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Abstract  45 

Humans adaptively perform actions to achieve their goals. This flexible behaviour requires two 46 

core abilities: the ability to anticipate the outcomes of candidate actions and the ability to select 47 

and implement actions in a goal-directed manner. The ability to predict outcomes has been 48 

extensively researched in reinforcement learning paradigms, but this work has often focused on 49 

simple actions that are not embedded in hierarchical and sequential structures that are 50 

characteristic of goal-directed human behaviour. On the other hand, the ability to select actions in 51 

accordance with high-level task goals, particularly in the presence of alternative responses and 52 

salient distractors, has been widely researched in cognitive control paradigms. Cognitive control 53 

research, however, has often paid less attention to the role of action outcomes. The present review 54 

attempts to bridge these accounts by proposing an outcome-guided mechanism for selection of 55 

extended actions. Our proposal builds on constructs from the hierarchical reinforcement learning 56 

literature, which emphasises the concept of reaching and evaluating informative states, i.e., states 57 

that constitute subgoals in complex actions. We develop an account of the neural mechanisms that 58 

allow outcome-guided action selection to be achieved in a network that relies on projections from 59 

cortical areas to the basal ganglia and back-projections from the basal ganglia to the cortex. These 60 

cortico-basal ganglia-thalamo-cortical ‘loops’ allow convergence - and thus integration - of 61 

information from non-adjacent cortical areas (for example between sensory and motor 62 

representations). This integration is essential in action sequences, for which achieving an 63 

anticipated sensory state signals the successful completion of an action. We further describe how 64 

projection pathways within the basal ganglia allow selection between representations, which may 65 

pertain to movements, actions, or extended action plans. The model lastly envisages a role for 66 

hierarchical projections from the striatum to dopaminergic midbrain areas that enable more rostral 67 

frontal areas to bias the selection of inputs from more posterior frontal areas via their respective 68 

representations in the basal ganglia.  69 
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Adaptive human behaviour relies on the capacity to select and perform actions in accordance with 78 

desired outcomes. This requires at least two abilities: the ability to predict outcomes, and the 79 

ability to select actions (or sets of actions) on the basis of these predictions to achieve specific 80 

goals. These two aspects have to some degree been researched separately in neuroscience and 81 

psychology. The ability to predict outcomes has been extensively investigated using learning 82 

paradigms (O’Doherty, 2004; Pessiglione et al., 2006; Tricomi and Fiez, 2008; Walsh and 83 

Anderson, 2012) in both human subjects (Holroyd and Coles, 2002; O’Doherty, 2004) and 84 

animals (Matsumoto et al., 2009; Schultz and Dickinson, 2000; Wise, 2004). Here, the main focus 85 

has been the prediction of primary rewards or aversive events (Hikosaka et al., 2008; Matsumoto 86 

and Hikosaka, 2007; Schultz and Dickinson, 2000) and the mechanisms of reinforcement learning 87 

that translate these predictions into observed behaviour at the level of individual stimuli and 88 

specific actions (Schultz, Dayan, and Montague, 1997). This line of work has paid much less 89 

attention to the question of how action selection is guided by high-level goals and by outcomes 90 

that inform on the successful completion of an action in the absence of measurable reward. 91 

The ability to guide behaviour in accordance with high-level goals has received substantial 92 

scrutiny in human cognitive neuroscience. Here the focus has been on the ability to select and 93 

implement task sets that specify appropriate mappings from environmental stimuli to behavioural 94 

responses to suit current task demands (Monsell, 1996), particularly in the presence of salient 95 

distractors or habitual alternate actions (Miller and Cohen, 2001; Norman and Shallice, 1986), 96 

subsumed under the concept of cognitive control (Monsell and Driver, 2000). However, this 97 

framework has tended to neglect a fundamental feature of behaviour, that actions are usually 98 

directed toward achieving particular outcomes. In contrast, many commonly used cognitive 99 

control paradigms—such as task switching, response conflict, and response inhibition—feature 100 

responses that have no direct consequences. Instead, execution of the required response is 101 

considered to represent completion of the task.  102 

Here we explore recent ideas that promise to bring together prior research on outcome 103 

prediction and cognitive control and thus contribute to the development of unifying accounts of 104 

adaptive action selection. In the first half of this article, we briefly review foundational concepts in 105 

research on cognitive control and reinforcement learning, before presenting hierarchical models of 106 

reinforcement learning as a promising framework for linking ideas from these two hitherto rather 107 

separate domains of research. A key feature of these hierarchical models is their proposal that 108 

actions are not selected in isolation, but instead are learnt and selected in structured sequences that 109 

are directed toward identified goals. Crucially, these structured sequences bear strong conceptual 110 
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resemblance to the notion of task sets in theories of cognitive control. However, an important 111 

limitation in current theories of hierarchical reinforcement learning is that they fail to specify 112 

clearly the neural mechanisms supporting sequential action selection. In the second half of this 113 

article, we propose that structured sequencing of actions depends critically on the basal ganglia 114 

and their interactions with frontal cortex. We review neurophysiological, anatomical, and 115 

neuropsychological evidence in support of this claim. We conclude by outlining promising 116 

directions for future research to test these proposals.  117 

 118 

1 Cognitive Control  119 

 120 

1.1 Goal-directed behaviour  121 

In research on cognitive control, a founding observation is that human behaviour is highly 122 

flexible and, as a consequence, highly under-constrained by the environment (Allport, 1980; 123 

Miller and Cohen, 2001; Monsell, 1996; Norman and Shallice, 1986). Presented with stimuli as 124 

simple as written words on a computer screen, for example, experimental subjects are capable of 125 

an enormous variety of responses: reading the words aloud, counting their syllables, counting the 126 

vowels, providing rhymes, judging whether they refer to concrete objects or abstract ideas, giving 127 

synonyms, searching for particular target letters, etc., etc. Given this flexibility, mechanisms of 128 

cognitive control are required to guide action selection according to current goals and intentions 129 

(Miller and Cohen, 2001; Norman and Shallice, 1986), a function of particular importance when a 130 

number of possible actions have to be coordinated. This coordination is thought to depend on 131 

establishing an effective organization—a task set—that specifies the stimuli to be attended, the 132 

type of response to be made, and the appropriate mapping between these stimuli and responses 133 

(Monsell, 1996).  134 

A classical test of cognitive control is therefore the task-switching paradigm (Jersild, 135 

1927), in which participants are presented with a series of stimuli (such as digits) and are required 136 

to make rapid and flexible switches between two or more tasks (such as judging whether the digit 137 

is odd or even, versus judging whether it is greater or less than 5). Subjects are typically told 138 

which task to perform for each presented stimulus, either trial-by-trial through instructional cues 139 

or according to a predictable schedule, but are sometimes given freedom of choice. Regardless, 140 

each task switch requires them to disregard the current task set and establish a new one, a process 141 

associated with a cost in performance and associated activity across a network of frontoparietal 142 
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cortical regions implicated in cognitive control (Dosenbach et al., 2006; Duncan, 2010; Kim et al., 143 

2012; Richter and Yeung, 2014). The established task set is needed to facilitate repeated 144 

performance of the same tasks on multiple stimuli, and to shield performance against interference 145 

from competing stimulus-response mappings (Collins and Frank, 2013; Collins, Cavanagh, and 146 

Frank, 2014; Dreisbach and Haider, 2008).  147 

Many other well-established cognitive control paradigms share this focus on ‘willful’ goal-148 

driven task implementation, including the go/no-go, Stroop, and Eriksen flanker tasks, to name a 149 

few. These tasks all share the critical feature that one of a number of possible responses must be 150 

selected or withheld (go/no-go) according to a cue (task-switching, go/no-go) or predefined rule 151 

(Stroop, flanker), often in the face of competition from more habitual responses to that stimulus 152 

(Stroop). Evidence from these various tasks has converged on a core set of processing principles: 153 

first, that behaviour emerges from competitive interactions among representations of potential 154 

stimuli and responses; second, that this competition occurs simultaneously at multiple levels of 155 

processing (e.g., in the visual system from representations of simple features to complex objects); 156 

and, finally, that competition operates under the guiding influence of goal representations in 157 

prefrontal cortex (Desimone and Duncan, 1995). This research has been highly successful in 158 

characterising the computational (Miller and Cohen, 2001) and neural (Sakai, 2008) bases of this 159 

top-down influence. Specifically, it is commonly held that prefrontal cortex maintains stable 160 

representations of task-relevant information and current task goals (a working memory function). 161 

This information is held to modulate processing in sensory and motor cortices, as well as the 162 

interaction between them, in service of effective task performance.  163 

 164 

1.2 Hierarchical structure  165 

Accumulating evidence suggests that cognitive control is not a unitary construct but can instead be 166 

fractionated into interacting component processes with distinct and identifiable neural bases. For 167 

example, interactions between prefrontal cortex and the medial temporal lobe appear to support 168 

retrieval of goals, set during earlier prospective planning (Cohen and O’Reilly, 1996; Schacter, 169 

