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Nonparallel Support Vector Machines for
Pattern Classification

Yingjie Tian, Zhiquan Qi, XuChan Ju, Yong Shi, Xiaohui Liu

Abstract—We propose a novel nonparallel classifier, named nonparallel support vector machine (NPSVM), for binary classi-
fication. Totally different with the existing nonparallel classifiers, such as the generalized eigenvalue proximal support vector
machine (GEPSVM) and the twin support vector machine (TWSVM), our NPSVM has several incomparable advantages: (1)
Two primal problems are constructed implementing the structural risk minimization principle; (2) The dual problems of these two
primal problems have the same advantages as that of the standard SVMs, so that the kernel trick can be applied directly, while
existing TWSVMs have to construct another two primal problems for nonlinear cases based on the approximate kernel-generated
surfaces, furthermore, their nonlinear problems can not degenerate to the linear case even the linear kernel is used; (3) The dual
problems have the same elegant formulation with that of standard SVMs and can certainly be solved efficiently by sequential
minimization optimization (SMO) algorithm, while existing GEPSVM or TWSVMs are not suitable for large scale problems; (4)
It has the inherent sparseness as standard SVMs; (5) Existing TWSVMs are only the special cases of the NPSVM when the
parameters of which are appropriately chosen. Experimental results on lots of data sets show the effectiveness of our method in
both sparseness and classification accuracy, and therefore confirm the above conclusion further. In some sense, our NPSVM is
a new starting point of nonparallel classifiers.

Index Terms—Support vector machines, nonparallel, structural risk minimization principle, sparseness, classification.

✦

1 INTRODUCTION

SUPPORT vector machines (SVMs), which were in-
troduced by Vapnik and his co-workers in the

early 1990’s[1], [2], [3], are computationally powerful
tools for pattern classification and regression and
have already successfully applied in a wide variety
of fields[4], [5], [6], [7], [8]. There are three essential
elements making SVMs so successful: the principle
of maximum margin, dual theory, and kernel trick.
For the standard support vector classification (SVC),
maximizing the margin between two parallel hyper-
planes leads to solving a convex quadratic program-
ming problem (QPP), dual theory makes introducing
the kernel function possible, then the kernel trick is
applied to solve nonlinear cases.

In recent years, some nonparallel hyperplane clas-
sifiers, which are different with standard SVC search-
ing for two parallel support hyperplanes, have been
proposed[9], [10]. For the twin support vector ma-
chine (TWSVM), it seeks two nonparallel proximal
hyperplanes such that each hyperplane is closer to one
of the two classes and is at least one distance from
the other. This strategy results that TWSVM solves
two smaller QPPs, whereas SVC solves one larger
QPP, which increases the TWSVM training speed by
approximately fourfold compared to that of SVC.
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TWSVMs have been studied extensively[11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25].

However, there are still several drawbacks in exist-
ing TWSVMs:
� Unlike the standard SVMs employing soft-margin

loss function for classification and ε-insensitive
loss function for regression, TWSVMs lost the
sparseness by using two loss functions for each
class: a quadratic loss function making the prox-
imal hyperplane close enough to the class itself,
and a soft-margin loss function making the hy-
perplane as far as possible from the other class,
which results that almost all the points in this
class and some points in the other class contribute
to each final decision function. In this paper, we
called this phenomenon Semi-Sparseness.

� For the nonlinear case, TWSVMs consider the
kernel-generated surfaces instead of hyperplanes
and construct extra two different primal prob-
lems, which means that they have to solve two
problems for linear case and two other problems
for nonlinear case separately. However, in the
standard SVMs, only one dual problem is solved
for both cases with different kernels.

� Although TWSVMs only solve two smaller QPPs,
they have to compute the inverse of matrices,
it is in practice intractable or even impossible
for a large data set by the classical methods,
while in the standard SVMs, large scale problems
can be solved efficiently by the well-known SMO
algorithm[26].

� Only the empirical risk is considered in the primal
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problems of TWSVMs, and it is well known that
one significant advantage of SVMs is the imple-
mentation of the structural risk minimization (S-
RM) principle. Although Shao et al.[15] improved
TWSVM by introducing a regularization term
to make the SRM principle implemented, they
explained it a bit far-fetched, especially for the
nonlinear case.

In this paper, we propose a novel nonparallel SVM,
termed as NPSVM for binary classification. NPSVM
has the incomparable advantages that (1) the semi-
sparseness is promoted to the whole sparseness; (2)
The regularization term is added naturally due to the
introduction of ε-insensitive loss function, and two
primal problems are constructed implementing the
SRM principle; (3) The dual problems of these two
primal problems have the same advantages as that
of the standard SVMs, i.e., only the inner products
appear so that the kernel trick can be applied directly;
(4) The dual problems have the same formulation with
that of standard SVMs and can certainly be solved
efficiently by SMO, we do not need to compute the
inverses of the large matrices as TWSVMs usually do;
(5) The initial TWSVM or improved TBSVM are the
special cases of our models. Our NPSVM degenerates
to the initial TWSVM or TBSVM when the parame-
ters of which are appropriately chosen, therefore our
models are certainly superior to them theoretically.

The paper is organized as follows. Section 2 briefly
dwells on the standard C-SVC and TWSVMs. Section
3 proposes our NPSVM. Section 4 deals with ex-
perimental results and Section 5 contains concluding
remarks.

2 BACKGROUND

In this section, we briefly introduce the C-SVC and
two variations of TWSVM.

2.1 C-SVC

Consider the binary classification problem with the
training set

T = {(x1, y1), · · · , (xl, yl)} (1)

where xi ∈ Rn, yi ∈ Y = {1,−1}, i = 1, · · · , l,
standard C-SVC formulates the problem as a convex
QPP

min
w,b,ξ

1

2
‖w‖2 + C

l
∑

i=1

ξi,

s. t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l,

ξi > 0 , i = 1, · · · , l,

(2)

where ξ = (ξ1, · · · , ξl)
⊤, and C > 0 is a penalty

parameter. For this primal problem, C-SVC solves its

Lagrangian dual problem

min
α

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjK(xi, xj)−

l
∑

i=1

αi ,

s. t.
l

∑

i=1

yiαi = 0,

0 6 αi 6 C, i = 1, · · · , l,

(3)

where K(x, x′) is the kernel function, which is also a
convex QPP and then constructs the decision function.
The SRM principal is implemented in C-SVC: the
confidential interval term ‖w‖2 and the empirical risk

term
l

∑

i=1

ξi are minimized at the same time.

