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Abstract

In this paper, the recursive state estimation problem is investigated for an array of discrete time-varying coupled stochastic
complex networks with missing measurements. A set of random variables satisfying certain probabilistic distributions is
introduced to characterize the phenomenon of the missing measurements, where each sensor can have individual missing
probability. The Taylor series expansion is employed to deal with the nonlinearities and the high-order terms of the linearization
errors are estimated. The purpose of the addressed state estimation problem is to design a time-varying state estimator
such that, in the presence of the missing measurements and the random disturbances, an upper bound of the estimation
error covariance can be guaranteed and the explicit expression of the estimator parameters is given. By using the Riccati-
like difference equations approach, the estimator parameter is characterized by the solutions to two Riccati-like difference
equations. It is shown that the obtained upper bound is minimized by the designed estimator parameters and the proposed
state estimation algorithm is of a recursive form suitable for online computation. Finally, an illustrative example is provided
to demonstrate the feasibility and effectiveness of the developed state estimation scheme.

Key words: State estimation; Time-varying complex networks; Variance constraints; Missing measurements; Recursive
approach; Riccati-like difference equations.

1 Introduction

Complex networks are composed of a group of intercon-
nected nodes under certain topological structures. As is
well known, the scale-free networks and small-world net-
works are two popular classes of complex networks char-
acterized by the power-law degree distributions and the
short path lengths as well as high clustering [1,23]. Not-
ing the importance and popularity of the complex net-
works, increasing research attention has been devoted to
various aspects of the network structure [14,15,26]. Dur-
ing the past decade, the dynamics analysis of the com-
plex networks has become a very active topic of research
due to its application potentials in a wide range of real-
world networks such as biological networks, computer
networks, electrical power grids, cyber-physical systems,
social networks and technological networks. In particu-
lar, considerable effort has been made towards the sta-
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bility, synchronization, impulsive control, pinning con-
trol and state estimation problems for complex network-
s [20–22,26, 28, 29].

In reality, the system states are not always available due
probably to physical constraints, technological restric-
tions or expensive cost for measuring [5, 7, 12]. There-
fore, the state estimation problem has recently received
tremendous research interest [2, 3, 9]. To better under-
stand the complex networks and achieve certain engi-
neering requirements, it is also of great significance to
estimate the states of the network nodes by using the
available measurements. Accordingly, a rich body of re-
search results has been published concerning the state es-
timation problems for complex networks [17]. It is worth
mentioning that most of the existing research concern-
ing the state estimation problems has been carried out
for time-invariant complex networks. In practice, howev-
er, almost all real-time systems evolve in a time-varying
manner nature particularly when the signals are trans-
mitted digitally. Recently, the dynamical behavior anal-
ysis of the time-varying complex networks has begun to
receive some initial research attention. In [21], one of the
first few attempts has been made to deal with the H∞
synchronization and state estimation problems for an ar-
ray of discrete time-varying coupled stochastic complex
networks, where the recursive linear matrix inequality
approach has been employed to derive the synchroniza-
tion criteria and solve the state estimation problem.

In many state estimation problems in practical engineer-
ing such as the tracking of maneuvering targets through
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a collaborative sensor network (a special complex net-
work), the performance requirements are naturally ex-
pressed as the upper bounds on the error variances of
the state estimation. In fact, for complex networks with
additive stochastic disturbances, the error variance is
a vitally important criterion for evaluating the estima-
tion performances, and it seems natural for us to ex-
pect some research results on state estimation problems
for complex networks with error variance (either mini-
mized or constrained) as a performance index. To our
surprise, a thorough literature review has revealed that
the relevant results are very few if not none. In fact, most
available dynamics analysis results for complex network-
s have been concerned with the synchronization and/or
consensus behaviors that are closely related to the sta-
bility issues, and the corresponding performance indices
(e.g. variance and H∞ constraints) have not gained ad-
equate research attention due probably to the fact that
the complicated network coupling/topology phenomena
have posed significant challenges to the desired perfor-
mance analysis. Nevertheless, it is of practical signifi-
cance to tackle the open problem of minimum-variance
state estimation for complex networks under stochastic
disturbances.

