
SPEEDING UP A SCALABLE MODULAR INVERSION
HARDWARE ARCHETECTURE

Research Final Report of

Dr. Adnan Abdul-Aziz Gutub

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Email: gutub@kfupm.edu.sa

Submitted to complete
the British Council Research Program of summer 2005

in collaboration with

Dr. Tatiana Kalganova

Bio-Inspired Intelligent System (BIIS) research group
Electrical and Computer Engineering Department

Brunel University
Uxbridge, United Kingdom

September 2005

 2

1. Abstract

The modular inversion is a fundamental process in several cryptographic systems.

It can be computed in software or hardware, but hardware computation proven to be

faster and more secure. This research focused on improving an old scalable inversion

hardware architecture proposed in 2004 for finite field GF(p). The architecture has

been made of two parts, a computing unit and a memory unit. The memory unit is to

hold all the data bits of computation whereas the computing unit performs all the

arithmetic operations in word (digit) by word bases known as scalable method.

The main objective of this project was to investigate the cost and benefit of

modifying the memory unit to include parallel shifting, which was one of the tasks of

the scalable computing unit. The study included remodeling the entire hardware

architecture removing the shifter from the scalable computing part embedding it in

the memory unit instead. This modification resulted in a speedup to the complete

inversion process with an area increase due to the new memory shifting unit.

Quantitative measurements of the speed area trade-off have been investigated. The

results showed that the extra hardware to be added for this modification compared to

the speedup gained, giving the user the complete picture to choose from depending on

the application need.

 3

Table of Contents

1. ABSTRACT... 2

2. INTRODUCTION... 4

3. LITERATURE REVIEW... 5

4. PROBLEM AND OBJECTIVES .. 6

5. ENGINEERING APPROACH.. 7

6. HARDWARE AND ALGORITHMS .. 9

7. EFFECT ON AREA AND SPEED... 11

7.1 ALMMONINV SINGLE BIT SHIFTING .. 11
7.2 ALMMONINV TWO BIT SHIFTING .. 11
7.3 ALMMONINV MULTI BIT (THREE) SHIFTING ... 12
7.4 CORPH SINGLE BIT SHIFTING... 13
7.5 CORPH MULTI-BIT SHIFTING ... 13

8. COMPARISONS AND ANALYSIS .. 14

8.1 AREA COMPARISON ... 14
8.2 DELAY COMPARISON ... 15
8.3 AREA × TIME OF THE NEW HARDWARE ... 18
8.4 AREA ×TIME2 OF THE NEW HARDWARE... 20

9. CONCLUSION.. 22

ACKNOWLEDGMENTS.. 24

REFERENCES ... 24

RESEARCHER BIOGRAPHY... 27

 4

2. Introduction

Modular inverse arithmetic is an essential arithmetic operation in public-key

cryptography. It is used in the Diffie-Hellman key exchange method [5], and it was also

adopted to calculate private decryption key in RSA [4]. Modular inversion is a basic

operation in the elliptic curve cryptography (ECC) [1,2,9-12,20-25]. This work is

targeted mainly toward the use of ECC because of its promise to replace older public-key

cryptographic systems [9-12,20]. ECC arithmetic consists mainly in modular

computations of addition, subtraction, multiplication, and inversion.

Inversion is well known to be the lowest computation among all other arithmetic

calculations in ECC [1,2,11,16-18]. Many researchers propose minimizing the use of

modular inversion by adopting elliptic curves defined for projective coordinates [9-12],

which substitutes the inverse by several multiplication operations. Inversion, in the

projective coordinate systems, is required only once at the end, to convert the projective

coordinate points back to affine coordinates. However, if this single inversion is not fast

enough, it will cause the complete ECC system to be slow.

A fast modular inverse calculation is the main reason to do inversion in hardware

instead of software [16-18]. If it is possible to compute the inverse in less time than nine

multiplication operations, then it is more efficient to use the affine coordinate system

instead of going to the projective coordinate systems [2,10]. Even if the speed to compute

the inverse is not that good to justify the use of affine coordinates, the computation with

hardware is still faster than software [6,16-18,20-25], which will provide better

performance for the overall cryptographic system based on projective coordinates.

Another main reason to implement the inverse in hardware is security. For

cryptographic applications, it is more secure to have all the computations handled in

hardware, inside an IC-chip, instead of mixing some computations performed in software

with others processed in hardware. Software-based systems can be interrupted and

trespassed by intruders much easier than hardware, which can jeopardize the security of

the whole application. Moreover, stealing information from software systems is easier

than from hardware.

 5

3. Literature Review

Modular inversion is often performed by algorithms based on the Extended Euclidean

algorithm [11]. Several inversion VLSI designs are described in the literature [16-18, 20-

25, 29-31]. Most of them [17, 18, 20-25] are for inversion in Galois Fields GF(2k).

Several [17, 18, 21-25] are based upon extensive combinational networks. The inversion

in GF(2k) is fast due to the elimination of the carry propagation in GF(2k) calculations.

However, the area used in these parallel organizations are very large, of order O(n2).

Hasan in [20] proposed to implement the GF(2k) inversion algorithm in a smaller area but

with slower speed. His hardware performs word-by-word computation on the operands

instead of computing all the words in parallel. Since we focus on GF(p), the designs

proposed for GF(2k) in [17,18, 20-25] have no direct link to this work.

Takagi in [16], proposed an inverse algorithm for hardware with a redundant binary

representation. Each number is represented by a digit in the set {0,1,-1}. Redundant

representation is used to avoid the carry propagation delay problem. However, the

hardware in [16] requires more area than the design proposed here and also needs data

transformations that are usually expensive.

