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A B S T R A C T

In this paper, we explore the determinants of wholesale electricity prices in an energy island such as Sicily,
by estimating regime switching models with fixed and time-varying transition probabilities on daily data in
the 2012–2014 period. Explanatory variables used alternatively in the price equation and in the switching
equation include power demand, the supply of intermittent renewables, the residual supply index, and a
congestion indicator. Four competing hypotheses on the determinants of price regimes are tested (arbitrary
market power, cost profile, tacit collusion, congestion) in order to understand why, despite the general
trend of declining prices induced by renewables in southern Italy, Sicilian prices stood high. The pattern of
estimated coefficients is consistent with a tacit collusion story.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The integration of electricity markets in Europe is among the
main goals of the 2030 Climate-Energy Package, approved by the
European Council in October 2014. The existence of energy islands is
identified as one of the main impediments towards the single elec-
tricity market. Understandably, the investment targets outlined in
the package are influenced by geopolitical considerations, motivat-
ing the focus on the Baltic States, that are integrated with the Russian
grid but not sufficiently with the EU partners. Not less relevant in
economic and geopolitical terms are the bottlenecks that separate
the Iberian peninsula from France, Ireland from Great Britain, and
Sicily from the Italian mainland. Ten years after market liberaliza-
tion, in 2014 Sicily was separated for about 80% of the hours from
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the rest of Italy. From a purely geographical viewpoint, the Sicilian
interconnection problem is rather similar to the Irish one and Sicily
is a potential bridge towards Northern Africa just like the Iberian
countries (see Cambini and Rubino, 2014). Yet, Sicily faces less work-
able southward interconnection opportunities, due to the Libyan
civil war and Tunisia’s slow post-revolutionary recovery, than those
facing Spain and Portugal (Morocco, a rather stable and favorable
destination for FDIs).

The energy isolation of Sicily may lie behind its less than satis-
factory price performance. Following the subsidized boom in new
renewable energy investments, the annual reports of the Italian
Power Exchange (IPEx) have shed light on the declining trend in
the wholesale price in the renewable-rich southern regions, lead-
ing prices south of Rome to undercut the historically lower northern
ones (see GME, 2012, 2013). Sicily strikingly departs from this trend,
despite its large wind and solar penetration rates. Between 2011
and 2012, the price in Sicily increased by 2.2%, in line with Sardinia
(+2.2%) and the South zone (+1.9%) and below the other market
zones (GME, 2012). Yet, the pronounced price plunges observed
between 2012 and 2013 (from −16.8% in the North zone to −24.7%
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in Sardinia) were not replicated in Sicily (−3.4%) (GME, 2013). While
the average national price fell below 50 Eur/MWh in the summer of
2014, Sicilian prices reached 95 Eur/MWh on average in July and 108
Eur/MWh in August, roughly twice the price in the neighboring South
zone. Therefore the win–win outcome of renewables support (stable
revenues for subsidized producers, lower prices for wholesale pur-
chasers) is not available in Sicily, causing an equity issue that needs
to be solved by providing policy-makers with sound information
about the roots of such price dynamics.

In this paper, we explore the determinants of wholesale electric-
ity prices in Sicily by estimating regime switching models, using daily
data in the 2012–2014 period. Explanatory variables included in the
price equation and in the switching equation are power demand, the
supply of renewable energy, a measure of market power, and a con-
gestion indicator. Testing theoretical hypotheses on price regimes
is rife with potentially fruitful insights, in view of the high policy-
making returns from appropriate modeling of the price process.
Indeed, the regime switching model has been successfully applied
to the electricity market (e.g. in Huisman and Mahieu, 2003; Weron
et al., 2004; Mari, 2008; Karakatsani and Bunn, 2008; Janczura and
Weron, 2010 among others), thanks to its fit performance and its
possible consistency with multiple equilibria and tacit collusion
rooted in repeated interaction among oligopolistic power generat-
ing companies (since Green and Newbery, 1992; von der Fehr and
Harbord, 1993).

