
Interval-Based Data Refinement: A Uniform Approach to True
Concurrency in Discrete and Real-Time Systems

Brijesh Dongol

Department of Computer Science, Brunel University London, UK

John Derrick

Department of Computer Science, The University of Sheffield, UK

Abstract

The majority of modern systems exhibit sophisticated concurrent behaviour, where several system compo-
nents observe and modify the state with fine-grained atomicity. Many systems also exhibit truly concurrent
behaviour, where multiple events may occur simultaneously. Data refinement, a correctness criterion to com-
pare an abstract and a concrete implementation, normally admits interleaved models of execution only. In
this paper, we present a method of data refinement using a framework that allows one to view a component’s
evolution over an interval of time, simplifying reasoning about true concurrency. By modifying the type of
an interval, our theory may be specialised to cover data refinement of both discrete and real-time systems.
We develop a sound interval-based forward simulation rule that enables decomposition of data refinement
proofs, and apply this rule to verify data refinement for two examples: a simple concurrent program and a
more in-depth real-time controller.

Keywords: Refinement, interval-based reasoning, true concurrency, discrete time systems, real-time
systems

1. Introduction

Data refinement allows one to develop systems in a stepwise manner, enabling an abstract system to be
incrementally replaced by a concrete implementation by guaranteeing that every observable behaviour of the
concrete system is a possible observable behaviour of the abstract system. A benefit of such developments is
the ability to reason at a level of abstraction suitable for the current stage of development, and the ability to
introduce additional detail to a system via correctness-preserving transformations. A representation relation
between concrete and abstract states is often used to link the internal states of the concrete and abstract
systems. This enables the state representation at different levels of abstraction to differ. For example,
a queue data type may be represented by a sequence in an abstract system and by a linked list in the
corresponding concrete implementation, and hence, operations at the abstract level access and modify the
sequence, whereas at the concrete level operations access and modify the linked list.

Over the years, numerous techniques for verifying data refinement have been developed for a number
of application domains [45], including methods for refinement of concurrent [12] and real-time [23] systems.
These methods use frameworks that formalise the behaviour of system components in the traditional manner,
i.e., as relations between a pre and post state. Therefore, the refinement relations that are used to verify
data refinement are also relations between an abstract and a concrete state.

In the context of true concurrency, pre/post-state relational models lack the expressive power to reason
about simultaneous accesses and modifications to a system’s state [48] as they inherently admit an inter-
leaved execution semantics. Thus, one must perform an additional step of reasoning to prove that the true
concurrency semantics is indeed captured by the interleaved semantics. In some instances, e.g., real-time
systems, the pre/post-state relational model cannot be used to formalise transient properties [19, 17], which

Preprint submitted to Elsevier August 17, 2015

AInit :¬grd
Process ap

ap1: if grd then
ap2: m := 1
ap3: else m := 2 fi

Process aq

aq1: if b then
aq2: grd := true
aq3: else skip fi

Figure 1: Abstract program with guard grd

CInit : v ≤ u
Process cp

cp1: if u < v then
cp2: m := 1
cp3: else m := 2 fi

Process cq

cq1: if 0 < w then
cq2: v := u + 1
cq3: else v := u − 1 fi

Figure 2: Concrete program with guard u < v in cp1

are properties that only hold for a small instant of time, making them physically impossible to detect. Fur-
ther difficulties arise for relational models when admitting real-world delays, where tolerances required of
an implementation are difficult to record abstractly.

We aim to enable reasoning about the evolution of a system over its interval of execution [2, 42], which
may comprise several system states. To this end, we use a framework of interval predicates [15, 19], which
is inspired by both Interval Temporal Logic [37] and Duration Calculus [50]. Notable in our logic is that it
incorporates reasoning about apparent states evaluation [28, 19], which allows one to take into account the
low-level nondeterminism of expression evaluation at a higher level of abstraction. This makes it possible
to model both fine-grained interleaving (in the case of concurrent programs) and sampling errors (in the
case of real-time systems). Interval predicates have been used to reason about both discrete-time programs
[21, 15] and real-time systems [19], however, there does not exist any native support for interval-based data
refinement. The methods in [21, 15, 19] only cope with refinements where the concrete state space is a
subset of the abstract.

The main contribution of this paper is an interval-based approach for verifying data refinement, which
provides a logic for reasoning about refinement in the presence of true concurrency. Our framework is
general in the sense that it presents uniform techniques to reason about both discrete-time and real-time
systems — the type of reasoning to be performed can be specialised via different instantiations for the type
of an interval. We develop a forward simulation rule for verifying data refinement, and present methods
for decomposing proof obligations over common programming constructs. These are applied to verify data
refinement of a simple concurrent program and a more complex real-time multi-pump system. For the real-
time example, we incorporate the theory of time bands [9, 10], which simplifies reasoning about systems
over multiple time granularities. Ours is the first method (to the best of our knowledge) to incorporate data
refinement and time bands in system development.

This paper extends [13] by including additional explanations, and the real-time example is new to this
paper. At a technical level, the definition of refinement has been improved from [13] to better integrate
interval-based reasoning; the theory in [13] contained a mix of state and interval-based reasoning, which
complicated parts of the logic. These issues have now been streamlined, allowing our theory and associated
proofs to become more concise. The underlying notion of refinement is however unaltered from the notions
in [13, 45]; namely, a concrete system refines an abstract system if, and only if, every observable behaviour
of the concrete is a possible observable behaviour of the abstract.

Motivation and background material for the paper is presented in Section 2, clarifying our notions of state-
based data refinement. Our interval-based refinement theory is presented in Section 3, and a methods for
decomposing refinement proofs via simulation are presented in Section 4. Section 5 presents different methods
for evaluation state predicates over intervals and provides background for our two examples. Methods for
reasoning about fine-grained concurrency and a proof of our running example is presented in Section 6. A
more complex refinement of a real-time multipump system is given in Section 7.

2. State-based data refinement

In this section, we present motivation for our interval-based model by reviewing data refinement for
concurrent programs modelled in a framework of pre/post state relations [44, 45]. In particular, we describe

2

some of the commonly occurring difficulties when verifying refinement using forward simulation.
As a running example we consider the abstract program in Figure 1, written in the style of Feijen and van

Gasteren [22], which consists of variables grd , b ∈ B, m ∈ N, initialisation AInit and processes ap and aq .
Process ap is a sequential program with labels ap1, ap2, and ap3 that tests whether grd holds (atomically),
then executes m := 1 if grd evaluates to true and m := 2 otherwise. Process aq is similar. The program
executes by initialising as specified by AInit , and then executing ap and aq concurrently by interleaving
their atomic statements.

A state over V ⊆ Var is of type ΣV =̂ V → Val , where Var is the type of a variable and Val is the
generic type of a value, i.e., are mappings from variables to values. Program counters for each process are
assumed to be implicitly included in each state to formalise the control flow of a program, e.g., the program
in Figure 1 uses two program counters pcap and pcaq , where pcap = ap1 is assumed to hold whenever control
of process ap is at ap1, i.e., if pcap = ap1, then the next statement that ap will execute is the statement
labelled ap1. After execution of ap1, the value of pcap is updated so that either pcap = ap2 or pcap = ap3

holds, depending on the outcome of the evaluation of grd .
A program’s initialisation is modelled by a relation, and each label corresponds to an atomic statement,

whose behaviour is also modelled by a relation. Thus, a program generates a set of traces, each of which is a
sequence of states. We assume sequences start with index 0 and are potentially infinite. One may characterise
traces using an execution, which is a sequence of labels starting with initialisation. For example, a possible
execution of the program in Figure 1 is

〈AInit , ap1, aq1, aq2, ap3〉 (1)

Using ‘.’ for function application, we say an execution ex corresponds to a trace tr iff for each i ∈ dom.ex ,
(tr .i , tr .(i + 1)) ∈ ex .i and either dom.tr = dom.ex = N or size.(dom.ex) = size.(dom.tr) + 1; we use
labels and relations corresponding to the statement at the label interchangeably. An execution ex is valid
iff dom.ex 6= ∅, ex .0 is an initialisation, and ex corresponds to at least one trace, e.g., (1) above is valid.
Not every execution is valid, e.g., 〈AInit , ap1, ap2〉 is invalid because execution of ap1 after AInit causes grd
to evaluate to false and pcap to be updated to ap3, and hence, statement ap2 cannot be executed.

Now consider the concrete program in Figure 2 that replaces grd by u < v and b by 0 < w , where u, v
and w are fresh with respect to the program in Figure 1. Initially, v ≤ u holds. Furthermore, cq (modelling
the concrete environment of cp) sets v to u +1 if w is positive and to u−1 otherwise. One may be interested
in knowing whether the program in Figure 2 data refines the program in Figure 1, which defines conditions
for the program in Figure 1 to be substituted by the program in Figure 2 [45]. Data refinement allows this
replacement if every execution of the program in Figure 2 has a corresponding execution of the program in
Figure 1, e.g., concrete execution 〈CInit , cp1, cq1, cq2, cp3〉 has a corresponding abstract execution (1).

In general, representation of data within a concrete program differs from the representation in the
abstract, and hence, one must distinguish between the disjoint sets of observable and representation variables,
which respectively denote variables that can and cannot be observed. To verify data refinement, the abstract
and concrete programs are associated with finalisations, which are relations between a representation and
an observable state, defining the portion of the representation state that becomes observable. Note that the
finalisations for our example programs in Figures 1 and 2 are not shown. This is because a verifier has freedom
to choose a finalisation for the program at hand; different choices for the finalisation allow different parts
of the program to become observable and affect the type of refinement that is captured by data refinement
[12]. For the programs in Figures 1 and 2, we assume finalisations make the variable m observable. Hence,
Figure 1 is data refined by Figure 2 if ap is able to execute ap2 (ap3) whenever cp is able to execute cp2 (cp3,
respectively). We define a finalised execution of a program to be a valid execution concatenated with the
finalisation of the program, e.g., 〈AInit , ap1, aq1, aq2, ap3,AFin〉 is a finalised execution of the program in
Figure 1 generated from the valid execution (1). Valid executions are not necessarily complete, and hence,
one may observe the state in the “middle” of a program’s execution; an extreme example is 〈AInit ,AFin〉,
where the execution is finalised immediately after initialisation.

For the rest of this section, suppose we model initialisation as a relation from an observable state to
a representation state, each label corresponds to a statement that is modelled by a relation between two

3

ρ

AInit

CInit
τ0

ref ref ref ref ref ref

CFin

AFin

τi τ ′i τk τ ′k τn

ρ′

σ0 σj σ′j σ′k σmAj

Ci

σk Id

Ck

Figure 3: Data refinement via simulation

representation states, and a finalisation is a relation from a representation state to an observable state.
Assuming ‘o9’ denotes relational composition and id is the identity relation, we define the composition of a
sequence of relations R as

comp.R =̂ if R = 〈 〉 then id else head .R o
9 comp.(tail .R)

which composes the relations of R in order. We also define a function rel , which replaces each label in an
execution by the relation corresponding to the statement of that label.

Some steps of the concrete program may correspond to stuttering steps of the abstract [4], and hence,
there may not be a one-to-one correspondence between concrete and abstract executions. Stuttering is
reflected in an abstract execution by allowing a finite number of labels ‘Id ’ to be interleaved with each
finalised execution of the abstract program, where Id is assumed to be different from all other labels, and
the relation corresponding to label Id is the identity relation id . Data refinement is defined with respect to
a correspondence function that maps concrete labels to abstract labels.1 A correspondence function is valid
iff it maps concrete initialisations to abstract initialisations, concrete finalisations to abstract finalisations,
each label of a non-stuttering concrete statement to a corresponding abstract statement, and each label of
stuttering concrete statement to Id . A program C is a data refinement of a program A with respect to
correspondence function F iff F is valid and for every finalised execution exc of C ,

• exa =̂ λ i : dom.exc • F .(exc.i) is a finalised execution of A (with possibly finite stuttering) and

• comp.(rel .exc) ⊆ comp.(rel .exa) holds.

Proving data refinement directly from this formal definition is difficult as it requires induction over the
traces. Instead, one often proves data refinement by verifying simulation between an abstract and concrete
system, which requires the use of a refinement relation to link the internal representations of the abstract and
concrete programs. We assume that a relation r ∈ X ↔ Y is characterised by a function fr ∈ X → Y → B
where (x , y) ∈ r iff fr .x .y . holds. Thus, a state relation over Y ,Z ⊆ Var is defined by its characteristic
function StateRelY ,Z =̂ ΣY → ΣZ → B. As depicted in Figure 3, a refinement relation ref is a forward
simulation between a concrete and abstract system with respect to correspondence function F if:

1. whenever the concrete system can be initialised from an observable state ρ to obtain a concrete
representation state τ0, it must be possible to initialise the abstract system from ρ to result in abstract
representation state σ0 such that ref .σ0.τ0 holds,

2. for every concrete statement Ci , abstract state σj and concrete state τi , if ref .σj .τi holds and Ci

relates τi to τ ′i , then there exists an abstract state σ′j and an Aj such that Aj = F .Ci , Aj relates σj
to σ′j and ref .σ′j .τ

′
i holds, and

3. finalising any abstract state σm (using the abstract system’s finalisation) and concrete state τm (using
the concrete system’s finalisation) results in the same observable state whenever ref .σm .τn holds.

1In general, correspondence functions may additionally refer to the concrete and abstract states [45].

4

CInit : v ≤ u
Process cp

cp1.1:
cp1.2:

(
up := u ;
vp := v

)
u

cp1.3:
cp1.4:

(
vp := v ;
up := u

)
;

cp1.5: if up < vp then
cp2: m := 1
cp3: then m := 2 fi

Process cq
cq1: if 0 < w then

cq2.1: uq := u ;
cq2.2: v := uq + 1

else
cq3.1: uq := u ;
cq3.2: v := uq − 1

fi

Figure 4: Making the atomicity of expression evaluation in Fig-
ure 2 explicit

Concrete label Abstract label
CInit AInit

cp1.1, cp1.3, cp1.5, cq2.1, cp2.2 Id
cp1.2, cp1.4 ap1

cpi for i ∈ {2, 3} api

cq1 aq1

cq2.2 aq2

cq3.2 aq3

CFin AFin

Figure 5: Correspondence function for data refinement be-
tween Figure 4 and Figure 1

For models of computation that assume coarse-grained atomicity, expression evaluation is assumed to
be instantaneous, and hence, establishing a data refinement is simpler. For example, under coarse-grained
atomicity, one can establish data refinement between the programs in Figures 1 and 2 with respect to a
correspondence function F , where F .cpi = api and F .cqi = aqi for i ∈ {1, 2, 3}. In particular, it is possible
to establish a forward simulation using cg ref below as the refinement relation, where σ and τ are abstract
and concrete states, respectively.

var rel .σ.τ =̂ (σ.grd = (τ.u < τ.v)) ∧ (σ.b = (0 < τ.w)) ∧ (σ.m = τ.m)

cg ref .σ.τ =̂ var rel .σ.τ ∧ ∀i : {1, 2, 3} • (σ.pcap = api ⇒ τ.pccp = cpi) ∧
(σ.pcaq = aqi ⇒ τ.pccq = cqi)

However, in a setting with fine-grained atomicity, verifying data refinement is more difficult because
there may be interference from other processes while an expression is being evaluated [28]. Furthermore, the
order in which variables are read within an expression is often not fixed, e.g., due to compiler optimisations.
To take these assumptions into consideration in a framework of pre/post state relations, one must consider
the lower-level program in Figure 4, where the guard evaluation at cp1 in Figure 2 has been split into a
number of simpler atomic statements using fresh variables up and vp that are local to process cp. Via a
nondeterministic choice ‘u’, process cp chooses between executions cp1.1 ; cp1.2 and cp1.3 ; cp1.4, which read
the (global values) u and v into local variables up and vp , respectively, in two atomic steps. Evaluation of
guard u < v at cp1 in Figure 2 is then replaced by evaluation of up < vp . Similarly, in process cq , one must
split both cq2 and cq3 because they read from and write to two different shared variables.

A proof of data refinement between the programs in Figures 1 and 2 using forward simulation with
respect to cg ref is now more difficult because an atomic evaluation of grd has been split into several atomic
statements. A data refinement with respect a naive correspondence function that maps:

• cpi to Id for i ∈ {1.1, 1.2, 1.3, 1.4}, cp1.5 to ap1, cp2 to ap2, cp3 to ap3, and

• cq2.1 and cq3.1 to Id , cq1 to aq1, cq2.2 to aq2, and cq3.1 to aq3

cannot be verified using forward simulation. Here the correspondence function yields the following relation
on program counters, where CPS =̂ {cp1.1, cp1.2, cp1.3, cp1.4, cp1.5}.

cg rel2.σ.τ =̂ σ.pcap =


ap1 if τ.pccp ∈ CPS

ap2 if τ.pccp = cp2

ap3 if τ.pccp = cp3

∧ σ.pcaq =


aq1 if τ.pccq = cq1

aq2 if τ.pccq ∈ {cq2.1, cq2.2}
aq3 if τ.pccq ∈ {cq3.1, cq3.2}

The refinement relation then becomes ref2 =̂ var rel ∧ cg rel2. Now, consider the concrete execution below,
which is matched to a corresponding abstract execution using ref2.

