 1.3747 1.3751 1.3748 

5 - 151 151 152 - 1.4217 1.422 1.4218 

7 - 148 148 148 - 1.4567 1.4570 1.4568 

10 - 145 145 145 - 1.4974 1.4976 1.4974 

10
4 132 132 132 132 - 1.7308 1.7309 1.7308 

Table 8-8: The critical velocity and maximum normalised deflection at the centre of a steel-alumina FG beam for different 

values of n. 

Table 8-8 shows the critical velocities and corresponding non-dimensional maximum 

deflections at the centre of the FG beam, for different values of n. The results presented are in 

relation to Figure 8-16. The solutions are obtained via the 12 classical FEs, 2 D120 WFEs and 

2 BSWI43 WFEs formulations. The results are compared with the values obtained in Simsek 

and Kocaturk [83], and the Daubechies and BSWI WFEM solutions are found to be in very 

good agreement. 

The variation of the maximum non-dimensional vertical displacement with respect to 

𝑛 ∈ [0,10], for different moving load velocities, is presented in Figure 8-17. In Figure 8-18, 

the maximum deflection is plotted against the percentage content of steel within the FG 

beam. According to both graphs it is observed that as the value of n increases, for the 

different moving load velocities, the maximum deflection at the centre of the FG beam 

increases. This is because the volume fraction, and subsequently the percentage content, of 

steel within the FG beam increases. Since steel has a lower Young’s modulus with respect to 

alumina, an increase in n results in a decrease in the effective bending stiffness. Hence, the 

maximum deflection of the beam increases. 
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Figure 8-17: The variation of the non-dimensional maximum vertical displacement with respect to n, for different moving 

load velocities. 

For the fully steel beam, as the moving load velocities increase, the maximum non-

dimensional vertical displacement also increases; until 132 ms
-1

. The maximum 

displacement occurs when the velocity is 𝑐 = 132 ms
-1

, which is the critical moving load 

velocity with respect to the fully steel beam. Increasing the velocity thereafter results in the 

decrease of the maximum displacement. Furthermore, the rate of increase of the maximum 

deflection increases as the percentage content of steel approaches 100%. 

 

Figure 8-18: The variation of the non-dimensional maximum vertical displacement with respect to the percentage volume 

content of steel in the FG beam for different moving load velocities. 
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Figure 8-19 illustrates the non-dimensional vertical displacement variation as a moving point 

load travels across at 𝑐 = 250 ms
-1

 for 𝑛 = 0.1. The plot shows that the results obtained via 

the different approaches are in excellent agreement with each other. The dynamic response of 

the beam obtained via the three approaches, for different velocity and power law variation 

profiles, are of similar accuracy. The subsequent results presented in this section will be from 

either of the implemented WFE approaches since the dynamic responses for different velocity 

profiles and power law exponents are similar. It will be stated which approach the results 

presented are obtained from. 

 

Figure 8-19: The non-dimensional vertical displacement for a moving point load travelling at 250 m.s-1 for n = 0.1.  

Figure 8-20 illustrates the variation of the non-dimensional displacement at the centre of the 

steel-alumina beam. The response is analysed for different values of n as the moving point 

load travels across the beam at 1 ms
-1

. The non-dimensional time parameter is denoted by 
𝑐𝑡

𝑙
. 

The results presented are obtained using 2 D120 WFEs. The velocity of the moving load is 

very slow and the response is similar to that of a static point load placed at different positions 

of the beam over a given time span. The effect of varying the power law exponent on the 

dynamic response of the beam is clearly observed from this plot i.e., as n increases the 

deflection of the FG beam also increases as earlier discussed. 
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Figure 8-20: Non-dimensional vertical displacement for a moving point load travelling at 1 m∙s-1, for different values of n. 

The non-dimensional deflection is also analysed for the subcritical, critical and supercritical 

velocity profiles. The values of n are varied and the dynamic responses are compared as 

illustrated in Figure 8-21. The velocities a) 50 ms
-1

 b) 132 ms
-1

 and c) 250 ms
-1

 are selected 

to represent the 3 velocity profiles. The results presented are obtained using 2 D120 WFEs. It 

is important to note that the velocity profiles are based on a fully steel beam subjected to the 

moving point load, which has a critical moving load velocity of 132 ms
-1

. In Figure 8-21 a) 

the moving point load is travelling at a subcritical velocity for all the different material 

distributions. As expected, the largest deflection is observed when the beam is fully steel, 

which is considerably larger than the other variations of n. For subcritical velocities, reducing 

the value of n leads to a general decrease in deflection and this is due to the increase in 

effective stiffness. This decrease of the dynamic response of the FG beam is also observed in 

the analysis carried out for the other velocity scenarios as presented in Figure 8-21.  In Figure 

8-21 b), the applied moving load travels at 132 ms
-1

, which coincides with the critical 

velocity for the fully steel beam. In contrast, for values 𝑛 < 104, this velocity of the moving 

load is subcritical. This can be confirmed from the critical velocities for different values of n 

presented earlier in Table 8-8. The dynamic response of the FG beam as the moving load 

travels across at 250 ms
-1

 is illustrated in Figure 8-21 c). The moving load velocity is 

supercritical for all the variations of n analysed, with the exception of 𝑛 = 0, to which it is 

very close to the critical velocity of the fully alumina beam (252 ms
-1

).  
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Figure 8-21: The non-dimensional vertical displacement for a moving point load travelling at a) 50 m∙s-1, b) 132 m∙s-1 and c) 

250 m∙s-1, for different values of n. 

a) 

b) 

c) 
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In addition to the results in Figure 8-21, the variation of the non-dimensional deflection, as 

the moving point load travels across at 1 ms
-1

, 50 ms
-1

, 132 ms
-1

 and 250 ms
-1

, is presented 

in Figure 8-22; for values of n: a) 0 b) 0.2 c) 0.5 d) 1 e) 2 f) 5 and g) 10
4
. 

  

  

  

  

Figure 8-22: The non-dimensional vertical displacement with a moving point load travelling at 1 m∙s-1, 50 m∙s-1, 132 m∙s-1 

and 250 m∙s-1, for values of n: a) 0 b) 0.2 c) 0.5 d) 1 e) 2 f) 5 and g) 104. 

a) b) 

c) d) 

e) f) 

g) 



 

238 

 

The 2 element BSWI43 WFEM solution is used to obtain the results presented in Figure 8-22. 

It is observed that there is a general increase in vertical displacement as n increases; for all 

the applied moving load velocities. However, the responses of the beam as n increases, 

particularly for the applied velocities 𝑐 = 132 ms
-1

 and  𝑐 = 250 ms
-1

, are of particular 

interest. It is observed from Figure 8-22 a) (𝑛 = 0) that the maximum deflection of the FG 

beam when the moving load is travelling at 𝑐 = 132 ms
-1

 is smaller than when the load is 

travelling at 𝑐 = 250 ms
-1

. This is expected since the applied moving load velocity 𝑐 = 250 

ms
-1

 is very close to the critical velocity of the FG beam associated with 𝑛 = 0 (252 ms
-1

) 

from Table 8-8. However, as the value of n increases to 0.2 and 0.5, as illustrated in Figure 

8-22 b) and Figure 8-22 c) respectively, it is noted that the difference between the maximum 

displacement when 𝑐 = 250 ms
-1

 and 𝑐 = 132 ms
-1

 is decreasing. When n = 1 (Figure 8-22 

d)), the maximum displacements for both moving load velocities are similar in magnitude. 

However, the response characteristics of the beam are different for these two applied moving 

load velocities because 𝑐 = 250 ms
-1

 is supercritical and 𝑐 = 132 ms
-1

 is still subcritical 

with respect to n = 1 (critical velocity of 178 ms
-1

). In Figure 8-22 e) it is observed that the 

maximum vertical displacement is now achieved from the applied moving load velocity of 

𝑐 = 132 ms
-1

 instead of 𝑐 = 250 ms
-1

 when n = 2. The difference between the maximum 

displacement when 𝑐 = 132 ms
-1

 and 𝑐 = 250 ms
-1

 continues to increase as n increases to 5 

and 10
4
 as observed in Figure 8-22 f) and Figure 8-22 g) respectively.  

It is further observed that at 50 ms
-1

, the centre of the beam oscillates as the moving load 

travels across. When n = 0 the amplitude of the oscillations are small but the cycles are more 

frequent with shorter wavelengths. Increasing the value of n results in an increase in 

amplitude and wavelength; thus making the cycles less frequent. This is attributed to the fact 

that as the bending stiffness of the FG beam decreases, with increase in n, the magnitude of 

the amplitude and the wavelengths increase. 

This therefore suggests that, depending on the applied moving load velocity, a variation of 

material distribution can lead to a significant change in the dynamic response of a system. 

This is not only with regards to the maximum deflection, but also the response characteristics. 

Furthermore, the variation of the material distribution of the FG beam can influence the 

velocity profile of the same applied moving load, thus impacting the dynamic response of a 

system. For example, in Figure 8-22 a) when n = 0, the applied moving load velocity 

𝑐 = 132 ms
-1

 is subcritical. However, when n = 10
4
, this same applied load velocity is now 

critical and the dynamic response significantly varies, as illustrated in Figure 8-22 g). 
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Moreover, the maximum deflection of the FG beam corresponding to a particular value of n 

increases at a greater rate for increasing subcritical velocities relatively closer to the critical 

velocity than the rate of decrease for increasing supercritical velocities. 

  

 
 

Figure 8-23: The vertical velocity at the centre of a simply supported FG beam subjected to a moving point load travelling 

at a) 50 m∙s-1, b) 132 m∙s-1 and c) 250 m∙s-1, for different values of n. 

Figure 8-23 illustrates the vertical velocity at the centre of the functionally graded beam for 

different values of n. The corresponding variations of the vertical acceleration of the FG 

beam, as the moving load travels across for the three velocity scenarios, are presented in 

Figure 8-24. These results are in relation to the deflection curves presented in Figure 8-21 and 

are obtained via two BSWI43 WFEs. 

This is the first time the Daubechies and BSWI WFEMs are implemented to analyse the 

dynamic response of a functionally graded beam subjected to a moving load. According to 

the results presented in this section, both wavelet finite element approaches give very 

accurate results.  
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Figure 8-24: The vertical acceleration at the centre of a simply supported steel-alumina FG beam subjected to a moving 

point load travelling at a) 50 m∙s-1, b) 132 m∙s-1 and c) 250 m∙s-1 for different values of n. 
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The initial results of the moving load critical velocities are consistent with the results 

presented by Simsek and Kocaturk [83]; therefore the analysis is verified. The effects of 

varying the material distribution on the dynamics responses of the functionally graded beam, 

for different velocity profiles, is presented and discussed. Although the results obtained via 

the different approaches are of similar levels of accuracy, the BSWI solutions are marginally 

more accurate than the Daubechies and classical finite element methods, with similar number 

of DOFs implemented. In this numerical example, the wavelet family orders and 

multiresolution scales are selected for comparison purposes and the results are obtained with 

a similar number of DOFs. Furthermore, this is a relatively simple numerical example. 

Therefore, a comparison of the computational costs for the different approaches is not 

presented in this section. 

8.5.  Simply supported functionally graded beam on viscoelastic 

foundation subjected to a moving load 

The dynamic response of a functionally graded beam subjected to a moving point load, while 

resting on a viscoelastic foundation, is analysed and presented for the first time in this 

section. The analysis is an extension of the numerical example presented in Section 7.3 of the 

previous chapter. The functionally grade beam, of length 𝑙 = 200 m, comprises of steel at the 

bottom surface and alumina at the top surface. The material distribution varies in the 

transverse direction based on the power law.  

 

Figure 8-25: Simply supported functionally graded beam resting on a viscoelastic foundation subjected to a moving load 

point load. 

The dynamic behaviour of the system, as illustrated in Figure 8-25, is described by the 

governing equation [102]: 

alumina, 𝐸𝑢 , 𝜌𝑢  

steel, 𝐸𝑙 , 𝜌𝑙  

l 

𝑘𝑓 , d 

c
 

P
 

𝑥0 = 𝑐𝑡 
v 

x 
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which can also be expressed as: 

where the matrices  𝑴  and  𝑲  are the assembled functionally graded beam mass and 

stiffness matrices in physical space. The assembled foundation damping and stiffness 

matrices are  𝑪𝒇  and  𝑲𝒇  respectively.  𝑭(𝒕  is the time-dependent moving load vector. The 

acceleration, velocity and displacement vectors of the system are denoted by  𝑯 (𝒕) ,  𝑯 (𝒕)  

and  𝑯(𝒕)  respectively. 

The cross-sectional area 𝐴 = 7.684 x 10−3 m
2
 of the FG beam is assumed to be uniform 

through the entire length of the beam. The moment of inertia of the FG beam is 𝐼 =

3.055 x 10−5 m
4
. The material properties of the upper surface and lower surface constituent 

materials are: 𝐸𝑢 = 3.9 x 1011  Pa, 𝜌𝑢 = 3.96 x 103 kgm
-3

 and 𝐸𝑙 = 2.1 x 1011  Pa, 𝜌𝑙 =

7.8 x 103 kgm
-3

 respectively. E and ρ denote the Young’s modulus and density 

correspondingly. The beam is subjected to a moving point load that travels across from left to 

right at c ms
-1

. The magnitude of the moving load is 𝑃 = 8.34 x 104 N. The dynamic 

response of the beam is analysed from the instant the moving load arrives on to the FG beam 

to the moment it departs from the beam. The beam rests on a foundation, of elastic stiffness 

𝑘𝑓 = 3.416 x 106 Nm
-2

, as illustrated in Figure 8-25. The viscous damping factor is denoted 

by d and takes into account the viscous damping of the foundation. 

The dynamic response of the described system is analysed using the Daubechies and BSWI 

WFEMs. The results are compared with the classical FEM approach. 4 BSWI55 WFEs (271 

DOFs), 12 Daubechies D162 WFEs (375 DOFs) and 130 classical finite elements (390 DOFs) 

are used to model the beam throughout the analysis. The dynamic analysis of the system is 

carried out using the Newmark time integration method. The time step ∆𝑡 is selected to 

ensure that the analysis is accurately and efficiently carried out while maintaining the 

numerical stability of the analysis. 

The analysis using the wavelet based FG beam element formulation is verified by comparing 

the displacement variation when 𝑛 = 104 (fully steel) with the results obtained in Section 

7.3; for a 5% undamped system. The results are in very good agreement with those presented 

in Section 7.3 and the approach is verified. The number of elements, order of the wavelet 

families and multiresolution scales are based on the results being within 3% of those obtained 

in Section 7.3. 

 𝐸𝐼
𝜕𝑣4(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕𝑣2(𝑥, 𝑡)

𝜕𝑡2
+ 𝑑

𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
+ 𝑣(𝑥, 𝑡) = 𝑃 𝛿(𝑥 − 𝑥0) (8.69) 

  𝑴  𝑯 (𝒕) +  𝑪𝒇  𝑯 (𝒕) +   𝑲𝒇 +  𝑲   𝑯(𝒕) =  𝑭(𝒕)  (8.70) 
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The effect of the varying the power law exponent, n, on the critical velocity of the beam is 

first analysed. The maximum deflection at the centre of the beam, as the moving load travels 

across at c ms
-1

, is presented in Figure 8-26 for different material distributions. The graph is 

obtained for the velocity range 0 < 𝑐 ≤ 800 ms
-1

 at increments of 1 ms
-1

. The results 

presented are those obtained using the BSWI55 WFEM. The Daubechies WFEM and 

classical FEM plots are similar and are therefore not presented. 

 

Figure 8-26: The variation of the maximum non-dimensional vertical displacement of a FG beam on elastic foundation 

subjected to a moving load with respect to the load velocities for different n. 

From Figure 8-26, varying n has a significant effect on the magnitude of the maximum 

deflection and the corresponding velocity. The regions where the maximum vertical 

displacement is at its highest correspond to the critical velocity of the moving load. When the 

beam is approximately fully steel (𝑛 = 104), the maximum deflection is 0.0553879 m, with a 

corresponding critical velocity of 395 ms
-1

 (BSWI55 WFEM solution). This is only 0.0658 

% lower than the value obtained analytically in Section 7.3. This shows that wavelet based 

functionally graded beam solution is highly accurate. When the value of n is decreased, the 

highest maximum displacement decreases. The value of the moving load critical velocity is 

also observed to increase. This is because as 𝑛 → 0, 𝐸 𝑦 → 𝐸𝑢 . Subsequently, the natural 

frequencies of the FG beam increase with this increase in bending stiffness. Furthermore, this 

increase in effective bending stiffness results in a decrease of the beam deflection. In the 

analysis of moving load problems, it is desirable to have the maximum deflection of the 

system minimised; with the critical velocity being as high as possible.   
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It is also observed from Figure 8-26 that the gradient of the curve is very steep before and 

after the critical velocity is attained when 𝑛 = 104; in comparison to the other FGM material 

distributions. This implies that rate of increase/decrease of the maximum deflection of the 

beam, with respect to the moving load velocity, is greatest when the beam is fully steel. 

Decreasing the value of n reduces the rate at which the maximum deflection increases or 

decreases.  

 
Critical velocity  

c m/s 

Max[ 𝒗(
𝒍

𝟐
, 𝒕)] 

n FEM D162 BSWI55 FEM D162 BSWI55 

0 648 649 648 0.0438347 0.0420344 0.0439014 

0.1 613 613 613 0.0447327 0.0428942 0.0447663 

0.2 586 586 586 0.0456268 0.0436009 0.0456495 

0.5 536 537 534 0.0472256 0.044732 0.0471608 

1 495 496 494 0.0486466 0.0455693 0.0489605 

2 462 464 462 0.0500081 0.0469853 0.0501519 

3 448 449 448 0.0050398 0.047813 0.0508214 

5 434 435 433 0.0510972 0.0484487 0.0513434 

7 427 429 426 0.0516903 0.0487826 0.0515689 

10 420 422 420 0.0521743 0.049221 0.052192 

10
4 

396 398 395 0.0550927 0.0523035 0.0553879 
Table 8-9: The critical velocity and maximum normalised deflection of a steel-alumina FG beam on elastic foundation for 

different values of n. 

To further the results in Figure 8-26, the critical velocities and corresponding maximum beam 

deflections, for the different material distributions, are presented in Table 8-9. The solutions 

obtained using 4 BSWI55 WFEs and 12 Daubechies D162 WFEs are compared with 130 

classical finite elements. The results for the different approaches are in good agreement, 

accurately describing the critical velocity of the moving load with respect to the 

corresponding material distributions.  

The variation of the maximum vertical displacement with respect to n is presented in Figure 

8-27; for different moving load velocities. It is observed that for the velocities 𝑐 = 100 ms
-1

 

and 𝑐 = 300 ms
-1

, the maximum deflection is relatively lower in comparison to other 

applied velocities. This is because these applied moving load velocities are subcritical for the 

different material distributions and an increase in moving load velocity leads to an increase in 

the maximum beam deflection. This occurs until the critical velocity corresponding to the 
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material distribution is reached. Thereafter, the maximum deflection decreases as the moving 

load velocity increase.  

 

Figure 8-27: The variation of the maximum non-dimensional vertical displacement of a FG beam on elastic foundation 

subjected to a moving load, with respect to n  for different moving load velocities. 

The maximum deflection peaks when the velocity of the applied moving load velocity is 

close to the corresponding critical velocity. For instance, when the load is travelling at 650 

ms
-1

, the highest maximum deflection is attained when 𝑛 = 0. This is because the applied 

moving load velocity is close to the critical velocity of alumina (648 ms
-1

). Similarly, when 

the moving load is travelling at 500 ms
-1

, the highest maximum deflection is achieved when 

𝑛 = 1.  

 

Figure 8-28: The variation of the maximum non-dimensional vertical displacement of a FG beam on elastic foundation 

subjected to a moving load with respect to the percentage volume content of steel for different moving load velocities. 
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In Figure 8-28, the maximum deflection is plotted against the percentage content of steel 

within the FG beam, for the different moving load velocities, to better illustrate the results 

presented in Figure 8-27. 

The dynamics analysis of the long functionally graded beam requires a considerable number 

of elements to accurately describe the variation of the material distribution. Furthermore, for 

an accurate description of the response, the number of time steps required is significant, 

considering the applied load is rapidly varying. In the analysis of the moving load critical 

velocity, each material distribution profile is analysed at each time step for each velocity.  