Finding price regimes in Sicily could testify to the role of tacit
collusion in the observed upward trend. Yet, while persistence in a
high-price regime would be consistent with a collusive focal point, it
may alternatively occur because of congestion, which may keep the
price in a high regime even if generators fail to collude. The high fre-
quency of congestion episodes is a powerful limit to competition on
the island, in line with the pioneering theoretical analysis performed
by Liu and Hobbs (2013), showing how strategic (de)congestion
and the generators’ ability to anticipate the moves by the trans-
mission system operator sustain collusion. Joint ownership at both
sides of the transmission line can also exacerbate the collusive temp-
tations (Boffa and Scarpa, 2009).1 Consistently, one may interpret
sky-rocketing prices in the summer of 2014 as the attempt of gen-
erating companies to reap large profits before the expected upgrade
of the Sorgente-Rizziconi cable linking Sicily with the Italian main-
land, that was scheduled to be completed in 2015. At the same time,
generators in Sicily face highly volatile residual demands, as renew-
able supply is growing and the paucity of hydropower resources
implies limited flexibility and storage. Coupled with a contractionary
demand trend after the financial crisis, volatility defies the otherwise
clear expectation that Sicilian generators would easily sustain a tacit
collusion agreement.2

The tacit collusion hypothesis, empirically assessed e.g. by Fabra
and Toro (2005) and Sweeting (2007), needs to be tested against
alternative hypotheses, grounded in the existing empirical literature.
Besides congestion, previously mentioned (Haldrup and Nielsen,
2006a,b; Sapio, 2015a,b), regime transitions may result from electric-
ity demand fluctuations spanning a kinked market-wide cost func-
tion, even in the absence of market power (Kanamura and Ohashi,
2008). In a quite popular class of models (Huisman and Mahieu,
2003; Janczura and Weron, 2010), the price in the “high” regime is a
random draw from a probability distribution, as if generating com-
panies exercised an arbitrary market power, as Karakatsani and Bunn
(2008) put it.

1 The former monopolist, Enel, operates thermal power and hydropower plants in
both Sicily and Calabria.

2 Collusive incentives are pro-cyclical according to Green and Porter (1984).
Renewable energy producers receive a regulated tariff, hence they have no incentive
to join in the collusion game.

The regime-switching model that we build is able to encompass
the abovementioned four hypotheses. Depending on the signs of the
parameters in the price equation and in the switching equation, one
can obtain four different models, nested in the general one, that cor-
respond to the competing hypotheses. Unlike Fabra and Toro (2005),
we allow all coefficients in the mean price equation to vary across
regimes, not just the constant, and consider the possible effects of
intermittent renewables and network congestion. In our analysis,
persistence in a high-price regime will be attributed to sustained
tacit collusion only if the whole set of estimated parameters rules out
alternative interpretations.

We empirically identify two regimes – high and low – and find
that in each regime, the electricity price in Sicily can be explained by
positive drivers (demand, market power, congestion) but its level is
mitigated by the supply of renewables, confirming the merit order
effect shown by a number of works (Sensfuss et al., 2008; Guerci
and Sapio, 2012; Ketterer, 2014; Paraschiv et al., 2014; Veraart, 2015
and references therein). Market power, thus, does not translate into
occasional random spikes, ruling out the arbitrary market power
hypothesis. The cost profile hypothesis, too, is discredited, as price
levels reflect something more than cost information. Both the high
and low regimes are strongly persistent, consistent with both the
congestion and tacit collusion hypotheses. The congestion indicator
helps predicting the regime transitions, but it displays statistically
significant variation within each regime, suggesting that it is not
the main explanation for price regimes. Supporting the tacit collu-
sion hypothesis, the transition probability from the high to the low
regime increases when demand, market power, and congestion are
relatively low, and when RE supply is relatively high. This is consis-
tent with the theoretical conditions triggering price wars (see Ivaldi
et al., 2003).

The paper is structured as follows. After a literature review,
Section 2 outlines the competing hypotheses to be tested through
the model described in Section 3. Section 4 presents the dataset and
the empirical results, discussed in the concluding Section 5.

2. Literature review and hypotheses

Regime switching models are built for a variety of goals, from
improving the forecast performance of power price models, to the
valuation of electricity-based contracts, to the detection of price
wars in repeated games. Accordingly, those different approaches
put the stress on different underlying drivers of the regime dynam-
ics, such as strategic behavior, distribution of marginal costs, tacit
collusion, and network congestion. We shall organize the follow-
ing literature review on regime switching models along these
lines.