2.2 TWSVM

Consider the binary classification problem with the
training set

T = {(x1,+1), · · · , (xp,+1), (xp+1,−1), · · · , (xp+q ,−1)},
(4)

where xi ∈ Rn, i = 1, · · · , p + q. For linear classi-
fication problem, TWSVM[10] seeks two nonparallel
hyperplanes

(w+ · x) + b+ = 0 and (w− · x) + b− = 0 (5)

by solving two smaller QPPs

min
w+,b+,ξ−

1

2

p
∑

i=1

((w+ · xi) + b+)
2 + d1

p+q
∑

j=p+1

ξj ,

s.t. (w+ · xj) + b+ 6 −1 + ξj , j = p+ 1, ..., p+ q,

ξj > 0, j = p+ 1, ..., p+ q,

(6)

and

min
w−,b−,ξ+

1

2

p+q
∑

i=p+1

((w− · xi) + b−)
2 + d2

p
∑

j=1

ξj ,

s.t. (w− · xj) + b− > 1− ξj , j = 1, ..., p,

ξj > 0, j = 1, ..., p,

(7)

where di, i = 1, 2 are the penalty parameters. For non-
linear classification problem, two kernel-generated
surfaces instead of hyperplanes are considered and
two other primal problems are constructed.

2.3 TBSVM

An improved TWSVM, termed as TBSVM, is pro-
posed in [15] whereas the structural risk is claimed
to be minimized by adding a regularization term
with the idea of maximizing some margin. For linear
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classification problem, they solve the following two
primal problems

min
w+,b+,ξ−

1

2
(‖w+‖

2 + b2+) +
c1

2

p
∑

i=1

((w+ · xi) + b+)
2

+ c2

p+q
∑

j=p+1

ξj ,

s.t. (w+ · xj) + b+ 6 −1 + ξj , j = p+ 1, ..., p+ q,

ξj > 0, j = p+ 1, ..., p+ q,

(8)

and

min
w−,b−,ξ+

1

2
(‖w−‖

2 + b2−) +
c3

2

p+q
∑

i=p+1

((w− · xi) + b−)
2

+ c4

p
∑

j=1

ξj ,

s.t. (w− · xj) + b− > 1− ξj , j = 1, ..., p,

ξj > 0, j = 1, ..., p.
(9)

For nonlinear classification problem, similar with [10]
two kernel-generated surfaces instead of hyperplanes
are considered and two other regularized primal prob-
lems are constructed.

Though TBSVM is claimed a little more rigorous
and complete than TWSVM, there are still the draw-
backs emphasized in the introduction.

3 NPSVM

In this section, we propose our nonparallel SVM,
termed as NPSVM, which has several unexpected and
incomparable advantages compared with the existing
TWSVMs.

3.1 Linear NPSVM

We seek the two nonparallel hyperplanes (5) by solv-
ing two convex QPPs

min
w+,b+,η

(∗)
+ ,ξ−

1

2
‖w+‖

2 + C1

p
∑

i=1

(ηi + η∗i ) + C2

p+q
∑

j=p+1

ξj ,

s.t. (w+ · xi) + b+ 6 ε+ ηi, i = 1, · · · , p,

− (w+ · xi)− b+ 6 ε+ η∗i , i = 1, · · · , p,

(w+ · xj) + b+ 6 −1 + ξj ,

j = p+ 1, · · · , p+ q,

ηi, η
∗
i > 0, i = 1, · · · , p,

ξj > 0, j = p+ 1, · · · , p+ q,

(10)

and

min
w−,b−,η

(∗)
−

,ξ+

1

2
‖w−‖

2 + C3

p+q
∑

i=p+1

(ηi + η∗i ) + C4

p
∑

j=1

ξj ,

s.t. (w− · xi) + b− 6 ε+ ηi,

i = p+ 1, · · · , p+ q,

− (w− · xi)− b− 6 ε+ η∗i ,

i = p+ 1, · · · , p+ q,

(w− · xj) + b− > 1− ξj , j = 1, · · · , p,

ηi, η
∗
i > 0, i = p+ 1, · · · , p+ q,

ξj > 0, j = 1, · · · , p,
(11)

where xi, i = 1, · · · , p are positive inputs, and
xi, i = p + 1, · · · , p + q are negative input-
s, Ci > 0, i = 1, · · · , 4 are penalty parameter-
s, ξ+ = (ξ1, · · · , ξp)

⊤, ξ− = (ξp+1, · · · , ξp+q)
⊤,

η
(∗)
+ = (η⊤+ , η

∗⊤
+ )⊤ = (η1, · · · , ηp, η

∗
1 , · · · , η

∗
p)

⊤, η
(∗)
− =

(η⊤− , η∗⊤− )⊤ = (ηp+1, · · · , ηp+q, η
∗
p+1, · · · , η

∗
p+q)

⊤, are s-
lack variables.

Now we discuss the primal problem (10) geometri-
cally in R2 (see Fig.1). First, we hope that the positive
class locate as much as possible in the ε-band between
the hyperplanes (w+ ·x)+b+ = ε and (w+ ·x)+b+ = −ε

(red thin solid lines ), the errors ηi + η∗i , i = 1, · · · , p
are measured by the ε-insensitive loss function; Sec-
ond, we hope to maximize the margin between the
hyperplanes (w+ · x) + b+ = ε and (w+ · x) + b+ = −ε,

which can be expressed by
2ε

‖w‖
; Third, similar with

the TWSVM, we also need to push the negative class
from the hyperplane (w+·x)+b+ = −1 (red thin dotted
line) as far as possible, the errors ξi, i = p+1, · · · , p+q

are measured by the soft margin loss function.

