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Abstract

Humans reliably learn which actions lead to rewards and implement

these actions instrumentally. One prominent question is how credit is

assigned to the environmental stimuli that were acted upon. Recent func-

tional magnetic resonance imaging (fMRI) studies have provided prelim-

inary evidence that representations of rewarded stimuli are activated at

the time of reward delivery, providing possible eligibility traces for credit

assignment. The present study sought new evidence of post-reward acti-

vation in sensory cortex that satisfied two crucial conditions of learning:

that post-reward activity should reflect the category of the stimulus that

preceded reward (stimulus specificity), and should occur only if the stim-

ulus was acted on to obtain reward (task dependency). The novel design

implemented two different tasks in the fMRI scanner. The first task was

a perceptual decision making task on degraded face and house stimuli.

Stimulus-specificity was evident as rewards activated the visual associa-

tion cortices associated with face vs. house perception more strongly after

face vs. house decisions. The second task required participants to make

an instructed response. The criterion of task-dependency was fulfilled as

rewards after face vs. house responses activated the respective association

cortices to a larger degree when faces and houses were not only present,

but also relevant to the performed task. Because all major analyses con-

cerned trials that unbeknownst to the participants used pure noise images,

our study is the first to show these criteria of eligibility traces in credit

assignment, and reveal their independence from bottom-up activation of

sensory cortices.
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1 Introduction

Humans and other animals learn how to act on environmental stimuli to gain

reward. Substantial research effort has been devoted to understanding the neu-

ral and computational mechanisms by which reward delivery fosters associative

learning (Rescorla and Wagner, 1972; Schultz, 2007). This research has revealed

that reward-driven learning depends crucially on midbrain dopamine neurons,

which display a firing pattern that bears striking resemblance to reward predic-

tion error signals in formal models of reinforcement learning (Schultz, Dayan,

and Montague, 1997; Waelti, Dickinson, and Schultz, 2001).

Despite this progress, fundamental questions on reward-based learning re-

main unanswered. Whereas formal approaches provide computational solutions

to the critical problem of credit assignment - determining which features are

predictive of positive outcomes – little is known about how such eligibility

traces (Sutton and Barto, 1990), are represented in the brain. In this study, we

aimed to identify neural signatures of eligibility traces with two crucial prop-

erties: Eligibility traces in reward-driven learning should be stimulus specific

and task dependent, to guarantee precision of ensuing reward predictions. Stim-

ulus specificity does so by ensuring that the specific environmental conditions

that preceded reward will trigger its prediction. Task dependency warrants that

environmental conditions are only associated with reward if they were used to

perform the rewarded action.

A handful of studies have recently investigated related questions, focussing

on the hypothesis that learning should depend on activation of stimulus repre-

sentations at the time of reward delivery (Arsenault et al., 2013; FitzGerald,

Friston, and Dolan, 2012; Pleger et al., 2008; Pleger et al., 2009; Weil et al.,

2010). Whereas fMRI in animals has revealed evidence of reward-related ac-
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tivity that is stimulus-specific (Arsenault et al., 2013), corresponding evidence

in human studies has not been consistently observed (FitzGerald, Friston, and

Dolan, 2012; Weil et al., 2010) and whether or not reward-based activity in

sensory cortex is stimulus specific remains unclear.

We conceived a new paradigm to investigate this question, in which subjects

performed a perceptual discrimination task, deciding whether degraded stimuli

contained images of faces or houses. Importantly, the experiment included trials

on which, unbeknownst to participants, the stimulus was pure noise. This design

renders activation by reward independent of the initial bottom-up activation,

independent of potential category specific reward expectations and minimizes

the possible contribution of neural adaptation effects (FitzGerald, Friston, and

Dolan, 2012; Grill-Spector, Henson, and Martin, 2006).

Of critical interest was whether we could find evidence of stimulus-specific

cortical activity (activity in the stimulus-specific ROIs: FFA and PPA) at the

time of reward delivery, our first criterion for a neural signature of an eligibility

trace. Our second criterion for this neural signature is task dependency. Post

reward activation should be stronger for stimuli that were used to gain reward.

We compared post-reward activation in the perceptual decision task and a sec-

ond, instructed response task, hypothesizing that stimulus activity at reward

outcomes would be restricted to trials in which the outcomes were experienced

as a consequence of an earlier perceptual decision.

In summary, we predicted that activity in the ROIs would show a positive

correlation with reward size for associated decisions (demonstrating stimulus-

specificity), and would be more influenced by reward following a perceptual de-

cision than following an instructed response (demonstrating task dependency).

[ Figure 1 to be inserted here]
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2 Materials and Methods

18 right-handed, healthy participants (10 women, age 20 –32 years; mean age 24

years) took part in the study. The participants reported no psychiatric or neu-

rological past or present condition. All procedures were approved by the local

ethics committee of the University of Oxford and all participants gave written

informed consent.

2.1 Stimulus material

Grayscale photographs of faces and front views of houses (Figure 1), served as

stimulus material. In a first step, all images were adjusted in luminance and spa-

tial frequency to the mean of the stimulus pool using the SHINE (Willenbockel

et al., 2010) Matlabtool. This measure was taken to prevent categorisation

based on surface similarities (Rajimehr et al., 2011; Schyns and Oliva, 1994). A

variable percentage of all phases in each Fourier transformed image was scram-

bled. Images were then back transformed into native space. Three degrees of

phase scrambling were applied to yield stimuli to produce the easy, medium or

hard recognition trial. Face images were phase scrambled to 70 %, 75 %, and

85% percent. House images were phase scrambled to 50 %, 65 %, or 75 %. These

degrees of scrambling were chosen based on pilot testing to produce comparable

performance for house and face stimuli across the three levels of degradation. In

addition to the three difficulty levels, half of the images were pure noise images

with 100 % of all phases scrambled.
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2.2 Task