For the state estimation problem of complex network-
s, the available measurement information is utilized to
estimate the states of the network nodes. However, due
to the complexity of large-scale networks, the measure-
ment signals may be missing/fading during the network
transmission resulting from various causes such as sen-
sors aging, intermittent sensor failures, limited band-
width, network congestion or accidental loss of some col-
lected data [6,8,16,18,19]. As such, in order to improve
the estimation performance, it is vitally important to
take the phenomenon of the missing measurements into
account when designing the state estimator especially
in the network settings [11, 13, 24]. In the past decade,
the state estimation problems with missing measure-
ments have drawn considerable research interest and a
huge amount of results have been reported. To mention
a few, the state estimator has been designed in [17] for
complex networks with missing measurements and time-
varying delays. The state estimation problem has been
addressed in [22] for complex networks with sensor sat-
urations, signal quantization and missing measurements
in a unified framework. It should be pointed out that, a-
mong the reported results regarding the state estimation
with missing measurements, the Bernoulli distribution is
commonly employed to characterize the case where the
measurements are successfully transmitted or complete-
ly missing. Nevertheless, such way of modeling missing
measurements has certain limitations in practice as it
fails to describe the case where only partial information
is missing or fading in a networked environment [24]. To
the best of the authors’ knowledge, the recursive state
estimation problem for time-varying stochastic complex
networks with missing measurements has not been fully
investigated, and the purpose of this paper is to shorten
such a gap.

Motivated by the above discussions, we aim to deal with
the recursive state estimation problem for an array of dis-
crete time-varying coupled stochastic complex networks
with missing measurements and random disturbances.
The phenomenon of the missing measurements is char-

acterized by introducing a set of random variables satis-
fying any discrete probabilistic distribution over the spe-
cific interval with known conditional probability. In par-
ticular, the occurrence probability of the missing mea-
surements can be estimated via statistical tests. Through
available output measurements, the missing probabili-
ties are introduced to compensate the effects from the
missing measurements when designing the time-varying
state estimator for the addressed complex networks. The
main contribution of this paper can be summarized as
follows: 1) the variance constraint is, for the first time,
introduced to cope with the state estimation problem
for time-varying complex networks; 2) a compensation
scheme is proposed to handle the effect from the miss-
ing measurements to the estimation performance; 3) the
explicit form of the state estimator parameter is given
based on the solution to Riccati-like difference equation-
s; and 4) the developed state estimation algorithm is of
a recursive form suitable for online applications.

2 Problem Formulation and Preliminaries

Consider the following array of discrete time-varying s-
tochastic complex networks consisting of N coupled n-
odes of the form:

xi,k+1 = f(xi,k) +
N∑

j=1

ωijΓxj,k +Bi,k̟i,k, (1)

yi,k = λi,kCi,kxi,k + νi,k, i = 1, 2, . . . , N, (2)

where xi,k ∈ R
n is the state vector of the i-th node, the

nonlinear function f(·) is known and continuously differ-
entiable, yi,k ∈ R

m is the measurement output from the
i-th node of the complex network, ̟i,k is the additive
noise with zero-mean and covarianceQi,k > 0, νi,k is the
additive noise with zero-mean and covariance Ri,k > 0.
The initial state xi,0 has the mean x̄i,0. The random
variables λi,k ∈ R, which characterize the probabilistic
missing phenomena, have the probability mass functions
pi,k(s) on the intervals [αi,k, βi,k] (0 ≤ αi,k ≤ βi,k ≤ 1)
with mathematical expectations µi,k and variances σ2

i,k

(i = 1, 2, . . . ,m). Also, λi,k are m uncorrelated random
variables in i and k and are uncorrelated with other noise
signals. Moreover, assume that λi,k and all noises are
confined in a same probability space. Bi,k and Ci,k are
known and bounded matrices with appropriate dimen-
sions. Γ = diag{γ1, γ2, . . . , γn} is a matrix linking the
j-th state variable if γj 6= 0, and W = (ωij) ∈ R

N×N is
the coupling configuration matrix of the network with
ωij ≥ 0 (i 6= j) but not all zero.

