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Estimation, Filtering and Fusion for Networked
Systems with Network-1nduced Phenomena: New
Progress and Prospects

Jun HW*, Zidong Wang¢, Dongyan Cheh and Fuad E. Alsaatli

Abstract

In this paper, some recent advances on the estimation,rfdtemd fusion for networked systems are re-
viewed. Firstly, the network-induced phenomena under idenation are briefly recalled including missing/fading
measurements, signal quantization, sensor saturationsnanication delays, and randomly occurring incomplete
information. Secondly, the developments of the estimatfitering and fusion for networked systems from four
aspects (linear networked systems, nonlinear networketesys, complex networks and sensor networks) are
reviewed comprehensively. Subsequently, some recenltgemu the estimation, filtering and fusion for systems
with the network-induced phenomena are reviewed in gre@ildén particular, some latest results on the multi-
objective filtering problems for time-varying nonlineartwerked systems are summarized. Finally, conclusions
are given and several possible research directions cangetine estimation, filtering, and fusion for networked
systems are highlighted.

Index Terms

Estimation; filtering; multi-sensor data fusion; netwatk®y/stems; network-induced phenomena.

I. INTRODUCTION

The networked systems have attracted increasing resetteati@n due to their successful applications in
a wide range of areas, such as aircraft, space and tertesiplaration, access in hazardous environments,
factory automation, remote diagnostics and troubleshgpautomated highway systems, unmanned aerial
vehicles, manufacturing plant monitoring and conditi@séd maintenance of complex machinery [1]. The
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advantages of the usage of networked systems include fexibhitecture, the reduction of installation and
maintenance costs, decreasing the implementation difésudnd so on. However, the network-induced
phenomena arise inevitably due to the insertion of the comcation network with limited communication
capacity [2]-[5]. Such network-induced phenomena incllude are not limited to, communication delays,
missing/fading measurements, signal quantization, sesetarations, variable sampling/transmission in-
tervals, and out-of-sequence-measurement updates. BBe@enlass of newly emerged network-induced
phenomena (randomly occurring incomplete information$ yained some initial research interest in
signal processing and control areas. Note that the netmaliticed phenomena could greatly degrade the
performance of the networked systems and may even lead togdtability of the controlled systems [6],
[7]. Consequently, it is not surprising that both analysisl &ynthesis problems for networked systems
have received considerable research attention in the pasidd.

The filtering problem has long been one of the foundatiorsgaech problems in signal processing and
control engineering [8]-[12]. The past two decades haveeasted the rapid developments and extensive
applications of the filtering algorithms in practice, suchguidance, navigation, target tracking, remote
sensing, image processing, econometrics, and monitofimgoufacturing processes. Therefore, the design
of the filtering algorithms has received increasing redeattention. According to different performance
indices (minimized variance constraint, set-valued aaiss, guaranteed/,, performance requirements
and so on), a great number of filtering algorithms have beemldped for networked systems, such
as Kalman filtering [13], [14], extended Kalman filtering [2BL8], set-valued filtering [19], [20], set-
membership filtering [21]H; filtering [22]-[24], H.. filtering [25], [26], and consensus filtering [27],
[28]. On the other hand, the design of linear optimal estorgatincluding filter, predictor and smoother)
for networked systems has gained a great deal of reseasttiatt as conducted in [29]-[32].

On another research frontier, it is well known that the datsidn techniques can provide the fusion
schemes by combining the information from different sosrse as to achieve a satisfactory performance.
Over the past decades, the data fusion techniques have besssfully applied in a variety of areas such
as the target tracking, navigation, detection, robotiecde@ and image processing, business intelligence,
and sensor networks. Therefore, considerable researolt bHis been devoted to the multi-sensor data
fusion problems for complex dynamical systems. In fact, antioned in [33], there are a great number
of challenging issues in the multi-sensor data fusion fiefdsuding data imperfection, outliers and
spurious data, conflicting data, data modality, data catia, data association, data alignment/registration,
processing framework, operational timing, static versysathic phenomena, data dimensionality and so
on. For more information about the challenging problemshef multi-sensor data fusion, we refer the
readers to the survey paper [33] where more comprehendiemigrtations have been provided. In what
follows, we confine the addressed topic to the multi-senata tlision for networked systems and endeavor
to introduce some recent advances on the network-basedsaolor data fusion approaches from the
perspective of algorithm developments. The multi-senata fusion algorithms can be generally classified
into two types: centralized fusion and distributed fusidgodathms, where the schematic diagrams of
centralized and distributed fusions in network environtrage given as in Figs. 1-2 respectively. We will
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further discuss the recent developments of the multi-geiuston of networked systems later.
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In this paper, we aim to provide a timely review on the recahtaaces of the estimation, filtering
and fusion algorithms for networked systems with netwaordtticed phenomena. The addressed network-
induced phenomena include missing/fading measuremeotsmanication delays, signal quantization,
sensor saturations, randomly occurring uncertaintiegjomly occurring nonlinearities, randomly occur-
ring signal quantization, randomly occurring sensor sdtons and so on. The recent developments of the
network-induced phenomena are firstly discussed. Secondlyeview the analysis and synthesis problems
of the networked systems from four aspects, including linegtworked systems, nonlinear networked
systems, complex networks and sensor networks. In the sant®rs several estimation, filtering and
fusion schemes for networked systems are surveyed in getail.dThirdly, latest results on estimation,
filtering and fusion approaches for networked systems wétwark-induced phenomena are reviewed.
Finally, conclusions are drawn and some possible researebtions are pointed out.