Addis, and Buckner, 2007), with input from orbitofrontal cortex providing information about the 170 

likely payoffs of those plans (Koechlin and Hyafil, 2007) and input from medial prefrontal cortex 171 

providing more negatively valenced information about costs and uncertainty (Behrens et al., 2007; 172 

Botvinick, 2007).  173 

Of particular relevance to the present discussion is the proposal that regions in prefrontal 174 

cortex are specialised for representing actions at different levels of abstraction (Badre and 175 
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D’Esposito, 2009; Koechlin and Summerfield, 2007; but see Duncan, 2010 for a dissenting view). 176 

It has long been recognised that behaviour is hierarchically structured, with high-level plans (e.g., 177 

get to work on time) comprised of sub-routines (e.g., make breakfast, pack a bag, walk to the 178 

office) that themselves involve lower-level sub-routines (e.g., make coffee, toast bread). These 179 

abstraction hierarchies nearly always exhibit a sequential structure, such that sub-routines are 180 

executed in a natural or necessary ordering at each level of the hierarchy. As such, action selection 181 

can be characterised in terms of activation flow in a hierarchy from the high-level plan down to 182 

the particular sequences of concrete actions that are ultimately specified for execution (Lashley, 183 

1951; Miller, Galanter, and Pribram, 1960).  184 

This form of hierarchical structure is common in cognitive theories of action selection 185 

(Botvinick and Plaut, 2004; Cooper and Shallice, 2000). Recent neuroimaging evidence suggests 186 

that corresponding hierarchical structure is explicitly represented along the rostro-caudal axis of 187 

lateral prefrontal cortex, with more rostral regions containing increasingly higher-level 188 

representations of actions. For example, whereas activity in premotor cortex is observed when 189 

coloured cues indicate the required response, activity in the inferior frontal gyrus becomes 190 

apparent when coloured cues indicate the overall task (i.e., how to respond to other stimulus 191 

attributes) rather than a particular action, while activity in rostral prefrontal cortex only becomes 192 

apparent when these cue-task contingencies switch (Koechlin, Ody, and Kouneiher, 2003). 193 

Collectively, this evidence suggests an important elaboration of the concept of cognitive control, 194 

in which goals are simultaneously represented at multiple levels of abstraction in distinct parts of 195 

prefrontal cortex, with influence flowing down hierarchically from high-level plans to specific 196 

implemented actions.  197 

 198 

1.3 Concrete goals and sequential actions  199 

The work sketched in the preceding subsections is illustrative of substantial progress made in our 200 

understanding of the computational and neural mechanisms of cognitive control. However, these 201 

successes notwithstanding, a striking feature of many standard cognitive control paradigms is their 202 

narrow focus on tasks in which actions are produced in a stimulus-driven and reactive manner, 203 

with success in the task defined in terms of producing pre-defined responses to given stimuli rather 204 

than in terms of bringing about a desired state of affairs in the world (Hommel, 2009). For 205 

example, in prior research on flexible task switching, the moment of response execution is 206 

typically taken to be the end of the trial. Even trial-to-trial feedback is rarely provided, a choice 207 

that follows the lead of three studies that laid the methodological foundations of this work 208 
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(Allport, Styles, and Hsieh, 1994; Meiran, 1996; Rogers and Monsell, 1995 - only Meiran’s 209 

Experiment 4 included trial-to-trial feedback of any kind). Given this, it is perhaps not surprising 210 

that few studies since have explicitly manipulated action outcomes in task switching, with the 211 

notable exception of experiments using adaptations of the Wisconsin Card Sorting Task in which 212 

subjects must use trial-to-trial feedback to infer a sorting rule (e.g., Monchi et al., 2001; Rogers et 213 

al., 1998) and a handful of studies using reward incentives to motivate effective switching 214 

(Kleinsorge and Rinkenauer, 2012; Nieuwenhuis and Monsell, 2002; Shen and Chun, 2011). 215 

References to feedback and action outcomes are notable by their absence in recent authoritative 216 

reviews of task-switching research (Grange & Houghton, 2014; Kiesel et al., 2010; 217 

Vandierendonck, Liefooghe, and Verbruggen, 2010) as well as in the related research literatures 218 

on response conflict (MacLeod, 1991; Yeung, 2013) and response inhibition (Aron, Robbins, and 219 

Poldrack, 2014). One domain in which the role of outcomes in cognitive control has been studied 220 

in more detail is in terms of performance feedback (Ridderinkhof et al., 2004; Walsh and 221 

Anderson, 2012), but with a few important exceptions (Ribas-Fernandes et al., 2011; Krigolson 222 

and Holroyd, 2006; Collins and Frank, 2013), this work has focused on learning and optimisation 223 

of simple stimulus-response associations rather than high-level task sets. Moreover, feedback in 224 

these studies is typically used to indicate whether the subject produced the required response to 225 

the imperative stimulus, rather than being a meaningful consequence of the particular action 226 

produced.  227 

In stark contrast, in almost all complex everyday behaviours, our actions are instrumentally 228 

directed towards achieving certain desired outcomes or producing specific changes in the 229 

environment. Thus, successful completion of an action is typically defined in terms of bringing 230 

about its desired outcome, not in terms of its execution per se (i.e., we define success in terms of 231 

ends not means). Success is a light turning on rather than a switch being flicked, a hot cup of 232 

coffee in our hands rather than completion of pouring and stirring actions, a draft manuscript 233 

rather than a long sequence of keypresses. Action outcomes of this sort have no obvious correlate 234 

in many cognitive control tasks, for which action execution marks the end of the trial and in which 235 

feedback is often not provided (and, when provided, may be unnecessary except during the earliest 236 

stages of practice; Holroyd and Coles, 2002). As such, previous research on cognitive control may 237 

have neglected a critical route by which tasks and actions are selected, that is, through the 238 

outcomes they are intended to achieve.  239 

A second key feature of everyday action that is missing from standard cognitive control 240 

paradigms is sequential structure. With a few notable exceptions (e.g., Schneider and Logan, 241 
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2006), these paradigms involve a series of discrete trials in which no explicit structure governs the 242 

relationship between successive events. Indeed, the most common approach is to deliberately 243 

randomise the order of presented stimuli and required tasks and responses (Richter and Yeung, 244 

2014). This design choice is true even for paradigms that notionally tap hierarchical behavioural 245 

structure (e.g., Koechlin, Ody, and Kouneiher, 2003). As such, these paradigms share little in 246 

common with everyday behaviour which, as already noted above, is characterised by hierarchical 247 

and sequential structure: Plans at a given level of abstraction typically comprise a series of sub-248 

routines for which the order is at least somewhat constrained (e.g., in my morning routine, I must 249 

get out of bed before I can make coffee or shower, but the order of the latter two sub-routines can 250 

be exchanged; Botvinick and Plaut, 2004). Action outcomes play a critical role in this behavioural 251 

sequencing, because it is often the case that those outcomes are necessary preconditions for later 252 

actions in a sequence: success in picking up a spoon allows me next to add coffee grounds to the 253 

pot.  254 

Thus, while cognitive neuroscience research has been highly successful in characterising 255 

the computational mechanisms and neural basis of control, it has achieved this in the context of 256 

task paradigms that neglect crucial features of human behaviour. This narrow focus may at least 257 

partly explain why lesion studies have often found little or no substantive impact on cognitive 258 

control of damage to regions that consistently show control-related activation in imaging studies 259 

(Holroyd and Yeung, 2012). This is not to say, however, that there has been no research on the 260 

outcome-driven, sequential nature of behaviour; indeed this has been a major focus of research, 261 

albeit largely separate from the work reviewed above. It is to this research that we now turn.  262 

 263 

2 Action Outcomes  264 

 265 

2.1 Action effects  266 

Actions typically have sensory consequences: some that are intrinsic to the intended goal (e.g., a 267 

light turning on at the flick of a switch), some that are intrinsic to the action itself (e.g., the 268 

proprioceptive consequences of finger flexion), and some that are incidental but nevertheless 269 

consistently associated (e.g., the auditory click of the switch). A large corpus of findings has 270 

documented the formation of associations between actions and these sensory consequences 271 

(Herwig and Waszak, 2009; Herwig, Prinz, and Waszak, 2007; Kühn et al., 2010; Waszak et al., 272 

2005; Krieghoff  et al., 2011), for example as investigated according to the ideomotor principle of 273 
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action selection (James, 1890; Prinz, 1990; Greenwald, 1970; Hommel, 2009). According to this 274 

research, sensory consequences of actions become part of the internal representation of actions 275 