In each trial, participants were first presented with one of the stimuli for 2 sec-

onds. Stimulus presentation was followed by a task image, displayed on the

screen for 1.5 seconds; the task image was either a question mark, or an ex-

clamation mark. Question marks instructed participants to press the left or

right button to indicate whether they had seen a face or a house (perceptual

decision task). Participants were unaware of the fact that half of the images

were noise images and instructed to always decide and respond. Images of ex-

clamation marks contained a darkened box on the left or right side underneath

the exclamation mark. In these trials, participants had to press the button on

the side that corresponded to the box (instructed response task). Importantly,

at the time of stimulus presentation, participants did not know what trial type

they were in and had to make a perceptual decision regardless. Participants

had 1.5 seconds to respond, after which the task image stayed on the screen for

the remaining RSI. A cross in a box to the left or right of the task image was

displayed during this interval, indicating their previous response. The length

of this RSI was randomly drawn from a Poisson distribution with lambda 4,

minimum 2, maximum 6, and jittered in steps of 500 ms. The ITI was followed

by feedback; which could be rewarding, neutral, or penalizing.

Rewards consisted of images of either one or two moneybags, resulting in the

gain of 10 or 20 points, respectively. Penalties were shown as one or two bombs,

indicating the loss of either 10 or 20 points. Participants were told that rewards

and penalties were contingent on the correctness of their previous response, but

were in fact randomly assigned in noise trials. Participants received feedback

on their accumulated score each 50 trials. Their final score was converted into

a monetary bonus of up to £5 after the scan. The experimental sequence in the
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scanner consisted of 275 trials, 138 of which were noise trials; 35 noise trials and

33 signal trials were indication trials; 24-26 noise question trials were followed

by a neutral outcome, the remaining noise trials were followed in equal numbers

by large rewards, small rewards, small penalties and large penalties. Outcomes

in the signal trials were performance contingent, but outcome size was randomly

determined. Just prior to the scanning session, participants performed 16 prac-

tice trials of the experimental paradigm.

The experimental task was followed by a functional localiser task to deter-

mine the ROIs for all planned contrasts. Participants performed an 1-back task

while they were presented with two instances of six blocks of 18 images that ap-

peared on the screen for 150 ms, followed by an ISI of 400 ms. Participants had

a short break between the first six and second six blocks. They had to switch

from making responses with one hand to the other after the break. Each block

contained images of only one category; these categories were: unscrambled face

images, unscrambled house images, easy medium, and hard face images, easy,

medium, and hard house images, pure noise images and unscrambled object

images.

2.3 Behavioural analysis

Behaviour in the task was recorded to establish that participants showed perfor-

mance modulation by the degree of phase scrambling of the signal stimuli and

to assess learning and win stay lose shift optimised as markers of learning. It

was also established whether participants made face as well as house judgments

in the noise trials.
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2.4 FMRI procedure

The functional imaging session took place in a 3T Siemens Magnetom Trio scan-

ner (Siemens, Erlangen, Germany). During the scan, participants lay supine on

the scanner bed with their left and right index finger resting on two buttons

of a centrally placed response box. Participants wore sound attenuating head-

phones that allowed communication with the experimenter. They viewed the

stimuli on the screen via a mirror built into the head coil. Stimuli were dis-

played at 5 degrees of visual angle to prevent head and eye movements. The

functional session engaged a single-shot gradient echo-planar imaging (EPI)

sequence sensitive to blood oxygen level dependent contrast (32 slices, paral-

lel to the bicommisural plane, echo time 30ms, flip angle 90°; repetition time

2000ms; interleaved recording). After the functional session was completed,

high-resolution 3D T–1 weighted whole-brain MDEFT sequences were recorded

for every participant (128 slices, field of view 256mm, 256 by 256 pixel matrix,

thickness 1mm, spacing 0.25 mm).

2.5 FMRI data analysis

FMRI data analysis was conducted with the LIPSIA processing tool (Lohmann

et al., 2001). For spatial registration, EPI data and 3D MDEFT data were

first oriented along the ac-pc axis. The matching parameters (6 degrees of free-

dom, 3 rotational, 3 translational) of the functional data onto the individual 3D

MDEFT reference set were used to calculate the transformation matrices for

linear registration. These matrices were subsequently normalized to Talairach
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brain size (x=135mm, y=175mm, z=120mm; (Talairach and Tournoux, 1988) )

by linear scaling. The normalized transformation matrices were then applied to

the functional slices, to transform them using trilinear interpolation and align

them with the 3D reference set in the stereotactic coordinate system. The gener-

ated output had a spatial resolution of 3 x 3 x 3 mm. Cubic-spline interpolation

was used to correct for the temporal offset between the slices acquired in one

scan. To remove low-frequency signal changes and baseline drifts, a high pass

filter of 1/75 Hz was applied for event related analysis and a high pass filter of

1/125 Hz was applied to the analysis of the localiser blocks. Statistical eval-

uation was based on a least-square estimation using the general linear model

(GLM) for serially auto-correlated observations (Worsley and Friston, 1995).

Temporal Gaussian smoothing (4 seconds FWHM) was applied to deal with

temporal autocorrelation and determine the degrees of freedom (Worsley and

Friston, 1995). A spatial Gaussian filter of FWHM 5.65 mm was applied. Unless

otherwise stated, the design matrix was generated by hemodynamic modelling

using a γ -function in all contrasts. The onset vectors in the design matrices

were modelled in a time-locked event-related fashion. No first derivatives were

encompassed in the model, except for the functional localiser.

2.5.1 ROI definition

Functional regions of interest (ROIs) were determined in a two-step approach.