2.1. Strategic behavior and market power

A first class of models defines a base regime, wherein the elec-
tricity price is driven by a mean-reverting autoregressive process
and/or by fundamentals, a spike regime, corresponding to a random
draw from a given probability distribution, and sometimes a drop
regime, in which the price drops in a similarly random fashion. A
three-regime model has been estimated by Huisman and Mahieu
(2003) and Janczura and Weron (2010). Karakatsani and Bunn (2008)
found it to be a superior representation of the price process in peak
periods, whereas Huisman and Kiliç (2013) employed a two-regime
model. The switching process is usually Markovian; the fit is usu-
ally improved by assuming transition probabilities that depend on
time-varying variables, i.e. load and the reserve margin (see Mount
et al., 2006; Mari, 2008) or by positing self-exciting dynamics
(Lucheroni, 2012).
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Modeling price in the spike regime as a purely random variable,
without any serial correlation and no relationship with fundamen-
tals, is consistent with a view of an arbitrary strategic behavior
on the part of power generating companies, or one that cannot be
rationalized by using public information alone. The drop regime
is interpreted as the outcome of unexpected technical events that
cause a sudden shortfall in supply (see Janczura and Weron, 2010).
Although not in a regime switching framework, the empirical model
in Orea and Steinbuks (2012) assumes firm-specific, random conduct
parameters, allowing for a market power exercise that is gradually
changing and unpredictable.

A debated issue in this literature is whether the functional form
of the price equation in the base regime should be linear or log-
linear. While it provides a superior empirical fit, e.g. in Janczura
and Weron (2010), the assumption of linearity is consistent with
a uniform distribution of marginal costs across power generating
units —an assumption that underlies some theoretical approaches
(e.g. the supply function equilibrium model of Baldick et al., 2004),
but it is empirically tenable only if it is consistent with the under-
lying distribution of marginal costs. This leads to a second possible
determinant of price regimes.

2.2. The distribution of marginal costs

Suppose marginal costs of power generation are uniformly dis-
tributed in a positive range, and suppose that all units are offered
in the market at full capacity and at their marginal costs. Then, the
resulting supply stack will be linear, with a null intercept, and with a
slope that depends on the marginal cost of the least efficient unit in
the system.

Under some (admittedly restrictive) assumptions (no entry of
new units, no time variation in marginal costs, no intermittent capac-
ity, no strategic behavior), the electricity price is only a function
of power demand because of the market clearing requirement, and
due to linearity, the marginal effect of demand on price is constant.
Hence, no regime appears. By the same token, no regime emerges
if the supply stack is approximated by a continuous function with
stable parameters.

The modeling strategy of Kanamura and Ohashi (2008) gener-
ates price regimes through a piece-wise linear supply stack without
relaxing the abovementioned restrictive assumptions. This is equiv-
alent to assuming that marginal costs are uniformly distributed with
support [0, c′] within a given capacity interval, and follow another
uniform distribution (with support [c′, c′ ′]) in the capacity interval
including the least efficient units. As demand fluctuates in a mean-
reverting fashion, price regimes emerge because of a kink in the
market-wide marginal costs curve and do not necessarily reflect
market power exercise.

As an implication of the assumed supply function structure,
Kanamura and Ohashi show that transition probabilities depend on
exogenous fundamental variables, such as the long-term trend in
demand, the temporary deviations of demand from its trend, and
the gap between current demand and the supply threshold that trig-
gers the regime switch. This would match the empirical observation
that price spikes are more frequent when demand is relatively high.
The shape of this relationship reflects the probability distribution
function of the error term in the price equation, which the authors
assume to be Gaussian without loss of generality.

The Kanamura–Ohashi model lends itself to an alternative inter-
pretation, one in which marginal costs are uniformly distributed
across the whole capacity, but once demand grows beyond a certain
threshold, power generating companies add a markup that is linearly
increasing with demand — thus shifting up the supply stack slope.
Indeed, the kinked profile of the supply stack can be exacerbated
by market power, as noted by Wolak and Patrick (2001). If so, the
model would suggest cost structures and strategic behaviors as joint

determinants of price regimes, but here strategic behaviors would be
partly predictable (increasing with demand) and thus not arbitrary
as in the previously reviewed class of models.

