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1. Abstract 

The modular inversion is a fundamental process in several cryptographic systems. 

It can be computed in software or hardware, but hardware computation proven to be 

faster and more secure. This research focused on improving an old scalable inversion 

hardware architecture proposed in 2004 for finite field GF(p). The architecture has 

been made of two parts, a computing unit and a memory unit. The memory unit is to 

hold all the data bits of computation whereas the computing unit performs all the 

arithmetic operations in word (digit) by word bases known as scalable method.  

The main objective of this project was to investigate the cost and benefit of 

modifying the memory unit to include parallel shifting, which was one of the tasks of 

the scalable computing unit. The study included remodeling the entire hardware 

architecture removing the shifter from the scalable computing part embedding it in 

the memory unit instead. This modification resulted in a speedup to the complete 

inversion process with an area increase due to the new memory shifting unit. 

Quantitative measurements of the speed area trade-off have been investigated. The 

results showed that the extra hardware to be added for this modification compared to 

the speedup gained, giving the user the complete picture to choose from depending on 

the application need. 
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2. Introduction  

Modular inverse arithmetic is an essential arithmetic operation in public-key 

cryptography. It is used in the Diffie-Hellman key exchange method [5], and it was also 

adopted to calculate private decryption key in RSA [4]. Modular inversion is a basic 

operation in the elliptic curve cryptography (ECC) [1,2,9-12,20-25]. This work is 

targeted mainly toward the use of ECC because of its promise to replace older public-key 

cryptographic systems [9-12,20]. ECC arithmetic consists mainly in modular 

computations of addition, subtraction, multiplication, and inversion.  

Inversion is well known to be the lowest computation among all other arithmetic 

calculations in ECC [1,2,11,16-18]. Many researchers propose minimizing the use of 

modular inversion by adopting elliptic curves defined for projective coordinates [9-12], 

which substitutes the inverse by several multiplication operations. Inversion, in the 

projective coordinate systems, is required only once at the end, to convert the projective 

coordinate points back to affine coordinates. However, if this single inversion is not fast 

enough, it will cause the complete ECC system to be slow. 

A fast modular inverse calculation is the main reason to do inversion in hardware 

instead of software [16-18]. If it is possible to compute the inverse in less time than nine 

multiplication operations, then it is more efficient to use the affine coordinate system 

instead of going to the projective coordinate systems [2,10]. Even if the speed to compute 

the inverse is not that good to justify the use of affine coordinates, the computation with 

hardware is still faster than software [6,16-18,20-25], which will provide better 

performance for the overall cryptographic system based on projective coordinates.  

Another main reason to implement the inverse in hardware is security. For 

cryptographic applications, it is more secure to have all the computations handled in 

hardware, inside an IC-chip, instead of mixing some computations performed in software 

with others processed in hardware. Software-based systems can be interrupted and 

trespassed by intruders much easier than hardware, which can jeopardize the security of 

the whole application. Moreover, stealing information from software systems is easier 

than from hardware. 
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3. Literature Review  

Modular inversion is often performed by algorithms based on the Extended Euclidean 

algorithm [11]. Several inversion VLSI designs are described in the literature [16-18, 20-

25, 29-31]. Most of them [17, 18, 20-25] are for inversion in Galois Fields GF(2k). 

Several [17, 18, 21-25] are based upon extensive combinational networks. The inversion 

in GF(2k) is fast due to the elimination of the carry propagation in GF(2k) calculations. 

However, the area used in these parallel organizations are very large, of order O(n2). 

Hasan in [20] proposed to implement the GF(2k) inversion algorithm in a smaller area but 

with slower speed. His hardware performs word-by-word computation on the operands 

instead of computing all the words in parallel. Since we focus on GF(p), the designs 

proposed for GF(2k) in [17,18, 20-25] have no direct link to this work. 

Takagi in [16], proposed an inverse algorithm for hardware with a redundant binary 

representation. Each number is represented by a digit in the set {0,1,-1}. Redundant 

representation is used to avoid the carry propagation delay problem. However, the 

hardware in [16] requires more area than the design proposed here and also needs data 

transformations that are usually expensive. 