Zhou in [30, 31], designed a VLSI implementation for GF(p) inversion computation

using one simple adder. Zhou’s hardware suffers from the long propagation carry chain

which made the operation clock frequency limited and the design area and complexity

not flexible to accommodate the changing demand of the crypto applications.

Several attempts [29, 32, 34, 36] have investigated the GF(p) inversion targeted to

field programmable gate array (FPGA) implementations. Fiaz in [36] described an FPGA

divider which can be used for inversion by representing the dividend by ‘1’. Daly [29]

and Dormale [34] shortened the critical path and carry-chain addition within the inversion

process according to the FPGA column limitations. The designs minimize the extra delay

of the top to bottom carry chain mapping between different FPGA columns by specific

physical routing. Daly presented an architecture technique “for implementation on any

FPL (field programmable logic) device which has dedicated carry logic capability” [29].

Dormale presented an FPGA carry conditional adder implementation that demonstrates

improvement especially when the carry-chain exceeds the specific FPGA column height

[34].

 6

An ECC arithmetic hardware unit has been proposed by Feldhofer in [35]. It contained

asynchronous modules to compute all prime field computations including inversion. The

inversion hardware was slow and complex depending on Fermat’s Theorem. Feldhofer’s

idea was not to consider the inversion as a main problem, assuming all computations are

performed through projective coordinates, and the inversion was calculated by a number

of multiplications. The inversion process needed multiplication operations that can be

equal to double the number of bits of the data length used.

McIvor in [32] improved the inversion algorithm presented by Savas in [1] involving

modular multiplication. McIvor reduced the number of needed multiplication operations

to speedup the complete computation [32]. McIvor benefited from the built-in carry-look-

ahead adders on the FPGA to gain in area reduction.

Tawalbeh in [37] presented a unified inversion hardware for both GF(p) and GF(2k).

He replaced all comparisons by the use of counters to keep track of the difference

between field elements which are usually expensive and time-consuming. It uses a

scheduling method to reduce the number of hardware resources without significantly

increasing the total execution time.

4. Problem and Objectives

The standard modular inverse over GF(p) can be defined by the following example.

Assume a is an integer in the range [1, p-1]. Integer x is called the modular inverse, or

modulo inverse, of integer a if-and-only-if: ax≡1(mod p); where x∈[1, p-1]. It is normally

represented as x=a-1mod p [1]. The Montgomery modular inverse algorithm and

hardware suitable for this research is presented in [27, 28]. The algorithm is implemented

in hardware using scalability features, which allows the use of a fixed-area scalable

circuit to perform inversion of unlimited precision operands. The hardware divides the

long-precision numbers in words and each word is processed in a clock cycle.

This two months project aimed to investigate the possibility of speeding the process by

modifying the registers of the non-scalable part to incorporate the shifting operation. This

way, the shifting operation will be part of the memory unit instead of the scalable

computing unit. This feature is predicted to reduce the shifting operation delay which will

 7

improve the total computation performance. Therefore, the main objective has been to

investigate the advantages and disadvantages behind this modification and its practicality

to be implemented. Quantitative measurements of the trade-off between speed and area,

and the modification criteria will be the subject of investigation.

5. Engineering Approach

The scalable inversion hardware is built of two main parts, a memory unit and a

computing unit, as shown in Fig. 1. It is very similar, in principle, to the scalable

hardware presented in [27]. The memory unit is not scalable because it has a limited

storage defined by the value of nmax. The data values of a and p are first loaded in the

memory unit. Then, the computing unit read/write (modify) the data using a word size of

w bits. The computing unit is completely scalable. It is designed to handle w bits every

clock cycle. The computing unit does not know the total number of bits, nmax, the memory

is holding. It computes until the controller indicates that all operands’ words were

processed. Note that the actual numbers used may be way smaller than nmax bits.

Fig. 1 inversion scalable hardware block diagram

The memory unit contains a counter to compute variable k and eight first-in-first-out

(FIFO) registers used to store the inversion algorithm’s variables. All registers, u, v, r, s,

x, y, z and p, are limited to hold at most nmax bits. Each FIFO register has its own reset

signal generated by the controller. They have counters to keep track of n (the number of

bits actually used by the application).

 8

The computing unit is made of four hardware blocks, the add/subtract, shifter, data

router, and controller block. All these blocks functions and hardware design are detailed

in [27, 28]. Our focus of this research is about the shifter. The original shifter is made of

two multiplexers and two registers with special mapping of some data bits, as shown in

Fig. 2. The two multiplexers are used to select the correct set to be used in the multi-bit

shifter. Depending on the controller signal Distance, the shifter acts as a one, two, or

three-bit shifter, as clarified in [28]. Two types of shifting are needed in the inversion

algorithm, right shifting an operand (u or v) through the uv bus (one, two, or three bits)

and left shifting another operand (r or s) through the rs bus (by similar number of bits).

Right shifting u or v is performed through Register1, which is of size w-1 bits. For each

word, w-1 bits of uv are stored in Register1. The LS bit(s) of each word is (are) read out

immediately as the most significant bit(s) of the output bus uv_out. Left shifting r or s is

performed via Register2, which is of size w+3 bits, in a similar fashion.

Fig. 2 Multi-bit shifter (max distance = 3)

The study plan is to redesign both the scalable and non-scalable hardware units. The

shifter will be removed from the computation unit. It will be embedded into the non-

scalable memory unit. The project results are expected to show the speedup gained and

the extra hardware area needed. The conclusion will indicate whether the extra hardware

is worth the expected speedup with quantitative measurements.