5

¬grd

v ≤ u

Id Id aq1 Id aq2 ap1

cp1.5cq2.2cq2.1cq1cp1.2cp1.1

ref2 ref2 ref2 ref2 ref2ref2

σ′

τ ′

This execution ultimately results in a step (cp1.5) that cannot be matched abstractly in a manner that
preserves the refinement relation. In particular, the concrete system transitions to a state τ ′ where τ ′.pccp =
cp3 and the abstract to a state σ′ where σ′.pcap = ap2, and hence cg rel2.σ

′.τ ′ does not hold.
Such issues for forward simulation are well-known [44] — here the problem lies with the naively chosen

correspondence function, which incorrectly maps cp1.5 to ap1 causing the non-determinism at the abstract
level to be resolved later than it should be. The concrete step that fixes the outcome of the test at cp1.5

actually occurs either at cp1.2 or cp1.4 — after executing these statements it will be possible to evaluate
the guard up < vp (at cp1.5). This outcome however is dependant on the value of the shared variable read,
which can change due to interference.

Thus, it turns out that one must use the correspondence relation from Figure 5, which (somewhat
unintuitively) matches execution of cp1.4 (that assigns u to up) with execution of ap1 (that tests grd). The
refinement relation used to prove forward simulation is more complicated than cg ref and can be constructed
using the correspondence function in Figure 5, but the details are elided.

Such difficulties in verifying relatively trivial modifications expose the complexities of concurrent program
development via stepwise refinement. Further difficulties are encountered in the context of true concurrency
as state-based models inherently capture concurrency as interleaving. Thus, one must not only show data
refinement, but must perform an additional (non-trivial) reasoning step to show that the interleaved seman-
tics does indeed accurately reflect the truly concurrent one. Real-time systems present yet another challenge;
here, the environment continues to evolve as a program (e.g., controller) executes its statements. Further
difficulties are encountered when using these models to reason about real-world delays and sampling issues,
while transient properties may cause a system to become unimplementable [19]. To address such issues, this
paper uses an interval-based logic to model system behaviour and we develop a method of data refinement
for the logic. We prove refinement between the programs in Figures 1 and 2 using our interval-based setting
in Section 6, and here, the abstract and concrete guard evaluation can be matched up as one would expect.
We also present a more comprehensive development of a real-time pump controller in a step-wise manner
(Section 7).

3. Data refinement over intervals

We aim to verify data refinement between systems whose behaviours are formalised by interval predicates.
To this end, we present interval predicates in Section 3.1 and the novel concept of interval relations in
Section 3.2. These are then used to formalise data refinement over intervals Section 3.3.

3.1. Interval predicates

The time domain is an infinite set2 T ⊆ R such that ∀t : T • ∃t ′, t ′′: T • t ′ < t < t ′′, i.e., T is infinite in
both the positive and negative directions. An interval of T is a contiguous subset of T , and hence, the set
of all intervals of T is given by:

IntvT =̂ {∆ ⊆ T | ∀t , t ′: ∆ • ∀t ′′: T • t ≤ t ′′ ≤ t ′ ⇒ t ′′ ∈ ∆}

The type IntvT may be used to model both discrete-time (e.g., by picking T = Z) and real-time (by picking
T = R) systems. The theory we develop in the rest of this paper is kept general in the sense that it enables
reasoning about both instantiations in a uniform manner.

2An even more abstract view is that T is a linearly ordered set, of which R is an instantiation.

6

The configuration of a system at each time is given by a state, which defines the values of the system’s
variables (see Section 2). A state predicate is of type StatePredV =̂ ΣV → B, where V ⊆ Var , is used to
define properties of states. The behaviour of the system over all time is given by a stream, which is a function
of type StreamT ,V =̂ T → ΣV , mapping each element of T to a state over V . An interval predicate is used
to define the behaviour of a stream over a particular interval, which has type IntvPredT ,V =̂ IntvT →
StreamT ,V → B. For the rest of the paper, we assume that the underlying type of the interval under
consideration is fixed, and hence, to reduce notational complexity, we omit T whenever possible.

Example 1. Suppose we define

σ =̂{u 7→ 0, v 7→ 1,w 7→ aaa} s =̂λ t • if t ≥ 10 then {u 7→ 3t2, v 7→ 42,w 7→ bbb} else σ

c1 =̂λσ • σ.u < σ.v c2 =̂λσ • σ.w = qqq

g =̂λ∆, s • ∀t : ∆ • (s.t).u ≥ 300

Then, σ is a state; c1 and c2 are state predicates and (c1 ∧ ¬c2).σ holds because both c1.σ and ¬c2.σ hold;
s is a stream; g is an interval predicate and both ¬g .[−3, 3].s and g .[10, 100).s hold, where [−3, 3] is the
closed interval from −3 to 3 and [10, 100) is the right-open interval from 10 to 100. 2

There are several operators for evaluating interval and state predicates (see Sections 4.1 and 5.1). For
data refinement, we use the following operators on a state predicate c, interval ∆ and stream s.

(�c).∆.s =̂ ∀t : ∆ • c.(s.t)

(�c).∆.s =̂ ∃t : ∆ • c.(s.t)

Thus, (�c).∆.s holds iff c holds in all states of s within ∆, whereas (�c).∆.s holds iff c holds in some state
of s within ∆.

Example 2. Interval predicate g as defined in Example 1 may be written as λ∆, s •�(λσ • σ.u ≥ 300).∆.s.
We assume pointwise lifting and omit the λ terms in the expression, so the interval predicate above is simply
written as �(u ≥ 300). Similarly, g0 defined in Example 7 may be written more succinctly as �c1. 2

There are numerous interval predicate operators (e.g., [19, 37, 50]). For refinement, we use the following
operator, where g is an interval predicate, ∆ is an interval, s is a stream. We define empty.∆ =̂ (∆ = ∅),
i.e., empty.∆ holds iff ∆ is the empty interval.

(� g).∆.s =̂ ¬empty.∆ ∧ ∃∆0: Intv •∆0 ∝∆ ∧ ¬empty.∆0 ∧ g .∆0.s

Thus, (� g).∆.s holds iff ∆ is non-empty and there exists a non-empty interval ∆0 that immediately precedes
∆ such that g .∆0.s holds.

3.2. Interval relations

Interval predicates enable one to reason about properties that take time, however, only define properties
over a single state space. Proving data refinement via simulation requires one to relate behaviours over
a concrete state space to behaviours over an abstract space. Hence, we combine the ideas behind state
relations and interval predicates and obtain interval relations, which were introduced in [13].

An interval relation over Y and Z relates streams of Y and Z over intervals and is a mapping of type
IntvRelY ,Z =̂ Intv → StreamY → StreamZ → B. Operators � and � are extended to relations over an
interval. In particular, for r ∈ StateRelY ,Z , interval ∆, and streams y ∈ StreamY , z ∈ StreamZ , we define:

(�r).∆.y .z =̂ ∀t : ∆ • r .(y .t).(z .t) (�r).∆.y .z =̂ ∃t : ∆ • r .(y .t).(z .t)

Another example of an interval relation based on r is

λ∆: Intv , y : StreamY , z : StreamZ
• ∀t1, t2: ∆ • t1 < t2 ⇒ r .(y .t1).(z .t2)

7

which states that y .t1 is related to z .t2 via r if t1, t2 ∈ ∆ and t1 < t2. Stating such a relationship would
require introduction of auxiliary (history) variables in the case of state relations, but are straightforward
when using interval relation.

Interval relations (like interval predicates) may refer to properties outside a given interval. When using
them to reason about data refinement, one must use a restricted class of relations that only refer to properties
within the interval under consideration. This is defined using the following function for streams y and z
and interval ∆, where ‘C’ denotes domain restriction.

y
∆

== z =̂ (∆C y = ∆C z)

Thus y
∆

== z holds iff the states of y and z within ∆ match, i.e., ∀t : ∆ • y .t = z .t .

Definition 3. An interval relation R ∈ InvtRelY ,Z is externally independent iff for any ∆ ∈ Intv, y ∈
StreamY , z ∈ StreamZ , we have R.∆.y .z ⇒ ∀y ′: StreamY , z

′: StreamZ
• y

∆
== y ′ ∧ z

∆
== z ′ ∧ R.∆.y ′.z ′.

Thus, for example, �(�r) is not externally independent, but �r is.

3.3. Interval-based refinement

Interval predicates and relations provide the necessary theoretical background for our interval-based
notion of refinement. First, we formalise the structure of a system in terms of an initialisation, main
program and finalisation, which are defined over observable and representation variables.

Suppose N ,Z ⊆ Var , respectively denote the sets of observable and representation variables. A system
is defined by a tuple:

C =̂ (CI ,CP ,CF)N ,Z

where CI ∈ IntvRelN ,Z models the initialisation, CP ∈ IntvPredZ models the system processes, and CF ∈
IntvRelZ ,N denotes system finalisation. We have two restrictions on valid systems, namely that:

1. CI is externally independent, and

2. CF is of the form �r for some relation r .

For the rest of this paper, we assume the systems under consideration are valid. We say stream s is an
observable behaviour of a system C over interval ∆ in stream z iff obs.C .∆.z .s holds, where

obs.C .∆.z .s =̂ (�CI).∆.s.z ∧ CP .∆.z ∧ CF .∆.z .s

Thus, the system initialises as defined by CI in some interval immediately preceding ∆, executes as defined
by CP over ∆, then finalises as defined by CF in ∆ to produce s. Using this, we define refinement as follows.

Definition 4 (Refinement). An abstract system A =̂ (AI ,AP ,AF)N ,Y is refined by a concrete system
C =̂ (CI ,CP ,CF)N ,Z , denoted A v C iff

∀z : StreamZ ,∆: Intv , s: StreamN
• obs.C .∆.z .s ⇒ ∃y : StreamY

• obs.A.∆.y .s (2)

Thus, whenever the concrete system produces an observable behaviour s, there must exist an abstract stream
y such that the abstract system is able to produce s as an observable behaviour.

By viewing both initialisation and finalisation as interval relations, Definition 4 is now much simpler
than the definition of refinement in [13].

Example 5. Consider the abstract and concrete single process programs below.

AInit : a = 1
a: = a + a

CInit : b = 2
a: = b

8

Suppose that a is observable for both abstract and concrete programs, i.e., N = {a}. The internal variables
are Y = {a} and Z = {a, b}, and the abstract and concrete programs are modelled by interval relations and
predicates below, where s, y and z are observable, abstract and concrete streams, respectively. Operator
‘;’ allows one to ‘chop’ a given interval, so that g1 ; g2 holds in a finite interval ∆ if the interval can be
partitioned into two parts so that g1 holds for the first part and g2 holds for the second (see Table 2 for
a formal definition). Formalisation of the behaviours of the two programs above are based on the state
relation FR =̂ λσ, ρ • σ.a = ρ.a, which states that the values of a in the two given states are equal. Thus,
we obtain:

AI =̂ λ∆, s, y • ¬empty.∆ ∧ �(a = 1).∆.y

AP =̂ ∃k •�(a + a = k); �(a = k)

AF =̂ �FR

CI =̂ λ∆, s, y • ¬empty.∆ ∧ �(b = 2).∆.y

CP =̂ ∃k •�(b = k); �(a = k)

CF =̂ �FR

Using Definition 4, it is possible to prove that both refinements (AI ,AP ,AF)N ,Y v (CI ,CP ,CF)N ,Z and
(CI ,CP ,CF)N ,Z v (AI ,AP ,AF)N ,Y hold, i.e., the two systems are equivalent. 2

The systems we aim to develop are however, much more complex than those in Example 5 and often
use different internal representations of the observable behaviour. Furthermore, the number of steps the
abstract and concrete systems take to produce an output may differ. Here, refinements must appeal to
a refinement relation, which relates these internal representations and steps of the abstract and concrete
systems, resulting in a simulation-based approach. The next section explains this approach in detail and
describes how simulation-based proofs may be decomposed.

4. Simulation for interval-based refinement

As in the state-based setting, verifying data refinement directly is difficult. We develop a proof method
akin to forward simulation, then develop numerous decomposition rules for commonly occurring operators.
In Section 4.1, we present numerous operators for intervals, interval predicates and interval relations, which
serves as background for the remainder of the section. Section 4.2 presents our notion of simulation and
Section 4.3 presents decomposition rules.

4.1. Operators over intervals, interval predicates and relations

This section reviews some operators and notations for intervals, interval predicates and interval relations
that are used for the rest of the paper.

Notation Definition Informal meaning

`.∆ if empty.∆ then 0 else lub.∆− glb.∆ length of ∆

finite.∆ empty.∆ ∨ lub.∆ ∈ T ∆ has a finite upper bound

infinite.∆ ¬finite.∆ ∆ has an infinite upper bound

∆1 < ∆2 ¬empty.∆1 ∧ ¬empty.∆2 ∧ ∀t1: ∆1, t2: ∆2
• t1 < t1 ∆1 occurs before ∆2

∆1 ∝∆2 empty.∆1 ∨ empty.∆2 ∨ (∆1 < ∆2 ∧ (∆1 ∪∆2 ∈ IntvT)) ∆1 immediately precedes ∆2

∆1∆2

∆ (∆1 ∝∆2) ∧ (∆ = ∆1 ∪∆2) ∆1 and ∆2 partition ∆

Table 1: Operators on intervals ∆, ∆1 and ∆2

Interval operators. Table 1 lists some operators on intervals as well as their formal and informal meanings.
We use lub.∆ and glb.∆ denote the least upper bound and greatest lower bound of ∆, respectively. Note
that lub.∆ and glb.∆ may not be elements of ∆, e.g., if ∆ ∈ IntvR is left open, then glb.∆ 6∈ ∆. We define
glb.T =̂ −∞ and lub.T =̂∞, where −∞,∞ 6∈ T . If ∆1∝∆2, we say ∆1 adjoins ∆2. Adjoining intervals ∆1

9

and ∆2 are disjoint (because ∆1 < ∆2), but contiguous across their boundary (because ∆1 ∪∆2 ∈ IntvT).
Furthermore, both ∆∝∅ and ∅∝∆ hold trivially for any interval ∆. We say ∆1∆2

∆ holds iff ∆ can be split
into an initial portion ∆1 followed by ∆2.

Interval predicates operators. It is possible to define several interval predicate operators [37, 19, 50]; a
selection of these are used in this paper. These are listed with their formal and informal meanings in Table 2.
We assume pointwise lifting of boolean operators on interval predicates in the normal manner, e.g., if g1 and
g2 are interval predicates, ∆ is an interval and s is a stream, we have (g1 ∧ g2).∆.s = (g1.∆.s ∧ g2.∆.s).

Notation Definition Informal meaning

g .∆.s g .∆.s ∧ ¬empty.∆ g holds and ∆ is non-empty

(� g).∆.s ¬empty.∆ ∧ ∃∆0
•∆∝∆0 ∧ g .∆0.s g holds in some next interval

(2g).∆.s ∀∆0: Intv •∆0 ⊆ ∆⇒ g .∆0.s g holds in all subintervals

(g1 ; g2).∆.s
(
∃∆1,∆2

• ∆1∆2

∆ ∧ g1.∆1.s ∧ g2.∆2.s
)
∨

(infinite.∆ ∧ g1.∆.s)
g1 holds then g2 holds in ∆, or
g1 holds in ∆ and ∆ is infinite

Table 2: Interval predicate operators for an interval ∆ and stream s

Example 6. Suppose v is a variable such that in a stream s, both �(v = 10).[0, 1).s and �(v = 20).[1, 2].s
hold. For example, v may represent the voltage that instantaneously jumps from 10 to 20. Then we have
that (�(v = 10); �(v = 20)).[1, 2].s holds. However, 2(v = 20).[1, 2].s does not hold, but 2(v ≤ 20).[1, 2].s
does hold. 2

When reasoning about programs and their properties, one must often reason about universal implication,
i.e., if an interval predicate g1 holds over an arbitrarily chosen interval ∆ and stream s, then an interval
predicate g2 also holds over ∆ and s. We define ‘V’ as follows; operators ‘≡’ and ‘W’ are similarly defined.

g1.∆V g2.∆ =̂ ∀s: Stream • g1.∆.s ⇒ g2.∆.s g1 V g2 =̂ ∀∆: Intv • g1.∆V g2.∆

Interval predicates are assumed to be ordered using implication ‘V’ and the greatest fixed point allows gω

to model both finite (including 0) and infinite iteration. This fixed point is guaranteed to exist by Knaster-
Tarski because interval predicates form a complete lattice [20]. The iteration operators we use are given in
Section 3. Note that both gω+ and g∞ are special cases of gω.