From the results presented, the Daubechies and the BSWI WFEM solutions accurately 

approximate the variation of the maximum deflection with respect to the moving load 

velocities with fewer elements implemented than the FEM. The BSWI55 WFEM solution is 

the most accurate for the critical velocity and corresponding maximum deflection solutions. 

In addition, only 4 BSWI WFEs are required to achieve this level of accuracy, in comparison 

to 130 classical finite elements and 12 Daubechies D162 WFEs. The global system of the 

BSWI55 WFE approach consists of 271 DOFs. This is approximately 30 % less number of 

DOFs than the classical FEM and 28% less when compared to the Daubechies WFEM. 

Moreover, a computational cost analysis was carried out to compare the efficiency of the 

three approaches. The considered analysis was for a FG beam resting on a 5% damped 

viscoelastic foundation subjected to a moving point load travelling at 395.26 ms
-1

. The 

viscous damping factor was evaluated based on the critical viscous damping of a 

homogenous steel beam resting on the foundation. This value was used in this analysis for the 

different material distributions. The critical damping of the system is expressed as [109]: 

The viscous damping coefficient of the system, d, is evaluated as 𝑑 = 𝜁𝑑𝑐𝑟 , with 𝜁 being the 

damping ratio. 

Furthermore, the simulation is run to obtain the dynamic responses for the different material 

distributions n = 0, 0.1, 0.2, 0.5, 1, 2, 3, 5, 7, 10 and 10
4
. The number of time steps 

implemented in the Newmark algorithm is 5,800. The simulations were carried out using 

Mathematica Version 7 on a Pentium (R) Dual core CPU with; 4GB RAM, 64 bit Operating 

System, 2.10 GHz running on Windows 8. Given that the wavelet elemental matrices and 

wavelet transformation matrices were earlier computed and stored, the following aspects 

were taken into consideration: evaluation of moving load in wavelet space at each time step, 

 𝑑𝑐𝑟 = 2 𝑘𝑓𝐴 𝜌𝑙  (8.71) 
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transformation of all element matrices from wavelet space into physical space, assembly of 

matrices and application of boundary conditions and the Newmark time integration 

algorithm. 

The time required to carry out the stated dynamic analysis via the FEM (390 DOFs, 130 

elements), D162 (375 DOFs, 12 elements) and BSWI55 WFEM (271 DOFs, 4 elements) was 

574.156 s, 548.028 s and 463.59 s respectively. Subsequently, the computational resources 

needed to evaluate the response of the beam via the Newmark time integration for the BSWI 

WFEM are observed to be significantly less in comparison to the FEM and Daubechies 

WFEM approaches. The high levels of accuracy and efficiency demonstrate the superiority of 

the BSWI WFEM over the other two methods for dynamic response analysis of FG beams. 

The number of DOFs implemented for the Daubechies WFEM and classical FEM are also 

compared (Daubechies D162 WFEM - 375 DOFs, FEM – 390 DOFs). The effects of this 

difference become apparent when carrying out the dynamic analysis of the moving load 

critical velocity for the different material distributions, for different moving load velocities 

and at each time step. Therefore from this computational cost analysis, the Daubechies 

WFEM solution is still more efficient than the classical FEM. Moreover, the added advantage 

of both WFEMs over the classical finite element method is that the multiresolution and/or 

order of the wavelet elements can be modified to increase the levels of accuracy. 

The dynamic response of the steel-alumina functionally graded beam is carried out for 

different moving velocity and system damping profiles and material distributions. The 

velocity profiles are subcritical (80 ms
-1

), critical (395.26 ms
-1

) and supercritical (500 ms
-1

) 

applied moving load velocities which correspond to that of a homogenous steel beam 

(𝑛 = 104). The dynamic responses of all the other material distributions of the FG beam are 

analysed with respect to these three velocity profiles.  

The verification of the FG beam WFE, as earlier mentioned, is carried out by comparing the 

dynamic response when 𝑛 = 104 with the results obtained in Section 7.3 (for corresponding 

moving loads). The compared results are presented in Figure 8-29 for a) subcritical, b) 

critical and c) supercritical moving load velocities. The curve “BSWI WFEM – Ref” is the 

solution obtained using 6 BSWI55 beam WFEs from Section 7.3. The results of the wavelet 

based FG beam are in excellent agreement, particularly for the subcritical and critical moving 

load velocities. 
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Figure 8-29: The vertical displacement of a steel-alumina FG beam on an viscoelastic foundation (5% damping) subjected 

to a moving point load travelling at a) 80 m∙s-1 b) 395.26 m∙s-1 and c) 500 m∙s-1. 

a) 

b) 

c) 
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.  

 

 

Figure 8-30: The vertical velocity of a steel-alumina FG beam on an elastic foundation (5% damping) subjected to a moving 

point load travelling at a) 80 m∙s-1 b) 395.26 m∙s-1 and c) 500 m∙s-1. 

a) 

b) 

c) 
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Figure 8-31: The vertical displacement at the centre of a simply supported steel-alumina FG beam on an elastic foundation 

(no damping) subjected to a moving point load travelling at a) 80 m∙s-1 b) 395.26 m∙s-1 and c) 500 m∙s-1 for different values 

of n. 

The vertical velocities at the centre of the FG beam are in very good agreement with the 

reference solution from Section 7.3 as illustrated in Figure 8-30. However, the Daubechies 

a) 

b) 

c) 
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WFEM solution is not as accurate when the load is travelling at subcritical velocities, but 

sufficiently acceptable at critical and supercritical velocities.  

The variation of the deflection of the FG beam on an elastic foundation, as the moving point 

load travels across the beam, is presented in Figure 8-31; for the different material 

distributions. The results presented in this figure are obtained via the BSWI55 WFEM. It is 

observed in Figure 8-31 a) that when the applied moving load travels at 80 ms
-1

, which is 

subcritical for all variations of n, the maximum vertical displacement occurs when the 

moving load is at the centre of the beam. The highest maximum displacement occurs when 

the beam is fully steel (𝑛 = 104); and as 𝑛 → 0, the maximum displacement decreases in 

magnitude. This decrease in peak displacement, from fully steel to fully alumina, is 

approximately 15.06 %. 

Figure 8-31 b) illustrates the response when the moving load is travelling at 395 ms
-1

. The 

highest maximum displacement at this moving load velocity is achieved when 𝑛 = 104. 

Decreasing the value of n increases the natural frequency of the beam and thus the applied 

moving load velocity 𝑐 = 395 ms
-1

 is subcritical for the other material distributions. This 

explains why decreasing n results in a decrease of the maximum displacement of the beam as 

observed. The maximum vertical displacement is reduced by approximately 85.3% when n is 

varied from 10
4
 to 0; which is more substantial than the subcritical case. For the different 

material distributions, as 𝑛 → 0, the amplitude of the oscillations diminishes significantly. 

Therefore, varying the material distribution has considerable effects on the dynamic response 

of the system when the applied moving load velocities are critical. 

The applied moving load velocity c = 500 ms
-1

 is subcritical for 𝑛 < 1, supercritical for 

𝑛 > 1  and almost critical when n is 1. It is for this reason that the homogeneous steel beam 

no longer has the highest maximum displacement; even though its effective bending stiffness 

is lower than that of the other material distributions. The highest maximum displacement is 

achieved when n is 1, after the moving load has departed from the centre of the beam. 

Decreasing n, for 𝑛 > 1, results in an increase in the maximum displacement of the FG beam.  

Conversely, decreasing n, for 𝑛 < 1, results in a decrease in the maximum displacement. This 

is attributed to the increase in bending stiffness as well as the difference between the critical 

velocity corresponding to n and the applied moving load velocity.  

The displacement variations of the system with light damping, for the different values of n 

and different velocity profiles, are presented in Figure 8-32. The introduction of the light 

damping smoothens out the low amplitude vibrations that are present and slightly decreases 
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the maximum displacement in comparison to the undamped system. This is observed from 

Figure 8-32 a) where the applied moving load velocity is 80 ms
-1

. The vertical displacement 

of the beam is highest when 𝑛 = 104 and decreases as 𝑛 → 0, similar to the undamped case. 

 

 

 

Figure 8-32: The vertical displacement of a steel-alumina FG beam on viscoelastic foundation (subcritical damping) 

subjected to a moving point load travelling at a) 80 m∙s-1 b) 395.26 m∙s-1 and c) 500 m∙s-1, for different values of n. 

a) 

b) 

c) 
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When the moving load is travelling at 395 ms
-1

, the maximum displacement for all the 

different material distributions is decreased due to damping. However, the effect of damping 

is greatest when n is 10
4
, as observed in Figure 8-32 b). This is because the effect of damping 

is greater on the response of a beam with a moving load travelling at, or close to the critical 

velocity than when it is travelling at relatively slower subcritical velocities. Therefore, as n 

decreases, the effect of light damping on the response of the FG beam also decreases. 

Nevertheless, as 𝑛 → 0, the decrease of the maximum deflection is still significant. 

When the moving load is travelling at 500 ms
-1

, the highest maximum displacement of the 

FG beam is attained when 𝑛 = 1. The critical velocity of the functionally graded beam 

corresponding to this material distribution is very close to the applied moving load velocity. 

Furthermore, this velocity is still supercritical for values of n > 1 and as the value of n 

increases, the maximum displacement of the beam decreases. In contrast, when n < 1 and as n 

increases, the maximum displacement decreases since the velocity is subcritical for the 

corresponding material distributions. The introduction of the light damping results in a 

general decrease in the maximum displacement of all the material distributions, particularly 

for those whose applied moving load velocity is close to the load critical velocity. 

 
 

 
 

Figure 8-33: The vertical displacement of a steel-alumina FG beam on viscoelastic foundation (critical damping) subjected 

to a moving point load travelling at a) 80 m∙s-1 b) 395.26 m∙s-1 and c) 500 m∙s-1 for different values of n. 

Figure 8-33 illustrates the response of the FG beam, as the moving load travels across the 

beam when the damping of the system is critical (𝜁 = 1). The effect of critical damping on 

a) b) 

c) 
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the dynamic response of the beam is very significant, particularly for moving load velocities 

395 ms
-1

 and 500 ms
-1

. Consequently, this also has a significant impact on the variation of 

the FG beam displacement for the different material distributions. The highest maximum 

displacement when the moving load travels at 80 m∙s
-1

 is achieved when 𝑛 = 104 and as 

𝑛 → 0, the maximum displacement decreases, as presented in Figure 8-33 a).  

When the moving load is travelling at 395 ms
-1

 and 500 ms
-1

, as illustrated in Figure 8-33 b) 

and Figure 8-33 c) respectively, the maximum deflection of the beam decreases significantly. 

The FG beam can no longer be excited at these moving load velocities, for any material 

distribution, due to the critical viscous damping of the system. Therefore, it is observed that 

the highest maximum deflection of the FG beam occurs when 𝑛 = 104. Furthermore, as 

𝑛 → 0, the maximum displacement decreases. Moreover, the effect of varying the material 

distributions is not as significant at these moving load velocities. The maximum deflection, 

when the moving load travels at 395 ms
-1

, reduces by approximately 9.68 % as n varies from 

104 to 0. Similarly, the maximum deflection at the centre of the beam reduces by 

approximately 8.58% for moving load velocity 𝑐 = 500 ms
-1

. Thus, when the system is 

critically damped, the effect of varying the material distribution on the variation of the 

response of the FG beam is not as considerable as when the system is undamped or lightly 

damped.  

  

 

 

Figure 8-34: The vertical displacement of a steel-alumina FG beam on viscoelastic foundation (supercritical damping) 

subjected to a moving point load travelling at a) 80 m∙s-1 b) 395.26 m∙s-1  and c) 500 m∙s-1  for different values of n. 

a) b) 

c) 
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The effect of varying n on the dynamic response of the beam when supercritical viscous 

damping (𝜁 = 2) is introduced into the system is reduced further for the three different 

velocity profiles; as observed in Figure 8-34. It is therefore concluded that the effects of 

varying the material distribution of the FG beam on the dynamic response, decrease as the 

damping increases. 

8.6.  Conclusions 

Analysis of FGMs is essential in practice to understand and predict their behaviour when 

subjected to various loading environments, such as mechanical, thermal or electrical, or in 

some cases, combinations of loading conditions. Though the materials may at times be 

expensive to fabricate, the functionally graded materials are often used to decrease some 

limitations faced by conventional composites. These include [70,73]: 

 Delamination-related problems often caused by the disparity of materials in laminated 

composites can be eliminated. Structural and functional failure caused by the loss of 

structural integrity, reduction of stiffness and the destruction of load transfer 

mechanisms caused by the high local inter-laminar stresses, and subsequently 

separation of layers, is a problem commonly experienced in laminated composites. 

 Reduction of in-plane and transverse through-the-thickness stresses. 

 Improvement of residual stress distribution. 

 Enhancement of fracture toughness. 

 Reduction of stress intensity factors. 

 Increase of fatigue life. 

Although properties such as machinability, high toughness, high electrical conductivity from 

metals and high stiffness, high strength, temperature resistance and low density of ceramics 

are combined, the core aspect of FGMs is the continuous gradation of these materials and 

consequently the smooth transition of properties. Furthermore, FGMs may be used as an 

adhesive between different materials of structures that may be subjected simultaneously to 

different loading environments. This is because of the large inter-laminar stresses that are 

present due to the abrupt transition of the material properties that may lead to failure via 

plastic deformation or cracking. The applications of FGMs in various fields beyond the 

aerospace and automotive industries has rapidly grown e.g. medical field (dental [118] and 

orthopaedic implants [119]), communications industry [120] (optical fibbers, 
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semiconductors), energy sector [121] (thermo-generators and sensors) and building materials 

and structures just to name a few. 

In this chapter, the WFEM was for the first time applied, to the best of the author’s 

knowledge, for the dynamic analysis of functionally graded beams. The FG beam was 

formulated based on the power law of gradation given that the material distribution of the 

constituent materials can be altered continuously by changing the values of the power law 

exponent n. The variation of the material distribution and properties were analysed in the 

transverse direction. The analysis was carried out via numerical examples and compared with 

the classical FEM approach; and in some cases, results obtained from previous related 

research. 

The free vibration analysis of a transverse varying steel-alumina FG beam was carried out 

using the Daubechies and the BSWI WFEMs. The results obtained show the effects of 

varying Eratio, the slenderness ratio and the power law exponent n, on the natural frequencies 

of the functionally graded beam. The results were compared with Simsek and Kocaturk [83] 

and were found to be consistent with their findings. The results showed that increasing the 

value of n led to an increase in the natural frequencies for 𝐸𝑢 > 𝐸𝑙 . When 𝐸𝑢 < 𝐸𝑙 , increasing 

the value of n decreased the natural frequencies of the FG beam. The effects of varying the 

slenderness ratio on the natural frequencies of the FG beam were not significant, provided 

𝑙

𝑕
≥ 20. This was consistent with findings made in Pradhan and Chakraverty [78].  However, 

for shorter beams where 
𝑙

𝑕
< 20, the slenderness ratio affected the natural frequencies of the 

beam and the free vibration analysis can only be accurately approximated when the shear 

deformation effects are taken into consideration. When different boundary conditions were 

applied, increasing the number of restrained DOFs increased the fundamental frequencies of 

the FG beam for different values of n. 

The dynamic response of a simply supported steel-alumina FG beam, subjected to moving 

loads travelling at subcritical, critical and supercritical velocities, was analysed using the 

Daubechies and BSWI WFEMs. The critical velocities for different material distributions and 

the corresponding maximum deflections at the centre of the FG beam were accurately 

obtained, with fewer elements and DOFs when compared with the classical FEM solution. 

The effects of varying the material distribution on the values of the critical velocities were 

consistent with Simsek and Kocaturk [83] for moving point loads. Decreasing the value of n 

decreased the maximum displacement of the simply supported functionally graded beam for 

all the velocity profiles presented. 
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A long steel-alumina FG beam resting on a viscoelastic foundation was subjected to a moving 

point load travelling across at subcritical, critical and supercritical velocities. The analysis 

was also carried out for different damping profiles. In general, the velocity of the moving 

load and the damping of the system influenced the effects of varying n on the dynamic 

response of the FG beam. Increasing damping in the system decreased the effect of varying 

the material distribution on the dynamic response of the beam. When the applied moving load 

was travelling at a velocity equal to or less than the critical velocity corresponding to the 

lower surface material, decreasing the value of n decreased the maximum displacement of the 

FG beam; for 𝐸𝑢 > 𝐸𝑙 . At supercritical velocities, the effects of varying n on the dynamic 

response may differ, depending on the applied moving load velocity and the critical velocity 

associated with the different material distributions.  

The Daubechies and BSWI WFEMs approximated the transverse variation of the material 

properties for the functionally graded beam very accurately; with less number of elements 

required to achieve high levels of accuracy in comparison to the classical FEM. Furthermore, 

the free vibration and the dynamic response of the functionally graded beam were 

approximated with high levels of accuracy. This was due to the ability of the WFEMs to 

accurately approximate the field variables based on the main properties of the wavelet 

families, such as; compact support, multiresolution analysis and vanishing moments.  

In general, the dynamic analysis of functionally graded beams subjected to rapidly varying 

loads may require a considerable number of elements to accurately describe the variation of 

the material distribution. Furthermore, the number of time steps required may also be 

significantly high to accurately describe the response of the beam for the different material 

distributions. The time and computational demands were reduced significantly when the 

WFEM was used to carry out these computations. This was evident from the efficiency 

analysis carried out and the system was accurately described using fewer DOFs; in 

comparison to the classical FEM. Moreover, the accuracy of the WFEM solutions was 

improved by increasing the order and/or multiresolution scale without affecting the original 

mesh of the system. 

The BSWI WFEM is preferred to the Daubechies WFEM for the analysis of functionally 

grade beams. In the analysis of transverse varying functionally graded beams, the BSWI 

WFEM approximates the natural frequencies and dynamic response more accurately, with 

fewer elements and more efficiently than the Daubechies WFEM. This was mainly attributed 

to the fact that the Daubechies connection coefficients needed to be evaluated in the 
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formulation of the FGM stiffness and mass matrices for different material distributions and 

the numerical instabilities that were present. The BSWI based WFEM does not have these 

limitations of numerical instability or significant numerical errors since the scaling functions 

and their derivatives have an explicit expression and does not require the evaluation of the 

connection coefficients.  
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9. Conclusions and Future Work 

In this study, the wavelet based finite elements are implemented in a multiresolution 

environment to mainly analyse static and dynamic beam problems. The Daubechies and 

BSWI WFEMs are selected due to the wavelet families’ desirable properties, such as: 

multiresolution, compact support and the “two-scale” relation. It is ideal for the approaches 

employed in analysis of structural problems to be highly accurate while simultaneously being 

cost and time efficient. Research is still ongoing to discover and develop such analysis 

methods; of which the wavelet finite element method has recently been identified to have vast 

potential. Advancements are currently being made with respect to the applicability of the 

method to analyse different structural problems. It has been identified that its implementation 

for dynamic analysis is limited. Furthermore, some aspects of the Daubechies and BSWI 

WFEM are still unclear, with regards to implementation and performance, for dynamic 

analysis.  

Moreover, the application of the method to analyse structures with variations in composition 

and material properties is currently limited. One class of structures that has recently come to 

the attention of researchers is the functionally graded materials. They are of practical 

importance as they have their material properties continuously varying spatially with respect 

to the constituent materials. The avenues for application and use of functionally graded 

materials in different disciplines are rapidly growing and therefore, different analysis tools 

are being developed and applied to better understand and describe their behaviour under 

various conditions. 

In this study, the Daubechies and BSWI based WFEMs are applied to analyse the dynamic 

response for problems with fast variations in material properties and/or loading conditions. 

To the best of the author’s knowledge, the implementation of the WFEM in the analysis of 

functionally graded beams on a viscoelastic foundation when subjected to moving loads is 

presented for the first time. 

Based on the findings presented in this study, the WFEM is found to be a versatile, accurate 

and efficient numerical analysis tool which offers vast potential for structural analysis. 
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9.1.  Conclusions  

The following conclusions are made based on the findings of this extensive study. 

 

 The BSWI and Daubechies based WFEMs generally require fewer number of 

elements, and consequently less number of DOFs, to accurately approximate the field 

variables in static and dynamic analysis of beam systems with respect to the classical 

FEM. This is consistent with findings from previous works. Furthermore, the 

variation of material properties in FG beams is accurately described and approximated 

with fewer DOFs. This is attributed to the desirable wavelet properties such as 

compact support, multiresolution analysis and vanishing moments. Therefore, the 

computational costs are significantly reduced, especially for the dynamic analysis of a 

system, where the dynamic response is evaluated at each time step.  

