Evolving PLA structures using evolutionary strategy with dynamic mutation rate
Tatiana Kalganova

School of Engineering and Design
Brunel University

Kingston Lane, UB8 2PX, United Kingdom

e-mail: Tatiana.Kalganova@brunel.ac.uk
Natallia Lipnitsakya and Yuri Yatskevich

Belarusian State University of Informatics and Radioelectronics,

6, Brovka str., Minsk, Belarus

e-mail: lipnitskaya-rti@bsuir.unibel.by, iskatel37@mail.ru

Abstract: This paper proposes a new evolvable hardware (EHW) technique that allows one to design and optimise relatively complex PLA structures using direct evolutionary process. In order to improve the performance of the evolutionary strategy the authors proposed to introduce the dynamic mutation rate that will be variable to each gene in the chromosome. The experimental results carried out on MCNC benchmarks show that the developed technique significantly outperforms any standard evolvable hardware technique introduced earlier by a number of criteria: time required to evolve logic circuit; evolution of complex circuit using only one direct evolutionary process; guarantee of evolution of fully functional solution.
Keywords: evolvable hardware, PLA, evolutionary computation
1. Introduction

Evolvable hardware has been introduced a decade ago as an alternative approach to automatic design of logic circuits. Despite the fact of its rapid development during last decade it lacks effective schemes to overcome the scalability problem and evolve relatively complex logic circuits in one run. For example, the most complex logic circuit evolved in one run is the 4 digit multiplier (8 inputs; 8 outputs) [2]. This circuit was evolved by using the gates as building blocks for FPGA target structure. The combination of several evolutionary processes has extended the evolvable range of logic circuits. For example, a 5 digit multiplier (10 inputs; 10 outputs) has been evolved using incremental evolution with training partitioning vector [5]. The introduction of bi-directional incremental evolution allowed one to evolve logic circuits using MCNC benchmark library. The first attempts to use this approach in evolvable hardware were succeeded by evolution of 7-input 10-output logic function from MCNC benchmark library for FPGA target structure [3]. The main advantage of this approach was that this method guarantees evolution of fully functional solution. The most complex logic circuit evolved so far has 14 inputs and 1-output [4], where the evolution has been carried out by introduction a new decomposition technique that has been incorporated into bi-directional incremental evolution. It is necessary to note that all methods describe above required thousands and in some cases millions of generations to obtain at least one fully functional solution. Based on the analysis of complexity of evolved circuits one can notice that the significant limitations in evolution of complex logic circuits still exist.
The proposed approach is based on the idea of evolving logic circuits using dynamic mutation rate that adapts to the evolved circuit structure. Using this approach the logic circuits of up to 12 inputs taken from MCNC benchmark library were evolved in one single run. Besides of this the proposed method does not require a large number of generations to obtain the required solution. The experimental results proved that the principles are valid for any logic circuit defined by completely or partially specified truth table.
The next section describes the proposed method in Section 3. The experimental results are reported in Section 4 with conclusion in Section 5.

2. Proposed approach

The main principle of Evolvable hardware is to generate the logic circuit using evolutionary computation principles. We will apply evolutionary strategy with uniform mutation, roulette wheel selection and binary chromosome representation to generate the AND-OR PLA structure. In the proposed algorithm the mutation rate will be changed dynamically and depend on the evolved PLA structure. The initial population is generated randomly.
Problem statement: The problem of interest is to design and optimise AND-OR PLA that implements a K-input M-output logic function given on P input-output combinations, where
[image: image1.wmf]}

2

..

1

{

K

P

Î

. Let
[image: image2.wmf]kp

x

and
[image: image3.wmf]T

mp

f

 be the k-th input digit and m-th output digit respectively in p-th input-output combination (or so called product term). Then the logic function can be represented using truth table as shown in Fig. 1.

[image: image4.emf] x K1 . . . x k1 . . . x 21 x 11

T

f

11

T

f

21

 . . .

T

m

f

1

 . . .

T

M

f

1

 x K p . . . x k p . . . x 2 p x 1 p

T

p

f

1

T

p

f

2

 . . .

T

mp

f

 . . .