Notation Definition Informal meaning

gω νz • (g ; z) ∨ empty potentially infinite iteration of g

gω+ g ; gω positive iteration of g

g∞ µ z • g ; z purely infinite iteration of g

Table 3: Iteration operators for an interval predicate g

Example 7. For c1, g and s as defined in Example 1, if g0 =̂ λ∆, s • ∃t : ∆ • c1.(s.t), then (g0 ; g).[0, 100).s
holds because both g0.[0, 10).s and g .[10, 100).s hold. Note that there may be more than one possible way
to split an interval when applying the definition of ‘;’, e.g., both g0.[0, 20].s and g .(20, 100).s also hold. 2

10

Interval relation operators. Like interval predicates, we assume pointwise lifting of operators over state and
interval relations in the normal manner and extend interval predicate operators from Table 2 to interval
relations, e.g.,

(R1 ; R2).∆.y .z =̂
(
∃∆1,∆2: Intv • ∆1∆2

∆ ∧ R1.∆1.y .z ∧ R2.∆2.y .z
)
∨ (infinite.∆ ∧ R1.∆.y .z)

Thus, R1 ; R2 holds in ∆ for y and z iff either (a) ∆ can be partitioned into adjoining intervals ∆1 and ∆2

such that Ri holds in ∆i for y and z or (b) infinite.∆ holds and R1 holds in ∆ for y and z .
If R1 ∈ IntvRelX ,Y and R2 ∈ IntvRelY ,Z then for ∆ ∈ Intv , x ∈ StreamX , z ∈ StreamZ , we define the

composition of R1 and R2 as

(R1 ◦ R2).∆.x .z =̂ ∃y : StreamY
•R1.∆.x .y ∧ R2.∆.y .z

Thus, R1 ◦R2 relates x to z in ∆ iff there is an interval y such that R1 relates x to y in ∆ and R2 relates y
to z in ∆.

4.2. Forward simulation

In this section, we develop an interval-based notion of forward simulation. First, we review the state-
based forward simulation rule in Figure 6, where σ0, σ are abstract states, τ0, τ are concrete states, sref
is a state relation between abstract and concrete states, and cpi is a concrete step with corresponding
abstract step api . Here, if sref (σ0, τ0) ∧ cpi(τ0, τ) holds, then one must show that there exists a σ such that
api(σ0, σ) ∧ sref (σ, τ) holds.

cpi

api

τ0 τ

σσ0

srefsref

Figure 6: State-based forward simulation

ref

∆0 ∆
h

g

z

y0

y

ref

Figure 7: Visualisation of ref • Z : h

Y : g

For Y ,Z ⊆ Var , assuming that g ∈ IntvPredY and h ∈ IntvPredZ model the abstract and concrete
systems, respectively, and that ref ∈ IntvRelY ,Z denotes the refinement relation, we define a notation

ref • Z : h

Y : g
, which denotes that h simulates g with respect to ref .

ref • Z : h

Y : g
=̂ ∀z : StreamZ ,∆,∆0: Intv , y0: StreamY

•

(∆0 ∝∆) ∧ ref .∆0.y0.z ∧ h.∆.z ⇒ ∃y : StreamY
• (y0

∆0== y) ∧ ref .∆.y .z ∧ g .∆.y

Thus, assuming the abstract and concrete streams are related by ref in the initial interval ∆0 and the
concrete system (modelled by h) executes in an interval ∆, it must be possible to execute the abstract
system (modelled by g) over ∆ such that ref holds between the abstract and concrete streams in ∆. A

visualisation of ref • Z : h

Y : g
is given in Figure 7. This is analogous to the state-based refinement diagram

(Figure 6); ref holding between y0 and z in ∆0 corresponds to sref holding between σ0 and τ0, execution
of h (and g) over ∆ corresponds to the transitions from τ0 to τ (and σ0 to σ), and sref holding between σ
and τ corresponds to ref holding between y and z in ∆.

The following lemma establishes reflexivity and transitivity properties for ref • Z : h

Y : g
.

Lemma 8. Provided that id .σ.τ =̂ (σ = τ) and both ref1 and ref2 are externally independent:

�id • X : g

X : g
(Reflexivity)

ref1 • Y : g

X : f ∧ ref2 • Z : h

Y : g ⇒ (ref1 ◦ ref2) • Z : h

X : f
(Transitivity)

11

Simulation is used to define an interval-based notion of forward simulation as follows.

Definition 9 (Forward simulation). If A =̂ (AI ,AP ,AF)N ,Y and C =̂ (CI ,CP ,CF)N ,Z are abstract
and concrete systems, respectively, and ref ∈ IntvRelY ,Z , then we say ref is a forward simulation from A

to C iff ref is externally independent, ref • Z : CP
Y : AP

holds, and both of the following hold:

∀s: StreamN ,∆: Intv , z : StreamZ
• CI .∆.s.z ⇒ ∃y : StreamY

•AI .∆.s.y ∧ ref .∆.y .z (3)

∀∆: Intv , z : StreamZ , y : StreamY
• ref .∆.y .z ⇒ ∀s: StreamN

• CF .∆.z .s ⇒ AF .∆.y .s (4)

By (3) whenever the concrete initialisation holds for and observable stream s, interval ∆ and concrete
stream z , there must exist an abstract stream y such that the abstract initialisation holds for ∆, s and y ,
and furthermore the refinement relation must hold in ∆ between y and z . By (4), assuming the refinement
relation holds in ∆ between y and z , then for any observable stream s, the abstract finalisation holds in ∆
whenever the concrete finalisation holds.

Example 10. Consider the abstract and concrete single process programs below.

AInit : true
a: = a + 1

CInit : true
b: = b + 1

It is straightforward to see that the two programs have essentially the same functionality in that they both
increment their internal variables a and b. How does this reflect on the observed behaviour? We prove
functional equivalence by making a and b visible as an observable variable ab so that N = {ab}. We also
have Y = {a} and Z = {b}. In other words, a and b are internal representations of the observable variable ab
within the abstract and concrete systems, respectively. We define state relations AFR =̂ λσ, ρ • σ.a = ρ.ab
and CFR =̂ λ τ, ρ • σ.b = ρ.ab as well as the following interval predicates and relations:

AP =̂ ∃k •�(a + 1 = k); �(a = k)

AF =̂ �AFR

CP =̂ ∃k •�(b + 1 = k); �(b = k)

CF =̂ �CFR

Then, defining

refR =̂ λσ, τ • σ.a = σ.b ref =̂ �refR

it is possible to prove that ref is a forward simulation from (true,AP ,AF)N ,Y to (true,CP ,CF)N ,Z . 2

The following theorem establishes soundness of our forward simulation rule with respect to interval-based
data refinement.

Theorem 11 (Soundness of forward simulation). Suppose the abstract and concrete systems are given
by A =̂ (AI ,AP ,AF)N ,Y and C =̂ (CI ,CP ,CF)N ,Z , respectively. Then A v C holds provided that there
exists a ref ∈ IntvRelY ,Z such that ref is a forward simulation between A and C .

Proof. We are required to prove (2). To this end, we fix ∆, z and s and assume obs.C .∆.z .s to obtain
the following calculation.

obs.C .∆.z .s
= definition of obs and �
∃∆0: Intv •∆0 ∝∆ ∧ CI .∆0.s.z ∧ CP .∆.z ∧ CF .∆.z .s

⇒ use CI .∆.s.z , (3), and predicate logic
∃∆0: Intv , y : StreamY

•∆0 ∝∆ ∧ AI .∆0.s.y ∧ ref .∆0.y .z ∧ CP .∆.z ∧ CF .∆.z .s

⇒ use ref • Z : CP
Y : AP

and predicate logic

∃∆0: Intv , y , y ′: StreamY
•∆0 ∝∆ ∧ AI .∆0.s.y ∧ (y

∆0== y ′) ∧ ref .∆.y ′.z ∧ AP .∆.y ′ ∧ CF .∆.z .s
⇒ AI is implicitly externally independent
∃∆0: Intv , y ′: StreamY

•∆0 ∝∆ ∧ AI .∆0.s.y
′ ∧ ref .∆.y ′.z ∧ AP .∆.y ′ ∧ CF .∆.z .s

12

⇒ using (4)
∃∆0: Intv , y ′: StreamY

•∆0 ∝∆ ∧ AI .∆0.s.y
′ ∧ ref .∆.y ′.z ∧ AP .∆.y ′ ∧ AF .∆.y ′.s

⇒ definition of �, and weakening
∃y ′: StreamY

• (� AI).∆.s.y ′ ∧ AP .∆.y ′ ∧ AF .∆.y ′.s
= definition of obs
∃y ′: StreamY

• obs.A.∆.y ′.s 2

Example 12. Using Theorem 11 and Example 10, we have that (true,AP ,AF)N ,Y v (true,CP ,CF)N ,Z
holds. It is also possible to use forward simulation to prove that the refinement holds in the other direction,
but to do this, one must use the interval relation �(refR−1) as the forward simulation. 2

4.3. Decomposing simulations

A benefit of state-based forward simulation [45] is the ability to decompose proofs and focus on individual

steps of the concrete system. The proof obligation ref • Z : h

Y : g
in the interval-based forward simulation

definition (Definition 9) takes the entire interval of execution of the concrete and abstract systems into

account. Hence, we develop a number of methods for simplifying proofs of ref • Z : h

Y : g
by decomposing

it over common programming constructs. Further simplifications are achieved by introducing notational
conventions for commonly occurring forms of interval predicates.

As ref relates concrete and abstract streams, whereas the concrete system only refers to the concrete
stream (similarly abstract system), we define (g ↑).∆.y .z =̂ g .∆.y and (g ↓).∆.y .z =̂ g .∆.z , which allows one
to lift interval predicates to the level of relations via a projection. It is straightforward to verify distribution
of projection through interval predicate operators.

Lemma 13 (Distribute projection). Suppose g , g1, g2 are interval predicates, � ∈ {; ,∨,∧,⇒,⇔} and
l∈ {↑, ↓}. Then each of the following holds:

(¬g) l ≡ ¬(g l) (5)

(g1 � g2) l ≡ (g1 l)� (g2 l) (6)

(g l)ω ≡ gω l (7)

Proving ref • Z : h

Y : g
requires one to show that there exists an abstract stream y such that g holds for y

and ref holds between y and a concrete stream z . Lemma 14 below enables decomposition of ref • Z : h

Y : g
.

To this end, we introduce the following notation:

h
Y ,Z ref =̂ ∀z : StreamZ ,∆,∆0: Intv , y0: StreamY
•

∆0 ∝∆ ∧ ref .∆0.y0.z ∧ h.∆.z ⇒ ∃y : StreamY
• (y0

∆0== y) ∧ ref .∆.y .z

Notation h
Y ,Z ref captures the notion that, assuming ref holds in some previous interval, h executes in
a manner consistent with respect to ref and some abstract stream. Within h
Y ,Z ref , interval relation ref
can neither be weakened nor strengthened in the trivial manner because it appears in both the antecendent
and consequent of the implication.

These notational conventions can be used to split the proof of ref ∈ IntvRelY ,Z as described by the
following lemma.

Lemma 14. For any Y ,Z ⊆ Var and ref ∈ IntvRelY ,Z that is externally independent, ref • Z : h

Y : g
holds

if h
Y ,Z ref and ref ∧ (h ↓)V (g ↑) hold.

Proof. This holds by expanding the definitions and applying the property that p ⇒ (∃x • q ∧ r) holds if
both p ⇒ ∃x • q and ∀x • p ∧ q ⇒ r hold. 2

13

Condition ref ∧ (h ↓) V (g ↑) may be decomposed using standard rules of logic. On the other hand,
decomposition of h
Y ,Z ref depends on the structure of h, and the lemma below enables simplification for
common programming constructs modelled by h. As the names imply, (Sequential) is used for sequential
composition, (Iteration) is used for looping constructs (e.g., while loops) and (Non-deterministic choice) is
used for non-deterministic choice (e.g., if-then-else statements). The fourth rule (Weaken) allows simplifi-
cation of the interval predicate h1 that models the program behaviour.

Lemma 15. If Y ,Z ⊆ Var, h, h1, h2 ∈ IntvPredZ , ε ∈ T is a constant, and ref ∈ IntvRelY ,Z , then each of
the following holds, provided ref is externally independent.

h1
Y ,Z ref ∧ h2
Y ,Z ref ⇒ (h1 ; h2)
Y ,Z ref (Sequential)

h
Y ,Z ref ⇒ (h ∧ ε ≤ `)ω+
Y ,Z ref (Iteration)

(h
Y ,Z ref1) ∨ (h
Y ,Z ref2)⇒ h
Y ,Z (ref1 ∨ ref2) (Non-deterministic choice)

(h2
Y ,Z ref) ∧ (h1 V h2)⇒ h1
Y ,Z ref (Weaken)

If a refinement relation operates on two disjoint portions of the stream, it is possible to split the refinement
as follows. Disjointness allows one to prove mixed refinement, where the system states are split into disjoint
subsets and different refinement relations are used to verify refinement between these subsets.

Lemma 16 (Disjointness). Let W ,X ,Y ,Z ⊆ Var such that Y ∩ Z = ∅, W ∪X = Y and W ∩X = ∅.
If h1, h2 ∈ IntvPredZ , refW ∈ IntvRelW ,Z , refX ∈ IntvRelX ,Z , and ? ∈ {∧,∨}, then the following holds
provided both refW and refX are externally independent.

(h1
W ,Z refW) ∧ (h2
X ,Z refX) ⇒ (h1 ∧ h2)
Y ,Z (refW ? refX)

With methods for proving refinement via forward simulation in place, we work towards our two examples
showing how discrete and real-time refinement may be performed. To demonstrate the advantages of our
interval-based approach, we show how different expression evaluation operators from [28] may be encoded in
our logic, which is used to simplify reasoning about fine-grained concurrency and sampling. Our real-time
example additionally includes some aspects of the time bands theory to enable reasoning about system
components over multiple time granularities.

5. Evaluating state assertions over intervals

We aim to use our interval-based logic to simplify verification and construction of fine-grained concurrent
programs and real-time systems. To this end, we aim to enable one to write complex expressions involving
potentially many shared variables whose stability may not be guaranteed due to interference from the
environment. Here, the order in which the variables in such expressions are read may not be fixed. One
solution is to expand such expressions so that the assignments are made explicit (as done in Figure 4).
However, as the number of possible permutations is factorial to the number of variables in each expression,
such solutions are not ideal.

Interval-based reasoning provides the opportunity to use methods for nondeterministic expression evalu-
ation [28], which captures the possible low-level interleavings (e.g., Figure 4) at a higher-level of abstraction.
These have been imported into our interval-based setting in [19, 18]. We present two types of expression
evaluation: actual states evaluation, where the given expression is evaluated instantaneously, and apparent
states evaluation, where expressions are evaluated by reading the values of its variables at potentially dif-
ferent times. Actual states evaluation is captured by operators ‘�’ and ‘ �’ (Section 3.1), which we use in
Section 5.1 to formalise stability over an interval. Apparent states evaluations are defined in Section 5.2.

14

Notation Definition Informal meaning

←−c �c ; true c holds at the end of the given interval
−→c finite ; �c c holds at the start of the given interval

stable.c �−→c ∧ �c c is stable in the given interval

stable.v ∃k : Val • stable.(v = k) v ’s value is stable with respect to its previous value

stable.V ∀v : V • stable.v all variables in V are stable

r stable.v ∃k : Val •
−−−→
v = k ∧ �

←−−−
v = k v ’s value is right stable

r stable.V ∀v : V • r stable.v all variables in V right stable

Table 4: State predicate operators and variable stability — c is a state predicate, ∆ is an interval, s is a stream, v a variable
and V a set of variables

5.1. Stability

Intervals may be open or closed at either end and our framework aims to provide a uniform treatment
of both discrete and real-time systems. Table 4 provides operators for evaluating state predicates at the
endpoints of an interval, which are in turn used to define predicate and variable stability.

The definitions of ←−c and −→c are straightforward; recall that the underline operator g states that g holds
in the given interval and that the interval is non-empty (Table 2). For variable v , stable.v says that the value
of v throughout the current interval is unchanged from its value at the end of some previous interval. Such
definitions are necessary because the ‘;’ operator (which models sequential composition and forms the basis
for iteration) partitions a given interval into disjoint subintervals. Thus, v = k holding at the beginning of
the current interval does not guarantee v ’s value was k at the end of the previous interval. Similarly, right
stability of v (i.e., r stable.v) ensures that the value of v is the same at the end of the current interval and
the beginning of the next interval, which is sometimes necessary to link the behaviour of the current interval
to an interval that follows immediately after.

Note that other, more general forms of evaluation are possible [28]; see also Section 5.2. Moreover, the
definitions in Table 4 are independent of the underlying instantiations of T .