• Based on the above three considerations, prob-
lem (10) is established and the structural risk
minimization principle is implemented naturally.
Problem (11) is established similarly. When the
parameter ε is set to be zero, and the penalty

parameters are chosen to be Ci =
ci

2
, i = 1, 3

and Ci = ci, i = 2, 4 , problems (10) and (11)
of NPSVM degenerate to problems (8) and (9)
except that the L1-loss “|ηi+η∗i |” is taken instead
of the L2-loss “(w± ·xi)+b±)

2”, and an additional

term
1

2
b2. Furthermore, if the parameter ε is set

to be zero, and Ci, i = 1, · · · , 4 are chosen large

enough and satisfying
C2

C1
= 2d1,

C4

C3
= 2d2,

problems (10) and (11) degenerate to problems (6)
and (7) except that the L1-loss is taken instead of
the L2-loss.

In order to get the solutions of problems (10) and
(11), we need to derive their dual problems. The
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Fig. 1. Geometrical illustration of NPSVM in R2

Lagrangian of the problem (10) is given by

L(w+, b+, η
(∗)
+ , ξ−, α

(∗)
+ , γ

(∗)
+ , β−, λ−)

=
1

2
‖w+‖

2 + C1

p
∑

i=1

(ηi + η∗i ) + C2

p+q
∑

j=p+1

ξi

+

p
∑

i=1

αi((w+ · xi) + b+ − ηi − ε)

+

p
∑

i=1

α∗
i (−(w+ · xi)− b+ − η∗i − ε)

+

p+q
∑

j=p+1

βj((w+ · xj) + b+ + 1− ξj)

−

p
∑

i=1

γiηi −

p
∑

i=1

γ∗
i η

∗
i −

p+q
∑

j=p+1

λjξj , (12)

where α
(∗)
+ = (α⊤

+, α
∗⊤
+ )⊤ = (α1, · · · , αp, α

∗
1, · · · , α

∗
p)

⊤,

γ
(∗)
+ = (γ⊤

+ , γ∗⊤
+ )⊤ = (γ1, · · · , γp, γ

∗
1 , · · · , γ

∗
p)

⊤,
β− = (βp+1, · · · , βp+q)

⊤, λ− = (λp+1, · · · , βp+q)
⊤ are

the Lagrange multiplier vectors. The Karush-Kuhn-

Tucker (KKT) conditions[27] for w+, b+, η
(∗)
+ , ξ− and

α
(∗)
+ , γ

(∗)
+ , β−, λ− are given by

∇w+L = w+ +

p
∑

i=1

αixi −

p
∑

i=1

α∗
i xi +

p+q
∑

j=p+1

βjxj = 0, (13)

∇b+L =

p
∑

i=1

αi −

p
∑

i=1

α∗
i +

p+q
∑

j=p+1

βj = 0, (14)

∇η+L = C1e+ − α+ − γ+ = 0, (15)

∇η∗

+
L = C1e+ − α∗

+ − γ∗
+ = 0, (16)

∇ξ−L = C2e− − β− − λ− = 0, (17)

(w+ · xi) + b+ 6 ε+ ηi, i = 1, · · · , p, (18)

−(w+ · xi)− b+ 6 ε+ η∗i , i = 1, · · · , p, (19)

(w+ · xj) + b+ 6 −1 + ξj , j = p+ 1, · · · , p+ q, (20)

ηi, η
∗
i > 0, i = 1, · · · , p, (21)

ξj > 0, j = p+ 1, · · · , p+ q, (22)

where e+ = (1, · · · , 1)⊤ ∈ Rp, e− = (1, · · · , 1)⊤ ∈ Rq .
Since γ+, γ

∗
+ > 0, λ− > 0, from (15), (16) and (17) we

have

0 6 α+, α
∗
+ 6 C1e+, (23)

0 6 β− 6 C2e−. (24)

And from (13), we have

w+ =

p
∑

i=1

(α∗
i − αi)xi −

p+q
∑

j=p+1

βjxj . (25)

Then putting (25) into the Lagrangian (12) and using
(13)∼(22), we obtain the dual problem of the problem
(10)

min
α

(∗)
+ ,,β−

1

2

p
∑

i=1

p
∑

j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj)

−

p
∑

i=1

p+q
∑

j=p+1

(α∗
i − αi)βj(xi · xj)

+
1

2

p+q
∑

i=p+1

p+q
∑

j=p+1

βiβj(xi · xj)

+ ε

p
∑

i=1

(α∗
i + αi)−

p+q
∑

i=p+1

βi,

s.t.

p
∑

i=1

(αi − α∗
i ) +

p+q
∑

j=p+1

βj = 0,

0 6 α+, α
∗
+ 6 C1e+,

0 6 β− 6 C2e−.

(26)

Concisely, this problem can be further formulated as

min
α

(∗)
+ ,β−

1

2
(α∗

+ − α+)
⊤AA⊤(α∗

+ − α+)

− (α∗
+ − α+)

⊤AB⊤β− +
1

2
β⊤
−BB⊤β−

+ εe⊤+(α
∗ + α)− e⊤−β−,

s.t. e⊤+(α+ − α∗
+) + e⊤−β− = 0,

0 6 α+, α
∗
+ 6 C1e+,

0 6 β− 6 C2e−,

(27)

where A = (x1, · · · , xp)
⊤ ∈ Rp×n, B =

(xp+1, · · · , xp+q) ∈ Rq×n. Furthermore, let

π̃ = (α∗⊤
+ , α⊤

+, β
⊤
−)⊤, (28)

κ̃ = (εe⊤+, εe
⊤
+,−e⊤−)

⊤, (29)

ẽ = (−e⊤+, e
⊤
+, e

⊤
−)

⊤, (30)

C̃ = (C1e
⊤
+, C1e

⊤
+, C2e

⊤
−)

⊤ (31)

and

Λ̃ =

(

H1 −H2

−H⊤
2 H3

)

, H1 =

(

AA⊤ −AA⊤

−AA⊤ AA⊤

)

,

H2 =

(

AB⊤

−AB⊤

)

, H3 = BB⊤,

(32)
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then problem (27) is reformulated as

min
π̃

1

2
π̃⊤Λ̃π̃ + κ̃⊤π̃,

s.t. ẽ⊤π̃ = 0,

0 6 π̃ 6 C̃.