Remark 1 In the network (1)-(2), the network states
are coupled through the linking matrix Γ and the configu-
ration matrixW . Such a state-connected model does have
its own merit in analyzing dynamical behaviors of certain
complex networks (e.g. genetic regulatory networks). N-
evertheless, in many engineering systems such as multi-
agent systems and networked control system, the sub-
systems are often coupled/connected through their out-
puts and, in this case, the output-connected models can
better preserve the large-scale properties of the network-
s (e.g. the sparsity). It would be interesting to examine
the impact from the output connections on the estimation
performance of the complex networks in the near future.
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In this paper, we construct the following state estimator:

x̂i,k+1|k = f(x̂i,k|k) +

N∑

j=1

ωijΓx̂j,k|k, (3)

x̂i,k+1|k+1 = x̂i,k+1|k +Ki,k+1(yi,k+1 − µi,k+1Ci,k+1

×x̂i,k+1|k), (4)

where x̂i,k|k (i = 1, 2, . . . , N) is the estimate of xi,k at
time k with x̂i,0|0 = x̄i,0, x̂i,k+1|k is the one-step predic-
tion at time k, yi,k+1 is the actual measurement output
from the i-th node of the complex network which is avail-
able for the estimator, µi,k+1 is the available mathemat-
ical expectation of random variable λi,k+1, and Ki,k+1
is the estimator parameter to be determined.

Remark 2 For the addressed time-varying complex net-
works, the measurement outputs may be contaminated
with the data missing and measurement noises and it is
difficult to obtain the ideal output. Hence, for each sub-
system, we have constructed the state estimator as in
(3)-(4) by employing the actual subsystem measurement
output yi,k+1 available for the estimator. Also, the cou-
pled configuration information of the network has been
taken into consideration and the estimation information
of its neighbors has been employed in (3). Moreover, the
probability information of the missing measurements has
been used in (4). It is expected to compensate the influ-
ence from the missing measurements onto the estima-
tion performance so as to improve the estimation per-
formance of the developed estimation algorithm. In this
sense, the proposed estimator has certain robustness a-
gainst the randomly occurred missing measurements. On
the other hand, the estimation would become easier and
probably more accurate if a digital processing unit could be
developed for online analysis for imperfect data (e.g. ran-
domly missing measurements) of large dimension, and
this deserves further investigation.

For node i, let the one-step prediction error be x̃i,k+1|k =
xi,k+1−x̂i,k+1|k and the estimation error be x̃i,k+1|k+1 =
xi,k+1 − x̂i,k+1|k+1. Then, we have

x̃i,k+1|k = f(xi,k)− f(x̂i,k|k) +

N∑

j=1

ωijΓ(xj,k − x̂j,k|k)

+Bi,k̟i,k. (5)

By using the Taylor series expansion around x̂i,k|k, we
linearize f(xi,k) as follows:

f(xi,k) = f(x̂i,k|k) +Ai,kx̃i,k|k + o(|x̃i,k|k |), (6)

where Ai,k =
∂f(xi,k)
∂xi,k

∣
∣
xi,k=x̂i,k|k

and o(|x̃i,k|k |) repre-

sents the high-order terms of the Taylor series expan-
sion. For presentation convenience, following [4,27], the
high-order terms are transformed into the following for-
mulation:

o(|x̃i,k|k|) = Li,kℵi,kx̃i,k|k (7)

where Li,k are problem-dependent scaling matrices, and
ℵi,k are unknown time-varying matrices accounting for

the linearization errors of the dynamical model that sat-
isfy ℵi,kℵ

T
i,k ≤ I. Then, it follows from (5)-(7) that

x̃i,k+1|k = (Ai,k + Li,kℵi,k)x̃i,k|k +Bi,k̟i,k

+

N∑

j=1

ωijΓ(xj,k − x̂j,k|k). (8)

On the other hand, according to (2) and (4), we have

x̃i,k+1|k+1

= x̃i,k+1|k −Ki,k+1(yi,k+1 − µi,k+1Ci,k+1x̂i,k+1|k)

= (I − µi,k+1Ki,k+1Ci,k+1)x̃i,k+1|k −Ki,k+1νi,k+1

−(λi,k+1 − µi,k+1)Ki,k+1Ci,k+1xi,k+1. (9)