Example 17. Suppose v and s are as defined in Example 6. Both
−−−−→
v = 10.[0, 1).s and

←−−−−
v = 20.[1, 2].s hold,

i.e., the limit of the value of v approaching time 1 from the left differs from the value at time 1. There-
fore (¬ stable.v).[1, 2].s holds. Additionally, if �(v = 20).(2, 3).s holds, then both r stable.v .[1, 2].s and
stable.v .(2, 3).s hold. 2

5.2. Apparent states evaluation

In the presence of possibly interfering processes e.g., due to concurrency or a real-time environment, the
values of variables are unstable in the interval of evaluation. Therefore a model that assumes expressions
containing multiple shared variables can be evaluated instantaneously may not be implementable without
the introduction of contention inducing locks [1, 30]. As we have done in Figure 4, one may split expression
evaluation into a number of atomic steps to make the underlying atomicity explicit. However, as already
discussed, this approach is undesirable as it causes the complexity of expression evaluation to increase
factorially with the number of variables in an expression — evaluation of an expression with n (global)
variables would require one to check n! permutations of the read order.

Interval-based reasoning enables one to incorporate methods for nondeterministically evaluating state
predicates over an evaluation interval [28], which allow the possible permutations in the read order of
variables to be considered at a high level of abstraction. For this paper, we use apparent states evaluators,
which allow one to evaluate an expression e with respect to the set of states that occur within an interval.
Each variable of e is assumed to be read at most once in the interval of evaluation, but at potentially

15

different instances. An apparent state is generated by picking a value for each variable from the set of actual
values of the variable over the interval of evaluation [28]. For ∆ ∈ Intv and s ∈ StreamV , we define:

apparent .∆.s =̂ {σ: ΣV | ∀ v : V • ∃t : ∆ • σ.v = s.t .v}

Two useful operators for sets of apparent states evaluation allow one to formalise that c definitely hold
regardless of when the variables of c are sampled (denoted �c) and c possibly hold for some possible sampling
of its variables (denoted �c), which are defined as follows.

(�c).∆.s =̂ ∀σ: apparent .∆.s • c.σ (�c).∆.s =̂ ∃σ: apparent .∆.s • c.σ

Hence, (�c).∆.s holds iff any possible sampling of the variables of c in s within ∆ results in values such
that c evaluates to true. Similarly, (�c).∆.s holds iff there is some possible way of sampling the variables
of c in s within ∆ such that c evaluates to true. Note that for any t ∈ ∆, s.t ∈ apparent .∆.s, i.e., every
actual state is a possible apparent state. However, there may be a state σ ∈ apparent .∆.s such that σ 6= s.t
for all t ∈ ∆. Thus, �c V �c and �c V �c, but the converse does not necessarily hold.

Example 18. Consider an evaluation of u < v with coarse-grained atomicity within ∆ in stream z as
depicted by Figure 8. Suppose u := 1 ; v := 1 is executed by another parallel process from an initial state
that satisfies u, v = 0, 0, where the writes to u and v occur at times t1 ∈ ∆ and t2 ∈ ∆, respectively.
Assuming no other (parallel) modifications to u and v , the set of actual states of z within ∆ are:

SS = {{u 7→ 0, v 7→ 0}, {u 7→ 1, v 7→ 0}, {u 7→ 1, v 7→ 1}}

Evaluating u < v in the set of actual states above always results in false. This is depicted in Figure 8, where
¬ �(u < v) (i.e., �(u ≥ v)) holds within ∆ in z because u ≥ v holds in z regardless of where u and v are
read within ∆ because both u and v are read at the same time.

t0 t1 t2
z

∆

T

read(v)
read(u)

write(v , 0)
write(u, 0)

write(u, 1)

¬ �(u < v).∆.z

write(v , 1)

Figure 8: Actual states evaluation

z

∆

T
write(v , 0)
write(u, 0)

write(u, 1) write(v , 1)

t2t1t0

read(v)read(u)

�(u < v).∆.z

Figure 9: Apparent states evaluation

Now assume that process p evaluates u < v with fine-grained atomicity within ∆. The set of apparent
states corresponding to ∆ is:

apparent .∆.s = SS ∪ {{u 7→ 0, v 7→ 1}}

where the additional apparent state {u 7→ 0, v 7→ 1} may be obtained by reading u with value 0 (before t1)
and v with value 1 (after t2). Unlike the actual states evaluation, u < v may result in true when evaluating
in the apparent states as depicted in Figure 9. In particular, this occurs if u is read before its value is
updated to 1 and v is read after its value is updated to 1.

Note that v = v still only has one possible value, true, i.e., apparent states evaluation assumes that the
same value of v is used for both occurrences of v . 2

Under certain stability assumptions on the variables of c, it is possible to strengthen both �c V �c and

�c V �c into an equivalence. In particular, assuming vars.c denotes the free variables of state predicate
c, we obtain the following lemma from [28]. The theory in [28] is with respect to sets of states, which may
be imported to our context by taking the states of the given stream within the interval under consideration
as the set of states in [28].

16

Lemma 19. If v is a variable and c a state predicate, then stable.(vars.c\{v})V (�c = �c) ∧ (�c = �c).

Thus, by Lemma 19, instability of at most one variable is enough to guarantee equivalence of actual state
and apparent state evaluators.

6. Fine-grained concurrent programs

We now use our logic to model the behaviour of the programs in Figures 1 and 2, then prove data
refinement between them using the framework that we have developed. Section 6.1 provides an interval-
based semantics for both examples and Section 6.2 proves refinement between them for the semantics in
Section 6.1.

6.1. An interval-based semantics

We refrain from introducing a formal programming syntax with an interval-based semantics as this also
introduces an additional layer of complexity. Instead, we present a possible interval-based semantics for
our running example (Figures 1 and 2) directly by modelling the behaviours of both program using interval
predicates. We interpret concurrency using a true concurrency semantics. Note that this interpretation
below is not the only possibility — one could also, for example, give an interval-based interleaved semantics
(e.g., [46, 7]). However, such a treatment would defeat the purpose of this example, which is to show that
interval predicates form a natural basis for reasoning about true concurrency.

We formalise the behaviours of AInit and CInit as follows, where ∆ ∈ Interval , s ∈ StreamN , y ∈
StreamY and z ∈ StreamZ .

AInit .∆.s.y =̂ �¬grd .∆.y CInit .∆.s.z =̂ �(v ≤ u).∆.z

Hence, initialisation of the abstract systems ensures that ¬grd holds throughout the given interval, and that
the interval is non-empty. The concrete initialisation is similar.

As with state-based data refinement [11], we have freedom to instantiate the finalisations depending on
which aspects of the systems we would like to make observable. For this example, we assume the internal
representations of m at both the abstract and concrete levels are equal to an observable variable M . Recall
that for our system to be valid, finalisation must be an interval predicate of the form �r , where r is a state
relation. Therefore, for σ ∈ ΣY , ρ ∈ ΣN and τ ∈ ΣZ , we define

fa.σ.ρ =̂ (σ.m = ρ.M) fc.τ.ρ =̂ (σ.m = ρ.M)

then obtain

AFin =̂ �fa CFin =̂ �fc

Next, we formalise the behaviours of the abstract and concrete processes. The parallel composition of
processes p and q over an interval ∆ is defined as the conjunction of the behaviours of both p and q over ∆
(also see [14, 15]).3 The behaviour of sequential composition is modelled using ‘;’, while non-deterministic
choice is modelled by disjunction. Note that we assume ‘;’ binds more tightly than binary boolean operators.
To model fine-grained concurrency, evaluation of a guard b is interpreted as �b (see Section 5.2). Below,
we assume the existence of a state predicate Term.p that holds4 iff process p has terminated and we define

Termp =̂ �Term.p

3Note that others have also treated parallel composition as conjunction [1, 29]. However, Abadi and Lamport [1] admit
interleaving within their conjunction operator while Hehner only admits disjoint concurrency [29].

4Formally, Term.p can be encoded using program counters, but we leave this semi-formal here for simplicity. In particular,
one could introduce a label term for termination, and define Term.p =̂ (pcp = term).

17

Thus, we obtain:

Process ap︷ ︸︸ ︷(
�grd ; �(m = 1) ∨
�¬grd ; �(m = 2)

)
; Termap ∧

Process aq︷ ︸︸ ︷(
�b ; �(grd) ∨
�¬b

)
; Termaq (8)

Process cp︷ ︸︸ ︷(
�(u < v) ; �(m = 1) ∨
�(u ≥ v) ; �(m = 2)

)
; Termcp ∧

Process cq︷ ︸︸ ︷(
�(0 < w) ; ∃k • �(k = (u + 1)) ; �(v = k) ∨
�(0 ≥ w) ; ∃k • �(k = (u − 1)) ; �(v = k)

)
; Termcq (9)

Condition (8) models the concurrent behaviour of processes ap and aq . Process ap either behaves as

�grd ; �(m = 1) (grd evaluates to true, then the behaviour of m := 1 holds, i.e., the interval under

consideration is non-empty and m = 1 holds throughout the interval) or �¬grd ; �(m = 2) (¬grd evaluates
to true, then the behaviour of m := 2 holds). Process aq is similar, but also models the assignment to
grd . We now explain execution of the abstract system as formalised by (8). Note that ‘;’ distributes over
‘∨’, but does not necessarily distribute over ‘∧’ [20]. Furthermore, the points at which the intervals are
partitioned using ‘;’ within (8) and (9) are unsynchronised. For example, suppose process ap behaves as

�grd ; �(m = 1) ; Termap and aq behaves as �b ; �grd ; Termaq within interval ∆ of stream y , i.e.,

((�grd ; �(m = 1) ; Termap) ∧ (�b ; �grd ; Termaq)).∆.y

holds for some interval ∆ and abstract stream y . By pointwise lifting, this holds iff both of the following
hold:

(�grd ; �(m = 1) ; Termap).∆.y (�b ; �grd ; Termaq).∆.y

The ‘;’ operators within the two formulae above may split ∆ independently. A visualisation of a possible
splitting is given in Figure 10.

T

�¬grd
�b

�grd

�(grd)

ap

aq

Termaq

Termap�(m = 1)

Figure 10: Possible execution of the abstract program in Figure 1

Condition (9), which models the concurrent execution of the concrete program has the same overall
structure of (8). One point of difference is the semantics of assignments of the form w := e, where e is an
non-constant expression. Namely like [19, 15], we split an assignment into two parts; first e is evaluated,
which returns a constant value k , then the value of w is updated to k . The evaluation of e to k may be
modelled by �(e = k) to capture the fine-grained atomicity. Furthermore, to see that the semantics is
accurate, we note that interval predicate �(u < v) is equivalent to

∃up , vp • ((�(up = u) ; �(vp = v)) ∨ (�(vp = v) ; �(up = u))) ; (up < vp)

Hence, the fine-grained behaviour of Figure 2 is captured without having to explicitly transform the guard
evaluation at cp1 into individual reads as done in Figure 4.

18

6.2. Proving refinement

With the necessary theoretical background and interval-based semantics of our example programs in
place, we now verify data refinement between them. First, using Lemma 19, we simplify (8) and (9) and
replace each occurrence of ‘ �’ by ‘ �’ as follows:(

�grd ; �(m = 1) ∨ �¬grd ; �(m = 2)
)

; Termap ∧
(

�b ; �grd ∨ �¬b
)

; Termaq (Abs-IP)(
�(u < v) ; �(m = 1) ∨ �(u ≥ v) ; �(m = 2)

)
; Termcp ∧

(
CQ1 ∨ CQ2

)
; Termcq (Conc-IP)

where

CQ1 =̂ �(0 < w) ; ∃k • �(k = (u + 1)) ; �(v = k)

CQ2 =̂ �(0 ≥ w) ; ∃k • �(k = (u − 1)) ; �(v = k)

The representation variables of the abstract and concrete programs are given by Y = {grd ,m} and
Z = {u, v ,m}, respectively. We prove forward simulation using ref defined below (recalling that relation
var rel is defined in Section 2):

ref =̂ �var rel ∧ �(Termcp ↓ ⇒ Termap ↑) ∧ �(Termcq ↓ ⇒ Termaq ↑)

By Theorem 11, we must prove each of the following:

∀∆: Intv , z : StreamZ , s: StreamN
• CInit .∆.s.z ⇒ ∃y : StreamY

•AInit .∆.s.y ∧ ref .∆.y .z (10)

ref •
Z : (Conc-IP)

Y : (Abs-IP)
(11)

∀z : StreamZ , y : StreamY ,∆: Intv , s: StreamN
•

ref .∆.y .z ∧ CFin.∆.z .s ⇒ AFin.∆.y .s (12)

These proofs proceed as follows.

Proof of (10). Fixing ∆, s and z , then instantiating CInit , AInit and rep, we have

�(v ≤ u).∆.z ⇒ ∃y : StreamY
•�¬grd .∆.y ∧

(�var rel ∧ �(Termcp ↓⇒ Termap ↑) ∧ �(Termcq ↓⇒ Termaq ↑)).∆.y .z
⇐ definition of Termcp and Termap

�(v ≤ u).∆.z ⇒ ∃y : StreamY
•�¬grd .∆.y ∧ �var rel .∆.y .z

⇐ pick a y such that for all t ∈ ∆, (¬grd).(y .t)
true 2

Proof of (11). We use Lemma 14, which requires that we show that both of the following hold.

(Conc-IP)
Y ,Z ref (13)

ref ∧ (Conc-IP) ↓ V (Abs-IP) ↑ (14)

The proof of (13) is trivial by construction. Expanding the definitions of (Abs-IP) and (Conc-IP), then
applying some straightforward propositional logic, (14) holds if both of the following hold.

ref ∧
((

�(u < v) ; �(m = 1) ∨
�(u ≥ v) ; �(m = 2)

)
; Termcp

)yV ((
�grd ; �(m = 1) ∨
�¬grd ; �(m = 2)

)
; Termap

)x (15)

ref ∧
((

CQ1 ∨ CQ2
)

; Termcq

)yV ((
�b ; �grd ∨ �¬b

)
; Termaq

)x (16)

We present details of the more complex condition (16). This proof uses the fact that stable.u holds in interval
in which cq executes.

19

ref ∧
((

CQ1 ∨ CQ2
)

; Termcq

)y
V Lemma 13 (distribute projection),

�(u <∞) and ref splits, ‘;’ is monotonic(
ref ∧

(
�(0 < w) ; ∃k • �(k − 1 = u) ; �(v = k) ∨
�(0 ≥ w) ; true

)y) ; (ref ∧ Termcq) ↓

V stable.u, (�c ; true)V �c, definition of ref(
ref ∧

(
�(0 < w) ; ∃k • true ; �((v = k) ∧ (u = k − 1)) ∨
�(0 ≥ w)

)y) ; (Termaq ↑)

V logic(
ref ∧

(
�(0 < w) ; true ; �(u < v) ∨
�(0 ≥ w)

)y) ; (Termaq ↑)

V �c ; true V �c(
ref ∧

(
�(0 < w) ; �(u < v) ∨
�(0 ≥ w)

)y) ; (Termaq ↑)

V use ref , Lemma 13 (distribute projection)((
�b ; �grd ∨ �¬b

)
; Termaq

)x
The proof of (15) has a similar structure: first ‘↓’ then ref are distributed through ‘;’, and then �var rel from
ref is used to transform predicate on the left of ‘;’ to its abstract counterpart, while �(Termcp ↓ ⇒ Termap ↑)
is used to transform Termcp to Termap . 2

Proof of (12). We fix z , y , ∆ and s, then expand the definitions of ref , CFin and AFin to obtain the
following calculation after weakening the antecedent:

�var rel .∆.y .z ∧ �fc.∆.z .s ⇒ �fa.∆.y .s
= expanding definition of � and logic
∀t : ∆ • var rel .(y .t).(z .t) ∧ fc.(z .t).(s.t)⇒ fa.(y .t).(s.t)

= expanding definitions of var rel , fc and fa
∀t : ∆ • ((y .t).m = (z .t).m) ∧ ((z .t).m = (s.t).M)⇒ ((y .t).m = (s.t).M)

= logic
true 2

Discussion. The example demonstrates data refinement for concurrency and the benefits this provides. The
proofs themselves are succinct (and consequently easier to understand) because the reasoning is performed
at a high level of abstraction. Expression evaluation is assumed to take time and evaluation operators
such as ‘ �’ and ‘ �’ are used to capture the inherent nondeterminism that results from the fine-grained
concurrent executions during the interval of evaluation. Thus, the translation of the program in Figure 2
to the lower-level program Figure 4 that makes the nondeterminism in expression evaluation explicit is
unnecessary. Instead, one is able to provide a semantics for the program in Figure 2 directly. Moreover,
the concrete and abstract executes are matched in a more intuitive manner: the concrete guard evaluations
are matched to the abstract guard evaluations, and the concrete assignments are matched to the abstract
assignments. Finally, unlike a state-based forward simulation proof, which requires that a verifier explicitly
decides which of the concrete steps are non-stuttering, then find a corresponding abstract step for each
non-stuttering step, interval-based reasoning allows one to remove this analysis step altogether because the
stuttering steps may be combined to form a single interval predicate.