The remainder of this paper is organized as follows. In $acti, the network-induced phenomena
are discussed. In section lll, the developments of the esitom, filtering, fusion problems for networked
systems are summarized. In section IV, some latest resuliseoestimation, filtering and fusion problems
for complex dynamical systems with network-induced pheewanare reviewed. Both conclusions and
some future research topics are provided in section V.
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II. NETWORK-INDUCED PHENOMENA

Over the past decade, a great deal of research attentiondeas rbceived regarding the modeling
and analysis of the network-induced phenomena includirgsimg/fading measurements, signal quantiza-
tion, sensor saturations, communication delays, varisétepling/transmission intervals, out-of-sequence-
measurement updates, randomly occurring incomplete nrdtion etc. Accordingly, many important
approaches have been given to examine the effects from thenkeinduced phenomena onto the system
performance. In this section, some representative netimaikced phenomena will be briefly reviewed.

A. Missing/Fading Measurements

The traditional estimation and filtering algorithms rely an ideal assumption that the measurement
outputs are available always. Nevertheless, the impedaetmunication would occur in practical engi-
neering especially in the networked systems, namely, thessorement outputs may contain noise only at
certain instants and the desired signals are missing dusaply to temporal sensor failures or network
transmission delay/loss [34]-[39]. During the past twoatkxs, among the probabilistic ways for modeling
the missing measurements, the Bernoulli probability iigtron has been extensively employed due to
its simplicity and practicality, where the Bernoulli randovariable takes value on 1 representing the
perfect signal delivery and it takes value on 0 standing lier measurement missing. Accordingly, many
important papers have been published concerning on theasin, filtering and fusion for networked
systems based on several methods such as the linear matjixality method [25], difference linear matrix
inequality method [27], innovation analysis approach [3@amilton-Jacobi-Isaacs inequality approach
[35], and backward/forward Riccati difference equationtime [7], [37]. When comparing between
different approaches, it is worth mentioning that the Imegatrix inequality (difference linear matrix
inequality) method is applicable for the analysis problemiroe-invariant (time-varying) linear/nonlinear
networkedcomplex dynamical systerasd gives the feasible solutions, the innovation analysg@ach
is suitable for handling the analysis problem of linear timeariant/time-varying networked systems
and can provide theptimal solutionsin the minimum mean-square error sense, the Hamilton-dacob
Isaacs inequality approach is helpful for addressing tredyais and synthesis problems of time-invariant
networked systems witgeneral nonlinearitiedut it is commonly difficult to obtain the feasible solution,
and backward/forward Riccati difference equation methad the advantage to deal with the analysis
and synthesis problem fdime-varyinglinear/nonlinear networked systems and provide the suirap
solutions. A more detailed comparison is given in Table Ihwibpe to better understand the differences
among the existing methods.

On the other hand, the measurement signals during the netwarsmissions may fade/degrade in a
probabilistic way rather than be lost completely [49], [95R], [55]—-[57]. It is easy to see that the missing
measurements are extreme cases of the fading measuremgnising sequences of random variables
obeying a certain probability distribution over known iM&s with available conditional probabilities, the
phenomena of the multiple fading measurements have beeepletboh [52] and a Kalman-like recursive
filtering algorithm has been developed via the forward Ricddference equation approach. Besides, in
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TABLE |
COMPARISONS AMONG DIFFERENT METHODS

Methods Applications Solutions References
Linear matrix inequality method time-invariantcomplex dynamical systems feasible [25], [40]-[44]
Difference linear matrix inequality method time-varyingcomplex dynamical systems feasible [21], [27], [45], [46]
Innovation analysis approach linear time-invariant/time-varyingystems optimal [30]-[32], [39], [47], [48]
Hamilton-Jacobi-Isaacs inequality approach general nonlinear time-invariangystems feasible [35]
Backward Riccati difference equation method nonlinear time-varyingsystems sub-optimal [37], [49], [50]
Forward Riccati difference equation method nonlinear time-varyingsystems sub-optimal [7], [16], [51]-[54]