For the purpose of simplicity, set

xk =
[

xT
1,k xT

2,k . . . xT
N,k

]T

,

̟k =
[

̟T
1,k ̟T

2,k . . . ̟T
N,k

]T

,

νk =
[

νT1,k νT2,k . . . νTN,k

]T

,

x̂k+1|k =
[

x̂T
1,k+1|k x̂T

2,k+1|k . . . x̂T
N,k+1|k

]T

,

x̂k+1|k+1 =
[

x̂T
1,k+1|k+1 x̂T

2,k+1|k+1 . . . x̂T
N,k+1|k+1

]T

,

x̃k+1|k =
[

x̃T
1,k+1|k x̃T

2,k+1|k . . . x̃T
N,k+1|k

]T

,

x̃k+1|k+1 =
[

x̃T
1,k+1|k+1 x̃T

2,k+1|k+1 . . . x̃T
N,k+1|k+1

]T

,

Ak =diag{A1,k, A2,k, . . . , AN,k},

Lk =diag{L1,k, L2,k, . . . , LN,k},

ℵk =diag{ℵ1,k,ℵ2,k, . . . ,ℵN,k},

Kk =diag{K1,k,K2,k, . . . ,KN,k},

Bk =diag{B1,k, B2,k, . . . , BN,k},

Ck =diag{C1,k, C2,k, . . . , CN,k},

I=diag{I, I, . . . , I},

Λ̄k =diag{µ1,kI, µ2,kI, . . . , µN,kI},

Λk =diag{λ1,kI, λ2,kI, . . . , λN,kI}.

Then, it follows from the above notations that we can
obtain the one-step prediction error and the estima-
tion error as x̃k+1|k = xk+1 − x̂k+1|k and x̃k+1|k+1 =
xk+1− x̂k+1|k+1 respectively. Subsequently, by using the
Kronecker product, the one-step prediction error and the
estimation error can be rewritten in the following com-
pact form:

x̃k+1|k =Akx̃k|k + (W ⊗ Γ)x̃k|k +Bk̟k, (10)

x̃k+1|k+1 = (I−Kk+1Λ̄k+1Ck+1)x̃k+1|k −Kk+1

×(Λk+1 − Λ̄k+1)Ck+1xk+1 −Kk+1νk+1,(11)

where Ak = Ak +Lkℵk and ⊗ represents the Kronecker
product.

Now, according to the definition of the estimation er-
ror, let us denote the estimation error covariance as
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Pk+1|k+1 = E{x̃k+1|k+1x̃
T
k+1|k+1} at the k + 1-th time

step. The objective of this paper is twofold. First, we
aim to design an estimator of form (3)-(4) such that an
upper bound of the estimation error covariance is guar-
anteed, i.e., we are looking for a sequence of positive-
definite matrices Ξk+1|k+1 satisfying

Pk+1|k+1 ≤ Ξk+1|k+1. (12)

Second, such an upper bound Ξk+1|k+1 is minimized by
properly designing the estimator parameter at each sam-
pling instant.

Before ending this section, we recall the following lem-
mas which will be used in the subsequent developments.

Lemma 1 [10] LetA = [aij ]n×n be a real-valued matrix
and B = diag{b1, b2, . . . , bn} be a diagonal stochastic
matrix. Then

E{BABT } =









E{b21} E{b1b2} · · · E{b1bn}

E{b2b1} E{b22} · · · E{b2bn}
...

...
. . .

...

E{bnb1} E{bnb2} · · · E{b2n}









◦A,

where ◦ is the Hadamard product with this product being
defined as [A ◦B]ij = Aij ·Bij .

Lemma 2 [25] Given matrices A, H, E and F with
appropriate dimensions such that FFT ≤ I. Let X be a
symmetric positive definite matrix and γ be an arbitrary
positive constant such that γ−1I−EXET > 0. Then the
following inequality holds

(A+HFE)X (A+HFE)
T

≤A
(
X−1 − γETE

)−1
AT + γ−1HHT . (13)

Lemma 3 For matrices M , N , X and P with appropri-
ate dimensions, the following equations hold

∂tr(MXN)

∂X
= MTNT ,

∂tr(MXTN)

∂X
= NM,

∂tr[(MXN)P (MXN)T ]

∂X
= 2MTMXNPNT .