  

 The layout of the WFEs can be easily modified by amending the wavelet 

transformation matrix. The element matrices and load vectors in wavelet space are not 

affected when changing the layout. They can therefore be evaluated only once and 

stored to reduce computational costs and improve on the efficiency of the WFE 

formulation. When the variation of the displacements and stresses of a system are 

primarily investigated in dynamic analysis, the most efficient and accurate layout for 

the beam wavelet finite element is to have the transverse displacement DOFs at each 

elemental node and the rotation DOFs only at the elemental end nodes. This is 

consistent with layouts presented for static analysis in previous works. 

 

 The BSWI based WFEM is generally preferred to the Daubechies based WFEM when 

carrying out free vibration analysis and approximating the variation of the dynamic 

response of a system. This is due to the high levels of accuracy achieved with fewer 

elements and better computational efficiency. Furthermore, the method does not 

require the calculation of connection coefficients to evaluate the element matrices and 

load vectors. The difference in computational and time demands between the two 

methods becomes more apparent as the complexity of the problem analysed increases 

(variations in material properties or loading conditions). This is consistent with 

statements made in previous works and is confirmed via the comparative study of the 
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two WFEMs carried out in this thesis. However, the efficiency of the BSWI based 

WFEM for structural dynamic analysis may be impeded by the minimum applicable 

multiresolution scale condition 2𝑗 ≥ 2𝑚 − 1. The Daubechies WFEM may be a more 

effective and efficient approach where a considerable number of wavelet finite 

elements are required, primarily due to variations in spatial orientation of the WFEs. 

 

 The Daubechies based WFEM can be accurately applied for the static and dynamic 

analysis of beam structures for different orders of the WFE. The results converge 

more rapidly to the exact solution when the order of the Daubechies WFE is increased 

in comparison to the multiresolution. This is evident when improving the accuracy of 

the natural frequencies and dynamic response of a system. This is also the case for the 

BSWI based WFEM when the multiresolution scale j is relatively low. However, 

when the multiresolution scale is high, the results are better approximated but the 

computational costs are significantly increased due to the increase in the number of 

DOFs in each WFE. It is therefore more efficient and effective to first increase the 

orders of the wavelet based finite elements, then increase the multiresolution scales. 

 

 The results for the free vibration analysis of a transversely varying functionally 

graded beam indicate that as the power law exponent 𝑛 → 0, the natural frequency of 

the FG beam reduces for 𝐸𝑢 > 𝐸𝑙 . The effects of varying the slenderness ratio on the 

natural frequencies of the FG beam are not significant provided 
𝑙

𝑕
≥ 20. However, for 

shorter beams where 
𝑙

𝑕
< 20, the slenderness ratio affects the natural frequencies of 

the beam and the free vibration analysis can only be accurately carried out when the 

shear deformation effects are taken into consideration. This is consistent with results 

presented using other approaches. 

 

 The material distribution of a transversely varying functionally graded beam resting 

on a viscoelastic foundation subjected to a moving point load influences the dynamic 

response of the system. When the moving load is travelling at a velocity equal to or 

less than the critical velocity of the lower surface material, decreasing the value of n 

decreases the maximum displacement of the FG beam, for 𝐸𝑢 > 𝐸𝑙 . At supercritical 

velocities, the variation of n should be carried out in a manner that ensures the 
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corresponding critical velocity is as distant as possible from the applied moving load 

velocity; thus, the maximum displacement of the beam is kept to a minimum. 

Increasing damping of the system decreases the effect of varying the material 

distribution of the FG beam on the dynamic response of the beam. 

 

9.2.  Recommendations for future work 

The versatility and effectiveness of the wavelet finite element method, particularly in the 

analysis of dynamic structural problems with fast variations in loading conditions and/or 

material properties, offers vast potential. Therefore, the following are recommendations for 

future work:  

 Implement the WFEM in the formulation and dynamic analysis of functionally graded 

plates and shells. 

 Apply WFEM to analyse functionally graded materials, for different material 

distributions, when temperature effects are taken into consideration. 

 Formulate 3D wavelet based finite element for the analysis of functionally graded 

materials with variations of material distributions occurring in all the three axis 

directions. 

 Carry out analysis of impact and wave propagation problems based on the wavelet 

finite element method. 
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Appendix 

A.  Wavelet theory 

The key principles, theories and formulations of wavelet analysis related to the work 

presented in this study, specifically Chapter 3, are highlighted and expounded in this section 

based on previous literature [15,16,19,20,87].  

A.1. Multiresolution analysis 

The decomposition and reconstruction formulations explaining how multiresolution is 

achieved in wavelets are presented in this section as previously discussed in Section 3.1. Let 

us define the projections of a function 𝑓 ∈ 𝐿2(ℝ) at scale j in the subspaces 𝑉𝑗  and 𝑊𝑗  as 𝑃𝑗𝑓 

and 𝑄𝑗𝑓 respectively. Furthermore [19], 

where 𝑎𝑘
𝑗
 and 𝑏𝑘

𝑗
 are coefficients in the subspaces 𝑉𝑗  and 𝑊𝑗  respectively. At scale j = 1, the 

corresponding projection of 𝑓, 𝑃1𝑓, can be decomposed into the projections of 𝑓 in 𝑉0 and 𝑊0 

since 𝑉1 = 𝑉0 ⊕ 𝑊0 [20]. 

The coefficient 𝑎𝑘
1  is a refined version of 𝑎𝑘

0  while 𝑏𝑘
0 contains the difference in 

“information”. This is a similar concept for the subspaces, where the additional information 

to get from 𝑉0 to 𝑉1, is in the subspace 𝑊0. Given that 𝜙𝑘
1(𝑥) is the orthonormal basis of 𝑉1, 

then from equation (A.3) the coefficients 𝑎𝑘
0  can be evaluated as [19]: 

Substituting (A.1), for j = 1, into (A.6), 

 𝑃𝑗 𝑓 =  𝑎𝑘
𝑗
𝜙𝑘

𝑗
(𝑥)

𝑘

 (A.1) 

 𝑄𝑗𝑓 =  𝑏𝑘
𝑗
𝜓𝑘

𝑗
(𝑥)

𝑘

 (A.2) 

 𝑃1𝑓 = 𝑃0𝑓 + 𝑄0𝑓 (A.3) 

  𝑎𝑘
1𝜙𝑘

1(𝑥)

𝑘

=  𝑎𝑘
0𝜙𝑘

0(𝑥)

𝑘

+  𝑏𝑘
0𝜓𝑘

0(𝑥)

𝑘

 (A.4) 

 2
1
2  𝑎𝑘

1𝜙(2𝑥 − 𝑘)

𝑘

=  𝑎𝑘
0𝜙(𝑥 − 𝑘)

𝑘

+  𝑏𝑘
0𝜓(𝑥 − 𝑘)

𝑘

 (A.5) 

 𝑎𝑘
0 =  𝜙𝑘

0 𝑥 , 𝑃0𝑓 =  𝜙𝑘
0 𝑥 , 𝑃1𝑓  (A.6) 
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Substituting equation (3.9) into (A.7) 

where 

Similarly, the coefficients 𝑏𝑘
0 can be stated as: 

The coefficient 𝑎𝑖
1(𝑥) decomposes into the coefficients 𝑎𝑘

0  and 𝑏𝑘
0 from equations (A.8) and 

(A.10). Furthermore, the coefficient 𝑎𝑖
1(𝑥) can be reconstructed from the coefficients 𝑎𝑘

0  

and 𝑏𝑘
0, i.e., 

In general, at any scale j [20] 

This give rise to what is commonly referred to as the refinement and wavelet equations, 

which are expressed as:  

 𝑎𝑘
0 =  𝜙𝑘

0 𝑥 , 𝑃1𝑓 =  𝜙𝑘
0 𝑥 ,  𝑎𝑖

1𝜙𝑖
1(𝑥)

𝑖

  (A.7) 

 𝑎𝑘
0 = 2

1
2  𝑎𝑖

1

𝑖

 𝜙 𝑥 − 𝑘 , 𝜙(2𝑥 − 𝑖) =  𝑕(𝑖 − 2𝑘)𝑎𝑖
1

𝑖

 (A.8) 

 𝑕 𝑘 = 2
1
2  𝜙 𝑥 𝜙(2𝑥 − 𝑘)𝑑𝑥

∞

−∞

 (A.9) 

 𝑏𝑘
0 =  𝑔(𝑖 − 2𝑘)𝑎𝑖

1(𝑥)

𝑖

 (A.10) 

 𝑔 𝑘 = 2
1
2  𝜓 𝑥 𝜙(2𝑥 − 𝑘)𝑑𝑥

∞

−∞

 (A.11) 

 𝑎𝑘
1 =  𝑕 2𝑘 − 𝑖 𝑎𝑖

0 +  𝑔(2𝑘 − 𝑖)𝑏𝑖
0

𝑖𝑖

 (A.12) 

 𝑃𝑗 +1𝑓 𝑥 = 𝑃𝑗𝑓 𝑥 + 𝑄𝑗𝑓(𝑥) (A.13) 

  𝑎𝑘
𝑗 +1

𝜙𝑘
𝑗 +1

(𝑥)

𝑘

=  𝑎𝑘
𝑗
𝜙𝑘

𝑗
(𝑥)

𝑘

+  𝑏𝑘
𝑗
𝜓𝑘

𝑗
(𝑥)

𝑘

 (A.14) 

 𝑎𝑘
𝑗

=  𝑕(𝑖 − 2𝑘)𝑎𝑖
𝑗+1

𝑖

, 𝑎𝑗 = 𝑯𝑎𝑗 +1 (A.15) 

 𝑏𝑘
𝑗

=  𝑔(𝑖 − 2𝑘)𝑎𝑖
𝑗 +1

𝑖

, 𝑏𝑗 = 𝑮𝑎𝑗 +1 (A.16) 

 

𝑎𝑘
𝑗 +1

=  𝑕 2𝑘 − 𝑖 𝑎𝑖
𝑗

+  𝑔(2𝑘 − 𝑖)𝑏𝑖
𝑗

𝑖𝑖

 

𝑎𝑗 +1 = 𝑯𝑻𝑎𝑗 + 𝑮𝑻𝑏𝑗  

(A.17) 
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where c  denotes the general scaling function filter coefficients. Figure A-1 illustrates the (a) 

decomposition and (b) reconstruction algorithms of the coefficients in the subspaces at 

different scales.  

  

Figure A-1: Wavelet (a) decomposition and (b) reconstruction. 

A.2. The Daubechies wavelet 

This section contains a more detailed mathematical description of the Daubechies filter 

coefficients, moments and connection coefficients as discussed in Chapter 3 of this thesis. 

A.2.1. The Daubechies filter coefficients 

In this section, the Daubechies filter coefficients discussed in Section 3.2.1, are derived in 

detail based on theory and formulations described by Daubechies [15,20] and subsequent 

publications by Strang and Nguyen [16] and Hong et al. [88]. 

We define the 2𝜋-periodic function 

where the filter coefficients 𝑕(𝑘) satisfy the conditions (3.30) and (3.32). Therefore, for an 

orthonormal scaling function 𝜙𝑘
0 𝑥 , 

 𝜙 𝑥 =  𝑐 𝑘 𝜙(2𝑥 − 𝑘)

𝑘

 (A.18) 

 𝜓 𝑥 =   −1 𝑛𝑐 𝑘 + 1 𝜙(2𝑥 + 𝑘)

𝑘

 (A.19) 

 𝑚0 𝜔 =
1

 2
 𝑕(𝑘)𝑒−𝑖𝑘𝜔

𝑘

 (A.20) 

  𝑚0 𝜔  2 + |𝑚0 𝜔 + 𝜋 |2 = 1 (A.21) 

𝒂𝑗 +1 

𝒃0 

 

𝒂𝑗  

 𝒂𝑗−1 

 

𝒃𝑗  

 𝒃𝑗−1 

 
𝒃𝑗−2 

 
𝒂1 

 
𝒂0 

 

𝒂𝑗−2 

 

𝑯𝑻 

𝑯𝑻 

𝑯𝑻 

𝑯𝑻 

𝑮𝑻 

𝑮𝑻 

𝑮𝑻 

𝑮𝑻 

(𝑏) 

𝒂𝑗 +1 

𝒃0 

 

𝒂𝑗  

 𝒂𝑗−1 

 

𝒃𝑗  

 𝒃𝑗−1 

 𝒃𝑗−2 

 
𝒂1 

 
𝒂0 

 

𝒂𝑗−2 

 

𝑯 

𝑯 

𝑯 

𝑯 

𝑮 

𝑮 

𝑮 

𝑮 

(𝑎) 
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Given that the moment condition holds, then m0 factorizes in the form [15] 

where 𝑞(𝜔) is also a trigonometric function and M ≥ 1. Let the polynomial M0 be given as: 

Therefore, 

For convenience, we define 

Furthermore, given the trigonometric relations 

Equation (A.24) can be expressed in terms of B(y) as 

and subsequently 

The condition expressed in equation (A.21) can be expressed in terms of equations (A.28) 

and (A.29) as  

This holds for all 𝑦 ∈ [0,1] and thus, for all 𝑦 ∈ ℝ. Daubechies [20] in her earlier work 

solved equation (A.30) via two combinatorial lemmas and later used Bezout’s theorem which 

states that: 

“If p1 and p2 are two polynomials of degree n1 and n2 respectively, with no 

common zeros, then there exists unique polynomials q1 and q2 of degree n2 - 1, 

n1 - 1 respectively so that.” [15] 

 

 𝑚0 𝜔 =  
1 + 𝑒𝑖𝜔

2
 

𝑀

𝑞(𝜔) (A.22) 

 𝑀0 𝜔 =  𝑚0 𝜔  2 = 𝑚0 𝑒𝑖𝜔  𝑚0 𝑒−𝑖𝜔   (A.23) 

 𝑀0 𝜔 =  
1 + 𝑒−𝑖𝜔

2
 

𝑀

 
1 + 𝑒𝑖𝜔

2
 

𝑀

𝑞 𝑒−𝑖𝜔  𝑞 𝑒𝑖𝜔  =  cos2  
𝜔

2
  

𝑀

𝑞(𝑒−𝑖𝜔 )𝑞(𝑒𝑖𝜔 ) (A.24) 

 𝐵 𝑦 = 𝑞(𝑒−𝑖𝜔 )𝑞(𝑒𝑖𝜔 ) (A.25) 

 
sin2 𝜃 + cos2 𝜃 = 1 
cos2 𝜃 = 1 − sin2 𝜃 

cos 2𝜃 = 1 − 2 sin2 𝜃 
(A.26) 

 
  

 
𝑦 = sin2 𝜃 

cos2 𝜃 = 1 − 𝑦 
cos 2𝜃 = 1 − 2𝑦 

(A.27) 

 𝑀0 𝜔 = 𝑀0 𝑒−𝑖𝜔  =  1 − 𝑦 𝑀𝐵(𝑦) (A.28) 

 𝑀0 𝜔 + 𝜋 = 𝑀0 −𝑒−𝑖𝜔  = 𝑦𝑀𝐵(1 − 𝑦) (A.29) 

  1 − 𝑦 𝑀𝐵 𝑦 + 𝑦𝑀𝐵 1 − 𝑦 = 1 (A.30) 

 𝑝1 𝑥 𝑞1 𝑥 + 𝑝2 𝑥 𝑞2 𝑥 = 1 (A.31) 
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Thus, B(y) from equation (A.30) is expressed as 

By applying Taylor expansion for the first M terms of  1 − 𝑦 −𝑀 ,  

where 𝑂(𝑦𝑀) is the general power series. However, for B(y) of degree ≥ M  

where 𝐵𝑀 𝑦  is the unique lowest solution  

Substituting the values of y from equation (A.27) i.e., 

and from equation (A.28), we obtain 

Shifting from the frequency domain into the z-domain for convenience, where 𝑧 = 𝑒𝑖𝜔, let the 

polynomial 𝑃𝐿 𝜔 = 𝑀0 𝜔  and 𝑃𝐿 𝑧 =  𝑚𝐿 𝑧  
2 = 𝑚𝐿 𝑧 𝑚𝐿 

1
𝑧  . In the case of the 

Daubechies family of wavelets, the order 𝑀 =
𝐿

2
. 

where 𝑀𝐿 𝑧  is a Laurent polynomial 

 𝐵 𝑦 =  1 − 𝑦 −𝑀 1 − 𝑦𝑀𝐵 1 − 𝑦   (A.32) 

 𝐵 𝑦 =   
𝑀 + 𝑘 − 1

𝑘
 

𝑀−1

𝑘=0

𝑦𝑘 + 𝑂(𝑦𝑀) (A.33) 

  1 − 𝑦 𝑀(𝐵 𝑦 − 𝐵𝑀 𝑦 ) + 𝑦𝑀(𝐵 1 − 𝑦 − 𝐵𝑀 1 − 𝑦 ) = 0 (A.34) 

 𝐵𝐿 𝑦 =   
𝑀 + 𝑘 − 1

𝑘
 

𝑀−1

𝑘=0

𝑦𝑘  (A.35) 

 

𝑦 =  
1 − 𝑒−𝑖𝜔

2
  

1 − 𝑒𝑖𝜔

2
  

1 − 𝑦 =  
1 + 𝑒−𝑖𝜔

2
  

1 + 𝑒𝑖𝜔

2
  

(A.36) 

 𝑀0 𝜔 =  
1 + 𝑒−𝑖𝜔

2
 

𝑀

 
1 + 𝑒𝑖𝜔

2
 

𝑀

  
𝑀 + 𝑘 − 1

𝑘
 

𝑀−1

𝑘=0

 
1 − 𝑒−𝑖𝜔

2
 

𝑘

 
1 − 𝑒𝑖𝜔

2
 

𝑘

 (A.37) 

 𝑃𝐿 𝑧 =  
1 + 𝑧

2
 

𝐿
2
 
1 + 𝑧−1

2
 

𝐿
2

  
𝐿

2
+ 𝑘 − 1

𝑘

 

𝐿
2
−1

𝑘=0

 
1 − 𝑧

2
 
𝑘

 
1 − 𝑧−1

2
 

𝑘

 (A.38) 

 𝑃𝐿 𝑧 =  
1 + 𝑧

2
 

𝐿
2
 
1 + 𝑧−1

2
 

𝐿
2

𝑀𝐿 𝑧  
(A.39) 

 
𝑀 𝐿 𝑧 =   

𝐿

2
+ 𝑘 − 1

𝑘

 

𝐿
2
−1

𝑘=0

 
1 − 𝑧

2
 
𝑘

 
1 − 𝑧−1

2
 

𝑘

 
(A.40) 
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Table A-1 gives the values of 𝑀 𝐿 𝑧  for 2 ≤  𝐿 ≤ 20 as evaluated from an algorithm 

developed by the author using Mathematica version 7. 