 9

6. Hardware and Algorithms

Several methods considered for hardware computation of the Montgomery inverse are

shown in Fig. 3; including the procedures proposed by Savas and Koç in [1] using

MonPro (Montgomery Product). Each path in the graph has its own set of routines and its

total computation time. Fig. 3 presents the approximate number of iterations for each

routine. Note that the number of iterations for multiplication is estimated considering

serial-parallel multipliers, because fully parallel multipliers are impractically large [6].

All approaches of Fig. 3 lead to the same final result. However, the number of

iterations in each path proves that our two-phase method, the AlmMonInv followed by the

correction phase (the bold path shown in Fig. 3), is the fastest. It requires only 2n

iterations to complete the inversion, the AlmMonInv needs 1.5n iterations, and the

correction phase (CorPh) needs 0.5n iterations, assuming an average value of k=1.5n, as

detailed in [28].

Fig. 3 Different ways to compute the Montgomery inversion

Two hardware algorithms of the AlmMonInv procedure are shown in [28], depending

on the number of bits of shifting used. We will start this study by single bit shifting since

the shifter will be eliminated from the computing unit. The AlmMonInv algorithm of

single-bit shifting is shown below.

AlmMonInv Hardware Algorithm (HW-Alg1)
Registers: u, v, r, s, & p (all five registers hold n bits).
Input: a ∈ [1, p-1], p = modulus; where 2n-1 ≤ p < 2n
Output: result∈[1, p-1] & k; where result=a-12k mod p & n≤k≤2n

 10

1. u = p; v = a; r = 0; s = 1; k = 0
2. if (u0 = 0) then { u = ShiftR(u,1) ; s = ShiftL(s,1)}; goto 7
3. if (v0 = 0) then { v = ShiftR(v,1) ; r = ShiftL(r,1)}; goto 7
4. S1 = Subtract (u, v); S2 = Subtract (v, u); A1 = Add (r, s)
5. if(S1borrow=0)then{u=ShiftR(S1,1));r=A1;s=ShiftL(s,1)};goto 7
6. s = A1; v = ShiftR(S2,1); r = ShiftL(r,1)
7. k = k + 1
8. if (v ≠ 0) go to step 2
9. S1 = Subtract (p, r); S2 = Subtract (2p, r)
10. if(S1borrow=0)then{return result=S1}; else {return result=S2}

The correction phase(CorPh) [28] algorithm (see Fig. 3) is shown as HW-Alg2 below:

CorPh Hardware Algorithm (HW-Alg2)
Registers: r & p (two registers to hold n bits).
Input: r,p,n,k; where r (r= a-12k-nmod p)& k from AlmMonInv
Output: result; where result = a-12n (mod p).
11. j= 2n-k-1
12. While j>0
13. r = ShiftL(r,1); j = j-1
14. S1 = Subtract(r, p)
15. if (S1borrow = 0) then {r = S1}
16. return result = r

The hardware is modified as shown in Fig. 4. The memory block is improved to

perform shifting by adding nmax 4x1 multiplexers to each FIFO. The non-scalable block is

resized increasing the hardware area by (8*nmax*10) gates.

Fig. 4 Improved inversion scalable hardware block diagram

 11

7. Effect on Area and Speed

The study will concentrate on the AlmMonInv algorithm first, then the CorpPh one,

similar to our old scalable design presented in [28]. The new hardware area and speed

will be estimated depending on the number of bits to be shifted through the non scalable

‘memory & shifter’ unit.

7.1 AlmMonInv Single Bit Shifting

The analysis showed that single bit shifting through the memory is performed by

simply adding a multiplexer at the input of every memory cell. The multiplexer size used

is ten gates making the area increase over the single bit shifting scalable hardware in [28]

as follows:

Area increase = 8*nmax*10 = 80 nmax

The number of clock cycles for all designs depends completely on the data and its

computation. The computation time of the new hardware to run the AlmMonInv

algorithm is estimated by probability study as in [28]. See the AlmMonInv algorithm

(HW-Alg1) represented earlier. Simulating this algorithm proofed that almost 25% of the

k cycles is consumed by step 2 and 25% is for step 3. Steps 4, 5, and 6 are a sequence that

runs consuming 50% of the k iteration. After the k iterations, step 9 is performed once

which needs to considered in the time estimation too. Note that each shifting operation is

performed in one cycle independent to the number of words the hardware is having,

while the addition and subtraction needs to be performed within ⎡n/w⎤ cycles. These

points made the AlmMonInv Computation Time as follows:

Cycles for steps 4,5,6 = 0.5 k (⎡n/w⎤+1)

Cycles for step 9 = ⎡n/w⎤

Cycles for steps 2,3 = 0.5 k

Total AlmMonInv Clock Cycles = 0.5 k (⎡n/w⎤+1)+ ⎡n/w⎤ + 0.5 k

7.2 AlmMonInv Two Bit Shifting

The new hardware, shown in Figure 4, is improved to have its memory & shift unit to

perform two bit shifting in addition to its original ability of single bit shifting. The

 12

shifting can now be performed as one bit shifting right, one bit shifting left, two bits

shifting right, and two bits shifting left. This will modify the routing multiplexer inserted

between the memory cells increasing the multiplexer size by eight gates more than the

single bit shifting presented in 7.1. The new hardware with two bit shifting will increase

the area of the original design of [28] by:

Area increase = 8*nmax*(10+4+4) =144 nmax

The AlmMonInv computation time will be similar to the single bit shifting except in

steps 2, and 3, which will be reduced by 6% each. The overall time reduction of steps 2,

and 3, together is estimated by 12%, as described in detail in [28]. This two bit shifting

made the AlmMonInv computation time as follows:

Cycles for steps 4,5,6 = 0.5 k (⎡n/w⎤+1)

Cycles for step 9 = ⎡n/w⎤

Cycles for steps 2,3 = 0.38 k

Total AlmMonInv Clock Cycles = 0.5 k (⎡n/w⎤+1)+ ⎡n/w⎤ + 0.38 k

7.3 AlmMonInv Multi Bit (Three) Shifting

In [28], it was shown that increasing the multi-bit shifting over three-bits is not

beneficial. The time reduction probability will be too low compared to three-bit shifting

making three bit shifting as the appropriate hardware to build. The hardware area increase

of three bit shifting within the memory is estimated as eight gates more within all

multiplexers between the memory cells. The overall area modification of this three-bit

shifting hardware compared to the original hardware of [28] is:

Area increase = 8*nmax*(10+8+8)=208 nmax

The AlmMonInv computation time is affected similarly to the two-bits shifting

(section 7.2) with the difference in time reduction to calculate steps 2, and 3. This three-

bit shifting made the AlmMonInv computation time as follows:

Cycles for steps 4,5,6 = 0.5 k (⎡n/w⎤+1)

Cycles for step 9 = ⎡n/w⎤

Cycles for steps 2,3 = 0.35 k

Total AlmMonInv Clock Cycles = 0.5 k (⎡n/w⎤+1)+ ⎡n/w⎤ + 0.35 k

 13

7.4 CorPh Single Bit Shifting

The correction phase algorithm (HW-Alg2) can run on the new hardware with single

bit shifting and two bits shifting. It cannot benefit from three bits shifting since it will

need an impractical increase in the number of adders of the scalable design as clarified in

[28]. The area of the hardware design is not affected when running HW-Alg2 while the

computation time is. The computation time of HW-Alg2 depend on the total number of

iterations and some extra cycles within the iterations due to scalability. The single bit

shifting number of iterations is 2n-k-1, assuming on average k=1.5n, will result:

number of iterations = 2n-1.5n-1≈ 0.5n.

HW-Alg2 will need this number of iterations to process step 13 followed by step 14.

Step 14 needs the extra scalability cycles of ⎡n/w⎤ as detailed below:

Cycles for step 13 = 0.5 n

Cycles for step 14 = 0.5 n * ⎡n/w⎤

Total CorPh Clock Cycles = 0.5 n + 0.5 n * ⎡n/w⎤

7.5 CorPh Multi-Bit Shifting

When two-bits shifting method is involved within HW-Alg2, the average computation

time will be hafted. The average number of cycles to compute HW-Alg2 using the new

hardware with multi-bit shifting is as follows:

Cycles for step 13 = 0.5 n/2

Cycles for step 14 = 0.5 n/2 * ⎡n/w⎤

Total CorPh Clock Cycles = (0.5 n + 0.5 n * ⎡n/w⎤)/2

The exact computation time is computed by the number of cycles multiplied by the

clock cycle period. It was found that the new hardware clock period is not affected by the

shifting modification of this work, which made the clock period of the new hardware

depend on the value of w, exactly as the clock period of the original scalable hardware of

[28] as listed in Table 3.

w 4 8 16 32 64 128
Period 12 14 19 28 47 82

Table 1 Clock cycle period for all scalable designs (nsec)

 14

8. Comparisons and Analysis

8.1 Area Comparison

The hardware area of any VLSI architecture depends on the technology and minimum

feature size. For technology independence, the number of equivalent gates are used as

area measure [14]. Fig. 5, shows the area of the two types of new scalable designs, single

and multi-bit shifting, compared to the old scalable designs of [28]. All types of designs

are having smooth relation to the maximum number of bits nmax. As nmax and w increase,

all designs areas are getting larger. Observe that as nmax is very low, i.e. nmax around 128

bits, the multi-bit shifting hardware with small w is smaller than the single bit shifting

one with large w. Similarly, for the single bit shifting new hardware compared to the old

hardware, as nmax is low, the new hardware with small w is smaller than the old hardware

with large w.

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

128 256 512
n_max (bits)

A
re

a
(g

at
es

)

Old hardware, w = 4
Old hardware, w = 8
Old hardware, w = 16
Old hardware, w = 32
Old hardware, w = 64
Old hardware, w = 128
New hardware, single bit shift, w = 4
New hardware, single bit shift, w = 8
New hardware, single bit shift, w = 16
New hardware, single bit shift, w = 32
New hardware, single bit shift, w = 64
New hardware, single bit shift, w = 128
New hardware, Multi bit shift, w = 4
New hardware, Multi bit shift, w = 8
New hardware, Multi bit shift, w = 16
New hardware, Multi bit shift, w = 32
New hardware, Multi bit shift, w = 64
New hardware, Multi bit shift, w = 128

Fig. 5 Area comparison of all scalable designs

 15

 The percentage of area increases with relation to w for different scalable designs are

shown in Fig. 6. All the percentages shown are for the new hardware designs compared

to the old designs of [28]. Observe that the area increase goes low as w gets larger. In

fact, the complete option is given to the application and its hardware capability. If area is

available, the hardware chosen can be the biggest.