As a first step, all blocks from the functional localiser that contained house

images, all blocks that contained face images and the object image blocks were

entered separately as regressors into a GLM (1). Events were modelled with a

box-car function and event length set to block length. House blocks were con-

trasted with face blocks (HouselocaliserBlock > FacelocaliserBlock) and vice
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versa (FacelocaliserBlock > HouselocaliserBlock) on the single subject level and

averaged into t-map contrast images. In a separate analysis, the face and house

signal trials from the main experiment were entered separately into one GLM

(2). Event amplitude was determined by signal strength, with amplitude in-

creasing from 1 to 3 for hard to easy trials. The regressor accounting for

house trials was then contrasted with the face trial regressor. (HouseSignal-

Strength > FaceSignalStrength) and vice versa (FaceSignalStrength > HouseS-

ignalStrength). The resulting contrast images were masked with the contrast

images generated based on the functional localiser. The masked images then

entered second-level random effects analysis. One-sample t-tests were employed

for the group analyses across the contrast images of all subjects that indicate

whether observed differences between conditions were significantly different from

zero. The bilateral peak voxels of activity in the parahippocampal gyry were

used as centres for the parahippocampal place area (PPA) ROI. ROIs were es-

tablished as 2 x 2 x 2 voxel cubes centred on the bilateral peak coordinates

(coordinates). Peak voxels for the fusiform face area (FFA) ROI were generated

in a parallel approach, locating peak voxels in the fusiform gyrus; the bilateral

ROI was set as a cube of 2 x 2 x 2 voxels around these centres.

2.5.2 Decision-specific activation at noise stimulus presentation

To show that noise stimuli were treated as if they contained signal, the first

contrast tested whether the ROIs would show significant activation in line with

the perceptual decision on noise trials. Two regressors were entered into the

GLM, one accounting for the presentation of noise stimuli that would be fol-

lowed by a house decision and the corresponding regressor for noise stimuli that
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were followed by a face decision. Events were time-locked to noise stimulus

presentation, modelled with an event length of 1 and event amplitude of 1. We

estimated the main effect of each regressor separately and contrasted face noise

trials with house noise trials (FaceDecision > HouseDecision). The mean beta

scores extracted from the FFA and PPA ROIs entered a repeated measures

ANOVA to estimate main effects and interactions of decision (face or house)

and ROI (FFA or PPA).

2.5.3 Reward network response

The second contrast aimed to show that reward after noise trials would result in

the network response associated with learning from rewards. We parametrically

modelled BOLD increase from neutral to large reward trials after both face and

house decisions to noise stimuli. Events were modelled time-locked to reward

presentation, modelled with an event length of 1 and event amplitude ranged

from 1 (neutral) to 3 (large reward).

2.5.4 Stimulus-specific activation at reward outcome

The most critical features for post-reward activation to be classified as an eli-

gibility trace were stimulus specificity and task dependency. These effects were

tested in a GLM which contained the following 8 regressors: 4 regressors sepa-

rately accounting for parametric modulation of reward size after house responses

in noise decision trials, face responses in noise decision trials, instructed ’house’
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responses, and instructed ’face’ responses. Large rewards were modelled with

an amplitude vector of 2, small rewards with an amplitude vector of 1. Events

were modelled time-locked to reward presentation. Further, this GLM contained

separate regressors for penalty outcomes modelled by size after face decisions

and house decisions and separate regressors for neutral outcomes after each

type of decision. The main parametric contrasts for stimulus specificity were

(FaceDecisionReward) and (HouseDecisionReward). The stimated beta values

for post reward activity scaling with reward size in the FFA and PPA for face

vs. house decisions respectively were entered into a 2 x 2 ANOVA to test for

stimulus-specific post reward activation.

2.5.5 Task-dependent activation at reward outcome

The second main contrast tested for the assumption that reactivation should

be task dependent, i.e. depend on a perceptual decision, as opposed to an

instructed response. To test this hypothesis, we performed a repeated mea-

sures ANOVA on the beta values from the regressors FaceDecisionReward, Face-

InstructionReward, HouseDecisionReward, and HouseInstructionReward. Fur-

ther, we directly contrasted [(FaceDecisionReward) > (FaceInstructionReward)]

in the FFA ROI. Events were modelled time-locked to reward presentation and

reward size was modelled parametrically with the same amplitude vector as in

the stimulus-specificity analysis.
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2.5.6 Trial-type sensitivity

For the last contrast, a separate GLM was defined to compare post reward

activation for different trial types. To test whether noise stimuli would deliver

a more sensitive context for post reward activation effects than signal stimuli,

we included the following four main regressors to assess stimulus specificity and

task dependency: reward size parameter after house responses in noise decision

trials, face responses in noise decision trials, instructed ’house’ responses in noise

trials, and instructed ’face’ responses in noise trials. To allow comparison, the

GLM further included the corresponding regressors for signal trials. Mean betas

from all parametric contrasts were entered into a 2 x 2 x 2 x 2 repeated measures

ANOVA for further analysis.

T-test were performed on beta values from the contrast of regressors in the

respective GLMs. For whole-brain analysis, acquired t-values were transformed

to z-scores. To correct for false-positive results, an initial z-threshold was set to

2.56 (p <0.05, one-tailed, uncorrected for multiple comparisons). The results

were corrected for multiple comparisons at the cluster level, using cluster size

and cluster value thresholds that were obtained by Monte-Carlo simulations.

The employed significance level was p= 0.05. The reported activations are

significantly activated at p <= 0.05, corrected for comparison at cluster level.
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3 Results

3.1 Behavioural analysis

Analysis of participants’ performance indicated that they engaged with the task,

and confirmed that the paradigm effectively created three different levels of dif-

ficulty, with performance in the hardest level of difficulty being close to the

implemented chance performance in noise trials. Participants made on average

75.8 % correct responses (SD= 12.9 %) on signal trials. One dataset was ex-

cluded from the analysis because performance was below 2 standard deviations

from the mean. The remaining 17 participants achieved on average: 88.9 %,

79.9 %, and 63.3 % on easy, medium, and hard face signal trials and 92.1 %,

79.4 %, and 58.4 % on the corresponding house signal trials. In instructed re-

sponse trials, participants reached on average 89.27 % correct responses (SD =

9.67 %). To test that while signal trials created a plausible context for noise

trials, they were not clearly distinguishable from noise trials, we assessed how

many levels of degradation participants thought they had encountered. Of 17

participants, 9 indicated that the experiment implemented 3 levels of difficul-

ties, while 4 participants believed that there had been "3–4" levels of difficulty.

