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Summary 

This work presents a mathematical approach based on the mode matching method to compute the 

transmission loss of perforated dissipative silencers with temperature gradients and mean flow. 

Three-dimensional wave propagation is considered in silencer geometries with arbitrary, but 

axially uniform, cross section. To reduce the computational requirements of a full 

multidimensional finite element calculation, a method is developed combining axial and 

transversal solutions of the wave equation. First, the finite element method is employed in a two-

dimensional problem to extract the eigenvalues and associated eigenvectors for the silencer cross 

section. Mean flow as well as radial temperature gradients and the corresponding thermal-induced 

material heterogeneities are included in the model. Assuming a low acoustic influence of axial 

gradients (compared to radial variations), an axially uniform temperature field is taken into 

account, its value being the inlet/outlet average. A weighted residual approach is then used to 

match the acoustic fields (pressure and axial acoustic velocity) at the geometric discontinuities 

between the silencer chamber and the inlet and outlet pipes. Transmission loss predictions are 

compared favourably with a general three-dimensional finite element approach, offering a 

reduction in the computational effort. 

PACS no. 43.50.Gf, 43.20.Mv 

 
 Introduction

i
 1.

Dissipative silencers have been widely used in 

automotive applications due to their efficiency in 

the mid and high frequency range. A review of the 

bibliography published during the last years shows 

the rise of multidimensional techniques [1-7] to 

characterize the acoustic behaviour of silencers in 

comparison with one-dimensional techniques, due 

to their higher accuracy in the silencer operating 

frequency range. Between the multidimensional 

techniques, the finite element method (FEM) 

presents versatility when the silencer has a 

complex geometry [4, 5] or when more realistic 

operating conditions are considered, such as  the 

presence of mean flow and heterogeneous 

properties of the dissipative material [8, 9] or 

temperature variations [10]. However, these 

numerical techniques have the disadvantage of 

being computationally expensive when a high 

number of degrees of freedom is considered. In 

order to avoid this problem in silencers with 

arbitrary (but axially uniform) cross section, Kirby 

[4, 6] obtained the axial wavenumbers and 

pressure modes associated with the silencer cross 

section using a two-dimensional FE model. This 

eigensolution was then combined with the point 

collocation method [4] and, in a later work, with 

the mode-matching technique [6], to obtain the 

wave amplitudes corresponding to the waves of the 

different silencer regions, the continuity conditions 

of the pressure and axial acoustic velocity being 

taken into account. Although these approaches 

deliver a considerable reduction in the 

computational effort, attention has to be paid to 

some numerical issues, as those found in the point 

collocation approach [4, 11, 12] where predictions 

exhibit a high sensitivity to silencer geometry and 

also the collocation grid. 
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The temperature variation within the silencer can 

reach, in some configurations, values around 

200ºC in the axial direction [13] and more than 

100ºC in the radial one [14]. The temperature 

distribution can affect the acoustic behaviour of 

the silencer considerably. Several authors studied 

the influence of these gradients in the silencer 

transmission loss. Kim et al. [15] applied an 

analytic multidimensional approach to some 

reactive configurations considering axial 

temperature variation and mean flow. In this work, 

to model the acoustic effect of the temperature 

gradient, the silencer was divided into segments of 

uniform temperature, obtaining the acoustic fields 

in each segment by using the corresponding 

continuity conditions. Wang et al. [16] combined a 

segmentation procedure with the boundary element 

method (BEM) considering uniform mean flow 

and linear axial temperature gradients. Denia et al. 

[10] considered both axial and radial gradients in a 

dissipative configuration in the presence of mean 

flow. As it was shown in this work, the impact of 

axial thermal variations on the acoustic behaviour 

of dissipative silencers is not as relevant as the 

radial distribution; this is the reason why the 

current investigation only retains tranversal 

thermal gradients while an axially uniform 

temperature is assumed in both the central duct 

and the chamber, its value being the average 

temperature of the inlet and the outlet sections. 