T

Mp

f

 x K P . . . x k P . . . x 2 P x 1 P

T

P

f

1

T

P

f

2

 . . .

T

mP

f

 . . .

T

MP

f

{1..p..P} the number of input-output combinations

{1..k..K} the number of inputs {1..m..M} t he number of outputs

Fig. 1 The general view of truth table for K-input M-output logic function defined on P input-output combinations

The given logic function can be implemented on AND-OR PLA structure that contains AND and OR planes. The non-optimised PLA structure can be generated directly from given truth table. In this case AND plane will have 2*K input lines (the number of inputs in the truth table) and P product lines (the number of input-output combinations in the truth table). OR plane will consist of P product lines and M output lines (the number of outputs in the truth table). The number of input-output combinations P in the truth table defines the maximum number of product lines I in the PLA structure. The PLA structure can be optimised by product lines, I, where I<P. The purpose is to generate and optimise PLA structure that implements the given truth table.

Chromosome encoding: The chromosome encodes the structure of Programmable Logic Array (PLA) by describing the connections between lines in AND and OR planes. Therefore, the PLA structure is encoded using 2 arrays of genes as shown in Fig. 2.

Usually the AND plane has 2*K input lines: each input variable is presented by direct and inverted line. In the proposed encoding scheme both input lines (direct and inverted) are combined together and described using 2 types of genes: connection gene
[image: image5.wmf]AND

ki

v

 and input type gene
[image: image6.wmf]*

AND

ki

v

 (see Fig. 2). The connectivity gene
[image: image7.wmf]AND

ki

v

 defines whether there is connection or not between k-th input line and i-th product line (“1” and “0” describe the presence and the absence of connection respectively.). The input type gene
[image: image8.wmf]*

AND

ki

v

 describes the type of k-th input line in i-th product line (a direct input is encoded as “1” and an inverted input is encoded as “0”). The number of genes described AND array is 2*K*I, where K is the number of inputs in the logic function and I is the number of products in the given PLA structure.

The OR plane is described by
[image: image9.wmf]OR

im

v

 connection gene (see Fig. 2), representing the connection between m-th output and the i-th product (“1” and “0” describe the presence and the absence of connection respectively.). The number of genes described OR array is equal to I*M.

The total number of genes in the chromosome is Ngenes = (2*K+M)*I.

The chromosome is represented using 3 main types of genes: (1) connection gene in AND plane,
[image: image10.wmf]AND

ki

v

; (2) input line type gene in AND plane,
[image: image11.wmf]*

AND

ki

v

; (3) connection gene in OR plane,
[image: image12.wmf]OR

im

v

.

[image: image13.emf]

x 2

AND plane

x 1

x k

x K

 . . .

 . . .

 . . .

 . . .

f 1

f m

f M

1

1

1

1

1

1

1

1

1

1

1

0

0

1

0

1

0

0

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

.

. . .

. . .

OR plane

OR

im

v

*

AND

ki

v

AND

ki

v

.

.

Output lines

Product lines {1..i..I}

direct input ON

inverted input ON

{1..m..M}

Input lines {1..k..K}

Fig. 2 The chromosome encoding of PLA structure, where
[image: image14.wmf]AND

ki

v

 is AND plane connectivity gene;
[image: image15.wmf]*

AND

ki

v

 is AND plane input type gene;
[image: image16.wmf]OR

im

v

 is OR plane connectivity gene.

The general representation of chromosome can be summarised as following:

[image: image17.wmf]ï

ï

ï

ï

ï

ï

ï

þ

ï

ï

ï

ï

ï

ï

ï

ý

ü

ï

ï

ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

ï

ï

í

ì

=

OR

IM

OR

iM

OR

M

OR

M

OR

OR

im

OR

m

OR

m

OR

I

OR

i

OR

OR

AND

KI

AND

KI

AND

kI

AND

kI

AND

I

AND

I

AND

I

AND

I

AND

Ki

AND

Ki

AND

ki

AND

ki

AND

i

AND

i

AND

i

AND

i

AND

K

AND

K

AND

k

AND

k

AND

AND

AND

AND

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

C

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

2

1

Im

2

1

1

1

21

11

*

*

*

2

2

*

1

1

*

*

*

2

2

*

1

1

*

1

1

*

1

1

*

21

21

*

11

11

Fitness function calculation: The evolutionary process is carried out within 2 main stages: 1) to design and, 2) minimise the evolved PLA structure. The functionality of logic circuit is defined by:

[image: image18.wmf]100

*

*

1

output

correct

out

N

P

N

F

=

(1)

where F1 defines the percentage of correct output bits in the evolved PLA. F1=100% indicates that 100% functionality PLA circuit has been evolved. F2 defines the quality of evolved PLA in terms of the number of product lines used and is calculated as follows:

F2=Ivacant/Igiven
(2)

where Igiven is the given number of product lines in PLA; Ivacant is number of redundant product lines in evolved PLA. Igiven is specified in advance and is applied to all evolved PLA structures.
The product line is considered redundant in PLA structure if it contains no connections in OR plane.

[image: image19.wmf].

)

1

,

(

min

1

1

å

å

=

=

=

given

I

i

M

m

OR

im

vacant

v

I

(3)

Mutation: The uniform mutation is applied to all types of genes in the population. The mutation rate is calculated separately for each gene depending on the type of the gene and its location. The mutation rate changes dynamically for each gene during evolutionary process. In the proposed method we consider the dynamic process of changing gene value in order to identify the mutation rate for specific gene. Based on the changes in the chromosome genotype we introduce the probability for each genotype. This probability will define the mutation rate for the each type of gene used in the chromosome. This evaluation defines the necessity to carry out the mutation operation for the specific gene in the genotype. Let us consider the following definitions that will be used in further explanations. The gene
[image: image20.wmf]AND

ki

v

 is considered to be active if it is equal to “1”, otherwise – non-active. The product line is considered redundant if all genes located in this product line in OR plane are equal to 0. The product line is considered as active if there is at least one active connection in OR plane in this product line. There are 3 types of mutation rates that are calculated based on different type of genes in the chromosomes representation: (1)
[image: image21.wmf]AND

ki

P

 is defined for connection genes located in AND plane,
[image: image22.wmf]AND

ki

v

; (2)
[image: image23.wmf]*

AND

ki

P

 determines probability for the input line type genes located in AND plane,
[image: image24.wmf]*

AND

ki

v

; (3)
[image: image25.wmf]OR

im

P

is classified for the connection genes located in OR plane,
[image: image26.wmf]OR

im

v

.

[image: image27.wmf]AND

ki

P

 defines the probability of existence connection between k-th input and i-th product lines in AND plane. This probability is determined based on the following assumptions. If the i-th product line is redundant, then all genes
[image: image28.wmf]AND

ki

v

 located in i-th product line in AND plane are changed to “1”. This is carried out in order to increase the probability to activate the i-th product line for possibly absent input combination. In the case if the i-th product line is active in OR plane (there is at least one active connection in OR plane for i-th product line) and the connection gene
[image: image29.wmf]AND

ki

v

 is non-active, then the gene value is preserved. This is carried out because it is very likely that earlier in the evolutionary process it has been carried out minimisation and the input variable has been excluded from the given conjunction term. In the case if there is at least on connection in the i-th product line AND plane and the gen
[image: image30.wmf]1

=

AND

ki

v

, then the probability
[image: image31.wmf]AND

ki

P

 is defined based on the comparison analysis of any connection located in the k-th input line with corresponding input-output combination in the given truth table.
[image: image32.wmf]AND

ki

P

 is calculated according to the following equation:

[image: image33.wmf],

.