[49], [56], [57], the N-order Rice fading channel has been modeled by sequencesigpendent and
identically distributed Gaussian random variables witbwn means and variances, where the multi-path
induced fading stemming mainly from multi-path propagati@as been considered when dealing with the
control and estimation problems for networked systems &edirnpact from the fading measurements
onto the control/estimation performance has been examined

B. Signal Quantization

In the networked environment, signals are often quantizefdrb the transmissions because of the
finite-word length of the packets [58]-[61]. During the irapientation, a device or algorithmic function
performing the quantization is called a quantizer and arogr@®-digital converter can be seen as an
example of a quantizer. Note that the signal quantizatioalgvaffect the achievable performance of the
networked systems and, hence, there is a need to conduatahesia on various quantizers and examine
the effects from the quantization onto the system perfoomaRecently, the signal quantization problem
has become a research focus and attracted an ever-ingeagarest. Accordingly, some methods have
been proposed in [62]-[64] to handle the uniform quantiralthe quantizers have same sensitivity) and
in [65]-[67] to deal with the logarithmic quantization (tlygiantization levels are linear in logarithmic
scale). As discussed in [68], a logarithmic quantizer caovige better efficiency in terms of the data
rate for system performance than a uniform quantizer. Soafgreat deal of effort has been devoted to
address the filtering problems for networked systems wghadiquantization and some effective filtering
algorithms have been developed in [53] with variance cai#is and in [69], [70] withH ., performance
requirements. For example, the fault detection filteringoathms have been given in [69], [70] for
linear networked systems with logarithmic quantizationusyng the linear matrix inequality technique.
However, it is worthwhile to mention that most reported tesbhave been concerned with time-invariant
networked systems with signal quantization only and theesponding filter design problem foime-
varying networked systems has not been paid adequate researctioatten

C. Sensor Saturations

As is well known, sensors may not always be capable of progidignals with unlimited amplitudes
due to physical/technological restrictions. The occureeaf the sensor saturations could affect the imple-
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mentation precision of the developed filtering algorithmsl anay even cause severe degradation of the
filtering performance if not handled properly. In the past years, the filtering problems for networked
systems with sensor saturations have gained some iniabreh attention and some preliminary results
have appeared handling the sensor saturations in recerdtlite [71], [72]. The main challenge with
this topic is how to design a filtering algorithm by makinglfuke of the available information about
the sensor saturations subject to specified performancereetents (minimized variance, guaranteéd
constraints etc). Recently, by using the sector-boundedoagh in [73], [74], a decomposition technique
has been given to facilitate the filter design for networkgsteams and a great number of papers have been
published. For example, in [75], a probability-guarantééd performance index has been defined over
a finite-horizon, and a probability-guarante&d, filtering algorithm has been developed for a class of
time-varying nonlinear networked systems subject to ramg@rameter matrices and sensor saturations.
However, when it comes to the variance-constrained filjeeind estimation problems fdime-varying
nonlinear networked systems with sensor saturations,ela¢ed results are very few and the situation is
even worse when the randomly occurring incomplete infolomais also considered.

D. Communication Delays

The communication delays are frequently encountered inemohdustrial systems (chemical process,
long transmission lines in pneumatic, and communicatidawokks) due to the finite switching speed of
amplifiers or finite speed of information processing [763#}[8n the past two decades, many efficient
approaches have been given to reduce the conservatismddayiske time delays, such as the bounding
technique [85], the descriptor system method [86], thekstaatrix variables technique [87] and the delay-
fractioning approach [88], [89]. Generally speaking, tHgeotive of conducting the delay-dependent
analysis includes two aspects (conservatism and comyp)exi) development of the delay-dependent
conditions to provide a maximal allowable delay; and 2) ttgwment of the delay-dependent conditions
by using as few decision variables as possible while aahgethe same maximal allowable delay. When
comparing between different methods, both the consemadisd the complexity serve as the criteria, and
there exists a tradeoff between the conservatism and thelegity. Hence, it is difficult to look for a
globally optimal approach which is least conservative yih east computational burden. Compared with
the bounding technique, the slack matrix variables teakland the descriptor system method, the delay-
fractioning approach is efficient in reducing the consesmatcaused by the time-delays at the cost of
introducing more computational complexity especially whiee number of fractions goes up. Fortunately,
it is not difficult to handle the computational complexityoptem nowadays due to the rapid developments
of the computing techniques. Based on the reported deldysasanethods, a great number of results have
been published concerning the synthesis problem of the dieleey systems. Note that most of the relevant
results have been concerned with tregerministic delaysnly, while the communication delays induced by
network transmissions would be random and time-varyingsidsh, the random communication delays
have received some initial research interests and the grabbf estimation, filtering and fusion have
been studied for networked systems with random commubpicatelays [39], [90]-[93]. For example,
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the filtering problems have been studied in [39], [90], [9B®)3] for networked systems with random
communication delays modeled by Bernoulli random varisble [91], the optimal filtering problem has
been investigated for networked systems with random conration delays modeled by Markov chain.

