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Abstract 

 

 

Implants such as intramedullary nails or cancellous screws are used to mechanically stabilize 

fractures in bone. They provide reinforcement to the bone if they find good purchase in 

cancellous bone. Not all implants hold enough loads for mechanical stability and pull-out or 

cut-out may happen in some cases. This is linked to the interface between the bone and the 

implant. 

Computer modelling techniques are used to investigate both the effects of cut-out in a 

femur model, and the pull-out forces of cancellous bone screws. The bone geometry was 

based on CT scanned cancellous bone and converted using Mimics® software. The finite 

element models were produced in ANSYS®. 

Simple bone models were used to examine a fractured femur under standard gait loading. 

These models were continuum models and idealised the screw to bone interface in order to 

ease computational demand. The models were used to investigate the ideal positions of 

intramedullary devices lag screws on an anterior-posterior view of the implant location. In 

accordance with literature, an inferior-central or central-central position was the best 

position of the lag screw, while a superior-anterior or inferior-anterior position was adverse. 

The introduction of multi-scale modelling in order to investigate cut-out with a discrete 

bone model was not achieved. 

Discrete cancellous bone models were used to examine some of the cancellous screw 

characteristics, including pitch, inner diameter and proximal half angle, while a cancellous 

screw was also studied using a model of cancellous bone with a range of bone densities. The 

calculated reaction force for a pull-out of 0.2mm shows the influence of some parameters. 

Change in the proximal half angle increased the stiffness and strength by about 15% in line 

with the experimental findings of others, while apparent density changes of 2.5% increased 



 
iii 

the forces threefold. A significant reduction in reaction force was observed when a 

particular screw geometry in lower apparent density bone was modelled and rotated 

through 180° on a plane. Examination of the geometry of the bone/screw interface shows 

that in certain positions there is very little cancellous bone to support the implant. This will 

lead to low strength and is very difficult to predict. 

The same models were used to examine the effect of increasing bone stiffness adjacent to 

the implant and the use of a cement layer to augment the screw model. The increasing 

stiffness concluded that an increase in pull-out stiffness can be achieved, even in low quality 

bone, while the cement augmentation showed a significant increase in pull-out strength, 

though it was idealised as bonded to the bone and screw. 

  



 
iv 

Acknowledgements 

 

I would like to thank Chris J. Brown for his guidance and supervision, as well as his support 

to give me the opportunity to carry out this project. Phillip Procter and Stryker for their data 

and input to the research. My family for their support during this project. 

I would like to thank Ledean A. Cooper for her patience and for the ‘A.’ that describes her.  



 
v 

Declaration 

I confirm that the intellectual content of this research presented in this thesis is the original 

work of the author, save for any express acknowledgements, references and bibliographies 

cited in the work. This work or any part thereof has not previously been presented in any 

form to any institutional body whether for another degree, award or other purposes.  

This project was carried out at the Department of Mechanical, Aerospace and Civil 

Engineering, College of Engineering, Design and Physical Sciences, Brunel University, under 

the supervision of C. J. Brown.    



 
vi 

Contents 

Abstract ...................................................................................................................................... ii 

Acknowledgements ................................................................................................................... iv 

Declaration ................................................................................................................................. v 

Contents .................................................................................................................................... vi 

List of Figures ............................................................................................................................. x 

List of Tables ........................................................................................................................... xiii 

Acronyms and Abbreviations Used ......................................................................................... xiv 

Equations ................................................................................................................................ xiv 

1) Chapter 1 – Introduction ................................................................................................... 1 

1.1. Body of Knowledge Contribution ................................................................................ 3 

1.2. Outline ......................................................................................................................... 4 

2) Chapter 2 – Review of Literature ....................................................................................... 5 

2.1. Overview ..................................................................................................................... 5 

2.2. Skeletal system ............................................................................................................ 7 

2.3. Femur Structure .......................................................................................................... 8 

2.4. Femur Physiology ...................................................................................................... 10 

2.4.a. Cortical bone .......................................................................................................... 10 

2.4.b. Cancellous bone ..................................................................................................... 11 

2.4.c. Histology ................................................................................................................ 12 

2.5. Mechanical Properties of Bone ................................................................................. 14 

2.6. Weakened Bone ........................................................................................................ 22 

2.6.a. Osteoporosis .......................................................................................................... 22 

2.6.b. Fractures ................................................................................................................ 25 

2.6.b.i. Direct fracture repair ..................................................................................... 28 

2.6.b.ii. Indirect fracture repair ................................................................................... 28 



 
vii 

2.7. Bone Implants ........................................................................................................... 30 

2.7.a. Intramedullary Devices .......................................................................................... 30 

2.7.b. Screw Fixation ........................................................................................................ 33 

2.8. Cut-out ...................................................................................................................... 37 

2.8.a. Previous work and surrounding analyses .............................................................. 37 

2.9. Bone peri-implant augmentation .............................................................................. 40 

3) Chapter 3 – Modelling Technique .................................................................................... 41 

3.1. Previous work ............................................................................................................ 41 

3.1.a. Direct Contribution ................................................................................................ 41 

3.1.b. Lattice investigation............................................................................................... 45 

3.1.c. Indirect Influences ................................................................................................. 46 

3.2. Modelling .................................................................................................................. 48 

3.2.a. Strategy .................................................................................................................. 48 

3.2.a.i. Imaging ........................................................................................................... 48 

3.2.a.ii. Volume creation ............................................................................................. 52 

3.2.a.iii. Meshing .......................................................................................................... 53 

3.2.a.iv. Model creation ............................................................................................... 56 

3.2.a.v. Analysis ........................................................................................................... 56 

3.2.b. Multi-scale modelling ............................................................................................ 57 

3.3. Contact Parameters................................................................................................... 57 

3.3.a. Friction and stiffness ............................................................................................. 59 

4) Chapter 4 – Intramedullary implants and cut-out ........................................................... 61 

4.1. Simple Bone Models .................................................................................................. 61 

4.1.a. First case ................................................................................................................ 61 

4.1.b. Results .................................................................................................................... 63 

4.1.c. Discussion .............................................................................................................. 65 



 
viii 

4.1.d. Second Case ........................................................................................................... 66 

4.1.e. Results .................................................................................................................... 67 

4.1.f. Discussion .............................................................................................................. 69 

4.2. Gamma Nail ............................................................................................................... 70 

4.2.a. Results .................................................................................................................... 72 

4.2.b. Discussion .............................................................................................................. 73 

4.3. Positional Study ......................................................................................................... 74 

4.3.a. Results .................................................................................................................... 75 

4.3.b. Discussion .............................................................................................................. 79 

4.3.c. Conclusion ............................................................................................................. 80 

4.4. Multi-scale Modelling, Associated Issues (Discussion) ............................................. 80 

5) Chapter 5 – Parametric Analysis of a Cancellous Screw .................................................. 84 

5.1. Introduction............................................................................................................... 84 

5.2. Varying Volume Fraction ........................................................................................... 86 

5.2.a. Volume Fraction and Screw Pitch .......................................................................... 90 

5.2.b. Volume Fraction and Contact Area ....................................................................... 91 

5.3. Pitch and Inner Diameter Relevance ......................................................................... 92 

5.3.a. Results .................................................................................................................... 94 

5.4. Proximal half angle: a critical design variable? ....................................................... 101 

5.5. Discussion ................................................................................................................ 103 

6) Chapter 6 – Screw Augmentation .................................................................................. 106 

6.1. Multiple Bone Properties ........................................................................................ 108 

6.1.a. Results .................................................................................................................. 109 

6.2. Cement as an intermediate solid ............................................................................ 110 

6.2.a. Results .................................................................................................................. 111 

6.3. Discussion ................................................................................................................ 114 



 
ix 

7) Chapter 7 – (Stryker) Arthrex Pushlock Comparison with Sonic Fusion and a Predicate 

Device ..................................................................................................................................... 116 

7.1. Results ..................................................................................................................... 118 

7.2. Discussion and conclusion ....................................................................................... 119 

8) Chapter 8 – Conclusions and Further Work ................................................................... 121 

8.1. Conclusions.............................................................................................................. 121 

8.2. Further Work ........................................................................................................... 123 

9) References ..................................................................................................................... 125 

9.1. Bibliography ............................................................................................................ 137 

9.2. Additional Sources................................................................................................... 137 

Appendix A ............................................................................................................................. 138 

 

  



 
x 

List of Figures 

Figure 2-1: Structure of the Femur (Tortora and Derrickson, 2013). ........................................ 9 

Figure 2-2: Diagram of a sector of the shaft of a long bone showing the different types of 

cortical bone, trabecular bone, and the various channels (Tortora and Derrickson, 2013). .. 10 

Figure 2-3: Three-dimensional reconstructions of trabecular bone from the (a) bovine 

proximal tibia, (b) human proximal tibia, (c) human femoral neck, (d) human vertebra. Each 

volume is 3 × 3 × 1 mm3 (Cowin, 2001). .................................................................................. 11 

Figure 2-4 Desiccated bone of the Glenohumeral joint, showing cortical shells and inner 

cancellous bone (http://medicalpicturesinfo.com/cancellous-bone, 10/09/2011) ............... 12 

Figure 2-5: Dick et al. (2009) show the cross section of a human femur as well as schematics 

and renderings of the stresses in the femur............................................................................ 15 

Figure 2-6: “Bone fracture fixation: (b) an illustration of the process leading to failure of the 

fixation as a result of lack of biomechanical compatibility between the screw and 

surrounding cancellous bone (Gefen, 2002).” ......................................................................... 16 

Figure 2-7: A comparison of elastic moduli of trabecular tissue, Etissue (mean7SD, in GPa), 

reported in the literature and in the study by Bayraktar et al. (2004). ................................... 18 

Figure 2-8: Uniaxial stress-strain curve for cellular solids. The linear stress-strain relationship 

is defined by the Young's elastic modulus (E-=E+), while the ultimate compressive and tensile 

stresses (strains) are defined by σ- (ε-) and σ+ (ε+) (Rincón Kohli, 2003). ................................ 20 

Figure 2-9: Distribution of BMD in young healthy women aged 30–40 years (World Health 

Organization, 2003). ................................................................................................................ 22 

Figure 2-10: Classification of hip fractures. Fractures in the blue area are intracapsular and 

those in the red and orange areas are extracapsular (Parker and Johansen, 2006). .............. 25 

Figure 2-11: Garden classification system of femoral neck fractures (Guyton, 1998). ........... 26 

Figure 2-12: The AO/ASIF classification (Müller et al., 1990). ................................................. 27 

Figure 2-13: A) Gamma Nail®, B) Intramedullary Hip Screw®, C) Proximal Femoral Nail® 

(Schipper, Marti and van der Werken, 2004) .......................................................................... 30 

Figure 2-14: “The function of a Screw” (Asnis et al., 1996) ..................................................... 33 

Figure 3-1: “Contrast of a continuum and CT model, arrows show the direction of loading: 

0.02mm displacement (Hughes, 2014) .” ................................................................................ 42 

Figure 3-2: Rod lattice model of 10x10x10mm3 with a BV/TV of 11.6% (Hughes, 2014) ....... 43 



 
xi 

Figure 3-3: “Boundary conditions tested. Fixed supports in red: a) top edges. b) points from 

the top surface, c) lateral edges, d) lateral faces (Bennani Kamane, 2012)” .......................... 44 

Figure 3-4: A) Standard Gyroid construct. B) ±0.8 Gyroid. C) ±1.3 Gyroid .............................. 45 

Figure 3-5: Thresholding as shown in Greyscale occurrence graphs (Kim et al., 2007). ......... 50 

Figure 3-6: Pixels used for a cancellous model highlighted in green, also known as a "mask".

.................................................................................................................................................. 51 

Figure 3-7: Volume mask ......................................................................................................... 52 

Figure 3-8: Surface mesh with implant  Figure 3-9: Surface mesh and interface boundary 53 

Figure 3-10: Element count comparison. Same model, with a tenfold increase in elements 

from left to right. (http://cdn.overclock.net/a/a4/a4a47b78_ChsSwUE.png) ....................... 55 

Figure 3-11: Loading conditions for most of the models......................................................... 56 

Figure 3-12: Penetration of target (Ansys® Mechanical Structural Nonlinearities Notes)...... 58 

Figure 3-13: Asymmetric behaviour (Ansys® Mechanical Structural Nonlinearities Notes) ... 59 

Figure 3-14: "Plot of peak reaction force of an anchor in a CT model vs. friction coefficient, 1 

represents bonded"(Hughes, 2014)......................................................................................... 60 

Figure 4-1: Simplified femur loading conditions ...................................................................... 61 

Figure 4-2: Proximal Femoral Nail model ................................................................................ 62 

Figure 4-3: PFN Maximum principal stresses........................................................................... 63 

Figure 4-4: Penetration reading from the bone volume (mm) ................................................ 64 

Figure 4-5: Contact frictional Stress (MPa) .............................................................................. 64 

Figure 4-6: Maximum principal stress within the bone (MPa) ................................................ 65 

Figure 4-7: Total deformation of the Lag screws (adapted scale - mm) .................................. 66 

Figure 4-8: Cyclic transient loading model .............................................................................. 67 

Figure 4-9: Highest penetration result (mm)  Figure 4-10: Maximum principal stress (MPa)

 68 

Figure 4-11: Bone maximum principal stress .......................................................................... 68 

Figure 4-12: Deformation and maximum principal stress (mm & MPa) ................................. 69 

Figure 4-13: Gamma3 Locking Nail® model ............................................................................ 71 

Figure 4-14: Gamma model loading conditions....................................................................... 71 

Figure 4-15: maximum principal stress (MPa) & penetration (mm) in the static model: peak 

load condition .......................................................................................................................... 72 

Figure 4-16: maximum principal stress (MPa) & penetration (mm) in the transient model .. 72 



 
xii 

Figure 4-17: larger Z component in the model load at the 28th step ...................................... 74 

Figure 4-18: Gamma3 model and lag screw positioning (±Y and ±Z) ...................................... 74 

Figure 4-19: Path function on the Gamma3 model ................................................................. 75 

Figure 4-20: Penetration and equivalent (Von Mises) stress along the screw thread edge 

(mm & MPa) ............................................................................................................................. 76 

Figure 4-21: -Y-Z model deformation in the Z axis (mm) ......................................................... 77 

Figure 4-22: Average penetration and equivalent stress along the screw thread edge (mm & 

MPa) ......................................................................................................................................... 77 

Figure 4-23: Deformation and equivalent stress maximum of the bone (mm & MPa) .......... 78 

Figure 4-24: Equivalent (von-Mises) stress on the central-central lag screw (MPa) ............... 78 

Figure 4-25: Equivalent stress in the central-anterior lag screw (MPa) .................................. 79 

Figure 4-26: Gamma3 multi-scale model (surface shell) ......................................................... 81 

Figure 4-27: 3-Matic meshing issues encountered .................................................................. 81 

Figure 4-28: manual corrections required marked in red ....................................................... 82 

Figure 5-1: Loading of the discrete model (0.2mm displacement) ......................................... 85 

Figure 5-2: Bone Volume Fraction models .............................................................................. 87 

Figure 5-3: Contact area for each model ................................................................................. 88 

Figure 5-4: Screw pull-out comparison of different bone volume fractions ........................... 89 

Figure 5-5: Screw pull-out comparison of different bone volume fractions at 2 different 

Screw Pitches ........................................................................................................................... 90 

Figure 5-6: Screw pull-out according to contact area of different BV/TV ............................... 91 

Figure 5-7: Modified Screw geometry (dimensions in mm) .................................................... 92 

Figure 5-8: Varying Screw TSF, from left to right: 1.2mm I.D. with 2.5mm pitch, with 1.55mm 

pitch, then 2.6mm I.D. with 2.5mm pitch, and 1.55mm pitch. ............................................... 93 

Figure 5-9: Screw 0.2mm pull-out reaction force at different TSF .......................................... 94 

Figure 5-10: Screw 0.2mm pull-out reaction force at different TSF, rotated Screw ............... 96 

Figure 5-11: geometrical variability upon 180 rotation of the implant ................................... 98 

Figure 5-12: Left side view of the screw contact ..................................................................... 99 

Figure 5-13: 'a' and 'b' views of 1) 1.2 inner diameter 2) 2.6 inner diameter ....................... 100 

Figure 5-14: Screw proximal half angle (degrees) ................................................................. 101 

Figure 6-1: Cross section of the screw model with dual bone properties ............................. 108 

Figure 6-2: Re-meshing errors ............................................................................................... 109 



 
xiii 

Figure 6-3: Cement augmentation model ............................................................................. 110 

Figure 6-4: Cement augmentation models, reaction force comparison (N) ......................... 111 

Figure 6-5: Screw rotation comparison, using reaction force (N) ......................................... 112 

Figure 76: Reaction forces at varying elastic moduli ............................................................. 113 

Figure 7-1: Arthrex Pushlock® model .................................................................................... 116 

 

List of Tables 

Table 1: “The optimal position of the lag screw in the femoral head (Nishiura, Nozawa and 

Morio, 2009).” .......................................................................................................................... 38 

Table 2: Thread shape factor. .................................................................................................. 93 

Table 3: Pull-out reaction force. .............................................................................................. 94 

Table 4: Pull-out reaction force, rotated screw. ...................................................................... 95 

Table 4: Additional pull-out reaction force models ................................................................. 96 

Table 5: % difference (and reaction force) between the original screw geometry and the 30° 

top angle models ................................................................................................................... 102 

Table 6: Modified peri-implant bone model results (N) ........................................................ 109 

Table 7: Reaction forces (N), positions, and contact areas (mm2) (Hughes, 2014) ............... 118 

  



 
xiv 

Acronyms and Abbreviations Used 

AP – Anteroposterior (View or Position) 

BV/TV – Bone Volume/Total Volume 

BMD – Bone Mineral Density 

BMI – Body Mass Index 

CaP – Calcium Phosphate 

CAD – Computer Aided Design 

CT – Computed Tomography 

GPa – Giga-Pascal (Unit) 

HPC – High Performance Computing 

FEA – Finite Element Analysis 

FEM – Finite Element Method 

MRI – Magnetic Resonance Imaging 

PLA – Polylactide 

PLDLLA – Poly(L-lactide-co-D,L-lactide) 

PMMA – Polymethylmetharcrylate 

STP – Stress Transfer Parameter 

WHO – World Health Organisation 

µCT – Micro Computed Tomography 

Equations 

 

𝐹𝑠 = 𝑆 × 𝐴𝑠 = (𝑆 × 𝐿 × 𝜋 × 𝐷𝑚𝑎𝑗𝑜𝑟) × {0.5 + 0.57735[𝑑 𝑝⁄ ]} 



 
xv 

𝑊ℎ𝑒𝑟𝑒: 𝐹𝑠 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠ℎ𝑒𝑎𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒 (𝑁) 

𝑆 = 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (𝑀𝑃𝑎) 

𝐴𝑠 = 𝑇ℎ𝑟𝑒𝑎𝑑 𝑠ℎ𝑒𝑎𝑟 𝑎𝑟𝑒𝑎 (𝑚𝑚2) 

𝐿 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 (𝑚𝑚) 

𝐷𝑚𝑎𝑗𝑜𝑟 = 𝑀𝑎𝑗𝑜𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑚𝑚) 

𝑑 = 𝑇ℎ𝑟𝑒𝑎𝑑 𝑑𝑒𝑝𝑡ℎ (𝑚𝑚) 

𝑝 = 𝑇ℎ𝑟𝑒𝑎𝑑 𝑝𝑖𝑡𝑐ℎ (𝑚𝑚) 

 

𝑃𝑢𝑟𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦:  𝐹𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑘𝑛𝑜𝑟𝑚𝑎𝑙𝑥𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒:  𝐹𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑘𝑛𝑜𝑟𝑚𝑎𝑙𝑥𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 𝜆 

𝐹𝑛𝑜𝑟𝑚𝑎𝑙 = 𝐹𝑜𝑟𝑐𝑒 (𝑁) 

𝑘𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑥𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (𝑚) 

 𝜆 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑙𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑡𝑒𝑟𝑚 𝑡ℎ𝑎𝑡 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

  



 1 

1) Chapter 1 – Introduction 

Approximately 100 million bone screws are used each year. With a failure rate of 

at least 1%, this leads to around 1 million screws failing with each potentially 

leading to further surgery (Procter, 2013). 

Two principal failure modes of bone implant consist of cut-out and pull-out. The 

concept of screw pull-out failure is based on the shear failure of an interface 

between the screw and the bone where the screw will shear bone, carrying 

material between the threads (Lyon, Cochran and Smith, 1941). The concept of 

cut-out of lag screws is defined as “the collapse of the neck-shaft angle into 

varus, leading to extrusion of the screw from the femoral head” (Bojan et al., 

2013). This thesis describes the use of computer modelling techniques to 

investigate the interface between the bone and the implant and consider the 

variability in pull-out force as well as an attempt to understand one or improve 

the other mode of failure via augmentation. 