(Hommel, 2009; Band et al., 2009) and therefore play a crucial role in action selection (e.g. 276 

Hommel, 2009). For example, after learning that particular actions have consistent sensory 277 

consequences (e.g., pressing a key produces a low-frequency tone), presentation of those 278 

‘consequences’ prior to action selection biases action selection toward the associated action 279 

(Elsner and Hommel, 2001).  280 

The acquisition and maintenance of functional representations necessitate not only the 281 

ability to predict which action leads to which outcome, but also the ability to assess whether 282 

events and outcomes concur with original predictions. This mechanism of prediction and 283 

evaluation is reminiscent of forward models in motor control (Blakemore and Sirigu, 2003; 284 

Wolpert and Miall, 1996; Wolpert and Kawato, 1998). In these models, every mismatch between 285 

predicted and actual sensory feedback is indicative of an error and hence the need for adjustment. 286 

These forward models can also usefully be run offline, without actual movement. Through this 287 

mechanism, they can be used to estimate what the sensory consequence of a possible movement 288 

would be, and thereby select and adjust movements based on the predicted divergence between 289 

this anticipated consequence and the planned motor command (Blakemore and Sirigu, 2003; 290 

Miall, 2003; Schaal, Mohajerian, and Ijspeert, 2007; Wolpert and Miall, 1996; Wolpert and 291 

Kawato, 1998). There is ample evidence for neural activity corresponding to such outcome-292 

centred routines of prediction, evaluation, and adjustment in motor control (Tunik, Houk, and 293 

Grafton, 2009). 294 

However, this research has to date made limited contact with studies of cognitive control. 295 

In the present context, the critical missing conceptual link is the idea that action-effect predictions 296 

ought to depend on the overarching task goal in two key respects. First, as noted above, some 297 

sensory consequences are intrinsic to the action whereas others are incidental, and we might 298 

expect differential processing of these even if the action-effect correlations are equivalent. There 299 

is some evidence on this point (e.g., Krigolson and Holroyd, 2006), but little systematic study. 300 

Second, predictions ought to be task-dependent. For example, the same action (e.g., a flick of 301 

switch) will have different predicted consequences in the context of different tasks (e.g., turning 302 

on a light vs. turning on an electrical socket), yet action-effect bindings are commonly studied in 303 

the context of tasks with fixed action-effect associations. As such, while studies of sensory action 304 

effects clearly demonstrate the principle that outcomes play a critical role in adaptive action 305 



 9 

selection, this research has less to say about the role of action outcomes in the higher-level control 306 

of behaviour.  307 

 308 

2.2 Reward and reinforcement learning  309 

Perhaps the best-characterised form of action-outcome learning relates to associations involving 310 

motivationally salient events: reward and punishment. The topic of reinforcement learning has 311 

become a major focus in neuroscience research, with interest fuelled by the striking convergence 312 

between formal computational theory and observed properties of neural systems underpinning 313 

learning in humans and other animals. Reinforcement learning theory (RL; Schultz, Dayan, and 314 

Montague, 1997; Sutton, 1988; Sutton and Barto, 1990; Sutton and Barto, 1981) explains how 315 

agents (humans/animals) learn to choose actions that will maximise their future rewards (Barto 316 

and Simsek, 2005). The agent assigns a value to a given state, which signifies how much reward 317 

this state predicts, and learns which actions lead to transitions from one state to the next. In 318 

accordance with Thorndike’s law of effect (Thorndike, 1927), actions that lead to rewarding states 319 

are more likely to be repeated in the future.  320 

Take for example a case of searching for groceries in a foreign country on a Sunday, when 321 

shops are closed. Your foraging may eventually lead you to a gas station, which you enter, and 322 

wherein to your surprise you find food and drink. This experience may change the value you 323 

ascribe to gas stations, and make trips to the gas station more likely on future Sundays. RL 324 

describes learning processes such as this: If reward is delivered unexpectedly, the present state 325 

will be assigned a higher value than it had before (because it is now recognised as a state that may 326 

yield reward). At the same time, the value of the state(s) that preceded the present state will also 327 

be increased because they predict future reward. Actions that lead to states that promise reward 328 

will be produced more often. The unexpected delivery of reward is called a positive reward 329 

prediction error, because a state yielded more reward than previously expected. The next time the 330 

same sequence of states is encountered, reward delivery will have been predicted to some degree 331 

(depending on the learning rate) by the previous state. This makes reward less unexpected and 332 

hence decreases the positive reward prediction error (Schultz et al., 1992; Schultz, Dayan, and 333 

Montague, 1997; Schultz, 2007). To refer back to our example, on another foraging trip a week 334 

later, finding food at the gas station would not be such a large positive surprise, but finding the gas 335 

station to be closed might prompt disappointment (negative prediction error).  336 

The aim in RL is to choose the action that will lead to the highest expectation of future 337 

reward (discounted for time-to-reward). The underlying routine can be understood as a constant 338 
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prediction of future outcomes paired with the evaluation of the present state with regards to 339 

whether it yielded the outcomes it was predicted to yield. Deviations from predictions cause 340 

prediction errors and result in adjustment of the model, i.e., learning.  341 

 342 

2.3 Hierarchical reinforcement learning  343 

Hierarchical reinforcement learning (HRL) is a development of RL theory that aims to 344 

deliver computationally more tractable solutions for complex environments than ‘flat’ RL. 345 

Crucially for our purposes here, HRL theory also has interesting implications for the role of 346 

outcome and task representations in cognitive control (Collins and Frank, 2013; Collins & 347 

Koechlin, 2012). One computational issue for reinforcement learning is that its sequential nature 348 

poses a scaling problem (see Botvinick, Niv, and Barto, 2009, for review). The computational 349 

demands for the learning agent increase with each step and each action, rendering complicated 350 

multistep actions computationally unfeasible. HRL circumvents this problem by enabling actions 351 

to be selected and learnt in coherent sequences. For example, within the options framework 352 

(Botvinick, Niv, and Barto, 2009; Holroyd and Yeung, 2012), primitive actions can be compiled 353 

into higher-level mini policies, or options, that guide the selection of action sequences. Because 354 

the action sequence encompassed in each option is treated as a chunk, it can be selected in its 355 

entirety, as opposed to selecting single actions at a time, with the potential to greatly simplify 356 

learning in complex task domains. Indeed, options can themselves be sequenced and compiled 357 

into higher-level options, allowing for yet further simplification of the task space. Importantly, 358 

learning occurs according to the same principles as standard RL: options that produce better-than-359 

expected outcomes are reinforced, while successful completion of a selected option reinforces 360 

preceding lower-level actions. In this way, learning is achieved simultaneously at multiple levels 361 

of abstraction, identifying high-level options as well as low-level actions that produce positive 362 

outcomes.  363 

Options are associated with probable end-states, which can be conceived of as subgoals. 364 

Subgoals are anticipated outcomes, but not necessarily primary rewards: They can be states that 365 

allow the selection of other actions that will ultimately deliver reward. This feature is of great 366 

relevance. As discussed previously, we choose actions to achieve desired outcomes, which in 367 

everyday life may not necessarily be primary rewards. If we start the day by choosing to go into 368 

work to teach a class, arriving at work is an important subgoal that informs us we are on the right 369 

track. Arriving at work, however, is not itself a primary reward. Attaining or failing to attain a 370 

subgoal is informative and relies on the same routine of prediction and evaluation as appraisal of 371 
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primary reinforcers does in RL (Diuk et al., 2013; Ribas-Fernandes et al., 2011). The idea here is 372 

that a wide array of sensory inputs can fulfil a function similar to that of reward, if these inputs 373 

deliver reliable information about the state of the environment (or the agent in the environment). 374 

Meanwhile, many human studies use abstract feedback symbols such as point scores, colours, or 375 

icons which may (Holroyd et al., 2004; Nieuwenhuis et al., 2005; Yeung and Sanfey, 2004), but 376 

need not (Elliott, Frith, and Dolan, 1997; Klein et al., 2007; Nieuwenhuis et al., 2005; Swanson 377 

and Tricomi, 2014; Ullsperger and von Cramon, 2003), represent a monetary outcome (see 378 