E. Randomly Occurring Incomplete Information

Recently, accompanying with the increasing of the netwades the randomly occurring incomplete
information has become a hot research topic that has gaomed siitial research attention. The randomly
occurring incomplete information may occur intermittgnth a probabilistic way with certain types and
intensity. For example, in a networked system such as tlenet-based three-tank system for leakage
fault diagnosis, the nonlinearities may occur in a probstiil way due to random abrupt variations
and the occurrence probability can be estimated via theststal tests [94]. It is well recognized that the
existence of the randomly occurring incomplete informatiould highly degrade the system performance
if not handled properly. So far, a series of estimation anriilg schemes has been developed for
networked systems with randomly occurring incomplete rimiation in the literature, and great efforts
have been made to deal with the randomly occurring nonlitiesrin [49], [95]-[99], the randomly
occurring uncertainties in [94], [97], the randomly oc@ogrsensor saturations in [40], [72], the randomly
occurring sensor delays in [31], [32], [38], [100], [101het randomly occurring signal quantization in
[41], [102], and the randomly occurring faults in [103]. Acdingly, several techniques for analysis and
synthesis of the networked systems have been given, imgudinovation analysis approach [31], [32],
linear matrix inequality approach [97], Hamilton-Jacddsacs inequality method [100], difference linear
matrix inequality method [41], Riccati difference equatimpproach [101], [102], and game theory method
[54].

IIl. A NALYSIS AND SYNTHESIS OFNETWORKED SYSTEMS

Over the past two decades, the networked systems have beeme an ever-increasing research
attention due to its engineering insights in a variety ofaareuch as the guidance and navigation, air
traffic control, factory automation, remote diagnosticd smubleshooting and automated highway systems
[104]-[107]. In this section, the methodologies of modgliastimation, filtering and fusion for networked
systems in the literature are briefly surveyed.

A. Linear Networked Systems

During the past decade, the estimation problems of therlineaworked systems have gained consid-
erable research attention and a great number of methodshesre given including innovation analysis
approach, linear matrix inequality method, game theoryr@ggh, etc. For example, the linear optimal
estimation problems have been studied in [30]-[32], [39] liaear discrete time-varying networked
systems with packet dropouts, and the linear optimal estiragincluding filter, predictor and smoother)
have been designed based on the innovation analysis apprBae to the limited capacity of the
communication networks, the multiple network-inducedrmmmaena (random transmission delays, packet
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dropouts) may occur simultaneously during the signal trassions. For instance, in [31], [32], both
the random transmission delays and the packet dropouts ltes® discussed in a unified framework.
Compared with the results in [30], it is worth mentioningtttfee consecutive packet dropouts in [31] are
finite and the consecutive packet dropouts in [32] can beiiafiin contrast to the modeling method
of the random transmission delays based on the Bernoulbaiitity distribution in [31], [32], the
phenomenon of random transmission delays has been modelgd]i by a multi-state Markov chain
and the optimal filtering problem has been studied for netewrsystems subject to random transmission
delays. To further reflect the engineering reality and imprthe estimation performance, the phenomena
of random transmission delays and packet dropouts ocguinnwo sides (from sensor to estimator
and from controller to actuator) have been modeled in [92hiwia unified framework, and the optimal
estimators (including filter, predictor and smoother) ie imear minimum variance sense have been
designed by using the orthogonal projection approach.

When the state-space model of the signal is unknown, sormeat&in algorithms for linear networked
systems can be found in the literature [47], [48]. To be dmecbased on the innovation analysis
approach, the linear recursive filtering and smoothingraigms have been presented in [47] to handle the
phenomenon of multiple random delayed measurements widrelt delay rates, and the recursive least-
squares linear estimation algorithms have been given ihtp8eal with uncertain observations, one-step
delay and packet dropouts in a unified framework. On the otlaed, by employing the linear matrix
inequality technique, the design problems of optifial and H; filters have been investigated in [24], [42]
for linear networked systems with multiple packet dropoB&@sed on the quasi Markov-chain approach,
the filtering algorithms have been given in [108] for lineatworked systems in the simultaneous presence
of random delay, packet dropouts and missing measuren@essdes, in [54], a robust filtering scheme
has been provided for a class of linear time-varying systemtls stochastic uncertainties, finite-step
correlated process noises and missing measurements viaithmax game theory approach.