Intramedullary devices are used in femur fractures when mechanical strength 

and reinforcement is needed. These devices are used to support most of the load 

in the femur proximal region which reaches the order of 1700N from the hip 

joint alone (Bergmann et al., 2001). As such, the occurrence of cut-out of the lag 

screw will compromise the entire mechanical stability if the fracture is not 

healed. 

Cancellous bone screws are used to achieve good pull-out characteristics when 

connected to cancellous bone alone. The vertical load in reference to the screw 

at which the screw fails is called pull-out. A general equation for screw pull-out 

can be used in a continuum of any size, but this equation is not as appropriate 

when analysing a cancellous open, porous bone structure. The pull-out force is 

thought to be strongly determined by the screw outer diameter and length of 

engagement, as defined by Chapman et al. (1996) and this has been widely 

accepted. 
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Implant pull-out or cut-out leads to further surgery as the failed device must 

often be removed and replaced. This failure may occur many months after the 

initial surgery and can be very distressing and painful for the patient, if not fatal 

in some cases. By further research of the bone and implant interface and the 

implant’s performance in bone, the aim is to improve the holding power of bone 

implants, reducing the incidence of failure by the two modes described. 

Intramedullary devices can be improved if the phenomenon of cut-out is better 

understood and avoided by either changing the bone environment or changing 

the design of the device. In the case of lag screws, an ideal positioning inside the 

femur head will improve the strength of surrounding bone and overall 

performance of the device (Nishiura, Nozawa and Morio, 2009). 

For cancellous screws, pull-out may be improved by the same approaches; either 

change the bone environment or change the screw design. Gausepohl et al. 

(2001) considers the latter and concluded that a narrow pitch will increase the 

pull-out force. Other parameters of the cancellous screw may have an effect on 

pull-out and this will be examined in this thesis. 

In addition to varying screw parameters, the second approach of improvement 

by changing the bone environment will be investigated by modifying the 

properties of bone adjacent to the screw, increasing the elastic modulus of a 

cylinder of bone around the screw, and by cement augmentation. Two types of 

bone cements, Polymethylmetharcrylate (PMMA) and calcium phosphate (CaP), 

have been available for some time. PMMA is usually unpopular due to its heat 

generation upon curing which results in cell death (Gundapaneni and Goswami, 

2014). Calcium Phosphate is a more recently developed product, but it is 

primarily defined as non-load bearing. In spite of this, early trial show positive 

results from its use as a void filler in critical areas around screws in cancellous 

bone. Cement augmentation may improve holding strength of bone implants, 

but the considerable variation in screw performance in practice has shown that 

they may not always lead to improvement (Procter et al., 2015). 
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The main objectives of this research can be summarised as the following points: 

- Create a model that can approximate in vivo or in vitro testing 

appropriately, in order to reduce investigation time of parameters, easily 

changed on a FEA model. 

- Examine the performance of lag screws in low density bone by use of 

multi-scale models. 

- Select the best position in the femur for the lag screw of an 

intramedullary nail, comparing the results to existing literature. 

- Finding the best cancellous screw parameters for pull-out forces and 

asserting the importance of each. 

- Investigating the effect of cement augmentation and reaching 

conclusions about its effectiveness in improving pull-out. 

1.1. Body of Knowledge Contribution 

 A novel method of modelling cancellous bone with frictional contacts at 

varying volume densities and the description of its implementation as a 

3D mesh for use in FEA simulation. 

 A positional FEA analysis of an intracapsular fracture. A confirmation of 

the ideal location for the lag screw of intramedullary implants. 

 An FEA study of the parameters of a cancellous screw. 

 A study of the use of cement augmentation to show how its use can 

improve the holding power of implants.  

 Simulation of an Arthrex Pushlock implant and a comparative study with 

sonic fusion and a threaded anchor. 
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1.2. Outline 

This thesis contains 8 chapters. Cut-out and intramedullary devices are 

investigated first and then the implant and bone interface is examined and 

analysed. 

Chapter 2 provides all the background information needed to set this project into 

the current knowledge. Bone properties and histology, bone weaknesses and 

bone implants will be explained as background for the thesis. 

Chapter 3 covers the modelling methods and techniques available and used as 

well as the software and hardware background. 

Chapter 4 shows the initial work and simple bone models performed. These 

models are aimed at investigating cut-out and the bone-implant interface. 

Chapter 5 follows a parametric study of a cancellous screw in bone. It 

investigates the volume fraction, the screw pitch, inner diameter and the 

proximal half angle. 

Chapter 6 looks at the use of augmentation, by changing local material 

properties and adding idealised cement to the FEA models. 

Chapter 7 compares an Arthrex Pushlock implant to a sonic fusion model and a 

Bio Mini-Revo implant. 

Chapter 8 summarises the findings of the previous chapters, discussing the 

results and observations, and recommends the path further work could follow. 
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2) Chapter 2 – Review of Literature 

2.1. Overview 

This thesis addresses the use of mechanical implants for the fixation of bone 

fractures, by investigating the importance and interactions of bone to implant 

interfaces. Using implants to fix bone fractures is a process called osteosynthesis. 

This process was imagined as early as 1850 by the French surgeon Rigaud of 

Strasburg who precognised the use of screws in bone fixation, but who only used 

ivory intramedullary and pinning methods in practice. Aside from fixation with 

ivory, fractures were fixed by metal sutures. It is also important to note that 

these fixations were performed very late after the trauma, and often involved 

mortality by infection until 1862 and the breakthrough in infection control. The 

discovery of X-Rays in 1895 by Roentgen was the second breakthrough for 

osteosynthesis and greatly enhanced the fixation of bone by giving an image 

prior to operation, as opposed to relying on the sense of touch to analyse the 

type of fracture (Vichard and Gagneux, 1995).  

In order to investigate the importance and interactions of bone to implant 

interfaces, the background of understanding needs to be explained. As such, this 

chapter has been split into sections that will cover different aspects of 

knowledge: 

First of all, the human skeletal system will be described with relevant depth and 

attention will be given to the human femur as an example of structure for bones 

in which implants are used. The physiology of the bone is described in relevance 

to receiving implants, as understanding the whole system is of importance to a 

good healing outcome. 

The mechanical properties of the bone will then be described as the material 

receiving the implants, which is of importance to any mechanical analysis of the 

interaction between the two. 
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The next section will cover weakened bone. Osteoporosis, fractures and cut-out 

(which is a consequence of fracture fixation) all affect the strength of the system 

analysed and are principal reasons for the use of devices or major affecting 

factors when the devices have been implemented. 

Finally, the last section will cover the bone implants that are the subject of this 

thesis and literature surrounding previous research on devices. This section will 

be split into intramedullary devices and the more general concept of screws 

within bones.  
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2.2. Skeletal system 

The human body is built around the skeletal structure. It is the biological frame 

upon which the muscles are attached and it is the primary structure which 

composes the human body. In the early stages of human life, the bones are 

softer and incomplete upon birth. Once the human body has reached a certain 

age, the growth and hardening of the bones is ended by gonad hormones, 

especially oestrogen in both sexes as it shuts down at epiphyseal (growth) plates, 

causing bone elongation to cease (Tortora and Derrickson, 2013). As the body 

ages further, bone mass then decreases due to factors, some of which are 

explained later in section 2.4. This decrease is seen mainly in women aged 50 to 

60 years old (Riggs and Melton, 1986).  

Almost all of the bones in the human body can be classified into four primary 

groups, although this classification may vary between authors. The human body 

is composed of: 

 Long bones – These bones are longer than they are wide and circular, 

typically have two condyles (rounded connection surfaces) at either end. 

Some examples include the femur (thigh), tibia, fibula (leg), humerus 

(arm), ulna, radius (fore-arm) and phalanges (finger & toes) 

 Short Bones – These bones are somewhat cuboid in shape: they are of 

nearly equal width and length. Some examples are usually found in most 

wrist and ankle bones. 

 Flat Bones – These bones are usually thin, but provide protection for 

internal organs. They also provide large surfaces for muscle attachment 

and contain mostly red marrow, which makes them one of the largest 

producers of blood cells. Some examples include the cranial bones, the 

sternum, the ribs, and the scapulae (shoulder blades). 

 Irregular Bones – These bones are of complex shapes which cannot be 

grouped in any of the previous categories. Some examples of irregular 

bones include the vertebrae, hip bones, and some facial bones. 
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 Sesamoid bones – These bones develop within certain tendons where 

friction, tension and physical stress are high. They are not always 

completely ossified and may vary in number depending on the individual. 

They are typically a few millimetres in diameter apart from the kneecap, 

large sesamoid bones that are normally present in everyone. 

Functionally, these serve as protection from wear and tear of the tendon, 

in addition to changing the direction of pull of the tendon, in order to 

improve the mechanical advantage of the joint. 

 Sutural bones – These small bones vary greatly in number between 

individuals. They are small bones located in sutures between certain 

cranial bones. 

In addition to support and blood cell production, the skeletal system provides 

the body with a mineral storage in order to provide the body with a balance of 

critical minerals (homeostasis) and storage for triglycerides (fats): the yellow 

bone marrow. Only red bone marrow exists in the new-born, but with increasing 

age, most of the red marrow changes to yellow (Tortora and Derrickson, 2013).  

2.3. Femur Structure 

As the principal long bone studied in this thesis, the femur is the large bone 

located within the thigh and above the tibia, fibula and knee. It is the longest 

bone in the body and is composed of two ends (epiphysis) and a shaft (diaphysis). 

The two ends are called proximal, closest to the torso, and distal, most distant 

from the torso, where the proximal end (Figure 2-1) is composed of a head, a 

neck, a greater trochanter and a lesser trochanter. The head is approximately 

two thirds of a sphere and is connected to the pelvis. The neck is oblique and is 

the curved upper end of the femur shaft. Across the intertrochanteric crest from 

neck is greater trochanter, which is an outcrop to which the gluteus medius is 

attached. On the posterior surface of the bone the lesser trochanter can be 

found, which is where the iliopsoas finds attachment.  
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The distal end is composed of two condyles, the lateral and medial condyles, 

projections which articulate with the tibia. These condyles are separated on the 

anterior by a flat surface called the patellar surface (Tortora and Derrickson, 

2013). 

 

Figure 2-1: Structure of the Femur (Tortora and Derrickson, 2013).  
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2.4. Femur Physiology 

The femur is composed of both cortical (compact) and cancellous (spongy) bone. 

The shaft is mainly composed of cortical bone, while both epiphyses are 

composed of a cortical shell with a cancellous interior. The outer layer is called 

the ‘periosteum’ while the inner section is called the ‘endosteum’.  

 

Figure 2-2: Diagram of a sector of the shaft of a long bone showing the different types of cortical bone, 

trabecular bone, and the various channels (Tortora and Derrickson, 2013). 

2.4.a. Cortical bone 

Cortical bone comprises approximately 80% of the skeletal mass. It is a compact 

layer of collagen fibres which forms the outer shell of a bone. For the average 

male adult, it is around 10mm thick in the shaft of a femur but much thinner on 

the epiphysis, where it can be less than 1mm thick (Jee, 2001). Cortical bone can 

be composed of woven bone or lamellar (Haversian) bone. Woven bone is found 

in the new-born and fractures where new bone is generated rapidly. It is then 

replaced by lamellar bone (at age 2 and 3 years in human long bones) which is a 

longer process, but produces osteons and layers of lamellae, both interstitial and 

circumferential. Osteons are typically around 200µm in diameter and run parallel 

to the long axis of the bone. Haversian bone is mechanically much stronger than 
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woven bone as the osteons contain multiple layers of lamellae which are 

approximately 3 to 7 µm thick and run in approximately the same direction, 

although these axes can differ by as much as 90 in adjacent units. The centres of 

these osteons contain nerve fibres, blood vessels and lymphatics. They are 

connected radially by Volkmann’s canals (Figure 2-2) (Jee, 2001). 

2.4.b. Cancellous bone 

 

Figure 2-3: Three-dimensional reconstructions of trabecular bone from the (a) bovine proximal tibia, (b) 

human proximal tibia, (c) human femoral neck, (d) human vertebra. Each volume is 3 × 3 × 1 mm3 (Cowin, 

2001). 

The second type of bone, cancellous bone, also known as ‘Spongy bone’ or 

‘trabecular bone’ approximates to a structure of struts and plates which contain 

wide spaces. This structure is made of units called trabeculae. Cancellous bone 

can therefore be thought of as an open-cell solid. As such, cancellous bone 

shares some significant properties of cellular solids such as Energy absorption 

which follows Rush’s curve (Gibson and Ashby, 1997) and is further described at 

the end of section 2.5 below. Cancellous bone is found mainly in flat, irregular 

and short bones but it is also found in the epiphyses of long bones. The structure 

is light, which reduces the overall weight of a bone and allows the bone to move 

more readily when pulled by a skeletal muscle. Cancellous bone is the only part 
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in the body where red bone marrow can be found. The trabeculae of bone 

support and protect the marrow, as red bone marrow is the site of blood cell 

production (Tortora and Derrickson, 2013). 

The ratio of cancellous to cortical bone will vary depending on the bone. Bones 

such as the ulna (forearm) contain about 8% of cancellous bone, whereas a 

typical vertebra (spinal column) will contain up to 38% of cancellous bone. The 

spaces between the structures widen with age and osteoporosis, and the overall 

density of the cancellous structure can decrease dramatically (Jee, 2001). 

The structure of rod and plates can be classified using the structure model index 

(SMI), which uses the change in surface area as volume increases infinitesimally. 

The SMI is calculated on a scale from 0 to 4 where SMI = 0 is for plate-like structures, 

3 for rod-like and 4 for solid spheres. Unfortunately the SMI is negative for concave 

surfaces, which are common in trabecular bone; making results difficult to interpret 

and therefore often unusable (Hughes, 2014) though this method is the only 

measure of the bone’s plate-like or rod-like structure. 

 

Figure 2-4 Desiccated bone of the Glenohumeral joint, showing cortical shells and inner cancellous bone 

(http://medicalpicturesinfo.com/cancellous-bone, 10/09/2011) 

2.4.c. Histology 

Human bone, such as is found in the femur, is subject to constant remodelling as 

part of growing and ageing of the body. Woven bone is replaced by lamellar 

bone in the infant, and this cycle continues throughout the lifecycle. Bone 

remodelling consists of resorption, the removal of bone, and ossification, the 
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production of new bone. The mean age of cortical bone is of around 20 years 

while cancellous bone is around 1 to 4 years (Jee, 2001). 

The cells which are involved in the bone remodelling process, and as such, the 

cells that compose a healthy human bone can be listed below: 

- Osteogenic (Osteoprogenitor) cells are located on the inner portion of the 

periosteum, in the endosteum and in the canals within bone that contain 

blood vessels. They are the only bone cell to undergo cell division in order 

to produce osteoblasts. They are classified as stem cells and are most 

active during bone growth or fracture repair. They are a derivative of the 

mesenchyme, the tissue from which almost all connective tissues are 

formed. 

- Osteoblasts are single nucleus bone building cells. They synthesise and 

secrete collagen fibres (90%) and other organic components (non-

collagenous protein – 10%) in order to build the extra-cellular matrix of 

bone tissue. They also initiate calcification, the mineralisation of bone by 

calcium and phosphate ions. The number of osteoblast cells decreases 

with age and this is one factor responsible for the decrease in bone 

density with age. As osteoblasts surround themselves with bone matrix, 

they may become trapped in their secretions and become osteocytes. 

- Osteocytes are mature bone cells which maintain the metabolism of bone 

tissue, such as the exchange of nutrients and wastes with the blood. They 

are the most abundant form of bone cell and differentiate from 

osteoblasts, their original trapped function, by the loss of their organelles 

(sub-units of a cell). 

- Osteoclasts are very large cells (20-100µm wide) derived from the fusion 

of as many as 50 monocytes (a type of white blood cell) and are 

concentrated in the endosteum. On one side, the cell releases powerful 

enzymes and acids that digest the protein and mineral components of the 

underlying bone matrix, a process called bone “resorption” (Tortora and 

Derrickson, 2013). 
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- Bone lining cells are thinly extended over bone surfaces and have flat 

organelles to easily cover bone without interfering with other cellular 

functions and are inter-connected by gap junctions. They are a relatively 

inactive form of osteoblast but may be activated and may secrete growth 

factors which trigger osteoblast progenitor proliferation, as well as be 

involved in the propagation of the activation signal that initiates bone 

resorption and bone remodelling. They may also have a role in mineral 

homeostasis as they act as an ion barrier between the bone fluid and 

interstitial fluid and maintain these (Miller et al., 1989). 

Together, these cells remodel bone but over time, more cells are removed than 

are created, which leads to a reduction in bone density and bone width, which in 

turn decreases bone strength and may lead to natural osteoporosis. 

2.5. Mechanical Properties of Bone 

The mechanical properties of cancellous bone vary greatly due to a set of 

multiple factors. As a heterogeneous porous cellular solid, cancellous bone has 

an anisotropic behaviour. Anisotropy is when a material performs differently 

mechanically in its three Cartesian directions. These anisotropic properties vary 

depending on the porosity of the bone as well as the geometrical arrangement of 

specific trabeculae and plates. The geometric arrangement of the “grain” of the 

bone follows trajectory lines of the highest principal stresses in the bone (Figure 

2-5), and the remodelling of cancellous bone will adapt according to these forces. 

This theory that, over time, bone adapts to the loads placed upon it is called 

Wolff’s Law (Goodship and Cunningham, 2001; Cowin, 1986). There is some 

debate about the theory’s origin, accuracy and exact working, but understanding 

this behaviour is important for the healing of bone fractures both in healing time, 

and minimising additional stress on the bone. 
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Figure 2-5: Dick et al. (2009) show the cross section of a human femur as well as schematics and 

renderings of the stresses in the femur. 

Perilli et al. (2008) show that the microarchitecture has an important effect on 

the strength of bone: by studying human femoral samples, they conclude that 

localised minimums of BV/TV (Bone volume over total volume) are an important 

factor in determining ultimate stress of the material. Local minimums of BV/TV 

predicted ultimate stress better than average BV/TV. This work followed a study 

done by Nazarian et al. (2006) on human vertebrae bone that first concluded 

that the minimum value of BV/TV is a better predictor than BV/TV of the entire 

specimen. Failure of the samples was mainly localised within sub regions with 

minimum BV/TV. 

Both of these studies show that the cancellous bone structure would only be as 

strong as its weakest element, when looking at the structure as a whole. This is 

very important for implant performance and to this study. 

Wolff’s Law also leads to an important mechanical factor of metallic implants in 

cancellous bone: Stress shielding. When a very stiff screw fixation carries most of 

the load, it causes the adjacent bone to resorb due to the lack of stimulus during 

remodelling (Gefen, 2002). Stress shielding is an important consideration for the 

long-term effect of bone implants. Through bone remodelling, the local 

cancellous structure will be affected by stress shielding and resorb, as an 

example is seen in Figure 2-6. 
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Figure 2-6: “Bone fracture fixation: (b) an illustration of the process leading to failure of the fixation as a 

result of lack of biomechanical compatibility between the screw and surrounding cancellous bone (Gefen, 

2002).” 