Zhou in [30, 31], designed a VLSI implementation for GF(p) inversion computation 

using one simple adder. Zhou’s hardware suffers from the long propagation carry chain 

which made the operation clock frequency limited and the design area and complexity 

not flexible to accommodate the changing demand of the crypto applications. 

Several attempts [29, 32, 34, 36] have investigated the GF(p) inversion targeted to 

field programmable gate array (FPGA) implementations. Fiaz in [36] described an FPGA 

divider which can be used for inversion by representing the dividend by ‘1’. Daly [29] 

and Dormale [34] shortened the critical path and carry-chain addition within the inversion 

process according to the FPGA column limitations. The designs minimize the extra delay 

of the top to bottom carry chain mapping between different FPGA columns by specific 

physical routing. Daly presented an architecture technique “for implementation on any 

FPL (field programmable logic) device which has dedicated carry logic capability” [29]. 

Dormale presented an FPGA carry conditional adder implementation that demonstrates 

improvement especially when the carry-chain exceeds the specific FPGA column height 

[34].  
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An ECC arithmetic hardware unit has been proposed by Feldhofer in [35]. It contained 

asynchronous modules to compute all prime field computations including inversion. The 

inversion hardware was slow and complex depending on Fermat’s Theorem. Feldhofer’s 

idea was not to consider the inversion as a main problem, assuming all computations are 

performed through projective coordinates, and the inversion was calculated by a number 

of multiplications. The inversion process needed multiplication operations that can be 

equal to double the number of bits of the data length used.  

McIvor in [32] improved the inversion algorithm presented by Savas in [1] involving 

modular multiplication. McIvor reduced the number of needed multiplication operations 

to speedup the complete computation [32]. McIvor benefited from the built-in carry-look-

ahead adders on the FPGA to gain in area reduction. 

Tawalbeh in [37] presented a unified inversion hardware for both GF(p) and GF(2k). 

He replaced all comparisons by the use of counters to keep track of the difference 

between field elements which are usually expensive and time-consuming. It uses a 

scheduling method to reduce the number of hardware resources without significantly 

increasing the total execution time.  

 

4.   Problem and Objectives 

The standard modular inverse over GF(p) can be defined by the following example. 

Assume a is an integer in the range [1, p-1]. Integer x is called the modular inverse, or 

modulo inverse, of integer a if-and-only-if: ax≡1(mod p); where x∈[1, p-1]. It is normally 

represented as x=a-1mod p [1]. The Montgomery modular inverse algorithm and 

hardware suitable for this research is presented in [27, 28]. The algorithm is implemented 

in hardware using scalability features, which allows the use of a fixed-area scalable 

circuit to perform inversion of unlimited precision operands. The hardware divides the 

long-precision numbers in words and each word is processed in a clock cycle. 

This two months project aimed to investigate the possibility of speeding the process by 

modifying the registers of the non-scalable part to incorporate the shifting operation. This 

way, the shifting operation will be part of the memory unit instead of the scalable 

computing unit. This feature is predicted to reduce the shifting operation delay which will 
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improve the total computation performance. Therefore, the main objective has been to 

investigate the advantages and disadvantages behind this modification and its practicality 

to be implemented. Quantitative measurements of the trade-off between speed and area, 

and the modification criteria will be the subject of investigation. 

 

5.    Engineering Approach  

The scalable inversion hardware is built of two main parts, a memory unit and a 

computing unit, as shown in Fig. 1. It is very similar, in principle, to the scalable 

hardware presented in [27]. The memory unit is not scalable because it has a limited 

storage defined by the value of nmax. The data values of a and p are first loaded in the 

memory unit. Then, the computing unit read/write (modify) the data using a word size of 

w bits. The computing unit is completely scalable. It is designed to handle w bits every 

clock cycle. The computing unit does not know the total number of bits, nmax, the memory 

is holding. It computes until the controller indicates that all operands’ words were 

processed. Note that the actual numbers used may be way smaller than nmax bits. 