B. Nonlinear Networked Systems

As is well known, the nonlinearity is a ubiquitous featureésérg in almost all practical systems that
contributes significantly to the complexity of system mauig[89], [103], [109]-[112]. The occurrence of
the nonlinearity would cause undesirable dynamic behavibinerefore, the filtering problems for general
nonlinear networked systems have received considerabdaureh attention and some useful methods have
been given in [17], [35], [100], [113]-[116]. In terms of tlamilton-Jacobi-Isaacs inequality method, the
H, filtering problems have been investigated in [35], [100] dogeneral class of discrete-time nonlinear
stochastic systems with missing measurements and randosorsdelays, where sufficient criteria have
been proposed to guarantee that the filtering error dynaimissochastically stable irrespective of the
presence of the missing measurements and random sensgs.deld17], [113], [114], the extended
Kalman filtering approaches have been given for generalimean networked systems with intermittent
observations, state delay, and sensor failures, respgctiBy using the Riccati equation method, the
unscented Kalman filtering problems have been studied i6][J116] for nonlinear networked systems
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with intermittent observations and packet dropout respelgt and sufficient conditions have been given
to ensure the stochastic stability of the filtering error artance, where the intermittent observations
phenomenon in [115] is modeled by a Bernoulli random vaeaiid the packet dropout phenomenon in
[116] is characterized by a time-homogeneous Markov prgoces

In contrast to general nonlinearities, another class ofinearities (stochastic nonlinearities) deserves
particular research attention since they occur randomly piwbably to sudden environment changes,
intermittent network congestion, changes in the intereations of subsystems, random failures and repairs
of the components, modification of the operating point ofn@dirized model of nonlinear systems [117].
Such stochastic nonlinearities include the state-depenaheltiplicative noise disturbance as a special
case. The filtering problems for networked systems with hestic nonlinearities have already stirred
some research interests and some latest results can be ifodyh€], [43], [45], [52], [101] based on
several analysis techniques. For example, by using theaRilike difference equation approach, the
extended Kalman filter has been designed in [16] for a classnw-varying networked systems with
stochastic nonlinearities and multiple missing measurgmevioreover, the locally optimal Kalman-like
filtering algorithms have been developed in [52], [101] fone-varying networked systems with stochastic
nonlinearities, where the compensation schemes have lveposed to attenuate the effects from random
sensor delays, random parameter matrices and gain-constoato the filtering performance. By using
the recursive linear matrix inequality method, the robtst filter has been constructed in [45] for a class
of time-varying networked systems with stochastic nomiitees and variance constraints. In [43], the
filtering algorithm has been given for a class of discretestuelay systems with stochastic nonlinearities
by employing the semi-definite programme method.

Over the past two decades, as discussed in [118]-[120], uheyflogic scheme has proven to be
one of effective approaches for modeling the nonlinear asted systems. Therefore, the multi-objective
filtering problems for nonlinear networked systems via tez{/ method have gained considerable research
attention. For example, based on the fuzzy interpolatiothote a fuzzy stochastic partial differential
system has been introduced in [121] to approximate the meati stochastic partial differential system
with random external disturbance and measurement noisea anbustH., filtering algorithm has been
developed by solving the linear matrix inequalities. In][5 sequence of random variables obeying the
Bernoulli distribution has been employed to model the phegra of the randomly occurring uncertainties
and the randomly occurring interval time-varying delays] ¢he fuzzy filtering problem has been studied
for a class of nonlinear networked systems with channehtglcharacterized by the Rice fading model.
In addition, the intermittent measurements have been raddal [44], [122] by using Bernoulli random
variables with known occurrence probabilities ahd, filtering algorithms have been developed for
nonlinear networked systems based on the T-S fuzzy-mogbaph. In contrast to the modeling of the
network-induced phenomena by using the Bernoulli prolggdistribution, a different modeling method
has been introduced in [23], where the Markov chain has bsed to model the random transmission
delays and théi,/H, filtering problem within fuzzy setting has been investigkfter a class of nonlinear
networked systems. Moreover, the event-triggered fuzimriilg methods have been given in [123], [124]
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for nonlinear networked systems, where the developedifijestlgorithms are capable of decreasing the
communication load and energy consumption during the sigaasmissions.

C. Complex Networks and Sensor Networks

Complex networks are composed of a group of interconneatddswunder certain topological structures
[125], [126]. As is well known, the scale-free networks anaa-world networks are two popular classes
of complex networks characterized by the power-law degisteiloltions [127] and the short path lengths
as well as high clustering [128]. During the past decadedimamical behavior analysis of the complex
networks has become a very active research topic due toptecapon potentials in a wide range of real-
world networks such as biological networks, computer netaoelectrical power grids, cyber-physical
systems, technological networks and social networks. Bsxa@f the importance and popularity of the
complex networks, a rich body of research results has beéfishad concerning various aspects of
the network structure [129], [130]. Note that the systemestare not always available in reality due
to physical constraints, technological restrictions opensive cost for measuring. Hence, it is also of
great significance to estimate the states of the network nb@dsed on the available measurements.
Accordingly, increasing research attention has been ddvt deal with the state estimation problems
for time-invariant/time-varyingomplex networks with network-induced phenomena, see][1B832] for
some recent results.