Only 2 participants correctly estimated that there had been 4 levels of difficulty,

while the remaining participants indicated 5, and 50 levels of degradation, re-

spectively. It thus appears as if for most subjects, noise trials were not clearly

distinguishable from signal trials. Incidentally, only one participant reported he

had noticed that a few trials did not contain signal. This participant did not

realise that half of the trials were noise trials.

In a next step, we assessed whether participants made use of feedback to

adapt their behaviour. We therefore assessed participants’ performance changes
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over the course of the experiment. As expected, performance improved, as re-

vealed in a 2 x 3 repeated measures ANOVA with the factors TIME (level: first

half of experiment /second half of experiment) and DEGRADATION (level:

easy/medium/hard). This analysis revealed a marginally significant main ef-

fect of time (F(1,15) = 4.41, p = 0.051), a significant main effect of degradation

(F(2,30) = 42.85, p = 0.000) and a significant interaction between the two main

factors (F(2,30) = 4.23, p = 0.032). Descriptively, participants’ performance

improved particularly on hard trials (Figure 2a). Participants thus seem to learn

from feedback integrating this information to modify their behaviour.

Because feedback was assigned randomly in noise trials (and learning was

impossible), performance modification by feedback was assessed on a trial-by-

trial basis instead. To this end, we assessed for successive noise trials how likely

participants were to repeat a rewarded response or switch away from a penalized

one. Such a win-stay/lose-shift behaviour would indicate pseudo-learning from

positive feedback. A one sample t-test revealed significant difference in stay

probabilities for rewarded compared to penalized noise trials (t(16) = 17.46, p

= 0.000), with participants being more likely to repeat a rewarded response.

We thus find evidence, both in signal, as well as in noise trials that participants

pay attention to feedback and adapt their performance accordingly.

As a last measure of the credibility of the manipulation, but also the compa-

rability of BOLD effects, we compared the distribution of perceptual judgments

on noise trials: Participants showed balanced judgements, with no strong pref-

erences on the group level. Thus, face decisions were on average made on 49%

of all trials (SD = 7.8 standardised%, range = 31 - 61 %).
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3.2 FMRI analysis

The FFA ROI for this and all further analyses was derived from masking the

(FaceSignalStrength > HouseSignalStrength) contrast with the (Facelocalis-

erBlock > HouselocaliserBlock) contrast and was centred on the peak coor-

dinates x = –38, y = –51, z = –15 and x = 34, y = –60, z = –15. The PPA

ROI for this and all further analyses was derived from masking of the (HouseS-

ignalStrength > FaceSignalStrength) contrast with the (HouselocaliserBlock >

FacelocaliserBlock) contrast was centred on the peak coordinates in x = –26 ,

y = –41 , z = –6 and x = 25, y = –44 , z = –6 (Figure 3).

To determine whether participants treated noise stimuli as if they contained

signal, we estimated the BOLD activity in the region of interests (ROIs), at the

time when noise stimuli were presented, in relation to the subsequent perceptual

judgment. Activity in these stimulus-specific ROIs provided clear evidence that

noise stimuli were treated as if they contained some (albeit weak) signal. Partic-

ipants’ individual beta values for the two conditions: viewing noise stimuli that

were then judged to be faces (FaceDecision) and viewing noise stimuli that were

judged to be houses (HouseDecision) were estimated in the two ROIs (Figure

3). These individual beta values were then entered into a repeated measures

ANOVA with the factors DECISION (face/house) and ROI (FFA/PPA). This

yielded no significant effect of decision, but a significant main effect of ROI

(F(1,16) = 5.93, p = 0.027) and a significant interaction between DECISION

and ROI (F(1,16) = 38.33, p = 0.000). The significant interaction is further

illustrated by the direct contrasts of conditions within the ROIs. These con-

trasts showed significantly more activity in the FFA for pending face vs. house

judgments (t(16) = 2.25, p = 0.019) and significantly more activity in the PPA

than FFA preceding house vs. face judgments (t(16) = 3.39, p = 0.002). (Figure
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3b).

We further established that positive outcomes to noise trials would activate

the network of brain regions classically associated with learning from reward

(O’Doherty et al., 2003; O’Doherty, 2004). Corrected for multiple comparisons

at the whole brain level (cluster threshold z = 2.56), the according parametric

contrast established the hypothesized positive correlation of BOLD signal with

reward size in the network classically signifying reward, that is the right nucleus

accumbens and right subgenual anterior cingulate gyrus/vmPFC. The network

further included bilateral hippocampal activation which has also been repeat-

edly been associated with learning from rewarding outcomes (Figure 3 c).

[Figure 3 to be placed here]

3.2.1 Stimulus-specific activation at reward outcome

The primary aim of the present study was to identify proposed neural correlates

of eligibility traces supporting reinforcement learning, which we hypothesize to

be reflected in post-reward activation in ROIs that represent stimulus categories.

This stimulus specificity was defined as the first criterion to make post reward

activation a plausible correlate of credit assignment. The stimulus-specificity

effect was assessed in two separate contrasts that modelled the parametric ef-

fect of reward size. The two parameters modelled BOLD activity increase in

the ROIs separately for reward after face and house decisions, respectively. A

repeated measures ANOVA on the mean beta values from the parametric con-

trasts with the factors ROI (PPA /FFA) and RESPONSE (house /face) yielded
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a significant main effect of ROI (F = 5.104, p = 0.038), no significant main

effect of RESPONSE (F(1,16) = 1.59, p = 0.22), and a statistically significant

interaction (F(1,16) = 8.98, p = 0.009), in line with the hypothesis of stimulus-

specific post-reward ROI activity (Figure 4). To investigate the degree to which

both areas contributed to this overall effect, we conducted one sample t-tests on

group averaged beta values from the parametric contrast to test for deviations

from zero (FaceDecisionReward), which yielded a significant result in the FFA

ROI (t(16) = 2.45, p = 0.013), but no significant result in the PPA ROI. The cor-

responding analysis of post-reward activity after house decisions parameter did

not reveal significant activation in either ROI. Thus, visually identical reward

images (pictures of money bags) activated stimulus representations differentially

in a decision-contingent manner, an effect mostly carried by an increase in FFA

activity following reward stimuli to face decisions compared to reward stimuli

following house decisions (Figure 4).