Since the radial temperature gradients can have a 

considerable influence on the silencer noise 

attenuation [10], these gradients have been 

considered in the present work by means of an 

approach that allows the consideration of non-

homogeneous properties in the cross section. As 

temperature gradients have an effect on the 

acoustic properties of the propagation medium [10, 

17-19], and consequently the acoustic impedance 

of the perforated surface is also affected [20-23], 

the techniques used to characterize the silencers 

have been numerical in general, due to the 

complexity of the computations required. This fact 

supposes a high computational cost, and to avoid 

this drawback, in the present work an extension of 

the approach proposed by Kirby [6] is presented 

and applied to a silencer with heterogeneous 

properties over the cross section. A 2D acoustic 

problem modelled with the FEM is combined with 

the mode matching technique, allowing the 

acoustic characterization of dissipative silencers 

with arbitrary cross section, including transversal 

thermal gradients and mean flow. The approach 

yields a computationally efficient modelling tool. 

 

 Formulation of the acoustic problem 2.
and mathematical approach 

The geometry of the configuration under study 

(with uniform but arbitrary cross section) appears 

in Figure 1. The silencer consists of a perforated 

central duct carrying mean flow, which is 

surrounded by an outer chamber (of length Lc) 

containing absorbent material. In the chamber the 

temperature presents transversal variations, while 

axial uniformity is assumed, with a constant value 

computed as the average of the temperature at the 

inlet and outlet sections. The absorbent material 

and air regions are denoted as Ωm and Ωa, 

respectively, while its boundary surfaces are Γm 

and Γa. Within the perforated surface Γp the 

propagation medium is air, its relevant properties 

being the density ρ0 the velocity of sound c0. In Ωm 

the equivalent properties of the absorbent material 

are denoted as ρm(x, y) and cm(x, y), both being 

complex, frequency-dependent as well as 

coordinate-dependent. The inlet and outlet pipes 

are equal and have a uniform circular cross section 

(denoted as 1 and 3 respectively). 

Figure 1. Geometry of the silencer. 

First, the computation of the eigenvalues 

(wavenumbers) and eigenfunctions (pressure 

modes) corresponding to each section (inlet/outlet 

pipes and chamber) is required [4, 6]. As the 

evaluation of the eigenvalues and the 

eigenfunctions associated with the inlet/outlet 

pipes is straightforward, only the eigenvalue 

problem related to the chamber is presented. After 

that, the pressure and axial acoustic velocity 

continuity conditions will be combined with a 

numerical mode matching scheme to obtain the 

complete solution of the acoustic field inside the 

silencer and its acoustic attenuation performance 

through the transmission loss [6]. 

2.1. Acoustic equations 

The sound propagation in the air, assuming 

harmonic behaviour, is governed by [1, 4]  
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, (1) 

pa2 being the complex amplitude of the acoustic 

pressure and k0 = ω / c0 the wavenumber (where ω 

is the angular frequency). The wave equation in 

the absorbent material can be written as [9] 

 

  , (2) 

 

pm being the acoustic pressure amplitude and  

km = ω / cm the wavenumber associated with the 

absorbent material. 

The cross section is uniform and, therefore, 

application of the method of separation of 

variables yields 

 

 

  
, (3) 

 

where Ψ
xy

 is the transversal pressure mode and kz 

is the axial wavenumber. Now, combining 

equations (3) with (1) and (2) provides 

 

, (4) 

 

, (5) 

where subscript 2 in the air has been omitted for 

simplicity. 

2.2. FEM approach and eigenvalue problem 

At the silencer cross section, the acoustic pressure 

can be approximated by using trial functions as 

follows [24] 

 

, (6) 

 

, (7) 

where the subscripts a and m correspond to the air 

and absorbent material regions, respectively. In 

general, N(x, y) is a global shape function, Na and 

Nm contain the nodal shape functions of the 

corresponding subdomains in vector form whereas 

Na and Nm are the number of nodes belonging to 

each subdomain. Now, the method of weighting 

residuals is applied to equations (4) and (5) in 

combination with the Green’s theorem and the 

Galerkin approach [24]. In addition, the rigid wall 

boundary condition in the outer surface of the 

chamber is considered (the normal acoustic 

velocity being zero) together with the perforated 

duct impedance Zp and the condition of the normal 

velocity continuity at this surface. The FE 

equations are 

 

, (8) 

 

 

 

 

 

 

 

. (9) 

These equations allow the computation of the 

wavenumbers and the pressure modes by solving 

an eigenvalue problem [4]. 