0

50

100

150

200

250

300

350

400

4 8 16 32 64 128
Word Size (w bits)

%
 A

re
a

In
cr

ea
se

n_max = 128, single bit shift
n_max = 256, single bit shift
n_max = 512, single bit shift
n_max = 128, Multi bit shift
n_max = 256, Multi bit shift
n_max = 512, Multi bit shift

Fig. 6 Percentage of area increase of different scalable designs

8.2 Delay Comparison

Several scalable hardware configurations are designed depending on different nmax and

w parameters. Each configuration can have different computation time depending on the

actual number of bits, n, used. For example, Fig. 7 compares the delay of six scalable

hardware designs of all types, the new single bit shifting hardware, the new multi-bit

shifting hardware, and the old hardware of [28]. The study assumes all architectures are

designed for maximum bits of nmax=512 bits, which is the practical number for future

ECC applications [11]. Note that the difference in the number of bits of the actual data

size (n) affects on the number of cycles that changes the speed of the designs. In other

words, as n reduces and w is small, the overall computing time of any scalable design

reduces. This is a major advantage of the scalable hardware over all other non-scalable

 16

designs where the computation time relate to the actual number of bits and do not depend

on the hardware capability number of bits only.

Fig. 7 shows that the computation time of all new designs are less than the old ones in

all cases. Similarly, the new hardware with multi-bit shifting is always faster than the

single bit shifting hardware. However, as the value w goes large compared to the actual

number of bits n, the computation time increase fast, which is a situation that loses the

speed benefit of scalability. In other words, as w gets bigger the total time decreases fast,

which is true in all different scalable designs as long as n ≥ w.

Observe also in Fig. 7, as n increases to the maximum, i.e., n = nmax = 512-bits, the

fastest hardware is the new multi-bit shift scalable design with w=128 bits and w=64 bits,

which are almost the same speed. This implies that even if you go to a bigger design you

are not going to gain in speed anymore. Another interesting observation for the maximum

n is that the new multi-bit shift hardware with w = 16-bits is slower than the single bit

shift new hardware with w ≥ 32 bits, which indicates the important of this study and not

to go the larger design immediately, assuming the bigger the designs always give higher

speed.

100

1000

10000

100000

1000000

8 16 32 64 128 256 512

n (bits)

To
ta

l T
im

e
(n

se
c)

Old hardware, w = 4

Old hardware, w = 8

Old hardware, w = 16

Old hardware, w = 32

Old hardware, w = 64

Old hardware, w = 128

New hardware, single bit shift, w = 4

New hardware, single bit shift, w = 8

New hardware, single bit shift, w = 16

New hardware, single bit shift, w = 32

New hardware, single bit shift, w = 64

New hardware, single bit shift, w = 128

New hardware, Multi bit shift, w = 4

New hardware, Multi bit shift, w = 8

New hardware, Multi bit shift, w = 16

New hardware, Multi bit shift, w = 32

New hardware, Multi bit shift, w = 64

New hardware, Multi bit shift, w = 128
Fig. 7 Total computation time comparison of all scalable designs

 17

The percentage speedup of the new hardware compared to the old one is shown in

Fig. 8. The speedup percentage shown is for both types of new hardware designs, i.e.

single bit shifting and multi bit shifting architectures. Interestingly, the multi-bit shifting

new hardware is having a positive speedup percentage in most of the cases. On the other

hand, the new hardware with single bit shifting is having negative speedup when 2n ≥ w.

In other words, the single bit shifting new hardware is too slow compared to the old

hardware whenever w is larger or near the value of half n.

-30

-20

-10

0

10

20

30

40

8 16 32 64 128 256 512
n (bits)

%
 S

pe
ed

up
 c

om
pa

re
d

to
 o

ld
 d

es
ig

n

New hardware, single bit shift, w = 4

New hardware, single bit shift, w = 8

New hardware, single bit shift, w = 16

New hardware, single bit shift, w = 32

New hardware, single bit shift, w = 64

New hardware, single bit shift, w =
128
New hardware, Multi bit shift, w = 4

New hardware, Multi bit shift, w = 8

New hardware, Multi bit shift, w = 16

New hardware, Multi bit shift, w = 32

New hardware, Multi bit shift, w = 64

New hardware, Multi bit shift, w = 128

Fig. 8 Percentage of speedup of all scalable designs

The multi bit shifting new hardware is faster than the single bit shifting one. The

speedup of these two types of new hardware architectures are shown in Fig. 9. It can be

observed that the multi bit shifting design is faster than the single bit shifting one within

the range from 18% to 22%. Note that the percentage of speedup depends on the value of

n. The n values that give the best speedup percentage for all designs is summarized in

Table 2.

w 4 8 16 32 64 128
n 16 32 16-64 32 32-64 32-256

Table 2 New hardware n value for best speedup of multi-bit over single bit
shift architectures.

 18

17

18

19

20

21

22

23

8 16 32 64 128 256 512

n (bits)

%
 s

pe
ed

up
 o

f n
ew

 h
ar

dw
ar

e
im

pr
ov

em
en

t
fr

om
 s

in
gl

e
bi

t s
hi

ft
to

 M
ul

ti
bi

t s
hi

f

w = 4
w = 8
w = 16
w = 32
w = 64
w = 128

Fig. 9 New hardware speedup improvement from single bit to multi bit

shifting.

8.3 Area × Time of the New Hardware

Choosing the appropriate scalable design is depending on the importance of speed and

area. In fact, as seen from the area study, Figure 5, and the delay one, Figure 7, as we

increase in terms of area we gain in most of the cases in speed. However, is the speed

gained worth the area paid?

To estimate an evaluation standard that relates between area and time, two figure of

merit values are used depending on each factor importance. If area is assumed to have the

same importance as time, AT (Area×Time) is used to decide the best design. On the other

hand, if the time is the most important factor, AT2 (Area×Time×Time) is considered. It is

assumed that as the figure of merit values reduces as the design is better.