3 Main Results

In this section, according to (10)-(11), the one-step pre-
diction error covariance and the estimation error co-
variance are firstly calculated. Subsequently, an upper
bound of the estimation error covariance is obtained and
the estimator parameter is designed to minimize such an
upper bound.

Theorem 1 The one-step prediction error covariance
Pk+1|k = E{x̃k+1|kx̃

T
k+1|k} has the following recursion:

Pk+1|k = [Ak +W ⊗ Γ + Lkℵk]Pk|k

× [Ak +W ⊗ Γ + Lkℵk]
T
+BkQkB

T
k , (14)

where Qk = diag{Q1,k, Q2,k, · · · , QN,k}.

Proof: Note that (14) follows from (10) directly, hence
the proof is omitted here for brevity.

Theorem 2 The recursion of the estimation error co-
variance Pk+1|k+1 is given as follows:

Pk+1|k+1

=
(
I−Kk+1Λ̄k+1Ck+1

)
Pk+1|k

(
I−Kk+1Λ̄k+1Ck+1

)T

+Kk+1

[
Λ̌k+1 ◦

(
Ck+1E

{
xk+1x

T
k+1

}
CT

k+1

)]
KT

k+1

+Kk+1Rk+1K
T
k+1 (15)

with

Λ̌k+1 =diag
{
σ2
1,k+1I, σ

2
2,k+1I, . . . , σ

2
N,k+1I

}
,

Rk+1 =diag{R1,k+1, R2,k+1, · · · , RN,k+1}. (16)

Proof: Based on (11), we have

Pk+1|k+1

=
(
I−Kk+1Λ̄k+1Ck+1

)
Pk+1|k

(
I−Kk+1Λ̄k+1Ck+1

)T

+Kk+1E
{ (

Λk+1 − Λ̄k+1

)
Ck+1xk+1x

T
k+1C

T
k+1

×
(
Λk+1 − Λ̄k+1

) }
KT

k+1 +Kk+1Rk+1K
T
k+1. (17)

Subsequently, set Λ̃k+1 = Λk+1 − Λ̄k+1. Then, it follows
from the Lemma 1 and the property of the conditional
expectation that

E

{

Λ̃k+1Ck+1xk+1x
T
k+1C

T
k+1Λ̃k+1

}

=E

{

E

{

Λ̃k+1Ck+1xk+1x
T
k+1C

T
k+1Λ̃k+1

}

|Λk+1

}

=E

{

Λ̃k+1Ck+1E
{
xk+1x

T
k+1

}
CT

k+1Λ̃k+1

}

= Λ̌k+1 ◦
(
Ck+1E

{
xk+1x

T
k+1

}
CT

k+1

)
, (18)

where Λ̌k+1 is defined in (16). Then, we can see that (15)
holds by taking (17) and (18) into account. The proof of
this Theorem is complete.

Remark 3 So far, we have derived the one-step predic-
tion error covariance and the estimation error covari-
ance. However, there are some unknown terms ℵk and
E
{
xk+1x

T
k+1

}
in (14) and (15) due to the consideration

of the linearization errors and themissing measurements.
Hence, it constitutes the difficulties on the calculation of
the exact value of the estimation error covariance. In the
sequel, an alternative way is employed to find an upper
bound of the estimation error covariance and then min-
imize such an upper bound by properly designing the es-
timator parameters at each sampling instant.

Theorem 3 Consider the one-step prediction error co-
variance Pk+1|k and the estimation error covariance
Pk+1|k+1 in (14)-(15). Let ǫk+1 and γk be positive scalars.
If the following two Riccati-like difference equations

Ξk+1|k = (Ak +W ⊗ Γ)(Ξ−1
k|k − γkI)

−1(Ak +W ⊗ Γ)T

+γ−1
k LkL

T
k +BkQkB

T
k (19)

and
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Ξk+1|k+1

= (I−Kk+1Λ̄k+1Ck+1)Ξk+1|k(I−Kk+1Λ̄k+1Ck+1)
T

+Kk+1

[
Λ̌k+1 ◦ (Ck+1Ωk+1C

T
k+1)