1

0

*

2

))

(

(

))

(

(

)

(

1

,

0

,

0

,

0

,

0

,

1

1

1

1

1

,

1

*

1

1

1

*

ï

ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

ï

í

ì

=

>

å

Ú

Ù

Ù

Å

Ù

Ù

Å

-

=

>

=

=

Ú

å

å

Ù

Ù

Ú

Ú

=

=

=

=

¹

=

=

=

=

AND

ki

OR

im

M

m

P

p

AND

ki

K

k

v

T

mp

OR

im

M

m

AND

li

AND

li

lp

k

l

K

l

AND

ki

AND

ki

kp

AND

ki

OR

im

M

m

OR

im

M

m

AND

ki

v

and

v

if

v

f

v

v

v

x

v

v

x

v

and

v

if

v

if

P

K

k

AND

ki

(4)

[image: image34.wmf]*

AND

ki

P

 is the probability of existence of inverse (0) or primary (1) input in the PLA in the case if
[image: image35.wmf]AND

ki

v

=1. If
[image: image36.wmf]AND

ki

v

=0, then the connection is absent, therefore there is no necessity to calculate the
[image: image37.wmf]*

AND

ki

P

 since the input line is not considered in the evolutionary process. The inverted value of input line type gene
[image: image38.wmf]*

AND

ki

v

 is defined by the value of genes in the i-th product in AND plane. In the case if there is at least one connection in the i-th product line in AND plane, then value of
[image: image39.wmf]*

AND

ki

v

 gene is preserved. Therefore, the probability that the value of this gene can be changed is equal to 0. In the case if there is no connections in the i-th product line in AND plane, then the mutation rate for
[image: image40.wmf]*

AND

ki

v

 gene is set up to 0.5. Based on the assumption specified earlier the calculation of
[image: image41.wmf]*

AND

ki

P

can be summarised as following:

[image: image42.wmf]ï

ï

î

ï

ï

í

ì

>

=

=

Ú

Ú

=

=

0

,

0

,

0

,

5

.

0

1

1

*

OR

im

M

m

OR

im

M

m

AND

ki

v

if

v

if

P

(5)

where
[image: image43.wmf]OR

im

P

 defines the probability of the connection activation between the i-th product line and m-th output line in OR plane. Let
[image: image44.wmf]Ù

 and
[image: image45.wmf]Ú

 be the conjunction and disjunction operators. Then
[image: image46.wmf]OR

im

P

can be calculated as follows:

[image: image47.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

=

Ù

Ú

Å

Ù

Ú

Å

Ù

Ù

Å

>

Ù

Ú

Å

=

Ù

Ú

å

Ù

å

Ù

Ú

=

=

=

=

=

=

=

0

)

)

(

((

,

)

1

),

)

(

(

max((

0

)

)

(

(

,

0

*

*

*

*

1

1

1

1

1

1

1

T

mp

AND

ki

AND

ki

kp

K

k

P

p

I

i

OR

im

AND

ki

AND

ki

kp

K

k

T

mp

AND

ki

AND

ki

kp

P

p

T

mp

AND

ki

AND

ki

kp

K

k

P

p

OR

im

f

v

v

x

if

v

v

v

x

f

v

v

x

f

v

v

x

if

P

(6)

Table 1 Results on MCNC benchmarks, where K, M and P are the number of inputs, outputs and products in the given truth table respectively; Igiven is the initial given number of product lines in PLA;
[image: image48.wmf]max

gen

N

 is the maximum number of generations given for each evolutionary process: PLA design and optimisation;
[image: image49.wmf]%

100

1

=

F

gen

N

 and
[image: image50.wmf]2

F

gen

N

 are the average number of generations for design (F1) and optimisation (F1+F2) processes, respectively;
[image: image51.wmf]%

100

1

=

F

I

 and
[image: image52.wmf]2

F

I

 are the average number of product lines in PLA obtained after completion of design (F1) and optimisation processes (F1+F2) respectively;
[image: image53.wmf]min

%

100

1

=

F

I

 and
[image: image54.wmf]min

2

F

I

 are the minimum number of product lines over 100 runs obtained for design (F1) and optimisation (F1+F2) processes, respectively.