In addition to geometrical uncertainties, bone is also affected by its non-uniform 

mineral distribution. Currey (1988) shows that the stiffness of bone tissue 

correlates exponentially with its mineral content. As bone is remodelled, new 

bone tissue is mineralised over the course of a few days, where approximately 

70% of the mineral is deposited but mineralisation continues slowly for several 

more years. In cancellous bone, the surface layer of trabeculae is frequently 

renewed while interstitial bone in the centre can become much older than the 

surface layer. Bone tissue with a high mineral content has a higher stiffness but 

at the same time lower failure energy (Currey, 1984). This mineral distribution 

might therefore be advantageous: the inner, stiffer bone is protected from cracks 

by an outer layer with a low mineral content, which has better mechanisms 

against cracks due to its low stiffness (Zioupos and Currey, 1994). The highly 

mineralised core of trabeculae provides high compression stiffness and when 

cracks start in this tissue, the lower mineral content surface layer prevents 

complete failure thus repair of the damage is possible and the mechanical 

integrity is maintained. This mineral distribution is influenced by the bone 

turnover rate, and can therefore be influenced by anti-resorptive treatments 

(Van der Linden et al., 2001). 
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Tissue-level elastic properties of cancellous bone have been reported in 

numerous studies (Figure 2-7), but discrepancies in the data are common due to 

technical challenges and there is almost no data for failure properties at the 

tissue level. Bayraktar et al. (2004) report that high resolution finite element 

models derived from micro-computed tomography (µCT) with specimen-specific 

data at the whole specimen level are used to calibrate “effective” elastic 

properties of the tissue. These studies used compression testing with platens to 

provide calibration data, but due to the presence of end-artifacts (Jacobs et al., 

1999; Keaveny et al., 1997), the results of calibrated effective tissue moduli are 

low (Hou et al., 1998; Ladd et al., 1998) when compared to the experimental 

studies done with cancellous bone that used ultrasound and nanoindentation 

(Turner et al., 1999; Zysset et al., 1999; Rho, Tsui and Pharr, 1997). Some finite 

element studies that used testing protocols that minimised end-artifacts at the 

apparent level matched the experimental data more accurately (Niebur et al., 

2000). Their own comparative study (Bayraktar et al., 2004) provides more data 

matching the experimental values for bone elastic modulus (18.0±2.8 GPa) as 

well as some values on yield properties at the tissue level for both cancellous and 

cortical bone. For the cancellous tests, they used nonlinear FEA of trabecular 

bone specimens with apparent level experimental data, but used techniques that 

eliminated end-artifacts. The values obtained were similar to results found for 

bovine trabecular tissue using a similar technique for analysis (Niebur et al., 

2000). 
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Figure 2-7: A comparison of elastic moduli of trabecular tissue, Etissue (mean7SD, in GPa), reported in the 

literature and in the study by Bayraktar et al. (2004). 
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Rho et al. (2002) did some further nanoindentation analysis to compare the 

elastic properties of interstitial bone and secondary osteonal bone in femoral 

cortical bone. Young’s Modulus of the older, interstitial bone was on average 

2.3GPa stiffer than the osteonal bone. There was also a significant difference in 

the properties of bone between the different individuals from which the samples 

were obtained. The modulus for interstitial cortical bone ranged between 21.5 

and 25.4GPa, while osteonal bone ranged between 18.6 and 23.6GPa. 

As shown by Turner et al. (1999), these values are for cortical bone in the 

longitudinal axis, for which they obtained results of 20.55±0.21 GPa acoustically 

and 23.45±0.21 GPa by nanoindentation. Due to its anisotropy which stems from 

the lamellar structure formed during growth, the values obtained in the 

transverse direction were lower: 14.91±0.52 GPa acoustically and 16.58±0.32 

GPa by nanoindentation. Nanoindentation results were 10-20% higher than the 

results obtained by the acoustic technique. This may have been caused by the re-

hydration of their samples when tested acoustically, which would explain a lower 

Young’s modulus. This would indicate that the two techniques would give similar 

results if they were carried out under the same conditions (Turner et al., 1999). 

Another aspect of the mechanical properties of bone is density. Zioupos, Cook 

and Hutchinson (2008) show that apparent bone density (Dapp) and bone 

material density, the tissue density (Dmat) have different relationships for cortical 

and cancellous bone. The results were obtained from mammalian bone, 

specifically the femur of an elephant, as the shape and properties at the bone 

matrix level are similar to those of a human femur, though the size of the sample 

is much larger. The results show that the more porous cancellous samples have 

denser trabeculae, which is an inverse Dapp vs Dmat relationship, while in compact 

bone, the more porous samples show reduced material density and mineral 

content, as in compact bone, Dapp and Dmat go hand in hand. It is assumed that 

two different tissue physiologies or two different tissue mechanobiology 

imperatives are involved. When fewer trabeculae are present, they are stiffer 

and denser. As such, for the same level of stress, the stiffer material would 
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experience smaller strain, which would mean less damage and less motivation 

for homeostasis. Cortical bone is the opposite, and higher strain maintains mass, 

which would result in the tissue experiencing less strain and reach an overall 

equilibrium. These are both possible explanations for strain homeostasis and 

damage, though the authors only suggested these methods are mentioned 

possibilities (Zioupos, Cook and Hutchinson, 2008). 

With great variability, cancellous bone structures in compression and tension 

follow the non-linear behaviour of cellular solids (Gibson, 1985; Gibson and 

Ashby, 1982) as characterised by distinct failure mechanisms (Figure 2-8). 

 

Figure 2-8: Uniaxial stress-strain curve for cellular solids. The linear stress-strain relationship is defined by 

the Young's elastic modulus (E-=E+), while the ultimate compressive and tensile stresses (strains) are 

defined by σ- (ε-) and σ+ (ε+) (Rincón Kohli, 2003). 

In compression (E-) the solid begins with a linear-elastic relation as the cell wall 

bends or compresses axially. This then changes when the cells start to collapse 

and the curve softens and cells collapse at an almost constant stress. This 

continues until the walls meet and create a sharp rise in the stress (Gibson and 

Ashby, 1982). This final rise is known as densification. In tension the structure 
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has a linear-elastic portion followed by failure when the struts crack and break 

with a final destruction of the entire structure (Rincón Kohli, 2003).  
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2.6. Weakened Bone 

2.6.a. Osteoporosis 

From the Greek “ostoun”, bone and “poros”, pore, osteoporosis is a progressive 

bone disease in which bone density and mass are reduced due to increased 

osteoclast activity. It can lead to cancellous bone porosity of over 90% and 

cortical bone porosity of up to 12%. Osteoporosis is defined by bone mineral 

density (BMD) and its deviation from the mean of the young adult. A value of 

BMD within 1 standard deviation of the young adult reference mean is referred 

to as “normal” (T-score ≥ -1). A value of BMD more than 1 standard deviation 

below the young adult mean, but less than 2 standard deviations below this 

value is called “osteopenia”, low bone mass (T-score < -1 and > -2.5). A value of 

BMD 2.5 standard deviations or more below the young adult mean is then 

“Osteoporosis” (T-score ≤ -2.5) (Figure 2-9)(World Health Organization, 2003). 

 

Figure 2-9: Distribution of BMD in young healthy women aged 30–40 years (World Health Organization, 
2003). 
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Reduced bone density can stem from age, where substantial bone loss starts 

around age 65 years in men and 50 in women (Rizzoli and Bonjour, 1999). This is 

due to the expansion of the periosteal surface (outer surface) being less than the 

resorption at the endosteal surface, where the space occupied by bone marrow 

increases. As such, the bone cortex becomes thinner, and combined with 

increasing porosity of cortical bone and the destruction of cancellous trabeculae 

through thinning and perforation, accounts for age-dependent bone loss (World 

Health Organization, 2003). 

Another main factor for BMD loss is oestrogen deficiency, as oestrogen is 

necessary for maximizing peak bone mass and maintaining it. Oestrogen 

deficiency accelerates the rate of bone turnover and appears to be the main 

cause of osteoporosis in women after the fifth decade and could also have an 

effect on men. In addition, there exist other endocrine causes for bone loss such 

as Thyrotoxicosis, Hyperparathyroidism, Cushing syndrome, Insulin-dependent 

diabetes mellitus, adrenal atrophy and Addison disease, Ectopic 

adrenocorticotropic hormone syndrome and Sarcoidosis (ectopic calcitriol 

production) (Kanis et al., 1997). 

Further factors that cause bone loss include nutritional factors, such as 

deficiencies in calcium, vitamin D, protein, Vitamin K, or a high intake of 

phosphate in combination with a low intake of calcium. Other trace elements 

and vitamins may all play a protective role in the normal metabolism of bone 

tissue but studies are needed to identify their respective roles in the 

maintenance of BMD. Physical inactivity is another factor, both from motor 

deficits due to neurological disorders or space flight, despite vigorous physical 

exercise. In opposition, physical loading and mechanical stress can increase the 

BMD to higher-than-average levels, as can be seen in retired adult gymnasts. 

Cigarette smoking and alcohol consumption can both reduce BMD, as well as a 

lower BMI (Body Mass Index), or a host of other diseases and disorders (World 

Health Organization, 2003).  
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Osteoporosis causes more than 2.3 million fractures annually in Europe and the 

USA (World Health Organization, 2003). 
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2.6.b. Fractures 

Presently, the number of fractures sustained is gradually increasing as the 

population increases though this might also increase per capita as the risk 

increases. The main fracture single type observed is hip fractures of the femur in 

elderly women, but there are also extensive numbers of cases of diaphyseal 

fractures and wrist. In most of these cases, there is a 66% survival rate in these 

cases of hip fracture, where there is an overall 43.3% of home return within 30 

days and 30 days mortality rate is at 8.4% (Currie et al., 2011).  

One of the complications which is not yet fully understood is that of cut-out of 

the femoral nail/dynamic hip screw in the femur head, as described in 2.6.c.  

A value of BMD 2.5 standard deviations or more below the young adult mean 

with the presence of one or more fractures is classed as severe osteoporosis, 

also known as established osteoporosis (World Health Organization, 2003). 

 

Figure 2-10: Classification of hip fractures. Fractures in the blue area are intracapsular and those in the 

red and orange areas are extracapsular (Parker and Johansen, 2006). 

Fractures in the proximal end of the femur bone can be classified in 3 separate 

sections, each of which have further classifications or attributes: 

- Intracapsular: These fractures are also known as neck fractures, and are 

most commonly classified using the Garden classification (Figure 2-11) 
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which are split into 4 sections: (A) Garden I fracture: incomplete and 

minimally displaced. The fracture shown is impacted and is in valgus 

misalignment. (B) Garden II fracture: complete, nondisplaced. (C) Garden 

III fracture: complete fracture and partially displaced. The fracture shown 

is in varus misalignment. (D) Garden IV fracture: completely displaced, 

with no engagement of the 2 principal fragments. This classification is 

measured by the level of displacement of the fractures (Guyton, 1998). 

Femoral neck fractures account for approximately 60% of hip fractures 

(Currie et al., 2011). 

Neck fractures pose a danger to healing as they may disrupt an artery 

which would affect blood supply at the fracture site and femoral head. 

The loss of this blood supply increases the risk of non-union and the risk 

for avascular necrosis of the femoral head (Guyton, 1998). 

 

Figure 2-11: Garden classification system of femoral neck fractures (Guyton, 1998).  

- Trochanteric: Trochanteric fractures or intertrochanteric fractures are 

usually classified using the AO/ASIF classification. It is comprised of A1 

stable pertrochanteric fractures, A2 unstable pertrochanteric fractures 

with medial comminution and A3 unstable intertrochanteric fractures 

with or without medial comminution including reversed intertrochanteric 
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fractures and transverse intertrochanteric fractures with possible 

dorsolateral comminution (Schipper et al., 2002). 

- Sub-Trochanteric: Sub-Trochanteric fractures occur below the lesser 

trochanter up to the main femur shaft they are less common than 

intertrochanteric and Intracapsular hip fractures (Guyton, 1998). 

 

Figure 2-12: The AO/ASIF classification (Müller et al., 1990). 

From the National Hip Fracture Database, admissions in the UK covered: 46.3% 

Intracapsular displaced; 11.4% Intracapsular undisplaced; 33.8% 

Intertrochanteric; 5% Subtrochanteric; 2.9% Other; and 0.6% Unknown (Currie et 

al., 2011). 

Akan et al. (2011) also show that the presence of osteoporosis has a negative 

effect on clinical outcome after hip fracture. They use the Singh index to classify 

osteoporosis, an index based on the radiological appearance of the trabecular 

bone structure of the proximal femur (Singh, Nagrath and Maini, 1970). 

Following fracture of the bone with damage to the endosteal, periosteal and 

intramedullary blood vessels, where high-energy fractures cut through the 

microstructural element of bone such as osteons or low-energy fractures split 

around such structures, a haematoma is formed at the fracture site. The healing 
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process falls into two type of repair depending on the mechanical stability of the 

fracture site: direct and indirect. 

2.6.b.i. Direct fracture repair 

If the fracture is kept rigid, with the bone matrix of one fragment in contact with 

the opposing matrix of the other, a process called “direct (Primary)” fracture 

repair occurs. At the points of contact any gaps present are filled with woven 

bone and new secondary osteons replace the damaged area and the bone heals. 

During this process, there is almost no formation of bone by the periosteum or 

endosteum and the fracture heals while keeping anatomical integrity, which is an 

important factor for intra-articular fractures. This process in very long however, 

and may take months or years to complete. The pattern of healing is called gap 

healing, but any motion in areas of small fracture gaps creates high strain fields 

which may be detrimental to the formation of bone. This is why direct bone 

repair may not be a common occurrence in clinical fractures (Goodship and 

Cunningham, 2001). 

2.6.b.ii. Indirect fracture repair  

The second type of bone healing involves the formation of a “callus” around the 

fracture site. The haematoma forms and kills all blood cells within it, but 

fibroblasts are present and start replicating, forming granulation tissue. In this 

first reactive phase, the adjacent tissue reacts and swells to provide support and 

protection to the bone underneath (Brighton and Hunt, 1986). The fracture 

haematoma undergoes a process of tissue differentiation. The granulation tissue, 

fibrous tissue, fibrocartilage and hyaline cartilage which, by endochondral 

ossification forms woven bone form the callus that remodels to the definitive 

disuse of lamellar bone. This process of repair is rapid, but create a bulge of 

callus for an extended period of time during remodelling. Evidence suggests that 

indirect fracture repair provides a faster return to pre-fracture values of strength 

and stiffness than direct repair, but is much more sensitive to biological and 

mechanical factors. The mechanical environment created by implants will have 

an effect on the mass and distribution of callus. Small changes in the mechanical 
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environment at the fracture site are major factor for the healing of the fracture. 

Two extremes exist: A very rigid fixation will result in an atrophic non-union as it 

supresses the formation of callus, while a fixation that is not rigid enough will 

cause an overproliferation of callus which has failed to bridge due to excessive 

movement and result in a hypertrophic non-union. Between these two 

extremities, one could hypothetically reach an environment that is ideal for an 

optimal healing rate (Goodship and Cunningham, 2001). 
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2.7. Bone Implants 

2.7.a. Intramedullary Devices 

There are two types of devices currently used by surgeons for the treatment of 

hip fractures fixed without arthroplasty: extramedullary devices, such as the 

dynamic hip screw® (DHS, Mathys Medical) or the compression hip screw® (CHS, 

Smith and Nephew), and intramedullary devices such as the gamma nail® 

(Stryker), intramedullary hip screw® (IMHS, Smith and Nephew) or proximal 

femoral nail (PFN, Synthes). They are composed of one large intramedullary nail 

section and either 1 or 2 lag screws which screw into the femur head. 

 

Figure 2-13: A) Gamma Nail®, B) Intramedullary Hip Screw®, C) Proximal Femoral Nail® (Schipper, Marti 
and van der Werken, 2004) 

Unstable trochanteric fractures and femoral neck fractures in young people are 

often treated with intramedullary devices, as they are biomechanically superior 

(Schipper, Marti and van der Werken, 2004). 

Schipper et al. (2004) have carried out a multi-centre prospective clinical study in 

which they compared the gamma nail and the proximal femoral nail. The 

conclusions of the study are that functional outcome and consolidation were 

equal for the Gamma Nail and PFN. They state that “the pitfalls and 
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complications were similar, and mainly surgeon- or fracture-related, rather than 

implant-related.” 

Cadaveric analysis of femoral head fixation failure shows that there is a 20% 

increased performance of the Gamma Nail compared to the DHS for screw 

migration. The mean force required for the gamma nails to fail by migration was 

3634.3N (±978) compared to the DHS failure load of 3116.7N (±494) either by 

migration or bending of the screw at the fracture site. All testing was performed 

on central-central positioned lag screws (Haynes et al., 1997). 

Bridle et al. (1991) showed then that there was no difference in operation time, 

blood loss, wound complications, stay in hospital, place of eventual discharge, or 

the patients’ mobility at final review. They state that “There was no difference in 

failure of proximal fixation: cut-out occurred in three cases with the DHS, and 

twice with the Gamma nail.” But a 3 to 2 ratio shows that the Gamma nail may 

have a lower cut-out rate as Haynes et al. (1997) showed. 

These results are echoed in the supracondylar fractures of the femur (distal end 

of the femur), where the comparison of the condylar screw fixation and the 

closed retrograde intramedullary nailing by Christodoulou et al. (2005) showed 

that the retrograde intramedullary nailing is preferable to the condylar screw 

fixation in terms of blood loss, operative time and hospital stay, but the time to 

bony reunion and clinical results have statistically insignificant differences. 

Lucke et al. (2010) report 2 cases of primary medial migration of the lag screw of 

a Gamma 3 Nail (Stryker®). They believe that complete disengagement is a 

matter of implant design. The PFN-a consists of a gliding spiral blade that 

features a positive stop (widening) at its lateral end, thus making disengagement 

impossible as the bulge does not fit through the gliding hole. They suggest that 

primary medial migration might be higher than assumed and that failure of 

osteosynthesis could be misinterpreted as a cut-out phenomenon when medial 

migration could have been the reason for clinical failure. The proposed solution 
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is simply close follow-up of patients with highly unstable fractures, difficult 

reduction and poor bone quality in order to detect migration as early as possible.  
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2.7.b. Screw Fixation 

 

Figure 2-14: “The function of a Screw” (Asnis et al., 1996) 

Figure 2-14 shows the basic function of screw in bone, where the type of bone 

(cortical or cancellous) would dictate the type of screw (cortical or cancellous) 

used. The use of screws in fracture fixation dates back to 1894 and William 

Arbuthnot Lane (1856-1943) (Lane, 1894). The first internal implant used and 

made popular by Lorenz Bohler was a metal rod called Steinman pin or Kirschner 

wire (now known as the K-wire). In 1939 Gerhard Kuntscher first used an 

intramedullary nail to treat long bone fractures during the war, were developed 

during the Second World War. 

A decade later the introduction of titanium alloys in implants and the first ACL 

reconstruction happened in 1960 when John Charnley pioneered the use of a 

cemented polyethene cup to replace a worn socket. 

The ultimate holding power of the tensile force marked in Figure 2-14 is called 

the pull-out force, and used as a measure for screw stability. The pull-out 

strength of screws is the most commonly assessed as a predictor for implant 

failure and thus the most valid to consider. In order to predict the failure force of 

a screw, the widely accepted failure is by shearing of the bone at the bone-screw 
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interface (Chapman et al., 1996), and this was defined in an equation derived 

from the equation given by Oberg et al. (1987): 

(1)    𝐹𝑠 = 𝑆 × 𝐴𝑠 = (𝑆 × 𝐿 × 𝜋 × 𝐷𝑚𝑎𝑗𝑜𝑟) × {0.5 + 0.57735[𝑑 𝑝⁄ ]} 

Where: 

𝐹𝑠 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠ℎ𝑒𝑎𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒 (𝑁) 

𝑆 = 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (𝑀𝑃𝑎) 

𝐴𝑠 = 𝑇ℎ𝑟𝑒𝑎𝑑 𝑠ℎ𝑒𝑎𝑟 𝑎𝑟𝑒𝑎 (𝑚𝑚2) 

𝐿 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 (𝑚𝑚) 

𝐷𝑚𝑎𝑗𝑜𝑟 = 𝑀𝑎𝑗𝑜𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑚𝑚) 

𝑑 = 𝑇ℎ𝑟𝑒𝑎𝑑 𝑑𝑒𝑝𝑡ℎ (𝑚𝑚) 

𝑝 = 𝑇ℎ𝑟𝑒𝑎𝑑 𝑝𝑖𝑡𝑐ℎ (𝑚𝑚) 

0.57735 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

 

Parker and Ali (2010) did not find any difference in outcome between short and 

long thread cannulated cancellous screws for intracapsular hip fractures in a 

clinical trials environment. They alluded to the lower pull-out strength and 

fracture compressing occurring from using the shorter screws. The potential 

disadvantage of the longer thread would be that by crossing the fracture line the 

screw would impede consolidation and fracture union. 

The biomechanical compatibility of orthopaedic screws is an important factor in 

screw fixation. Metallic screw fixation carries most of the load, causing the 

adjacent bone to resorb, an effect called ‘stress shielding’. (Gefen, 2002) has 

identified a method using dimensionless stress transfer parameters (STP) to 

optimize screw design. The parameters provided a rating for biomechanical 

compatibility by evaluating the stress transfer between the screw and 

surrounding bone. There were 2 stress transfer parameters used, one for the 

first thread of the screw and the second for the remaining threads. For all of the 

screw designs tested, the results showed that the first thread of the screw was 

the peak stress region of their models. They also show that the length of the 

screws, as well as the number of threads modify this stress concentration. A 
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higher number of threads and longer screw reduce stress concentration. The 

stress transfer parameters were used to identify new screw designs that would 

reduce stress shielding and concluded that graded-stiffness composite screws an 

active-compression screws would be more biomechanically compatible. 