(33)

• Obviously, problem (33) is a convex QPP and
exactly the same elegant formulation as problem
(3), the well known SMO can be applied directly
with a minor modification.

For the problem (33), applying the KKT conditions
we can get the following conclusions without proof
which is similar with the conclusions in [3], [28].

Theorem 3.1 Suppose that π̃ = (α∗⊤
+ , α⊤

+, β
⊤
−)⊤ is a

solution of the problem (33), then for i = 1, · · · , p, each
pair of αi and α∗

i can not be both simultaneously nonzero,
i.e., αiα

∗
i = 0, i = 1, · · · , p.

Theorem 3.2 Suppose that π̃ = (α∗⊤
+ , α⊤

+, β
⊤
−)⊤ is a

solution of the problem (33), if there exist components
of π̃ of which value is in the interval (0, C̃), then the
solution (w+, b+) of the problem (10) can be obtained in
the following way:
Let

w+ =

p
∑

i=1

(α∗
i − αi)xi −

p+q
∑

j=p+1

βjxj , (34)

and choose a component of α+, α+j ∈ (0, C1), compute

b+ = −(w+ · xj) + ε, (35)

or choose a component of α∗
+, α+

∗
k ∈ (0, C1), compute

b+ = −(w+ · xk)− ε, (36)

or choose a component of β−, β−m ∈ (0, C2), compute

b+ = −(w+ · xm)− 1. (37)

In the same way, the dual of the problem (11) is
obtained

min
α

(∗)
−

,β+

1

2

p+q
∑

i=p+1

p+q
∑

j=p+1

(α∗
i − αi)(α

∗
j − αj)(xi · xj)

+

p+q
∑

i=p+1

p
∑

j=1

(α∗
i − αi)βj(xi · xj)

+
1

2

p
∑

i=1

p
∑

j=1

βiβj(xi · xj)

+ ε

p+q
∑

i=p+1

(α∗
i + αi)−

p
∑

i=1

βi,

s.t.

p+q
∑

i=p+1

(αi − α∗
i )−

p
∑

j=1

βj = 0,

0 6 αi, α
∗
i 6 C3, i = p+ 1, · · · , p+ q,

0 6 βi 6 C4, i = 1, · · · , p,

(38)

where α
(∗)
− , β+ are the Lagrange multiplier vectors. It

can also be rewritten as

min
α

(∗)
−

,β+

1

2
(α∗

− − α−)
⊤BB⊤(α∗

− − α−)

+ (α∗
− − α−)

⊤BA⊤β+ +
1

2
β⊤
+AA⊤β+

+ εe⊤−(α
∗ + α)− e⊤+β+,

s.t. e⊤−(α− − α∗
−)− e⊤+β+ = 0,

0 6 α−, α
∗
− 6 C3e−,

0 6 β+ 6 C4e+.

(39)

Concisely, it is reformulated as

min
π̂

1

2
π̂⊤Λ̂π̂ + κ̂⊤π̂,

s.t. ê⊤π̂ = 0,

0 6 π̂ 6 Ĉ,

(40)

where

π̂ = (α∗⊤
− , α⊤

−, β
⊤
+ )⊤, (41)

κ̃ = (εe⊤−, εe
⊤
−,−e⊤+)

⊤, (42)

ê = (−e⊤−, e
⊤
−,−e⊤+)

⊤, (43)

Ĉ = (C3e
⊤
−, C3e

⊤
−, C4e

⊤
+)

⊤ (44)

and

Λ̂ =

(

Q1 Q2

Q⊤
2 Q3

)

, Q1 =

(

BB⊤ −BB⊤

−BB⊤ BB⊤

)

,

Q2 =

(

BA⊤

−BA⊤

)

, Q3 = AA⊤,

(45)

For the problem (40), we have the following con-
clusions corresponding to problem (33).

Theorem 3.3 Suppose that π̂ = (α∗⊤
− , α⊤

−, β
⊤
+ )⊤ is a

solution of the problem (40), then for i = p+1, · · · , p+ q,
each pair of αi and α∗

i can not be both simultaneously
nonzero, i.e., αiα

∗
i = 0, i = p+ 1, · · · , p+ q.

Theorem 3.4 Suppose that π̂ = (α∗⊤
− , α⊤

−, β
⊤
+ )⊤ is a

solution of the problem (40), if there exist components
of π̂ of which value is in the interval (0, Ĉ), then the
solution (w−, b−) of the problem (11) can be obtained in
the following way:
Let

w− =

p+q
∑

i=p+1

(α∗
i − αi)xi +

p
∑

j=1

βjxj , (46)

and choose a component of α+, α+j ∈ (0, C3), compute

b− = −(w− · xj) + ε, (47)

or choose a component of α∗
+, α+

∗
k ∈ (0, C3), compute

b− = −(w− · xk)− ε, (48)

or choose a component of β−, β−m ∈ (0, C4), compute

b− = −(w− · xm) + 1. (49)



6

• From Theorems 3.2 and 3.4, we can see that the
inherent semi-sparseness in the existing TWSVM-
s is improved to the whole sparseness in our
linear NPSVM, because of the introduction of ε-
insensitive loss function instead of the quadratic
loss function for each class itself.

Once the solutions (w+, b+) and (w−, b−) of the
problems (10) and (11) are obtained, a new point
x ∈ Rn is predicted to the Class by

Class = arg min
k=−,+

|(wk · x) + bk|, (50)

where |·| is the perpendicular distance of point x from
the planes (wk · x) + bk = 0, k = −,+.