Kringelbach et al., 2003; Seitz, Kim, and Watanabe, 2009 for paradigms using actual primary 379 

reward). Clearly, these symbolic sensory events need to be cognitively interpreted as valuable 380 

states to assume the characteristics of reward. The degree of abstraction and the temporal 381 

extension of the plans humans pursue, such as succeeding as a teacher or publishing an article, call 382 

for neural mechanisms of learning that can signal whether events occur as expected, even if they 383 

are temporally and/or conceptually distant from primary reward delivery. In sum, a crucial feature 384 

of HRL is that it encompasses the concept of reaching informative states, which permit evaluation 385 

of a completed set of actions and afford the selection of a new series of actions to approach an 386 

overarching goal. This concept is intuitively appealing when considering the role of outcomes in 387 

everyday actions. The HRL framework also promotes the idea that neural structures known to 388 

code for reward prediction may be involved more generally in event/state prediction and coding of 389 

mismatches between anticipated (intended) states and actual outcomes.  390 

 391 

2.4 HRL and cognitive control  392 

Research on RL and its recent extension in HRL has been exceptionally successful in 393 

characterising the acquisition and evaluation of reward predictions. Crucial for our purposes, HRL 394 

is also of direct relevance to addressing the limitations of cognitive control research identified 395 

above. There, we noted that this research has adopted a narrow conception of ‘goals’ that does not 396 

capture the intuitive notion that goals fundamentally relate to states of the world brought about by 397 

our actions, and that it relatedly fails to capture the idea that human behaviour is intrinsically 398 

structured and sequential in nature. HRL addresses precisely these features: Within RL, actions 399 

are reinforced in proportion to their individual propensity to bring about states of the world 400 

associated with positive outcomes; within HRL, positive reinforcement can occur for structured 401 

sets and sequences of actions, and can be brought about in terms of informative as well as 402 

rewarding world states. Thus, actions in HRL are truly goal-directed. They are also structured, by 403 

virtue of being compiled into nested hierarchies of options.  404 
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Importantly, the concept of  options bears close resemblance to that of task sets (Collins 405 

and Frank, 2013) studied in research on cognitive control, particularly in light of recent proposals 406 

about hierarchical representations in prefrontal cortex (Botvinick, Niv, and Barto, 2009; Collins, 407 

Cavanagh, and Frank, 2014). This parallel has been developed elsewhere to link computational 408 

theories and neuroimaging studies of hierarchical control (Botvinick, 2008), and to reconcile 409 

apparent discrepancies between imaging and lesion data on the neural mechanisms of cognitive 410 

control (Holroyd and Yeung, 2012). These proposals have emphasised key similarities between 411 

options and task sets: Both are representations that are abstracted over low-level actions to specify 412 

coherent groupings of responses; both are proposed to be selected and activated in a hierarchical 413 

fashion, with flow-down of activation that guides selection of increasingly concrete and specific 414 

action plans; and both are held to guide behaviour over extended periods.  415 

There is clear convergence in terms of the proposed neural underpinnings of HRL in recent 416 

accounts (Botvinick, Niv, and Barto, 2009; Holroyd and Yeung, 2012). In particular, high-level 417 

option representations are proposed to depend crucially on lateral prefrontal cortex (Botvinick, 418 

Niv, and Barto, 2009), with input from orbitofrontal and perhaps medial prefrontal regions 419 

(Holroyd and Yeung, 2012), and with representations in these regions influencing action selection 420 

in the basal ganglia under the influence of reward. This network description has recently been 421 

extended to include the proposal that the orbitofrontal cortex (OFC) represents states that afford 422 

specific options (Stalnaker et al., 2014; Wilson et al., 2014). In this way, knowledge of the 423 

physiology of prediction, evaluation, and action selection from reinforcement learning research 424 

may deliver valuable insights into the mechanisms by which outcomes may globally influence 425 

action selection and cognitive control. However, extant proposals have had little to say about the 426 

neural mechanisms underpinning a fundamental component of the HRL system: the sequencing of 427 

actions within a chosen option. This is the question addressed in the second half of this article, in 428 

which we propose a model of the neuroanatomy and neurophysiology of sequential structure in 429 

adaptive action selection.  430 

 431 

3 The neurophysiology of outcome predictions  432 

 433 

3.1 Dopaminergic signalling of prediction error  434 

The role of dopamine and dopaminergic projection pathways in RL was established by the seminal 435 

finding that positive reward prediction errors lead to phasic increases in cell firing in the ventral 436 
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tegmental area and substantia nigra in the midbrain (Schultz et al., 1992; Schultz, 2000; Schultz, 437 

Dayan, and Montague, 1997; Suri, 2002). These midbrain structures are the primary source of 438 

dopamine in the brain (Bjoerklund, 2007; Haber, 2003 for review). One of the major projection 439 

pathways of the dopaminergic system is the mesostriatal pathway (Bjoerklund and Dunnett, 2007 440 

for review), which targets the striatum, a nucleus in the basal ganglia (Bédard et al., 1969; Haber, 441 

2003). Similar to the nigral and tegmental dopaminergic cell assemblies, their projections to the 442 

striatum have repeatedly been shown to be involved in the coding of prediction errors (Daw et al., 443 

2011; Joel, Niv, and Ruppin, 2002; O’Doherty, 2004; Schultz and Dickinson, 2000). Intact 444 

mesostriatal projections seem to be pivotal in learning from feedback (Holl et al., 2012; Shohamy 445 

et al., 2008). More recently, it has been shown that prediction errors in hierarchical reinforcement 446 

settings, which concern predictions of the value of options, are computed in the striatum (Daw et 447 

al., 2011; Diuk et al., 2013; Jin, Tecuapetla, and Costa, 2014). These findings have fostered the 448 

view that the striatum plays a special role in selecting actions and evaluating their outcomes (e.g., 449 

Frank, Scheres, and Sherman, 2007; Houk et al., 2007; Redgrave, Prescott, and Gurney, 1999).  450 

If hierarchical prediction error coding is important for outcome prediction in actions, one 451 

would expect to find signatures of prediction errors when actions do not yield desired or 452 

anticipated outcomes, that is, when subgoals are not achieved. Importantly, this neural signature 453 

should be present even if these subgoals are not directly related to primary reward (cf. Torrecillos 454 

et al., 2014). It is not yet conclusively established that striatal prediction errors are observed when 455 

subjects fail to reach anticipated subgoals (end states of options) that never entail reward delivery, 456 

and do not change the overall estimate of reward likelihood. However, a few studies investigating 457 

prediction errors in perception have yielded evidence that the striatum codes for the 458 

unexpectedness of events per se (den Ouden et al., 2009; Grahn, Parkinson, and Owen, 2008; 459 

Grahn and Rowe, 2013; Schiffer and Schubotz, 2011; Schiffer et al., 2012; Seger et al., 2013) and 460 

is not limited to reward-related prediction error coding. Although unexpected events in these 461 

studies were not predictive of forthcoming reward, or positive feedback, they were sometimes 462 

task-relevant (e.g., Schiffer and Schubotz, 2011), even if only to the degree that they informed 463 

participants that they should pay attention to deviations in a stimulus to increase their ability to 464 

answer (unrewarded) questions correctly (Schiffer et al., 2012). This finding stands in contrast to 465 

the idea that striatal prediction errors code solely for changes in the expected sum of future 466 

rewards. Rather, it favours the idea that the striatum codes in a model-based fashion for the (un-) 467 

expectedness of events more broadly (Schultz, 2013). One rationale behind this claim is that 468 

humans need to learn about unexpected deviations from their expectations to adapt behaviourally 469 
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to lasting changes in the environment (Behrens et al., 2007; Schiffer et al., 2013). The degree to 470 

which these events need to be related to future reward probability in a complex model of the world 471 

requires further testing.  472 

Continuing interest in the computations of the dopaminergic midbrain and striatum is also 473 

fuelled by the finding that dopamine’s action on a number of sites within the basal ganglia appears 474 

crucial in establishing associations between cortical representations (such as motor commands and 475 

sensory outcomes) and in choosing actions based on these representations (Bischoff-Grethe, 476 

Crowley, and Arbib, 2002; Frank, 2005; Gurney, Humphries, and Redgrave, 2015; Redgrave, 477 

Prescott, and Gurney, 1999; Stocco, Lebiere, and Anderson, 2010). To understand how basal 478 

ganglia anatomy may hence contribute to goal-directed action selection, we next consider three 479 

prominent features of its neurophysiology:  480 

 481 

1. Cortical projections (’loops’) through the basal ganglia enable associations between 482 

activation patterns in different cortical areas.  483 

2. Projection pathways within the basal ganglia play a role in the acquisition and selection 484 

of extended sequences.  485 

3. Interactions of hierarchical projections in the basal ganglia through subcortical loops 486 

allow context-dependent modulation of task sets.  487 

 488 

3.2 Prediction in cortico-basal ganglia-thalamo-cortical loops  489 

We propose that cognitive control in sequential goal-directed actions is subserved by cortico-basal 490 

ganglia-thalamo-cortical loops, a system proposed to compute predictions of sensory states online 491 

and to link representations of actions to their sensory correlates (Bischoff-Grethe, Crowley, and 492 

Arbib, 2002; Gurney, Prescott, and Redgrave, 2001; Redgrave, Prescott, and Gurney, 1999). The 493 

basal ganglia comprise 9 subcortical nuclei: the caudate nucleus, putamen, and nucleus accumbens 494 