On the other hand, the sensor networks equipped with distéitbautonomous sensors have proven
to be persistent research focuses which have gained aragicgeattention in a variety of areas, and
a great number of estimation schemes have been given inténatlire [133]. It should be pointed out
that the network-induced phenomena are inevitable in the@semeasurement outputs due to the noisy
environment and limited communication capacity. The o@noge of the network-induced phenomena
would greatly degrade the networked system performanceeor kead to the divergence of the developed
estimation schemes if not tackled properly. Hence, muctkwas been done on the topics of estimation,
fusion, and distributedd, filtering for networked systems over sensor networks in FR387] and the
references therein. For example, the estimation and fugioblems have been studied for networked
systems over sensor networks in [36], [136], [138], [1391hwinissing measurements, in [136], [139]-
[141] with time-delays, in [142] with sensor saturations,[143] with signal quantization, and in [144]
with channel errors. We will return to the topics of estiroatiand fusion for complex networks/sensor
networks later, and more details concerning the recentragwill be presented in the following section.

IV. LATEST PROGRESS

Recently, the study on estimation, filtering and fusion fetworked systems has attracted an increasing
research interest and some important results have beenaépo the literature. Here, we highlight some
of the newest work, where the estimation, filtering and fasatgorithms have been presented to attenuate
the effects from the network-induced phenomena onto thmason performance under variance B,
constraints.
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A. Filtering and Estimation for Networked Systems

1) Filtering for Networked Systemd$Recently, the modeling and filtering problems tone-varying
systems have received increasing research attention dwitite fact that almost all real-world systems
have certain parameters/structures that are time-varyihgrefore, some efficient filtering algorithms
have been proposed for time-varying networked systemsdbasethe Riccati-like difference equation
approach or difference linear matrix inequality method.nfention a few, a Kalman-type filter has been
designed in [52] for a class of time-varying nonlinear sgseavith random parameter matrices, correlated
noises and fading measurements. Based on the result intfE2];ecursive filtering problem has been
investigated in [101] for time-varying nonlinear systemuject to finite-step correlated measurement
noises, probabilistic sensor delays and gain-constrdiné. developed filtering algorithm in [101] has
the ability to attenuate the effects from the random senstayd and gain-constraint onto the filtering
performance and, moreover, it could be useful for addrgg$ia gain-constrained issues arose in practical
engineering with specified objectives, for example, to gntee the unbiasedness property of the state
estimates, simplify filter structure and handle the casetatesestimates with linear equality constraint.
In [145], the robust non-fragile filtering problem has beswestigated for a class of linear time-varying
systems subject to multiple packet dropouts and finite-gsigp-correlated measurement noises, and a
locally optimal filtering algorithm has been given. Subsaajly, a globally optimal filtering scheme in the
minimum mean-square error sense has been proposed in [{t48pperly taking the statistical properties
of correlated noises into account for the same addresséehsyss in [145]. In [147], an optimal filtering
algorithm has been given for linear time-varying systemha presence of the stochastic sensor gain
degradations. Very recently, by using the backward Ricegtiation method, an effective,, filtering
scheme has been presented in [37] to handle the missing reeats and quantization effects in a same
framework, and the developed result has been applied tessldne mobile robot localization problem.

Parallel to the filtering problems for linear time-varyingtworked systems, the filtering problems for
nonlinear time-varying networked systems have starteditdhe initial research interest. For example,
the recursive filtering problems have been studied in [16}] [for two general classes of nonlinear
networked time-varying systems with the multiple missingasurements and quantization measurements
respectively, where some new recursive filtering algorghmve been developed by properly estimating
the linearization error and based on the stochastic asalgshnique. It has been shown that an optimal
upper bound of the filtering error covariance can be obtaateghch sampling instant by employing the
filtering schemes in [16], [53]. In addition, more freedongrke and better filtering performance can be
achieved by tuning the weight parameters, and the expbcih$ of the filter parameters have been given
in terms of the solutions to Riccati-like difference eqaas. Furthermore, a new non-fragile filter has been
designed in [102] for a class of nonlinear time-varying reted systems with incomplete measurements
consisting of the randomly occurring missing measuremantssignal quantization, and a new filtering
compensation algorithm has been given based on the Ridaatifference equation approach. In addition,
a probability-guaranteedd ., finite-horizon filtering methotlas been proposed in [75] for a classtiofe-
varyingnonlinear systems with sensor saturations by utilizinfedéince linear matrix inequality technique,
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where the uniform distribution has been used to charaeteahiez stochastic uncertainties in the system
matrices and a neWf, performance index with probability performance constrhas been introduced for
time-varying systems in order to meet the specified engingeequirements. Very recently, in [148], the
envelope-constrainel,, filter has been constructed for a class of discrete timehvgnyetworked systems
with fading measurements and randomly occurring nonlitieay where a novel envelope-constrained
performance criterion over a finite horizon has been defioefither quantify the transient behavior of
the filtering error.