L 𝑴 𝑳 𝒛  

2 1 

4 
2 −

1

2𝑧
−

𝑧

2
 

6 19

4
+

3

8𝑧2 −
9

4𝑧
−

9𝑧

4
+

3𝑧2

8
 

8 

13 −
5

16𝑧3 +
5

2𝑧2 −
131

16𝑧
−

131𝑧

16
+

5𝑧2

2
−

5𝑧3

16
 

10 2509

64
+

35

128𝑧4
−

175

64𝑧3
+

95

8𝑧2
−

1825

64𝑧
−

1825𝑧

64
+

95𝑧2

8
−

175𝑧3

64
+

35𝑧4

128
 

12 4027

32
−

63

256𝑧5
+

189

64𝑧4
−

4067

256𝑧3
+

399

8𝑧2
−

12687

128𝑧
−

12687𝑧

128
+

399𝑧2

8
−

4067𝑧3

256
+

189𝑧4

64
−

63𝑧5

256
 

14 107727

256
+

231

1024𝑧6 −
1617

512𝑧5 +
10353

512𝑧4 −
39837

512𝑧3 +
203161

1024𝑧2 −
89033

256𝑧
−

89033𝑧

256
+

203161𝑧2

1024
−

39837𝑧3

512

+
10353𝑧4

512
−

1617𝑧5

512
+

231𝑧6

1024
 

16 46309

32
−

429

2048𝑧7 +
429

128𝑧6 −
50919

2048𝑧5 +
7227

64𝑧4 −
714429

2048𝑧3 +
98451

128𝑧2 −
2528431

2048𝑧
−

2528431𝑧

2048
+

98451𝑧2

128

−
714429𝑧3

2048
+

7227𝑧4

64
−

50919𝑧5

2048
+

429𝑧6

128
−

429𝑧7

2048
 

18 83211409

16384
+

6435

32768𝑧8 −
57915

16384𝑧7 +
244101

8192𝑧6 −
2552121

16384𝑧5 +
4614291

8192𝑧4 −
24360435

16384𝑧3 +
24126075

8192𝑧2 −
72599193

16384𝑧

−
72599193𝑧

16384
+

24126075𝑧2

8192
−

24360435𝑧3

16384
+

4614291𝑧4

8192
−

2552121𝑧5

16384
+

244101𝑧6

8192

−
57915𝑧7

16384
+

6435𝑧8

32768
 

20 148279949

8192
−

12155

65536𝑧9 +
60775

16384𝑧8 −
2294435

65536𝑧7 +
847275

4096𝑧6 −
14015287

16384𝑧5 +
10737155

4096𝑧4 −
100677555

16384𝑧3

+
45926485

4096𝑧2 −
526213405

32768𝑧
−

526213405𝑧

32768
+

45926485𝑧2

4096
−

100677555𝑧3

16384

+
10737155𝑧4

4096
−

14015287𝑧5

16384
+

847275𝑧6

4096
−

2294435𝑧7

65536
+

60775𝑧8

16384
−

12155𝑧9

65536
 

Table A-1:  Laurent polynomial 𝑀𝐿 𝑧  for 2 ≤ L ≤ 20. 

In order to solve for the filter coefficients, it is vital to solve for 𝑚0 𝜔  from equation (A.22) 

to which we express in the z domain as: 

 
𝑚𝐿 𝑧 =  

1 + 𝑧

2
 

𝐿
2
𝑞 𝐿(𝑧) 

(A.41) 
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The subscript L denotes the order of the Daubechies wavelet and 𝑀 𝐿 𝑧 =  𝑞 𝐿(𝑧) 
2
. In order 

to obtain 𝑚0 𝜔 , it is important to obtain the square root from the non-negative trigonometric 

polynomial 𝑀 𝐿 𝑧  via spectral factorization [16]. 

  

(a) Daubechies D4 (b) Daubechies D6 

 

 

(c) Daubechies D8 (d) Daubechies D10          

Figure A-2: Roots for the different orders of the Daubechies wavelet family. 

According to Riesz Lemma, given that a real Laurent polynomial 𝑅 𝑧  > 0 that has 

symmetric coefficients and thus satisfies the condition 𝑅 𝑧 = 𝑅 𝑧−1 , then [88]:  

where 𝑐 𝑧  is a real polynomial. The real roots 𝑟𝑘  and 
1

𝑟𝑘
, the complex roots zi and its 

conjugate 𝑧 𝑖  inside the unit circle, as well as 
1

𝑧𝑖
 and corresponding conjugate 

1

𝑧 𝑖
 outside the 

unit circle and/or the complex conjugate roots 𝑒𝑖𝑤𝑗  and 𝑒−𝑖𝑤𝑗 , are obtained from the 

 𝑅 𝑧 = 𝑐 𝑧 𝑐 𝑧−1  (A.42) 
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polynomial 𝑀 𝐿 𝑧 .  The diagram above is an illustration of the roots for Daubechies D4 to 

D10 as evaluated using a Mathematica version 7 code developed by the author. 

Daubechies D4 has a pair of real roots as illustrated in Figure A-2 (a), while D6 has a 

quadruplet of complex roots zi, 𝑧 𝑖 ,  
1

𝑧𝑖
 and  

1

𝑧 𝑖
. On the other hand, D8 has both a pair of the real 

roots and the four complex roots. Therefore, as the order of the Daubechies wavelet 

increases, so does the number of roots which correspond to 𝐿 − 2. However, only one of the 

roots is required from each pair so as to solve for the filter coefficients. 

Therefore, the polynomial 𝑅 𝑧  is written as: 

Due to even multiplicity conditions we now have 

and furthermore, 

Substituting these values and taking z
N
 to the right hand side of the equation, we obtain 

Let 𝑏 𝑁 𝑧−𝑁 = 𝑎𝑁  , which is a coefficient of b(N). Therefore, 

 𝑅 𝑧 =  𝑏 𝑘 𝑧𝑘

𝑁

−𝑁

 (A.43) 

 

𝑧𝑁𝑅 𝑧 = 𝑏 𝑁   𝑧 − 𝑧𝑖  𝑧 − 𝑧 𝑖  𝑧 −
1

𝑧𝑖
  𝑧

𝑀

𝑖=1

−
1

𝑧 𝑖
  (𝑧 − 𝑒𝑖𝑤𝑗)2(𝑧 − 𝑒−𝑖𝑤𝑗)2  (𝑧 − 𝑟𝑘)(𝑧 − 𝑟𝑘

−1)

𝐾

𝑘

𝐽

𝑗=1

 

(A.44) 

 
 (𝑧 − 𝑧𝑖)(𝑧 −

1

𝑧 𝑖
) =  𝑧𝑖 

−1 𝑧 − 𝑧𝑖  
2 

 (𝑧 − 𝑟𝑘)(𝑧 − 𝑟𝑘
−1) =  𝑟𝑘  −1 𝑧 − 𝑟𝑘  2 

(A.45) 

 

𝑅 𝑧 = 𝑏 𝑁 𝑧−𝑁   𝑧𝑖 
−1 𝑧 − 𝑧𝑖 

2 𝑧𝑖 
−1 𝑧 − 𝑧 𝑖 

2  (𝑧 − 𝑧𝑗 )2(𝑧

𝐽

𝑗 =1

𝑀

𝑖=1

− 𝑧 𝑗 )2   𝑟𝑘  −1 𝑧 − 𝑟𝑘  2

𝐾

𝑘

 

(A.46) 

 

 

𝑅 𝑧 = 2𝑎𝑁   𝑧𝑖 
−2

𝑀

𝑖=1

  𝑟𝑘  −1

𝐾

𝑘=1

   𝑧 − 𝑧𝑖 (𝑧

𝑀

𝑖=1

− 𝑧 𝑖) 
2    𝑧 − 𝑧𝑗  (𝑧 − 𝑧 𝑗 ) 

2
  𝑧 − 𝑟𝑘  2

𝐾

𝑘

𝐽

𝑗 =1

 

(A.47) 
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k 𝒑𝑳(𝒌) 

D4 D6 D8 D10 

0 0.683012701892 0.470467207784 0.325803428051 0.226418982584 

1 1.183012701892 1.141116915831 1.010945715092 0.853943542705 

2 0.316987298108 0.650365000526 0.892200138247 1.024326944259 

3 -0.183012701892 -0.190934415568 -0.039575026236 0.195766961348 

4 - -0.120832208310 -0.264507167369 -0.342656715383 

5 - 0.049817499737 0.043616300474 -0.045601131884 

6 - - 0.046503601071 0.109702658642 

7 - - -0.014986989330 -0.008826800108 

8 - - - -0.017791870102 

9 - - - 0.004717427939 

 D12 D14 D16 D18 

0 0.157742432003 0.110099430746 0.076955622109 
0.053850349589 

1 0.699503814075 0.560791283626 0.442467247152 
0.344834303814 

2 1.062263759882 1.031148491636 0.955486150428 
0.855349064359 

3 0.445831322930 0.664372482211 0.827816532422 
0.929545714366 

4 -0.319986598892 -0.203513822463 -0.022385735334 
0.188369549506 

5 -0.183518064060 -0.316835011281 -0.401658632781 
-0.414751761802 

6 0.137888092975 0.100846465009 0.000668194092 
-0.136953549025 

7 0.038923209708 0.114003445160 0.182076356847 
0.210068342279 

8 -0.044663748330 -0.053782452590 -0.024563901046 
0.043452675461 

9 0.000783251152 -0.023439941564 -0.062350206650 
-0.095647264120 

10  0.006756062363 0.017749792379 0.019772159297  
0.000354892813 

11 -0.001523533806 0.000607514995 0.012368844820 
0.031624165853 

12 - -0.002547904718 -0.006887719257 
-0.006679620226 

13 - 0.000500226853 -0.000554004549 
-0.006054960575 

14 - - 0.000955229711 
0.002612967280 

15 - - -0.000166137261 
0.000325814671 

16 - - - 
-0.000356329759 

17 - - - 
0.000055645514 

Table A-2: Table of Daubechies filter coefficients 𝑝𝐿(𝑘) for Daubechies wavelets D4 – D18. 

Let us define a constant T where 

 𝑇2 = 2𝑎𝑁   𝑧𝑖 
−2

𝑀

𝑖=1

  𝑟𝑘  −1

𝐾

𝑘=1

 (A.48) 
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Then, 

It is therefore possible to evaluate for  𝑞𝐿(𝑧) from (A.49) as, 

and consequently solve for 𝑚𝐿 𝑧  in equation (A.41). The values of the coefficients in this 

polynomial are the values of the filter coefficients 𝑕𝐿(𝑘) and can now be used in the dilation 

equation to obtain the scaling functions and the wavelets functions. Table A-2 contains the 

filter coefficients normalized  𝑝𝐿(𝑘)𝑘 = 2 for D4 to D16 as computed via a code written by 

the author using Mathematica version 7. 

A.2.2. Daubechies moments 𝑴𝒌
𝒎 

Latto et al. [36] outlined an efficient and quick technique to calculate the moments of the 

Daubechies wavelet scaling function 𝜙𝐿 𝑥  and its translates of the form  

The scaling relation from the dilation equation in equation (3.18) is used to derive a sufficient 

number of linear conditions to determine the moments uniquely. Furthermore, from the 

property of vanishing moments in equation (3.24), the linear combination of the Daubechies 

scaling function and its translates of order L can exactly represent low order polynomials of 

order up to and not greater than 
𝐿

2
− 1 [36]. Therefore, a given function 𝑓 𝑥 = 𝑥𝑚  can be 

represented as:  

The moments for the translates of the scaling function are expressed as  

By definition, from the properties of the Daubechies wavelets highlighted in Section 3.2, we 

know that the scaling function is normalised as follows: 

 𝑅 𝑧 = 𝑇2    𝑧 − 𝑧𝑖 (𝑧 − 𝑧 𝑖)

𝑀

𝑖=1

 

2

   𝑧 − 𝑧𝑗  (𝑧 − 𝑧 𝑗 )

𝐽

𝑗 =1

 

2

  (𝑧 − 𝑟𝑘)

𝐾

𝑘

 

2

 (A.49) 

 𝑞𝐿(𝑧) = 𝑇   𝑧 − 𝑧𝑖 (𝑧 − 𝑧 𝑖)

𝑀

𝑖=1

  𝑧 − 𝑧𝑗  (𝑧 − 𝑧 𝑗 )

𝐽

𝑗 =1

 (𝑧 − 𝑟𝑘)

𝐾

𝑘

 (A.50) 

 𝑀𝑘
𝑚 =   𝑥𝑚 , 𝜙𝐿 𝑥 − 𝑘  =   𝑥𝑚𝜙𝐿 𝑥 − 𝑘 𝑑𝑥 

∞

−∞

 (A.51) 

 𝑥𝑚 =  𝑀𝑘
𝑚𝜙𝐿 𝑥 − 𝑘 

𝑘

 (A.52) 

 𝑀𝑘
𝑚 =   𝑥𝑚 , 𝜙𝐿 𝑥 − 𝑘  =   𝑥𝑚𝜙𝐿 𝑥 − 𝑘 𝑑𝑥 

∞

−∞

 (A.53) 
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Therefore, if in equation (A.53), m = 0 and k = 0, then  

and similarly, 

When k = 0, the m
th

 moment of the Daubechies scaling function is denoted as 

Applying the refinement equation, (A.57) can be rewritten as 

Multiplying equation (A.58) by 2
m
 and expressing 𝑑𝑥 =

𝑑(2𝑥)

2
 

However,   

Therefore, equation (A.59) can be expressed as:  

In order to reduce the number of unknowns, it is vital to remove the moments 𝑀𝑖
𝑚  for 𝑖 ≠ 0. 

Let u = (2x – i). Equation (A.60) becomes 

  𝜙𝐿 𝑥 𝑑𝑥 
∞

−∞

= 1  (A.54) 

 𝑀0
0 =    𝜙𝐿 𝑥 𝑑𝑥 

∞

−∞

= 1 (A.55) 

 𝑀𝑘
0 =    𝜙𝐿 𝑥 − 𝑘 𝑑𝑥 

∞

−∞

= 1 (A.56) 

 𝑀0
𝑚 =   𝑥𝑚 , 𝜙𝐿 𝑥  =   𝑥𝑚𝜙𝐿 𝑥 𝑑𝑥 

∞

−∞

 (A.57) 

 𝑀0
𝑚 =   𝑝 𝑖 

𝐿−1

𝑖=0

 𝑥𝑚𝜙𝐿(2𝑥 − 𝑖)𝑑𝑥 
∞

−∞

 (A.58) 

 2𝑚𝑀0
𝑚 =   𝑝 𝑖 

𝐿−1

𝑖=0

  2𝑥 𝑚𝜙𝐿(2𝑥 − 𝑖)
𝑑(2𝑥)

2
 

∞

−∞

  

 𝑀0
𝑚 =

1

2𝑚+1
  𝑝 𝑖 

𝐿−1

𝑖=0

  2𝑥 𝑚𝜙𝐿(2𝑥 − 𝑖)𝑑(2𝑥) 
∞

−∞

 (A.59) 

   2𝑥 𝑚𝜙𝐿(2𝑥 − 𝑖)𝑑(2𝑥) 
∞

−∞

= 𝑀𝑖
𝑚   (A.60) 

 𝑀0
𝑚 =

1

2𝑚+1
  𝑝 𝑖 𝑀𝑖

𝑚

𝐿−1

𝑖=0

  (A.61) 

 𝑀𝑖
𝑚 =   𝑢 + 𝑖 𝑚𝜙𝐿(𝑢)𝑑(𝑢) 

∞

−∞

  (A.62) 
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Expanding the term (𝑢 + 𝑖)𝑚  via binomial expansion  

Substituting equation (A.63) into equation (A.62), 

We can now substitute equation (A.64) into equation (A.61)  

However, from the normalization property of the filter coefficients expressed in equation 

(3.30), equation (A.66) can be rewritten as 

This is the m
th

 moment 𝑀0
𝑚 , for the scaling function 𝜙𝐿(𝑥). We can now compute the 

moments 𝑀𝑘
𝑚  by substituting equation (A.67) into equation (A.64). These are the moments 

expressed in equation (3.46) at multiresolution scale j = 0. However, it is crucial to evaluate 

the moments at multiresolution scale j > 0 for the purpose of implementing the 

multiresolution aspect in the formulation of the Daubechies WFEs. The moments at scale j 

for the scaling function translates are defined as [6]: 

The moments of the scaling function translates at scale j = 0 is represented in equation (A.64) 

 (𝑢 + 𝑖)𝑚 =  
𝑢𝑚

0!
+

𝑚𝑢𝑚−1𝑖

1!
+

𝑚(𝑚 − 1)𝑢𝑚−2𝑖2

2!
+ ⋯ +  

𝑖𝑚

0!
  

 (𝑢 + 𝑖)𝑚 =  
𝑚
2

 𝑢𝑚 𝑖0 +  
𝑚
1

 𝑢𝑚−1𝑖1 +  
𝑚
2

 𝑢𝑚−2𝑖2 + ⋯ +  
𝑚
𝑚

 𝑢0𝑖𝑚   

 (𝑢 + 𝑖)𝑚 =   
𝑚
𝑙
 𝑢𝑙𝑖𝑚−𝑙

𝑚

𝑙=0

  (A.63) 

 𝑀𝑖
𝑚 =   

𝑚
𝑙
 𝑖𝑚−𝑙

𝑚

𝑙=0

 𝑢𝑙   𝜙𝐿(𝑢)𝑑(𝑢)
∞

−∞

=   
𝑚
𝑙
 𝑖𝑚−𝑙

𝑚

𝑙=0

𝑀0
𝑙  (A.64) 

 𝑀0
𝑚 =

1

2𝑚+1
  𝑝 𝑖   

𝑚
𝑙
 𝑖𝑚−𝑙

𝑚

𝑙=0

𝑀0
𝑙

𝐿−1

𝑖=0

 (A.65) 

 𝑀0
𝑚 =  

1

2𝑚+1
  

𝑚
𝑙
 

𝑚−1

𝑙=0

𝑀0
𝑙   𝑝 𝑖 

𝐿−1

𝑖=0

𝑖𝑚−𝑙 +
1

2𝑚+1
 𝑝 𝑖 

𝐿−1

𝑖=0

𝑀0
𝑚  (A.66) 

 𝑀0
𝑚 =  

1

2𝑚+1
  

𝑚
𝑙
 

𝑚−1

𝑙=0

𝑀0
𝑙   𝑝 𝑖 

𝐿−1

𝑖=0

𝑖𝑚−𝑙 +
2

2𝑚+1
𝑀0

𝑚   

 𝑀0
𝑚 =  

1

2(2𝑚 − 1)
  

𝑚
𝑙
 

𝑚−1

𝑙=0

𝑀0
𝑙  𝑝 𝑖 

𝐿−1

𝑖=0

𝑖𝑚−𝑙  (A.67) 

 𝑀𝑘
𝑗 ,𝑚

=   𝑥𝑚 , 𝜙𝐿,𝑘
𝑗  𝑥  =  2

𝑗
2  𝑥𝑚𝜙𝐿 2𝑗𝑥 − 𝑘 𝑑𝑥 

∞

−∞

 (A.68) 
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And subsequently the m
th

 moment of the scaling function at j = 0 is defined in equation 

(A.67) as: 

Having obtained the moments of the scaling function at scale j = 0, the moments at scale j > 0 

are evaluated by solving equation (A.68), which can be rewritten as:  

Let 2𝑗 𝑥 = 𝑢, 

from equation (A.63), equation (A.72) becomes   

where the moment 𝑀0
0,𝑙

 is evaluated from equation (A.70). 

A.3. The B-splines and B-wavelet 

Cardinal B-splines, general B-splines and the B-wavelet, which are related to the the BSWI 

wavelet described in Section 3.3, are formulated and discussed in this section.  

A.3.1. The cardinal B-splines 

Defining the cardinal B-splines of order 𝑚 ≥ 2 as:  

where for 𝑚 = 1, 𝑁1 𝑥  is the characteristic function of interval [0,1) 

 𝑀𝑘
0,𝑚 = 𝑀𝑘

𝑚 =   
𝑚
𝑙
 𝑘𝑚−𝑙

𝑚

𝑙=0

𝑀0
𝑙  (A.69) 

 𝑀0
0,𝑚 = 𝑀0

𝑚 =
1

2(2𝑚 − 1)
  

𝑚
𝑙
 

𝑚−1

𝑙=0

𝑀0
0,𝑙  𝑝 𝑖 

𝐿−1

𝑖=0

𝑖𝑚−𝑙  (A.70) 

 𝑀𝑘
𝑗 ,𝑚

=
2

𝑗
2

2𝑗 (𝑚+1)
  2𝑗𝑥 

𝑚
𝜙𝐿(2𝑗𝑥 − 𝑘)𝑑(2𝑗𝑥) 

∞

−∞

 (A.71) 

 𝑀𝑘
𝑗 ,𝑚

=
2

𝑗
2

2𝑗 (𝑚+1)
  𝑢 + 𝑘 𝑚𝜙𝐿(𝑢)𝑑(𝑢) 

∞

−∞

  (A.72) 

 𝑀𝑘
𝑗 ,𝑚

=
1

2𝑗 (𝑚+
1
2

)
  

𝑚
𝑙
 𝑘𝑚−𝑙

𝑚

𝑙=0

𝑀0
0,𝑙

  (A.73) 

 𝑁𝑚  𝑥 = 𝑁𝑚−1 𝑥 ∗ 𝑁1 𝑥 =  𝑁𝑚−1 𝑥 − 𝑡 𝑑𝑡
1

0

 (A.74) 

 𝑁1 𝑥 =  
1 0 ≤ 𝑥 < 1
0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  (A.75) 
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 The properties of the cardinal B-splines at multiresolution scale j = 0, for every 𝑓(𝑥) ∈ 𝐶 

and 𝑔𝑚 (𝑥) ∈ 𝐶𝑚 , include [19]: 

The properties highlighted in equations (A.76) and (A.77) are proved in [19]. The support of 

the cardinal splines of order m is finite from 0 to m, therefore 𝑁𝑚 (𝑥) disappears for 0 < 𝑥 

and 𝑥 > 𝑚 as seen in (A.78). This property of compact support is an attractive wavelet 

feature as less scaling functions are necessary in the approximation of functions; thus 

reducing computational costs. Furthermore, the cardinal splines have positive values for all 

𝑥 ∈ (0, 𝑚) from (A.79). The sum of the translates 𝑁𝑚 𝑥 − 𝑘  provide the normalizing 

condition highlighted in equation (A.80). From equation (A.81), the derivative of the cardinal 

splines of order m, can be expressed in terms of the difference of cardinal spline of order m – 

1 and its translate. Equation (A.83) implies that the cardinal splines have symmetry from the 

centre of its support. 