7. Real-time systems

In this section, we present a systematic refinement-based development of a real-time controller. Our
theory incorporates parts of the time-bands methodology [10, 9] to allow reasoning about multiple time
granularities, e.g., delays in sampling and turning physical components on/off. We review accuracy and
precision as used in the time-bands theory in Section 7.1. We present our example in Section 7.2 and our

20

abstract system in Section 7.3, where we establish safety of the system. In Section 7.4, we describe numerous
issues with the abstract system, which are used to motivate a more complex implementation. In Section 7.5,
we prove data refinement between the abstract and concrete systems, which in turn implies that the concrete
system is correct.

7.1. A time-bands approach to accuracy and precision

In addition to demonstrating that our method can cope with data refinement for real-time systems, we
also show how the framework can be used to reason about robust specifications with real-world delays. In
a truly concurrent system, a sampled value of any variable represents an approximation of the true value of
the variable in the environment, and reasoning about these is, in general, difficult. For real-time systems,
our approach incorporates the time-bands methodology [9, 10, 19] to simplify reasoning. We refrain from
presenting all the details of the time bands framework [10] to enable our presentation to better focus on the
data refinement proof at hand.

The time-bands framework enables reasoning over multiple time granularities. Each time band represents
a different time granularity (e.g., minutes, seconds, milliseconds). Formally, we assume TimeBand denotes
the type of a time band, and we define the precision of B ∈ TimeBand , denoted pn.B ∈ R>0, to be the unit
of time for B . For each time band B , we distinguish its events, which are assumed to take at most pn.B
units of time to complete. The full time-bands theory allows many types of relationships between different
time bands to be stated [10]. For our purposes, it is enough to allow different system components to be
specified at different time bands and to map their behaviours to a base time band where time is a modelled
using R.

A variable may be specified at multiple time bands; the accuracy of the variable in a time band refers to
the maximum change in the value of the variable within any event of the time band. In general, accuracy
may refer to a function on one or more variables thus, we formalise the concept as follows. For a time band
B and function f , we let acc.f .B ∈ R≥0 denote the accuracy of f in B . To relate precision and accuracy to
intervals and streams we use the following function, which for a real-valued function f returns the maximum
change between the values of f within ∆ in a stream s.

(mc.f).∆.s =̂ if empty.∆ then 0 else (let vs = {val | ∃t : ∆ • val = (s.t).f } in lub.vs − glb.vs)

Example 20. Consider a variable pressure in the interval ∆ depicted below. Then mc.pressure.∆ < k1−k2.
Note that this does not place any constraints on the maximum instantaneous rate of change of pressure. For
example, at time t , the rate of change of pressure exceeds k1 − k2. If pressure is an output of a component
such as a pump, using mc to specify pump behaviour provides one with the freedom to use different pump
implementations (e.g., centrifugal vs. rotary) [25], whose instantaneous rates of change differ, but have the
same accuracy. 2

t
∆

pressure

k1

k2

Figure 11: Maximum change in pressure over ∆

We say f is consistent with time band B in interval ∆ and stream s iff consistent .f .B .∆.s holds, where

con.f .B .∆.s =̂ `.∆ ≤ pn.B ⇒ (mc.f).∆.s ≤ acc.f .B

21

Thus, con.f .B .∆.s holds iff provided the length of ∆ is below the precision of B , the maximum change to f
in ∆ is below the accuracy of f in B . Consistency is used to abstractly specify behaviours of events with
respect to a time band. We extend this to sets of functions F and sets time bands BS as follows:

con.F .B =̂ ∀f : F • con.f .B con.f .BS =̂ ∀B : BS • con.f .B

The lemma below is from [19] and it allows one to relate sampled values to the actual values in the
environment based on the accuracy of the variables being sampled.

Lemma 21. If x and y are real-valued variables in time bands Bx and By , respectively, and � ∈ {≥, >},
then both of the following hold:

` ≤ min(pn.Bx , pn.By) ∧ con.x .Bx ∧ con.y .By ∧ �(x − acc.x .Bx � y + acc.y .By)V �(x � y) (17)

` ≤ pn.Bx ∧ con.x .Bx ∧ stable.y ∧ �(x − acc.x .B � y)V �(x � y) (18)

Thus, (17) states that if the length of a sampling interval ∆ is less than or equal to both pn.Bx and pn.By ,
the given stream s in consistent with respect to x (in Bx) and y (in By) and it is possible to sample x and
y such that x − acc.x .Bx � y + acc.y .By holds, then it must definitely be true that x � y holds within
∆ in s (regardless of how x and y are sampled in ∆). The second condition (18) follows from (17), where
stability of y is used to derive a simpler condition.

7.2. A multi-pump system

We develop a controller for the multipump system depicted Figure 12. Each pump removes water from
a common reservoir into a common pipe. Such systems are often used in water distribution systems where
the output of a single pump cannot guarantee adequate water pressure, or where levels of redundancy
are required. We focus on the controller for a single pump (Figure 13), which must maintain the water
pressure in the pipe between High and Low . The requirements for the pump are simple: the pump must
be stopped (physically) when the water pressure exceeds High, and must be running (physically) when the
water pressure is below Low .

We formalise these requirements as follows. The observable status of the pump is given by a variable
Pump, whose value is of type Status =̂ {stopped , running , starting , stopping}. The observable water pressure
at the pressure sensor in Figure 13 is given by a variable Pressure, which is a positive real-valued number.
The pump aims to regulate Pressure between two critical values Low and High where Low < High. Thus,
the safety requirements of the system are formalised by the interval predicates:

�(Pressure ≥ High ⇒ Pump = stopped) (19)

�(Pressure ≤ Low ⇒ Pump = running) (20)

Next, we develop an implementation system, which includes a controller and numerous environment
assumptions, that ensures the safety requirements above are satisfied. The development proceeds in a
step-wise manner as follows.

1. An abstract system that satisfies both safety requirements is developed. Parts of the abstract controller
includes specification statements that must be further refined into executable code. The proof of safety
is much simpler at the abstract level as the details of the system components are not fully designed.

2. Several issues with the abstract system are identified (see Section 7.4), which motivates development
of a more complex concrete system. Here, further refinements including component decoupling is
performed (see Figure 15) and the controller is specified using executable code.

3. Data refinement between the concrete and abstract systems is proved. Because the observable be-
haviours of the concrete are a subset of those of the abstract, this implies safety for the concrete
system.

The time-bands theory is integrated into both the abstract and concrete levels to reason about delays in the
controller and environment. This enables the formal specifications and reasoning to be more concise, which
in turn improves readability.

22

Reservoir

Pump 3 Pump 2 Pump 1

Figure 12: Multipump water distribution
system

Pump

pressure

Figure 13: Single pump: dashed
lines indicate sampling

AInit :Stopped ∧ pressure ≥ High

do true then
if ¬Stopped ∧ pressure ≥ HighT then

pump := stopped † BA

u ¬Running ∧ pressure ≤ LowT then
pump := running † BA

u J(21) ∧ (22) ∧ (23)K
endif

enddo

Figure 14: Abstract controller pseudocode

7.3. An abstract system

In this section we develop an abstract system, which includes a (partially developed) pump controller
and environment specification that satisfies the safety properties. At this level, we combine the delays of
the controller and pump into a single time band BA. This time band is decomposed into separate controller
and pump time bands in the subsequent refinement (Section 7.4).

We first define the observable state of the system, and hence, start by defining the finalisation. To this
end, we let Y =̂ {pressure, pump} and assume that σ ∈ ΣY . The internal representation variables pressure
and pump are mapped to observable variables Pressure ∈ R and Pump ∈ Status, respectively. We let
W =̂ {Pressure,Pump} and assume that ρ ∈ ΣW below to obtain the finalisation AFin below 5.

AFin Rel .σ.ρ =̂ σ.pressure = ρ.Pressure ∧
((σ.pressure ≥ High) ∨ (σ.pressure ≤ Low)⇒ σ.pump = ρ.Pump)

AFin =̂ �AFin Rel

Thus, proof obligations (19) and (20) may be replaced by the following obligations on internal variables
because AFin ∧ ((21) ∧ (22))↑ V ((19) ∧ (20))↓ holds.

�(pressure ≥ High ⇒ pump = stopped) (21)

�(pressure ≤ Low ⇒ pump = running) (22)

Defining Stopped =̂ (pump = stopped) and Running =̂ (pump = running), we obtain the controller in
Figure 14 expressed using pseudocode. Note that the controller (Figure 14) uses threshold values HighT and
LowT (as opposed to critical values High and Low) to allow for the fact that pressure may change over the
interval in which the pump is switched on/off.

Each iteration of the loop executes the main if statement, which nondeterministically chooses between
one of the three guarded statements. At each iteration, input pressure is sampled and compared with
high/low thresholds (given by HighT and LowT). The pump is switched off (on) whenever pressure ≥ HighT

(pressure ≤ LowT) is detected and the pump is not already off (on). The third statement of the controller
is an abstract specification [36, 19] that guarantees both (21) and (22) as well as (23) below 6:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
¬Stopped ⇒ (pressure < High −Acc) ∧

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
¬Running ⇒ (pressure > Low + Acc) (23)

By (23), if pump is not stopped (running) at the end of the interval, then pressure is below High − Acc
(above Low + Acc). The specification statement is currently not executable by any machine, but using a
refinement step (Section 7.4), we develop it into executable code.

5Note that it is possible to use a stronger finalisation so that the second conjunct in AFin Rel is replaced by σ.pump =
ρ.Pump, however, this potentially disallows future refinements of the pump behaviour when Low < pressure < High.

6Note that this condition is discovered as part of our proof using the methods in [19].

23

The first and second branches of the if statement of the abstract controller include †BA, which indicate
that they are events of time band BA. This means that for each iteration of the loop execution of the first
two branches take pn.BA time to complete.

Thus, the behaviour of each iteration of the do loop of the abstract controller is defined by interval
predicate PumpCont below. Given that outVars is the set of output variables of the controller, each guard c
of the if statement (where c is a state predicate) is modelled by interval predicate �c ∧ stable.outVars [19],
which holds for an interval ∆ and stream s if it is possible to sample the variables of c in s within ∆ such that
c holds in the apparent state generated by sampling the variables of c at potentially different times in ∆.
Additionally the output variables are stable during the interval of evaluation. The guard of the first branch of
the if statement of the controller is therefore modelled by �(¬Stopped ∧ (pressure ≥ HighT)) ∧ stable.pump,
which may be simplified to �¬Stopped ∧ �(pressure ≥ HighT) (see Calculation 1 in Appendix B).

Therefore, we obtain the following interval predicates that model the guarded actions of the abstract
controller. Recall that ` denotes the length of the interval.

PumpCont1 =̂ ((�¬Stopped ∧ �(pressure ≥ HighT)) ; �Stopped) ∧ r stable.pump ∧ ` ≤ pn.BA

PumpCont2 =̂ ((�¬Running ∧ �(pressure ≤ LowT)) ; �Running) ∧ r stable.pump ∧ ` ≤ pn.BA

PumpCont3 =̂ (21) ∧ (22) ∧ (23)

PumpCont =̂ PumpCont1 ∨ PumpCont2 ∨ PumpCont3

To define the behaviour of the complete system one must also define the behaviour of the environment of
the controller, which in this example controls the values of variable pressure. We obtain interval predicate
AEnv below, which describes how pressure changes over an interval of length at most pn.BA.

AEnv =̂ 2(con.pressure.BA)

Thus, for any interval whose length is at most pn.BA, the maximum difference between two values of pressure
is at most acc.pressure.BA.

We assume that the system is initially safe by assuming pump is initially stopped and that the pressure is
sufficient (above High). The controller PumpCont executes with its environment AEnv in a truly concurrent
manner and is defined by AProg below. Furthermore, because the controllers we consider are for reactive
systems, we assume that they execute forever and hence use ∞ iteration 7. Thus we obtain the following,
recalling that W and Y are the sets of observable and abstract internal variables, respectively.

AInit Rel =̂ λ ρ, σ • σ.Stopped ∧ σ.pressure ≥ High

AInit IR =̂ λ∆, s, y • �AInit Rel .∆.s.y ∧ (r stable.pump).∆.y

AProg =̂ � AInit ∧ PumpCont∞ ∧ AEnv

ASys =̂ (AInit IR,AProg ,AFin)W ,Y

Showing that a program satisfies a property (expressed as an interval predicate) is reduced to a proof
that the behaviour of the program (expressed as an interval predicate) implies the property. The property
under consideration may express safety, progress and timing requirements [19]. In particular, we show

AProg V (21) ∧ (22) (24)

This proof uses the techniques described in [19], and hence, its details are deferred to Appendix B.

7.4. A concrete pump system

The abstract system we have developed is safe with respect to the system requirements (formalised
by (21) and (22)). However, there are issues in the abstract system that must be refined to obtain an
implementation with an executable controller.

7Note that this is not a restriction of our theory, i.e., one could also just as easily model terminating or potentially terminating
systems.

24

Pump

pressure2

pressure1

signal

Controller

Figure 15: Single concrete pump

CInit : Stopped ∧ pressure1 + pressure2 ≥ High ∧ ¬signal

do true then
if signal ∧ (pressure1 + pressure2 ≥ CHighT) then

signal := false
u ¬signal ∧ (pressure1 + pressure2 ≤ CLowT) then

signal := true
else idle
endif † BC

enddo

Figure 16: Concrete controller pseudocode

1. The pump controller contains a specification statement, which is not executable.

2. The controller directly modifies the various pump modes; in reality controllers set a signal, which in
turn influences the pump mode.

3. There are only two pump modes: running and stopped , and the pump instantaneously switches between
the two. In reality, physical constraints dictate that there are delays when switching between these
modes, i.e., if a pump is running, there is a short duration of time before it can be stopped, and
similarly if it is stopped, then there is a duration of time before the pump begins to run.

4. The abstract system is a simplification of the implementation because it only uses a single pressure
reading. For the intended multipump implementation (see Figure 12), where each pump is individually
controlled, one must typically make two pressure measurements pressure1 and pressure2 (see Figure 15)
and determine the value of pressure from these [41].

Therefore, in the concrete system (see Figure 15), we perform three refinements.

1. The (software) pump controller, which reads pressure values and sends on/off signals, is decoupled from
the (hardware) pump, which reads on/off signals and changes the status of the pump accordingly.

2. The value of the abstract reading pressure is inferred as the sum of two different pressure readings
pressure1 and pressure2 in the concrete system as depicted in Figure 15.8 For simplicity, we assume
that the readings themselves are accurate.

3. The pump controller itself is refined so that the changes above are taken into account and that the
controller does not contain any specification statements.

Modelling the controller. The controller has inputs pressure1 and pressure2, which are positive and real-
valued, and an output signal , which is a boolean. Pseudocode for the controller is given in Figure 16.
We use else to denote a branch whose guard holds iff all preceding guards evaluate to false. We will
decompose the abstract controller into a concrete controller and a pump, each of which operate at different
time granularities. Thus, we use BC and BP denote the time bands of the controller and pump, respectively.
For our proof we assume:

pn.BC ≤ pn.BA

i.e., that the sampling rate of the concrete implementation is potentially faster than the abstract. Other
restrictions on the time bands (e.g., (36)) are introduced as part of the development.

The behaviour of the concrete controller is formalised by the interval predicates below. Like the abstract
program using Lemma 19 and the fact that stable.signal signal holds, the guard of the first branch simplifies

8Here, for simplicity, we are assuming no other impeding factors such as friction loss at the pipes. One can account for
additional factors affecting the total pressure in future refinements of the system.

25

to �(pressure1 + pressure2 ≥ CHighT) ∧ �signal . However, unlike the guard of PumpCont1, further
simplification of conjunct �(pressure1 + pressure2 ≥ CHighT) is not possible because the expression itself
refers to more than one variable whose value is not guaranteed to be stable [28]. Similarly, one must use the
apparent states operator ‘ �’ in both Cont2 and Cont3, as opposed to the simpler actual states evaluator
‘ �’. We assume the existence of a constant lower limit ε where 0 < ε on the time taken to execute each
iteration of the controller, which ensures absence of Zeno-like behaviour.

Cont1 =̂
(

�(pressure1 + pressure2 ≥ CHighT) ∧ �signal
)

; �¬signal ∧ r stable.signal (25)

Cont2 =̂
(

�(pressure1 + pressure2 ≤ CLowT) ∧ �¬signal
)

; �signal ∧ r stable.signal (26)

Cont3 =̂

((
(�signal ∧ �(pressure1 + pressure2 < CHighT)) ∨
(�¬signal ∧ �(pressure1 + pressure2 > CLowT))

)
; true

)
∧

stable.signal ∧ r stable.signal

(27)

Cont =̂ (
∨

i:{1,2,3} Conti) ∧ ε ≤ ` ≤ pn.BC (28)

Modelling the environment. Due to the decoupling of the controller from the pump, the value of pump is
no longer set by the controller directly; instead pump is an output of the Pump component, which forms
part of the controller’s environment (see Figure 16). We assume that events of the Pump component take
at most pn.BP time, and hence, the value of pump is formalised by the following interval predicates:

CStop =̂ 2

(
�¬signal ⇒ �

−−−−−−→
¬Stopped ∧ ((` < pn.BP ∧ �Stopping) ; �Stopped) ∨ stable.Stopped

)
CRun =̂ 2

(
�signal ⇒ �

−−−−−−−→
¬Running ∧ ((` < pn.BP ∧ �Starting) ; �Running) ∨ stable.Running

)
CPump =̂ CStop ∧ CRun

By CStop, for any subinterval in which the signal stays false:

• if the pump was previously not stopped, then there is an interval of length less than pn.BP over which
the pump is stopping, followed by an interval in which the pump is stopped, and

• if the pump was previously stopped, then it remains stopped throughout the interval.