3.2.2 Task-dependent activation at reward outcome

Our second criterion for post-reward activation to be a marker of credit assign-

ment was task dependency. Task dependency requires post-reward activation

to be specific to perceptual decision tasks. We modelled four separate para-

metric contrasts: reward size for face decisions, house decisions, instructed face

responses and instructed house responses. Entering the beta values from the

RESPONSE (face/house), ROI (FFA/PPA), and TASK (decision/instructed)

conditions from this parametric analysis into a repeated measures 2 x 2 x 2

ANOVA revealed no significant main effects, but a marginally significant inter-

action for RESPONSE x TASK (F = 3.125, p = 0.096) and the hypothesized
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significant interaction of ROI x TASK x RESPONSE (F(1,16) = 10.84, p =

0.005). This significant three-way interaction is indicative of a stronger positive

relationship between reward size and response-specific ROI activity in the per-

ceptual decision task than in the instructed response task (Figure 4), satisfying

the task-dependency criterion. Because activity in the FFA ROI was modulated

to a higher degree by stimulus specificity, we assessed within the FFA whether

this stimulus-specific activity was also task-dependent. Therefore, face decisions

were contrasted with trials in which participants made an instructed response

with the same key. This contrast [(FaceDecisionReward) > (FaceInstruction-

Reward)] yielded a significant result in the FFA ROI (t(16) = 2.02 p = 0.03),

showing that the significant effect of stimulus specificity in the FFA was task-

dependent.

3.2.3 Trial-type sensitivity

The present paradigm focussed on establishing stimulus specificity and task

dependency by focussing on trials with noise stimuli, using stimuli with true

(house or face) signal primarily to create a credible context for those critical

noise trials within our perceptual judgment task. It is nevertheless instructive

to analyse reward-induced activity following the signal trials for comparison

with other recent studies of reward-related activation in sensory cortex. Signal

trials differ from noise trials in several notable respects, for example because

these perceptual decisions would involve more reliance on bottom-up features

and because reward probability and neural adaptation effects are confounded

with signal strength.

To compare the two types of trials, we modelled reward parameters for noise
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as well as signal trials in each task, implementing eight separate regressors for

the factorial combination of TRIAL-TYPE (noise /signal), RESPONSE (house

/face), and TASK (decision /instructed). As a first pass, we established whether

the documented stimulus specificity and task dependency effects were again re-

liable in noise trials in a 2 x 2 x 2 (ROI x RESPONSE x TASK) repeated

measures ANOVA. This yielded a marginally significant interaction of ROI and

TASK (F = 3.09, p = 0.098) and a significant 3-way interaction between ROI,

RESPONSE and TASK (F(1,16) = 10.19, p = 0.006), with ROI activity being

higher for the associated response in decision tasks. Thus we find support for

the result from the original stimulus specificity and task dependency analyses

in this alternative GLM.

Given this confirmation, we next compared post-reward BOLD responses for

the two different trial-types in a 2 x 2 x 2 x 2 repeated measures ANOVA includ-

ing the factor ROI (FFA/PPA) crossed with RESPONSE, TASK, and TRIAL-

TYPE. This analysis replicated the stimulus-specificity effect in a marginally

significant interaction of ROI x RESPONSE (F(1,16) = 3.47 p = 0.081). Fur-

ther, it showed a significant 4-way interaction (F(1,16) = 18.11, p = 0.001). The

significant 4-way interaction indicates trial-type sensitivity of the established ef-

fects, expressed as a difference between noise and signal trials with regard to

task dependency. Because the differential activation of the ROIs was repeat-

edly shown to be decision dependent, and not pronounced for indication trials,

we focussed our further comparison of noise and signal trials on decision trials

only. We therefore investigated the effect of trial-type sensitivity for decision

trials in a 2 x 2 x 2 repeated measures ANOVA with the factors: ROI (FFA/

PPA), RESPONSE (face/house), and TRIAL-TYPE (noise/signal) and found

a significant interaction of ROI and RESPONSE (F(1,16) = 7.32, p = 0.016)

indicating stimulus specificity in decision tasks, a significant interaction of ROI
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and TRIAL-TYPE (F(1,16) = 10.13, p = 0.006), and a significant 3-way inter-

action (F(1,16) = 7.45, p = 0.015). Thus, we find confirmation of the stimulus

specificity and task dependency effect, but a difference between noise and signal

trials.

[Figure 4 to be inserted here]

4 Discussion

To interact successfully with their environment, humans must learn how to ac-

quire rewarding outcomes. The neural basis of reward processing has been stud-

ied extensively. However, we still know very little about how reward-yielding

tasks are represented in the brain. One possibility would be that eligibility

traces for credit assignment become apparent as activation of sensory cortices

representing components of the rewarded task. The present fMRI study in-

vestigated the neural correlates of post-reward task representations in visual

association cortices in a perceptual decision making task. We defined two cri-

teria for BOLD signal increase to be a potential correlate of eligibility traces:

activation in a sensory association cortex should be stimulus-specific, i.e. reflect

the stimulus category of the rewarded response, and task-dependent, i.e. should

only occur if the stimulus was relevant to the task. In line with our hypotheses,

we found the representation of a stimulus to be activated post reward, especially

if it was relevant for the correct response in the rewarded task. This effect was

established in a significant interaction of response category (face or house deci-

sion) and BOLD activity in the FFA or PPA. Moreover, the effect was specific

to trials in which the stimulus category was task relevant, fulfilling the second
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criterion of task dependency. These effects were particularly pronounced in the

FFA.