]
KT

k+1

+Kk+1Rk+1K
T
k+1 (20)

with initial condition P0|0 ≤ Ξ0|0 have the positive-
definite solutions Ξk+1|k and Ξk+1|k+1 such that the

inequality Ξk|k < γ−1
k I holds for all k ≥ 0, then the

matrix Ξk+1|k+1 is an upper bound of Pk+1|k+1, i.e.,

Pk+1|k+1 ≤ Ξk+1|k+1. (21)

Moreover, by using the following estimator parameter

Kk+1 =diag{K1,k+1,K2,k+1, . . . ,KN,k+1}, (22)

where

Ki,k+1 =Φ1,iΞk+1|kC
T
k+1Λ̄

T
k+1Φ

T
2,i

(
Φ2,iSk+1Φ

T
2,i

)−1
,

Φ1,i =
[
0 0 · · · 0
︸ ︷︷ ︸

i−1

In×n 0 0 · · · 0
︸ ︷︷ ︸

N−i

]
,

Φ2,i =
[
0 0 · · · 0
︸ ︷︷ ︸

i−1

Im×m 0 0 · · · 0
︸ ︷︷ ︸

N−i

]
,

Ωk+1 = (1 + ǫk+1) Ξk+1|k +
(
1 + ǫ−1

k+1

)
x̂k+1|kx̂

T
k+1|k,

Sk+1 = Λ̄k+1Ck+1Ξk+1|kC
T
k+1Λ̄

T
k+1 +Rk+1

+Λ̌k+1 ◦
(
Ck+1Ωk+1C

T
k+1

)
, (23)

the trace of the upper bound Ξk+1|k+1 can be minimized.

Proof: We use the mathematical induction to prove
this theorem. Considering the initial condition, we have
P0|0 ≤ Ξ0|0. Assuming Pk|k ≤ Ξk|k, we need to show
that Pk+1|k+1 ≤ Ξk+1|k+1.

Firstly, it follows from Lemma 2 that

Pk+1|k ≤ (Ak +W ⊗ Γ)
(
P−1
k|k − γkI

)−1
(Ak +W ⊗ Γ)T

+γ−1
k LkL

T
k +BkQkB

T
k

≤ (Ak +W ⊗ Γ)
(
Ξ−1
k|k − γkI

)−1
(Ak +W ⊗ Γ)T

+γ−1
k LkL

T
k +BkQkB

T
k

=Ξk+1|k, (24)

where γk is a positive scalar. Then, we can conclude that
Pk+1|k ≤ Ξk+1|k.

Subsequently, let us handle the second term of the right-
hand side of (15). By using the elementary inequality

(ǫ
1

2

k+1x̃k+1|k − ǫ
1

2

k+1x̂k+1|k)(ǫ
1

2

k+1x̃k+1|k − ǫ
1

2

k+1x̂k+1|k)
T

≥ 0,

we have

x̃k+1|kx̂
T
k+1|k + x̂k+1|kx̃

T
k+1|k

≤ ǫk+1x̃k+1|kx̃
T
k+1|k + ǫ−1

k+1x̂k+1|kx̂
T
k+1|k,

with ǫk+1 being a positive scalar. Then, the term
E
{
xk+1x

T
k+1

}
can be calculated as

E
{
xk+1x

T
k+1

}

=E

{(
x̃k+1|k + x̂k+1|k

) (
x̃k+1|k + x̂k+1|k

)T
}

≤ (1 + ǫk+1)Pk+1|k +
(
1 + ǫ−1

k+1

)
x̂k+1|kx̂

T
k+1|k. (25)

Thus, it follows from (15) and (25) that

Pk+1|k+1

≤
(
I−Kk+1Λ̄k+1Ck+1

)
Pk+1|k

(
I−Kk+1Λ̄k+1Ck+1

)T

+Kk+1

[
Λ̌k+1 ◦

(
Ck+1Ψk+1C

T
k+1

)]
KT

k+1

+Kk+1Rk+1K
T
k+1, (26)

where Ψk+1 = (1+ǫk+1)Pk+1|k+(1+ǫ−1
k+1)x̂k+1|kx̂

T
k+1|k.

Therefore, it is easy to see that Pk+1|k+1 ≤ Ξk+1|k+1.