The behaviour of CRun is similar. Note that interval predicate CPump takes into account the time taken
to physically start/stop pumps, i.e., a pump is not assumed to start/stop instantaneously.

The values pressure1 and pressure2 are under the control of the environment (although pressure1 is also
indirectly influenced by the controller, which controls the pump). Therefore the behaviour of the water
pressure, which changes pressure1 and pressure2, is given by the following interval predicate:

CWater =̂ 2(con.(pressure1 + pressure2).BA ∧ con.{pressure1, pressure2}.{BP ,BC})

One must also define the accuracy of pressure1 and pressure2 with respect to the intervals of length pn.BA.
The output pressure is approximated by the sum pressure1 +pressure2, therefore we require that pressure1 +
pressure2 is at most acc.(pressure1 + pressure2).BA for any interval of length at most pn.BA. Similarly,
because pn.BC ≤ pn.BP (sampling takes place at a faster rate than the time taken to execute a pump
event), we introduce the third conjunct to restrict the accuracy of pressure1 and pressure2 over an interval
in which a pump event takes place.

Modelling the system. The concrete system is now straightforward to specify. Changes to values of signal ,
pressure1, pressure2 and pump occur in a truly concurrent manner. Therefore, the behaviour of the en-
vironment is given by the conjunction of the behaviours of each component and we obtain the following
formalisation of the system.

CInit Rel =̂ λ ρ, τ • (τ.Stopped ∧ (τ.pressure1 + τ.pressure2 > High) ∧ ¬τ.signal)

CInit IR =̂ λ∆, s, z • �CInit Rel .∆.s.z ∧ (r stable.signal).∆.z

26

CInitSys =̂ λ ρ • CInit

CFin Rel =̂ λ τ, ρ • ρ.Pressure = τ.(pressure1 + pressure2) ∧ ρ.Pump = τ.pump

CFin =̂ �CFin Rel

Z =̂ {pressure1, pressure2, signal , pump}
CProg =̂ �CInit ∧ Cont∞ ∧ CPump ∧ CWater

CSys =̂ (CInit IR,CProg ,CFin)W ,Z

7.5. Verifying data refinement

For CSys to be a refinement of ASys, the abstract pump must be stopped (running) whenever the concrete
pump is stopped (running). Unlike ASys in which the controller directly modifies the pump variable, the
concrete system has been decoupled to distinguish the (digital) controller from the (physical) pump, and
hence, must deal with delays in sending the signal and in turning the pump on/off in response to the signal.

To show ASys v CSys, we apply Theorem 11 using the interval relation ref below, where σ ∈ ΣY and
τ ∈ ΣZ .

pressure rel =̂ λσ, τ • τ.(pressure1 + pressure2) = σ.pressure

pump rel =̂ λσ, τ • (τ.Running ⇒ σ.Running) ∧ (τ.Stopped ⇒ σ.Stopped) ∧
τ.(Stopping ∨ Starting)⇒ σ.(¬Stopped ∧ ¬Running)

ref =̂ �(pressure rel ∧ pump rel)

Thus, pressure rel .σ.τ holds iff value of pressure in σ is the sum of the values of pressure1 and pressure2 in
τ . State relation pump rel .σ.τ holds iff pump is running (stopped) in σ whenever pump is running (stopped)
in τ and if the pump is starting or stopping in τ , then pump is neither stopped nor running in σ. These are
used by interval relation ref , where ref .∆.y .z holds iff both pressure rel and pump rel hold between y .t
and z .t for each t ∈ ∆.

Using Theorem 11, we use forward simulation to prove refinement. The proofs of the initialisation and
finalisation conditions are trivial, which leaves us with the following proof obligation.

ref •
Z : Cont∞∧CWater∧CPump

Y : PumpCont∞∧AEnv
(29)

Using Lemma 14 to decompose (29), then Lemma 13 to distribute projections, we obtain the following proof
obligations.

Cont∞ ∧ CWater ∧ CPump
Y ,Z ref (30)

ref ∧ (Cont ↓)∞ ∧ (CWater ↓) ∧ (CPump ↓) V AEnv ↑ (31)

ref ∧ (Cont ↓)∞ ∧ (CWater ↓) ∧ (CPump ↓) V (PumpCont ↑)∞ (32)

Proof of (30). This obligation requires that for any interval and stream in which the concrete program
executes, there exists an abstract stream related by ref over the same interval. We have the following
calculation to further decompose (30).

Cont∞ ∧ CWater ∧ CPump
Y ,Z ref
⇐ Theorem 15 (Weaken), 2c splits therefore

Cont∞ ∧ CWater ∧ CPump ⇒ (Cont ∧ CWater ∧ CPump)∞

(Cont ∧ CWater ∧ CPump)∞
Y ,Z ref
⇐ Theorem 15 (Iteration)

Cont ∧ CWater ∧ CPump
Y ,Z ref
= definition
∀∆0,∆: Intv , y0: StreamY , z : StreamZ

•

∆0 ∝∆ ∧ ref .∆0.y0.z ∧ (Cont ∧ CWater ∧ CPump).∆.z ⇒ ∃y : StreamY
• (y0

∆0== y) ∧ ref .∆.y .z

27

This proof obligation is trivial by construction, i.e., one can construct a y such that y0.t = y .t for each
t ∈ ∆0 and (y .t).pressure = (z .t).(pressure1 + pressure2) for each t ∈ ∆.

The proofs of (31) and (32) use existing methods described in [19]; and hence their details are deferred
to Appendix C. Using these proofs, we obtain the following restrictions on the values of the concrete and
abstract threshold values. We define Acci = acc.pressurei .BC and PAcci =̂ acc.pressurei .BP .

HighT ≤ CHighT + Acc1 + Acc2 (33)

LowT ≥ CLowT −Acc1 −Acc2 (34)

CLowT ≤ CHighT − PAcc1 − PAcc2 − 2(Acc1 + Acc2) (35)

pn.BP + pn.BC ≤ pn.BA (36)

Informally speaking, condition (33) ensures that when pressure1 + pressure2 ≥ CHighT is detected by the
first branch of the concrete controller, using the accuracy assumptions defined by CWater , one can ensure
that pressure1 + pressure2 ≥ HighT holds in the abstract system. Condition (34) is similar. Condition (35)
places a restriction on the levels CHighT and CLowT , and (36) defines a relationship between the precision
of the concrete and abstract controllers and the pump.

Discussion. This example continues our research into the development of a concrete controllers from their
abstract specification [19, 19]. Unlike our earlier research, this paper has allowed the state spaces of the
abstract and concrete systems to change using data refinement to justify the replacement. This has has
been beneficial for the pump example above, because the abstract controller is developed with respect to a
system with a pressure sensor, which is later refined to a system with two sensors pressure1 and pressure2.
Additional restrictions are introduced to ensure the sampled values of pressure1 and pressure2 (where the
samples take place at different times in the sampling interval) imply the actual value of pressure at the
abstract level. Furthermore, additional pump modes have been introduced later in the development.

As desirable in a refinement-based development, the proof that the system satisfies safety is performed at
a higher-level of abstraction and a separate refinement step is performed, which ensures that the properties
of the abstract level are preserved. That is, the proof of safety need not be redone at the concrete level.

8. Conclusions

Existing frameworks for data refinement model concurrency as an interleaving of the atomic system
operations [4, 45]. This allows one to define a system’s execution using its set of operations. The traces
of a system after initialisation are generated by repeatedly picking an enabled operation from the set non-
deterministically then executing the operation. However, such execution models turn out to be inadequate
for reasoning about truly concurrent behaviour, e.g., about transient properties in the context of real-time
systems [19], and can cause difficulties in verifying refinement.

The main contribution of this paper has been the development of an interval-based method for proving
data refinement, building on our previous results on our interval-based methodology for reasoning about
concurrent [15, 14] and real-time programs [20, 18]. In [15, 14, 20, 18], operation refinement over a single
state space is used for step-wise derivation of code from an informal specification. However, these existing
techniques cannot be used, for example, to prove refinement between the programs in Figures 1 and 2 or
between the abstract and concrete systems in Section 7 because the state spaces at the abstract and concrete
levels differ.

To enable decomposition, a simulation rule for proving data refinement has been developed and sound-
ness of the rule with respect to the data refinement definition has been proved. At a technical level, our
simulation rule uses refinement relations between streams over two state spaces within an interval, gener-
alising traditional refinement relations over two states. Thus, the refinement relation may relate multiple
concrete states to multiple abstract states.

Interval-based frameworks are effective for reasoning about true concurrency, and we have demonstrated
our approach on a discrete-time concurrent program and a real-time pump controller. Notable in the logic is

28

that reasoning is performed in a uniform manner across both time domains. Furthermore, we have integrated
non-deterministic evaluation operators [28] (to reason about fine-grained atomicity and sampling), and time
bands [9, 10] (to reason about behaviours at multiple time granularities). This has in turn enabled many
low-level details to be dealt with at a high-level of abstraction.

Related and future work. Interval-based methods for reasoning were developed by Moszkowski [37], which
inspired the work on Duration Calculus for real time systems [50]. Both logics, however, only support
verification of systems as opposed to their refinement-based development.

Over the years, numerous theories for data refinement have been developed. As far as we are aware, two
of these are based on interval-based principles similar to ours. A framework that combines interval temporal
logic and refinement has been defined by Bäumler et al [7], but their execution model strictly interleaves
a component and its environment. As a result, our non-deterministic expression evaluation operators and
true concurrency semantics cannot be easily incorporated into their framework. Furthermore, refinement is
defined in terms of relations between the abstract and concrete states. Broy presents refinement between
streams of different types of timed systems (e.g., discrete vs. real-time systems) [8]. However, these methods
do not consider interval-based reasoning; instead the only methods available are those for reasoning at the
level of streams.

From a true concurrency perspective, action refinement in a causal process-algebraic setting is studied in
[34, 35] and a modal logic for reasoning about true concurrency is given in [5]. Formal approaches to real-time
systems refinement has a long history (e.g., [24, 47, 26, 33, 39, 38]), but these frameworks must often use
additional constraints to cope with timing-related delays. It is also possible to develop abstract specifications
that overly constrain timing properties leading to implementation issues, e.g., timed automata may require
properties to be reproved when an implementation suffers from clock perturbations. Such issues have given
rise to, so called, robust and perturbed timed automata [26, 3], however, even simple safety properties for
such automata are difficult to preserve under refinement [49]. Methods that extend relational semantics
with an explicit time variable [33, 32] must introduce additional constraints such as volatile upper/lower
bounds, which define the amount of time that an action must be enabled. Clock perturbations and volatility
of actions are dealt with naturally by using an interval-based framework [27].

Mechanisation of our interval-based framework remains future work. There are model checking ap-
proaches (e.g., PRISM [31], UPPAAL [31]) based on transition systems, as well as as real-time theorem
provers (e.g., KeYmaera [43]), based on a specialised hybrid-systems language. However, none of these sup-
port data refinement, non-deterministic expression evaluators or time bands. Our logic can be encoded into
any existing higher-order theorem prover (e.g., Isabelle [40], KIV [6]), however, we seek to develop further
algebraic abstractions of the interval predicate theory and develop an embedding at this algebraic level [16].
Such techniques would enable our proofs to be performed at an even higher level of abstraction.

Acknowledgements This work is sponsored by EPSRC Grant EP/J003727/1. We are indebted to our
anonymous reviewers from this journal as well as those from REFINE 13 for their comments on the workshop
version of this paper.

References

[1] Abadi, M., Lamport, L., 1995. Conjoining specifications. ACM Trans. Program. Lang. Syst. 17, 507–534.
[2] Allen, J.F., 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843.
[3] Alur, R., La Torre, S., Madhusudan, P., 2005. Perturbed timed automata, in: Morari, M., Thiele, L. (Eds.), HSCC,

Springer. pp. 70–85.
[4] Back, R.J., von Wright, J., 1994. Trace refinement of action systems, in: Jonsson, B., Parrow, J. (Eds.), CONCUR,

Springer. pp. 367–384.
[5] Baldan, P., Crafa, S., 2010. A logic for true concurrency, in: Gastin, P., Laroussinie, F. (Eds.), CONCUR, Springer. pp.

147–161.
[6] Balser, M., Reif, W., Schellhorn, G., Stenzel, K., 1998. KIV 3.0 for provably correct systems, in: Hutter, D., Stephan,

W., Traverso, P., Ullmann, M. (Eds.), Applied Formal Methods - FM-Trends 98, Springer. pp. 330–337.
[7] Bäumler, S., Schellhorn, G., Tofan, B., Reif, W., 2011. Proving linearizability with temporal logic. Formal Asp. Comput.

23, 91–112.
[8] Broy, M., 2001. Refinement of time. Theor. Comput. Sci. 253, 3–26.

29

[9] Burns, A., Baxter, G., 2006. Time bands in systems structure, in: Structure for Dependability. Springer-Verlag, pp. 74–88.
[10] Burns, A., Hayes, I.J., 2010. A timeband framework for modelling real-time systems. Real-Time Systems 45, 106–142.
[11] Derrick, J., Boiten, E.A., 2003. Relational concurrent refinement. Formal Asp. Comput. 15, 182–214.
[12] Derrick, J., Boiten, E.A., 2009. Relational concurrent refinement: Automata. Electr. Notes Theor. Comput. Sci. 259,

21–34.
[13] Dongol, B., Derrick, J., 2013a. Data refinement for true concurrency, in: Derrick, J., Boiten, E.A., Reeves, S. (Eds.),

Refine, pp. 15–35.
[14] Dongol, B., Derrick, J., 2013b. Simplifying proofs of linearisability using layers of abstraction. ECEASST 66.
[15] Dongol, B., Derrick, J., Hayes, I.J., 2012a. Fractional permissions and non-deterministic evaluators in interval temporal

logic. ECEASST 53.
[16] Dongol, B., Gomes, V.B.F., Struth, G., 2015. A program construction and verification tool for separation logic, in: MPC,

Springer. To appear. Tech report version (http://arxiv.org/abs/1410.4439).
[17] Dongol, B., Hayes, I.J., 2010. Compositional action system derivation using enforced properties, in: Bolduc, C., Desharnais,

J., Ktari, B. (Eds.), MPC, Springer. pp. 119–139.
[18] Dongol, B., Hayes, I.J., 2013. Deriving real-time action systems in a sampling logic. Sci. Comput. Program. 78, 2047–2063.
[19] Dongol, B., Hayes, I.J., Derrick, J., 2014. Deriving real-time action systems with multiple time bands using algebraic

reasoning. Sci. Comput. Program. 85, 137–165.
[20] Dongol, B., Hayes, I.J., Meinicke, L., Solin, K., 2012b. Towards an algebra for real-time programs, in: Kahl, W., Griffin,

T.G. (Eds.), RAMICS, Springer. pp. 50–65.
[21] Dongol, B., Travkin, O., Derrick, J., Wehrheim, H., 2013. A high-level semantics for program execution under total store

order memory, in: Liu, Z., Woodcock, J., Zhu, H. (Eds.), ICTAC, Springer. pp. 177–194.
[22] Feijen, W.H.J., van Gasteren, A.J.M., 1999. On a Method of Multiprogramming. Springer Verlag.
[23] Fidge, C.J., 1993. Real-time refinement, in: Woodcock, J., Larsen, P.G. (Eds.), FME, Springer. pp. 314–331.
[24] Fidge, C.J., Utting, M., Kearney, P., Hayes, I.J., 1996. Integrating real-time scheduling theory and program refinement,

in: Gaudel, M.C., Woodcock, J. (Eds.), FME, Springer. pp. 327–346.
[25] Garay, P., 1996. Pump Application Desk Book, 3ed. Fairmont Press.
[26] Gupta, V., Henzinger, T.A., Jagadeesan, R., 1997. Robust timed automata, in: Proceedings of the International Workshop

on Hybrid and Real-Time Systems, Springer-Verlag, London, UK. pp. 331–345.
[27] Gurovic, D., Fengler, W., Nutzel, J., 2000. Development of real-time system specifications through the refinement of

duration interval petri nets, in: Systems, Man, and Cybernetics, 2000 IEEE International Conference on, pp. 3098–3103.
[28] Hayes, I.J., Burns, A., Dongol, B., Jones, C.B., 2013. Comparing degrees of non-determinism in expression evaluation.