2) State Estimation for Complex Networké/ith respect to the state estimation problem for complex
networks with network-induced phenomena, we mention s@peesentative results as follows. In [149],
the state estimator has been designed for an array of codectte-time complex networks with discrete
and distributed time delays. In [132], [150], the statereation problems have been studied for complex
networks with missing measurements, and sufficient caitbéve been given to ensure the asymptotical
stability of the estimation error in the mean-square sensednifying the feasibility of certain linear
matrix inequalities. The state estimation problem has lstedied in [72] for a class of discrete nonlinear
complex networks with randomly occurring phenomena, whieeerandomly occurring sensor saturations
and randomly varying sensor delays have been addressed mifiaduframework. In [151], the state
estimation problem has been investigated for two-dimeraioomplex networks with randomly occurring
nonlinearities and randomly varying sensor delays, wheficgent criteria have been given to guarantee
the globally asymptotical stability of the two-dimensibeatimation error dynamics in the mean square
sense and the explicit expression of the estimator gainsalsasbeen provided. Based on the recursive
linear matrix inequality approach, the state estimatigoathms have been given in [41], [152] for discrete
time-varyingcomplex networks. It is worth mentioning that, in [41], thetzors have made the first attempt
to discuss the uncertainties entering into the inner cagphatrix and introduce a new measurement model
which can characterize the sensor saturations, signatigatian, and missing measurements in a unified
framework. Very recently, in [153], the recursive stateireation problem has been investigated for an
array of discrete time-varying coupled stochastic completworks with missing measurements. By using
the Riccati-like difference equations approach, new statamation algorithm witttovariance constraint
has been developed for the first time and the estimator paearinas been characterized by the solutions
to two Riccati-like difference equations.

B. Distributed Filtering and Fusion for Networked SystemsroSensor Networks

1) Distributed Estimation and Filtering for Networked Sysis over Sensor NetworkB parallel to the
recent developments of the networked control systemscenteyears, some initiatives have been made on
the problems of distributed estimation and filtering foreimvariant/time-varying networked systems over
sensor networks. Accordingly, several techniques have peaposed including linear matrix inequality
method, recursive/parameter-dependent linear matriquiality approach, and backward/forward Riccati
difference equation method and so on. For example, by usiadinear matrix inequality approach, a
stochastic sampled-data scheme has been proposed in filadldtess the distributed filtering problem
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for time-invariant nonlinear systems over sensor netwaakdistributed state estimator has been designed
in [155] for discrete-time systems over sensor networks vandomly varying nonlinearities and missing
measurements, and the distributed filters have been coteddrin [25], [142] for nonlinear systems over
sensor networks with randomly occurring saturations, jgation errors and successive packet dropouts.
Besides, in [97], [99], the event-triggered distributedtstestimation problems have been investigated
for nonlinear systems over sensor networks with randombuog uncertainties, randomly occurring
nonlinearities and packet dropouts.

Parallel to the distributed state estimation and filteringbpems for time-invariant networked systems
over sensor networks, the corresponding researchirfteg-varyingsystems has gained the preliminary
attention due to its engineering insights. By using theedé#hce linear matrix inequality method, the
H, filtering problems have been studied for time-varying systeover sensor networks in [156] with
multiple missing measurements and in [46] with quantizagaors as well as successive packet dropouts,
where sufficient conditions have been given to ensure themeeifiedH ., performance requirements by
testing the feasibility of a set of linear matrix inequagi By using the backward Riccati difference
equation method, the distributed,, state estimation problem has been studied in [50] for a abdss
discrete time-varying nonlinear systems over sensor nmé&swvwith stochastic parameters and stochastic
nonlinearities, and a necessary and sufficient conditia been given to ensure the pre-defindd,
performance constraint. In [157], a distributed filter hag designed for a class of linear discrete time-
varying stochastic systems via event-based communicatechanism, and a locally optimal distributed
filtering algorithm has been given based on the forward Riatifference equation approach which is
suitable foronline applications

2) Multi-Sensor Fusion for Networked Systenfss mentioned above, the multi-sensor data fusion
algorithms can be generally classified into two types: ediztrd fusion and distributed fusion algorithms.
In this section, some new multi-sensor fusion schemes basddifferent weighted fusion mechanisms
for networked systems are reviewed. In [158], by using tm®wuation analysis technique and augmenta-
tion approach, the optimal centralized fusion estimatorslding filter, predictor and smoother) in the
minimum variance sense have been designed for a class af liligcrete time-varying stochastic systems
with random delays, packet dropouts and uncertain obsensgtwhere the stability of the developed
estimation algorithms has been discussed and sufficigetion has been given to verify the existence of
the centralized fusion steady-state estimators. Recdmtlymploying similar technique as in [158], the
optimal centralized and distributed fusion estimationigeans have been addressed in [159] for linear
discrete time-varying multi-sensor system with differpatcket dropout rates, and the centralized fusion
estimators (including filter, predictor and smoother) ia limear minimum variance sense have been firstly
designed and, subsequently, the distributed fusion estimalgorithm based on the scalar-weighted fusion
mechanism has also been provided in order to decrease theutamonal cost and improve the reliability.