Stress transfer parameters were used in a bone continuum model, but peri-

implant bone trabeculae and discrete modelling are critical for implant 

anchorage. Gabet et al. (2010) performed in-vitro testing on animal bone 

(Sprague-Dawley rats) in order to differentiate the effects of osseointegration 

and peri-implant trabecular bone on anchorage. The tests were performed using 

2 types of implants in order to differentiate osseointegration, and the animal 

bone was split into 3 groups in order to differentiate peri-implant trabecular 

bone. The results confirmed a lessening of the pull-out strength in low-density 

bone. This reduction was not due to an impaired osseointegration but primarily 

due to structural changes in the peri-implant trabecular bone. Trabeculae 

thickness (Tb.Th) and the number of trabeculae, which leads to a change in the 

bone volume, both influence toughness but Tb.Th is the main factor in 

influencing the initial linear and yield behaviours of the implant. This 

experimental evidence suggests that failure of implants occurs in the bone where 

anchorage failure involves buckling and ultimately breakdown of the weakest 

trabecular struts followed by failure of the stronger trabeculae. It is shown that 

anchorage is critically dependant on the peri-implant bone. 

Wirth, Müller and Van Lenthe (2012) have done important work on bone models 

using super-computers (1024 cores of a CRAY XT5tm) which show the importance 

of the discrete modelling of the bone area close to the screw rather than using a 

continuum to simulate bone. The study found clear distinctions in mechanical 

behaviours between continuum and discrete modelling, with a variability of the 

bone-implant stiffness of more than 100%. The models were solved using 

bonded interfaces between the bone and the implant, simplifying the solution 

process. 
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 They were, however, computationally massive with 12 million and 24 million 

elements in the discrete models, and 96 million elements in the continuum 

model. The discrete models were created from micro-computed tomography 

(µCT) scans of bone using a direct voxel-to-element conversion (van Rietbergen 

et al., 1995). 

Wirth et al. (2011) have also shown the importance of the local bone 

microstructure quality, comparing 300 local virtual biopsies from 12 µCT Scans of 

femoral cancellous bone (25 screw positions) using FE modelling and using kSB, 

the resulting stiffness in the direction opposed to the pull-out force, to compare 

results. They confirm their hypothesis that implant stiffness is governed by the 

bone quality of trabecular bone directly in the vicinity of the implant. 

Zdero and Schemitsch (2009) have shown that a direct pull-out at a constant rate 

of loading resulted in an increasing failure force, failure stress and resistance 

force when the pull-out rate was increased. This test was made with cancellous 

bone screws in synthetic cancellous bone. This study shows the importance of 

the rate of loading of models in physical testing and though this might not have 

an effect on computational rate of static loading, it might affect transient 

models. 
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2.8. Cut-out 

When repairing fractures with implants, one of the complications that might 

arise is cut-out. This is when the implant “cuts out” through the bone it is finding 

purchase in and meant to repair. The phenomenon of lag screw cut-out is not to 

date fully understood. Some of the questions still troubling surgeons and 

researchers include: “What initiates cut-out?”, “How does cut-out occur?”, or 

“Why is cut-out initiated?” 

2.8.a. Previous work and surrounding analyses 

Banan et al. (2002) reported an 8.7% cut-out rate in their first 60 cases of 

treatment of unstable, extracapsular hip fractures. This data is dated February 

2002. 

Parker (1992) shows that on antero-posterior and lateral radiographs positions, 

the position of the Lag screw may influence cut-out. He compared the position of 

the Lag screws which cut-out from 25 patients with the positions of 200 cases 

where there was radiographic evidence of bony union without cut-out. The 

conclusion of the comparison showed that cut-out happens more frequently 

when screws were placed superiorly or posteriorly. 

This superior, posterior position of the lag screw is shown to have increased cut-

out by multiple studies. Pervez, Parker and Vowler (2004) concluded a superior, 

anterior position increases the chance of cut-out; Gundle, Gargan and Simpson 

(1995) concluded a superior, posterior position increases the chance of cut-out; 

Davis et al. (1990) concluded a posterior position increases the chance of cut-

out; and Mainds and Newman (1989) concluded a superior position increases the 

chance of cut-out (Parmar et al., 2005). These studies show a clear detrimental 

effect of a superior position of the lag screw. 

Konstantinidis et al. (2013) performed tests on cadaveric femurs and confirm 

that biomechanical superiority is found in and inferior positioning of the lag 

screw on antero-posterior radiographs, but concluded that the incidence of cut-

out is unaffected by the position of the implant. 
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Schipper et al. (2002) hypothesized that a reduction of load on the hip pin of a 

PFN (®Mathys Medical, Bettlach, Switzerland) would reduce the risk of implant 

cut-out, but the cadaver study did not conclude if the reduction of load led to 

prevention of implant cut-out. The study did however show a significant 

reduction of load on the hip pin when using a modified PFN where the proximal 

hole in the intramedullary nail for the hip pin was made oval. 

Kawaguchi, Sawada and Nabeta (1998) provide an analysis of 75 

intertrochanteric fractures of the femur treated with the Asiatic gamma nail 

(Gamma AP Locking Nail System, Howmedica) where the cut-out of the lag screw 

occurred in six cases. They conclude that the degree of osteoporosis, the type of 

fracture and the degree of reduction did not contribute to cutting-out, but that 

the location of the lag screw in the femoral head was a crucial factor. They 

conclude that a shallow insertion of the lag screw as seen from the antero-

posterior radiograph and an antero-posterior deviation from the central position 

were significantly related to the incidence of cut-out. 

Nishiura, Nozawa and Morio (2009) have devised a technique to obtain a correct 

lag screw placement within tolerances of ±5 from the recommended position. 

Being able to place the lag screw exactly in the centre of the femoral head on the 

true lateral view means that it can be set forward as closest to articular surfaces 

as possible and thus reduce tip-apex distance to below 20mm as has been 

recommended by Baumgaertner et al. (1995). They have also composed a 

summary of studies and their recommended positions in Table 1. 

Table 1: “The optimal position of the lag screw in the femoral head (Nishiura, Nozawa and Morio, 2009).” 

 
Recommended position 

 

Inadequate position 

 
AP view Lateral view AP view Lateral view 

(Mulholland and 

Gunn, 1972) 
Central Central 

  

(Kyle, Gustilo and 

Premer, 1979) 
Central Posterior Superior 

 

(Laskin, Gruber and 
 

Posterior 
 

Anterior 
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Zimmerman, 1979) 

(Larsson, Friberg 

and Hansson, 1990) 
Inferior half Central Superior Anterior 

(Mainds and 

Newman, 1989) 
Inferior half 

 
Superior 

 

(Davis et al., 1990) Central Central 
 

Posterior 

(Den Hartog, Bartal 

and Cooke, 1991) 
Central Central 

 
Posterior 

(Leung et al., 1992) Inferior half Central 
  

(Parker, 1992) Inferior half Central Superior Posterior 

(Baumgaertner et al., 

1995) 
Central Central 

  

(Wu et al., 1996) Inferior half Central Superior 
 

(Kawaguchi, Sawada 

and Nabeta, 1998) 
Central Central 

  

 

Kane et al. (2014) have done recent mechanical testing which challenges the 

accepted principles of optimal placement in that a low position on the AP 

radiograph showed equal, if not superior stability than a central position with tip 

apex distance of less than 25mm. Their results show that a lag screw in the 

inferior half of the AP view is the primary factor, as has been previously 

suggested (Wu et al., 1996; Parker, 1992; Laskin, Gruber and Zimmerman, 1979). 

Wu and Tai (2010)  report 18 cases of fixation failure using SCS (Sliding 

compression screw) fixations in a group of 591 patients. Failure was attributed to 

cut-out of the lag screw for 13 cases, telescoping and more than 2cm shortening 

of the femur for 3 cases, one acetabulum penetration and one case where the 

plate loosened and the cortical screws were broken. They report that the 13 

cases concerning cut-out of the lag screw occurred significantly earlier than the 

other 5 cases, and that the positioning of the lag screw was in the central-central 

area (p<0.001) in opposition to the 5 cases they called “Group 2” where the 

position was inferior 1/3-central (p<0.01). The tip-apex distance of the screw was 

also longer in group 2 patients (30mm – 19mm for group 1). 
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These findings are also agreed to by Kuzyk et al. (2012) who tested 30 synthetic 

femurs in simulated peritrochanteric fractures fixed with Long Gamma 3 Nails 

(Stryker®). Their findings conclude that an inferior lag screw position on the AP 

view produced the highest axial and torsional stiffness while suggesting the 

smallest tip-apex distance as could be achieved. 

2.9. Bone peri-implant augmentation 

The use of adhesives or cement into the bone where screws find purchase should 

increase pull-out forces. Polymethylmetharcrylate (PMMA) provides a quick 

setting stability and was first proposed by Mueller in 1962 (Bartucci et al., 1985). 

Whilst PMMA is considered useful cement for augmentation, it comes with two 

drawbacks induced by the cement material: thermal necrosis and impaired 

fracture healing due to exothermic reaction. This means it is often considered as 

having poor bio-compatibility (Lindner et al., 2009). Recent studies show that 

PMMA increases the implant stability in intertrochanteric fractures both in vivo 

(Dall’Oca et al., 2010) and in vitro (Fensky et al., 2013; Stoffel et al., 2008). 

Calcium phosphate (CaP) cement is also used to augment bone and due to its 

good bio-compatibility and strength it has seen increasing use.  

Eriksson, Mattsson and Larsson (2002) did an in vitro study using foam blocks to 

investigate the effect of both cements in relation to pull-out forces.  Their 

conclusions are in agreement with the common acceptance that PMMA cement 

augmentation around implants will increase the holding power significantly 

when compared to the fixation strength of the metal devices alone. 

Augmentation with CaP cement on the other hand might reduce the strength of 

fixations due to the need of pre-drilling when using the cement in the case of 

high density bone. They do show however, that in low-density bone, CaP cement 

will increase the holding power of the devices compared to un-augmented cases. 

This difference, they explain, is at least in part due to the weakness of CaP 

cement in shear (Goodman et al., 1998) while PMMA has much higher shear 

strength when compared to CaP cement and artificial bone(Eriksson, Mattsson 

and Larsson, 2002).  
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3) Chapter 3 – Modelling Technique 

“Compared to the experiment models, mathematical models can offer the ideal 

opportunity from the point of view of control. They are characterized by absolute 

repeatability, with the additional advantage that any parameter can be varied in 

the desired degree (Zhang, Tan and Chou, 2004).” 

This chapter will describe the software used to create the models and all the 

parameters and conditions set on the models, as well as the methodology 

followed. The relevant literature and previous research pertaining to the models 

will also be investigated. One of the main factors in the choices of modelling 

techniques and settings was computing power, chosen to be 2 HPC (High 

Performance Computing) licences for a 2 x Intel ® Xenon® E5620 @ 2.40GHz CPU 

and a 2 x Intel ® Xenon® E5630 @ 2.53GHz CPU machine, both with 48Gb of RAM 

and NVidia® Quadro FX580 cards. This was selected instead of the Brunel 

University cluster in order to have full and unrestricted access. 

3.1. Previous work 

3.1.a. Direct Contribution 

The choice of modelling medium and boundary conditions for the work 

performed in this thesis is strongly influenced by the previous successful work 

performed by Hughes (2014) and Bennani Kamane (2012). 

Hughes (2014) undertook a methodical comparison between continuum, lattice 

and CT (Computed Tomography) models and concluded CT models are created 

following the technique described in section 3.2.a from CT scans. These CT scans 

are obtained using x-ray technology and described in-depth by Monahan (1996). 

Continuum models are the most simple to implement and straightforward to 

solve, and as such, useful for quick studies and providing a basic evaluation of 

different loading applications or designs. Once these are compared to CT models 

however, the differences become apparent. For two identically loaded models, 

one in a continuum of the same dimensions as another of a CT model, the results 

were significantly different. The locations of deformation were not the same and 
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displacement in the CT model was five times larger than for the continuum 

model (Figure 3-1). This significant difference between continuum and CT models 

was also shown by Wirth, Müller and Van Lenthe (2012). 

 

Figure 3-1: “Contrast of a continuum and CT model, arrows show the direction of loading: 0.02mm 

displacement (Hughes, 2014) .” 

The use of lattice modelling is aimed at replicating some of the bulk mechanical 

properties of cancellous bone, primarily bulk elastic moduli but also volume and 

the mechanical effects observed, such as variation in pull-out (Procter et al., 

2015). They use repeating shapes to form a framework, such as cubes, rods, 

diamonds, spheres and many other combinations. As they use such geometries, 

they may be set to represent certain values for BV/TV, such as the thickness or 

spacing of the rods in a rod lattice (Figure 3-2). 
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Figure 3-2: Rod lattice model of 10x10x10mm
3
 with a BV/TV of 11.6% (Hughes, 2014) 

The modification of thickness and spacing would modify the bulk modulus, but 

the bulk modulus can also be modified in a continuum model. The variability 

across the sample is low and predictable for such a model and any deviation in 

pull-out force is will be repetitively identical, which is not something found in 

cancellous bone as the later can be unpredictable across a single sample and 

even more so across a population. The production of lattice models is faster than 

creating models from CT scans but it was concluded that solve times in FEA for 

lattice models are no faster than that of CT models. The similar solve times were 

likely due to the similar complexity in contact areas i.e. there were many 

different contact points, as opposed to a single contact surface for a continuum 

model. Validation of the models was reported to be very difficult, and as such, 

lattice models could be said to be less relevant than continuum models (Hughes, 

2014).  

Bennani Kamane (2012) investigated a set of lattice models: a rod model, a 

model with cylinders cut in the 3 principal directions and lastly a model with 

spherical holes 1mm in diameter, 0.8mm apart. A variation of the diameter 

provides a simple variation in BV/TV. This was a preliminary study to 
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approximate the CT scan model which was obtained in his collaboration with the 

Laboratory of Biomechanical Orthopaedics of EPFL, Switzerland. FE results were 

compared to a mechanical test of the scanned bone piece in order to provide 

validation of the FE model.  

Noting the above conclusions, the selection of modelling real bone from CT scans 

was the preferred option to best represent the implant to bone interface and the 

analysis of its effects. 

Bennani Kamane (2012) looked into the boundary condition necessary for these 

models, and Figure 3-3 shows an investigation performed in order to assess the 

best loading condition in comparison with mechanical testing. 

 

Figure 3-3: “Boundary conditions tested. Fixed supports in red: a) top edges. b) points from the top 

surface, c) lateral edges, d) lateral faces (Bennani Kamane, 2012)”  

The last boundary condition where all sides were fixed (d) was selected as the 

closest approximation. The screw pull-out was noted as nearly twice stiffer as the 

original discrete model but the pull-out for was of similar strength The models 

investigated here were continuum. Further analysis of the CT scan model showed 

that a minimum depth of 4mm and approximately 10mm of width were required 

to approximate the full structure (Bennani Kamane, 2012).  
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These findings provided a base for the creation of the models used in the current 

analysis. The boundary conditions and model size were both inspired from this 

data, and the CT data used was also obtained from the µCT40 scan performed in 

the above research. 

3.1.b. Lattice investigation 

One of the lattices investigated was that of the ‘Gyroid’. The gyroid is a triply 

periodic minimal surface, created by solving for the equation:  

(2)    sin 𝑥 × cos 𝑦 + sin 𝑦 × cos 𝑧 + sin 𝑧 × cos 𝑥 = 0 

It is infinitely connected and was discovered by Alan Schoen (Karcher, 1989; 

Schoen, 1970). Große-Brauckmann and Meinhard (1996) proved that it is 

embedded. The gyroid separates space into two identical passages, as seen in 

Figure 3-4 (‘A’) but if a constant is added to the left side of equation (2), then the 

gyroid can be asymmetric in volume, thus creating a solid approximating 

cancellous bone. Due to its sinusoidal nature, the gyroid derivate (Figure 3-4, ‘B’ 

& ‘C’) appears to be very strong structurally. 

 

Figure 3-4: A) Standard Gyroid construct. B) ±0.8 Gyroid. C) ±1.3 Gyroid 

As a program to visualize and manipulate mathematical models was used 

(‘K3DSurf’) to represent the above models, the creation of a gyroid model proved 

difficult and was not achieved in the current research, as the largest imported 

model contained 10 by 10 by 4 cells, which was not enough to comparatively 

analyse with either CT or continuum models. 
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3.1.c. Indirect Influences 

A lot of research has been done on implants in bone investigation by finite 

element models and the interactions of both solids as well as the importance or 

acceptable simplification of the models. 

Zhang, Tan and Chou (2004) researched the failure behaviour of cancellous bone 

during screw pull-out using finite element models. Although they used a 

homogenous and isotropic continuum model of cancellous bone, they reached 

the conclusion that the failure of the model was related to the surface area of 

the cylinder which is determined by the major diameter of the screw and 

purchase length, which agrees to results from previous physical studies 

(Chapman et al., 1996). They also confirm that the major diameter of the 

cancellous screw has a more significant effect on pull-out than the minor 

diameter and pitch of the screw. 

McDonnell et al. (2010) investigated the mechanical interaction between a 

trabecular core and an external approximated cortical shell using FE analysis 

validated with RP models in turn compared to testing of the original specimen in 

compression. An experimentally determined correction factor was applied to the 

RP model results to account for the difference in strength of real bone tissue and 

RP material. A video recording of both (RP and real bone) compression tests also 

confirmed that the failure locations and mechanisms were qualitatively similar 

for many of the specimens tested. Although the specimens tested were ovine 

trabecular bone with a high BV/TV of 17-45% compared to the elderly trabecular 

bone from human spine values of 4-12% (Mosekilde, 1990), the results showed 

that the ultimate strength reinforcing effect of the shell increased as the bone 

volume fraction decreased. They conclude that the ultimate strength and 

stiffness of the structure obtained from the interaction between the shell and 

the trabecular core cannot be accounted for by the components in isolation. 

Noor et al. (2013) use their own custom-written code to model dynamic analyses 

to recreate falls by applying forces directly side-ways, obliquely forwards or 
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backwards at 45 onto the greater trochanter. They note limitations in the 

internal cancellous bone representation for their models, and their limited 

understanding of the nature of muscle forces acting on the femur during gait, 

simplifying the load to 392N, 23% of the 1705N load estimated by Bergmann et 

al. (2001) about 12 years prior to the analysis. In the dynamic simulation of falls, 

their results show common fracture patterns to those seen in clinical practice 

and thus validate their FEA model. 

Huiskes et al. (1987) were the first to perform computational studies of peri-

prosthetic bone remodelling using an axisymmetric finite element model of an 

intramedullary implant. They use the Strain Energy Density as a feed-back 

control variable to determine shape or bone density adaptations in order to 

investigate the relation between stress shielding and bone resorption in the 

femoral cortex in accordance with Wolff’s Law. This research is then followed by 

Prendergast and Taylor (1992; 1990) who simulated remodelling around an 

intramedullary implant using damage-adaptive remodelling and analyse the 

stresses found in the femur after total hip replacement with finite element 

models. Using the experimental work by Lee, Staines and Taylor (2002) which 

associated micro cracking with bone adaptation and further theoretical work by 

McNamara and Prendergast (2007) which incorporates both strain and micro 

damage as stimuli for bone remodelling, they have created a bone remodelling 

algorithm (Mulvihill and Prendergast, 2010; Mulvihill and Prendergast, 2008) that 

was partly corroborated against 3D simulations around non-cemented total hip 

replacements (Scannell and Prendergast, 2009). They came to conclusions that 

computational pre-clinical testing of medical devices is a valuable opportunity, 

representing a population of cases as opposed to an idealised ‘average’ patient 

simulation (Prendergast et al., 2011).  
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3.2. Modelling 

3.2.a. Strategy 

From the CT scans of a human femur, 3-dimentional analysis models can be 

created. The process used in this thesis follows the processes used by Hughes 

(2014) and Bennani Kamane (2012) which can be summarised in 5 steps: 

- Imaging 

-Volume creation 

-Meshing 

-Model creation 

-Analysis 

At the end of these 5 steps, results will be obtained and form the core of this 

thesis. The 5 steps above are described in depth and use 3 major software 

packages: Solidworks® produced by Dassault Systems®, Workbench® which is 

developed by ANSYS®, and Mimics® & 3-Matic® developed by Materialise®. 