(N.Acc), which are together referred to as the striatum, and the globus pallidus externa (GPe), 495 

globus pallidus interna (GPi), subthalamic nucleus (STN), substantia nigra pars reticulata (SNr), 496 

substantia nigra pars compacta (SNc), and ventral tegmental area (VTA) (Figure 1; Graybiel, 497 

1998; Saint-Cyr, 2003).  498 

A first criterion for a neural structure that can function as a sequential predictive action 499 

control system is the capacity to integrate input from a wide range of cortical areas, for example 500 

from sensory, motor, and multimodal association cortices. In fact, the striatum as the input 501 

structure to the basal ganglia shows such a remarkable pattern of connectivity. Virtually the entire 502 
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neocortex projects to the striatum. It thus receives projections from sensory cortices (e.g., Seger, 503 

2008), as well as motor and premotor areas and prefrontal sites (Di Martino et al., 2008; Kemp 504 

and Powell, 1970; Selemon and Goldman-Rakic, 1985; Parent and Hazrati, 1995; Schmahmann 505 

and Pandya, 2008; Schmahmann and Pandya, 2006). For some of these areas, a very distinctive 506 

kind of projection pathway has been established in terms of cortico-basal ganglia-thalamo-cortical 507 

loops (Alexander, DeLong, and Strick, 1986; Haber, 2003; Parent and Hazrati, 1995; Selemon and 508 

Goldman-Rakic, 1985). A key characteristic of these loops is that cortical input areas project to 509 

specific, circumscribed areas within the striatum. The striatal area sends even more converged 510 

projections to the output nuclei of the striatum, the GPi and SNr (Figure 1A). The information is 511 

then transferred via the thalamus back to one of the cortical input regions (Alexander, DeLong, 512 

and Strick, 1986; but see Joel and Weiner, 2000). For example, the motor loop, as first described 513 

in the monkey (Alexander, DeLong, and Strick, 1986), has inputs from the supplementary motor 514 

area, the arcuate premotor area, the motor cortex, and the somatosensory cortex. These projections 515 

converge in the same area of the putamen. The putamen then projects to the ventrolateral GPi and 516 

caudolateral SNr. The projection from these output nuclei reaches two specific thalamic nuclei. 517 

Lastly, the thalamo-cortical projections of the motor loop terminate in the mesial premotor cortex 518 

(supplementary motor area). The same principle can be found in all cortico-basal ganglia-thalamo-519 

cortical loops (Alexander et al., 1986). However, input areas are not necessarily adjacent areas of 520 

neocortex: the executive loop receives input from the dorsolateral prefrontal cortex (dlPFC), 521 

posterior parietal cortex (Figure 1A), and arcuate premotor area, all of which target the same area 522 

in the dorsolateral head of the caudate nucleus, which in turn projects via the thalamus back to the 523 

dlPFC (Alexander, DeLong, and Strick, 1986; Selemon and Goldman-Rakic, 1985). Projections 524 

from non-adjacent areas of the cortex into overlapping or interdigitating areas of the striatum are 525 

one aspect of basal ganglia neuroanatomy that may contribute to the role of this system in 526 

integration of information.  527 

The proposed predictive control system incorporates the characteristic of sequentiality con-528 

necting predictions of present states, motor intentions, and sensory outcomes. Thus, a second 529 

criterion for a system supporting predictive sequential control is access to representations of 530 

planned movements, as well as their end states, which in turn form the preconditions of 531 

subsequent actions within a sequence. One important aspect of the loop structure satisfying this 532 

condition is that output states are fed back into the system (Berns and Sejnowski, 1998; Stocco, 533 

Lebiere, and Anderson, 2010). On the motor level, for example, projections of the representation 534 

of the hand and digits in the motor cortex (handknob; Yousry et al., 1997) interdigitate in the 535 
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striatum with the projections from the hand area in primary sensory cortex (S1; Graybiel, 1998; 536 

Flaherty and Graybiel, 1991). Projections from different areas reach the dendritic spines of so-537 

called medium spiny neurons within the same patches in the striatum (matrisomes, cf. Graybiel, 538 

1998; Flaherty and Graybiel, 1991; Flaherty and Graybiel, 1993). This physiological property of 539 

projections to the striatum may provide neural templates (Graybiel, 1998) for the association of 540 

different cortical input and output patterns (Houk and Wise, 1995; Graybiel, 1998), in a process 541 

modulated by dopamine (see below).  542 

On a more general level, these forward models can be described as the association of a 543 

motor command, action, or choice (Houk and Wise, 1995; Houk et al., 2007) with sensory states 544 

(Bischoff-Grethe, Crowley, and Arbib, 2002) or multimodal representations (cf. Stocco, Lebiere, 545 

and Anderson, 2010). In cognitive terms, we can thus rephrase these associations as iteratively 546 

linking the representation of a present state (or context, Apicella, 2007) with sequential action 547 

possibilities to reach a desired goal state. Sequential representations in the basal ganglia are 548 

known as chunks (Graybiel, 2008; 2005; 1998a). This functional description and terminology 549 

dovetails with the concepts of chunks in HRL, denoting an action sequence that can be treated as 550 

an entity.  551 

A third condition for a system that selects sequential (chunked) action is that predictions of 552 

action outcomes need temporal precision, for example because delayed sensory input may be 553 

indicative of failed actions (cf. Sardo et al., 2000). Importantly, associations between converging 554 

inputs in the striatum may be linked within a defined time window (provided in the striatum by so 555 

called tonically active neurons, TANs; Morris et al., 2004; Sardo et al., 2000). It has been proposed 556 

that activation in the striatal projection neurons is modulated by activity levels of TANs 557 

(Reynolds, Hyland, and Wickens, 2001; Reynolds and Wickens, 2002; Apicella, 2007). 558 

Specifically, cessation of TAN activity may allow striatal projection neurons to become active and 559 

transmit information. TANs may thus provide a timestamp for associations to become active and 560 

acquired (Smith et al., 2004; see Stocco, Lebiere, and Anderson, 2010 for a computational 561 

implementation), allowing predictive sequential models of motor command copy, anticipated 562 

sensory consequence, and subsequent motor command copy, wherein states are kept separate to 563 

allow successive implementation. It is important to keep in mind that while this example focuses 564 

on the motor loop, the same principle holds for loops originating in prefrontal areas, with sensory 565 

state representations that are likely to be multimodal (Saint-Cyr, 2003; Seger, 2008).  566 

A fourth criterion for a control system of sequential actions is the ability to detect 567 

deviations from intended sequences and signal these deviations to allow behavioural adjustments. 568 
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An emerging view is that the basal ganglia are involved in selecting action sequences (Graybiel, 569 

1998) and monitoring to detect deviations both within the sequence, as well as at the outcome 570 

level (Carr, 2000; Graybiel, 1998; Grahn and Rowe, 2013). As we have seen, basal ganglia 571 

connectivity provides the essential features to support the monitoring of sequentiality (Stocco, 572 

Lebiere, and Anderson, 2010), based on its ability to associate sequential representations from 573 

various cortical inputs while discriminating serial positions. Mismatch signals in the basal ganglia 574 

may hence code for deviations from the sequence even if they do not change the predictions of 575 

future primary reward. The dopaminergic signal established in (H)RL may be one example of 576 

such a signal of deviation. We next describe why dopaminergic prediction errors in the basal 577 

ganglia may specifically play an essential role in extended sequential action, owing to dopamine’s 578 

role in the acquisition and selection of weighted forward models.  579 

 580 

3.3 Probabilistic selection in basal ganglia pathways  581 

The ability to select appropriate actions to achieve internal goals is fundamental to cognitive 582 

control. Because most contexts are preconditions for a number of actions, action selection must 583 

take into account how likely it is that each possible action is appropriate (Collins and Koechlin, 584 

2012; Donoso, Collins and Koechlin, 2014) and will yield the anticipated outcome. Action 585 

selection can be efficient and fast if different alternatives are associated with weights that 586 

encompass this probability, and selection occurs based on these weights. Within the basal ganglia, 587 

acquisition of these probabilistically weighted forward models is held to depend on two key 588 

organisational features: the distribution of the dopaminergic receptors on medium spiny neurons in 589 

dual projection pathways in basal ganglia loops, and the consequences of dopaminergic action on 590 

these receptors.  591 

Within each cortico-basal ganglia-thalamo-cortical loop, there are three separate projection 592 

pathways, of which two have opposing effects on cortical activity. These two pathways are 593 

associated with different dopaminergic receptors. One type of dopamine receptor (D1 type), 594 

located on dendrites of medium spiny neurons, gives rise to the direct projection pathway (Albin, 595 