	.pla
	K
	M
	P
	Experimental results

	
	
	
	
	Initial parameters
	PLA design
(activation of F1)
	PLA optimisation
(activation of F1+F2)

	
	
	
	
	Imax
	
[image: image55.wmf]max

gen

N

	
[image: image56.wmf]%

100

1

=

F

gen

N

	
[image: image57.wmf]%

100

1

=

F

I

	
[image: image58.wmf]min

%

100

1

=

F

I

	
[image: image59.wmf]2

F

gen

N

	
[image: image60.wmf]2

F

I

	
[image: image61.wmf]min

2

F

I

	majority
	5
	1
	32
	32
	50
	1
	25
	16
	50
	13
	9

	view-6-5
	6
	5
	64
	64
	50
	21
	64
	63
	50
	63
	60

	view-6-4
	6
	4
	64
	64
	50
	12
	62
	55
	50
	59
	52

	view-6-3
	6
	3
	64
	64
	50
	6
	57
	45
	50
	47
	40

	view-6-2
	6
	2
	64
	64
	50
	3
	49
	38
	50
	31
	23

	view-6-1
	6
	1
	64
	64
	50
	2
	37
	22
	50
	22
	18

	con1
	7
	2
	128
	96
	50
	6
	87
	69
	50
	60
	52

	addm4
	9
	8
	512
	384
	70
	29
	375
	367
	70
	366
	352

	9sym
	9
	1
	512
	384
	50
	7
	288
	225
	50
	231
	220

	alu1
	12
	8
	4096
	3264
	40
	17
	2960
	2868
	40
	2726
	2670

3. Experimental results

The experimental results summarised in Table 1 have been obtained based on analysis of 100 runs for each logic function. The some combinational benchmark circuits were taken from LGSynth91 (MCNC’91 suite) [7]. The .pla files have been converted to truth table before they have been used in the evolutionary process. Therefore, the presented results are obtained based on the analysis of the truth table of completely specified switching function. The evolutionary process is divided into 2 sub-processes, where different fitness functions are activated. The functionality of evolved logic function is used during PLA design process. The number of product lines in the PLA structure is minimised during PLA optimisation process. Both of these processes are carried out using the same algorithm. The difference is that different fitness functions are applied during different stages of evolutionary process. The mutation rate has been changed dynamically and the population size was set to 5.

It is necessary to note that for each run fully functional solution has been achieved. Analysis of experimental results shows that the number of generations depends on the functional complexity of the evolved circuit rather on the number of inputs. In several cases it has been no significant improvement during optimisation process – this can be explained by the use significantly low number of generations during evolutionary process. Comparison of algorithm performance during design and optimisation processes demonstrates that the algorithm performs significantly better during design process, where the fully functional solution has been generated within low number of generations (from 1 to 29). The optimisation process required larger number of generations to perform. In order to obtain very good optimised PLA structure, the number of generations should be increased during optimisation process.
It is possible to evolve the logic functions of higher complexity using the proposed method. But due to the fact that the evaluation of the quality of evolved logic function is carried out based on the truth table, the computational effort to evaluate one logic circuit significantly increases. This issue will be addressed in the future work to improve the performance of designed algorithm.

4. Conclusion

The paper proposes the new technique to evolve PLA structures based on the use of dynamic mutation rate, generated individually for each gene in the chromosome. The experimental results show the significant improvement in evolution of logic circuits using the proposed approach in comparison with similar existing techniques. It is necessary to note that unlike the traditional evolvable hardware algorithms, the proposed algorithm guarantees that fully functional solution will be evolved. The circuits have been evolved during one evolutionary process without use of preliminary decomposition or prior knowledge of functionality logic circuits. This demonstrates the superior behaviour under existing evolvable hardware algorithms applied to evolution of PLA structure previously. Although the paper presents only the preliminary results of the proposed technique, it is already demonstrated the great potential for further development for evolvable hardware.
References