3.2.a.i. Imaging 

Two processes exist to obtain micro-imaging data from cancellous bone samples: 

CT (Computed Tomography) and MRI (Magnetic Resonance Imaging). Computed 

Tomography is usually the preferred option for bone as it provides greater detail 

in denser material and offers a better resolution, currently as low as 0.4 μm 

(SkyScan® [1272], Belgium, 2014). μMRI is better suited for soft tissue and has a 

lower resolution of approximately 25 μm in high strength magnetic fields 

(MicroMRI Inc., USA, 2014). The issue with CT scans is that a patient will receive a 

high radioactive dose which results in the frequencies of CT scans performed 

annually per person being limited. Most samples scanned with μCT are in vitro 

samples as higher radiation doses are required for higher resolution, but in 

comparison to MRI and μMRI scans, the latter also requiring higher energy 

emissions, CT scans are less expensive and can be completed in seconds rather 

than minutes. In order to scan cancellous bone with sufficient resolution, a 

micro-CT (μ-CT) scanner must be used where a typical pixel size would be 0.02 
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mm x 0.02 mm with a 0.02 mm distance between image “slices”. In order to 

obtain a 20 mm x 20 mm x 20 mm volume using the numbers given, each slice 

would be containing around a million pixels and the whole image set would 

contain one thousand million pixels: one giga-pixel (Hughes, 2014). This 

resolution results in approximately 50 slices per trabecular strut which is more 

than is required. The current data uses a resolution of 12µm (Bennani Kamane, 

2012). 

Once scanned, the image slices are imported into Mimics® and the tissue being 

studied has to be selected from the corresponding Hounsfield (grey) scale. This 

process is called “thresholding”. Bone is a comparatively straight forward tissue 

to threshold as it is a relatively dense tissue that gives clear boundaries to be 

selected (Figure 3-6). Figure 3-5 shows the work by Kim et al. (2007) who have 

reviewed three principal techniques used to improve thresholding: adaptive 

threshold, global threshold, and matched global threshold. The first image (a) is a 

“Histogram of a typical 16-bit 3D CT image of bovine trabecular bone. The left 

peak represents background voxels, whereas the right peak represents bone 

voxels. The voxels in between these two peaks are ambiguous as they may 

represent bone or background voxels.” While (b) shows the three techniques 

used on the same histogram: “Histogram of the same 16-bit 3D CT image of 

bovine trabecular bone after three types of thresholding: global, matched global, 

and adaptive. Depending on the choice of thresholding technique, identical voxels 

may be assigned to bone or background (Kim et al., 2007).” 
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Figure 3-5: Thresholding as shown in Greyscale occurrence graphs (Kim et al., 2007).  

Figure 3-5 (b) shows the application of all 3 techniques: Adaptive thresholding 

obtains thresholds for local volumes using the grayscale value of surrounding 

voxels. The final threshold value for each voxel is the average of three local 

threshold values obtained from grayscale values for each row of voxels in all 

three directions. 

The global threshold is a unique threshold value selected as the minimum valley 

between bone and background. Any voxel with a grayscale value above this 

selection was considered bone but any voxel of equal or lower grayscale value 

was reset to zero. 

Matched global thresholding is the same as global but the value chosen is 

selected so that the bone volume fraction matched the BV/TV obtained through 

physical density measurements. 

It is concluded that although there were some differences in architecture, the 

BV/TV values were relatively consistent with the apparent modulus (Kim et al., 

2007). 

Coleman and Colbert (2007) compare a fourth technique, the half maximum 

height, to visually adjusting thresholding protocols. HMH calculates the threshold 

value as the mean of the maximum and minimum grey scale along a row of pixels 

that spans the boundary transition, and is an older method developed by (Ullrich 
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et al., 1980). It was concluded that the half maximum height technique was 

much more accurate than visually selected boundaries. 

Finally, Scherf and Tilgner (2009) propose a fifth technique: a new segmentation 

method called the “Ray Casting Algorythm”. This method uses the gradient found 

at the boundary transition known as Sobel filtering and combines this with a ray 

casting filter with anti-aliasing corrections. The Ray Casting Algorythm is 

demonstrated to overcome several problems encountered by a single threshold 

technique. It operates in three dimensions, is immune to grey value fluctuations 

and is sensitive to fine scale structures at a critical frequency of two voxels. As 

such, it is said to overcome some described problems found when using the half 

maximum height protocol or adaptive iterative thresholding. 

 

Figure 3-6: Pixels used for a cancellous model highlighted in green, also known as a "mask". 

Thresholding (Figure 3-6) can be verified through comparing the BV/TV of the 

model obtained with the BV/TV calculated in physical tests. A common method 

of obtaining BV/TV is by measuring the apparent density by dividing the wet 

weight by the specimen apparent volume while obtaining the bone tissue density 

by using Archimedes’ principle. The BV/TV is then calculated by dividing the 

apparent density by the bone tissue density (Kim et al., 2007). 

The thresholding options in mimics are pre-defined values for bone which might 

not match the global threshold. As such, a global threshold must be selected and 
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verified against the real bone sample if the same BV/TV is to be obtained. In the 

models used for this thesis, threshold values are selected arbitrarily in order to 

create BV/TV values for analysis, as if further described in Section 5.2.  

3.2.a.ii. Volume creation 

The creation of the volume mask is carried out using Mimics®, using the image 

slices to create voxels.  The feature has multiple options of quality, such as 

matrix reduction levels and triangle reduction. The ‘optimal’ value creates an 

element for each voxel while ‘low’ is smoothing and inflating the object. When 

compared to thresholding and the issues described for it earlier, these options 

have a much more important effect: the same threshold mask in each slice in 2D 

is converted to a 3D volume by the program, at different resolutions, and this 

may provide very different results. An optimum setting of this volume creation is 

shown in Figure 3-7. At this stage, smoothing options are also available, in order 

to reduce element count in the next stage and reduce model distortion produced 

by the square profile of the pixels. Over-smoothing can de-feature the model, 

thus smoothing must be used with consideration of this issue. 

 

Figure 3-7: Volume mask 
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3.2.a.iii. Meshing 

The 3D mask is then tessellated into a surface mesh made up of shell elements, 

and is opened in the 3-Matic® software, which is part of Mimics® and 

Materialise®. 

In 3-Matic®, this surface mesh is then re-meshed and streamlined for FE software 

using the method described in appendix A. As described in the method, the re-

meshing process requires manual meshing which is very time consuming as it 

often involves individually deleting intersecting and duplicate elements. These 

areas must then be re-meshed by individual addition of elements and these must 

resemble the original geometry as close as can be achieved, but as such, they are 

prone to user errors. Unfortunately these cannot be avoided, though reduced in 

occurrence with correct automatic parameters, and are a necessary process to 

produce a successful mesh. The occurrence of such detailed manual re-meshing 

was a major factor in the selection of automatic meshing options and element 

size, as finer meshes would result in a disproportionate number of manual 

operations that could take several weeks to implement. 

 

Figure 3-8: Surface mesh with implant  Figure 3-9: Surface mesh and interface boundary 

At this stage, the implant is imported into Mimics as an ‘.stl’ file and placed in the 

desired position and an assembly is created. A Boolean operation is performed to 

insert the implant, and although in practice the bone is pre-drilled or tapped, this 
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step can be omitted as the screw’s inner diameter would end up overlapping the 

pre-insertion volume.  

Manual meshing is then required a second time for the resulting model, but this 

time it has to adapt to 3 surface shells and an intersection boundary where the 

implant is joined to the bone. This would have to be repeated for every change in 

the geometry of the implant or the bone and would also lead to greater 

uncertainty about the representation of the geometry. The result can be seen in 

Figure 3-8, and finally (Figure 3-9) once all intersecting or overlapping elements 

have been removed, a volume mesh of the assembly can be created for export 

into FEA software. 

During the re-meshing process, some decisions need to be made on the level of 

acceptable de-featuring of the mesh. Figure 3-10 shows the visual difference 

between four meshes at a tenfold step decrease from right to left. The first 

image on the left is almost unrecognisable while the second image is discernible 

as a person. The third image starts discerning important features on the model, 

whilst the final image on the far right is the clearest image. In comparison, 

however, the very last image shows very little gain for a tenfold increase in the 

number of elements, and thus required computing power for an analysis. 

Similarly, though a significant visual change can be seen between the second and 

third image, they will be mechanically similar in analysis. 
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Figure 3-10: Element count comparison. Same model, with a tenfold increase in elements from left to 

right. (http://cdn.overclock.net/a/a4/a4a47b78_ChsSwUE.png) 

In addition to visual checks, stress or displacement convergence should be 

investigated, but this can prove to be rather complex for cancellous bone, as 

approximately one million volume elements are used for a piece of healthy 

cancellous bone occupying a bulk volume of 1100 mm3 (just over 10mm x 10mm 

x 10mm), and each of these models can take significant time (of the order of 

days) to load and solve. The number of elements used lead to computational 

requirements that are close to the limit of computational availability and 

significant refinement would not be achievable without a large reduction in the 

size of the bone around the screw. Similarly, a coarser mesh would not be 

acceptable as the mesh was graded to give adequate geometric definition of the 

screw/bone interface, and larger elements may lead to a failure to produce a 

solution (Hughes, 2014). This is why multi-scale modelling has been chosen as an 

option for the creation of the models, and explained in section 3.2.b. 

In order to ensure consistency through analyses, re-meshing settings remained 

constant throughout the process, and the following settings were used: 

 Shape quality threshold: 0.3 – this sets the desired quality of triangles, the 

value is the maximum ratio of triangle height to base. In this case no 

triangle had a base: height value less than 0.3. In some manual work, this 
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was set at 0.4 so that any further re-meshing would not modify the 

amended area, now of a higher quality. 

 Maximum geometrical error: 0.01 – this is the maximum deviation 

between the part’s surface before and after automatic re-meshing. In 

some manual work, this was kept at 0.005 to ensure the model geometry 

was not changed. 

3.2.a.iv. Model creation 

Once the surface mesh has been corrected of all erroneous elements and the 

volume mesh created in 3-Matic®, it is exported in this case to an ANSYS® 

recognisable ‘.cdb’ file and imported as such into ANSYS®. Although simple, the 

import into ANSYS® is time consuming. Once imported, the model can be created 

as a static or transient structural analysis. The material properties are defined 

and the contact parameters, described in 3.3, are set. 

3.2.a.v. Analysis 

 

Figure 3-11: Loading conditions for most of the models 

Figure 3-11 shows the boundary conditions used for most of the analysis, 

although alternative loading conditions would be described in their relevant 

sections. The cancellous bone is fully restrained on the four vertical sides in all 
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Cartesian directions (Label ‘B’). Although the base of the bone could be 

restrained, some models contained very little material for this to apply, and in 

addition, the bottom of the screw would be assumed to also be in bone. The 

limitations of the model size here limit this loading condition, which is the 

opposite of the loading conditions used by Wirth, Müller and Van Lenthe (2012). 

The screw has a vertical displacement applied on the top surface in line with the 

screw’s principal axis, which was simplified to represent a pull-out test. The top 

surface was also a geometrical cut operation on the screw, applied at the same 

set distance for comparison of results. 

3.2.b. Multi-scale modelling 

Multiscale modelling refers to a style of modelling in which multiple models at 

different scales are used simultaneously to describe a system (Weinan, 2011). In 

the present study, this means that cancellous bone can be modelled in a small 

volume around the screw in order to correctly model the bone-implant interface, 

while most of the remainder of the model can be modelled as a continuum 

which requires fewer elements but can represent a much larger model and 

sustain all the relevant loading conditions. 

3.3. Contact Parameters 

An important aspect of the model creation and analysis is the choice of contact 

options, as these are important to the bone-implant interface. A recent review of 

literature (Taylor and Prendergast, 2014) suggests that there is only a 

rudimentary understanding of how the interference at the bone interface 

develops. At present, frictional models where only the variation of the coefficient 

of friction is used, but there is potential to use more sophisticated methods or 

algorithms such as cohesive zone elements. As such, contact parameters may be 

the second most important configuration stage after loading boundary 

conditions for simulations based on primary stability and the analysis of it. Most 

of the literature simplifies the contact options to a bonded model (Taylor and 

Prendergast, 2014; Wirth, Müller and van Lenthe, 2012) as it solves with fewer 
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iterations. Figure 3-12 shows how penetration is modelled. Only elements which 

are in contact may transmit compressive normal forces and tangential friction 

forces, but if the penetration is too high, bodies may pass through each other.  

 

Figure 3-12: Penetration of target (Ansys® Mechanical Structural Nonlinearities Notes) 

(3)    𝑃𝑢𝑟𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦:  𝐹𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑘𝑛𝑜𝑟𝑚𝑎𝑙𝑥𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

(4)    𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒:  𝐹𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑘𝑛𝑜𝑟𝑚𝑎𝑙𝑥𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 𝜆 

𝑊ℎ𝑒𝑟𝑒 𝜆 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑙𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑡𝑒𝑟𝑚 𝑡ℎ𝑎𝑡 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 

The Pure Penalty contact formulation was used for all of the models in this 

analysis, though it is quite sensitive to contact stiffness settings. The Augmented 

Lagrange formulation can also be used for non-linear problems, but Pure Penalty 

is more likely to converge, or converge with fewer iterations, and thus was the 

preferred method selected. The contact settings were also set to asymmetric 

behaviour, in order to represent the stiffer titanium implant which could bite 

into the softer bone. (Figure 3-13) 
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Figure 3-13: Asymmetric behaviour (Ansys® Mechanical Structural Nonlinearities Notes) 

The stiffer material was always set as the target mesh, while the softer material, 

such as bone, was set as the contact surface. This ensured that only the titanium 

implant was allowed to penetrate the bone or the cement. 

3.3.a. Friction and stiffness 

A frictional contact allows for sliding between bodies and for the bodies to come 

in and out of contact. It also importantly allows for shear forces to develop 

between the two bodies. As such, a frictional contact was chosen for the analysis 

of screw implant to bone interface, as there is no evidence that this interface is 

bonded. Previous work has suggested a friction coefficient of 0.3 (Chen, Lung and 

Cheng, 2009) and this was the value used for the early analysis and simplified 

models. In the more complex discrete models, the conclusions by Hughes (2014) 

that a friction coefficient of 0.6 was more appropriate were used. This results 

from an analysis that was done on bone anchors which shows that there was a 

very large increase in pull-out forces between coefficients of 0.32 and 0.35 

(Figure 3-14) but a smaller increase after 0.35. Bennani Kamane (2012) compared 

three coefficients of 0.1, 0.3 and 0.5 and found no significant change for a screw 

model, a similar model to the current study of screws. The chosen frictional 

coefficient value of 0.6 is also consistent with the literature. 
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Figure 3-14: "Plot of peak reaction force of an anchor in a CT model vs. friction coefficient, 1 represents 
bonded"(Hughes, 2014) 

The contact stiffness was updated with each iteration and contact stiffness was 

set at 0.01 for the more complex discrete models. Although this was a relatively 

low value allowing greater penetration, it was a necessary step in order to 

achieve solution convergence. Although a contact stiffness of ‘1’ would be 

recommended for accuracy, some short studies by Hughes (2014) showed the 

peak stress to be less than 2% different.  
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4) Chapter 4 – Intramedullary implants and cut-out 

This chapter will cover the investigations of the bone-implant interface with a 

focus on the issue of cut-out of femoral nails from the bone as simplified finite 

element models. The objective of the work was to investigate stress 

concentrations and possible cut-out features in proximal femoral nails as very 

simplified models. These also helped to develop better models which were used 

to investigate the specific effect of the lag screw of a Gamma nail in a more 

detailed model of the femur head. Gamma nails and proximal femoral nails (PFN) 

have similar geometries and have been shown to have no difference between 

the results of treatment (Schipper et al., 2004). A further study was also made on 

the effect of the position of the lag screw on outcomes and compared with 

existing medical surveys (Parker, 1992). 

4.1. Simple Bone Models 

4.1.a. First case 

 

Figure 4-1: Simplified femur loading conditions 

The models used for the initial study were very simplified approximations of a 

femur proximal section with trochanteric section, neck and head. Static load was 

initially used in order to investigate stress concentrations in the PFN. The static 

loading was provided at different time steps by Bergmann et al. (2001) where 

B 
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each static step was solved using one step of the tabular data. This was placed on 

the model approximation of the femur head, while a fixed support was used at 

the base of the shaft (Figure 4-1). The shaft and trochanteric region are modelled 

as a simple cylinder of 60mm diameter and 165mm length. The neck of the 

femur is a second cylinder 35mm in diameter linking the trochanteric region and 

the femur head, a 30mm radius sphere. These measurements were very crude 

approximations of a femoral proximal section. The cylinder which models the 

neck of the femur was cut to approximate a Garden II or reduced Garden III-IV 

fracture (Guyton, 1998).  

The proximal femoral nail was modelled as a 14mm diameter cylinder with a 

reduction to 11mm on the shaft end. Two lag screws were cut from the main 

section, the lower being 9mm in diameter with an 11mm locking diameter, while 

the top one is 4.5mm in diameter with a 6.5mm locking diameter. They are both 

angled at 140 from the vertical (Figure 4-2). 

 

Figure 4-2: Proximal Femoral Nail model 

ANSYS® (Workbench version 13.0) was used to implement the F.E. analyses. The 

implant uses the Titanium alloy material pre-set, which has a Young’s Modulus of 

96GPa, Poisson’s Ratio of 0.36, C/T Yield Strength of 930MPa and Tensile 
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Ultimate Strength of 1.09GPa. The bone modelled was defined as having a 

Young’s Modulus of 300MPa and a Poisson’s ratio of 0.3, the apparent density 

properties of cancellous bone when modelled as a continuum (Wirth, Müller and 

van Lenthe, 2012; Currey, 2002). The bone model was homogenous and linear 

isotropic. The contact between both lag screws and the head was set as frictional 

with an auto-asymmetric behaviour, a friction coefficient of 0.35 and a Pure 

Penalty formulation. The stiffness was also updated at each iteration (Hughes, 

2014). The contact between the two bones had the same settings but a frictional 

coefficient of 0 (frictionless).  

4.1.b. Results 

 

Figure 4-3: PFN Maximum principal stresses 

The results of the static test at the highest load (t=4 model), shown above (Figure 

4-3) match previous research by Wang et al. (1998) which showed that the 

highest concentrations of stresses occur at the insertion holes for the lag screws 

(Figure 4-3). 

The Figure 4-4 and Figure 4-5 showing results obtained from the contact tool for 

penetration and frictional stress of the screws can be seen. 
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Figure 4-4: Penetration reading from the bone volume (mm) 

 

Figure 4-5: Contact frictional Stress (MPa) 

The highest penetration of 0.05mm occurs at the base of the thread of the top 

small lag screw, and corresponds to the location of the highest contact frictional 

stress. The intensity of the frictional stress matches the intensity of the loading, 

and is identically related in each load model. The penetration is at maximum at 
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the second load step until the 14th step, the second step is when the lateral (in 

line with the 2 lag screws) component of the load is at its maximum. 

 

Figure 4-6: Maximum principal stress within the bone (MPa) 

The maximum principal stress in the bone is the same as the contact frictional 

stress in location and the loading in intensity for each of the load steps, reaching 

a maximum of 8MPa (Figure 4-6). 

4.1.c. Discussion 

The results shown are in agreement with previous work on femoral nails with 

two lag screws (Schipper et al., 2002; Wang et al., 1998). The load is shared 

between the two screws and high stresses are found at their nail insertion holes. 

As these models are run in a static structural system, each load configuration 

point is resolved as a single entity. In the cases where the resultant load is high, 

such as time points 4 and 13, the maximum principal stress is also at its peak. 

Starting from load case 2 until load case 15 the penetration peaks at 0.05mm. 

This is a result of the Pure Penalty asymmetric contact option, limiting the 

allowed penetration of the screw by its stiffness constant knormal. The location of 

the penetration is explained by a scissoring of the two screws, as the stiffer lower 

screw will withstand more deformation than the thinner upper screw. This can 
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be seen in a deformation result of 2.7 times the true scale, with modified scale to 

focus on the lag screws as shown in Figure 4-7. These results might give an 

indication to the initiation site of lag screw cut-out, but a more in-depth 

investigation would be needed as too little is known of specific cut-out 

conditions. 

 

Figure 4-7: Total deformation of the Lag screws (adapted scale - mm) 

This model has shown how a simplified model can provide results approaching in 

vivo situations, requiring very little computational power to ascertain general 

design features of femur augmentation implants. The results from this model 

show, however, that a transient model and improved femur geometry are 

needed in order to ascertain the likelihood of cut-out more accurately. 