Let the nested subspaces of the cardinal splines of 𝐿2(ℝ)  be expressed as: 

which via the multiresolution conditions satisfy the relation 

  𝑓 𝑥 𝑁𝑚 (𝑥)𝑑𝑥
∞

−∞

=  ⋯ 𝑓 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚−1 + 𝑥𝑚  𝑑𝑥1

1

0

𝑑𝑥2 ⋯ 𝑑𝑥𝑚−1𝑑𝑥𝑚

1

0

 (A.76) 

  𝑔𝑚  𝑥 𝑁𝑚 (𝑥)𝑑𝑥
∞

−∞

=   −1 𝑚−𝑘  
𝑚
𝑘

 𝑔(𝑘)

𝑚

𝑘=0

 (A.77) 

 𝑁𝑚  𝑥 = [0, 𝑚]𝑠𝑢𝑝𝑝  (A.78) 

 𝑁𝑚  𝑥 > 0   𝑓𝑜𝑟 0 < 𝑥 < 𝑚 (A.79) 

  𝑁𝑚  𝑥 − 𝑘 = 1

∞

𝑘=−∞

 (A.80) 

 𝑁′𝑚  𝑥 = ∆𝑁𝑚−1 𝑥 = 𝑁𝑚−1 𝑥 − 𝑁𝑚−1 𝑥 − 1  (A.81) 

 𝑁𝑚  𝑥 =
𝑥

𝑚 − 1
𝑁𝑚−1 𝑥 +

𝑚 − 𝑥

𝑚 − 1
𝑁𝑚−1 𝑥 − 1  (A.82) 

 𝑁𝑚  
𝑚

2
+ 𝑥 = 𝑁𝑚  

𝑚

2
− 𝑥  (A.83) 

 ⋯𝑉−2
𝑚 ⊂ 𝑉−1

𝑚 ⊂ 𝑉0
𝑚 ⊂ 𝑉1

𝑚 ⊂ 𝑉2
𝑚 ⊂ ⋯ (A.84) 

  𝑉𝑗
𝑚

𝑗∈ℤ

         
= 𝐿2(ℝ) (A.85) 
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Therefore, for each 𝑁𝑚 (2𝑗𝑥) ∈ 𝑉𝑗
𝑚 , and from the nested relation given in equation (A.84), 

the cardinal splines have the property [19] 

where 𝑝𝑚(𝑘), for 𝑘 ∈ ℤ, is a sequence in the space l
2
.  

The cardinal splines can therefore be expressed in terms of the two-scale relation 

Figure A-3  below illustrates the cardinal splines a) 𝑁1 𝑥 , b) 𝑁2 𝑥 , c) 𝑁3 𝑥  and b) 𝑁4 𝑥 . 

It is observed that as the order m increase, the cardinal spline function becomes smoother; 

which is an ideal property of the cardinal splines. 

  

  

Figure A-3: Cardinal splines a) 𝑁1(𝑥), b) 𝑁2(𝑥), c) 𝑁3(𝑥) and d) 𝑁4(𝑥). 

  𝑉𝑗
𝑚

𝑗∈ℤ

= {0} (A.86) 

 𝑁𝑚 2𝑗𝑥 =  𝑝𝑚 (𝑘)

∞

𝑘=−∞

𝑁𝑚 2𝑗 +1𝑥 − 𝑘  (A.87) 

 𝑝𝑚 (𝑘) = 2−𝑚+1   
𝑚
𝑘

 

𝑚

𝑘=0

 (A.88) 

 𝑁𝑚  𝑥 = 2−𝑚+1   
𝑚
𝑘

 

𝑚

𝑘=0

𝑁𝑚  2𝑥 − 𝑘  (A.89) 

a) b) 

c) d) 
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Furthermore, the Riesz basis of subspace 𝑉𝑗
𝑚

 is defined as 

A.3.2.  General B-splines 

In this study, the general B-splines are constructed using a knot sequence. In the formulation 

of B-splines in this thesis, the approach of using knots sequences, similar to one presented by 

Boor [93] and Schumaker [94], will be used. The key property of B-spline knots emanates 

from the fact that the values contained within the knot sequence must be non-decreasing i.e., 

the knot value must be greater than or equal to the preceding knot value. Thus, 

The knot values determine the point value of t at which the “pieces of the curve” join. The 

cardinal B-splines are classified as uniform B-splines, therefore, the knot values of uniform 

splines have the property  

where the knots are equally spaced. Open uniform knots have i equal knot values at each end 

and uniform inner knots. Thus, 

where the control points are n + 1. Non-uniform knots are only constrained by the condition 

in equation (A.91). A knot has multiplicity i if it appears i times in the knot sequence. Given 

the knots 𝑡 = (𝑡𝑘 , … , 𝑡𝑘+𝑚), the B-spline of order m (degree 𝑚 − 1) is therefore given as: 

 𝑡𝑘 , … , 𝑡𝑘+𝑚  𝑓  is the m
th

 divided difference of (. −𝑥)+
𝑚−1 with respect to the variable t. Hence, 

(. −𝑥)+
𝑚−1 can be written as (𝑡 − 𝑥)+

𝑚−1. Using the truncated power function  

one obtains 

 𝐵𝑚,𝑘
𝑗  𝑥 = 2

𝑗
2𝑁𝑚 2𝑗𝑥 − 𝑘  (A.90) 

 𝑡𝑘 ≤ 𝑡𝑘+1 (A.91) 

 𝑡𝑘+1 − 𝑡𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (A.92) 

 

𝑡𝑘 = 𝑡𝑖                             k ≤ i 

𝑡𝑘+1 − 𝑡𝑘 = constant              i ≤ k < n+2 

𝑡𝑘 = 𝑡𝑘+𝑖+1                         k ≥ n+2 

(A.93) 

 𝐵𝑚,𝑘 𝑥 =  𝑡𝑘+𝑚 − 𝑡𝑘  𝑡𝑘 , … , 𝑡𝑘+𝑚  𝑓(. −𝑥)+
𝑚−1 (A.94) 

 𝑦+
𝑛 =   

𝑦𝑛 𝑦 ≥ 0
0  𝑦 < 0

  (A.95) 

 (𝑡 − 𝑥)+
𝑚−1 =  

(𝑡 − 𝑥)+
𝑚−1 (𝑡 − 𝑥) ≥ 0

        0          (𝑡 − 𝑥) < 0
  (A.96) 
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The compact support of the B-splines is specified in terms of the knots.  

If f is a polynomial of degree ≤ m – 1, then  𝑡𝑘 , … , 𝑡𝑘+𝑚  𝑓  is constant as a function 

of 𝑡𝑘 , … , 𝑡𝑘+𝑚  and  𝑡𝑘 , … , 𝑡𝑘+𝑚−1 𝑓 = 0 for all 𝑓 ∈ ℙ𝑚−1(space with a point at infinity). 

Taking into consideration equation (A.94), if x is not within the support interval, Bm,k (x) = 0 

and 𝑔 𝑡 : = (𝑡 − 𝑥)+
𝑚−1 is a polynomial of degree < m on  𝑡𝑘 , 𝑡𝑘+𝑚  . Hence, 

For the order m B-splines with knot sequence t, there are only m B-splines that may be non-

zero within the interval  𝑡𝑘 , 𝑡𝑘+𝑚  . The normalization chosen for Bm,k  is the m
th

 divided 

difference at 𝑡𝑘 , … , 𝑡𝑘+𝑚  multiplied by  𝑡𝑘+𝑚 − 𝑡𝑘 . For a situation with i multiple knots, i.e., 

when computing for  𝑡𝑘 , … , 𝑡𝑘+𝑖 𝑔 , given that (A.99) applies, one obtains 

However, if equation (A.99) does not apply then 

Equations (A.100) and (A.101), with the assumption that the knots are non-uniform and i = 

m, allow equation (A.94) to be expressed as 

In general, equations (A.100) and (A.101) may be expressed as:  

From equation (A.94) 

 𝐵𝑚,𝑘𝑠𝑢𝑝𝑝 =  𝑡𝑘 , 𝑡𝑘+𝑚   (A.97) 

  𝑡𝑘 , … , 𝑡𝑘+𝑚  𝑔 = 0 (A.98) 

 𝑡𝑘 = 𝑡𝑘+𝑖 ⇒ 𝑡𝑘 = 𝑡𝑘+1 = 𝑡𝑘+2 = ⋯ = 𝑡𝑘+𝑖−1 = 𝑡𝑘+𝑖  (A.99) 

  𝑡𝑘 , … , 𝑡𝑘+𝑖 𝑔 =
𝑔 𝑖 (𝑡𝑘)

𝑘 !
 (A.100) 

  𝑡𝑘 , … , 𝑡𝑘+𝑖 𝑔 =
 𝑡𝑘+1 , … , 𝑡𝑘+𝑖 𝑔 −  𝑡𝑘 , … , 𝑡𝑘+𝑖−1 𝑔

 𝑡𝑘+𝑖 − 𝑡𝑘 
 (A.101) 

 

𝐵𝑚,𝑘 𝑥 

=
 𝑡𝑘+𝑚 − 𝑡𝑘   𝑡𝑘+1 , … , 𝑡𝑘+𝑚   . −𝑥 +

𝑚−1 −  𝑡𝑘 , … , 𝑡𝑘+𝑚−1  . −𝑥 +
𝑚−1 

 𝑡𝑘+𝑚 − 𝑡𝑘 
 

 

 𝐵𝑚,𝑘 𝑥 =  𝑡𝑘+1 , … , 𝑡𝑘+𝑚  (. −𝑥)+
𝑚−1 −  𝑡𝑘 , … , 𝑡𝑘+𝑚−1 (. −𝑥)+

𝑚−1 (A.102) 

  𝑡𝑘 , … , 𝑡𝑘+𝑚  𝑓 : =

 
 
 

 
 

 𝑡𝑘+1, … , 𝑡𝑘+𝑚  𝑓 −  𝑡𝑘 , … , 𝑡𝑘+𝑚−1 𝑓
 𝑡𝑘+𝑚 − 𝑡𝑘 

𝑡𝑘 < 𝑡𝑘+𝑚  

                              
𝑓 𝑚+𝑘 (𝑡𝑘)

 𝑚 + 𝑘  !
                         𝑡𝑘 = 𝑡𝑘+𝑚

  (A.103) 
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Thus, 

Multiplying both sides of equation (A.107) by  𝑡𝑘+𝑚 − 𝑡𝑘  

This is the general formulation for computing B-splines using knot sequences. The initial 

condition for the B-spline of order m = 1, is evaluated from equation (A.108) as  

In the case of cardinal B-splines that have uniform knots, equation (A.92) applies and 

thus 𝐵𝑚,𝑘 𝑥 = 𝑁𝑚,𝑘 𝑥 . From equation (A.97), the support for m
th

 order B-splines is [0,m], 

thus the difference of the knots is 𝑡𝑘+1 − 𝑡𝑘 = 1. Taking this into consideration tk = k, 

equation (A.109) therefore becomes  

Subsequently, equation (A.108) for uniform splines is 

A.3.3. B-spline Wavelet (B-wavelet) 

The B-spline wavelet function, commonly referred to as the B-wavelet [19] or Chui-Wang B-

wavelet [95], was presented by Chui and Quak [54]  The wavelet functions are derived based 

on the cardinal B-splines. The discussion carried out on the formulation and properties of 

these wavelet functions are based on the theory presented by Chui [19]. 

 
𝐵𝑚,𝑘 𝑥 

 𝑡𝑘+𝑚 − 𝑡𝑘 
=  𝑡𝑘 , … , 𝑡𝑘+𝑚  (. −𝑥)+

𝑚−1 (A.104) 

  𝑥 − 𝑡𝑘  𝑡𝑘+1 , … , 𝑡𝑘+𝑚−1  . −𝑥 +
𝑚−2 =  𝑥 − 𝑡𝑘 

𝐵𝑚−1,𝑘 𝑥 

 𝑡𝑘+𝑚−1 − 𝑡𝑘 
 (A.105) 

  𝑡𝑘+𝑚 − 𝑥  𝑡𝑘+1 , … , 𝑡𝑘+𝑚   . −𝑥 +
𝑚−2 =  𝑡𝑘+𝑚 − 𝑥 

𝐵𝑚−1,𝑘+1 𝑥 

 𝑡𝑘+𝑚 − 𝑡𝑘+1 
 (A.106) 

 
𝐵𝑚,𝑘 𝑥 

 𝑡𝑘+𝑚 − 𝑡𝑘 
=

 𝑥 − 𝑡𝑘 

 𝑡𝑘+𝑚 − 𝑡𝑘 

𝐵𝑚−1,𝑘 𝑥 

 𝑡𝑘+𝑚−1 − 𝑡𝑘 
+

 𝑡𝑘+𝑚 − 𝑥 

 𝑡𝑘+𝑚 − 𝑡𝑘 

𝐵𝑚−1,𝑘+1 𝑥 

 𝑡𝑘+𝑚 − 𝑡𝑘+1 
 (A.107) 

 𝐵𝑚,𝑘 𝑥 =
𝑥 − 𝑡𝑘

𝑡𝑘+𝑚−1 − 𝑡𝑘
𝐵𝑚−1,𝑘 𝑥 +

𝑡𝑘+𝑚 − 𝑥

𝑡𝑘+𝑚 − 𝑡𝑘+1
𝐵𝑚−1,𝑘+1 𝑥  (A.108) 

 𝐵1,𝑘 𝑥 =
𝑥 − 𝑡𝑘
𝑡𝑘 − 𝑡𝑘

𝐵0,𝑘 𝑥 +
𝑡𝑘 − 𝑥

𝑡𝑘 − 𝑡𝑘+1
𝐵0,𝑘+1 𝑥   

 𝐵1,𝑘 𝑥 =  
1 𝑡𝑘 ≤ 𝑥 ≤ 𝑡𝑘+1

0   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒    
  (A.109) 

 𝑁1,𝑘 𝑥 =  
1 𝑘 ≤ 𝑥 ≤ 𝑘 + 1
0   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒    

  (A.110) 

 𝑁𝑚,𝑘 𝑥 =
𝑥 − 𝑘

𝑘 + 𝑚 − 1 − 𝑘
𝑁𝑚−1,𝑘 𝑥 +

𝑘 + 𝑚 − 𝑥

𝑘 + 𝑚 − 𝑘 − 1
𝑁𝑚−1,𝑘+1 𝑥   

 𝑁𝑚,𝑘 𝑥 =  
𝑥 − 𝑘

𝑚 − 1
𝑁𝑚−1,𝑘 𝑥 +

𝑘 + 𝑚 − 𝑥

𝑚 − 1
𝑁𝑚−1,𝑘+1 𝑥  (A.111) 
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Having defined the m
th

 order cardinal B-spline generated multiresolution subspace 𝑉𝑗
𝑚  in 

equation (A.85), there also exists the orthogonal complementary subspace 𝑊𝑗
𝑚  for 𝑗 ∈ ℤ 

which obeys the multiresolution property in equation (3.2), i.e., 

Let the m
th

 order fundamental cardinal spline be defined as  

with the interpolation property  

from 

for 𝑖 ∈ ℤ. Unlike the cardinal B-splines 𝑁𝑚 , the fundamental cardinal spline 𝐿𝑚  does not 

vanish identically outside any compact set since the coefficient sequence  𝑐𝑘
 𝑚 

  is not finite 

for 𝑚 ≥ 3 [19]. However, 𝐿𝑚 (𝑥) decays to zero linearly as 𝑥 → ±∞ since  𝑐𝑘
 𝑚 

  decays to 

zero exponentially as 𝑘 → ±∞. Therefore, let the wavelet function corresponding to wavelet 

subspace 𝑊𝑗
𝑚 be defined as 

with the properties 

The B-wavelet can be expressed in terms of the cardinal B-spline via the two scale relation: 

From equation (A.113), 

Substituting equation (A.120) into (A.119) 

Therefore, 

 𝑉𝑗+1
𝑚 = 𝑉𝑗

𝑚 ⊕ 𝑊𝑗
𝑚  (A.112) 

 𝐿𝑚 (𝑥) =  𝑐𝑘
 𝑚 

𝑁𝑚 (𝑥 +
𝑚

2
− 𝑘)

∞

𝑘=−∞

 (A.113) 

 𝐿𝑚 (𝑖) = 𝛿𝑖,0 (A.114) 

  𝑐𝑘
 𝑚 

𝑁𝑚 (
𝑚

2
+ 𝑖 − 𝑘)

∞

𝑘=−∞

= 𝛿𝑖 ,0 (A.115) 

 𝜓𝑚 (𝑥) = 𝐿2𝑚
 𝑚 

(2𝑥 − 1) (A.116) 

  𝑁𝑚 (𝑥 − 𝑘)
∞

−∞

𝜓𝑚 (𝑥)𝑑𝑥 = 0 (A.117) 

 𝜓𝑚  𝑥 [0,2𝑚 − 1]𝑠𝑢𝑝𝑝  (A.118) 

 𝜓𝑚 (𝑥) =  𝑞𝑘𝑁𝑚 (2𝑥 − 𝑘)

∞

𝑘=−∞

 (A.119) 

 𝐿2𝑚 (𝑥) =  𝑐𝑘
 2𝑚 

𝑁2𝑚 (𝑥 + 𝑚 − 𝑘)

∞

𝑘=−∞

 (A.120) 

 𝜓𝑚 (𝑥) =  𝑐𝑘
 2𝑚 

  −1 𝑙

𝑚

𝑙=0

 
𝑚
𝑙
 𝑁𝑚 (2𝑥 − 1 + 𝑚 − 𝑘 − 𝑙)

∞

𝑘=−∞

 (A.121) 



 

282 

 

The B-wavelet of order m is expressed as 

It can therefore be shown via the decomposition relation (A.13) and (A.14) 

where the two sequences in space l
2
, {𝑎𝑛} and {𝑏𝑛}, ensure 𝜓𝑚 (𝑥) generates all of the 

wavelet subspace 𝑊0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝑞(𝑘) =   −1 𝑙

𝑚

𝑙=0

 
𝑚
𝑙
 𝑐𝑚+𝑘−1−𝑙

 2𝑚 
=

(−1)𝑘

2𝑚−1
  

𝑚
𝑙
 𝑁2𝑚 (𝑘 + 1 − 𝑙)

𝑚

𝑙=0

 (A.122) 

 𝜓𝑚 (𝑥) =
1

2𝑚−1
  −1 𝑙𝑁2𝑚 (𝑙 + 1)𝑁2𝑚

 𝑚 
(2𝑥 − 𝑙)

2𝑚−2

𝑙=0

 (A.123) 

 𝑁𝑚  2𝑥 − 𝑘 =  𝑎𝑘−2𝑛𝑁𝑚 (𝑥 − 𝑛) +

𝑛∈ℤ

 𝑏𝑘−2𝑛𝜓𝑚 (𝑥 − 𝑛)

𝑛∈ℤ

 (A.124) 
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B. The Finite Element Matrices and Load Vectors 

In this section, the finite element matrices and load vectors are briefly derived based on 

general finite element theory and contains mathematical concepts as presented in [27,29-

31,97,98]. The axial rod, Euler Bernoulli beam and planar bar elements are formulated and 

used to solve the various numerical examples discussed in previous chapters of this thesis. 

The functionally graded beam finite element is as also described based on the formulations 

presented by Alshorbagy et al. [79]. 

B.1. Axial rod finite element 

An axial rod is discretized into ne number of elements of length 𝐿𝑒 , with axial deformations 

𝑢1 and 𝑢2 at the elemental nodes 1 and 2 respectively; as shown in Figure B-1. The rod has a 

uniform cross-sectional are A and Young’s modulus E. The axial rod is subjected to surface 

forces 𝑓 𝑠, body forces 𝑓 𝑏  and point nodal loads fi at node i. 