Figures 10 and 11 show the AT results of the scalable designs with respect to the

number of bits n for single bit shifting and multi bit shifting architectures, respectively.

 19

Both AT figures show that our proposed designs with single bit shifting are giving the

best designs at similar w values.

10

100

1000

10000

100000

8 16 32 64 128 256 512

n (bits)

A
re

a
* T

im
e

New hardware, single bit shift, w = 4

New hardware, single bit shift, w = 8

New hardware, single bit shift, w = 16

New hardware, single bit shift, w = 32

New hardware, single bit shift, w = 64

New hardware, single bit shift, w = 128

Fig. 10 Area×Time figure of merit of different new hardware single bit

shifting architectures

 The best AT scalable architectures depends on the application actual number of bits n.

For example, if the number of bits is impractically low, i.e. n = 8 bits, the best design

would be with w = n. If the actual number of bits: 16 ≤ n ≤ 64, the best hardware would

be with w as the smallest n (w = 16 bits). The design with w = 32 bits is the appropriate

for the actual number of bits: 128 ≤ n ≤ 256. If n > 265 bits, the suitable design would be

with w = 64 bits. Figures 10 and 11 confirm that there is no need to build scalable

designs with w ≥ 128 bits, as long as the hardware time and area are both having the same

importance. The AT best architectures w values related to n are summarized in Table 3.

n 8 16 32 64 128 256 512
w 8 16 16 16 32 32 64

Table 3 AT best architectures depending on the actual number of bits (n).

 20

10

100

1000

10000

100000

8 16 32 64 128 256 512

n (bits)

A
re

a
* T

im
e

New hardware, Multi bit shift, w = 4

New hardware, Multi bit shift, w = 8

New hardware, Multi bit shift, w = 16

New hardware, Multi bit shift, w = 32

New hardware, Multi bit shift, w = 64

New hardware, Multi bit shift, w = 128

Fig. 11 Area×Time figure of merit of different new hardware multi bit

shifting architectures

8.4 Area ×Time2 of the New Hardware

 AT2 is the appropriate figure of merit to find the right and proper hardware assuming

the time is much more important than the area. The best new hardware architecture with

single bit shifting can be derived from Figure 12. Depending on the actual number of bits

n the appropriate design word size w is chosen.

Recall that all designs are built to handle the maximum number of bits nmax = 512 bits.

If n = 8 bits, the proper design to be selected is the one with w = 8 bits. When the actual

number of bits: 16 ≤ n ≤ 32, the suitable architecture is with w = 16 bits. As the actual

number of bits goes practically large, i.e. n ≥ nmax/8 (n ≥ 64 bits), the best AT2 single bit

shifting design is always the one with w = nmax/4 (w=128 bits), as in Table 4.

n 8 16 32 64 128 256 512
w 8 16 16 128 128 128 128

Table 4 AT2 best single bit shifting architectures.

 21

10

100

1000

10000

100000

1000000

10000000

100000000

8 16 32 64 128 256 512

n (bits)

A
re

a
* T

im
e

* T
im

e

New hardware, single bit shift, w = 4

New hardware, single bit shift, w = 8

New hardware, single bit shift, w = 16

New hardware, single bit shift, w = 32

New hardware, single bit shift, w = 64

New hardware, single bit shift, w = 128

Fig. 12 Area×Time2 figure of merit of different new hardware single bit

shifting architectures

The AT2 of multi bit shifting architectures are shown in Figures 13. The appropriate

multi bit shifting hardware for n ≥ 256 bits is the one with w = 64 bits. If the actual

number of bits: 64 ≤ n ≤ 128, the suitable design is with w = 32 bits. Whenever

16 ≤ n ≤ 64, the correct architecture to choose is with w = 16 bits. For n = 8 bits the

design to be used should be with w = 8 bits. Note that the biggest hardware to be used is

not to exceed w = 64 bits, according to this AT2 study. Figure 13 is giving different

suitable hardware designs than Figure 12 making a new summary table of best multi bit

shifting hardware architectures related to n shown as Table 5.

n 8 16 32 64 128 256 512
w 8 16 16 32 32 64 64

Table 5 AT2 best multi bit shifting architectures.

 22

10

100

1000

10000

100000

1000000

10000000

100000000

8 16 32 64 128 256 512

n (bits)

A
re

a
* T

im
e

* T
im

e

New hardware, Multi bit shift, w = 4

New hardware, Multi bit shift, w = 8

New hardware, Multi bit shift, w = 16

New hardware, Multi bit shift, w = 32

New hardware, Multi bit shift, w = 64

New hardware, Multi bit shift, w = 128

Fig. 13 Area×Time2 figure of merit of different new hardware multi bit

shifting architectures

9. Conclusion

This work modified a scalable VLSI architecture for GF(p) Montgomery modular

inverse computation to gain in speed. The architecture is scalable allowing a specific

computing module to handle operands of any precision. The word-size that the module

operates can be selected depending on the area and performance requirements. The

maximum limit (nmax) on the operand precision of the entire inverter hardware is limited

only by the available memory to store the operands and internal results. If the operand

precision exceeds the memory size, the memory unit is the only part that needs to be

modified, while the scalable computing unit does not change.

The original old hardware had shifting operation performed within the computing unit.