3.2 Nonlinear NPSVM

Now we extend the linear NPSVM to the nonlinear
case.
• Totally different with all the existing TWSVMs, we

do not need consider the extra kernel-generated
surfaces since only inner products appear in the
dual problems (27) and (39), so the kernel func-
tions are applied directly in the problems and the
linear NPSVM is easily extended to the nonlinear
classifiers.

In detail, introducing the kernel function K(x, x′) =
(Φ(x) · Φ(x′)) and the corresponding transformation

x = Φ(x), (51)

where x ∈ H, H is the Hilbert space, we can construct
the corresponding problems (10) and (11) in H, the
only difference is that the weight vectors w+ and w−

in Rn change to be w+ and w− respectively. Two dual
problems to be solved are

min
α

(∗)
+ ,β−

1

2
(α∗

+ − α+)
⊤K(A,A⊤)(α∗

+ − α+)

− (α∗
+ − α+)

⊤K(A,B⊤)β− +
1

2
β⊤
−K(B,B⊤)β−

+ εe⊤+(α
∗ + α)− e⊤−β−,

s.t. e⊤+(α+ − α∗
+) + e⊤−β− = 0,

0 6 α+, α
∗
+ 6 C1e+,

0 6 β− 6 C2e−,

(52)

and

min
α

(∗)
−

,β+

1

2
(α∗

− − α−)
⊤K(B,B⊤)⊤(α∗

− − α−)

+ (α∗
− − α−)

⊤K(B,A⊤)β+ +
1

2
β⊤
+K(A,A⊤)β+

+ εe⊤−(α
∗ + α) − e⊤+β+,

s.t. e⊤−(α− − α∗
−)− e⊤+β+ = 0,

0 6 α−, α
∗
− 6 C3e−,

0 6 β+ 6 C4e+,

(53)

respectively.

Corresponding Theorems are similar with Theorem-
s 3.1∼3.4 and we only need to take K(x, x′) instead
of (x · x′).

Now we establish the NPSVM as follows:

Algorithm 3.5 (NPSVM)
(1) Input the training set (8);
(2) Choose appropriate kernels K(x, x′), appropriate

parameters ε > 0, C1, C2 for problem (27) , and C3, C4 > 0
for problem (39);

(3) Construct and solve the two convex
QPPs (52) and (53) separately, get the solutions
α(∗) = (α1, · · · , αp+q, α

∗
1, · · · , α

∗
p+q)

⊤ and
β = (β1, · · · , βp+q)

⊤;
(4) Construct the decision functions

f+(x) =

p
∑

i=1

(α∗
i − αi)K(xi, x)−

p+q
∑

j=p+1

βjK(xj , x) + b+,

(54)
and

f−(x) =

p+q
∑

i=p+1

(α∗
i − αi)K(xi, x) +

p
∑

j=1

βjK(xj , x) + b−,

(55)
separately, where b−, b+ are computed by Theorems 3.2 and
3.4 for the kernel cases;

(5) For any new input x, assign it to the class k(k =
−,+) by

arg min
k=−,+

|fk(x)|

‖ △k ‖
, (56)

where

△+ = π̃⊤Λ̃π̃, △− = π̂⊤Λ̂π̂. (57)

3.3 Advantages of NPSVM

As NPSVM degenerates to TBSVM and TWSVM
when parameters are chosen appropriately (See the
discussion in Section 3.1), it is theoretically superior
to them. Furthermore, it is more flexible and has
better generalization ability than typical SVMs since it
pursues two nonparallel surfaces for discrimination.
Though NPSVM has an additional parameter ε which
leads to two larger optimal problems than TBSVM
(about 3 times), it still has the following advantages.

• Although TWSVM and TBSVM solve smaller
QPPs in which successive overrelaxation (SOR)
technique or coordinate descent method can be
applied[15], [18], they have to compute the in-
verse matrices before training which is in practice
intractable or even impossible for a large data set.
More detailed, suppose the size of the training
set is l, and the size of negative training set
is roughly equal to the size of positive set, i.e.
p ≈ q ≈ 0.5l, the computational complexity of
TWSVM or TBSVM solved by SOR is estimated
as

O(l3) + ♯iteration×O(0.5l), (58)
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where O(l3) is the complexity of computing l× l

inverse matrix, and ♯iteration×O(0.5l) is of SOR
for 0.5l sized problem( ♯iteration is the number
of the iterations, experiments in [29] has shown
that ♯iteration is almost linear scaling with the
size l). While NPSVM dose not require the inverse
matrices and can be solved efficiently by the
SMO-type technique, [30] has proved that for
the two convex QPPs (52) and (53), an SMO-
type decomposition method [31] implemented in
LIBSVM has the complexity

♯iterations×O(1.5l) (59)

if most columns of the kernel matrix are cached
throughout iterations ([30] also pointed out that
there is no theoretical result yet on LIBSVM’s
number of iterations. Empirically, it is known
that the number of iterations may be higher than
linear to the number of training data). Comparing
equations (58) and (59), obviously NPSVM is
faster than TWSVMs.

• Though TBSVM improved TWSVM by introduc-
ing the regularization terms (‖w+‖

2+b2+) (for ex-
ample in problem (8), another regularization ter-
m, ‖w+‖

2, can be found in [18] and [20]) to make
the SRM principle implemented, it can only be

explained for the linear case that
1

√

‖w+‖2 + b2+
is the margin of two parallel hyperplanes (w+ ·
x) + b+ = 0 (the proximal hyperplane) and (w+ ·
x)+ b+ = −1 (the bounding hyperplane) in Rn+1

space . However, for the nonlinear case, it is not
a “real” kernel method like the standard SVMs
usually do, it considers the kernel-generated sur-
faces, and apply the regularization terms for ex-
ample (‖u+‖

2+ b2+) [15]. This term can not be ex-
plained clearly, since it is only an approximation
of the term (‖w+‖

2+b2+) in Hilbert space. NPSVM
introduces the regularization terms ‖w+‖

2 (for
example in (10)) for linear case and ‖w±‖

2 for
nonlinear case naturally and reasonably, since

2

‖w±‖
is the margin of two parallel hyperplanes

(w± · x) + b± = ε and (w± · x) + b± = −ε in Rn

space, while
2

‖w±‖
is the margin of two parallel

hyperplanes (w±·x)+b± = ε and (w±·x)+b± = −ε

in Hilbert space.
• For the nonlinear case, TWSVMs have to con-

sider the kernel-generated surfaces instead of
the hyperplanes in the Hilbert space, they are
still parametric methods. NPSVM constructs two
primal problems for both cases via using different
kernels, which is the marrow of the standard
SVMs.