4.1.d. Second Case 

The model was improved in order to investigate the effect of cyclic loading by 

using the Transient system and the load cycle obtained by (Bergmann et al., 

2001) for standard gait loading. The loading was repeated four times, which 

would represent four steps in gait. For this investigation, the fracture was 

modelled as a 1mm gap between the head and trochanteric region (Figure 4-8). 
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4.1.e. Results 

 

Figure 4-8: Cyclic transient loading model 

The results for this model do not show the scissoring effect, as can be seen in the 

depth of penetration in Figure 4-9, however this is replaced by a displacement in 

the X direction, as can be seen in Figure 4-10. This displacement also results in 

much higher stress levels (1.23GPa) in the top neck screw which overshadows 

the highest concentrations of stresses that occur at the insertion holes for the lag 

screws. 
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Figure 4-9: Highest penetration result (mm)  Figure 4-10: Maximum principal stress (MPa) 

The depth of penetration is also increased to 0.06mm and no longer under the 

top lag screw but on the top of the tip, in the opposite X direction from 

displacement (Peak depth on the posterior side of the head). This means that the 

static model’s scissoring effect of the two lag screws no longer exists, or is 

lessened in the transient model. 

 

Figure 4-11: Bone maximum principal stress 

As can be seen in Figure 4-11, the stress in the bone is much lower and matched 

a cantilever pattern: The peak stress in the bone is at the top of the tip of the 

lower lag screw while an opposing stress can be noted at the bottom of the bone 

at both lag screw locations. 
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4.1.f. Discussion 

As was discussed for the previous model, the amount of penetration is limited by 

its stiffness constant knormal. However, for the transient study, the load applied to 

the model is not re-iterated for each time step. It is conserved through each step 

and thus increases the effects of a load of the same magnitude for each analysis 

step in comparison with the static modelling. This also becomes apparent when 

comparing principal stresses for the bone head and the femoral nail with the 

deformation at each time step (Figure 4-12): although the deformation and load 

(a total 1705N at step 4, but a 1601N force at step 13) are reduced on the second 

peak, the maximum principal stress found in the femoral nail is increased by 

about 24% from 995MPa at step 4, to 1230MPa at step 14, which is also one time 

point after the second load peak. The maximum principal stress in the bone does 

not peak until the maximum principal stress in the nail peaks, at step 14. It is also 

of note that it does not recede at the same time as the load and deformation, 

but retains intensity until both have become quite low (step 20 & 472MPa in the 

Nail). This means that although the femoral nail sustains both gait load peaks, 

only the second load peak creates a high peak of stress in both the bone and the 

implant. 

 

Figure 4-12: Deformation and maximum principal stress (mm & MPa) 
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Another interesting point not wholly apparent in Figure 4-12 is the reduction of 

stress and deformation over the course of the simulation. As mentioned above, 

the maximum principal stress in the nail peaks at 1230.2MPa in the first loading 

cycle, and time step 14. However this peak then becomes 1228MPa (-0.18%) on 

the second cycle, step 42, 1226.4MPa (-0.13%) on the third cycle, step 70, and 

1225.5MPa (-0.07%) on the fourth cycle, step 98. 

In conclusion, this study shows the importance of transient loading for the 

investigation of femoral implants by FE analysis, as the load was twice the 

intensity and of a very different nature when the model was loaded in a transient 

format. Both studies also show that FE models provide solutions that may act 

very similarly to in vivo results, such as the scissoring of the two lag screws in the 

femoral nail, the stress distribution across the nail or the reduction of stress over 

load cycles. 

4.2. Gamma Nail 

The previous models studied above were very simplified models. In order to 

further the analyses, the design of a Gamma3 Locking Nail® was kindly provided 

by Stryker®. The model was implanted into a more accurate femur model, 

obtained from available Mimics® files. The resulting model can be seen in Figure 

4-13 and was a shorter approximation of the system as only the Lag screw model 

was provided. As the purpose of the study is the lag screw to bone interface, this 

was an acceptable assumption as the entire Gamma nail or the shaft of the 

femur were not under investigation, though proved to follow previous results in 

literature in section 4.1. 
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Figure 4-13: Gamma3 Locking Nail® model 

For this model, the complex geometry was meshed and converged in a short 

study. Once the appropriate mesh was ascertained, an analysis was performed 

following a comparative study the results previously obtained with the PFN in 

section 4.1. Some minor changes include the boundary conditions: the fixed 

support is much closer and constrains the lag screw in this study due to the 

reduced geometry, and the force loading was only applied to multiple surface 

sections on an estimation of the acetabular cap loading condition (Figure 4-14). 

Contact frictional options remained identical (0.35 coefficient, Asymmetric, PP) 

 

Figure 4-14: Gamma model loading conditions 
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4.2.a. Results 

Both static structural and transient analyses were run using this model, and the 

results (Figure 4-15 & Figure 4-16) for the contact penetration and maximum 

principal stress follow the same differences as was found for the PFN although 

the altered model meant that exact values cannot be used for an acceptable 

comparative study. Some issues were still present with the remote displacement 

at [B] but minimally changing deformation results only. 

 

Figure 4-15: maximum principal stress (MPa) & penetration (mm) in the static model: peak load condition 

 

Figure 4-16: maximum principal stress (MPa) & penetration (mm) in the transient model 

The maximum principal stress for the single load case was 717.6MPa in the lag 

screw, penetration limited to 0.015mm while the maximum principal stress of 

the bone was 13.3MPa. In comparison, the transient case had a maximum 

principal stress of 1237MPa in the lag screw, a penetration of 0.014mm and a 

maximum principal stress of 29.6MPa in the bone. The transient model was also 

cycled 16 times, which showed the reduction of stress and deformation over the 

course of the simulation. 
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4.2.b. Discussion 

The discussion of these results can draw resemblance to the proximal femoral 

nail results, as the results for maximum principal stress were of the same order 

of magnitude, around 600-700MPa for the static model, and 1230MPa for the 

transient case, but this is a comparison of two very different models. Although 

this is the case for the exact magnitude of results, a comparative analysis can be 

made for the nature of the results: 1) A transient model is needed to represent a 

precise analysis of the forces affecting a hip fracture implant during motion as a 

static, single-loaded case is insufficient for a stress analysis of the implant to 

bone interface during gait. A single-load model will however be an adequate 

assumption for short-term modelling, as the 16-cycle model, as simple though it 

seems, took more than 2 weeks to reach a converged solution.  2) It is clear from 

both models that the implant will perform the majority of the load bearing, to a 

few orders of magnitude (1237MPa > 27MPa) higher than the bone. Stemming 

from this, the level of penetration and contact friction at the top (proximal) side 

of the lag screw is high, but migrates anteriorly as the gait loading moves 

posteriorly (Figure 4-17). The limitations of both models however restrict the 

analysis of these results to explain their involvement in cut-out. 3) Although the 

simplified PFN model showed interesting results at the lag screw insertion holes, 

it can be concluded that only the head of the femur, contact definition, and 

implant are needed in these simple models where the muscle loads on the 

trochanters are not applied. The base of the femur acts as a simple constraining 

mechanism, unless the two bone sections are modelled in contact. 
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Figure 4-17: larger Z component in the model load at the 28
th

 step 

4.3. Positional Study 

The femur and Gamma3 nail model was then amended to perform a positional 

study to assess the results by (Parker, 1992) on a FE model. The hypothesis 

proposed here is that simply translating the lag screw on the fracture plane 

would provide different results and that an inferior position on the antero-

posterior radiograph, represented in this case by the X-Y plane, would show an 

ideal, or at least different, case. The model is presented in Figure 4-18 and shows 

5 of the 9 positions studied: the original, central case; ±Y positions; and ±Z 

positions. Not represented here are the 4 ±Y±Z cases. The lag screws were placed 

4.5mm from each other (3.18mm from the central screw) and at the same depth: 

The tip-apex distance was largest for the central case while the tip-fractures 

distance was identical for all the cases. 

 

Figure 4-18: Gamma3 model and lag screw positioning (±Y and ±Z) 
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The contact settings were kept from the previous models (fc=0.35, Asymmetric, 

Pure Penalty) as were the load conditions and material properties. For the 

purpose of this study and obtaining results of penetration for the thread edge, a 

set of result paths were created, and can be seen represented in Figure 4-19. 

 

Figure 4-19: Path function on the Gamma3 model 

This was done in an attempt to quantify any effect of the screw on the 

surrounding continuum of cancellous bone. These paths were placed on the 

bone circumference, not the edge of the screw. 

4.3.a. Results 

The results of this study have been compiled in Figure 4-20, showing both the 

penetration and equivalent (Von Mises) stress in the bone at the screw interface. 
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Figure 4-20: Penetration and equivalent (Von Mises) stress along the screw thread edge (mm & MPa) 
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In both graphs above, the results of the model where the lag screw was 

positioned in the inferior-anterior (-Z-Y model) were of some concern and 

checked. The results for that model showed a rotation of the head section 

around the lag screw which reduced the amount of penetration but increased 

the stress in the bone by a significant amount, especially at the cutting tip of the 

screw. 

 

Figure 4-21: -Y-Z model deformation in the Z axis (mm) 

As such, a 10th model was run in this simulation, identical to the –Y-Z model in all 

but the coefficient of friction, which was modified to 0.6 in order to increase 

friction and remove the potential for rotation. 

 

Figure 4-22: Average penetration and equivalent stress along the screw thread edge (mm & MPa) 
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Figure 4-23: Deformation and equivalent stress maximum of the bone (mm & MPa) 

Figure 4-22 above shows the average penetration & equivalent stress around the 

screw and Figure 4-23 the maximum deformation and maximum principal stress 

in the bone.  

 

Figure 4-24: Equivalent (von-Mises) stress on the central-central lag screw (MPa) 

A typical stress representation (first case) can be seen in Figure 4-24 acting in the 

same way as the simplified models: in a cantilever pattern with peak stress at the 

tip of the lag screw. The 3 models where the lag screw was placed in the anterior 

position (-Z; -Y-Z; +Y-Z) also showed higher stresses on the posterior cutting edge 

of the screw (Figure 4-22). 
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Figure 4-25: Equivalent stress in the central-anterior lag screw (MPa) 

These models show the highest levels of stress, both at the screw edge and 

within the bone, in comparison to the other models, while showing a lower 

penetration depth. 

4.3.b. Discussion 

The first point of discussion of these results is to accept a good representation of 

positional literature regarding cut-out: The best cases in terms of equivalent 

stress in the bone are the central-central (first case) and inferior-central (-Y case) 

models. The posterior cases (+Z; -Y+Z) also show reduced stress and 

deformation, while anterior cases and especially the superior-anterior (+Y-Z) and 

inferior-anterior (-Y-Z) cases show the highest stresses and deformation, 

although in the inferior-anterior case, the higher friction model reduces these, 

which are a result of the rotation of the model. This is in line with the conclusions 

by Laskin, Gruber and Zimmerman (1979) though they were healing 

intertrochanteric fractures, and other studies (Parker, 1992; Den Hartog, Bartal 

and Cooke, 1991; Davis et al., 1990) agree the anterior position to be preferable. 

The general consensus that an inferior-central position is preferred is reflected in 

Figure 4-23, as both the maximum stress and deformation are the lowest values 

out of all the cases investigated. From these results, it would seem that the 

posterior case is also a good candidate, but as can be seen with the rotation of 

the inferior-anterior case, many factors may not be accounted for, such as the 

effect of muscle loads on the trochanters or the strength of a reduced fracture, 
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as the current model simplified this to a 1mm gap. Another point of note is that 

the contact penetration has an inverse relation to the contact stress and bone 

equivalent maximum stress, the latter two having a close relationship. As such, 

from the results one would read a higher penetration of the contact to be a 

favourable factor, and a lower penetration, such as can be seen in the inferior-

anterior case to be avoided. In this instance, both central-central and inferior-

central cases yet again come out on top, while the posterior case is closer to the 

superior and posterior-superior cases, and not such a favourable position. An 

important note is that this study does not include any data on the tip-apex 

distance, known to be of importance (Baumgaertner et al., 1995). The central-

central case in this study has a much larger tip-apex value than the surrounding 

cases, and this might be one factor for the results. 

4.3.c. Conclusion  

In conclusion, this study shows that an approximate FE model of the femur will 

be consistent with in vivo result studies and agrees that the inferior-central case 

is the preferred position for a Gamma3 lag screw, if only mechanically to reduce 

stresses and deformation. Unfortunately, the study does not show good 

reasoning for the effect of cut-out, as penetration is inversely proportional and 

equivalent stress might only give an indication to a general area of weakness. In 

order to properly investigate cut-out, a multi-scale model must be used, as a 

continuum model does not provide adequate data. 

4.4. Multi-scale Modelling, Associated Issues (Discussion) 

The next step of the investigation of cut-out would have been a multi-scale 

model which includes both the correct general geometry of the Gamma3 screw 

and femur bone in addition to the correct discrete geometry of cancellous bone. 

The resulting model can be seen in Figure 4-26 as an incomplete surface mesh 

model. This section of the chapter exists to explain the shortcomings, both in the 

hardware but mainly in the software used, in order for further studies to expect 

difficulty in this area and adapt research accordingly. Hardware issue are simply 

the advancement of computing power; the fact that when these models were 
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run (2012-13), the machines used (described in Chapter 3 – Modelling 

Technique) were on the higher end of available resources, while upon publish of 

this thesis (2015),better hardware would be chosen if a new analysis were to be 

made. 

 

Figure 4-26: Gamma3 multi-scale model (surface shell) 

The software issues are mainly related to the coding of the 3-Matic® software by 

Materialise®. Though very appropriate for its purpose, and possibly still the 

software of choice to convert CT scans into FE models, it encounters issues in the 

re-meshing and meshing improvement algorithms.  

 

Figure 4-27: 3-Matic meshing issues encountered 

An example of this is shown in Figure 4-27 where a relatively simple surface 

mesh for the bone is intersected with a screw mesh, and the resulting re-

meshing process generates a very complex mesh with numerous intersecting and 

duplicate elements. This was a relatively common occurrence in all of the models 
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re-meshed in 3-matic, and the principal cause of the extended manual work 

needed to obtain appropriate FE models. When the number of concerned areas 

was low, the manual correction could be completed daily or over the course of a 

few days, but in the case of the Gamma3 multi-scale model, these were 

numbered in amounts that would have not been feasible to correct manually 

(Figure 4-28). An automatic resolution would be needed, but none was available 

and thus this model could not have been completed. 

 

Figure 4-28: manual corrections required marked in red 

Recommendations for further work on this subject include: 

- A meeting was held with the Materialise® software team and they 

mentioned being aware that the re-meshing algorithms needed some 

improvements, and as such, later versions of the software might not 

encounter these issue, or might contain automatic resolution methods if 

the re-meshing process still results in complications. 

- The multi-scale modelling involved intersecting 4 to 5 different solids 

(cancellous bone; screw; continuum bone geometry). Obtaining a CT scan 

of the entire bone, such as the whole femur head with cancellous bone 
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interior, and only then modelling the lag screw inside the structure might 

reduce the generation of the complications described. 

- In a similar fashion to the previous recommendation, a scan of the bone 

and implant as one might remove these complications entirely, though 

some materials can cause image diffraction (Sullivan, Smith and Rozzelle, 

1994). Shot-peened titanium alloy is known for this interference effect.  
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5) Chapter 5 – Parametric Analysis of a Cancellous Screw 

As the multi-scale modelling route was not available for further research, the 

investigation of the bone-implant interface followed a different route of 

investigation: a continuation of the cancellous screw modelling by Bennani 

Kamane (2012), but using larger models in order to investigate the interaction 

between the screw and the discrete cancellous bone structure more accurately. 

The latter part of his work investigates the resulting change in pull-out stiffness 

from to the effect of some parameters such as screw type, pilot hole presence or 

screw angles. According to Tencer et al. (1996), a good holding power when a 

large force is needed to ‘pull out’ the screw in porous materials such as 

cancellous bone is dependent on six factors, three of which are related to the 

geometrical design: Outer diameter; length of engagement in bone; thread 

geometry (length and pitch) as well as three related to the bone and its 

preparation: bone shear strength; pilot hole size; tapping. This chapter will 

investigate some of the screw parameters in more depth and find out which 

parameters might have the greater effect. Each set of parameters studied will be 

separated into a section. 

5.1. Introduction 

In this study, two out of the above 6 factors were studied. As part of the thread 

geometry (length and pitch) and bone shear strength factors, three groups of 

parameters were studied as 3 analyses: 

 Bone volume fraction (BV/TV): This set of models made use of 

thresholding to obtain 9 different BV/TV values of the same piece of 

bone, which was thus eroded (Kim et al., 2007; Hara et al., 2002). 

 Pitch and inner diameter: These are two major components of the 

cancellous screws; these two parameters were investigated without any 

modification in the outer diameter of the screw, as this is known to have 

a very large effect (Gausepohl et al., 2001; Wittenberg et al., 1993). 
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 Proximal half angle: (Wang et al., 2009) performed recent testing which 

showed this parameter to be of significant influence. These results will 

also be used to validate modelling data. 

The models used for this analysis were created using the method described in 

Chapter 3 – Modelling Technique. The CT scans were obtained from the femoral 

condyles of a cadaver (adult female) and the method described above was used 

to create FE models with the geometry of the cancellous screw obtained from 

Stryker® (Bennani Kamane, 2012).  

The models created were submitted to a vertical linearly ramped displacement 

of 0.2mm applied to the top of the screw geometry ([A]), and fully restrained on 

the four vertical sides (i.e. the outer surfaces lying in the Z-X and Z-Y planes), 

marked on Figure 5-1 as [B], though the front and back face are not marked. 

 

Figure 5-1: Loading of the discrete model (0.2mm displacement) 

The reaction forces of the model against the 0.2mm displacement are the forces 

given as ‘pull-out’ for the analysis. The values of 0.2mm was the largest mean 

trabecular thickness of the original bone model (Hughes, 2014) though the lower 

threshold models would have a mean trabecular thickness closer to 0.1mm. As 

such, displacement values above 0.2mm would likely create large deflections in 
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the trabecular struts and create complex contacting mechanisms. Due to the 

bone model being linear isotropic, failure of trabecular struts is not resolved as it 

would be in a plastic model. The ‘pull-out force’, denoted as the ultimate force 

required to remove the screw from the bone, is therefore quantified as the 

reaction force of the model to the 0.2mm displacement. Rice, Cowin and 

Bowman (1988) also conclude that Elastic modulus and strength of cancellous 

bone are linearly proportional, and has been experimentally demonstrated. The 

contact definition is described in Chapter 3 – Modelling Technique and the 

interface between the bone and the screw is a frictional contact with frictional 

coefficient of 0.6, asymmetric behaviour, and contact stiffness updated for each 

iteration. The bone elements have the following properties: 

Density, ρ = 1180kg/m3 

Young’s modulus, E = 17GPa 

Poisson’s ratio, ν = 0.3 

Yield strength, σ = 100MPa 

Ultimate strength, σ = 110MPa 

These values are chosen to fall within measured values in literature (Bayraktar et 

al., 2004; Jee, 2001) for ‘normal’ bone. The titanium screw elements were set as 

the defined “Titanium alloy” by ANSYS®: ρ = 4620kg/m3, E = 96GPa, ν = 0.3, Yield 

σ = 930MPa, Ultimate σ = 1070MPa. 

The aim of the study is to identify the effect of parameters and ascertain which 

would increase pull-out strength in cancellous bone. 

5.2. Varying Volume Fraction 

The first analysis performed investigated the effect of varying bone volume 

fraction (BV/TV) on pull-out. In order to vary BV/TV, multiple lower threshold 

cut-off points of the Hounsfield greyscale were selected in a linearly increasing 

pattern to give different volume geometries. This created a set of models, from 



 87 

the highest 20.7% BV/TV model, in steps of approximately 2.5% to the highest 

threshold which resulted in a model of 6.16% BV/TV. In order to keep these 

models fully consistent, mesh refinement and corrections were applied 

simultaneously to all 7 models in Mimics as these can select multiple items to run 

in a single batch, thus resulting in simultaneous modifications of the models. The 

Mimics pre-defined bone threshold would generate a model of 16.8% BV/TV. As 

such, the two largest models have a larger volume than the original model: 

20.72% BV/TV and 18.00% BV/TV, while the smallest models have been eroded: 

15.73% BV/TV; 13.21% BV/TV; 11.12% BV/TV, and finally two models would be 

below the WHO BV/TV threshold of 11% (Legrand et al., 2000) and would be 

classed as osteoporotic bone, though 11.12% could be classed as osteoporotic in 

some circumstances. The yield stress and ultimate strength properties listed in 

5.1 Introduction were not defined for this analysis. 

 

Figure 5-2: Bone Volume Fraction models 

The 7 resulting models are shown in Figure 5-2 with the bone volume percentage 

displayed on the right of each model. The decreasing volume of bone also 

signifies a decreasing contact area, and though not directly related to pull-out 

strength (Bennani Kamane, 2012), there is strong evidence that higher apparent 

density gives higher contact area and therefore provides increased pull-out force 

(Asnis and Kyle, 1996). 
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Figure 5-3: Contact area for each model  
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The highest BV/TV model had a total contact area of 31.3mm2. In decreasing 

BV/TV, the following models had contact areas of 27.3, 23.4, 19.3, 15.9, 12.8, 

and finally 8.41mm2 for the 6.16% BV/TV model (Figure 5-3). 