4.1 Credit assignment

Reinforcement learning (RL) theory provides a solution to the credit assignment

problem, as it explains how events that predict reward are assigned a higher

value and become targets of behaviour (Sutton, 1988; Sutton and Barto, 1990;

Dayan and Niv, 2008; Daw and Doya, 2006). However, the neural underpin-

nings of this mechanism are still unclear. In particular, it is known that reward

prediction and prediction errors elicit neural activity in the basal ganglia and

vmPFC and result in dopamine release in the midbrain, but it is yet to be estab-

lished how this reward response fosters the representations of rewarded tasks.

One proposal is that reward signal increases synaptic plasticity in sensory areas

(Jay, 2003; Pennartz et al., 2011; Lisman, Grace, and Duzel, 2011). Support

evidence comes from studies that have shown modulation of neural activity ac-

cording to anticipated reward (value) (Brosch, Selezneva, and Scheich, 2011;

Serences, 2008). These findings indicate that pairing with reward changes

the neuronal representation of an event’s value in sensory cortices; this ef-

fect may explain why associations between stimuli and reward can prime be-

haviour (Wimmer and Shohamy, 2012; Hickey, Chelazzi, and Theeuwes, 2010;

Hickey and van Zoest, 2012). However, while the data show that learning re-

sults in value coding in sensory areas, they do not explain how the association

between the reward and the representation is shaped during learning. That

is, these studies show that credit assignment takes place and may be linked

to dopamine, but they do not target the question how neural activity repre-

senting relevant stimuli is linked to neural correlates of reward during learning.
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The present study sheds light on this question as it demonstrates the stimulus-

specificity and task-dependency of post reward activation.

4.2 Stimulus specificity

If post-reward activation of the task underlies learning, an exact representation

of the previous stimulus should be traceable after reward delivery. This notion

has been tested in a number of studies (FitzGerald, Friston, and Dolan, 2012;

Pleger et al., 2008; Pleger et al., 2009; Weil et al., 2010). However, results of

paradigms studying reward-related activation of visual association areas have

been ambiguous. Using high-resolution fMRI in monkeys, Arsenault and col-

leagues (2013) successfully showed post-reward activation in sensory cortices,

but only in trials which did not entail the visual stimulus itself. Conversely,

several human fMRI studies have failed to find evidence of stimulus-specific

activity in sensory cortex following reward delivery (FitzGerald, Friston, and

Dolan, 2012; Weil et al., 2010).

In the present study, we measured effects following decisions on noise stimuli

that contained no objective signal. This may have rendered the design espe-

cially sensitive to stimulus specific activation for a number of reasons. First,

adaptation to individual stimuli has been suggested to explain the observation

of non-specific activation effects (FitzGerald, Friston, and Dolan, 2012). The

present study analysed the post-reward activation following perceptual decisions

on noise. Activity in the respective ROIs was thus dependent on the judged

category representations, not on lower level features of the individual stimuli.

Category representation might be less prone to sensory adaptation than lower

level features. Second, decision under noise and top-down driven post-reward

activation rely on feedback projections which differ from feedforward projections
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conveying sensory input. They might therefore activate the same level in the cor-

tical hierarchy of stimulus representation, as well as specifically the same cortical

layer (Markov et al., 2013) within a given area. This may increase the overlap

of the locus of BOLD response measured for decision under noise and top-down

driven activation, increasing positive correlation between decision-specific ac-

tivity and post reward stimulus-specific activity. Third, in studies with true

’signal’ stimuli, strong anticipation of reward may modulate activity in the sen-

sory cortices prior to reward delivery (Brosch, Selezneva, and Scheich, 2011;

Serences, 2008). Thus, reward delivery may have had little effect on activity

given that it was delivered in a performance-dependent manner in tasks where

participants performed above chance (FitzGerald, Friston, and Dolan, 2012;

Pleger et al., 2008; Weil et al., 2010). Here, however, rewards in noise trials

could not be anticipated, as feedback was assigned randomly, limiting a positive

correlation between signal strength, reward anticipation and reward. Collec-

tively, these crucial features of our noise stimuli may have made the present

study more sensitive to stimulus-specific post-reward effects compared to previ-

ous studies.

One aspect of the current findings is that effects are reliable when investi-

gated as interactions of decisions and ROIs, but only within the FFA when the

ROIs are analysed separately. Previous evidence of decision-dependent effects

in the FFA but not the PPA (Summerfield et al., 2006) has been attributed

to several possible factors. First participants may rule out faces before making

house decisions (Summerfield et al., 2006). If house responses were results of

guessing when no decision in favour of faces can be made, lower confidence in

this judgment could result in less credit assignment. Alternatively, PPA ac-

tivity may rely on more specific bottom-up features and be less modulated by

top-down input than the FFA. While the PPA was modulated at the time point
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of decision making in the present study, in contrast to the results reported by

Summerfield and colleagues (2006), house decision activity in the PPA led to

slightly lower parameter estimates than face decision activation in the FFA. This

may suggests that top-down activation is weaker, or target different subregions

of the parahippocampal gyrus, than bottom-up driven activation.

4.3 Task dependency

Most objects require a specific manipulation to yield the desired outcomes. How-

ever, at any given moment a large number of objects is present in our environ-

ment, and a given object may afford different actions depending on the task

context. As a consequence, reward needs to activate the specific representations

of only those objects that were involved in the current task. Global post reward

activation including irrelevant stimulus representations would yield a new credit

assignment problem (Roelfsema and van Ooyen, 2005).

This implies that if post-reward activation observed in the current study

was a marker of a credit assignment, we would expect it to reflect whether the

stimulus that preceded the reward was relevant to the rewarded task. The es-

tablished post-reward activation in previous studies was tested in setups where

stimuli that preceded reward were always task relevant, rendering it difficult

to interpret the established effects as correlates of either credit assignment or

less specific reward-driven activation. In the present study, of two different

tasks, only one required a response that was stimulus specific. We showed that

stimulus-specific post-reward activation was dependent on the relevance of the

stimulus for the reward yielding task. Thus, our study shows that reward se-

lectively increases activity in sensory areas representing objects that have been

used to perform a task, and not globally in sensory areas representing any object
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currently present within the context of the task.