4 EXPERIMENTAL RESULTS

In this section, in order to validate the performance
of our NPSVM, we compare it with C-SVC, TWSVM,
TBSVM on different types of datasets. All methods are
implemented in MATLAB 2010[32] on a PC with an
Intel Core I5 processor and 2 GB RAM. TBSVM and
TWSVM are solved by the optimization toolbox, C-
SVC are solved by the SMO algorithm, and NPSVM
are solved by a modified SMO technique.

4.1 Illustrated Iris Dataset

First, we apply NPSVM to the iris data set[33], which
is an established data set used for demonstrating the
performance of classification algorithms. It contains
three classes (Setosa, Versilcolor, Viginica) and four
attributes for an iris, and the goal is to classify the
class of iris based on these four attributes. Here
we restrict ourselves to the two classes (Versilcolor,
Viginica), and the two features that contain the most
information about the class, namely the petal length
and the petal width. The distribution of the data is
illustrated in Fig.2, where “+”s and “∗”s represent
classes Versilcolor and Viginica respectively.

Linear and RBF kernel K(x, x′) = exp(−‖x−x′‖2

σ
) are

used in which the parameter σ is fixed to be 4.0, and
set C = 10, ε varies in {0, 0.1, 0.2, 0.3, 0.4, 0.5}. Exper-
iment results are shown in Fig.2, where two proximal
lines f+(x) = 0 and f−(x) = 0, four ε-bounded
lines f+(x) = ±ε and f−(x) = ±ε, two margin lines
f+(x) = −1 and f−(x) = 1 are depicted, support vec-
tors are marked by “◦” for different ε. Fig.3 records the
varying percentage of support vectors corresponding
to problems (52) and (53), respectively, we can see that
with the increasing ε, the number of support vectors
decreases therefore the semi-sparseness (ε = 0) is
improved and the sparseness increases for both linear
and nonlinear cases.
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Fig. 3. Sparseness increases with the increasing ε: (a)
for problem (52); (b) for problem (53).

4.2 UCI and NDC datasets

Second, we perform these methods on several pub-
licly available benchmark datasets [33], some of which
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Fig. 2. Linear cases: (a)∼(f); Nonlinear cases: (g)∼(i). Positive proximal line f+(x) = 0(red thick solid line),
negative proximal line f−(x) = 0 (blue thick solid line), positive ε-bounded lines f+(x) = ±ε (red thin solid lines),
negative ε-bounded lines f−(x) = ±ε (blue thin solid lines), two margin lines f+(x) = −1 (red thin dotted line)
and f−(x) = 1 (blue thin dotted line), support vectors ( marked by orange “◦”), the decision boundary (green
thick solid line).

are used in [10][15]. All samples were scaled such that
the features locate in [0, 1] before training.

For all the methods, the RBF kernel K(x, x′) =

exp(−‖x−x′‖2

σ
) is applied, the optimal parameters

di, i = 1, 2 in TWSVM, ci = 1, · · · , 4 in TBSVM,
Ci, i = 1, · · · , 4 in NPSVM along with σ are tuned for
best classification accuracy in the range 2−8 to 212,
the optimal parameter ε in NPSVM is obtained in the
range [0, 0.5] with the step 0.05.

For each dataset, we randomly select the same
number of samples from different classes to compose
a balanced training set, therefore based on this set to
verify the above methods. This procedure is repeated
5 times and Table 1 lists the average tenfold cross-
validation results of these methods in terms of accura-
cy and the percentage of SVs. Since the TWSVM and
TBSVM are the special cases of NPSVM with some
fixed parameters, theoretically NPSVM will perform
better than them and in fact the results also indicate
that NPSVM obtained enhanced test accuracies and
sparseness when compared to them for all of the
datasets. For example, for Australian, the accuracy of
our NPSVM is 86.84%, and much better than 75.47%
and 76.43% of TBSVM and TWSVM respectively. The
reason behind this interesting phenomenon is that
both TWSVM and TBSVM with kernel can not degen-
erate to the linear case even the linear kernel is ap-
plied. Therefore the reported best results of TWSVM
in [10] is 85.80% and 85.94% in [15] for linear case,
while reported 75.8% for RBF kernel in [15] and
[13]. However, as we all know, RBF kernel performs
approximately like linear kernel when the parameter
σ is chosen large enough, they should get the similar
best results with linear case after parameters tuning.

While our NPSVM fixed this problem and got the best
results 86.84%.

In addition, NPSVM is better than C-SVC for almost
all of the datasets, and at the same time more sparse
than it because of the additional sparse parameter ε,
the semi-sparseness of TWSVM and TBSVM are not
necessarily recorded in Table 1. Fig. 4 shows two rela-
tionships for several datasets, one relation is between
the cross-validation accuracy and the parameter ε of
NPSVM, the other is between the percentage of SVs
and the parameter ε. These results imply NPSVM
obtains a sparse classifier with good generalization.

We further compare NPSVM , TWSVM and TB-
SVM with the two-dimensional scatter plots that are
obtained from the part test data points for the Aus-
tralian, BUPA-liver, Heart-Statlog and Image. These
datasets are randomly comprised of 200 points: 100
positive and 100 negative respectively. The plots are
obtained by plotting points with coordinates: perpen-
dicular distance of a test input x from hyperplane
(54) and the distance from hyperlane (55). Figs. 5
describe the comparisons of the three methods on
the four data sets. Obviously NPSVM obtained better
clustered points and separated classes than TBSVM
and TWSVM.