2.3. Continuity of the acoustic fields 

Numerical mode matching [6] is applied now by 

enforcing two conditions over the inlet/outlet 

planes A and B (see Figure 1). The first condition 

is given by the continuity of pressure, the incident 

eigenfunction of the inlet pipe being chosen as 

weighting function. The second matching 

condition is a kinematic relation that considers 

continuity of the axial acoustic velocity, where the 

incident eigenfunction in the chamber has been 

chosen as weighting function. The weighted 

integrals are numerically evaluated after truncating 

the number of unknown modal amplitudes to n. 

Then the equations are solved simultaneously to 

find the unknown modal amplitudes, after setting 

the amplitude of the incident wave in the inlet 

equal to 1 and considering an anechoic 

termination. Finally, taking into account the plane 

wave conditions in the inlet/outlet pipes, the 

transmission loss of the silencer can be obtained as 

follows 

 

     . (10) 

Further details of the approach can be found in 

reference [6]. 
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 Discussion and results  3.

The geometry of the silencer under study consists 

of a dissipative configuration with circular cross 

section, its characteristic dimensions being: radius 

of the inlet/outlet/perforated ducts R1 = 0.0268 m, 

outer radius of the chamber Rc = 0.091875 m; 

inlet/outlet pipes length Li,o = 0.1 m, and chamber 

length Lc = 0.3 m. The perforated duct has been 

defined through the following properties: t = 0.001 

m, thickness; dh = 0.0035 m, hole diameter and  

σ = 10 %, porosity. The geometry is axisymmetric 

and therefore the mesh used to solve the 

eigenvalue problem in the cross section is 

composed by one-dimensional quadratic elements 

with an approximate size of 0.01 m, which allows 

the computation of an accurate transmission loss. 

To model the perforated duct, the impedance 

formula of Lee and Ih [21] has been considered, 

taking into account that the surface is backed by a 

porous media [6, 20]. The absorbent material 

behaviour has been included by means of a two-

parameter characterization similar to the model of 

Delany and Bazley [25]. Here, the characteristic 

impedance Zm(r) and the wavenumber km(r) are 

defined as follows 

 

, (11) 

 

, (12) 

where f is the frequency, Z0 is the characteristic 

impedance of the air (defined as Z0 = ρ0c0) and 

R(r) is the absorbent material resistivity that can be 

calculated at each integration point of the FE mesh 

through the Christie’s formula [17]:  

 

, (13) 

Tref being the reference temperature at which the 

resistivity is known. In the present study, E glass 

fibre is considered, having a resistivity reference 

value Rref = 30716 rayl/m for Tref = 25 ºC. Table I 

shows the values of the temperature considered to 

obtain the coefficients that define the different 

temperature fields, defined in this work by means 

of a quadratic polynomial function T(r) = T0 + T1 r 

+ T2 r
2
. This definition fits satisfactorily the 

logarithmic function that characterizes heat 

transfer in a cylindrical duct [26].  

3.1. Validation of the method 

Figure 2 shows the comparison of the results 

obtained through the present method and the 

results computed by using a 3D finite element 

formulation. In both cases a Mach number M = 0.1 

has been considered. In the latter case, the 

temperature field is defined as T(r, z) = T0 + T1 z + 

T2 r + T3 z r + T4 z r
2 

+ T5 r
2
, which allows both 

axial and radial temperature variations. Therefore, 

a higher number of points are required for its 

definition (detailed in Table 1). As can be 

observed, the results obtained by both methods 

present an excellent agreement, with 

undistinguishable attenuation curves. A lower 

attenuation is obtained as the temperature jump is 

higher [10]. This can be associated with a 

saturation effect due to the high resistivity of the E 

glass fibre, which increases with the average 

temperature of the chamber. 

Figure 2. TL of the dissipative silencer with M = 0.1: 

──, Case A1, 3D FE formulation; ooo, same, mode 

matching; ──, Case A2, 3D FE formulation; ooo, same, 

mode matching. 