Young, and Penney, 1989; Smith et al., 1998; Bolam et al., 2009). This projection pathway 596 

reaches the output structures GPi and SNr monosynaptically, which in turn project to the 597 

thalamus. Activation of D1 receptors disinhibits the thalamus via this direct projection pathway. 598 

Disinhibition of the thalamus increases cortical activity, such that activation in the direct pathway 599 

leads to increased activity of corresponding cortical output patterns. This pathway has thus been 600 

dubbed the ‘go pathway’ (Figure 1A; Frank, 2005; Frank, Seeberger, and O’Reilly, 2004). 601 
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Conversely, striatal neurons that express another type of dopamine receptor, so-called D2 602 

receptors, send projections to the GPe. The GPe projects to the STN, which in turn projects to the 603 

GPi and SNr output nuclei and thence to the thalamus. If dopamine binds to D2 receptors, these 604 

indirect pathway projections lead to inhibition of thalamic activity and accordingly no increase in 605 

cortical activity. Therefore, the indirect projection pathway via the GPe and STN has been called 606 

the ‘no go pathway’ (Frank, Seeberger, and O’Reilly, 2004; Figure 1b). The third pathway, the 607 

hyperdirect pathway, will not be discussed further, but its relevance to action selection has been 608 

described elsewhere (e.g., in Frank, 2006; Jahfari et al., 2012; Nambu, Tokuno, and Takada, 2002; 609 

Nambu, 2004). Importantly, current models suggest that each forward model is represented 610 

simultaneously in separate sets of medium spiny neurons within the direct and indirect pathways 611 

(Frank, 2005; Gurney, Humphries, and Redgrave, 2015). This means that activation of each 612 

cortical representation depends on the dominance of its respective representation in the ‘go’ 613 

pathway compared to the ‘no go’ pathway. 614 

Historically, models of the direct and indirect pathway have focussed on their role in 615 

selecting actions in relation to current dopamine levels. However, recent models that very 616 

successfully predict behaviour in patients with Parkinson’s disease (PD; Frank, Seeberger, and 617 

O’Reilly, 2004; Frank, 2005; Frank, 2006; Frank et al., 2007) have focused on the role of 618 

dopamine bursts in shaping learning in the basal ganglia, thus influencing the probabilistic 619 

dominance of ‘go’ and ‘no go’ activity in future action selection (Frank, 2005; see Gurney, 620 

Humphries, and Redgrave, 2015 for a very recent model which compares striatal action selection 621 

and learning). Specifically, activation of D1 receptors on the medium spiny neurons, which give 622 

rise to the direct pathway, results in long-term potentiation (LTP) of synaptic efficacy. At the 623 

same time, D2 receptor activation prevents LTP on these synapses (Reynolds and Wickens, 2002). 624 

If a representation of cortical activity in the striatum is accompanied by a dopamine burst, this 625 

hence leads to increased synaptic strength for the representation in the direct pathway and possibly 626 

a concurrent decrease in synaptic strength for the representation in the indirect pathway. Thus, in 627 

the motor domain, dopamine bursts teach both pathways to make one response more likely, while 628 

concurrent alternative responses are suppressed (Morris, Schmidt, and Bergman, 2010; Frank, 629 

2005 for a review). With reference to the RL literature, these dopaminergically modulated 630 

synaptic weight changes can explain why rewarded actions are chosen with increasing probability 631 

(Bogacz and Gurney, 2007; Botvinick, Niv, and Barto, 2009; Frank and Claus, 2006; Gurney, 632 

Prescott, and Redgrave, 2001; Gurney, Humphries, and Redgrave, 2015).  633 
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LTP in the two-pathway account is very useful in explaining how forward models can be 634 

strengthened. However, perhaps due to a historical view of the basal ganglia as a pure motor 635 

structure, and perhaps because dopaminergic modulation has been predominantly associated with 636 

reward (but see Horvitz, 2000 for an early dissenting view; Redgrave and Gurney, 2006 for a 637 

review), action selection in the basal ganglia pathway has often been taken to be the exact 638 

opposite of cognitive control: Selection in the basal ganglia has been associated with reward-639 

oriented habitual responses, whereas cognitive control focuses on the implementation of novel or 640 

instructed tasks, especially if the task is not directed at the most salient stimuli or most dominant 641 

response. However, dopamine-driven action selection can be reconciled with the proposed role of 642 

the basal ganglia circuits in outcome prediction for non-rewarding action outcomes if the 643 

hierarchical nature of actions and projection pathways in the basal ganglia is taken into account 644 

(Graybiel, 1998).  645 

As we will see, recent descriptions of basal ganglia connectivity (Haber, 2003; Draganski 646 

et al., 2008) point to an involvement in cognitive control that is even more intriguing than 647 

monitoring of sequential steps and acquisition of probabilistic forward models for rewarded 648 

actions. Specifically, these structures have been implicated in mediating top-down control by 649 

anterior prefrontal areas (representations of abstract, high-level goals) over more posterior areas in 650 

frontal cortex (representations of concrete actions). These recent findings suggest interplay 651 

between projections from input areas holding representations at different levels of action 652 

hierarchies (Haber, 2003; Koechlin and Hyafil, 2007). As we will discuss next, understanding 653 

these hierarchically organised striato-nigral loops may contribute substantially to our 654 

understanding how information flows from areas representing abstract action plans to areas 655 

representing lower-level actions (Badre and D’Esposito, 2009; Koechlin and Hyafil, 2007).  656 

 657 

3.4 Multiple projection hierarchies in the basal ganglia  658 

Recent physiological and computational investigations of basal ganglia connectivity have focussed 659 

on interconnectivity between the striatum and the SN/VTA complex (Haber, 2003; Draganski et 660 

al., 2008; Haruno and Kawato, 2006). These subcortical loops provide a compelling explanation 661 

of the impact of orbitofrontal and prefrontal inputs on biasing action selection in the striatum 662 

(Frank and Claus, 2006; Desrochers and Badre, 2012; Haber, 2003; Haruno and Kawato, 2006; 663 

Karamati & Gutkin, 2013). A simplified account of the role of these subcortical loops is that the 664 

ventromedial striatum influences the dorsolateral striatum via its projections to the dorsal tier of 665 

the substantia nigra, which sends dopaminergic projections to the dorsolateral striatum. 666 
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Dopaminergic innervation of the dorsolateral striatum is thus under the influence of the 667 

ventromedial striatum. This is relevant because different parts of the prefrontal cortex project to 668 

the ventromedial and dorsolateral striatum (Alexander, DeLong, and Strick, 1986; Crittenden and 669 

Graybiel, 2011; Desrochers and Badre, 2012; Draganski et al., 2008; Eblen and Graybiel, 1995; 670 

Haber, 2003; Figure 1B). 671 

A very detailed model of these projections (Haber, 2003), recently supported by diffusion 672 

tensor imaging (DTI; Draganski et al., 2008), describes these striato-nigral loops as spiralling 673 

downwards from striatal projection zones corresponding to anterior prefrontal areas to projection 674 

zones corresponding to posterior prefrontal and motor areas. This spiral largely follows the rostro-675 

caudal axis of the PFC that has been related to the level of abstraction of representations (Badre & 676 

D’Esposito, 2009; Koechlin, Ody, and Kouneiher, 2003). Because the OFC and ventromedial 677 

prefrontal cortex (vmPFC) lie anterior to the dlPFC, and their projection zones in the striatum 678 

follow a similar gradient, the described projections enable striatal projection zones of the OFC and 679 

vmPFC to modulate dopaminergic innervation of the dlPFC’s striatal projection zones via the 680 

striato-nigral loops. The striatal projection zone of the dlPFC in turn modulates dopaminergic 681 

projections to the striatal projection zone of premotor cortex. Because dopamine is relevant to the 682 

selection of representations, these projections may provide a mechanism by which rostral (higher-683 

order) prefrontal representations bias selection in more caudal areas (Figure 1B). 684 

Within our HRL framework, modulation of striatal representations of dlPFC input by OFC 685 

projections is particularly interesting in relation to the concepts of option availability and of action 686 

selection within options (Stalnaker et al., 2014; Wilson et al., 2014). The OFC has been associated 687 

with coding the present states, i.e., states affording different options (Wilson et al., 2014). Support 688 

for this claim comes from a study showing that OFC codes for transitions between states that 689 

afford different options, even if each state has the same reward value (Stalnaker et al., 2014). In 690 

this study, Stalnaker and colleagues used single-cell recordings to show that OFC neurons do not 691 

only convey information about reward value. Rather, they also signalled the beginning of a new 692 

experimental block, even if reward value remained unchanged while sensory features of the 693 

rewards changed. 694 

In contrast to this role for OFC, the dlPFC has been associated with representation of rules 695 

that guide actions (Wilson et al., 2014). One tantalising idea is that the OFC representation of the 696 

current state can bias selection of actions represented in the dlPFC via its connectivity to the 697 

striatum and midbrain dopaminergic system, initiating weight-changes between different 698 

probabilistic forward models in the striatal pathways (Badre and Frank, 2012; Frank and Badre, 699 
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2012). A recently presented model by Frank and Badre (2012) exploits the hierarchical setup of 700 

fronto-striatal and striato-nigral loops to explain hierarchical action selection in a reward context. 701 