Finally, we are in a position to show that the upper
bound Ξk+1|k+1 can beminimized by using the estimator
parameterKk+1 in (22). Note that Ξk+1|k+1 in (20) can
be rewritten as

Ξk+1|k+1 =Ξk+1|k −Kk+1Λ̄k+1Ck+1Ξk+1|k − Ξk+1|k

×CT
k+1Λ̄

T
k+1K

T
k+1 +Kk+1Sk+1K

T
k+1, (27)

where Sk+1 is defined as in (23). Substituting Kk+1 =
∑N

i=1

(
ΦT

1,iKi,k+1Φ2,i

)
into (27), the trace of the matrix

Ξk+1|k+1 can be calculated as follows:

tr
(
Ξk+1|k+1

)

= tr

[

Ξk+1|k −
N∑

i=1

(
ΦT

1,iKi,k+1Φ2,i

)
Λ̄k+1Ck+1Ξk+1|k

−Ξk+1|kC
T
k+1Λ̄

T
k+1

N∑

i=1

(
ΦT

1,iKi,k+1Φ2,i

)T

+

N∑

i=1

(
ΦT

1,iKi,k+1Φ2,i

)
Sk+1

(
ΦT

1,iKi,k+1Φ2,i

)T
]

,(28)

where Φ1,i and Φ2,i are defined as in (23). It is worth
mentioning that, when deriving (28), we have used the
following fact

tr
[(
ΦT

1,iKi,k+1Φ2,i

)
Sk+1

(
ΦT

1,jKj,k+1Φ2,j

)T
]

= 0,

for i 6= j. According to Lemma 3, taking the partial
derivative of the trace of Ξk+1|k+1 with respect toKi,k+1

and letting the derivative be zero, we obtain

∂tr
(
Ξk+1|k+1

)

∂Ki,k+1
=−2Φ1,iΞk+1|kC

T
k+1Λ̄

T
k+1Φ

T
2,i

+2Φ1,iΦ
T
1,iKi,k+1Φ2,iSk+1Φ

T
2,i

= 0. (29)

Noting Sk+1 > 0, then we can see that Φ2,iSk+1Φ
T
2,i

is invertible. Through the algebraic manipulations, it
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follows from (29) and Φ1,iΦ
T
1,i = In×n that the estimator

parameter can be given by

Ki,k+1 =Φ1,iΞk+1|kC
T
k+1Λ̄

T
k+1Φ

T
2,i(Φ2,iSk+1Φ

T
2,i)

−1,

which completes the proof of this theorem.

Remark 4 Note that considerable research effort has
been made on the state estimation problems for com-
plex networks. However, almost all the state estimation
schemes can only be applied for the time-invariant com-
plex networks concerning the asymptotical behavior of the
estimation error dynamics. It is worth mentioning that
the newly developed state estimation approach can be used
for an array of time-varying stochastic complex networks
by evaluating the transient behavior of the estimation er-
ror covariance over a specified time horizon. Moreover,
the optimization of the upper bound of the estimation er-
ror covariance has been conducted by properly designing
the estimator parameters which can be seen as anoth-
er distinguishing feature. On the other hand, when the
boundednedss analysis of the estimation error becomes a
concern, some additional constraints on the system pa-
rameters can be introduced as in [16] to ensure the bound-
edness of the estimation errors over the whole time hori-
zon, which constitutes one of future research topics.

Remark 5 During the design process of the state esti-
mation algorithm, the scalars ǫk+1 and γk have been in-
troduced with hope to increase the freedom of the proposed
estimation algorithm. It is worth pointing out that the
parameter γk affects the solvability of the equations (19)
and (20). In the implementation, the value of γk could be
given a prior and adjusted to help enhance the solvability
and feasibility of the developed estimation scheme. More-
over, it should be kept in mind that the computational
burden and difficulties grow when the scale of a network
system is large.

Remark 6 For the stochastic time-varying complex net-
work model (1)-(2) under consideration, there are five
main aspects which complicate the design of the state es-
timator, i.e., the nonlinear function f(·), the coupling
structure, the time-varying nature, the probabilistic miss-
ing measurements as well as the stochastic disturbances.
In Theorem 3, sufficient conditions, which include all of
the information on these five aspects, are established for
the existence of a state estimator to satisfy the locally
minimized error-variance performance requirement. The
corresponding solvability conditions for the desired state
estimator gains are expressed in terms of the feasibility
of a series of Riccati-like matrix difference equations that
are of a recursive form suitable for online computation.