In order to further observe the computing time
of the methods scaling w.r.t. the number of da-
ta points, we also performed experiments on large
datasets, generated using David Musicant’s NDC Da-
ta Generator[34]. Table 2 gives a description of NDC
datasets. We used RBF kernel with σ = 1 and fixed
penalty parameters of all methods: c1 = c2 = 1 in
TWSVM and TBSVM, Ci = 1, i = 1, · · · , 4 in NPSVM.

Table 3 shows the comparison results in terms of
training time and accuracy for the NPSVM, TWSVM,
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TABLE 1
Average results of the benchmark datasets

Datasets

TWSVM TBSVM C-SVC NPSVM
Accuracy % Accuracy % Accuracy % Accuracy %

SVs % SVs % SVs % SVs %
Australian 75.47± 4.79 76.43±4.16 85.79±4.85 86.84±4.13

(383+307) × 14 – – 61.76±2.31 55.47±1.93
BUPA liver 74.26± 5.85 75.36±5.22 74.86±4.53 77.12±4.60

(145+200) × 6 – – 61.52±2.59 56.65±2.71
CMC 72.02± 2.47 73.16±3.09 70.42±4.62 74.19±2.25

(333+511) × 9 – – 57.67±4.03 51.80±3.67
Credit 86.12± 3.53 87.23±3.16 85.86±3.25 87.44±3.71

(383+307) × 19 – – 32.18±4.16 28.75±3.28
Diabetis 75.54± 3.62 77.13±3.14 76.47±2.61 78.78±2.72

(468+300)× 8 – – 57.91±2.57 45.39±3.06
Flare-Solar 66.25± 3.17 67.18±2.93 67.45±2.69 68.74±2.87

(666+400)× 9 – – 75.75±3.48 68.74±2.79
German 72.36± 3.55 73.09±2.86 71.45±2.69 74.71±3.13

(300+700)× 20 – – 53.27±3.49 48.81±3.83
Heart-Statlog 84.15± 5.09 85.22±5.96 83.36±6.02 86.72±5.13

(120+150) × 14 – – 48.30±1.06 42.26±2.53
Hepatitis 83.20± 5.23 84.16±6.52 83.17±4.33 85.68±4.19

(123+32) × 19 – – 38.36±2.37 32.53±2.22
Image 93.13± 1.98 94.31±2.07 93.54±2.16 95.32±2.01

(1300+1010) × 18 – – 6.23±1.49 4.17±1.08
Ionosphere 87.46± 3.34 87.78±3.47 89.20±3.45 90.15±3.27

(126+225) × 34 – – 30.07±3.03 25.74±2.81
Pima-Indian 75.08± 4.10 76.11±3.45 77.49±5.18 79.01±3.21

(500+268) × 8 – – 47.26±2.77 42.83±3.03
Sonar 90.09± 4.85 90.92±4.51 89.59±4.57 92.62±3.86

(97+111) × 60 – – 41.83±2.59 36.43±2.17
Spect 78.14± 3.57 78.50±4.11 76.92±3.18 79.76±3.09

(55+212) × 44 – – 51.33±2.91 47.34±2.32
Splice 90.75± 2.31 91.18±2.29 89.46±2.40 91.11±2.18

(1000+2175) × 60 – – 58.89±2.44 51.57±3.73
Titanic 76.57± 2.46 77.02±2.31 77.15±2.34 77.83±2.56

(150+2050) × 3 – – 47.46±3.51 40.28±3.84
Twonorm 97.04± 1.57 97.35±1.33 97.38±1.59 97.74±1.15

(400+7000) × 20 – – 10.23±2.02 7.57±1.88
Votes 95.04± 2.34 96.22±3.17 95.18±2.18 96.37±2.16

(168+267) × 16 – – 32.46±3.06 27.91±3.21
Waveform 91.25± 2.23 91.67±2.45 91.37±3.06 92.13±2.19

(400+4600) × 21 – – 18.41±3.25 14.76±2.77
WPBC 83.57± 5.62 84.16±4.15 83.28±4.59 85.13±4.11

(46+148) × 34 – – 63.57±3.42 57.74±2.44

TABLE 2
Description of NDC datasets

Dataset ♯Training data ♯Testing data ♯Features
NDC-500 500 50 32
NDC-700 700 70 32
NDC-900 900 90 32
NDC-1k 1000 100 32
NDC-2k 2000 200 32
NDC-3k 3000 300 32
NDC-4k 4000 400 32
NDC-5k 5000 500 32

TBSVM and C-SVC on several NDC datasets. For
NDC-2k, NDC-3k and NDC-5k datasets, we used
rectangular kernel[35] using 10% of total data points
since TWSVM and TBSVM have to precompute and

store the inverse of matrices before training, which
will make the experiments run out of memory. How-
ever, our NPSVM can be efficiently solved by the
SMO technique similar with C-SVC and thus avoid
such difficult situation. The results demonstrate that
NPSVM performs better than TWSVM, TBSVM and
C-SVC in terms of generalization, and NPSVM with
SMO technique are more suitable than TWSVM and
TBSVM for large-scale problems.

4.3 Text Categorization

In this subsection we further investigate the NPSVM
for text categorization (TC) applications and perform
experiments on 3 well-known datasets in TC research.
The first dataset is gathered from the top 10 largest
categories of the mode Apte split of the Reuters-
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(a) BUPA liver
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(c) Hepatitis
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(d) Ionosphere
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(e) Pima-Indian
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(f) Sonar
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(g) Splice
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(h) Twonorm

Fig. 4. Relationships between the cross-validation accuracy and the parameter ε (blue curves), Relationships
between the percentage of SVs and ε (red curves).