Their model posits that more rostral frontal areas influence which striatal representations of input 702 

from more caudal cortical areas are facilitated in the direct pathway. In support of this model, the 703 

same authors presented fMRI data in a companion paper (Badre and Frank, 2012) suggesting that 704 

contextual representations of (hidden) task rules in the prefrontal cortex bias the selection of 705 

premotor representations in the basal ganglia.  706 

Both lines of research (Badre and Frank, 2012; Frank and Badre, 2012; Stalnaker et al., 707 

2014) suggest that multiple subcortical projection pathways are involved in action selection of 708 

nested hierarchies (spanning from states signifying available options, via representations of 709 

currently active task rules, to motor commands). A similar hierarchical account of cortico-710 

subcortical projection pathways has recently been used to explain drug-seeking behaviour 711 

(Keramati & Gutkin, 2013), which was previously discussed in terms of reinforcement learning 712 

(Wise, 2004). These findings warrant further research, not least because the role that specific 713 

frontal areas play in this rostro-caudal axis of the fronto-striatal loop remain a matter of debate: 714 

Very similar functions have been ascribed to different cortical areas (e.g., in  Badre and Frank, 715 

2012 and Wilson et al., 2014) and, conversely, dissimilar functions have been proposed for nearly 716 

identical areas of cortex (compare for example Badre and Frank, 2012 and Derrfuss et al., 2005). 717 

Further, while some studies point towards involvement of the basal ganglia in sensory predictions 718 

and sensory prediction-error coding (den Ouden et al., 2009; Grahn et al., 2013; Schiffer and 719 

Schubotz, 2011; Schiffer et al., 2012), it is yet to be tested empirically whether neural networks 720 

involved in HRL support outcome prediction and action selection in non-reward contexts as 721 

proposed. Each of these questions of functional neuroanatomy needs to be followed up in future 722 

research.  723 

 724 

4 Outcomes in Cognitive Control  725 

 726 

In first three sections of this review we have presented evidence for the role of outcomes in action 727 

selection, and their relative neglect in cognitive control paradigms. We have discussed how the 728 

role of outcomes in action selection is well-established in RL and HRL. Moreover, by considering 729 

the apparent relevance of basal ganglia projection pathways in reward prediction, we have 730 

described how the physiological properties of the basal ganglia could support the implementation 731 

and evaluation of chunked sequential actions. The remainder of this review will discuss the 732 
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proposition that cognitive control—the ability to implement necessary actions to achieve desired 733 

outcomes—should benefit from explicit representation of outcomes. We will review evidence for 734 

the importance of an intact basal ganglia network for cognitive control and outcome anticipation, 735 

then discuss additional evidence for the role of outcomes in control based on behavioural and 736 

electrophysiological paradigms in healthy subjects. Lastly, we will consider the characteristics of 737 

experiments that might uncover the putative benefits of outcome representations in adaptive 738 

cognitive control.  739 

 740 

4.1 Evidence for basal ganglia contributions to cognitive control and outcome 741 

prediction  742 

Recent computational models stress the role of the basal ganglia in cognitive control 743 

(Gurney, Prescott, and Redgrave, 2001; Hazy, Frank, and O’Reilly, 2007; O’Reilly and Frank, 744 

2006; O’Reilly, 2006; Stocco, Lebiere, and Anderson, 2010). Evidence from research into the 745 

cognitive changes experienced by Huntington’s disease (HD) and Parkinson’s disease (PD) 746 

patients support these models. Both of these neurological conditions affect the basal ganglia and 747 

lead to cognitive as well as motor impairments. Whereas HD is signified by cell death in the 748 

striatum (Kowall, Ferrante and Martin, 1987), the primary neural signature in PD is a loss of 749 

dopaminergic cells in the substantia nigra (Bernheimer et al., 1973; Riederer and Wuketich, 1976).  750 

Perhaps the most frequently studied cognitive control functions in these patients are task 751 

switching and response inhibition in go/no-go paradigms. Both HD and PD patients show larger 752 

behavioural costs of task switching (Aron et al., 2003; Cools, 2006; Cools et al., 2001; Cools et 753 

al., 2003; Holl et al., 2012; Shook et al., 2005). PD patients’ task-switching deficit appears 754 

particularly pronounced for switches to non-habitual behaviour compared to habitual behaviour 755 

(Cameron et al., 2010). This selective impairment supports the argument that the projections  of 756 

the basal ganglia’s dopaminergic system are involved in selecting appropriate actions, rather than 757 

habitual responses. Deficits in cognitive control paradigms such as the Stroop colour-word task, 758 

the trailmaking test, and the Tower of London task are also particularly well-established for 759 

Parkinson’s disease (Nobili et al., 2010; Robbins et al., 1994). The Tower of London task requires 760 

participants to plan multiple steps ahead before implementing a movement sequence. The fact that 761 

PD patients take longer for this planning phase (Robbins et al., 1994), during which subsequent 762 

states and movements must be emulated and evaluated, is particularly interesting given the idea 763 

that the basal ganglia play an important role in outcome anticipation. Moreover, PD patients do 764 

not show predictive strategies in motor tasks (Crawford et al., 1989; Flowers, 1978). Lastly, error 765 
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detection is compromised in PD (Ito and Kitagawa, 2006) and in patients with focal basal ganglia 766 

lesions (Ullsperger and von Cramon, 2006), similarly indicating a compromised ability to evaluate 767 

action outcomes.  768 

Results implicating the basal ganglia in outcome prediction have also been obtained by 769 

Holl and colleagues (2012). The authors showed that the presence of feedback in a probabilistic 770 

classification learning task (the Weather Prediction Task; Knowlton, Squire, and Gluck, 1994) 771 

determines whether the basal ganglia will be recruited. They also replicated an earlier finding that 772 

patients with basal ganglia impairments are particularly impaired in implicit learning from 773 

feedback (Shohamy et al., 2008 for review). Another intriguing result for the role of the basal 774 

ganglia in task switching comes from a TMS study (van Schouwenburg et al., 2012) showing that 775 

dopamine levels in the putamen influence task-switching abilities. Collectively, these studies 776 

suggest that compromised performance in cognitive control tasks associated with basal ganglia 777 

disorders may be explained by the structure’s role in outcome prediction and evaluation. In 778 

addition to this clinical evidence, we will now discuss empirical evidence for the relevance of 779 

outcomes on performance from cognitive control paradigms directly.  780 

 781 

4.2 Evidence for the role of outcomes in action selection 782 

Our hypothesis is that representations of predicted outcomes should play a key role in selecting 783 

extended sequential actions. While this key question has rarely been addressed in research on 784 

cognitive control to date, the role of outcomes for selection of non-sequential, individual actions 785 

has been investigated within the framework of ideomotor control theory (here, outcomes are often 786 

referred to as action effects). As reviewed above, the ideomotor principle posits that anticipated 787 

action effects (sensory consequences of actions) are incorporated into the representation of 788 

actions, creating a bi-directional link between actions and action effects (Band et al., 2009; 789 

Herwig, Prinz, and Waszak, 2007; Hommel, 2009; James, 1890; Prinz, 1990; see Lukas, Philipp, 790 

and Koch, 2012; Janczyk, Heinemann, and Pfister, 2012; Gaschler and Nattkemper, 2012; 791 

Ziessler, Nattkemper, and Vogt, 2012 for recent applications of the paradigm). 792 

Solid evidence has been gathered that the predictability of a sensory consequence limits the 793 

surprise response to these effects (Band et al., 2009; Bednark et al., 2013), in line with the 794 

proposal that outcome representations are activated when actions are selected. Band and 795 

colleagues (2009) implemented auditory sensory outcomes in a four-response task-switching 796 

paradigm. They did not find that responses with predictable outcomes were performed faster, but 797 

did observe response slowing on trials following unexpected outcomes. Neural recordings 798 
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dovetailed with the behavioural results, in that unpredictable outcomes elicited an event related 799 

potential (ERP) component resembling those seen following rare negative feedback. This finding 800 

was recently substantiated by a study showing that unexpected action outcomes elicit larger ERPs 801 

when they carry informative value concerning the correctness of a response (Bednark et al., 2013). 802 

Although these studies emphasise the association between actions and outcomes, they typically do 803 

not report a benefit of outcome predictability at the selection stage (Band et al., 2009; Lukas, 804 