The Computer Journal .
[29] Hehner, E.C.R., 1990. A practical theory of programming. Sci. Comput. Program. 14, 133–158.
[30] Jones, C.B., Pierce, K.G., 2008. Splitting atoms with rely/guarantee conditions coupled with data reification, in: E.,

Butler, M.J., Bowen, J.P., Boca, P. (Eds.), ABZ, Springer. pp. 360–377.
[31] Kwiatkowska, M.Z., Norman, G., Parker, D., 2011. PRISM 4.0: Verification of probabilistic real-time systems, in:

Gopalakrishnan, G., Qadeer, S. (Eds.), CAV, Springer. pp. 585–591.
[32] Lamport, L., 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.
[33] Liu, Z., Joseph, M., 2001. Verification, refinement and scheduling of real-time programs. Theoretical Computer Science

253, 119 – 152.
[34] Majster-Cederbaum, M.E., Wu, J., 2001. Action refinement for true concurrent real time, in: ICECCS, IEEE Computer

Society. pp. 58–68.
[35] Majster-Cederbaum, M.E., Wu, J., 2003. Towards action refinement for true concurrent real time. Acta Inf. 39, 531–577.
[36] Morgan, C., 1994. Programming from specifications (2nd ed.). Prentice Hall International (UK) Ltd., Hertfordshire, UK,

UK.
[37] Moszkowski, B.C., 2000. A complete axiomatization of interval temporal logic with infinite time, in: LICS, IEEE Computer

Society. pp. 241–252.
[38] Murphy, D., Pitt, D.H., 1992. Real-timed concurrent refineable behaviours, in: Vytopil, J. (Ed.), FTRTFTS, Springer.

pp. 529–545.
[39] Olderog, E.R., Dierks, H., 2008. Real-time systems - formal specification and automatic verification. Cambridge University

Press.
[40] Paulson, L.C., 1994. Isabelle - A Generic Theorem Prover (with a contribution by T. Nipkow). volume 828 of LNCS.

Springer.
[41] Pedersen, G.K.M., Yang, Z., 2008. Efficiency optimization of a multi-pump booster system, in: Ryan, C., Keijzer, M.

(Eds.), GECCO, ACM. pp. 1611–1618.
[42] Pelavin, R.N., Allen, J.F., 1987. A model for concurrent actions having temporal extent, in: Forbus, K.D., Shrobe, H.E.

(Eds.), AAAI, Morgan Kaufmann. pp. 246–250.
[43] Platzer, A., Quesel, J.D., 2008. Keymaera: A hybrid theorem prover for hybrid systems (system description), in: Armando,

A., Baumgartner, P., Dowek, G. (Eds.), IJCAR, Springer. pp. 171–178.
[44] de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers, J., 2001. Concurrency

Verification: Introduction to Compositional and Noncompositional Methods. Cambridge University Press.
[45] de Roever, W.P., Engelhardt, K., 1998. Data Refinement: Model-oriented Proof Theories and their Comparison. volume 46

of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
[46] Schellhorn, G., Tofan, B., Ernst, G., Reif, W., 2011. Interleaved programs and rely-guarantee reasoning with ITL. TIME

30

http://arxiv.org/abs/1410.4439

0, 99–106.
[47] Scholefield, D., Zedan, H.S.M., He, J., 1993. Real-time refinement: Semantics and application, in: Borzyszkowski, A.M.,

Sokolowski, S. (Eds.), MFCS, Springer. pp. 693–702.
[48] Tosic, P.T., Agha, G., 2004. Concurrency vs. sequential interleavings in 1-d threshold cellular automata, in: IPDPS, IEEE

Computer Society. pp. 179–186. doi:10.1109/IPDPS.2004.1303188.
[49] Wulf, M., Doyen, L., Markey, N., Raskin, J.F., 2008. Robust safety of timed automata. Form. Methods Syst. Des. 33,

45–84.
[50] Zhou, C., Hansen, M.R., 2004. Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Monographs in

Theoretical Computer Science, Springer.

Appendix A. Proofs of lemmas

Lemma 8. Provided that id .σ.τ =̂ σ = τ and both ref1 and ref2 are externally independent:

�id • X : g

X : g
(Reflexivity)

ref1 • Y : g

X : f ∧ ref2 • Z : h

Y : g ⇒ (ref1 ◦ ref2) • Z : h

X : f
(Transitivity)

Proof. The proof of (Reflexivity) is trivial. We prove (Transitivity) as follows, where we assume that
∆0,∆ ∈ Intv such that ∆0 ∝∆, x0 ∈ StreamX and z ∈ StreamZ are arbitrarily chosen. We have:

(ref1 ◦ ref2).∆0.x0.z ∧ h.∆.z
= definition of ◦ and logic
∃y0: StreamY

• ref1.∆0.x0.y0 ∧ ref2.∆0.y0.z ∧ h.∆.z

For an arbitrarily chosen y0 ∈ StreamY , we prove the following.

ref1.∆0.x0.y0 ∧ ref2.∆0.y0.z ∧ h.∆.z

⇒ assumption ref2 • Z : h

Y : g

ref1.∆0.x0.y0 ∧ ∃y : StreamY
• (y0

∆0== y) ∧ ref2.∆.y .z ∧ g .∆.y
= assume y free in ref1.∆0.x0.y0

∃y : StreamY
• (y0

∆0== y) ∧ ref2.∆.y .z ∧ ref1.∆0.x0.y0 ∧ g .∆.y
= construct a new stream y1 ∈ StreamY that matches y0 over ∆0 and y over ∆

∃y , y1: StreamY
• (y0

∆0== y1) ∧ (y
∆

== y1) ∧ ref2.∆.y .z ∧ ref1.∆0.x0.y0 ∧ g .∆.y

⇒ use y0
∆0== y1 and y

∆
== y1

∃y1: StreamY
• ref2.∆.y1.z ∧ ref1.∆0.x0.y1 ∧ g .∆.y1

⇒ logic, assumption ref1 • Y : g

X : f

∃y1: StreamY , x : StreamX
• (x0

∆0== x) ∧ ref2.∆.y1.z ∧ ref1.∆.x .y1 ∧ f .∆.x
⇒ definition of ◦
∃x : StreamX

• (x0
∆0== x) ∧ (ref1 ◦ ref2).∆.x .z ∧ f .∆.x

Before proving the next lemma, we introduce a partition of an interval, which is a possibly infinite
sequence of adjoining intervals whose union equals ∆. Given that seq.T denotes sequences of type T , the
set of all partitions of an interval ∆ is given by

partition.∆ =̂
{
δ ∈ seq.Intv (∆ =

⋃
ran.δ) ∧ ∀i , j : dom.δ • i < j ⇒ δ.i < δ.j

}
Note that if δ ∈ partition.∆, then by definition δ is countable, and hence it disallows Zeno-like behaviour.

Two useful properties of intervals for modularity are splits and joins, which enable decomposing proof
obligations over sequential composition and iteration constructs. We say that g splits iff g V (g ; g) and

31

http://dx.doi.org/10.1109/IPDPS.2004.1303188

g joins iff gω+ V g . Note that if g splits, then g V gω [20]. For example, g in Example 1 both splits and
joins, and g0 in Example 7 joins but does not split. Interval predicate ` < 10 splits but does not join.

Lemma 15. If Y ,Z ⊆ Var , h, h1, h2 ∈ IntvPredZ , ε ∈ T is a constant, and ref ∈ IntvRelY ,Z , then each of
the following holds, provided ref is externally independent.

h1
Y ,Z ref ∧ h2
Y ,Z ref ⇒ (h1 ; h2)
Y ,Z ref (Sequential)

h
Y ,Z ref ⇒ (h ∧ ε ≤ `)ω+
Y ,Z ref (Iteration)

(h
Y ,Z ref1) ∨ (h
Y ,Z ref2) ⇒ h
Y ,Z (ref1 ∨ ref2) (Non-deterministic choice)

(h2
Y ,Z ref) ∧ (h1 V h2) ⇒ h1
Y ,Z ref (Weaken)

Proof (Sequential). For an arbitrarily chosen ∆0,∆ ∈ Intv such that ∆0 ∝ ∆, y0 ∈ StreamY and
z ∈ StreamZ , we have the following calculation.

ref .∆0.y0.z ∧ (h1 ; h2).∆.z
= definition of ‘;’, logic

∃∆1,∆2: Intv • ∆1∆2

∆ ∧ ref .∆0.y0.z ∧ h1.∆1.z ∧ h2.∆2.z
⇒ ∆0 ∝∆ and ∆1 a prefix of ∆, therefore ∆0 ∝∆1

assumption h1
Y ,Z ref

∃∆1,∆2: Intv • ∆1∆2

∆ ∧ (∃y1: StreamY
• (y0

∆0== y1) ∧ ref .∆1.y1.z) ∧ h2.∆2.z
= logic

∃∆1,∆2: Intv , y1: StreamY
• ∆1∆2

∆ ∧ (y0
∆0== y1) ∧ ref .∆1.y1.z ∧ h2.∆2.z

= ∆1 ∝∆2 and assumption h2
Y ,Z ref

∃∆1,∆2: Intv , y1, y2: StreamY
• ∆1∆2

∆ ∧ (y0
∆0== y1) ∧ ref .∆1.y1.z ∧ (y1

∆1== y2) ∧ ref .∆2.y2.z

⇒ pick y3 such that y1
∆0∪∆1== y3 and y2

∆2== y3

∃∆1,∆2: Intv , y3: StreamY
• ∆1∆2

∆ ∧ (y0
∆0== y3) ∧ ref .∆1.y3.z ∧ ref .∆2.y3.z

= definition

∃y3: StreamY
• (y0

∆0== y3) ∧ (ref ; ref).∆.y3.z
⇒ ref joins

∃y3: StreamY
• (y0

∆0== y3) ∧ ref .∆.y3.z

Proof (Iteration). For an arbitrarily chosen ∆0,∆ ∈ Intv such that ∆0∝∆, y0 ∈ ΣY and z ∈ StreamZ ,
we have the following calculation.

ref .∆0.y0.z ∧ (h ∧ ε ≤ `)ω+.∆.z
= definition of ‘ω+’, logic
∃δ: partition.∆ • dom.δ 6= ∅ ∧ ref .∆0.y0.z ∧ ∀i : dom.δ • h.(δ.i).z

= logic
∃δ: partition.∆ • ref .∆0.y0.z ∧ h.(δ.0).z ∧ ∀i : dom.δ\{0} • h.(δ.i).z

⇒ assumption h
Y ,Z ref and ∆0 ∝∆, therefore ∆0 ∝ δ.0

∃δ: partition.∆, y : StreamY
• (y0

∆0== y) ∧ ref .(δ.0).y .z ∧ ∀i : dom.δ\{0} • h.(δ.i).z
⇒ logic, assuming h
Y ,Z ref

∃δ: partition.∆, y : StreamY
• (y0

∆0== y) ∧ ref .(δ.0).y .z ∧
∀i : dom.δ\{0},∃yi : StreamY

• (yi−1
δ.i
== yi) ∧ ref .(δ.i).yi .z

⇒ pick y ′ such that y0
∆0== y ′ and for all i ∈ dom.δ, yi

δ.i
== y ′

∃δ: partition.∆, y ′: StreamY
• (y0

∆0== y ′) ∧ ref .(δ.0).y ′.z ∧ ∀i : dom.δ\{0} • ref .(δ.i).y ′.z
= logic

32

∃y ′: StreamY
• (y0

∆0== y ′) ∧ ∃δ: partition.∆ • ∀i : dom.δ • ref .(δ.i).y ′.z
= logic

∃y ′: StreamY
• (y0

∆0== y ′) ∧ (ref +).∆.y ′.z
⇒ ref joins

∃y : StreamY
• (y0

∆0== y ′) ∧ ref .∆.y ′.z

Proof (Non-deterministic choice).
(ref1 ∨ ref2).∆0.y0.z ∧ h.∆.z

= logic
(ref1.∆0.y0.z ∧ h.∆.z) ∨ (ref2.∆0.y0.z ∧ h.∆.z)

⇒ assumption (h
Y ,Z ref1) ∨ (h
Y ,Z ref2), logic

∃y1, y2: StreamY
• ((y0

∆0== y1) ∧ ref1.∆.y1.z) ∨ ((y0
∆0== y2) ∧ ref2.∆.y2.z)

⇒ logic

∃y : StreamY
• (y0

∆0== y) ∧ (ref1 ∨ ref2).∆.y .z

Proof (Weaken). For an arbitrarily chosen ∆0,∆ ∈ Intv such that ∆0 ∝∆, y0 ∈ ΣY and z ∈ StreamZ ,
we have the following calculation.

ref .∆0.y0.z ∧ h1.∆.z
⇒ assumption h1 V h2

ref .∆0.y0.z ∧ h2.∆.z
⇒ assumption h2
Y ,Z ref

∃y : StreamY
• (y0

∆0== y) ∧ ref .∆.y .z 2

Lemma 16. Suppose W ,X ,Y ,Z ⊆ Var such that Y ∩ Z = ∅, W ∪ X = Y and W ∩ X = ∅. If
h1, h2 ∈ IntvPredZ , refW ∈ IntvRelW ,Z , refX ∈ IntvRelX ,Z , and ? ∈ {∧,∨}, then

(h1
W ,Z refW) ∧ (h2
X ,Z refX) ⇒ (h1 ∧ h2)
Y ,Z (refW ? refX)

Proof. Because W ∪X = Y and W ∩X = Y , for any y0 ∈ StreamY , we have that y0 = w0 d x0 for some
w0 ∈ StreamW , x0 ∈ StreamX . Then for any z ∈ StreamZ , ∆0,∆ ∈ Intv such that ∆0 ∝ ∆, we have the
following calculation:

(refW ? refX).∆0.y0.z ∧ (h1 ∧ h2).∆.z
⇒ assumption y0 = w0 d x0

(refW .∆0.w0.z ? refX .∆0.x0.z) ∧ (h1 ∧ h2).∆.z
⇒ ∧ distributes over ?, logic

(refW .∆0.w0.z ∧ h1.∆.z) ? (refX .∆0.x0.z ∧ h2.∆.z)
⇒ assumption (h1
W ,Z refW) ∧ (h2
X ,Z refX)

(∃w : StreamW
• (w0

∆0== w) ∧ refW .∆.w .z) ? (∃x : StreamX
• (x0

∆0== x) ∧ refX .∆.x .z)
= logic, assumption W ∩X = ∅
∃w : StreamW , x : StreamX

• (w0 d x0
∆0== w d x) ∧ (refW .∆.w .z ? refX .∆.x .z)

= logic, assumption y0 = w0 d x0

∃w : StreamW , x : StreamX
• (y0

∆0== w d x) ∧ (refW ? refX).∆.(w d x).z
= W ∪X = Y and W ∩X = ∅
∃y : StreamY

• (y0
∆0== y) ∧ (refW ? refX).∆.y .z

33

Lemma 13 Suppose g , g1, g2 are interval predicates, ε ∈ T is a constant, � ∈ {; ,∨,∧,⇒,=} and l∈ {↑, ↓}.
Then each of the following holds:

(¬g) l = ¬(g l) (A.1)

(g1 � g2) l = (g1 l)� (g2 l) (A.2)

((g ∧ ε ≤ `) l)ω = (g ∧ ε ≤ `)ω l (A.3)

Proof (A.1). Suppose ∆ is an interval and y , z are streams. The proof for ↑ is as follows. The proof for
↓ is similar.

((¬g) ↑).∆.y .z
= definition of ↑

(¬g).∆.y
= lifting over interval predicates
¬(g .∆.y)

= definition of ↑
¬((g ↑).∆.y .z)

Proof (A.2). We present the proof for ; and ↑. The proofs of the other cases are similar. Suppose ∆ is
an interval and y , z are streams.

((g1 ; g2) ↑).∆.y .z
= definition of ↑

(g1 ; g2).∆.y
= definition of ;

(∃∆1,∆2
• ∆1∆2

∆ ∧ g1.∆1.y ∧ g2.∆2.y) ∨ (infinite ∧ g1).∆.y
= definition of ↑

(∃∆1,∆2
• ∆1∆2

∆ ∧ (g1 ↑).∆1.y .z ∧ (g2 ↑).∆2.y .z) ∨ (infinite ∧ (g1 ↑)).∆.y .z
= definition of ;

((g1 ↑) ; (g2 ↑)).∆.y .z

Proof (A.3). Suppose ∆ is an interval and y , z are streams. As above, we verify the property for ↑; the
proof for ↓ is similar.