On the other hand, according to the matrix-weighted fusiacmanism, several distributed fusion
algorithms have been developed in order to improve the-faldtance ability [160]-[163]. To be more
specific, the Kalman-like distributed fusion filters (ortegs predictors) have been constructed in [160]



REVISION 14

for linear multi-sensor time-varying stochastic systentha simultaneous presence of parameter uncer-
tainties, missing measurements and unknown measurenstatldinces, and the optimal filter gains have
been obtained based on the linear unbiased minimum varientegion. In [161], the distributed fusion
estimation algorithm has been given for linear discreteetirarying stochastic systems with multi-sensor
missing observations, where the case of the finite-stepraditsens missing has been discussed. Moreover,
a multi-sensor distributed fusion estimation algorithns baen developed in [162] for networked systems,
where the measurements of all sensors are transmitteddodily over different communication channels
with individual random delay and packet dropout rates. @&si when there exist the auto-correlated and
cross-correlated noises, a robust distributed weightddch#ta filter fusion method has been presented in
[163] for a class of uncertain time-varying systems withchtstic uncertainties without resorting the
state augmentation method. By using the projection theorygptimal fusion algorithm has been given in
[164] for a class of multi-sensor stochastic singular systevith multiple state delays and measurement
delays.

In [165], based on the federated filtering algorithm, a nmetivorked multi-sensor data-fusion scheme
has been proposed to deal with the effects from both the pdckses and the transmission delays. A
globally optimal distributed Kalman filtering fusion methbas been proposed in [166] for a class of time-
varying systems, where the developed fusion algorithm hasatvantage to decrease the computational
burden and address the case when the filtering error cocariarsingular. For the case that the state-space
model of the signal is unavailable, both distributed andiredized fusion schemes have been developed
in [167] to deal with the phenomena of the multi-sensor ramsoeasurement delays which are modeled
by the homogeneous Markov chains and, subsequently, teaded result has been given in [168] to
handle the missing measurements and random measuremays #eth individual delay rate in a unified
framework. Moreover, the distributed Kalman filtering fusiproblems have been studied in [38], [169]
for networked systems with missing measurements, randansrnission delays and packet dropouts, new
distributed fusion Kalman filters have been designed basdati@innovation analysis method and matrix-
weighted fusion mechanism. With respect to the multi-sefiggion for nonlinear networked systems, a
few results can be found in the literature. In [170], the caited and distributed{., fusion filters have
been designed for a class of discrete nonlinear stochaatieras with time-invariant delay and missing
measurements. It has been shown that, for both missing megasnts and time-delay, the fusion error
in [170] is globally asymptotically stable in the mean-sguaense and the prescribéfl, performance
can be achieved.

V. CONCLUSIONS ANDFUTURE WORKS

In this paper, we have reviewed some recent advances onagistimfiltering and fusion for time-
invariant/time-varying stochastic networked systemssthy, the developments of the network-induced
phenomena have been surveyed. Secondly, the analysis attiesig of the networked systems have
been discussed, where the linear/nonlinear networkecemgstcomplex networks and sensor networks
with network-induced phenomena have been mainly sumnuari@absequently, some recent advances
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on estimation, filtering and fusion for networked systemgehbeen reviewed. In particular, the multi-
objective filtering algorithms (involving variance coratit, H ., performance requirement, and probability
performance constraint) have been surveyed for time-ngrgonlinear networked systems. Based on the
literature review, some related topics for further reseawvork can be listed as follows.

« The estimation and filtering problems for networked systentls more general nonlinearities would
be one of future research topics, especially when both megiaconstraint and multiple network-
induced phenomena are considered simultaneously.

« The distributed filtering problem for networked systems fsengineering significance, especially
when it comes to the distributed filtering problem for timeting nonlinear networked systems.
Hence, the design of distributed filter for time-varying hoear networked systems would be an
interesting research direction.

« The multi-sensor fusion problem for nonlinear networkedtsgns would be a challenging research
topic.

« A potential trend for future research is to generalize theesu methods to tackle the estimation and
filtering problems for nonlinear networked systems underdhent-triggered mechanism.

« Another interesting research direction is to address ttimason and filtering problems for nonlinear
networked systems under different communication prowg¢obund-robin protocol and try-once-
discard protocol).

. The performance analysis of the estimation/filtering athar constitutes one of future research
topics, such as the convergence of the developed algoritianttze monotonicity/sensibility with
respect to the statistical information of the network-iogld phenomena.
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