Philipp, and Koch, 2012). On the other hand, as reviewed below, a few recent studies have shown 805 

that anticipating an outcome can facilitate action selection (Marien, Aarts, and Custers, 2012; 806 

Ruge, Müller, and Braver, 2010; Ziessler, Nattkemper, and Vogt, 2012).  807 

Together, these existing fragments of evidence begin to suggest that anticipation or 808 

presentation of action outcomes can influence high-level action selection. Adding arbitrary but 809 

predictable sensory effects to task sets may have little effect on participants’ ability to perform the 810 

task but may delay performance of the following response. However, it cannot be ruled out that 811 

this effect is owing to increased processing demands, or a reorienting effect caused by the 812 

surprise. In fact, the described cortico-basal ganglia-thalamo-cortical loop model of action 813 

selection suggests that ordinary sensory effects of button presses should suffice to inform 814 

participants about the correctness of their response as long as the rules of the task set are known. 815 

According to the model, for each response set, representations of the stimuli are associated with 816 

representations of their respective correct responses (motor command and expected sensory 817 

feedback) within the striatum. Failure of the correct sensory feedback to occur, or an unpredicted 818 

sensory event occurring, would elicit a prediction error that can be used to evaluate the correctness 819 

of the response (cf. Holroyd and Coles, 2002).  820 

 821 

4.3 Evidence that meaningful outcomes facilitate associated actions  822 

The studies reviewed in the previous section found reliable but limited impact of arbitrary sensory 823 

action effects. In contrast, more robust outcome effects have been observed in a set of studies for 824 

which outcomes are inherent in (or intrinsic to) the task and are meaningfully related to the actions 825 

performed (Marien, Aarts, and Custers, 2012; Ruge, Müller, and Braver, 2010; Ziessler, 826 

Nattkemper, and Vogt, 2012). Methodologically, the studies are very different from each other, 827 

but they share the critical common feature of having semantic coherence between actions and 828 

outcomes. It seems plausible that this core feature of everyday behaviour is essential to bringing 829 

about effects of outcome utility in future cognitive control paradigms.  830 
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One study showing that selection of simple actions benefits from the presence of 831 

contingent outcomes was reported by Ziessler and colleagues (2012). This study found a 832 

behavioural benefit of a match between an imperative stimulus and an action effect, using object 833 

and grip-type affordances as ‘go’ stimuli and sensory effects in a go/no-go paradigm (Ziessler, 834 

Nattkemper, and Vogt, 2012). When images of objects were used as stimuli, actions were 835 

performed faster if pictures of object-compatible grip types served as the action effect. The same 836 

effect was established when grip types were used as ‘go’ stimuli and compatible objects as action 837 

effects. This paradigm thereby exploits overlearned associations between objects and grip types. 838 

Facilitation of action execution by presentation of objects has previously been shown (Grèzes et 839 

al., 2003), but the study is interesting in that the authors show that this priming effect can be used 840 

to elicit an arbitrarily associated response. While this type of finding is usually taken to 841 

corroborate the ideomotor principle (Ziessler, Nattkemper, and Vogt, 2012; cf. Kunde, 2001), we 842 

argue that anticipation of outcomes facilitates action selection (as posited by ideomotor theory) 843 

and further allows the agent to chunk actions into nested hierarchies and to monitor their 844 

successful completion (as implied by the application of HRL principles to cognitive control).  845 

Facilitation of action selection at higher levels of organization has been observed in an 846 

fMRI study by Ruge, Müller, and Braver (2010), who showed that the cost of switching tasks is 847 

slightly but reliably decreased when feedback for a response (sensory outcome) is delivered in the 848 

same (spatial) dimension as the original response, compared to feedback with no spatial or 849 

response-related properties. Switches in the spatial feedback condition activated a neural network 850 

associated with allocation of spatial attention in a personal reference frame comprised of anterior 851 

intraparietal sulcus, dorsal premotor cortex and rostral cingulate zone (Ruge, Müller, and Braver, 852 

2010). 853 

Moreover, a study by Marien, Aarts and Custers (2012) investigated the effect of changing 854 

the colour used to identify the target stimulus in a pair of letters. The crucial manipulation was 855 

whether subjects represented the task in terms of its goal—to classify the letter as a vowel or 856 

consonant—or in terms of its means—to focus on a particular colour (by virtue of the instructions 857 

they were given). Goal representations led to more effective switching, particularly when pre-858 

switch responses were rewarded (Marien, Aarts, and Custers, 2013; 2012).  859 

Within the framework we present, these effects can be explained by the fact that in all 860 

studies participants were motivated to chunk representations of motor commands together with 861 

representations of indicators of successful actions beyond the re-afference delivered by the motor 862 

response. Ziessler et al. (2012) achieved this by exploiting learned associations between stimuli 863 
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that act as preconditions to specific responses and said response. Ruge and colleagues suggest that 864 

their participants experienced spatially compatible visual outcomes of their responses as effects of 865 

their actions. Marien, Aarts and Custers (2012) prompted participants to use representations of 866 

higher-level action-outcomes for action selection, using instructions that emphasized the goal of 867 

the task as opposed to the stimulus-response mapping. These interpretations are in line with a 868 

computational account which suggests that action selection requires basal ganglia-driven updating 869 

of working memory representations (Frank, Loughry, and O’Reilly, 2001; O’Reilly, 2006; 870 

O’Reilly and Frank, 2006; Donoso, Collins, and Koechlin, 2014). Translated to the terminology of 871 

this model, the present claim would be that chunking of stimulus-response mappings into options 872 

(task sets) yields performance benefits in all three paradigms because working memory updating 873 

of options is not required in switch trials when outcomes are represented at a higher level of 874 

abstraction, but updating is required when switching between stimulus-response mappings. To 875 

return to our initial example: on return visits to different countries we do not need to retrace our 876 

steps along specific routes to buy dinner; instead, we are able to acquire, select, and switch 877 

fluently between different situation-specific options for achieving a particular overarching goal, 878 

such as choosing to buy food at a gas station in one country versus a convenience store in another.  879 

 880 

5 Conclusion and a look ahead  881 

We have outlined a hypothesis that situates basal ganglia function within an HRL framework to 882 

integrate existing work on action-effect binding, reinforcement learning, and cognitive control. In 883 

the present review we have explored the relationship between these concepts, to develop the 884 

proposal that prediction and evaluation of outcomes—specifically, of subgoals within action 885 

sequences—underpin the selection and monitoring of extended sequential actions. In line with 886 

recent proposals about the computational and neural basis of HRL, we propose that extended 887 

action sequences can be chunked and then represented and selected as coherent options. On the 888 

basis of computational models and anatomical properties of the basal ganglia, we argue that 889 

control of chunked, extended sequential actions relies on dopaminergic modulation of a network 890 

of recurrent loops connecting cortical and subcortical components, with this control extending 891 

beyond situations where subgoals are signified by primary reward. 892 

This proposal has two key implications. The first is in terms of identifying a template for 893 

future research on the topic of outcome-guided sequential action. Classical paradigms may not be 894 

able to show the benefit of prediction on the action level, because sensory consequences of 895 

responses already hold sufficient information to evaluate task performance. New paradigms to 896 
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investigate the role of outcomes in cognitive control must contain features that allow testing of the 897 

following behavioural predictions:  898 

 899 

 Introducing predictable outcomes into cognitive control tasks should improve action-900 

selection compared to absent or unpredictable outcomes, but only if those outcomes 901 

provide performance feedback that is not encompassed fully in the sensory feedback of the 902 

action.  903 

 In task switching designs, transitions to new tasks should be performed faster if informa-904 

tion about task-outcome contingencies is available than if the relationship between tasks 905 

and outcomes is ambiguous.  906 

 In a sequence of tasks, progression from one task to the next should be faster if the end of 907 

each subtask is signified by an individual outcome, as opposed to identical outcomes for 908 

different subtasks.  909 

 In a sequence of tasks, confusion of subtasks (errors of order) should be decreased if each 910 

subtask is signified by an individual outcome, as opposed to identical outcomes for 911 

different subtasks.  912 

 Patients suffering from neurological disorders of the basal ganglia should show reduced 913 

modulation of task performance by introducing predictable outcomes than healthy controls 914 

in tasks with established outcome effects on cognitive control.  915 

 916 

The other key implication of the proposed model is the requirement to develop novel 917 

paradigms to substantiate the proposed basal ganglia-mediated interactions between rostral 918 

prefrontal/orbitofrontal and more posterior prefrontal sites in extended action selection, and to 919 

determine the exact role of specific subcortical projection pathways in top-down biased action 920 

selection. Of particular interest is the investigation of the most anterior prefrontal sites in 921 

representing present option states and of how these state representations are translated into 922 

narrower task representations in more posterior sites.  923 

 924 
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