 

 
Fig. 1 inversion scalable hardware block diagram 

 

The memory unit contains a counter to compute variable k and eight first-in-first-out 

(FIFO) registers used to store the inversion algorithm’s variables. All registers, u, v, r, s, 

x, y, z and p, are limited to hold at most nmax bits. Each FIFO register has its own reset 

signal generated by the controller. They have counters to keep track of n (the number of 

bits actually used by the application). 
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The computing unit is made of four hardware blocks, the add/subtract, shifter, data 

router, and controller block. All these blocks functions and hardware design are detailed 

in [27, 28]. Our focus of this research is about the shifter. The original shifter is made of 

two multiplexers and two registers with special mapping of some data bits, as shown in 

Fig. 2. The two multiplexers are used to select the correct set to be used in the multi-bit 

shifter. Depending on the controller signal Distance, the shifter acts as a one, two, or 

three-bit shifter, as clarified in [28]. Two types of shifting are needed in the inversion 

algorithm, right shifting an operand (u or v) through the uv bus (one, two, or three bits) 

and left shifting another operand (r or s) through the rs bus (by similar number of bits). 

Right shifting u or v is performed through Register1, which is of size w-1 bits. For each 

word, w-1 bits of uv are stored in Register1. The LS bit(s) of each word is (are) read out 

immediately as the most significant bit(s) of the output bus uv_out. Left shifting r or s is 

performed via Register2, which is of size w+3 bits, in a similar fashion.  

 
Fig. 2 Multi-bit shifter (max distance = 3) 

 

The study plan is to redesign both the scalable and non-scalable hardware units. The 

shifter will be removed from the computation unit. It will be embedded into the non-

scalable memory unit. The project results are expected to show the speedup gained and 

the extra hardware area needed. The conclusion will indicate whether the extra hardware 

is worth the expected speedup with quantitative measurements.  
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6.   Hardware and Algorithms 

Several methods considered for hardware computation of the Montgomery inverse are 

shown in Fig. 3; including the procedures proposed by Savas and Koç in [1] using 

MonPro (Montgomery Product). Each path in the graph has its own set of routines and its 

total computation time. Fig. 3 presents the approximate number of iterations for each 

routine. Note that the number of iterations for multiplication is estimated considering 

serial-parallel multipliers, because fully parallel multipliers are impractically large [6]. 

All approaches of Fig. 3 lead to the same final result. However, the number of 

iterations in each path proves that our two-phase method, the AlmMonInv followed by the 

correction phase (the bold path shown in Fig. 3), is the fastest. It requires only 2n 

iterations to complete the inversion, the AlmMonInv needs 1.5n iterations, and the 

correction phase (CorPh) needs 0.5n iterations, assuming an average value of k=1.5n, as 

detailed in [28]. 

 

 
Fig. 3 Different ways to compute the Montgomery inversion 

 

 

Two hardware algorithms of the AlmMonInv procedure are shown in [28], depending 

on the number of bits of shifting used. We will start this study by single bit shifting since 

the shifter will be eliminated from the computing unit. The AlmMonInv algorithm of 

single-bit shifting is shown below. 

AlmMonInv Hardware Algorithm (HW-Alg1) 
Registers: u, v, r, s, & p (all five registers hold n bits). 
Input:  a ∈ [1, p-1], p = modulus; where 2n-1 ≤ p < 2n 
Output:   result∈[1, p-1] & k; where result=a-12k mod p & n≤k≤2n 
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1. u = p; v = a; r = 0; s = 1; k = 0 
2. if (u0 = 0) then { u = ShiftR(u,1) ; s = ShiftL(s,1)}; goto 7 
3. if (v0 = 0) then { v = ShiftR(v,1) ; r = ShiftL(r,1)}; goto  7 
4. S1 = Subtract (u, v); S2 = Subtract (v, u); A1 = Add (r, s)  
5. if(S1borrow=0)then{u=ShiftR(S1,1));r=A1;s=ShiftL(s,1)};goto 7 
6. s = A1; v = ShiftR(S2,1); r = ShiftL(r,1)  
7. k = k + 1 
8. if (v ≠ 0) go to step 2 
9.   S1 = Subtract (p, r); S2 = Subtract (2p, r)  
10. if(S1borrow=0)then{return result=S1}; else {return result=S2} 
 

The correction phase(CorPh) [28] algorithm (see Fig. 3) is shown as HW-Alg2 below: 

CorPh Hardware Algorithm (HW-Alg2) 
Registers: r & p (two registers to hold n bits). 
Input:  r,p,n,k; where r (r= a-12k-nmod p)& k from AlmMonInv 
Output:  result; where result = a-12n (mod p). 
11. j= 2n-k-1 
12.  While j>0   
13.  r = ShiftL(r,1); j = j-1 
14.  S1 = Subtract(r, p) 
15.  if (S1borrow = 0) then {r = S1}  
16. return result = r 
 

The hardware is modified as shown in Fig. 4. The memory block is improved to 

perform shifting by adding nmax 4x1 multiplexers to each FIFO. The non-scalable block is 

resized increasing the hardware area by (8*nmax*10) gates. 