4 A Numerical Example

In this section, a simulation example is presented to il-
lustrate the usefulness of the established state estima-
tion scheme.

Consider a time-varying stochastic complex network (1)-
(2) with four nodes. The coupling configuration matrix
is assumed to be W = (ωi,j)N×N with

ωi,j =

{
−0.3, i = j

0.1, i 6= j

and the inner-couplingmatrix is given by Γ = 0.2I2.̟i,k

(i = 1, 2, 3, 4) are zero-mean Gaussian white noises with
covariances Q1,k = 0.05, Q2,k = 0.03, Q3,k = 0.04 and
Q4,k = 0.02, νi,k are zero-mean Gaussian white noises
with covariances R1,k = 0.03, R2,k = 0.02, R3,k = 0.04
andR4,k = 0.06. The matricesBi,k and Ci,k are taken as

B1,k =

[

0.05− 0.01 sin(3k)

0.02

]

, B2,k =

[

−0.03

0.12

]

,

B3,k =

[

0.02

0.06

]

, B4,k =

[

0.04

−0.01

]

,

C1,k =
[

0.90 0.25
]

, C2,k =
[

0.95 0.65
]

,

C3,k =
[

0.90 0.35
]

, C4,k =
[

0.85 0.95
]

.

The nonlinear function f(xi,k) is chosen as

f(xi,k) =

[

0.8x
(1)
i,k + sin(x

(1)
i,kx

(2)
i,k )

1.5x
(2)
i,k − sin(x

(1)
i,kx

(2)
i,k )

]

,

where xi,k =
[

x
(1)
i,k x

(2)
i,k

]T

is the system state. Assume

that the probabilitymass functions for λi,k (i = 1, 2, 3, 4)
are:

p1,k(s) =







0.05, s = 0

0.10, s = 0.5

0.85, s = 1

, p2,k(s) =







0.05, s = 0

0.20, s = 0.5

0.75, s = 1

p3,k(s) =







0.10, s = 0

0.20, s = 0.5

0.70, s = 1

, p4,k(s) =







0.15, s = 0

0.20, s = 0.5

0.65, s = 1

Accordingly, the expectation and variance of λ1,k can
be easily calculated as µ1,k = 0.9 and σ2

1,k = 0.065.
Similarly, we have µ2,k = 0.85, µ3,k = 0.8, µ4,k = 0.75,
σ2
2,k = 0.0775, σ2

3,k = 0.11 and σ2
4,k = 0.1375. The

other parameters are chosen as x̄1,0 =
[

1.80 −0.25
]T

,

x̄2,0 =
[

1.75 −0.20
]T

, x̄3,0 =
[

1.75 −0.25
]T

and

x̄4,0 =
[

1.80 −0.25
]T

, Ξ1,0|0 = 20I2, Ξ2,0|0 = 25I2,

Ξ3,0|0 = 30I2, Ξ4,0|0 = 35I2, ǫk+1 = 0.2, γk = 0.03,
L1,k = diag{0.02, 0.03}, L2,k = diag{0.01, 0.03},
L3,k = diag{0.03, 0.01} and L4,k = diag{0.01, 0.05}.

By using Theorem 3, the estimator parameters can
be obtained recursively. The simulations are given in

Figs. 4-4, where the trajectories of the actual states x
(j)
i,k

and their estimates x̂
(j)
i,k (j = 1, 2) are plotted. From

the simulation, we can see that the designed state esti-
mators have a satisfactory tracking performance in the
simultaneous presence of missing measurements and
stochastic disturbances, which further confirm the fea-
sibility and effectiveness of the state estimation scheme
developed in this paper.
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5 Conclusions

In this paper, we have made one of the first few attempts
to investigate the recursive state estimation problem for
an array of discrete time-varying stochastic complex net-
works with missing measurements and random distur-
bances. A recursive state estimator has been construct-
ed in which the missing probability has been introduced
to compensate the effect from the missing measurements
to the estimation performance. Further research topics
include the extension of the developed results to the s-
tate estimation problem for a more general class of time-
varying complex networks with event-triggering trans-
missionmechanism and/or network-induced phenomena
in the near future.
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