((g ∧ ε ≤ `) ↑)ω.∆.y .z
= ∃δ: partition.∆ • ∀i : dom.δ • ((g ∧ ε ≤ `) ↑).(δ.i).y .z
= ∃δ: partition.∆ • ∀i : dom.δ • (g ∧ ε ≤ `).(δ.i).y
= ((g ∧ ε ≤ `)ω).∆.y
= ((g ∧ ε ≤ `)ω ↑).∆.y .z

Appendix B. Proofs for the abstract pump

This appendix provides proofs and calculation to prove properties of the abstract pump. The proof uses
the following property. The operator ‘ �’ cannot normally be distributed within logical conjunction, i.e., for
state predicates c1 and c2, although �(c1 ∧ c2) V �c1 ∧ �c2 holds, the implication does not necessarily
hold in the other direction. A useful exception is when the variables of c1 and c2 are disjoint.

Lemma 22. If v is a variable and c1 and c2 are state predicates such that vars.c1 ∩ vars.c2 = ∅, then

�(c1 ∧ c2) ≡ �c1 ∧ �c2.

34

Calculation 1.

�(¬Stopped ∧ (pressure ≥ HighT)) ∧ stable.pump
≡ definition of Stopped , Lemma 22

�(pump 6= stopped) ∧ �(pressure ≥ HighT) ∧ stable.pump
≡ Lemma 19

�(pump 6= stopped) ∧ �(pressure ≥ HighT) ∧ stable.pump
≡ using stable.pump, definition of Stopped

�¬Stopped ∧ �(pressure ≥ HighT) 2

Proof of (24). These proofs require the following constraint on the values of Low , High, LowT and HighT .

Low + acc.pressure.BA ≤ LowT < HighT ≤ High − acc.pressure.BA (B.1)

Thus, the low threshold value of LowT must be at least Low+acc.pressure.BA, the high threshold value HighT

at most High−acc.pressure.BA, and the high threshold value must be above LowT . These restrictions allow
the controller enough time to react to a high/low values of pressure and turn the pump on/off accordingly,
i.e., before the pressure goes below Low and above High.

Expressed as an interval predicate, the behaviour of a real-time controller is often of the form � init ∧
(g1 ∨ g2 ∨ · · · ∨ gn)∞, where init formalises the initialisation and each gi models the behaviour of a single
branch of the main if statement [19, 17]. We obtain the following lemma that allows one to consider maximal
iterations of each branch gj .

Lemma 23 ([19]). Suppose g =
∨

i:0..n gi , where each gi is an interval predicate, init an interval predicate
and

not jth.g .j =̂ (
∨

i:0..j−1 gi) ∨ (
∨

i:j+1..n gi)

iter .g .j =̂ �(init ∨ not jth.g .j) ∧ gω+
j

where not jth.g .j consists of all disjuncts of g except gj and iter .g .j denotes an iteration of gj where a
previous interval either satisfies the initialisation init or a disjunct from not jth.g .j . Then,

� init ∧ g∞ V (
∨

j :0..n iter .g .j)∞

Thus, by Lemma 23, if a controller behaves as � init ∧ g∞ over an interval ∆, then

(
∨

j :0..n iter .g .j)∞

holds over ∆. To enable simplification of the behaviour of the abstract controller using Lemma 23, we define
the following interval predicates.

PCi =̂ AEnv ∧ PumpConti

PC =̂
∨

i:{1,2,3} PCi

Then, we obtain the following calculation, which proves that the behaviour of the environment AEnv can
be moved within each iteration.

AProg
≡ definition

AEnv ∧ � AInit ∧ PumpCont∞

V logic, AEnv splits
� AInit ∧ (AEnv ∧ PumpCont)∞

≡ AEnv ∧ PumpCont ≡ PC and ∞ is monotonic
� AInit ∧ PC∞

V Lemma 23
� AInit ∧ (

∨
i:{1,2,3} iter .PC .i)∞

35

The proof then proceeds as follows:

(24)
⇐ calculation above, logic

(
∨

i:{1,2,3} iter .PC .i)∞ V (21) ∧ (22)

⇐ �c ∧ �d ≡ �(c ∧ d) and �c joins
(
∨

i:{1,2,3} iter .PC .i)∞ V
(�((pressure ≥ High ⇒ Stopped) ∧ (pressure ≤ Low ⇒ Running)))∞

⇐ ∞ is monotonic
(
∨

i:{1,2,3} iter .PC .i)V
�((pressure ≥ High ⇒ Stopped) ∧ (pressure ≤ Low ⇒ Running))

= logic, �c ∧ �d ≡ �(c ∧ d)∧
i:{1,2,3}

(
iter .PC .i V �(pressure ≥ High ⇒ Stopped) ∧ �(pressure ≤ Low ⇒ Running)

)
(Req1)

We now perform case analysis on i . We present the proof of i = 1 below. We have the following
calculation for conjunct �(pressure ≤ Low ⇒ Running) in proof obligation (Req1) above.

iter .PC .1V �(pressure ≤ Low ⇒ Running)
⇐ definition of iter .PC .1, �c joins

(AEnv ∧ �(pressure ≥ HighT) ∧ ` ≤ pn.BA)ω+ V �(pressure ≤ Low ⇒ Running)
⇐ Lemma 21, AEnv and ` ≤ pn.BA

(�(pressure ≥ High))ω+ V �(pressure ≤ Low ⇒ Running)
⇐ �c joins

�(pressure ≥ High)V �(pressure ≤ Low ⇒ Running)
= by (B.1) Low < High, logic

true

To prove conjunct �(pressure ≥ High ⇒ Stopped) in (Req1), we first perform the following calculation,
which allows one to perform case analysis on the interval predicate that held prior to execution of PC1. In
particular, we have:

iter .PC .1
≡ expand iter .PC .1

(� AInit ∧ PCω+
1) ∨

∨
j∈{1,2,3}(� PCj ∧ PCω+

1)

≡ PC1 falsifies its own guard
(� AInit ∧ PC1) ∨

∨
j∈{1,2,3}(� PCj ∧ PC1)

Case AInit :

� AInit ∧ PC1

V AInit V �Stopped ∧ r stable.pump
←−−−−−
Stopped ∧ PC1

V PC1 V
←−−−−−−
¬Stopped

false

Case j = 1:
This case reduces to false because PC1 falsifies its
own guard, therefore � PC1 ∧ PC1 is impossible.

36

Case j = 2:

� PC2 ∧ PC1

V definition of PC2

�
(

�(pressure ≤ LowT) ∧ AEnv ∧
` ≤ pn.BA

)
∧ PC1

V Lemma 21, AEnv and ` ≤ pn.BA

� �(pressure ≤ Low + acc.pressure.BA) ∧ PC1

⇐ pressure is continuous
←−−−−−−−−−−−−−−−−−−−−−−−−−−
pressure ≤ Low + acc.pressure.BA ∧ PC1

V PC1 V AEnv ∧ ` ≤ pn.BA

�(pressure ≤ Low + 2× acc.pressure.BA)
V Low + acc.pressure.BA < High − acc.pressure.BA

�(pressure < High)

Case j = 3:

� PC3 ∧ PC1

V definition of PC3

{(23)} PC1

V case
−−−−−→
Stopped reduces to false

by guard of PC1

�
−−−−−−−−−−−−−−−−−−−−−−−−−−→
pressure < High − acc.pressure.BA ∧ PC1

≡ pressure is continuous

(
←−−−−−−−−−−−−−−−−−−−−−−−−−−
pressure < High − acc.pressure.BA) ∧ PC1

V Lemma 21 use AEnv ∧ ` ≤ pn.BA

�(pressure < High)

Finally, returning to the proof of (Req1), we have

iter .PC .1V �(pressure ≥ High ⇒ Stopped)
W calculations above

�(pressure < High)V �(pressure ≥ High ⇒ Stopped)
W logic

true

This completes the case analysis, and hence, the proof for PC1. The proof for PC2 is symmetric and PC3

satisfies (21) ∧ (22) by definition, which allows us to conclude that the abstract system is safe with respect
to requirement (21) ∧ (22).

Appendix C. Proofs for the concrete pump

This section contains some proofs for the concrete pump.

Proof of (31). This proof obligation requires that we show the behaviours of the concrete and abstract
systems match. We define the following shorthand:

AAcc =̂ mc.pressure ≤ acc.pressure.BA

CAcc =̂ mc.pressure1 + mc.pressure2 ≤ acc.pressure.BA

then obtain the following calculation.

ref ∧ (Cont ↓)∞ ∧ (CWater ↓) ∧ (CPump ↓)V AEnv ↑
⇐ logic

ref ∧ (CWater ↓)V (AEnv ↑)
⇐ logic, distribute projection

ref V 2(` ≤ pn.BA ⇒ CAcc ↓)⇒ 2(` ≤ pn.BA ⇒ AAcc ↑)
⇐ logic: 2(g ⇒ h)V (2g ⇒ 2h) and ref splits

ref V 2((CAcc ↓) ∧ ` ≤ pn.BA ⇒ (AAcc ↑))
⇐ ref splits, logic

ref ∧ (CAcc ↓) ∧ ` ≤ pn.BA V (AAcc ↑)
⇐ definitions

true

37

Proof of (32).. This proof pertains to showing that the concurrent behaviour of the concrete controller and
environment together implements the behaviour of the abstract controller using refinement relation ref . For
this proof, we require use conditions (33), (34), and (35).

We aim to examine several consecutive iterations of the do loop of the concrete controller. Here, it is
possible to make several simplifications.

• By Lemma 21 and (35), Cont1 ; Cont2 ; Contω and Cont2 ; Cont1 ; Contω both reduce to false.

• Because Cont1 and Cont2 falsify their own guards, both Cont1; Cont1; Contω and Cont2; Cont2; Contω

reduce to false.

• Because CInit V �¬signal ∧ r stable.signal , interval predicate � CInit ∧ Cont1 reduces to false.

• Finally, because CInit V �(pressure1+pressure2 ≥ CHighT) using (35) and Lemma 21, case � CInit ∧
Cont2 reduces to false.

Therefore, the behaviour of the concrete controller may be rewritten using:

Cont∞ ≡ (CC1 ∨ CC2 ∨ CC3)∞ (C.1)

where

CC1 =̂ � Cont3 ∧ ((Cont1 ∧ ` ≤ pn.BC) ; (Cont3 ∧ ` ≤ pn.BC)ω+) ∧ (finite⇒ � Cont2)

CC2 =̂ � Cont3 ∧ ((Cont2 ∧ ` ≤ pn.BC) ; (Cont3 ∧ ` ≤ pn.BC)ω+) ∧ (finite⇒ � Cont1)

CC3 =̂ � CInit ∧ (Cont3 ∧ ` ≤ pn.BC)ω+

By CC1, Cont3 was previously executing and the current interval can be split so that Cont1 executes in the
first part (which switches the pump on) then Cont3 executes iteratively in the second (causing the controller
to be idle so that all of the outputs are stable). Furthermore, the current interval is either infinite (Cont3
executes forever), or there is some next interval in which Cont2 executes. Interval predicate CC2 is similar.
By CC3, the program initialised in some immediately preceding interval Cont3 executes iteratively in the
current interval. Using this, we perform the following simplification of the antecedent of (32).

ref ∧ (Cont ↓)∞ ∧ (CWater ↓) ∧ (CPump ↓)
≡ (C.1)

ref ∧ ((CC1 ∨ CC2 ∨ CC3)
∞ ↓) ∧ (CWater ↓) ∧ (CPump ↓)

V ref ∧ (CWater ↓) ∧ (CPump ↓) splits
(ref ∧ ((CC1 ∨ CC2 ∨ CC3) ↓) ∧ (CWater ↓) ∧ (CPump ↓))∞

To prove that the predicate above implies the behaviour of the abstract system, we perform case analysis
on the behaviour of each iteration and each disjunct separately.

For case CC1, we use yet another property on sampled values and lengths of intervals. Namely, if the
sum of pressure1 and pressure2 in the current interval is possibly above CHighT , and in some next interval of
length pn.BC the sum is below CLowT , then the length of the current interval must exceed pn.BP + pn.BC ,
i.e.,

�(pressure1 + pressure2 ≥ CHighT)
∧ �(�(pressure1 + pressure2 ≤ CLowT) ∧ ` ≤ pn.BC)

V ` > pn.BP + pn.BC (C.2)

We then obtain the following calculation for the execution of a single iteration of CC1. Assuming that
CWater and CPump hold, we have the following calculation, where we define pressure12 =̂ pressure1 +
pressure2. The calculation shows that

CC1 V
(

�(pressure12 ≥ HighT) ∧ �¬Stopped ∧ ` ≤ pn.BC

)
; (�Stopping ∧ ` < pn.BP) ;

�(Stopped ∧ (pressure12 > Low + acc.pressure.BA))

i.e., that whenever CC1 holds,

38

• there is an initial interval of length at most pn.BC in which pressure12 is actually above HighT , and
the pump is actually stopped throughout the interval, followed by

• an interval of length at most pn.BP the pump is stopping throughout this interval, followed by

• an interval in which the pump is stopped and the actual value of pressure12 is higher than Low +
acc.pressure.BA.

Note the differences from the sampled predicates (that use ‘ �’) in CC1 to predicates on the actual states
(that use ‘ �’ and ‘�’) in the consequent.

CC1

V definition of CC1, logic

((Cont1 ∧ ` ≤ pn.BC) ; (Cont3 ∧ ` ≤ pn.BC)ω+) ∧ (infinite ∨ � Cont2)
V definition of Cont1(

((�(pressure12 ≥ CHighT) ∧ �signal) ; �¬signal ∧ ` ≤ pn.BC) ;

(
←−−−−−
¬signal ∧ Cont3 ∧ ` ≤ pn.BC)ω+

)
∧

(infinite ∨ � Cont2)
V condition (C.2) and Cont2 ⇒ �(pressure12 ≤ CLowT) ∧ ` ≤ pn.BC

Lemma 21 assuming CHighT ≥ HighT + acc.pressure1.BC + acc.pressure2.BC(
((�(pressure12 ≥ CHighT) ∧ �signal) ; �¬signal ∧ ` ≤ pn.BC) ;
(�(¬signal ∧ (pressure12 > Low + acc.pressure.BA)))ω+

)
∧

(` > pn.BP + pn.BC)
V �c joins and Lemma 21 using (33)(

((�(pressure12 ≥ HighT) ∧ �signal) ; �¬signal ∧ ` ≤ pn.BC) ;
�(¬signal ∧ (pressure12 > Low + acc.pressure.BA))

)
∧

(` > pn.BP + pn.BC)
V logic and ‘; ’ is associative(

(�(pressure12 ≥ HighT) ∧ �signal ∧ ` ≤ pn.BC) ; �¬signal ;
�(¬signal ∧ (pressure12 > Low + acc.pressure.BA))

)
∧

(` > pn.BP + pn.BC)
V by CPump, �(signal ⇒ ¬Stopped)

use ` > pn.BP + pn.BC and assumption CPump
(�(pressure12 ≥ HighT) ∧ �¬Stopped ∧ ` ≤ pn.BC) ;
(�Stopping ∧ ` < pn.BP) ; �(Stopped ∧ (pressure12 > Low + acc.pressure.BA))

Therefore we have the following calculation, where ref is used to transform a property over a concrete state
space to an abstract state space. In particular, we show that execution of CC1

ref ∧ (CC1 ↓) ∧ (CWater ↓) ∧ (CPump ↓)
V using ref and calculation above(

�(pressure ≥ HighT) ∧ �¬Stopped ∧ ` ≤ pn.BC

)
↑ ; (�¬Stopped ∧ ` < pn.BP) ↑ ;

�(Stopped ∧ (pressure > Low + acc.pressure.BA)) ↑
V �c joins, condition (36)

(�(pressure ≥ HighT) ∧ �¬Stopped ∧ ` < pn.A) ↑ ;
�(Stopped ∧ (pressure > Low + acc.pressure.BA)) ↑

V logic, �c splits(
(�(pressure ≥ HighT) ∧ �¬Stopped) ; �Stopped ∧
r stable.pump ∧ ` ≤ pn.A

)x ;

�(Stopped ∧ (pressure > Low + acc.pressure.BA)) ↑
V definitions

PumpCont1 ↑ ; PumpCont3 ↑

39

For case, CC2, we apply a similar calculation to show CC2 implies PumpCont2 ↑ ; PumpCont3 ↑.
Finally, for case CC3, we use CInit to conclude that �(Stopped ∧ (pressure12 > Low + acc.pressure.BA))

holds, which trivially implies (21) ∧ (22) ∧ (23).
Thus, we obtain our desired result (32), which concludes our proof.

40

	Introduction
	State-based data refinement
	Data refinement over intervals
	Interval predicates
	Interval relations
	Interval-based refinement

	Simulation for interval-based refinement
	Operators over intervals, interval predicates and relations
	Forward simulation
	Decomposing simulations

	Evaluating state assertions over intervals
	Stability
	Apparent states evaluation

	Fine-grained concurrent programs
	An interval-based semantics
	Proving refinement

	Real-time systems
	A time-bands approach to accuracy and precision
	A multi-pump system
	An abstract system
	A concrete pump system
	Verifying data refinement

	Conclusions
	Proofs of lemmas
	Proofs for the abstract pump
	Proofs for the concrete pump