 

 
Fig. 4 Improved inversion scalable hardware block diagram 
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7.   Effect on Area and Speed 

The study will concentrate on the AlmMonInv algorithm first, then the CorpPh one, 

similar to our old scalable design presented in [28]. The new hardware area and speed 

will be estimated depending on the number of bits to be shifted through the non scalable 

‘memory & shifter’ unit.  

 

7.1 AlmMonInv Single Bit Shifting 

The analysis showed that single bit shifting through the memory is performed by 

simply adding a multiplexer at the input of every memory cell. The multiplexer size used 

is ten gates making the area increase over the single bit shifting scalable hardware in [28] 

as follows:  

Area increase = 8*nmax*10 = 80 nmax 

The number of clock cycles for all designs depends completely on the data and its 

computation. The computation time of the new hardware to run the AlmMonInv 

algorithm is estimated by probability study as in [28]. See the AlmMonInv algorithm 

(HW-Alg1) represented earlier. Simulating this algorithm proofed that almost 25% of the 

k cycles is consumed by step 2 and 25% is for step 3. Steps 4, 5, and 6 are a sequence that 

runs consuming 50% of the k iteration. After the k iterations, step 9 is performed once 

which needs to considered in the time estimation too. Note that each shifting operation is 

performed in one cycle independent to the number of words the hardware is having, 

while the addition and subtraction needs to be performed within ⎡n/w⎤ cycles. These 

points made the AlmMonInv Computation Time as follows: 

Cycles for steps 4,5,6 = 0.5 k (⎡n/w⎤+1) 

Cycles for step 9 = ⎡n/w⎤ 

Cycles for steps 2,3 = 0.5 k 

Total AlmMonInv Clock Cycles = 0.5 k (⎡n/w⎤+1)+ ⎡n/w⎤ + 0.5 k 

 

7.2 AlmMonInv Two Bit Shifting 

The new hardware, shown in Figure 4, is improved to have its memory & shift unit to 

perform two bit shifting in addition to its original ability of single bit shifting. The 
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shifting can now be performed as one bit shifting right, one bit shifting left, two bits 

shifting right, and two bits shifting left. This will modify the routing multiplexer inserted 

between the memory cells increasing the multiplexer size by eight gates more than the 

single bit shifting presented in 7.1. The new hardware with two bit shifting will increase 

the area of the original design of [28] by: 

Area increase = 8*nmax*(10+4+4) =144 nmax 

The AlmMonInv computation time will be similar to the single bit shifting except in 

steps 2, and 3, which will be reduced by 6% each. The overall time reduction of steps 2, 

and 3, together is estimated by 12%, as described in detail in [28]. This two bit shifting 

made the AlmMonInv computation time as follows: 

Cycles for steps 4,5,6 = 0.5 k (⎡n/w⎤+1) 

Cycles for step 9 = ⎡n/w⎤ 

Cycles for steps 2,3 = 0.38 k 

Total AlmMonInv Clock Cycles = 0.5 k (⎡n/w⎤+1)+ ⎡n/w⎤ + 0.38 k 

 

7.3 AlmMonInv Multi Bit (Three) Shifting 

In [28], it was shown that increasing the multi-bit shifting over three-bits is not 

beneficial. The time reduction probability will be too low compared to three-bit shifting 

making three bit shifting as the appropriate hardware to build. The hardware area increase 

of three bit shifting within the memory is estimated as eight gates more within all 

multiplexers between the memory cells. The overall area modification of this three-bit 

shifting hardware compared to the original hardware of [28] is: 

Area increase = 8*nmax*(10+8+8)=208 nmax 

The AlmMonInv computation time is affected similarly to the two-bits shifting 

(section 7.2) with the difference in time reduction to calculate steps 2, and 3. This three-

bit shifting made the AlmMonInv computation time as follows: 