The pull-out force is given as the peak reaction force for a screw displacement of 

0.2mm. The pull-out strength for the different densities is shown in Figure 5-4 

with the added 0-0 point (No bone = no reaction force). The results show a clear 

difference between each of the models, where 6.16% BV/TV provides only 

78.6N, but 8.66% provides a 230N reaction force and 20.72% reaches 2035N, a 

significant 2489% increase from the lowest volume fraction.  

 

Figure 5-4: Screw pull-out comparison of different bone volume fractions 

The clear relationship between reaction force and bone volume fraction was 

matches the data observed by Morgan and Keaveny (2001) when they related 

yield stress to apparent density in tension or compression. Both relationships 

show that a small variation in volume fraction for the same bone geometry can 

significantly alter pull-out strength. The effect of BV/TV on pull-out strength is 

known from physical testing (Tencer et al., 1996), and confirmed via this FE 

modelling study. 
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5.2.a. Volume Fraction and Screw Pitch 

Another aspect of the volume fraction analysis was to compare this effect to the 

variation of another parameter. In this case, the screw pitch was chosen as one 

of the principal factors affecting pull-out strength (Tencer et al., 1996). The same 

parameters were used for the contact options and boundary conditions as for 

the previous 7 models in order to allow for exact comparison. The resulting 

reaction forces are compiled in Figure 5-5 with the additional 0-0 point. The 

original 1.75mm pitch of the cancellous screw is displayed in blue while the 

second set of models based on the 2mm pitch screw are displayed in red: 

 

Figure 5-5: Screw pull-out comparison of different bone volume fractions at 2 different Screw Pitches 

The results show a decreasing reduction of an average 5.5% in the reaction force 

of the 2mm pitch screw, with 8% at 6.16% BV/TV, 6.5% at 8.66% BV/TV, 5% at 

13.21% BV/TV, and 3.8% at 20.72% BV/TV. As such, the effect of varying the 

pitch of a screw has almost no influence on pull-out, in comparison with the 

varying volume fraction. It is worth noting that the 6.16% BV/TV decreased by 

8% to 72.3N and this points to a proportionately larger effect of the screw pitch 

on lower BV/TV bone, which is supported by previous studies (Asnis et al., 1996). 

This lead to the selection of the lowest apparent density model for the following 

analysis in the influence of pitch and inner diameter of the screw, as these 

parameters would not have had such a large effect in higher density bone. 
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5.2.b. Volume Fraction and Contact Area 

Using the contact areas of each model as seen in Figure 5-3 which were obtained 

from the Mimics® program which provides the surface area data of each surface 

mesh, the reaction force in relation to the contact area can be calculated for 

each model, and results can be seen in Figure 5-6. 

 

Figure 5-6: Screw pull-out according to contact area of different BV/TV 

The results show an S-shaped curve while the data would be expected to be a 

linear relation, as a plot of contact area against apparent density is linear. This 

suggests that in a higher density model the apparent cancellous structure is 

stiffer than the lower density structure, but this change does not follow a linear 

trend. 
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5.3. Pitch and Inner Diameter Relevance 

The study’s second analysis performed investigated the effects of varying the 

pitch and inner diameter (ID) of the cancellous screws. The outer diameter of the 

screw is known to be an important, if not the most important factor, in pull-out 

strength (Gausepohl et al., 2001; Chapman et al., 1996; Asnis et al., 1996) and 

will not be investigated in this study. Chapman et al. (1996)  propose a shear 

failure force formula that includes a thread shape factor ‘TSF’, which was highly 

correlated to their experimental pull-out forces (slope = 1.05, R2 = 0.947) and is 

defined in Chapter 2 – Review of Literature: 

(5)         𝐹𝑠 = 𝑆 × 𝐴𝑠 = (𝑆 × 𝐿 × 𝜋 × 𝐷𝑚𝑎𝑗𝑜𝑟) × 𝑇𝑆𝐹 

𝑊ℎ𝑒𝑟𝑒 𝑇𝑆𝐹 = {0.5 + 0.57735 [
𝐷𝑚𝑎𝑗𝑜𝑟 − 𝐷𝑚𝑖𝑛𝑜𝑟

2
𝑝⁄ ]} 

The models all used the same section of 6.16% volume density bone and the 

implant was modified using the dimensions for the screw shown in Figure 5-7. 

The length and angle of the thread flank angles were kept constant where 

possible (blue construction lines), and minimally modified when required, such 

as in models with low pitch and small inner diameter. 

 

Figure 5-7: Modified Screw geometry (dimensions in mm) 
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The four values used for pitch were 1.55, 1.75, 2.00 and 2.50mm, where the 

original screw pitch was 1.75mm. Similarly, the four values used for the inner 

diameter (I.D.) were: 0.8, 1.2, 1.9 and 2.6mm. The original inner diameter was 

1.9mm, with ±7mm while 0.8mm was used to investigate a minimal inner 

diameter. A few models are shown in Figure 5-8 to indicate the range studied. 

 

Figure 5-8: Varying Screw TSF, from left to right: 1.2mm I.D. with 2.5mm pitch, with 1.55mm pitch, then 
2.6mm I.D. with 2.5mm pitch, and 1.55mm pitch. 

Table 2 shows the collection of models created and the resulting TSF calculated 

using the standard outer diameter of 4mm and the inner diameter and pitch 

marked. 

Table 2: Thread shape factor. 

Inner Diameter 

Pitch 0.8 1.2 1.9 2.6 

1.55 1.096 1.022 0.891 0.761 

1.75 1.028 0.962 0.846 0.731 

2 0.962 0.904 0.803 0.702 

2.5 0.870 0.823 0.743 0.662 

 

 The lowest BV/TV (6.16%) was selected as the apparent density at most 

influenced by screw geometry. It also represents osteoporotic bone density and 

qualifies as the principal candidate for improvement. Once the models were 

assembled and imported they were subjected to the same load conditions as 

were used in the last analysis (5.2 Varying Volume Fraction). All of the properties 

described in section 5.1 for cancellous bone were used. The manual work 

performed in the creation of the models is still a major factor in this analysis 
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where a very small change in supporting geometry could cause more significant 

changes in the results. 

5.3.a. Results 

The results obtained have been compiled into Table 3 and Figure 5-9 below, 

where all results are in Newtons for the table and the Z-axis of the 3D surface 

graph.  

Table 3: Pull-out reaction force (N). 

Inner Diameter 

Pitch 0.8 1.2 1.9 2.6 

1.55 64.376 66.166 78.202 74.56 

1.75 69.486 67.731 78.611 71.374 

2 46.434 47.001 72.275 69.613 

2.5 58.946 58.371 65.621 68.243 

 

Figure 5-9: Screw 0.2mm pull-out reaction force at different TSF 

The graph in Figure 5-9 was plotted using Matlab® from the data in Table 3. Each 

of the contours on the X-Y plane represents a step of 1N and the smooth surface 

plot was generated using the ‘griddata’, ‘v4’ function of Matlab® in order to give 
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a visual representation of the pull-out forces obtained. The original screw 

parameters, 1.75mm pitch & 1.9mm diameter provide the highest pull-out force 

at 78.6N. Inner diameter and pitch had some effect on pull-out,  a 60% reduction 

in diameter or a 40% increase in pitch decreased the reaction force by 

approximately 25%. An exception to this is two results at a pitch of 2mm, with an 

ID of 1.2 and 0.8mm which showed a 40% decrease in pull-out force. To 

investigate the result further, all of the 0.8 & 1.2mm implants were rotated in 

the model by 180 around the screw’s vertical axis and the results of these can 

be seen in Figure 5-10. 

Table 4: Pull-out reaction force (N), rotated screw. 

Inner Diameter 

Pitch 0.8 1.2 1.9 2.6 

1.55 67.113 69.168 78.202 74.56 
1.75 63.693 62.286 78.611 71.374 
2 61.561 63.461 72.275 69.613 
2.5 58.265 60.812 65.621 68.243 
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Figure 5-10: Screw 0.2mm pull-out reaction force at different TSF, rotated Screw 

The effects of a 180 rotation of the screw in its longitudinal (vertical) axis were 

significant and no results were below 25% of the original pull-out force. The scale 

of the colour representation for both graphs was identical, with a minimum of 

40N and a maximum of 80N. The contours on the second graph were also in 1N 

steps. 

Further analysis of these two ‘low’ results is needed to understand which 

phenomenon might be at play. An additional set of three models was produced 

with parameters for pitch and ID close to the results concerned. Two models at 

an ID of 1.2mm but a pitch of 1.9 and 2.2mm, and a model at a pitch of 2mm but 

an ID of 1.4 were created. These can be seen added to the previous study in 

Table 5 (Green tinted results) and Figure 5-11. 

Table 5: Additional pull-out reaction force models 

Inner Diameter 

Pitch 0.8 1.2 1.4 1.9 2.6 

1.55 64.376 66.166  78.202 74.56 
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1.75 69.486 67.731 77.482 78.611 71.374 

1.9 
 

45.328    

2 46.434 47.001 49.311 72.275 69.613 

2.2 
 

64.584    

2.5 58.946 58.371  65.621 68.243 

 

Further geometrical analysis was required to explain this ‘low’ data. An 

assumption was made that certain parts of the model under investigation, such 

as a face, trabeculae or thread were causing a drop in the stiffness of the model. 

This assumption is based on the previous work by (Procter et al., 2015) which 

shows the high variability of pull-out strength in cancellous bone. 

The “right” and “left” views of the model when used below are defined by the 

orientation of the model in Mimics®. 
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Figure 5-11: geometrical variability upon 180 rotation of the implant 

On the left side of the model, the bone plate structure is aligned with the 

geometry of the screw thread (Figure 5-11) and this is the case for both models. 

As can be seen in Figure 5-12, the left side of both models would provide similar 

structural strength. The right side of the model, where the bone plates intersect 

the screw at much higher angles, they provide the strongest structure and would 

be the first struts to yield. On this right side, both models differ in geometry and 

contact area (Figure 5-11, A=2.8852 against A=3.3865). In this case, contact area 

gives an indication to the volume of principal holding struts, in opposition to the 

right side which contains very large contact areas providing low stiffness, as seen 

in Figure 5-12. The contact area on the left side is 17% higher in the rotated 

model. 
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Figure 5-12: Left side view of the screw contact 

This unique geometry effect is also seen across models of the same pitch and 

position. As Figure 5-13 shows, a section of cancellous bone of high strength (2.a) 

has become a very weak structure (1.b) although conserving a high contact area 

(1.a). This geometry is unique to each discrete trabecular section modelled as 

was described by Bennani Kamane (2012) or when they are used in physical tests 

(Procter et al., 2015). Though a simple rotation of the cancellous screw stabilised 

the ‘low’ results (Figure 5-10) and providing expected results, it had no effect, or 

little effect on the other models at 1.75mm pitch, that were decreased by 

approximately 5.5% or the 2.5mm pitch models that only increased by 2.44% (ID 

= 1.2mm) or decreases by 0.68% (ID = 0.8mm). 
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Figure 5-13: 'a' and 'b' views of 1) 1.2 inner diameter 2) 2.6 inner diameter  
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5.4. Proximal half angle: a critical design variable? 

The third analysis was performed after a conclusion by Wang et al. (2009) that a 

proximal half angle of around 30° provided the highest pull-out strength when 

compared to 0° and 60°. The proximal half angle is the angle between the screw 

Head side thread surface and the vertical, on a side view. The proximal half angle 

on the original model is 5° and is marked, together with the modified 30° angle 

on Figure 5-14 below. 

 

Figure 5-14: Screw proximal half angle (degrees) 

Only the length of the two adjacent arcs and the length of the inner and lower 

edge were modified, seen coloured in Figure 5-14. Though Wang et al. (2009)  

performed a study on 0° and 60° the current analysis compared the original 

dataset of 5° and a modified model of 30°. Six models where analysed in this 

study: Low pitch, high pitch, low/high inner diameter, the original screw model, 

and the lower value model. The results of the models are given in Table 5 and 

showed that the alteration of the proximal half angle from 5° to 30° increases 

the reaction force by an average of 8.4%, where the two models with a higher 

pitch of 2.5mm contribute to a 0.6% and 1.2% increase for inner diameters of 1.2 

and 2.6mm respectively. The original screw design, when modified, increases by 

8.2% from a reaction force of 78.6N to 85.1N and the low value model was 

increased by 28.6% from the original low value of 47N to 60.4N 
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Table 6: % difference (and reaction force) between the original screw geometry and the 30° top angle 
models 

Inner Diameter 

Pitch 0.8 1.2 1.9 2.6 

1.55  17.3% (77.6N)  14.5% (85.39N) 

1.75   8.2% (85.06N)  

2  28.6% (60.45N)   

2.5  0.6% (58.71N)  1.2% (69.06N) 

 

 

  



 103 

5.5. Discussion 

This study explored the effects of different parameters of the screw and 

cancellous bone in a computational approximation of the bone-implant system 

of screw implantation. The model was idealised from a human femur CT scan in 

order to closely approach an in-vitro mechanical simulation. Assorted 

assumptions were made about the contact mechanics and boundary conditions, 

where the first relies heavily on a fully intact peri-implant structure and the 

second is linearised as the 10x10x10mm study area. As the study compared the 

effect of parameters on the model and compared results between the original 

case and the different variants, using the same conditions for all, the comparison 

can be made correctly. 

The results obtained in section 5.4 show that the model used here supports and 

agrees with to the results obtained by Wang et al. (2009) in low density bone 

where an increase in the proximal half angle will increase the pull-out strength of 

the screw. The lower percentage increase from the current work is due to 2 

factors affecting the model. The first factor is the 5° proximal half angle of the 

original screw. The 16% increase in pull-out they obtained was by modifying the 

angle from 0° but in the case of the present model, the original angle would 

already positively affect the pull-out force. The second factor is assumed to be 

the higher pitch of the screws modelled which would in turn decrease how much 

the pull-out can be improved. The low pitch of 1.55mm has an average increase 

of 16%, which matches the predicted results, even though the comparison is 

made between 5° and 30°. 

The BV/TV is the largest influence on pull-out strength. The results here show 

that the same bone structure, when modelled at different apparent density, can 

give results that vary hugely from a very weak 80N to a 2100N reaction force. 

This confirms the very large effect that osteoporosis has on bone structure, as 

the lower 6.16% and 8.66% apparent density might represent something 

approximating to an osteoporotic bone structure, while 18% and 20.72% are 

modelled and might be representative of standard, healthy bone. The pitch of 
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the screws used has little effect in comparison. This means that screw 

development and improvement is always eclipsed by an improvement of the 

peri-implant structure and bone density. 

This analysis of the pitch and inner diameter of the screw shows that varying 

both of these parameters is not of a large influence on pull-out strength. 

However a lower pitch value and higher inner diameter value seem to re-enforce 

pull-out strength while a higher pitch and smaller inner diameter seem adverse. 

This matches previous studies by Asnis et al. (1996) and Gausepohl et al. (2001). 

Two models at a pitch of 2mm and ID of 0.8 and 1.2mm are significantly lower 

than the others and required further analysis. The results obtained in Table 5 

support the view that the low value obtained is a special case, specifically at 

1.9mm pitch, where the screw thread aligns on one half of the screw with the 

bone plate structure (Figure 5-11) and provides very little support on the other. 

This confirms the thought that bone augmentation is composed of random 

events, often unpredictable, that are produced when a form of alignment is 

present within the model’s geometry. This could easily happen in-vitro or in-vivo 

and explain certain phenomena (Procter et al., 2015). The models with the exact 

same screw geometry, but an insertion position rotated by 180° (Figure 5-10) 

confirmed that this was due to the cancellous bone geometry as the modified 

model resulted in similar pull-out forces to the surrounding parameters values. 

The interaction between specific bone geometry and its interaction with specific 

screw geometry of 2mm pitch created a unique model. 

Another point of note is that the results obtained (Table 3) do not follow a linear 

relation as was proposed by Chapman et al. (1996) and shown prior to analysis in 

Table 2. The linear relation proposed contains the value for the outer diameter; a 

parameter not studied here which has been shown to be the driving factor for 

pull-out strength (Hou et al., 2004; Asnis et al., 1996). The results show that, as 

predicted by Chapman et al. (1996), decreasing the pitch increases pull-out. 

However increasing the thread depth does not necessarily increase pull-out: The 

increasing of the outer diameter might have a significant effect while, as seen 
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from this study, reducing the inner diameter would have an adverse effect. As 

such, the simple assumption that increasing thread depth will increase pull-out 

must be avoided and the choice of which diameter (inner or outer) is being 

modified must be specified. 

The validation of this model has been done previously by Bennani Kamane (2012) 

where he compares the CT scan model and physical testing of the same sample. 

He concludes that the model gives realistic results as the stiffness of the model 

was less than 4% different to that of the mechanical test performed and 

satisfactory within the modelling constraints applied. The same sample is used in 

the current discrete analyses. In addition, validation can also be performed by 

using the physical testing results obtained by Wang et al. (2009) and comparing 

the effect of such a simple geometrical modification to the same modification on 

FE models, which confirmed physical principles. The effect of the higher proximal 

half angle on pull-out is also a parameter which could have been a significant 

factor in the analysis by Gausepohl et al. (2001) as the fine machine screws have 

a high proximal half angle but this is not reported.  
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6) Chapter 6 – Screw Augmentation 

The results from Chapter 5 – Parametric Analysis of a Cancellous Screw show 

that modifying the parameters of the screw, such as pitch and inner diameter, do 

not have a significant effect on pull-out. This should be compared to the 

possibility of cement augmentation, as there has been clinical evidence for 

cement augmentation in a recent meta-analysis by Namdari et al. (2013) who 

concluded that augmentation of intertrochanteric fractures may provide 

complication rate and radiographic parameter benefits. 

This study is split into two analyses, both simplifications of modelled cement 

augmentation. Both Bennani Kamane (2012) and Hughes (2014) reported 

limitations in modelling 3 solids in a three-way contact arrangement in Mimics® 

3matic®. Upon assembly of the 3rd solid in contact with two others, already in 

contact, the surface mesh erroneously disfeatures. The only method to obtain 

these models is via extensive manual work, which is both very time consuming 

and prone to errors in modelling. The simplification used by both for analysis of 

cement augmentation is the integration of the cement layer and cancellous bone 

structure into a unique solid. Both assumptions were based on the elastic 

modulus of both the cement and the bone being close and the rigid contact 

between the two, approximated in the current analysis as bonded, to be 

represented as a single solid. 

The first analysis will investigate the separation of the trabecular bone around 

the implant: a chosen diameter of the bone structure will be split but fully 

bonded to the remainder of the bone, which will thus enable an increase of the 

material’s elastic modulus. This model would both represent the stiffening of 

bone when surrounded by cement, but would also represent the possible 

modification of bone properties using chemical compounds, though this is 

currently used to affect the bone in its entirety (Schilcher, Michaëlsson and 

Aspenberg, 2011) and has not been targeted to implant sites. Two diameters 

were used for this study: 3.5mm and 4.75mm. 3.5mm was chosen to represent 

augmentation within the screw thread while 4.75mm represents augmentation 
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around the entire implant. Though multiple models could be made between the 

4mm outer diameter and the largest inner diameter of 2.6mm, any diameter 

below 3.5mm would not affect a significant part of the bone on these models 

and a comparative study would not discern differences in a substantial way.  

The second analysis used the manual method mentioned previously as the only 

way to obtain models via extensive manual work, which is both very time 

consuming and prone to errors in modelling. This was a suggested work-around 

by materialise® where the model’s multiple surfaces, obtained after the 

intersection of two sets of surfaces (e.g. the screw and the bone), had to be 

intersected with the third surface (e.g. the cement) individually. These had to 

then be re-joined separately in 3-Matic® and the whole model had to be re-

meshed in order to both ensure a model of complete surface shells with no open 

gaps and confirm the absence of duplicate or intersecting elements. A 

simplification was still required in order for the models to work in ANSYS®: the 

trabeculae found within the cement had to be removed, which consequently 

reduced the strength of the model as the cement properties were weaker than 

those used for the cancellous bone. Two diameters were also used in these 

models, matching the previous analysis: 3.5 and 4.75mm. 