This shifting operation has been moved from the scalable computing unit to the non-

scalable memory part. Two shifting strategies have been investigated, single bit shifting

and multi bit shifting, which gave different speedup and hardware area results. In general,

 23

the new hardware with single bit shifting was double the area of the original old one

gaining the speedup that can reach 28%. The multi bit shifting new hardware increased

the original hardware area by a range from two times to four times, depending on the

word size of the scalable unit w. It gained speedup that can reach 40% depending on the

increase of the actual number of bits n. On the other hand, as n goes low, in both new

deigns shifting types, the speedup reduces and may go down to negative values. Negative

speedup indicates that the features of the new proposed scalable hardware can be a

burden instead of being a benefit, it increased the area and gave lower speed.

Depending on the actual number of bits n and the figure of merit AT or AT2, different

designs can be chosen. Table 6 below summarizes all best designs according to the actual

number of bits n used. All designs are capable to handle up to 512 bits, but the

appropriate one is selected depending on the actual number of bits n the application is

expected to commonly have. The study show that our scalable structure is very attractive

for cryptographic systems, particularly for ECC where there is a clear need for modular

inversion of large numbers, which may differ in size depending on security requirements

imposed by applications.

AT2Best architecture word size w Range of actual
number of bits

n

AT Best architecture
word w single&
multi bit shift single bit shift multi bit shift

8 8 8 8
16 16 16 16
32 16 16 16
64 16 128 32
128 32 128 32
256 32 128 64
512 64 128 64

Table 6 Best new architectures according to n.

 24

Acknowledgments

I would like to thank the British council in Saudi Arabia, for supporting this research

through their postdoctoral program. Continuous support from KFUPM is also

appreciated. I would like also to thank Dr. Tatiana Kalganova at the Electrical &

Computer Engineering Department of Brunel University in Uxbridge, for hosting me

during my visit to the UK and for all fruitful discussions and providing the facilities

needed to finish this work.

References

[1] Savas, and Koç, “The Montgomery Modular Inverse – Revisited”, IEEE Trans. on
Computers, 49(7): 763-766, July 2000.

[2] Kobayashi, and Morita, “Fast Modular Inversion Algorithm to Match Any Operation
Unit”, IEICE Trans. Fundamentals, E82-A(5):733-740, May 1999.

[3] Kaliski, “The Montgomery Inverse and its Applications”, IEEE Trans. on
Computers, 44(8):1064-1065, Aug. 1995.

[4] Rivest, Shamir, and Adleman, “A Method for Obtaining Digital Signature and
Public-Key Cryptosystems”, Comm. ACM, 21(2):120-126, Feb. 1978.

[5] Diffie, and Hellman, “New Directions on Cryptography”, IEEE Trans. on
Information Theory, 22:644-654, Nov. 1976.

[6] Tenca, and Koç, “A Scalable Architecture for Montgomery Multiplication”, In
Cryptographic Hardware and Embedded Systems, no. 1717 in Lecture notes in
Computer Science, Springer, Berlin, Germany, 1999.

[7] Savas, Tenca, and Koç, “A Scalable and Unified Multiplier Architecture for Finite
Fields GF(p) and GF(2k)”, In Cryptographic Hardware and Embedded Systems,
Lecture notes in Computer Science. Springer, Berlin, Germany, 2000.

[8] Tenca, Todorov, and Koç, “High-Radix Design of a Scalable Modular Multiplier”,
Workshop on Cryptographic Hardware and Embedded Systems, CHES 2001, Paris,
France, May 14-16 2001.

[9] Chung, Sim, and Lee, “Fast Implementation of Elliptic Curve Defined over GF(pm)
on CalmRISC with MAC2424 Coprocessor”, Workshop on Cryptographic Hardware
and Embedded Systems, CHES 2000, Massachusetts, Aug. 2000.

[10] Atsuko Miyaji, “Elliptic Curves over FP Suitable for Cryptosystems”, Advances in
cryptology- AUSCRUPT’92, Australia, Dec. 1992.

[11] Blake, Seroussi, and Smart, Elliptic Curves in Cryptography, Cambridge University
Press: New York, 1999.

[12] Hankerson, Hernandez, and Menezes, “Software Implementation of Elliptic Curve
Cryptography Over Binary Fields”, Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2000, Massachusetts, Aug. 2000.

[13] Tocci, R. J. and Widmer, N. S., “Digital Systems: Principles and Applications”,
Eighth Edition, Prentice-Hall Inc., New Jersey, 2001.

 25

[14] Ercegovac, M. D., Lang, T., and Moreno, J. H., Introduction to Digital System, John
Wiley & Sons, Inc., New York, 1999.

[15] Montgomery, P.L., “Modular Multiplication Without Trail Division”, Mathematics
of Computation, 44(170): 519-521, April 1985.

[16] Naofumi Takagi, “Modular Inversion Hardware with a Redundant Binary
Representation”, IEICE Transactions on Information and Systems, E76-D(8): 863-
869, Aug. 1993.

[17] Guo, J.-H., and Wang, C.-L., “Hardware-Efficient Systolic Architecture for
Inversion and Division in GF(2m)”, IEE Proceedings: Computers and Digital
Techniques, 145(4): 272-278, July 1998.

[18] Choudhury, P. Pal., and Barua, R., “Cellular Automata Based VLSI Architecture for
Computing Multiplication and Inverses in GF(2m)”, Proceedings of the 7th IEEE
International Conference on VLSI Design, Calcutta, India, January 5-8 1994.

[19] http://www.mentor.com/partners/hep/AsicDesignKit/dsheet/ami05databook.html,
Mentor Graphics Co., ASIC Design Kit.