Cycles for steps 4,5,6 = 0.5 k (⎡n/w⎤+1) 

Cycles for step 9 = ⎡n/w⎤ 

Cycles for steps 2,3 = 0.35 k 

Total AlmMonInv Clock Cycles = 0.5 k (⎡n/w⎤+1)+ ⎡n/w⎤ + 0.35 k 



 13

7.4 CorPh Single Bit Shifting 

The correction phase algorithm (HW-Alg2) can run on the new hardware with single 

bit shifting and two bits shifting. It cannot benefit from three bits shifting since it will 

need an impractical increase in the number of adders of the scalable design as clarified in 

[28]. The area of the hardware design is not affected when running HW-Alg2 while the 

computation time is. The computation time of HW-Alg2 depend on the total number of 

iterations and some extra cycles within the iterations due to scalability. The single bit 

shifting number of iterations is 2n-k-1, assuming on average k=1.5n, will result:  

number of iterations = 2n-1.5n-1≈ 0.5n. 

HW-Alg2 will need this number of iterations to process step 13 followed by step 14. 

Step 14 needs the extra scalability cycles of ⎡n/w⎤ as detailed below: 

Cycles for step 13 = 0.5 n 

Cycles for step 14 = 0.5 n * ⎡n/w⎤ 

Total CorPh Clock Cycles = 0.5 n + 0.5 n * ⎡n/w⎤ 

 

7.5 CorPh Multi-Bit Shifting 

When two-bits shifting method is involved within HW-Alg2, the average computation 

time will be hafted. The average number of cycles to compute HW-Alg2 using the new 

hardware with multi-bit shifting is as follows: 

Cycles for step 13 = 0.5 n/2 

Cycles for step 14 = 0.5 n/2 * ⎡n/w⎤ 

Total CorPh Clock Cycles = (0.5 n + 0.5 n * ⎡n/w⎤)/2 

The exact computation time is computed by the number of cycles multiplied by the 

clock cycle period. It was found that the new hardware clock period is not affected by the 

shifting modification of this work, which made the clock period of the new hardware 

depend on the value of w, exactly as the clock period of the original scalable hardware of 

[28] as listed in Table 3. 

 

w 4 8 16 32 64 128 
Period 12 14 19 28 47 82 

Table 1 Clock cycle period for all scalable designs (nsec) 
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8.   Comparisons and Analysis 

8.1 Area Comparison 

The hardware area of any VLSI architecture depends on the technology and minimum 

feature size. For technology independence, the number of equivalent gates are used as 

area measure [14]. Fig. 5, shows the area of the two types of new scalable designs, single 

and multi-bit shifting, compared to the old scalable designs of [28]. All types of designs 

are having smooth relation to the maximum number of bits nmax. As nmax and w increase, 

all designs areas are getting larger. Observe that as nmax is very low, i.e. nmax around 128 

bits, the multi-bit shifting hardware with small w is smaller than the single bit shifting 

one with large w. Similarly, for the single bit shifting new hardware compared to the old 

hardware, as nmax is low, the new hardware with small w is smaller than the old hardware 

with large w. 
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Fig. 5 Area comparison of all scalable designs 
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 The percentage of area increases with relation to w for different scalable designs are 

shown in Fig. 6. All the percentages shown are for the new hardware designs compared 

to the old designs of [28]. Observe that the area increase goes low as w gets larger. In 

fact, the complete option is given to the application and its hardware capability. If area is 

available, the hardware chosen can be the biggest.  
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Fig. 6 Percentage of area increase of different scalable designs 

 

8.2 Delay Comparison 

Several scalable hardware configurations are designed depending on different nmax and 

w parameters. Each configuration can have different computation time depending on the 

actual number of bits, n, used. For example, Fig. 7 compares the delay of six scalable 

hardware designs of all types, the new single bit shifting hardware, the new multi-bit 

shifting hardware, and the old hardware of [28]. The study assumes all architectures are 

designed for maximum bits of nmax=512 bits, which is the practical number for future 

ECC applications [11]. Note that the difference in the number of bits of the actual data 

size (n) affects on the number of cycles that changes the speed of the designs. In other 

words, as n reduces and w is small, the overall computing time of any scalable design 

reduces. This is a major advantage of the scalable hardware over all other non-scalable 
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designs where the computation time relate to the actual number of bits and do not depend 

on the hardware capability number of bits only. 