3.2. Effect of the radial temperature variation  

In this section, a comparison between the results of a 

full 3D FE model and the numerical mode matching is 

presented for a Mach number M = 0.1. The attenuation 

results have been obtained, on one hand, for 

temperature distributions that consider axial and 

radial temperature variations in the silencer (cases 

B1 and B2 of Table 1), by means of the 3D FE 

formulation proposed by Denia et al. [10]. On the 

other hand, an approximated temperature 

distribution has been obtained by averaging the 

axial thermal gradient while retaining the radial 

one. This approximation is based on the fact that 

the influence of the axial variation on the acoustic 

behaviour of the silencer is lower than the radial 

effect. The temperature within the duct has been 

obtained as the average value between the 

temperatures at the inlet and outlet sections. It has 

been also considered that in the chamber only 

radial thermal variation exists. The decrement of 

the radial temperature in the chamber is equal to 
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the one considered in the temperature distribution 

of the full 3D FE model. 

Figure 3. TL of the dissipative silencer with M = 0.1:  

-·-·-, Case A1, mode matching; ──, Caso B1, 3D FE 

formulation;  -·-·-, Case A2, mode matching; ──, Case 

B2, 3D FE formulation. 

 

As can be observed in Figure 3, the attenuation 

calculated using the approximated temperature 

distribution provides results quite similar to those 

obtained with the full 3D FE model, although the 

TL is slightly overestimated. This overestimation 

is slightly higher as the radial temperature gradient 

increases. In the cases under study, the highest TL 

difference is 5% approximately in the case A2, 

where the radial variation of the temperature is 

higher. The computational advantages of the 

numerical mode matching compared to the 3D full 

FE approach are, however, quite evident [6], and 

they are likely to compensate the previous slight 

TL overestimation in some practical applications. 

 

 Conclusions 4.

A computationally-efficient numerical technique 

based on the mode matching method has been 

developed to study the acoustic behaviour of 

perforated dissipative silencers of arbitrary cross 

section with temperature gradients in the absorbent 

material. The presence of mean flow has been 

considered in the central duct separated from the 

dissipative outer region by a perforated screen. 

The main advantage of the proposed approach is 

that strongly reduces the computation time when 

compared to a full 3D finite element formulation. 

The technique combines axial and transversal 

solutions of the wave equation in the different 

silencer regions. The transversal pressure modes 

and the corresponding wavenumbers have been 

obtained by means of a 2D finite element 

eigenvalue analysis of the cross section, 

considering a transversal temperature gradient and 

an adapted version of the wave equation, since the 

temperature variation leads to non-homogeneous 

properties of the absorbent material. For the 

numerical test cases under consideration, the radial 

temperature gradients have more influence on the 

acoustic behaviour of the silencer than the axial 

variations. Thus, an axially uniform temperature 

field has been considered, its value being the 

inlet/outlet temperature average, while retaining 

the transversal gradient in the formulation. In order 

to keep the numerical efficiency of the approach, 

the same axial consideration has been applied to 

the mean flow. Then, considering continuity of the 

acoustic pressure and axial acoustic velocity fields 

at the geometrical discontinuities and applying the 

mode matching method, the modal amplitudes of 

the waves in the chamber and the inlet/outlet ducts 

have  been obtained. This approach has shown a 

good agreement with the results achieved by the 

full 3D finite element technique with less 

computational effort. In spite of the fact that this 

method slightly overestimates the attenuation, it is 

much more efficient from a computational point of 

view. 

 
 
 
 
 
 
 
 
 
 
 

 

Case 
Inlet temp.  

(ºC) 

Outlet temp. 

(ºC) 
Temperature at R1 (ºC) 

Temperature at mean 

radius (ºC) 
Temperature at Rc (ºC) 

 Ti To Tint (Inlet/Outlet) Tmed (Inlet/Outlet) Text (Inlet/Outlet) 

A1 250 250 250 / 250 185.48 / 185.48 150 / 150 

A2 400 400 400 / 400 270.96 / 270.96 200 / 200 

B1 300 200 300 / 200 235.48 / 135.48 200 / 100 

B2 500 300 500 / 300 370.96 / 170.96 300 / 100 

Table I. Temperature distributions. 
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