[20] Hasan, M. A., “Efficient Computation of Multiplicative Inverse for Cryptographic
Applications”, Proceeding of the 15th IEEE Symposium on Computer Arithmetic,
Vail, Colorado, June 11-13 2001.

[21] Guo, J.-H., and Wang, C.-L., “Systolic Array Implementation of Euclid’s Algorithm
for Inversion and Division in GF(2m)”, IEEE Trans. on Computers, 47(10): 1161-
1167, Oct. 1998.

[22] Fenn, S. T. J., Benaissa, M., and Taylor, D., “GF(2m) Multiplication and Division
Over the Dual Basis”, IEEE Trans. on Computers, 45(3): 319-327, March 1996.

[23] Wang, C. C., Truong, T. K., Shao, H. M., Deutsch, L. J., Omura, J. K., and Reed, I.
S., “VLSI Architectures for Computing Multiplications and Inverses in GF(2m)”,
IEEE Trans. on Computers, C-34(8): 709-717, Aug. 1985.

[24] Feng, G.-L., “A VLSI Architecture for Fast Inversion in GF(2m)”, IEEE Trans. on
Computers, 38(10):1383-1386, Oct. 1989.

[25] Kovac, M., Ranganathan, N. and Varanasi M., “SIGMA: A VLSI Systolic Array
Implementation of Galois Field GF(2m) Based Multiplication and Division
Algorithm”, IEEE Trans. on VLSI, 1(1):22-30, March 1993.

[26] Charles J. Stone, A course in probability and statistics, Duxbury Press, Belmont,
1996.

[27] Adnan Gutub, A. F. Tenca, and C. K. Koç, “Scalable VLSI Architecture for GF(p)
Montgomery Modular Inverse Computation”, ISVLSI 2002: IEEE Computer Society
Annual Symposium On VLSI, Pittsburgh, Pennsylvania, April 25-26 2002.

[28] Adnan Gutub and Alexandre F. Tenca, “Efficient Scalable VLSI Architecture for
Montgomery Inversion in GF(p)”, Integration, the VLSI Journal, 37(2):103-120,
May 2004.

[29] Alan Daly, William Marnane and Emanuel Popovici, “Fast Modular Inversion in the
Montgomery Domain on Reconfigurable Logic”, Irish Signals and Systems
Conference (ISSC 2003), pages 362-367, Limerick, July 2003.

[30] Tao Zhou, Xingjun Wu, Guoqiang Bai, and Hongyi Chen, “New Algorithm and Fast
VLSI Implementation for Modular Inversion in Galois Field GF(p)”, IEEE
International Conference on Communications, Circuits and Systems, 2:1491-1495,
29 June -1 July 2002.

 26

[31] Tao Zhou, Xingjun Wu, Guoqiang Bai, and Hongyi Chen, “Fast GF(p) Modular
Inversion Algorithm Suitable for VLSI Implementation”, Electronics Letters,
38(14):706-707, July 2002.

[32] C. McIvor, M. McLoone and J.V. McCanny, “Improved Montgomery Modular
Inverse Algorithm”, Electronics Letters, 40(18):1110-1111, September 2004.

[33] Adnan Abdul-Aziz Gutub, New Hardware Algorithms and Designs for Montgomery
Modular Inverse Computation in Galois Fields GF(p) and GF(2n). Ph.D. Thesis,
Electrical and Computer Engineering Department, Oregon State University, 2002.

[34] Guerric Meurice de Dormale, Philippe Bulens, and Jean-Jacques Quisquater, “An
Improved Montgomery Modular Inversion Targeted for Efficient Implementation on
FPGA”, International Conference on Field-Programmable Technology - FPT 2004,
pp. 441-444, December 2004.

[35] Martin Feldhofer, Thomas Trathnigg, and Bernd Schnitzer, “A Self-Timed
Arithmetic Unit for Elliptic Curve Cryptography”, Proceedings of the Euromicro
Symposium on Digital System Design (DSD’02), 2002.

[36] Fareena Fiaz and Shahid Masud, “Design and Implementation of a Hardware
Divider in Finite Field”, National Conference on Emerging Technologies, 2004.

[37] Lo’ai A. Tawalbeh, Alexandre F. Tenca, Song Park and Cetin K. Koc, “A Dual-
field Modular Division Algorithm and Architecture for Application Specific
Hardware”, Thirty-Eighth Asilomar Conference on Signals, Systems and Computers,
Page(s):483 – 487, Vol.1,7-10 Nov 2004.

 27

Researcher Biography

Dr. Adnan Abdul-Aziz Gutub, Visiting researcher, summer 2005

Dr. Adnan Gutub is a Faculty Member in the Computer Engineering Department at

King Fahd University of Petroleum and Minerals in Saudi Arabia. He received his Ph.D.

degree in June 2002 from the Department of Electrical and Computer Engineering at

Oregon State University in Cryptographic hardware design under the supervision of Prof.

Alexandre Ferreira Tenca.

Adnan received his BSc degree in Electrical Engineering in 1995 and MSc degree in

Computer Engineering in 1998 both from King Fahd University of Petroleum and

Minerals, Dhahran, Saudi Arabia.

Dr. Adnan Gutub's research interests are in modeling, simulating, and synthesizing

VLSI hardware for computer arithmetic operations. He worked on designing efficient

integrated circuits for the Montgomery inverse computation in different finite fields. He

has been awarded the visiting internship for 2 months sponsored by British Council at

Brunel University to collaborate with Bio-Inspired Intelligent System (BIIS) research

group in a project to speed-up a scalable modular inversion hardware architecture.

Further details can be found on http://faculty.kfupm.edu.sa/coe/gutub/