This novel finding relates to the recently developed attention-gated rein-

forcement learning model (Roelfsema, van Ooyen, and Watanabe, 2010; Roelf-

sema and van Ooyen, 2005). This model suggests that sensory cortices become

fine-tuned towards relevant (reward-predicting) features of a stimulus, while

distracter features are suppressed. It assumes that a global RL signal increases

synaptic plasticity, while an attentional gating mechanism ensures that this in-

creased synaptic plasticity is limited to task-relevant dimensions (Roelfsema,

van Ooyen, and Watanabe, 2010; Roelfsema and van Ooyen, 2005). Extending

the framework of this model, our finding suggests that this attentional gating is

dynamically modulated by the current task.

4.4 Conclusion

In sum, the present study has established stimulus-specific and task-dependent

activation following reward delivery in a perceptual decision task. The estab-

lished features of stimulus specificity and task dependency are important evi-

dence that post-reward activation may be a cortical signature of eligibility traces

for credit assignment. This finding is a substantial step towards closing the gap

between well-defined computational concepts in reward-based learning and their

neural implementation. Important questions for future research will concern the

mechanisms of maintaining relevant representations until reward delivery and

which dopaminergic circuits, e.g. involving the hippocampus or the ventral

striatum, mediate this form of learning.



Stimulus-specific Task-dependent Reward Activation 27

References

Arsenault, John T, Koen Nelissen, Bechir Jarraya, and Wim Vanduffel (2013).
Dopaminergic reward signals selectively decrease fmri activity in primate visual
cortex. Neuron 77(6): 1174–1186.

Brosch, Michael, Elena Selezneva, and Henning Scheich (2011). Represen-
tation of reward feedback in primate auditory cortex. Frontiers in systems
neuroscience 5: 5.

Daw, N.D. and K. Doya (2006). The computational neurobiology of learning
and reward. Current Opinion in Neurobiology 16(2): 199–204.

Dayan, Peter and Yael Niv (2008). Reinforcement learning: The good, the bad
and the ugly. Current Opinion in Neurobiology 18(2): 185–196.

FitzGerald, Thomas H. B., Karl J. Friston, and Raymond J. Dolan (2012).
Action-specific value signals in reward-related regions of the human brain. The
Journal of Neuroscience 32(46): 16417–16423.

Grill-Spector, K, R Henson, and A Martin (2006). Repetition and the
brain: neural models of stimulus-specific effects. Trends in Cognitive Sci-
ences 10(1): 14–23.

Hickey, Clayton, Leonardo Chelazzi, and Jan Theeuwes (2010). Reward
changes salience in human vision via the anterior cingulate. The Journal of
Neuroscience 30(33): 11096–11103.

Hickey, Clayton and Wieske Zoest (2012). Reward creates oculomotor salience.
Current Biology 22(7): R219–R220.

Jay, Therese (2003). Dopamine: a potential substrate for synaptic plasticity
and memory mechanisms. Progress in Neurobiology 69(6): 375–390.

Lisman, John, Anthony A Grace, and Emrah Duzel (2011). A neoHebbian
framework for episodic memory; role of dopamine-dependent late LTP. Trends
in neurosciences 34(10): 536–47.

Lohmann, G, K Mueller, V Bosch, H Mentzel, S Hessler, Li Chen, S Zysset,
and D Y Cramon (2001). Lipsia - a new software system for the evaluation
of functional magnetic resonance images of the human brain. Computerized
medical imaging and graphics : the official journal of the Computerized Medical
Imaging Society 25(6): 449–457.

Markov, Nikola T, Mária Ercsey-Ravasz, David C Van Essen, Ken-
neth Knoblauch, Zoltán Toroczkai, and Henry Kennedy (2013). Cor-
tical high-density counterstream architectures. Science (New York,
N.Y.) 342(6158): 1238406.



Stimulus-specific Task-dependent Reward Activation 28

O’Doherty, J P (2004). Reward representations and reward-related learning in
the human brain: insights from neuroimaging. Current Opinion in Neurobiol-
ogy 14(6): 769–776.

O’Doherty, J P, P Dayan, K J Friston, H Critchley, and R J Dolan (2003). Tem-
poral Difference Models and Reward-Related Learning in the Human Brain.
Neuron 38(2): 329–337.

Pennartz, C M A, R Ito, P F M J Verschure, F P Battaglia, and T W Robbins
(2011). The hippocampal-striatal axis in learning, prediction and goal-directed
behavior. Trends in neurosciences 34(10): 548–59.

Pleger, Burkhard, Felix Blankenburg, Christian C. Ruff, Jon Driver, and Ray-
mond J. Dolan (2008). Reward facilitates tactile judgments and modulates
hemodynamic responses in human primary somatosensory cortex. The Jour-
nal of Neuroscience 28(33): 8161–8168.

Pleger, Burkhard, Christian C. Ruff, Felix Blankenburg, Stefan KlÃ¶ppel, Jon
Driver, and Raymond J. Dolan (2009). Influence of dopaminergically mediated
reward on somatosensory decision-making. PLoS Biol 7(7): e1000164.

Rajimehr, Reza, Kathryn J. Devaney, Natalia Y. Bilenko, Jeremy C. Young,
and Roger B. H. Tootell (2011). The parahippocampal place areaâ responds
preferentially to high spatial frequencies in humans and monkeys. PLoS
Biol 9(4): e1000608–.

Rescorla, Robert A and Allan R Wagner (1972). A theory of pavlovian condi-
tioning: Variations in the effectiveness of reinforcement and nonreinforcement.
Classical conditioning II: Current research and theory 2: 64–99.

Roelfsema, Pieter R and Arjen Ooyen (2005). Attention-gated reinforce-
ment learning of internal representations for classification. Neural computa-
tion 17(10): 2176–2214.