 

Figure B-1 : Axial rod finite element subjected to external forces. 

The approximation of the axial displacement at point x within the rod is given by the 

binomial 

 𝑢 𝑥 = 𝛽0 + 𝛽1𝑥 =  1 𝑥  
𝛽0

𝛽1
 =  𝐩  𝑇 𝜷   

UX1,FX1 

UY2,FY2 

E,A 

 

u2, f2 

u1, f1 
Le 

 

x 

𝑓 𝑠 

S 

𝑓 𝑏  UY1,FY1 

α 

y 

1 2 3 ne-2 ne-1 ne 

UX2,FX2 

X 
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where the vector  𝜷  contains the unknown constants and  𝐩   contains the polynomial basis 

functions. The vector  𝑁𝑎(𝑥)  contains the shape functions 𝑁𝑖  for the axial rod element 

corresponding to the degrees of freedom (DOFs) within the element, where 

Having selected the order of the polynomials to formulate the shape functions of the rod 

element, the axial rod elemental stiffness and mass matrices can be obtained from the strain 

and kinetic energy of the rod. The FEM axial shape function 𝑁1(𝜉) and  𝑁2(𝜉), where 𝜉 =
𝑥

𝐿𝑒
, 

are presented in Figure B-2. 

 

Figure B-2 : Axial rod linear shape functions. 

The axial rod FEM stiffness and mass matrices are obtained from the strain and kinetic 

energy relations are given as [31]: 

The load vector of external forces  𝒇𝒓,𝒆  acting on the axial rod element e is given by 

where the vectors  𝒇𝒓,𝒆
𝒑

 ,  𝒇𝒓,𝒆
𝒔   and  𝒇𝒓,𝒆

𝒃   are the nodal point forces, nodal surface load 

equivalents and nodal body load equivalents within the axial rod element respectively and are 

given by 

 𝑢 𝑥 =  𝑁1(𝑥) 𝑁2(𝑥)  
𝑢1 

𝑢2 
 =  𝑵𝑎(𝑥)  𝒖𝒆   (B.1) 

 

𝑁1 𝑥 = 1 −
𝑥

𝐿𝑒
 

𝑁2 𝑥 =
𝑥

𝐿𝑒
 

 (B.2) 

 [𝒌𝑟,𝑒] =
𝐸𝐴

𝐿𝑒
 

1 −1
−1 1

   (B.3) 

  [𝒎𝑟,𝑒] = 𝜌𝐴𝐿𝑒  
2 1
1 2

   (B.4) 

  𝒇𝒓,𝒆 =  
𝑓𝑥1

𝑓𝑥2
 
𝑒

=  𝒇𝒓,𝒆
𝒑

 +  𝒇𝒓,𝒆
𝒔  +  𝒇𝒓,𝒆

𝒃   (B.5) 

  𝒇𝒓,𝒆
𝒑

 =  
𝑓1

𝑓2
 
𝑒

 (B.6) 
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𝑓𝑖  is the axial point loads acting at node i. 

B.2. Euler Bernoulli beam finite element 

Figure B-3 below illustrates a two node Euler Bernoulli beam element of length 𝐿𝑒  and 

uniform cross-section A in local coordinates x-y. The DOFs at node i of the beam element 

consist of the vertical deflection 𝑣𝑖  and rotation 𝜃𝑖  with corresponding node forces fi and 

bending moments 𝑚 1 respectively.  

 

Figure B-3 : Euler-Bernoulli beam finite element subjected to external forces. 

The beam is also subjected to a distributed load 𝑓 𝑠(𝑥) along the entire element. It is assumed 

that the axial effects are neglected. The vertical displacement, corresponding nodal forces and 

distributed loads are positive in the y direction while the rotation and corresponding moments 

are positive in the anticlockwise direction. The sign conventions for the shear forces 𝑉  and 

bending moments for the beam elements 𝑚  are also illustrated below. The beam element has 

four DOFs, hence the order of the polynomial selected must have the same number of 

  𝒇𝒓,𝒆
𝒔  =  

𝑓𝑥1
𝑠

𝑓𝑥2
𝑠  

𝑒

= 𝑏𝐿𝑒  𝑓 𝑠(𝜉)  
1 − 𝜉

𝜉
 𝑑𝜉

1

0

 (B.7) 

  𝒇𝒓,𝒆
𝒃  =  

𝑓𝑥1
𝑏

𝑓𝑥2
𝑏  

𝑒

= 𝐴𝐿𝑒  𝑓 𝑏(𝜉)  
1 − 𝜉

𝜉
 𝑑𝜉

1

0

 (B.8) 

1 

x 

v2, f2 

1 2 3 ne-2 ne-1 ne 

θ1, 𝑚 1  θ2, 𝑚 2  

v1, f1 
𝑓 𝑠(𝑥) 

𝐿𝑒  

2 

𝑚  𝑚  

𝑉  𝑉  
x 

y 



 

286 

 

constants that correspond to these DOFs. Therefore, a polynomial of order 3 with four 

unknown constants 𝛼0-𝛼3 is selected to approximate the displacement at any point x within 

the element. Thus, 

and the rotation DOFs at any point within the beam element are given by  

where the vector {𝛼 } contains the unknown constants and  𝐩   the polynomial basis functions. 

The vector  𝑁𝑏(𝑥)  contains the four shape functions ( 𝑁1(𝑥) 𝑁2(𝑥) 𝑁3(𝑥) 𝑁4(𝑥) ) for 

the beam element corresponding to the degrees of freedom within the element: 

The shape functions in equation (B.13) are presented graphically in Figure B-4 below 

 

Figure B-4 : Euler Bernoulli beam shape functions. 

 𝑣 𝑥 = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + 𝛼3𝑥3 =  1 𝑥 𝑥2 𝑥3  

𝛼0

𝛼1

𝛼2

𝛼3

 =  𝐩  𝑇 𝜶   (B.9) 

 𝑣 𝑥 =  𝑵𝑏(𝑥)  

𝑣1 

𝜃1 

𝑣2 

𝜃2 

 =  𝑵𝑏(𝑥)  𝑣𝑒  (B.10) 

 𝜃 𝑥 =
𝜕𝑣 𝑥 

𝜕𝑥
= 0 + 𝛼1 + 2𝛼2𝑥 + 3𝛼3𝑥2 =  0 1 2𝑥 3𝑥2  

𝛼0

𝛼1

𝛼2

𝛼3

  (B.11) 

 𝜃 𝑥 =  𝑵′𝑏(𝑥)  

𝑣1 

𝜃1 

𝑣2 

𝜃2 

 =  𝑵′𝑏(𝑥)  𝑣𝑒   (B.12) 

 

𝑁1 𝑥 = 1 − 3(
𝑥

𝐿𝑒
)2 + 2(

𝑥

𝐿𝑒
)3 

𝑁2 𝑥 = 𝑥 − 2
𝑥2

𝐿𝑒
+

𝑥3

𝐿𝑒
2 

𝑁3 𝑥 = 3(
𝑥

𝐿𝑒
)2 − 2(

𝑥

𝐿𝑒
)3 

𝑁4 𝑥 =
𝑥3

𝐿𝑒
2 −

𝑥2

𝐿𝑒
 

 (B.13) 
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The FEM beam element stiffness [𝒌𝑏,𝑒] and mass [𝒎𝑏,𝑒] matrices are evaluated from the 

bending strain energy and kinetic energy respectively as [30]: 

The total of the loads acting on the beam element is a sum of the nodal point loads  𝒇𝒃,𝒆
𝒑

 , the 

concentrated moments  𝒇𝒃,𝒆
𝒎   and the distributed load  𝒇𝒃,𝒆

𝒔   acting across the element, i.e., 

where 

B.3. Two dimensional planar bar finite element 

A two dimensional planar bar, frame or generalized beam element, as illustrated in Figure 

B-5, is assumed to undergo both axial and transverse deformation. Furthermore, the bar 

element of length Le may be subjected to axial loading, transverse loading and bending 

moments. Let the axial deformation, transverse displacement and rotation of the element at 

node i, in local coordinates, be described by 𝑢𝑖 , 𝑣𝑖  and 𝜃𝑖  respectively. Therefore, for a two 

node element, as described below, the total number of DOFs is 6. The bar element is 

therefore a combination of both the axial rod and Euler Bernoulli beam elements from the 

description given. 

 [𝒌𝑏,𝑒] =
𝐸 𝐼

𝐿𝑒
3

 
 
 
 

12 6𝐿𝑒 −12 6𝐿𝑒

6𝐿𝑒 4𝐿𝑒
2 −6𝐿𝑒 2𝐿𝑒

2

−12 −6𝐿𝑒 12 −6𝐿𝑒

6𝐿𝑒 2𝐿𝑒
2 −6𝐿𝑒 4𝐿𝑒

2  
 
 
 
 (B.14) 

  [𝒎𝑏,𝑒] =
𝜌𝐴𝐿𝑒

420

 
 
 
 
 

156 22𝐿𝑒 54 −13𝐿𝑒

22𝐿𝑒 4𝐿𝑒
2 13𝐿𝑒 −3𝐿𝑒

2

54 13𝐿𝑒 156 −22𝐿𝑒

−13𝐿𝑒 −3𝐿𝑒
2 −22𝐿𝑒 4𝐿𝑒

2  
 
 
 
 

 (B.15) 

  𝒇𝒃,𝒆 =  

𝑓𝑦1

𝑚1

𝑓𝑦2

𝑚2

 

𝑒

=  𝒇𝒃,𝒆
𝒑

 +  𝒇𝒃,𝒆
𝒎  +  𝒇𝒃,𝒆

𝒔   (B.16) 

  𝒇𝒃,𝒆
𝒑

 =  

𝑓1

0
𝑓2

0

 

𝑒

 (B.17) 

  𝒇𝒃,𝒆
𝒎  =  

0
𝑚 1
0

𝑚 2

 

𝑒

 (B.18) 

  𝒇𝒃,𝒆
𝒔  =

 
 
 

 
 𝑓𝑦1

𝑠

𝑚1
𝑠

𝑓𝑦2
𝑠

𝑚2
𝑠
 
 
 

 
 

𝑒

= 𝑏𝐿𝑒  𝑓 𝑠(𝜉)  

1 − 3𝜉
2

+ 2𝜉
3

𝐿𝑒(𝜉 − 2𝜉
2

+ 𝜉
3
)

3𝜉
2

− 2𝜉
3

𝐿𝑒(𝜉
3

− 𝜉
2
)

 𝑑𝜉
1

0

 (B.19) 
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Figure B-5: Plane bar finite element. 

Let the vector containing the planar bar element DOFs be denoted by 

The set of polynomials selected to approximate the axial and transverse deformations are as 

described in equations (B.1) and (B.9) respectively. There are 6 shape functions, which 

correspond to the number of DOFs within each element. They are obtained from equations 

(B.1), (B.10) and (B.12), where the axial and transverse deformations are given as: 

The shape functions are graphically represented in Figure B-6 below. 

 {𝑕𝑒} =

 
 
 

 
 

𝑢1 

𝑣1 

𝜃1 

𝑢2 

𝑣2 

𝜃2  
 
 

 
 

  (B.20) 

  
𝑢 𝑥 

𝑣 𝑥 
 =  

𝑁1(𝑥) 0 0 𝑁4(𝑥) 0 0
0 𝑁2(𝑥) 𝑁3(𝑥) 0 𝑁5(𝑥) 𝑁6(𝑥)

   

  
𝑢 𝑥 

𝑣 𝑥 
 =  𝑵𝑝(𝑥) 

 
 
 

 
 

𝑢1 
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𝜃1 

𝑢2 

𝑣2 

𝜃2  
 
 

 
 

 (B.21) 
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Figure B-6 : Planar bar element shape functions. 

Taking into consideration that the planar bar is a combination of the axial rod and beam finite 

elements, the simplest and most straightforward way to evaluate the stiffness and mass 

element matrices, in local coordinates, is via superimposing the respective matrices for the 

rod and beam elements. In the case of the stiffness matrix, the rod and beam stiffness matrix 

is expanded to include the all the element DOFs. The entries of the additional DOFs are set at 

zero as shown in equations (B.22) and (B.23). 

These two matrices are then superimposed so that the axial and transverse entries correspond 

to the associated DOFs in order to obtain the planar bar stiffness matrix in equation (B.24) 

  [𝒌𝑟,𝑒] =

 
 
 
 
 
 
 
 

𝐸𝐴

𝐿𝑒
0 0 −

𝐸𝐴

𝐿𝑒
0 0

0 0 0 0 0 0
0 0 0 0 0 0

−
𝐸𝐴

𝐿𝑒
0 0

𝐸𝐴

𝐿𝑒
0 0

0 0 0 0 0 0
0 0 0 0 0 0 

 
 
 
 
 
 
 

 (B.22) 

  [𝒌𝑏,𝑒] =

 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0

0
12𝐸 𝐼

𝐿𝑒
3

6𝐸 𝐼

𝐿𝑒
2 0 −

12𝐸 𝐼

𝐿𝑒
3

6𝐸 𝐼

𝐿𝑒
2

0
6𝐸 𝐼

𝐿𝑒
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12𝐸 𝐼

𝐿𝑒
3 −

6𝐸 𝐼

𝐿𝑒
2 0

12𝐸 𝐼

𝐿𝑒
3 −

6𝐸 𝐼

𝐿𝑒
2

0
6𝐸 𝐼

𝐿𝑒
2

2𝐸 𝐼

𝐿𝑒

0 −
6𝐸 𝐼

𝐿𝑒
2

4𝐸 𝐼

𝐿𝑒  
 
 
 
 
 
 
 
 
 
 

 (B.23) 

  𝒌𝑝,𝑒 =  𝒌𝑟,𝑒 + [𝒌𝑏,𝑒]  
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The same applies for the mass matrix 

The planar bar element is assumed to be capable of carrying various axial and transverse 

loads and bending moments. The total load vector is also obtained as a superposition of the 

expanded total axial loads of equation (B.5) and total transverse loads of equation (B.16), i.e., 

B.4. The finite element method for the analysis of functionally 

graded materials  

An approach taken by Alshorbagy et al. [74] analyses the free vibration of a FG beam derived 

from Euler Bernoulli beam theory and virtual work principle using FEM. Via the power law, 

the material properties of the FG beam vary through the thickness and also in the longitudinal 

direction. The shape functions used in this approach are those used to formulate a 

conventional FEM beam element with two nodes and three degrees of freedom (DOFs) at 

each node i.e. axial displacement, transverse displacement and rotation. The shape functions 

  [𝒌𝑝,𝑒] =

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝐴
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2

2𝐸 𝐼

𝐿𝑒

−
𝐸𝐴

𝐿𝑒

0 0
𝐸𝐴

𝐿𝑒

0 0

0 −
12𝐸 𝐼

𝐿𝑒
3 −

6𝐸 𝐼

𝐿𝑒
2 0

12𝐸 𝐼

𝐿𝑒
3 −

6𝐸 𝐼

𝐿𝑒
2

0
6𝐸 𝐼

𝐿𝑒
2

2𝐸 𝐼

𝐿𝑒

0 −
6𝐸 𝐼

𝐿𝑒
2

4𝐸 𝐼

𝐿𝑒  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

(B.24) 

  𝒎𝑝,𝑒 =  𝒎𝑟,𝑒 + [𝒎𝑏,𝑒]  

  [𝒎𝑝,𝑒] =
𝜌𝐴𝐿𝑒

420

 
 
 
 
 
 
 
140 0 0 70 0 0

0 156 22𝐿𝑒 0 54 −13𝐿𝑒

0 22𝐿𝑒 4𝐿𝑒
2 0 13𝐿𝑒 −3𝐿𝑒

2

70 0 0 140 0 0
0 54 13𝐿𝑒 0 156 −22𝐿𝑒

0 −13𝐿𝑒 −3𝐿𝑒
2 0 −22𝐿𝑒 4𝐿𝑒

2  
 
 
 
 
 
 

 (B.25) 

 

 𝒇𝑝,𝑒 =  𝒇𝑟,𝑒 +  𝒇𝑏,𝑒  

 𝒇𝑝,𝑒 =

 
 
 

 
 
𝑓𝑥1

0
0

𝑓𝑥2

0
0  

 
 

 
 

𝑒

+

 
 
 

 
 

0
𝑓𝑦1

𝑚1

0
𝑓𝑦2

𝑚2 
 
 

 
 

𝑒

=

 
 
 

 
 

𝑓𝑥1

𝑓𝑦1

𝑚1

𝑓𝑥2

𝑓𝑦2

𝑚2 
 
 

 
 

𝑒

 

 

 

(B.26) 
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are then employed to formulate the stiffness and mass matrices of the FG beam element. The 

variation of the FGM material properties is taken into account during the formulation of these 

matrices. Outlined below is the approach taken to formulate the FG Euler Bernoulli beam 

finite element. 

 

Figure B-7: Euler Bernoulli FG beam element. 

The following formulation is carried out based on the Euler Bernoulli beam theory. It is 

assumed that at any point the axial and transverse displacements, denoted by u and v 

respectively, are given by: 

where u0 is the axial displacement and w0 is the transverse displacement at any point on the 

mid-plane. Furthermore, x, z and t represent the axial direction, transverse direction and time 

respectively. Equation (B.27) can be represented in matrix form as 

 𝑢 𝑥, 𝑧, 𝑡 = 𝑢0 𝑥, 𝑡 − 𝑦
𝜕𝑣0 𝑥, 𝑡 

𝜕𝑥
  

 𝑣 𝑥, 𝑧, 𝑡 = 𝑣0 𝑥, 𝑡  (B.27) 

 
 
𝑢
𝑣
 =   

1 0 −𝑦
0 1 0

  

𝑢0

𝑣0

𝜕𝑣0

𝜕𝑥

  

 

 

α 

Ui,FXi 

uj, pj 

ui, pi 

vj, fj 

vi, fi 

Θi, Mi 

Θj, Mj 

Vi,FYi 

Uj,FXj 

Vj,FYj 

Le 

 

α 

Y 

X 

x 

y 
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where d is the displacement vector. Given that the beam will undergo small deformations, the 

normal strain εxx can be expressed in terms of the displacement as: 

The FG beam is also assumed to obey Hooke’s law, thus the normal stress is given as: 

if the gradation variation of the Young’s modulus is in the transverse direction. The natural 

coordinate of the beam, 𝜉, is defined as:  

The axial and transverse displacements can be represented as polynomial functions, i.e., 

where αi and βi are coefficients. The slope of the beam is given as: 

Equations (B.32), (B.33) and (B.34) can be rewritten as: 

  𝑑 =  
𝑢
𝑣
  (B.28) 

 
𝜀𝑥𝑥 =

𝜕𝑢

𝜕𝑥
=

𝜕(𝑢0 𝑥, 𝑡 − 𝑦
𝜕𝑣0 𝑥,𝑡 

𝜕𝑥
)

𝜕𝑥
 

 

 𝜀𝑥𝑥 =
𝜕𝑢0 𝑥, 𝑡 

𝜕𝑥
− 𝑦

𝜕2𝑣0 𝑥, 𝑡 

𝜕𝑥2
  

 𝜀𝑥𝑥 =  1 −𝑦  

𝜕𝑢0

𝜕𝑥
𝜕2𝑣0

𝜕𝑥2

   (B.29) 

 𝜍𝑥𝑥 = 𝐸 𝑦 𝜀𝑥𝑥 = 𝐸 𝑦   1 −𝑦  

𝜕𝑢0

𝜕𝑥
𝜕2𝑣0

𝜕𝑥2

  (B.30) 

 𝜉 =
𝑥

𝐿𝑒
                          𝜉 ∈ [0,1] (B.31) 

 𝑢0 𝜉 = 𝛼0 + 𝛼1𝜉 (B.32) 

 𝑣0 𝜉 = 𝛽0 + 𝛽1𝜉 + 𝛽2𝜉
2 + 𝛽3𝜉

3 (B.33) 

 𝜃 𝜉 =
𝜕𝑣0 𝜉 

𝜕𝑥
=

𝜕𝑣0 𝜉 

𝜕𝜉

𝜕𝜉

𝜕𝑥
=

1

𝐿𝑒

𝜕𝑣0 𝜉 

𝜕𝜉
  

 𝜃 𝜉 =
1

𝐿𝑒

𝜕(𝛽0 + 𝛽1𝜉 + 𝛽2𝜉
2 + 𝛽3𝜉

3)

𝜕𝑥
=

1

𝐿𝑒
𝛽1 + 2𝛽2𝜉 + 3𝛽3𝜉

2 (B.34) 

 𝑢0 𝜉 =  1 𝜉  
𝛼0

𝛼1
  (B.35) 

 𝑣0 𝜉 =  1 𝜉 𝜉2 𝜉3  

𝛽0

𝛽1

𝛽2

𝛽3

  (B.36) 

 𝜃 𝜉 =
1

𝐿𝑒

 0 1 2𝜉 3𝜉2  

𝛽0

𝛽1

𝛽2

𝛽3

  (B.37) 
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The next step is to evaluate the DOFs at the nodes of the FG beam element. Therefore, when 

x = 0,  𝜉 = 0 

When x = Le, 𝜉 = 1. Thus, 

Equations (B.38) and (B.39) can be combined and expressed as: 

The coefficients in (B.40) and (B.41) can be made the subject of the formulations and 

substituted into equations (B.32), (B.33) and (B.34). 