Fig. 7 shows that the computation time of all new designs are less than the old ones in 

all cases. Similarly, the new hardware with multi-bit shifting is always faster than the 

single bit shifting hardware. However, as the value w goes large compared to the actual 

number of bits n, the computation time increase fast, which is a situation that loses the 

speed benefit of scalability. In other words, as w gets bigger the total time decreases fast, 

which is true in all different scalable designs as long as n ≥ w.  

Observe also in Fig. 7, as n increases to the maximum, i.e., n = nmax = 512-bits, the 

fastest hardware is the new multi-bit shift scalable design with w=128 bits and w=64 bits, 

which are almost the same speed. This implies that even if you go to a bigger design you 

are not going to gain in speed anymore. Another interesting observation for the maximum 

n is that the new multi-bit shift hardware with w = 16-bits is slower than the single bit 

shift new hardware with w ≥ 32 bits, which indicates the important of this study and not 

to go the larger design immediately, assuming the bigger the designs always give higher 

speed.  
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The percentage speedup of the new hardware compared to the old one is shown in 

Fig. 8. The speedup percentage shown is for both types of new hardware designs, i.e. 

single bit shifting and multi bit shifting architectures. Interestingly, the multi-bit shifting 

new hardware is having a positive speedup percentage in most of the cases. On the other 

hand, the new hardware with single bit shifting is having negative speedup when 2n ≥ w. 

In other words, the single bit shifting new hardware is too slow compared to the old 

hardware whenever w is larger or near the value of half n. 
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Fig. 8 Percentage of speedup of all scalable designs 

 

The multi bit shifting new hardware is faster than the single bit shifting one. The 

speedup of these two types of new hardware architectures are shown in Fig. 9. It can be 

observed that the multi bit shifting design is faster than the single bit shifting one within 

the range from 18% to 22%. Note that the percentage of speedup depends on the value of 

n. The n values that give the best speedup percentage for all designs is summarized in 

Table 2. 

w 4 8 16 32 64 128 
n 16 32 16-64 32 32-64 32-256 

Table 2 New hardware n value for best speedup of multi-bit over single bit 
shift architectures.  
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Fig. 9 New hardware speedup improvement from single bit to multi bit 

shifting. 
 

 

8.3 Area × Time of the New Hardware  

Choosing the appropriate scalable design is depending on the importance of speed and 

area. In fact, as seen from the area study, Figure 5, and the delay one, Figure 7, as we 

increase in terms of area we gain in most of the cases in speed. However, is the speed 

gained worth the area paid?  

To estimate an evaluation standard that relates between area and time, two figure of 

merit values are used depending on each factor importance. If area is assumed to have the 

same importance as time, AT (Area×Time) is used to decide the best design. On the other 

hand, if the time is the most important factor, AT2 (Area×Time×Time) is considered. It is 

assumed that as the figure of merit values reduces as the design is better.  

Figures 10 and 11 show the AT results of the scalable designs with respect to the 

number of bits n for single bit shifting and multi bit shifting architectures, respectively. 
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Both AT figures show that our proposed designs with single bit shifting are giving the 

best designs at similar w values.  
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Fig. 10 Area×Time figure of merit of different new hardware single bit 

shifting architectures 
 

 The best AT scalable architectures depends on the application actual number of bits n. 

For example, if the number of bits is impractically low, i.e. n = 8 bits, the best design 

would be with w = n. If the actual number of bits: 16 ≤ n ≤ 64, the best hardware would 

be with w as the smallest n (w = 16 bits). The design with w = 32 bits is the appropriate 

for the actual number of bits: 128 ≤ n ≤ 256. If n > 265 bits, the suitable design would be 

with w = 64 bits. Figures 10 and 11 confirm that there is no need to build scalable 

designs with w ≥ 128 bits, as long as the hardware time and area are both having the same 

importance. The AT best architectures w values related to n are summarized in Table 3.  