Roelfsema, Pieter R, Arjen Ooyen, and Takeo Watanabe (2010). Perceptual
learning rules based on reinforcers and attention. Trends in cognitive sci-
ences 14(2): 64–71.

Schultz, Wolfram (2007). Behavioral dopamine signals. Trends in neuro-
sciences 30(5): 203–10.

Schultz, Wolfram, Peter Dayan, and P Read Montague (1997). A Neural
Substrate of Prediction and Reward. Science 275(June 1994): 1593–1599.

Schyns, Philippe G. and Aude Oliva (1994). From blobs to boundary edges:
Evidence for time- and spatial-scale-dependent scene recognition. Psychological
Science 5(4): 195–200.

Serences, John T. (2008). Value-based modulations in human visual cortex.
Neuron 60(6): 1169–1181.



Stimulus-specific Task-dependent Reward Activation 29

Summerfield, C, T Egner, J Mangels, and J Hirsch (2006). Mistaking a house
for a face: neural correlates of misperception in healthy humans. Cerebral
cortex (New York, N.Y. : 1991) 16(4): 500–508.

Sutton, R S and A G Barto (1990). Time-Derivative Models of Pavlovian
Reinforcement.

Sutton, Richard S (1988). Learning to predict by the methods of temporal
differences. Machine learning 3(1): 9–44.

Talairach, Jean and Pierre Tournoux (1988). Co-planar stereotaxic atlas of
the human brain. 3-Dimensional proportional system: an approach to cerebral
imaging. Thieme.

Waelti, Pascale, Anthony Dickinson, and Wolfram Schultz (2001). Dopamine
responses comply with basic assumptions of formal learning theory. Na-
ture 412(6842): 43–48.

Weil, Rimona Sharon, Nicholas Furl, Christian C. Ruff, Michael Symmonds,
Guillaume Flandin, Raymond J. Dolan, John Driver, and Geraint Rees
(2010). Rewarding feedback after correct visual discriminations has both
general and specific influences on visual cortex. Journal of Neurophysiol-
ogy 104(3): 1746–1757.

Willenbockel, V, J Sadr, D Fiset, G. O. Horne, F. Gosselin, and J. W. Tanaka
(2010). Controlling low-level image properties: The shine toolbox. Behavior
Research Methods 42: 671–684.

Wimmer, G. Elliott and Daphna Shohamy (2012). Preference by associ-
ation: How memory mechanisms in the hippocampus bias decisions. Sci-
ence 338(6104): 270–273.

Worsley, Keith J and Karl J Friston (1995). Analysis of fmri time series revis-
ited - again. NeuroImage 2(3): 173–181.



Stimulus-specific Task-dependent Reward Activation 30

+

x?
x?

Decision
Response

Outcometypes

xx x

xx

Reward Penalty Neutral 

Stimuli

3 levels of 

phase scrambling
Face House

NoisetrialsSignaltrials

Task

Stimulus

Outcome
+

x

Instructed 
Response

A

CB

Figure 1: A The main task was a perceptual decision task in which partici-
pants were first presented with a stimulus, which they had to classify a either
face or house. When the question mark appeared, participants had to indicate
their decision with a left or right button press. They then received positive (as
shown), negative, or neutral feedback. The second task made up 25 % of all
trials. Here, the initial stimulus was followed by an instruction (darkened box),
which button to press. Feedback was again delivered in the same format as
for the perceptual decision task.B Three levels of degradation and noise trials
were included, yielding graded performance levels. Stimulus degradation was
achieved by phase scrambling greyscale images of faces and houses. Partici-
pants were unaware of the existence of noise stimuli.C Participants experienced
5 levels of outcome valance, 2 levels of reward, 2 levels of penalty and a neutral
outcome. Large and small rewards or penalties resulted in the gain or loss of
20 or 10 points, respectively. Outcome valence (reward or penalty) was per-
formance contingent on signal trials and in the instructed response task, but
randomly assigned for perceptual decisions in noise trials. A quarter of all trials
were followed by neutral outcomes instead independent of performance.
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Figure 2: Feedback integration for signal stimuli was apparent in the perfor-
mance improvement from the 1st half (dark grey bars) of the experiment to
the 2nd (light grey bars) on perceptual decision trials. Feedback integration for
noise trials was evident in win stay - lose shift behaviour. Participants were
significantly more likely to stay than to shift response when it was rewarded
and more likely to shift than to stay when a response was penalised.
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Figure 3: A Functional ROIs were created by masking the contrast (FaceLo-
caliserBlock > HouseLocaliserBlock) and (HouseLocaliserBlock > FacelOcalis-
erBlock), respectively, with the corresponding parametric contrast for signal
increase with signal strength from the main experiment. B Contrasting BOLD
response for stimuli leading up to face decisions (dark grey) on signal trials with
those leading up to house decisions (light grey) revealed significantly stronger
activity for face decisions in the FFA (left) and for house decisions in the PPA
(right) compared to the respective alternative decision. C Rewarding outcomes
after decisions on noise trials activated a network classically associated with
reward delivery, including the ventromedial prefrontal cortex, and nucleus ac-
cumbens, as well as the anterior hippocampus.
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Figure 4: A Stimulus-specific activity in noise trials was measured as an in-
crease in BOLD activity with reward size, that was significantly stronger for
the decision associated with an ROI (face for FFA/ house for PPA) than for
the opposite decision. Dark grey bars show mean betas for parametric increase
with rewardsize for face decisions, light grey bars show mean betas for para-
metric increase with rewardsize for house decisions. Left: Activity in the FFA
ROI, right: activity in the PPA ROI. B Task dependency was reflected in a
larger parameter estimate (mean beta) for BOLD increase with reward size in
the associated ROIs (FFA left, PPA right) in the perceptual decision compared
to the instructed response tasks. Markers refer to the difference of mean betas
in the perceptual decision and instructed response task; the difference for face
responses are shown in dark grey, house responses in light grey.