Therefore, 

 

𝑢0 0 = 𝑢𝑖 =  1 0  
𝛼0

𝛼1
  

𝑣0 0 = 𝑣𝑖 =  1 0 0 0  

𝛽0

𝛽1

𝛽2

𝛽3

  

𝜃 0 = 𝜃𝑖 =
1

𝐿𝑒

 0 1 0 0  

𝛽0

𝛽1

𝛽2

𝛽3

  

(B.38) 

 

𝑢0 1 = 𝑢𝑗 =  1 1  
𝛼0

𝛼1
  

𝑣0 1 = 𝑣𝑗 =  1 1 1 1  

𝛽0

𝛽1

𝛽2

𝛽3

  

𝜃 1 = 𝜃𝑗 =
1

𝐿𝑒

 0 1 2 3  

𝛽0

𝛽1

𝛽2

𝛽3

  

(B.39) 

  
𝑢𝑖

𝑢𝑗
 =  

1 0
1 1

  
𝛼0

𝛼1
  (B.40) 

  

𝑣𝑖

𝜃𝑖

𝑣𝑗

𝜃𝑗

 =

 
 
 
 
 
 
1 0 0 0

0
1

𝐿𝑒
0 0

1 1 1 1

0
1

𝐿𝑒

2

𝐿𝑒

3

𝐿𝑒 
 
 
 
 
 

 

𝛽0

𝛽1

𝛽2

𝛽3

  (B.41) 

  
𝛼0

𝛼1
 =  

1 0
1 1

 
−1

 
𝑢𝑖

𝑢𝑗
  (B.42) 

  

𝛽0

𝛽1

𝛽2

𝛽3

 =

 
 
 
 
 
 
1 0 0 0

0
1

𝐿𝑒
0 0

1 1 1 1

0
1

𝐿𝑒

2

𝐿𝑒

3

𝐿𝑒 
 
 
 
 
 
−1

 

𝑣𝑖

𝜃𝑖

𝑣𝑗

𝜃𝑗

  (B.43) 
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The strain energy within the given beam element is 

 Substituting equations (B.29) and (B.30) into (B.46) 

Expressing equation (B.47) in terms of the local coordinates of the beam element, 

From equations (B.44) and (B.45), the derivative and second derivatives can be evaluated as: 

 𝑢0 𝜉 =  1 𝜉  
1 0

−1 1
  

𝑢𝑖

𝑢𝑗
 =  1 − 𝜉 𝜉  

𝑢𝑖

𝑢𝑗
  (B.44) 

 𝑣0 𝜉 =  1 𝜉 𝜉2 𝜉3  

1 0 0 0
0 𝐿𝑒 0 0

−3 −2𝐿𝑒 3 −𝐿𝑒

2 𝐿𝑒 −2 𝐿𝑒

  

𝑣𝑖

𝜃𝑖

𝑣𝑗

𝜃𝑗

   

 𝑣0 𝜉 =  1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3  

𝑣𝑖

𝜃𝑖

𝑣𝑗

𝜃𝑗

  (B.45) 

 𝛱𝑝 =
1

2
 𝜍𝑥𝑥

𝑇𝜀𝑥𝑥  𝑑𝑉
𝑣𝑜𝑙

=
1

2
 𝜍𝑥𝑥

𝑇𝜀𝑥𝑥  𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑣𝑜𝑙

 (B.46) 

 𝛱𝑝 =
1

2
 𝐸 𝑦  

𝜕𝑢 𝑥, 𝑡 

𝜕𝑥
− 𝑦

𝜕2𝑣 𝑥, 𝑡 

𝜕𝑥2
 

𝑇

 
𝜕𝑢 𝑥, 𝑡 

𝜕𝑥
− 𝑦

𝜕2𝑣 𝑥, 𝑡 

𝜕𝑥2
  𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑣𝑜𝑙

 (B.47) 

 

𝛱𝑝 =
1

2
 𝐸 𝑦  

𝜕𝜉

𝜕𝑥

𝜕𝑢 𝜉, 𝑡 

𝜕𝜉
− 𝑦

𝜕2𝜉

𝜕𝑥2

𝜕2𝑣 𝜉, 𝑡 

𝜕𝜉2
 

𝑇

 
𝜕𝜉

𝜕𝑥

𝜕𝑢 𝜉, 𝑡 

𝜕𝜉𝑣𝑜𝑙

− 𝑦
𝜕2𝜉

𝜕𝑥2

𝜕2𝑣 𝜉, 𝑡 

𝜕𝜉2
  𝑑𝑥 𝑑𝑦 𝑑𝑧 

 

 

𝛱𝑝 =
𝐿𝑒

2
  𝐸 𝑦  

1

𝐿𝑒

𝜕𝑢 𝜉 

𝜕𝜉
− 𝑦

1

𝐿𝑒
2

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
1

𝐿𝑒

𝜕𝑢 𝜉 

𝜕𝜉

1

0𝑑𝐴

− 𝑦
1

𝐿𝑒
2

𝜕2𝑣 𝜉 

𝜕𝜉2
  𝑑𝜉 𝑑𝑦 𝑑𝑧 

 

 

𝛱𝑝 =
𝐿𝑒

2
  𝐸 𝑦  

1

𝐿𝑒
2  

𝜕𝑢 𝜉 

𝜕𝜉
 

𝑇

 
𝜕𝑢 𝜉 

𝜕𝜉
 − 𝑦

1

𝐿𝑒
3  

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
𝜕𝑢 𝜉 

𝜕𝜉
 

1

0𝑑𝐴

− 𝑦
1

𝐿𝑒
3  

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
𝜕𝑢 𝜉 

𝜕𝜉
 

+
1

𝐿𝑒
4 𝑦2  

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
𝜕2𝑣 𝜉 

𝜕𝜉2
   𝑑𝜉 𝑑𝑦 𝑑𝑧 

(B.48) 

 
𝜕𝑢 𝜉 

𝜕𝜉
=  −1 1  

𝑢𝑖

𝑢𝑗
  (B.49) 
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Substituting equations (B.49) and (B.50) into (B.48) 

However, from equation (8.5) 

Substituting equation (B.52) into (B.51) 

where b is the width of the beam. 

 
𝜕𝑢 𝜉 

𝜕𝜉
=  −1 0 0 1 0 0 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

  

 
𝜕2𝑣 𝜉 

𝜕𝜉2
=  −6 + 12𝜉 −4𝐿𝑒 + 6𝐿𝑒𝜉 6 − 12𝜉 −2𝐿𝑒 + 6𝐿𝑒𝜉  

𝑣𝑖

𝜃𝑖

𝑣𝑗

𝜃𝑗

   

 
𝜕2𝑣 𝜉 

𝜕𝜉2
=  0 −6 + 12𝜉 −4𝐿𝑒 + 6𝐿𝑒𝜉 0 6 − 12𝜉 −2𝐿𝑒 + 6𝐿𝑒𝜉 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 (B.50) 

 

1

𝐿𝑒
2    𝐸 𝑦  

𝜕𝑢 𝜉 

𝜕𝜉
 

𝑇

 
𝜕𝑢 𝜉 

𝜕𝜉
 𝑑𝜉 𝑑𝑦 𝑑𝑧

1

0

𝑕
2

−
𝑕
2𝑧

=
1

𝐿𝑒
2    𝐸 𝑦 

 

 
 
 

 −1 0 0 1 0 0 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 

𝑇

 

 
 
 

 −1 0 0 1 0 0 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 

𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0

𝑕
2

−
𝑕
2𝑧

 

 

 =
1

𝐿𝑒
2    𝐸 𝑦 

 
 
 
 
 
 

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0 

 
 
 
 
 

 

 
 
 
 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 
 

𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0

𝑕
2

−
𝑕
2

𝑧

 (B.51) 

 𝐸 𝑦 =  𝐸𝑐 − 𝐸𝑚   
𝑦

𝑕
+

1

2
 

𝑛

+ 𝐸𝑚  (B.52) 

 

1

𝐿𝑒
2    𝐸 𝑦 

 
 
 
 
 
 

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0 

 
 
 
 
 

 

 
 
 
 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 
 

𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0

𝑕
2

−
𝑕
2

𝑏

0

=
𝑏

𝐿𝑒
2    𝐸𝑐 − 𝐸𝑚   

𝑦

𝑕
+

1

2
 

𝑛

+ 𝐸𝑚𝑑𝑦

𝑕
2

−
𝑕
2

 

 
 
 
 
 
 

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0 

 
 
 
 
 

 

 
 
 
 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 
 

 

(B.53) 

 

   𝐸 𝑦 
𝑦

𝐿𝑒
3  

𝜕𝑢 𝜉 

𝜕𝜉
 

𝑇

 
𝜕2𝑣 𝜉 

𝜕𝜉2
 𝑑𝜉 𝑑𝑦 𝑑𝑧

1

0

𝑕
2

−
𝑕
2𝑧

=    𝐸 𝑦 
𝑦

𝐿𝑒
3

 

 
 
 

 −1 0 0 1 0 0 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 

𝑇

 

 
 
 

 0 −6 + 12𝜉 −4𝐿𝑒 + 6𝐿𝑒𝜉 0 6 − 12𝜉 −2𝐿𝑒 + 6𝐿𝑒𝜉 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 

𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0

𝑕
2

−
𝑕
2𝑧
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Furthermore, 

Finally, 

The stiffness matrix of the FG beam can be obtained from equations (B.53), (B.54), (B.55) 

and (B.56) as follows 

 =    𝐸 𝑦 
𝑦

𝐿𝑒
3

 
 
 
 
 
 
0 6 − 12𝜉 4𝐿𝑒 − 6𝐿𝑒𝜉 0 −6 + 12𝜉 2𝐿𝑒 − 6𝐿𝑒𝜉
0 0 0 0 0 0
0 0 0 0 0 0
0 −6 + 12𝜉 −4𝐿𝑒 + 6𝐿𝑒𝜉 0 6 − 12𝜉 −2𝐿𝑒 + 6𝐿𝑒𝜉
0 0 0 0 0 0
0 0 0 0 0 0  

 
 
 
 
 

 

 
 
 
 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 
 

𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0

𝑕
2

−
𝑕
2

𝑏

0

  

 =
𝑏

𝐿𝑒
3    𝑦 𝐸𝑐 − 𝐸𝑚   

𝑦

𝑕
+

1

2
 

𝑛

+ 𝐸𝑚 𝑑𝑦

𝑕
2

−
𝑕
2

 

 
 
 
 
 
 
0 0 𝐿𝑒 0 0 −𝐿𝑒

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −𝐿𝑒 0 0 𝐿𝑒

0 0 0 0 0 0
0 0 0 0 0 0  

 
 
 
 
 

 

 
 
 
 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 
 

 (B.54) 

 

   𝐸 𝑦 
𝑦

𝐿𝑒
3  

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
𝜕𝑢 𝜉 

𝜕𝜉
 𝑑𝜉 𝑑𝑦 𝑑𝑧

1

0

𝑕
2

−
𝑕
2𝑧

=    𝐸 𝑦 
𝑦

𝐿𝑒
3

 

 
 
 

 0 −6 + 12𝜉 −4𝐿𝑒 + 6𝐿𝑒𝜉 0 6 − 12𝜉 −2𝐿𝑒 + 6𝐿𝑒𝜉 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 

𝑇

 

 
 
 

 −1 0 0 1 0 0 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 

𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0

𝑕
2

−
𝑕
2

𝑧

 

 

 =    𝐸 𝑦 
𝑦

𝐿𝑒
3

 
 
 
 
 
 

0 0 0 0 0 0
6 − 12𝜉 0 0 −6 + 12𝜉 0 0

4𝐿𝑒 − 6𝐿𝑒𝜉 0 0 −4𝐿𝑒 + 6𝐿𝑒𝜉 0 0
0 0 0 0 0 0

−6 + 12𝜉 0 0 6 − 12𝜉 0 0
2𝐿𝑒 − 6𝐿𝑒𝜉 0 0 −2𝐿𝑒 + 6𝐿𝑒𝜉 0 0 

 
 
 
 
 

 

 
 
 
 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 
 

𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0

𝑕
2

−
𝑕
2

𝑏

0

  

 =
𝑏

𝐿𝑒
3    𝑦 𝐸𝑐 − 𝐸𝑚   

𝑦

𝑕
+

1

2
 

𝑛

+ 𝐸𝑚 𝑑𝑦

𝑕
2

−
𝑕
2

 

 
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0
𝐿𝑒 0 0 −𝐿𝑒 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−𝐿𝑒 0 00 𝐿𝑒 0 0 
 
 
 
 
 

 

 
 
 
 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 
 

 (B.55) 

 

   𝐸 𝑦 
1

𝐿𝑒
4 𝑦2  

𝜕2𝑣 𝜉 

𝜕𝜉2
 

𝑇

 
𝜕2𝑣 𝜉 

𝜕𝜉2
 𝑑𝜉 𝑑𝑦 𝑑𝑧

1

0

𝑕
2

−
𝑕
2

𝑧

=    𝐸 𝑦 
𝑦2

𝐿𝑒
4

 

 
 
 

 0 −6 + 12𝜉 −4𝐿𝑒 + 6𝐿𝑒𝜉 0 6 − 12𝜉 −2𝐿𝑒 + 6𝐿𝑒𝜉 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 

𝑇

 

 
 
 

 0 −6 + 12𝜉 −4𝐿𝑒 + 6𝐿𝑒𝜉 0 6 − 12𝜉 −2𝐿𝑒 + 6𝐿𝑒𝜉 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 

𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0

𝑕
2

−
𝑕
2

𝑧

 

 

 =    𝐸 𝑦 
𝑦2

𝐿𝑒
4

 
 
 
 
 
 
 
0 0 0 0 0 0
0 36 − 144𝜉 + 144𝜉2 24𝐿𝑒 − 84𝐿𝑒𝜉 + 72𝐿𝑒𝜉

2 0 −36 + 144𝜉 − 144𝜉2 12𝐿𝑒 − 60𝐿𝑒𝜉 + 72𝐿𝑒𝜉
2

0 24𝐿𝑒 − 84𝐿𝑒𝜉 + 72𝐿𝑒𝜉
2 16𝐿𝑒

2 − 48𝐿𝑒
2𝜉 + 36𝐿𝑒

2𝜉2 0 −24𝐿𝑒 + 84𝐿𝑒𝜉 − 72𝐿𝑒𝜉
2 8𝐿𝑒

2 − 36𝐿𝑒
2𝜉 + 36𝐿𝑒

2𝜉2

0 0 0 0 0 0
0 −36 + 144𝜉 − 144𝜉2 −24𝐿𝑒 + 84𝐿𝑒𝜉 − 72𝐿𝑒𝜉

2 0 36 − 144𝜉 + 144𝜉2 −12𝐿𝑒 + 60𝐿𝑒𝜉 − 72𝐿𝑒𝜉
2

0 12𝐿𝑒 − 60𝐿𝑒𝜉 + 72𝐿𝑒𝜉
2 8𝐿𝑒

2 − 36𝐿𝑒
2𝜉 + 36𝐿𝑒

2𝜉2 0 −12𝐿𝑒 + 60𝐿𝑒𝜉 − 72𝐿𝑒𝜉
2 4𝐿𝑒

2 − 24𝜉 + 36𝐿𝑒
2𝜉2  

 
 
 
 
 
 

 

 
 
 
 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 
 

𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0

𝑕
2

−
𝑕
2

𝑏

0

  

 =
𝑏

𝐿𝑒
4    𝑦2 𝐸𝑐 − 𝐸𝑚   

𝑦

𝑕
+

1

2
 

𝑛

+ 𝐸𝑚 𝑑𝑦

𝑕
2

−
𝑕
2

 

 
 
 
 
 
 
 
0 0 0 0 0 0
0 12 6𝐿𝑒 0 −12 6𝐿𝑒

0 6𝐿𝑒 4𝐿𝑒
2 0 −6𝐿𝑒 2𝐿𝑒

2

0 0 0 0 0 0
0 −12 −6𝐿𝑒 0 12 −6𝐿𝑒

0 6𝐿𝑒 2𝐿𝑒
2 0 −6𝐿𝑒 4𝐿𝑒

2  
 
 
 
 
 
 

 

 
 
 
 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 

 
 
 
 

 (B.56) 

  𝑘𝑒
𝑎  =

𝑏

𝐿𝑒
    𝐸𝑐 − 𝐸𝑚   

𝑦

𝑕
+

1

2
 
𝑛

+ 𝐸𝑚 𝑑𝑦

𝑕
2

−
𝑕
2

 

 
 
 
 
 
 

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0 

 
 
 
 
 

 (B.57) 
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Therefore, the stiffness FG beam element matrix is 

The kinetic energy Λ, is given by   

mass and vel are the mass and velocity of the beam respectively. However, the mass can be 

expressed as 

ρ(y) represents the varying density of the FG beam element obtained from equation (8.5) 

The velocity components of the beam in axial and transverse directions can be expressed as: 

The kinetic energy of the beam from equation (B.63) is 

  𝑘𝑒
𝑏 =

𝑏

𝐿𝑒
2    𝑦 𝐸𝑐 − 𝐸𝑚   

𝑦

𝑕
+

1

2
 

𝑛

+ 𝐸𝑚 𝑑𝑦

𝑕
2

−
𝑕
2

 

 
 
 
 
 
 
0 0 𝐿𝑒 0 0 −𝐿𝑒

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −𝐿𝑒 0 0 𝐿𝑒

0 0 0 0 0 0
0 0 0 0 0 0  

 
 
 
 
 

 (B.58) 

  𝑘𝑒
𝑐 =

𝑏

𝐿𝑒
2    𝑦 𝐸𝑐 − 𝐸𝑚   

𝑦

𝑕
+

1

2
 

𝑛

+ 𝐸𝑚 𝑑𝑦

𝑕
2

−
𝑕
2

 

 
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0
𝐿𝑒 0 0 −𝐿𝑒 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−𝐿𝑒 0 0 𝐿𝑒 0 0 
 
 
 
 
 

 (B.59) 

  𝑘𝑒
𝑑  =

𝑏

𝐿𝑒
3    𝑦2 𝐸𝑐 − 𝐸𝑚   

𝑦

𝑕
+

1

2
 

𝑛

+ 𝐸𝑚 𝑑𝑦

𝑕
2

−
𝑕
2

 

 
 
 
 
 
 
 
0 0 0 0 0 0
0 12 6𝐿𝑒 0 −12 6𝐿𝑒

0 6𝐿𝑒 4𝐿𝑒
2 0 −6𝐿𝑒 2𝐿𝑒

2

0 0 0 0 0 0
0 −12 −6𝐿𝑒 0 12 −6𝐿𝑒

0 6𝐿𝑒 2𝐿𝑒
2 0 −6𝐿𝑒 4𝐿𝑒

2  
 
 
 
 
 
 

 (B.60) 

  𝑘𝑒 =  𝑘𝑒
𝑎  −  𝑘𝑒

𝑏 −  𝑘𝑒
𝑐 +  𝑘𝑒

𝑑   (B.61) 

 𝛬 =
1

2
𝑚𝑎𝑠𝑠 𝑣𝑒𝑙2 (B.62) 

 𝑚𝑎𝑠𝑠 = 𝜌  𝑑𝑉
𝑣𝑜𝑙

=  𝜌(𝑦) 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑣𝑜𝑙

 (B.63) 