 

n 8 16 32 64 128 256 512 
w 8 16 16 16 32 32 64 

Table 3 AT best architectures depending on the actual number of bits (n). 
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Fig. 11 Area×Time figure of merit of different new hardware multi bit 

shifting architectures 
 

8.4 Area ×Time2 of the New Hardware  

 AT2 is the appropriate figure of merit to find the right and proper hardware assuming 

the time is much more important than the area. The best new hardware architecture with 

single bit shifting can be derived from Figure 12. Depending on the actual number of bits 

n the appropriate design word size w is chosen.   

Recall that all designs are built to handle the maximum number of bits nmax = 512 bits.  

If n = 8 bits, the proper design to be selected is the one with w = 8 bits. When the actual 

number of bits: 16 ≤ n ≤ 32, the suitable architecture is with w = 16 bits. As the actual 

number of bits goes practically large, i.e. n ≥ nmax/8 (n ≥ 64 bits), the best AT2 single bit 

shifting design is always the one with w = nmax/4 (w=128 bits), as in Table 4. 

 

n 8 16 32 64 128 256 512 
w 8 16 16 128 128 128 128 

Table 4 AT2 best single bit shifting architectures. 
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Fig. 12 Area×Time2 figure of merit of different new hardware single bit 

shifting architectures 
 

The AT2 of multi bit shifting architectures are shown in Figures 13. The appropriate 

multi bit shifting hardware for n ≥ 256 bits is the one with w = 64 bits. If the actual 

number of bits: 64 ≤ n ≤ 128, the suitable design is with w = 32 bits. Whenever 

16 ≤ n ≤ 64, the correct architecture to choose is with w = 16 bits. For n = 8 bits the 

design to be used should be with w = 8 bits. Note that the biggest hardware to be used is 

not to exceed w = 64 bits, according to this AT2 study. Figure 13 is giving different 

suitable hardware designs than Figure 12 making a new summary table of best multi bit 

shifting hardware architectures related to n shown as Table 5. 

 

n 8 16 32 64 128 256 512 
w 8 16 16 32 32 64 64 

Table 5 AT2 best multi bit shifting architectures. 
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Fig. 13 Area×Time2 figure of merit of different new hardware multi bit 

shifting architectures 
 

 

9.   Conclusion  

This work modified a scalable VLSI architecture for GF(p) Montgomery modular 

inverse computation to gain in speed. The architecture is scalable allowing a specific 

computing module to handle operands of any precision. The word-size that the module 

operates can be selected depending on the area and performance requirements. The 

maximum limit (nmax) on the operand precision of the entire inverter hardware is limited 

only by the available memory to store the operands and internal results. If the operand 

precision exceeds the memory size, the memory unit is the only part that needs to be 

modified, while the scalable computing unit does not change. 

The original old hardware had shifting operation performed within the computing unit. 

This shifting operation has been moved from the scalable computing unit to the non-

scalable memory part. Two shifting strategies have been investigated, single bit shifting 

and multi bit shifting, which gave different speedup and hardware area results. In general, 
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the new hardware with single bit shifting was double the area of the original old one 

gaining the speedup that can reach 28%. The multi bit shifting new hardware increased 

the original hardware area by a range from two times to four times, depending on the 

word size of the scalable unit w. It gained speedup that can reach 40% depending on the 

increase of the actual number of bits n. On the other hand, as n goes low, in both new 

deigns shifting types, the speedup reduces and may go down to negative values. Negative 

speedup indicates that the features of the new proposed scalable hardware can be a 

burden instead of being a benefit, it increased the area and gave lower speed. 

Depending on the actual number of bits n and the figure of merit AT or AT2, different 

designs can be chosen. Table 6 below summarizes all best designs according to the actual 

number of bits n used. All designs are capable to handle up to 512 bits, but the 

appropriate one is selected depending on the actual number of bits n  the application is 

expected to commonly have. The study show that our scalable structure is very attractive 

for cryptographic systems, particularly for ECC where there is a clear need for modular 

inversion of large numbers, which may differ in size depending on security requirements 

imposed by applications. 

 

 

AT2Best architecture word size w Range of actual 
number of bits 

n 

AT Best architecture 
word w single& 
multi bit shift single bit shift multi bit shift 

8 8 8 8 
16 16 16 16 
32 16 16 16 
64 16 128 32 
128 32 128 32 
256 32 128 64 
512 64 128 64 

Table 6 Best new architectures according to n. 
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