It has to be noted that both methods required integration of the new methods, 

which meant re-meshing, modification and further manual correction of the 

models. This resulted in erroneous disfeaturing, even though effort was made to 

conserve the geometry as close to the original as could be attained. 
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6.1. Multiple Bone Properties 

The cancellous bone section was spilt as seen in Figure 6-1 for the 4.75mm 

model. Most parameters and boundary conditions are identical to those used in 

Chapter 5 – Parametric Analysis of a Cancellous Screw: The models were 

submitted to a vertical linearly ramped displacement of 0.2mm applied to the 

top of the screw geometry and fully restrained on the four vertical sides. The 

interface between the bone and the screw is a frictional contact with frictional 

coefficient of 0.6, asymmetric behaviour, and contact stiffness updated for each 

iteration. The bone elements have the following properties: ρ = 1180kg/m3, E = 

17GPa, ν = 0.3, Yield σ = 100MPa, Ultimate σ = 110MPa and the titanium screw 

elements were set as the defined “Titanium alloy” by ANSYS®: ρ = 4620kg/m3, E = 

96GPa, ν = 0.3, Yield σ = 930MPa, Ultimate σ = 1070MPa. 

 

Figure 6-1: Cross section of the screw model with dual bone properties 

The significant modification from this was the Young’s modulus of the inner 

cancellous bone section (in red on Figure 6-1) which was modified in 30% steps 

from the original value of 17GPa to 22.1GPa and then to 27.2GPa. 
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6.1.a. Results 

The reaction force of the 6 models analysed can be seen in Table 7 for a 

displacement of 0.2mm. There is a small variation (2.3% for 3.5mm and 11.3% for 

the 4.75mm) in the pull-out reaction force, notably an increase in pull-out 

strength related to the increase in material stiffness. 

Table 7: Modified peri-implant bone model results (N) 

Young’s modulus 
Peri-Diameter 17 22.1 27.2 

3.5 mm 75.35 76.399 77.101 

4.75 mm 76.204 81.167 85.089 

Of first note is the reduction in reaction force of the models from the original 

(78.6N). This is due to the aforementioned compulsory re-meshing and manual 

correction of the mesh to enable import into ANSYS®. An example of the 

disfeaturing can be seen in Figure 6-2 where the automatic method would 

require a full manual re-construction, unfeasible as most changes would not be 

as noticeably different.  

 

Figure 6-2: Re-meshing errors 

Although this reduction will affect the exact magnitude of results, a comparative 

analysis can be made for the improvement: a 30% increase in the elastic modulus 

of a 3.5mm diameter of bone will improve pull-out by 1.4% to 76.4N while a 

4.75mm diameter of augmented bone would improve pull-out by 6.5%. A further 

30% increase in elastic modulus will have a lesser effect.  
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6.2. Cement as an intermediate solid 

The second analysis which was part of this study investigated the augmentation 

effect of cement used as a bond between the screw and the cancellous bone. 

The models used for this analysis are shown in Figure 6-3 with a description of 

the contacts used. 

 

Figure 6-3: Cement augmentation model 

These models used the same properties as the previous models: they were 

submitted to a vertical linearly ramped displacement of 0.2mm applied to the 

top of the screw geometry and fully restrained on the four vertical sides. The 

interface between the bone and the screw is a frictional contact with frictional 

coefficient of 0.6, asymmetric behaviour, and contact stiffness updated for each 

iteration. The bone elements have the following properties: ρ = 1180kg/m3, E = 

17GPa, ν = 0.3, Yield σ = 100MPa, Ultimate σ = 110MPa and the titanium screw 

elements were set as the defined “Titanium alloy” by ANSYS®: ρ = 4620kg/m3, E = 

96GPa, ν = 0.3, Yield σ = 930MPa, Ultimate σ = 1070MPa. 

In addition, the cement was modelled with the properties of calcium phosphate: 

E = 1.5GPa, ν = 0.3, Yield σ = 16.3MPa (Brown et al., 2013; Ikenaga et al., 1998). 
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The cement and trabeculae interface as well as the cement and thread of the 

screw interface were both set as bonded contacts, as marked in Figure 6-3. 

Although a close approximation of cement augmentation, especially in the 

smaller diameter of cement, this model does not retain the trabecular struts 

which should be contained within the cement. In the 4.5mm cement model, this 

generates a buffer solid: an intermediate solid bonded to the cancellous bone on 

the exterior and acting as a continuum study of the screw on the inside, though 

shallow. 

6.2.a. Results 

The resulting reaction forces are compared to the original model run both 

frictionally as it was in the previous study, and as a fully bonded analysis. The 

results are shown in Figure 6-4.  

 

Figure 6-4: Cement augmentation models, reaction force comparison (N) 

The results show a significant improvement of the pull-out force with 4.75mm of 

cement compared to the initial frictional analysis. It also shows a good 
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improvement of the 3.5mm of cement model compared to the frictional analysis 

with no cement. When the initial frictional model is modelled with a bonded 

contact between the screw and the bone however, the reaction forces are much 

closer to the 3.5mm of cement model. 

A comparative study was then performed with the rotated models at a pitch of 

2mm and inner diameters of 0.8 and 1.2mm (Figure 6-5). With 4.75mm of 

cement and the bonded models (cancellous bone and screw only, no cement), 

the reaction force is almost completely stabilised with a maximum of -0.45% and 

-3.15% of deviation, respectively. The bonded original models have a higher pull-

out than the rotated models. 

 

Figure 6-5: Screw rotation comparison, using reaction force (N) 

This analysis was run with multiple cement elastic moduli, from a benchmarking 

96 GPa, as this would represent a bonded cylinder of titanium which would yield 

the same pull-out forces regardless of TSF, to 0.1 which represents the material 

strength of Calcium Phosphate cement (Moreau, Weir and Xu, 2009). The results 
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of the reaction forces obtained from these models can be seen in Figure 6-6. The 

Young’s Modulus of the cement is on an exponential scale. 

 

Figure 6-6: Reaction forces at varying elastic moduli (N) 
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6.3. Discussion 

The first point of note in this study is that both analyses show stronger pull-out 

forces when the model is augmented. This effect is clearer in the modelled 

cement analysis as the absence of a third solid (cement) in the first analysis 

means that the result is not as significant due to the interface between the bone, 

though strengthened, and the screw. In the second analysis and modelled 

cement, the strength of the model would be reduced by the removal of 

trabeculae from within the cement, but in comparison to previous studies 

(Bennani Kamane, 2012), the interface between cement and screw was bonded 

which would in turn increase the strength of the model. 

The variation in material elastic modulus in a selected area around the screw is 

shown to increase the pull-out reaction force as seen in Table 7. This is an 

approximation of the effect of cement augmentation but shows that local 

augmentation of the cancellous bone alone would improve pull-out strength, 

though not by a significant amount.  

The second analysis is geometrically a closer approximation of cement 

augmentation, though not entirely adequate as trabecular struts within the 

cement were removed. With the cement as a continuum bonded to both the 

screw and the bone, the effects on the results are much more significant. These 

behave as expected, with the 3.5mm cement models of a lower Young’s modulus 

providing lower pull-out forces than the bonded model, but higher than the 

frictional models used previously. These results also confirm the effect sustained 

by the rotation of the screw as when modelling 4.75mm of cement as an 

intermediate solid, the forces are almost identical (±1.2%). 

In comparison to the variation of pull-out forces obtained by varying the 

geometry of the screw in Section 5.3, the results obtained from the models 

which included cement are significantly stronger while also removing the 

variation which was present at low inner diameter values. An augmentation as 

shallow as 3.5mm in diameter of cement around the screw, which would 

represent a 2.3mm layer of cement within the thread of the 1.2mm inner 
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diameter screw, can augment the model to a higher pull-out force than the 

bonded model without cement and almost double the pull-out force of the 

standard frictional model. 

This study has demonstrated that augmentation will likely increase the holding 

power of screws in low-density cancellous bone although the idealised modelling 

and thus increased artificial stiffness should be taken into consideration. 
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7) Chapter 7 – Comparison of an Arthrex Pushlock with 

Sonic Fusion and a Predicate Device 

This chapter will cover a study initially performed for comparison with a different 

type of implant related to Stryker® and is thus independent from the screw 

models performed previously. 

The results obtained will be compared directly to previous work by Hughes 

(2014). The analysis will investigate pull-out forces in a comparative study, but 

remains an analysis of the effect of the peri-implant bone structure and 

interface, though instead of a screw implant design, a derived anchor model is 

used (Figure 7-1). 

 

Figure 7-1: Arthrex Pushlock® model 

Suture anchors are smaller screws or plugs with an eyelet, designed to attach a 

suture in order to repair tendons or ligaments by attaching them to bone instead 

of fracture repair (Hughes, 2014). 

The models used for this analysis were made with surfaces directly imported 

from the surface meshes used by Hughes (2014) and the implant was inserted 

following the same method of surface intersection in 3-matic®. The bone 
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properties used were also identical and the elastic and strength properties of 

both the bone and PLDLLA (“Poly(L-lactide-co-D,L-lactide)”) are assumed to be 

the same in tension and compression. The bone elements have the following 

properties: ρ = 1180kg/m3, E = 17GPa, ν = 0.3, Yield σ = 100MPa, Ultimate σ = 

110MPa (Rincón Kohli, 2003) and the PLDLLA implant elements have the 

following: E = 3GPa, ν = 0.3 (Black, 2005). These models were submitted to a 

vertical linearly ramped displacement of 0.2mm applied to the top of the screw 

geometry and fully restrained on the four vertical sides. The interface between 

the bone and the screw is a frictional contact with frictional coefficient of 0.6, 

asymmetric behaviour, and contact stiffness updated for each iteration, identical 

to the settings used by Hughes (2014). The analysis of the 2 devices were tested 

at 9 different locations to obtain a mean pull-out, but only 1 central location was 

analysed in the current comparison.  
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7.1. Results 

The results obtained by Hughes (2014) will be listed below as subject of 

comparison. Table 8 shows the matching anchor position and the mean values 

obtained in the study. 

The models used for the three sets of results listed below are described in much 

more depth in Chapter 7 of the thesis by Hughes (2014). 

Table 8: Reaction forces (N), positions, and contact areas (mm
2
) (Hughes, 2014) 

Sonic Fusion model 

X position Y position Force (N) Contact Area (mm2) 

0 0 270.08 39.71 

Mean  300.11 38.91 

Std. Dev.  22.69 2.74 

    
Bio Mini-revo® model 

X position Y position Force (N) Contact Area (mm2) 

0 0 254.84 14.93 

Mean  259.71 15.81 

Std. Dev.  14.79 2.37 

    
Equivalent length Bio Mini-revo® model 

X position Y position Force (N) Contact Area (mm2) 

0 0 47.7 12.82 

Mean  (17.96) 12.65 

Std. Dev.  (15.98) 1.77 

 

The results obtained for the Arthrex Pushlock® are listed in table 8 below. 

Arthrex Pushlock® model, 17.5% BV/TV  8.3% BV/TV 

Displacement Force (N) Contact Area (mm2)  Force (N) Contact Area (mm2) 

0.2 309.72 10.96  109.63 6.65 

0.1 148.68 10.96  52.90 6.65 

0.15 229.65 10.96  81.22 6.65 

0.18 278.38 10.96  98.27 6.65 

0.35 553.07 10.96  195.16 6.65 

0.45 732.54 10.96  252.25 6.65 
 

The pull-out reaction force increases linearly with displacement.   
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7.2. Discussion and conclusion   

From the results it can be seen that the Arthrex Pushlock® model has a greater 

pull-out force than the sonic fusion in the same location though only 3% higher 

than the mean value. It is also the model with the lowest contact area, which 

supports the assumption that contact area may not be a significant factor in the 

modelling of pull-out in discrete trabecular models. The increased pull-out 

strength against smallest contact area can be explained by the strong geometry 

of the device analysed. As a plug type of device however, the implant would 

deform upon insertion and the surrounding cancellous bone would not be an 

ideal match to the tapered ridges of the device. As such, the resulting pull-out 

force should be lower than the current result. 

In comparison with the Bio Mini-revo® model however, which would be affected 

by the same idealised assumptions, the pull-out force is significantly (20%) higher 

though the contact area is lower. The conclusions for screw models and the 

effects of screw pitch and thread depth explain this difference, as the Bio Mini-

revo® implant thread has a relatively low depth and larger pitch. 

The different boundary conditions for the displacement of the implant have a linear 

effect on the pull-out force: Increasing displacement will increase the pull-out force. 

This is to be expected from a model with linear material properties, as the PLDLLA 

was only defined by Young’s modulus and Poisson’s ratio. The effect of a lower 

BV/TV is significant on the model, and the pull-out force is approximately a third of 

the value for the model with approximately twice the BV/TV. This also matches the 

results obtained in section 5.2 which show that BV/TV is a major factor in pull-out 

strength. Comparing the reaction forces of the equivalent length Bio Mini-revo® 

model and the 8.3% BV/TV model show further contrast of the thread pitch and 

depth, as the reaction force in the 8.3% BV/TV is more than double the highest 

equivalent length Bio Mini-revo® reaction forces while the contact area is 

approximately half due to the lower density. 

In conclusion, this study has shown that sonic fusion may produce a holding 

power equivalent to that of an Arthrex Pushlock® anchor though both produce 
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approximately the same holding force. Sonic fusion requires less drill penetration 

into the bone however, and the Arthrex Pushlock® model was idealised at the 

contact surface, providing higher forces. 
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8) Chapter 8 – Conclusions and Further Work 

8.1. Conclusions 

This research has demonstrated the critical importance of modelling the 

microstructure of bone when modelling implants in cancellous bone. It has 

shown how the bone to implant interface is an important aspect of the discrete 

natured microstructure cancellous bone modelling. The results demonstrate an 

intrinsic variability of cancellous bone and how this can have a significant impact 

on implants. 

The procedure for modelling implants in cancellous bone has been demonstrated 

including the recommended modelling technique to be used for the discrete 

modelling of cancellous bone. 

In order to investigate the cut-out effect of femoral nail, this project has shown 

the importance of transient loading as it has a major effect on the magnitude 

and nature of the loads applied. It has also shown that FE models provide 

solutions that act very similarly to in vivo results, such as the scissoring of the 

two lag screws in the femoral nail, the stress distribution across the nail or the 

reduction of stress over load cycles. 

The importance of lag screw placement was confirmed. The inferior-central or 

central-central cases are the optimum positions for the placement of lag screws, 

a Gamma3® lag screw in this case. The different positions of the lag screw on the 

neck fracture plane have been explored, discussed and evaluated. The difficulty 

in modelling in order to investigate cut-out in detail has been revealed and 

would need a multi-scale model which was not achievable at the time of writing. 

The bone volume fraction has been shown to be the largest influence on pull-out 

reaction forces which confirms the very large negative effect osteoporosis has on 

bone strength. This effect is much larger than the variation of screw pitch which 

means that screw development is always eclipsed by an improvement of the 

peri-implant structure and bone density. 
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The parametric analysis of screw pitch and inner diameter shows a positive effect 

of a lower pitch and smaller thread depth. Previous studies show that increasing 

the thread depth would improve pull-out, but this is usually done by increasing 

the screw’s outer diameter. The current study would conclude that a 

differentiation must be made between increasing the thread depth by increasing 

the outer diameter, and increasing the thread depth by decreasing the inner 

diameter. Another conclusion is the positive effect of a 30° proximal half angle, 

which improves pull-out and serves as validation for the screw model. 

The parametric analysis also shows the variability of cancellous bone, where the 

difference of half a pitch in screw position can significantly alter pull-out 

strength. This further supports the assumption that every piece of implanted 

cancellous bone will be unique in results and a good reason for the use of FEA 

studies where an identical piece of bone can be used for analysis. 

Augmentation was demonstrated to improve screw holding power. The research 

has shown that increasing the elastic modulus of bone, even in a small radius 

around the screw will improve pull-out. The augmentation with a layer of cement 

provides even higher strength and higher pull-out forces. Both models are 

idealised cancellous bone models where the Boolean operation of intersection 

would not represent in vitro screw insertion. 

 

 

 

 

 

  



 123 

8.2. Further Work 

Both software and hardware limitations will vary with time. Future models 

making use of the established process for accurate modelling of human 

trabecular bone may create much larger models involving larger sections of bone 

and greater contact areas in additions to micro-architecture accuracy. Emerging 

software or later versions of current modelling software might improve the 

modelling process and fix current issues with multi-scale modelling. 

The different possible failure modes of the cancellous bone microstructure are a 

study which would be introduced by the screw design such as the half angle. 

Both the half angle and the pitch profile could have interesting effects of the 

modes of failure if increased accuracy was used. 

The available 3d printing technology is also improving and would serve as a good 

alternative for physical testing or bone reinforcement as the accuracy and quality 

increases, and printing can now be done in calcium phosphate and collagen 

(Inzana et al., 2014). 

Published physical testing was examined during this project but there was no 

collaboration with clinical or physical testing. Working with a surgical team in 

conjunction with the FEA work would bring out clearer axes of research and 

needed improvement. 

Finally, multiple models of real bone are needed to improve the FEA axe of 

implant research as the field relies principally on in vitro testing, but the 

variability of each bone sample is clearly affecting the results. An integration of 

patient CT scans with FE modelling on a case to case basis, which has been done 

selectively already, would both confirm FEA validation and provide a database of 

computational models. As the database is filled it may become a tool to estimate 

results for cases before implants are inserted physically using solution 

algorithms. 

Digitalising medical interventions and assisting physical cases with the use of 

computers and software is an ongoing goal for the field of medicine. 
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Appendix A 

Materialise® instruction for the creation of cancellous bone models with implant 

insertion stage by stage. 

 

Smooth  

Smooth factor 0.7  

Do not use compensation  

Reduce triangles  

Geometrical error 0.01  

Flip Threshold angle 30  

Ensure one shell  

Mark shell, invert and delete other bits  

 

Auto remesh  

- Shape quality threshold 0.2 (then next time 0.3)  

- Maximum geometrical error 0.02 (because small part and do not want triangles 

to be able to move very far)  

- Do not control edge length  

- Do not preserve surface contours  

* using inspection to look at the number of triangles that have a shape quality of 

less than 0.2  

Deal with intersecting and overlapping triangles  

Delete intersecting triangles  

Mark intersecting triangles (trial had 108)  

select expand marked triangles and delete them  

Mass hole filler  

- Bad contour length of 5mm (or larger to ensure all are filled)  

One was remaining so mark shell and invert again  

Delete overlapping triangles  

Mark overlapping triangles (trial had 8)  
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Select expand marked triangles and delete them  

Mass hole filler as above  

 

Second auto remesh  

- Shape quality threshold to 0.3  

- Maximum geometrical error 0.01  

- Control edge length on, max edge length 0.3  

Ensure one shell  

Mark, invert and delete  

Deal with intersecting and overlapping triangles  

This time do not use hole filling as it may create more low quality triangles  

Do it manually by marking, deleting and filling  

Quality preserve reduce triangles  

Use same parameters as automesh  

Implanting Screw  

 

*Can change the colour of the parts by selecting the surface and changing the 

colour in the lower menu. Cannot change internal colours of individual parts  

** To ensure that the co-ordinate systems are the same go to edit update OCS to 

CS, method WCS  

 

Auto Remesh  

Remesh the screw to ensure that there are no local areas of high density mesh 

- Shape quality threshold 0.3  

- Max geometrical error 0.01  

- Max edge length 0.2  

Preserve surface contours  

Create non-manifold assembly  

Make sure screw is being inserted into the bone - not the other way round  

Fix sharp triangles  

- Mark and remove  
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- check filter distance and how this affects the geometry of the screw bone 

interface  

 

Auto Remesh  

Using the same shape quality thresholds as have been used on the 2 components 

previously  

If they are different then for max geometrical error use the lowest of the two 

parts and for max edge length use the largest.  

Deal with intersecting and overlapping triangles  

Delete intersecting triangles  

Mark intersecting triangles (trial had 2)  

Select expand marked triangles and delete them  

Delete overlapping triangles  

Mark overlapping triangles (trial had 11)  

Select expand marked triangles and delete them  

If deleting wee bits make sure the interface belongs to the screw.  

Checking for holes at the interface  

Remeshing > Create non-manifold curves  

Curve list. Non manifold curves-3  

3 is the number of surfaces that the edge belongs to. Normally this is 1 for a 

triangle on a surface but is more at the interface when surfaces are joining. All of 

these should be 'closed', if they are not there is a hole so fix it. Non-manifold 

curves-4 should be ok.)  

Other holes not at the interface can be found by bad edges in the normal view. 

 