 𝜌 𝑦 =  𝜌𝑐 − 𝜌𝑚   
𝑦

𝑕
+

1

2
 

𝑛

+ 𝜌𝑚  (B.64) 

 

 
𝜕 𝑢0(𝑥, 𝑡)

𝜕𝑡
 =  𝑢 0 𝑥, 𝑡   

 
𝜕 𝑣0(𝑥, 𝑡)

𝜕𝑡
 = {𝑣 0(𝑥, 𝑡)} 

 
𝜕 𝑢(𝑥, 𝑡)

𝜕𝑡
 =  𝑢 (𝑥, 𝑡) = 𝑢 0 𝑥, 𝑡 − 𝑦

𝜕𝑣 0 𝑥, 𝑡 

𝜕𝑥
 

(B.65) 

 𝛬 =
1

2
 𝜌(𝑦)  𝑢 (𝑥, 𝑡) 𝑇 𝑢 (𝑥, 𝑡) +  𝑣 0(𝑥, 𝑡) 𝑇 𝑣 0(𝑥, 𝑡)   𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑣𝑜𝑙

  

 

𝛬 =
1

2
 𝜌(𝑦)   𝑢 0 𝑥, 𝑡 − 𝑦

𝜕𝑣 0 𝑥, 𝑡 

𝜕𝑥
  𝑢 0 𝑥, 𝑡 − 𝑦

𝜕𝑣 0 𝑥, 𝑡 

𝜕𝑥
 

𝑣𝑜𝑙

+  𝑣 0(𝑥, 𝑡)𝑣 0(𝑥, 𝑡)   𝑑𝑥 𝑑𝑦 𝑑𝑧 
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From equations (B.44) and (B.45) 

Solving the individual parts of equation (B.66)  

Substituting equation (B.67) into (B.69) 

The second part 

 

𝛬 =
𝐿𝑒

2
  𝜌(𝑦)   𝑢 0 𝜉, 𝑡 𝑢 0 𝜉, 𝑡  −

𝑦

𝐿𝑒

 𝑢 0 𝜉, 𝑡 
𝜕𝑣 0 𝜉, 𝑡 

𝜕𝑥
 

1

0𝐴

−
𝑦

𝐿𝑒

 
𝜕𝑣 0 𝜉, 𝑡 

𝜕𝜉
𝑢 0 𝜉, 𝑡  +

𝑦2

𝐿𝑒
2  

𝜕𝑣 0 𝜉, 𝑡 

𝜕𝑥

𝜕𝑣 0 𝜉, 𝑡 

𝜕𝑥
 

+  𝑣 0(𝜉, 𝑡)𝑣 0(𝜉, 𝑡)   𝑑𝜉 𝑑𝑦 𝑑𝑧 

(B.66) 

 𝑢 0 𝜉 =  1 − 𝜉 0 0 𝜉 0 0 

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 (B.67) 

 𝑣 0 𝜉 =  0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 (B.68) 

   𝐿𝑒𝜌(𝑦) 𝑢 0 𝜉, 𝑡 𝑢 0 𝜉, 𝑡   𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0𝐴

= 𝑏 𝐿𝑒   𝜌(𝑦) 𝑢 0 𝜉, 𝑡 𝑢 0 𝜉, 𝑡   𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2

 (B.69) 

 

  𝐿𝑒𝜌(𝑦) 𝑢 0 𝜉, 𝑡 𝑢 0 𝜉, 𝑡   𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0𝐴

= 𝑏 𝐿𝑒   𝜌(𝑦)

 

 
 
 
 

 1 − 𝜉 0 0 𝜉 0 0 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 

 
 
 
 

𝑇

 

 
 
 
 

 1 − 𝜉 0 0 𝜉 0 0 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 

 
 
 
 

 𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2

 

 

 = 𝑏 𝐿𝑒   𝜌(𝑦)

 
 
 
 
 
 
1 − 2𝜉 + 𝜉2 0 0 𝜉 − 𝜉2 0 0

0 0 0 0 0 0
0 0 0 0 0 0

𝜉 − 𝜉2 0 0 𝜉2 0 0
0 0 0 0 0 0
0 0 0 0 0 0 

 
 
 
 
 

𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

𝑇

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

  

 = 𝑏 𝐿𝑒  𝜌(𝑦) 𝑑𝑦

𝑕
2

−
𝑕
2

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

𝑇

 
 
 
 
 
 
 
 
1

3
0 0

1

6
0 0

0 0 0 0 0 0
0 0 0 0 0 0
1

6
0 0

1

3
0 0

0 0 0 0 0 0
0 0 0 0 0 0 

 
 
 
 
 
 
 

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 (B.70) 

 

  𝐿𝑒

𝑦

𝐿𝑒
 𝑢 0 𝜉, 𝑡 

𝜕𝑣 0 𝜉, 𝑡 

𝜕𝑥
  𝑑𝜉 𝑑𝑦 𝑑𝑧

1

0𝐴

= 𝑏 𝐿𝑒   𝜌(𝑦)

 

 
 
 
 

 0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 

 
 
 
 

𝑇

 

 

 
 
 
 

 1 − 𝜉 0 0 𝜉 0 0 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 

 
 
 
 

𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2
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The third part 

The forth part 

The fifth part 

 = 𝑏 𝐿𝑒   𝜌(𝑦)

 
 
 
 
 
 

⁠

0 −6𝜉 + 12𝜉2 − 6𝜉3 𝐿𝑒 − 5𝜉𝐿𝑒 + 7𝜉2𝐿𝑒 − 3𝜉3𝐿𝑒 0 6𝜉 − 12𝜉2 + 6𝜉3 −2𝜉𝐿𝑒 + 5𝜉2𝐿𝑒 − 3𝜉3𝐿𝑒

0 0 0 0 0 0
0 0 0 0 0 0
0 −6𝜉2 + 6𝜉3 𝜉𝐿𝑒 − 4𝜉2𝐿𝑒 + 3𝜉3𝐿𝑒 0 6𝜉2 − 6𝜉3 −2𝜉2𝐿𝑒 + 3𝜉3𝐿𝑒

0 0 0 0 0 0
0 0 0 0 0 0  

 
 
 
 
 

𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

𝑇

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

  

 = 𝑏 𝐿𝑒  𝜌(𝑦) 𝑑𝑦

𝑕
2

−
𝑕
2

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

𝑇

 
 
 
 
 
 
 
 0 −

1

2

𝐿𝑒

12
0

1

2
−

𝐿𝑒

12
0 0 0 0 0 0
0 0 0 0 0 0

0 −
1

2
−

𝐿𝑒

12
0

1

2

𝐿𝑒

12
0 0 0 0 0 0
0 0 0 0 0 0  

 
 
 
 
 
 
 

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 (B.71) 

 

  𝐿𝑒

𝑦

𝐿𝑒
 
𝜕𝑣 0 𝜉, 𝑡 

𝜕𝑥
𝑢 0 𝜉, 𝑡   𝑑𝜉 𝑑𝑦 𝑑𝑧

1

0𝐴

= 𝑏 𝐿𝑒   𝜌(𝑦)

 

 
 
 
 

 0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 

 
 
 
 

𝑇

 

 

 
 
 
 

 1 − 𝜉 0 0 𝜉 0 0 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 

 
 
 
 

𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2

 

 

 = 𝑏 𝐿𝑒   𝜌(𝑦)

 
 
 
 
 
 

0 0 0 0 0 0
−6𝜉 + 12𝜉2 − 6𝜉3 0 0 −6𝜉2 + 6𝜉3 0 0

𝐿𝑒 − 5𝜉𝐿𝑒 + 7𝜉2𝐿𝑒 − 3𝜉3𝐿𝑒 0 0 𝜉𝐿𝑒 − 4𝜉2𝐿𝑒 + 3𝜉3𝐿𝑒 0 0
0 0 0 0 0 0

6𝜉 − 12𝜉2 + 6𝜉3 0 0 6𝜉2 − 6𝜉3 0 0

−2𝜉𝐿𝑒 + 5𝜉2𝐿𝑒 − 3𝜉3𝐿𝑒 0 0 −2𝜉2𝐿𝑒 + 3𝜉3𝐿𝑒 0 0 
 
 
 
 
 

𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

𝑇

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

  

 = 𝑏 𝐿𝑒  𝜌(𝑦) 𝑑𝑦

𝑕
2

−
𝑕
2

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

𝑇

 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0

−
1

2
0 0 −

1

2
0 0

𝐿𝑒

12
0 0 −

𝐿𝑒

12
0 0

0 0 0 0 0 0
1

2
0 0

1

2
0 0

−
𝐿𝑒

12
0 0

𝐿𝑒

12
0 0 

 
 
 
 
 
 
 
 
 

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 (B.72) 

 

  𝐿𝑒

𝑦

𝐿𝑒

 
𝜕𝑣 0 𝜉, 𝑡 

𝜕𝑥

𝜕𝑣 0 𝜉, 𝑡 

𝜕𝑥
  𝑑𝜉 𝑑𝑦 𝑑𝑧

1

0𝐴

= 𝑏 𝐿𝑒   𝜌(𝑦)

 

 
 
 
 

 0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 

𝑖

𝑢 𝑖
𝑣 𝑗

𝜃 
𝑗  
  
 

  
 

 

 
 
 
 

𝑇

 

 
 
 
 

 0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 

𝑖

𝑢 𝑖
𝑣 𝑗

𝜃 
𝑗  
  
 

  
 

 

 
 
 
 

 𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2

 

 

 = 𝑏 𝐿𝑒   𝜌(𝑦)

 
 
 
 
 
 
0 0 0 0 0 0
0 36𝜉2 − 72𝜉3 + 36𝜉4 −6𝜉𝐿𝑒 + 30𝜉2𝐿𝑒 − 42𝜉3𝐿𝑒 + 18𝜉4𝐿𝑒 0 −36𝜉2 + 72𝜉3 − 36𝜉4 12𝜉2𝐿𝑒 − 30𝜉3𝐿𝑒 + 18𝜉4𝐿𝑒

0 −6𝜉𝐿𝑒 + 30𝜉2𝐿𝑒 − 42𝜉3𝐿𝑒 + 18𝜉4𝐿𝑒 𝐿𝑒
2 − 8𝜉𝐿𝑒

2 + 22𝜉2𝐿𝑒
2 − 24𝜉3𝐿𝑒

2 + 9𝜉4𝐿𝑒
2 0 6𝜉𝐿𝑒 − 30𝜉2𝐿𝑒 + 42𝜉3𝐿𝑒 − 18𝜉4𝐿𝑒 −2𝜉𝐿𝑒

2 + 11𝜉2𝐿𝑒
2 − 18𝜉3𝐿𝑒

2 + 9𝜉4𝐿𝑒
2

0 0 0 0 0 0
0 −36𝜉2 + 72𝜉3 − 36𝜉4 6𝜉𝐿𝑒 − 30𝜉2𝐿𝑒 + 42𝜉3𝐿𝑒 − 18𝜉4𝐿𝑒 0 36𝜉2 − 72𝜉3 + 36𝜉4 −12𝜉2𝐿𝑒 + 30𝜉3𝐿𝑒 − 18𝜉4𝐿𝑒

0 12𝜉2𝐿𝑒 − 30𝜉3𝐿𝑒 + 18𝜉4𝐿𝑒 −2𝜉𝐿𝑒
2 + 11𝜉2𝐿𝑒

2 − 18𝜉3𝐿𝑒
2 + 9𝜉4𝐿𝑒

2 0 −12𝜉2𝐿𝑒 + 30𝜉3𝐿𝑒 − 18𝜉4𝐿𝑒 4𝜉2𝐿𝑒
2 − 12𝜉3𝐿𝑒

2 + 9𝜉4𝐿𝑒
2  

 
 
 
 
 

𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 

𝑖

𝑢 𝑖
𝑣 𝑗

𝜃 
𝑗  
  
 

  
 

𝑇

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 

𝑖

𝑢 𝑖
𝑣 𝑗

𝜃 
𝑗  
  
 

  
 

  

 = 𝑏 𝐿𝑒  𝜌(𝑦) 𝑑𝑦

𝑕
2

−
𝑕
2

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

𝑇

 
 
 
 
 
 
 
 
 
 

⁠

0 0 0 0 0 0

0
6

5

𝐿𝑒

10
0 −

6

5

𝐿𝑒

10

0
𝐿𝑒

10

2𝐿𝑒
2

15
0 −

𝐿𝑒

10
−

𝐿𝑒
2

30
0 0 0 0 0 0

0 −
6

5
−

𝐿𝑒

10
0

6

5
−

𝐿𝑒

10

0
𝐿𝑒

10
−

𝐿𝑒
2

30
0 −

𝐿𝑒

10

2𝐿𝑒
2

15  
 
 
 
 
 
 
 
 
 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 (B.73) 

 

  𝐿𝑒

𝑦

𝐿𝑒

 𝑣 0(𝜉, 𝑡)𝑣 0(𝜉, 𝑡)  𝑑𝜉 𝑑𝑦 𝑑𝑧
1

0𝐴

= 𝑏 𝐿𝑒   𝜌(𝑦)

 

 
 
 
 

 0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 

 
 
 
 

𝑇

 

 
 
 
 

 0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 

 
 
 
 

 𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2
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From equations (B.28), (B.44) and (B.45), the velocity vector  𝑑   maybe rewritten as:  

Substituting equations (B.64) and (B.75) into (B.63) 

The mass matrix of the FG beam is obtained from equation (B.76) as 

 = 𝑏 𝐿𝑒   𝜌(𝑦)

 
 
 
 
 
 
0 0 0 0 0 0
0 1 − 6𝜉2 + 4𝜉3 + 9𝜉4 − 12𝜉5 + 4𝜉6 𝜉𝐿𝑒 − 2𝜉2𝐿𝑒 − 2𝜉3𝐿𝑒 + 8𝜉4𝐿𝑒 − 7𝜉5𝐿𝑒 + 2𝜉6𝐿𝑒 0 3𝜉2 − 2𝜉3 − 9𝜉4 + 12𝜉5 − 4𝜉6 −𝜉2𝐿𝑒 + 𝜉3𝐿𝑒 + 3𝜉4𝐿𝑒 − 5𝜉5𝐿𝑒 + 2𝜉6𝐿𝑒

0 𝜉𝐿𝑒 − 2𝜉2𝐿𝑒 − 2𝜉3𝐿𝑒 + 8𝜉4𝐿𝑒 − 7𝜉5𝐿𝑒 + 2𝜉6𝐿𝑒 𝜉2𝐿𝑒
2 − 4𝜉3𝐿𝑒

2 + 6𝜉4𝐿𝑒
2 − 4𝜉5𝐿𝑒

2 + 𝜉6𝐿𝑒
2 0 3𝜉3𝐿𝑒 − 8𝜉4𝐿𝑒 + 7𝜉5𝐿𝑒 − 2𝜉6𝐿𝑒 −𝜉3𝐿𝑒

2 + 3𝜉4𝐿𝑒
2 − 3𝜉5𝐿𝑒

2 + 𝜉6𝐿𝑒
2

0 0 0 0 0 0
0 3𝜉2 − 2𝜉3 − 9𝜉4 + 12𝜉5 − 4𝜉6 3𝜉3𝐿𝑒 − 8𝜉4𝐿𝑒 + 7𝜉5𝐿𝑒 − 2𝜉6𝐿𝑒 0 9𝜉4 − 12𝜉5 + 4𝜉6 −3𝜉4𝐿𝑒 + 5𝜉5𝐿𝑒 − 2𝜉6𝐿𝑒

0 −𝜉2𝐿𝑒 + 𝜉3𝐿𝑒 + 3𝜉4𝐿𝑒 − 5𝜉5𝐿𝑒 + 2𝜉6𝐿𝑒 −𝜉3𝐿𝑒
2 + 3𝜉4𝐿𝑒

2 − 3𝜉5𝐿𝑒
2 + 𝜉6𝐿𝑒

2 0 −3𝜉4𝐿𝑒 + 5𝜉5𝐿𝑒 − 2𝜉6𝐿𝑒 𝜉4𝐿𝑒
2 − 2𝜉5𝐿𝑒

2 + 𝜉6𝐿𝑒
2  

 
 
 
 
 

𝑑𝜉 𝑑𝑦
1

0

𝑕
2

−
𝑕
2

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 

𝑖

𝑢 𝑖
𝑣 𝑗

𝜃 
𝑗  
  
 

  
 

𝑇

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 

𝑖

𝑢 𝑖
𝑣 𝑗

𝜃 
𝑗  
  
 

  
 

  

 = 𝑏 𝐿𝑒  𝜌(𝑦) 𝑑𝑦

𝑕
2

−
𝑕
2

 
  
 

  
 

𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

𝑇

 
 
 
 
 
 
 
 
 
 

⁠

0 0 0 0 0 0

0
13

35

11𝐿𝑒

210
0

9

70
−

13𝐿𝑒

420

0
11𝐿𝑒

210

𝐿𝑒
2

105
0

13𝐿𝑒

420
−

𝐿𝑒
2

140
0 0 0 0 0 0

0
9

70

13𝐿𝑒

420
0

13

35
−

11𝐿𝑒

210

0 −
13𝐿𝑒

420
−

𝐿𝑒
2

140
0 −

11𝐿𝑒

210

𝐿𝑒
2

105  
 
 
 
 
 
 
 
 
 

 
  
 

  
 
𝑢 𝑖
𝑣 𝑖
𝜃 𝑖
𝑢 𝑖
𝑣 𝑗

𝜃 𝑗  
  
 

  
 

 

 

(B.74) 

  𝑑  =  
𝑢 
𝑣 
 =  

1 0 −𝑦
0 1 0

  

𝑢  𝜉 

𝑣  𝜉 

𝜃  𝜉 

   

  

𝑢  𝜉 

𝑣  𝜉 

𝜃  𝜉 

 =  

1 − 𝜉 0 0 𝜉 0 0

0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3

0 −6𝜉 + 6𝜉2 𝐿𝑒 − 4𝐿𝑒𝜉 + 3𝐿𝑒𝜉
2 0 6𝜉 − 6𝜉2 −2𝐿𝑒𝜉 + 3𝐿𝑒𝜉

2

 

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑗

𝑣𝑗

𝜃𝑗  
 
 

 
 

  

  𝑑  =  
1 0 −𝑦
0 1 0

  

1 − 𝜉 0 0 𝜉 0 0

0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3

0 −6𝜉 + 6𝜉2 𝐿𝑒 − 4𝐿𝑒𝜉 + 3𝐿𝑒𝜉
2 0 6𝜉 − 6𝜉2 −2𝐿𝑒𝜉 + 3𝐿𝑒𝜉

2

 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑗

𝑣𝑗

𝜃𝑗 
 
 

 
 

 (B.75) 

 𝛬 =
1

2
 𝜌(𝑦)  𝑢 (𝑥, 𝑡) 𝑇 𝑢 (𝑥, 𝑡) +  𝑤 0(𝑥, 𝑡) 𝑇 𝑤 0(𝑥, 𝑡)   𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑣𝑜𝑙

  

 𝛬 =
1

2
 

𝜌 𝑦  
1 0 −𝑦
0 1 0

 
𝑇

 
1 0 −𝑦
0 1 0

 

 
 
 
 
 
1 − 𝜉 0 0 𝜉 0 0

0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3

0
−6𝜉 + 6𝜉2

𝐿𝑒

1 − 4𝜉 + 3𝜉2 0
6𝜉 − 6𝜉2

𝐿𝑒

−2𝜉 + 3𝜉2

 
 
 
 
 
𝑇

 
 
 
 
 
1 − 𝜉 0 0 𝜉 0 0

0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3 0 3𝜉2 − 2𝜉3 −𝐿𝑒𝜉
2 + 𝐿𝑒𝜉

3

0
−6𝜉 + 6𝜉2

𝐿𝑒

1 − 4𝜉 + 3𝜉2 0
6𝜉 − 6𝜉2

𝐿𝑒

−2𝜉 + 3𝜉2

 
 
 
 
 

 
 
 

 
 
𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

𝑇

 
 
 

 
 

𝑢𝑖

𝑣𝑖

𝜃𝑖

𝑢𝑖

𝑣𝑗

𝜃𝑗  
 
 

 
 

 𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑣𝑜𝑙

  

 𝜦 =
1

2
   

𝜌 𝑦 

 
 
 
 
1 − 𝜉 0 0 𝜉 0 0

0 1 − 3𝜉2 + 2𝜉3 𝐿𝑒𝜉 − 2𝐿𝑒𝜉
2 + 𝐿𝑒𝜉
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