[1] Baradavka I., T. Kalganova (2003) Assembling Strategies in Extrinsic Evolvable Hardware with Bi-directional Incremental Evolution. Proc. of the 6th European Conference on Genetic Programming, EuroGP2003, Essex, UK. Published by Springer-Verlag. Vol. 2610. pp. 276-285.
[2] D. Job V. Vassilev and J. Miller (2000). Towards the automatic design of more e_cient digital circuits. In J. Lohn et al., editor, Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 151-160. IEEE Computer Society, Silicon Valley, USA.
[3] Kalganova T. (2000) Bi-directional Incremental Evolution in Evolvable Hardware. Proc. of The Second NASA/DoD Workshop on Evolvable Hardware (EH'2000). Palo Alto, California, USA. Published by IEEE Computer Society.
[4] Stomeo E., T. Kalganova (2004) Improving EHW performance introducing a new decomposition strategy. 2004 IEEE Conference on Cybernetics and Intelligent Systems (CIS’2004). Singapore (to be published)
[5] Torresen J. (2003) Evolving Multiplier Circuits by Training Set and Training Vector Partitioning. In proc. of Fifth International Conference on Evolvable Hardware (ICES’03), Springer LNCS 2606, pp. 228-237, Trondheim, Norway.
[6] Torresen J. Exploring Knowledge Schemes for Efficient Evolution of Hardware. In proc. of 2004 NASA/DoD Conference on Evolvable Hardware (EH-2004), June, 2004, Seattle, USA.
[7] Yang S. (1991). “Logic synthesis and optimization benchmark user guide version 3.0”. Technical report 1/95, Microelectronic Center of North Carolina, Research Triangle Park, NC.

_1160210869.unknown

_1160301202.unknown

_1160425453.unknown

_1160815190.unknown

_1160890717.unknown

_1160808297.unknown

_1160808813.unknown

_1160422588.unknown

_1160425426.unknown

_1160422123.unknown

_1160422178.unknown

_1160421799.unknown

_1160421847.unknown

_1160213591.unknown

_1160296951.unknown

_1160296997.unknown

_1160297023.unknown

_1160300891.unknown

_1160300924.unknown

_1160297015.unknown

_1160296979.unknown

_1160213602.unknown

_1160292671.unknown

_1160296438.unknown

_1160213620.doc

		xK1

		. . .

		xk1

		. . .

		x21

		x11

		

[image: image1.wmf]T

f

11

		

[image: image2.wmf]T

f

21

		. . .

		

[image: image3.wmf]T

m

f

1

		. . .

		

[image: image4.wmf]T

M

f

1

		

		

		

		

		

		

		

		

		

		

		

		

		xKp

		. . .

		xkp

		. . .

		x2p

		x1p

		

[image: image5.wmf]T

p

f

1

		

[image: image6.wmf]T

p

f

2

		. . .

		

[image: image7.wmf]T

mp

f

		. . .

		

[image: image8.wmf]T

Mp

f

		

		

		

		

		

		

		

		

		

		

		

		

		xKP

		. . .

		xkP

		. . .

		x2P

		x1P

		

[image: image9.wmf]T

P

f

1

		

[image: image10.wmf]T

P

f

2

		. . .

		

[image: image11.wmf]T

mP

f

		. . .

		

[image: image12.wmf]T

MP

f

{1..p..P}

the number of input-output combinations

{1..m..M}

the number of outputs

{1..k..K}

the number of inputs

_1160200101.unknown

_1160213682.unknown

_1160213766.unknown

_1160213783.unknown

_1160213793.unknown

_1160213692.unknown

_1160213660.unknown

_1160213672.unknown

_1160213651.unknown

_1133181983.unknown

_1160200023.unknown

_1133181960.unknown

_1160212710.unknown

_1160205108.doc
[image: image2.wmf]AND

ki

v

[image: image3.wmf]*

AND

ki

v

[image: image4.wmf]OR

im

v

[image: image1]

inverted input ON

direct input ON

Product lines {1..i..I}

Output lines

.

.

.

.

.

.

.

.

.

.

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

OR plane

.

.

.

.

.

.

.

.

.

.

.

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

0

0

1

1

1

1

1

1

1

1

1

1

1

fM

fm

f1

 . . .

 . . .

 . . .

 . . .

xK

xk

x1

AND plane

x2

{1..m..M}

Input lines {1..k..K}

_1132755403.unknown

_1160204629.unknown

_1132755332.unknown

_1160209976.unknown

_1160210520.unknown

_1160210001.unknown

_1160210018.unknown

_1160210033.unknown

_1160209988.unknown

_1160209383.unknown

_1160209875.unknown

_1160209363.unknown

_1132757459.unknown