TABLE 3
Comparison on NDC datasets with RBF kernel

Dataset TWSVM TBSVM C-SVC NPSVM
Train % Train % Train % Train %
Test % Test % Test % Test %
Time (s) % Time (s) % Time (s) % Time (s)%

NDC-500 93.24 94.43 92.11 95.76
82.36 84.75 85.45 90.17
18.3 19.0 11.6 12.2

NDC-1k 98.37 99.76 100 100
84.28 85.83 94.56 95.69
36.37 37.02 22.8 23.6

NDC-2ka 95.83 96.17 94.24 96.25
81.02 82.21 85.46 86.38
8.21 8.23 4.54 4.78

NDC-3ka 84.28 85.21 82.09 86.15
77.3 78.62 78.0 81.49
12.81 12.16 6.35 6.49

NDC-5ka 87.33 89.16 89.65 90.52
84.53 86.81 87.07 87.74
21.10 22.16 13.17 13.46

a A rectangular kernel using 10% of total data points was used.

21578[36], after preprocessing, 9,990 news stories have
been partitioned into a training set of 7,199 documents
and a test set of 2,791 documents. The 20 News-
groups (20NG) collection[37] which has about 20,000
newsgroup documents evenly distributed across 20
categories is used as the second dataset. We partition
it into ten subsets in equal size and randomly selecting
three subsets for training and the remaining seven
subsets for testing. The third dataset is the Ohsumed
collection[38], where 6,286 documents and 7,643 doc-
uments retained for training and testing respectively
after removing the duplicate issues. For all the three
datasets, stemming, stop word removal, and omitting
the words that occur less than 3 times or is shorter

than 2 in length are executed in the preprocessing.
Furthermore, since documents have to be trans-

formed into a representation suitable for the classifi-
cation algorithms, and an effective text representation
scheme dominates the performance of TC system,
we adopt an efficient schemes[39], the weighted co-
contributions of different terms corresponding to the
class tendency, to achieve improvements on text rep-
resentation.

Usually, the precision (P ), recall (R) and F1 are the
popular performance metrics used in TC to measure
its effectiveness. Since neither precision nor recall is
meaningful in isolation of the other, we prefer to use
F1 measure to compute the averaged performance
in two ways: micro-averaging (miF1) and macro-
averaging (maF1), where miF1 is defined in terms of
the micro-averaged values of precision P and recall
R, and maF1 is computed as the mean of category-
specific measure FM

1 over all the M target categories:

miF1 =
2PR

P +R
, maF1 =

1

M

M
∑

i=1

FM
1 , (60)

We did not conduct experiments using TWSVM and
TBSVM as they run out the memory or cost high
computing time for these three large scale datasets.
The experiment results of NPSVM and C-SVC are
given in Table 4. Thus NPSVM achieves improved
performance on all the three text corpuses considered
in terms of maF1 and miF1 performance measures.

5 CONCLUDING REMARKS

In this paper, we have proposed a novel nonparal-
lel classifier, termed NPSVM. By introducing the ε-
insensitive loss function instead of the quadratic loss
function into the two primal problems in TWSVM,
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(a) NPSVM-Australian
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(b) NPSVM-Liver
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(c) NPSVM-Heart
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(d) NPSVM-Image
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(e) TBSVM-Australian
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(f) TBSVM-Liver
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(g) TBSVM-Heart
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(h) TBSVM-Image
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(i) TWSVM-Australian

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Distance from Hyperplane 1

D
is

ta
nc

e 
fr

om
 H

yp
er

pl
an

e 
2

(j) TWSVM-Liver
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(k) TWSVM-Heart
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(l) TWSVM-Image

Fig. 5. Two-dimensional projections of NPSVM, TWSVM and TBSVM for 200 test points from the four data sets.
“+”: scatter plot of the positive point; “∗”: scatter plot of the negative point.

TABLE 4
F1 performance of NPSVM and C-SVC

Reuters-21578 20NG Ohsumed
miF1 maF1 miF1 maF1 miF1 maF1

NPSVM 0.8615 0.7132 0.8347 0.8178 0.7106 0.5853
C-SVC 0.8524 0.7059 0.8217 0.8125 0.6951 0.5664

NPSVM has several unexpected and incomparable
advantages: (1) Two primal problems are constructed
implementing the structural risk minimization princi-
ple; (2) The dual problems of these two primal prob-
lems have the same advantages as that of the standard
SVMs, so that the kernel trick can be applied directly,
while existing TWSVMs have to construct another
two primal problems for nonlinear cases based on the
approximate kernel-generated surfaces, furthermore,
their nonlinear problems can not degenerate to the
linear case even the linear kernel is used; (3) The
dual problems have the same elegant formulation
with that of standard SVMs and can certainly be
solved efficiently by sequential minimization opti-
mization (SMO) algorithm, while existing GEPSVM or
TWSVMs are not suitable for large scale problems; (4)
It has the inherent sparseness as standard SVMs, the
semi-sparseness resulted from TWSVMs is improved
to the whole sparseness; (5) Existing TWSVMs are
only the special cases of the NPSVM when the param-

eters of which are appropriately chosen. Our NPSVM
degenerates to the initial TWSVM or TBSVM when
the parameters of which are appropriately chosen,
therefore our models are certainly superior to them
theoretically.

The parameters Ci, i = 1, 2, 3, 4 introduced are
the weights between the regularization term and the
empirical risk, ε is the parameter controlling the s-
parseness. All the parameters can be chosen flexibly,
improving the existing TWSVMs in many ways. Com-
putational comparisons between our NPSVM and oth-
er methods including TWSVM, TBSVM and C-SVC
have been made on lots of datasets, indicating that
our NPSVM is not only more sparse, but also more
robust and shows better generalization.

Though there are five parameters in our NPSVM,
however, for each model we only have an extra
parameter ε than TBSVM. The parameter selection
seems a difficult problem, we think that the exist-
ing efficient methods, such as minimizing the leave
one out (LOO) error bound[40], [41] can be applied
since the dual problems of our NPSVM has the same
formulation with standard SVMs. Besides, for each
class, different sparseness can be obtained by using
different parameter ε, i.e., ε+ in problem (52) and ε− in
problem (53). Furthermore, extensions to multi-class
classification, regression, semisupervised learning[42],
knowledge-based learning[43] are also interesting and
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under our consideration.
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