2.3. Tacit collusion

The regime switching models just reviewed are often quite
generic about the source and type of market power exercised by
power generating companies. As argued by Karakatsani and Bunn
(2008), the base regime can be conceived as a focal point in a
repeated game, with an autoregressive structure that is meant to
capture the learning processes involving power generating compa-
nies. Repeated electricity market games are increasingly analyzed
in the literature, from the early attempt by Fabra (2003) to more
recent works (Boffa and Scarpa, 2009; Liu and Hobbs, 2013), moving
away from single-stage game representations (reviewed in Ventosa
et al., 2005). Simulation models, such as Bunn and Martoccia (2005),
Tellidou and Bakirtzis (2007), and Anderson and Cau (2009), have
highlighted the role of learning in the build-up and support of the
collusive strategies. Motivating evidence of price patterns consis-
tent with tacit collusion includes Macatangay (2002) and Sweeting
(2007) on the England & Wales market, Harvey and Hogan (2000)
and Borenstein et al. (2002) on the California crisis.

The link between regime switching models and multiple equilib-
ria in electricity markets is explored by Fabra and Toro (2005), whose
time-varying Markov regime switching model explains Spanish price
levels in the collusive and price war regimes through duopolistic
production levels and costs; the regime switches are triggered by
changes in market shares, in concentration, in company-level rev-
enues or in average prices. A move from a high-price to a low-price
equilibrium is interpreted as a price war, and one of the duopolists
(Iberdrola) is identified as the responsible for the deviation, in line
with the predictions of repeated games (as outlined e.g. in Ivaldi
et al., 2003, Green and Porter, 1984).

In Fabra and Toro (2005), only the constant term of the price
equation is subject to switches, hence the marginal effect of cost
and production variables is the same across regimes. Their empir-
ical results show that the electricity price positively depends on
the marginal costs and production of the largest generator (Endesa),
while supply from fringe generators has a negative impact. Market
concentration is theoretically and empirically shown to be higher
in the price war regime, because a deviation from the collusive
agreement causes the asymmetry in market shares to increase.

2.4. Network congestion

The above models were based on latent regimes. Indeed, the
demand and supply conditions that trigger market power exercise
are only imperfectly observed (Sections 2.1 and 2.3), and similarly for
the kink in the supply stack (Section 2.2), although bid-based data
could be used to estimate the latter.

However, the price determinants and their effects can change
when the transmission capacity of the grid is saturated. Consider a
country whose power grid consists of two zones, connected through
a transmission line of given capacity. Whenever the power flows
from either zone exceed the transmission capacity, the line is con-
gested. This allows to distinguish between two different regimes: a
congested regime and a non-congested regime.

In the congested regime, zonal prices differ, and the price in each
zone is determined by local demand, local supply and the amount of
electricity imported (if the local price is relatively high) or exported
(if it is relatively low). In the non-congested regime, the zones are
fully integrated, hence zonal prices are equal and are both deter-
mined by the national demand and supply for electricity. The shape
of the relationship between the price and its determinants in each
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zone changes across regimes; the sets of plants involved in the com-
putation of the zonal price differ, and the cost information related to
them, too. The congested regime is supposedly more prone to mar-
ket power exercise, because zonal generating companies are shielded
from competition, yet the causality may be reversed, especially if the
same company runs units at both sides of the possible bottleneck,
leading to a sort of multi-market contact issue (Boffa and Scarpa,
2009), and can strategically cause or relieve congestion by means of
capacity withholding.

Unlike latent determinants of price regimes, congestion is observ-
able using market-level data. Regime switching models with known
regimes identified by congestion episodes have been built by
Haldrup and Nielsen (2006a,b). The authors (in their 2006b article)
estimate the transition probabilities from the observable congestion
events in the NordPool area, as empirical frequencies of changes in
grid states (from congested to non-congested and vice versa), and
model the (log of) the price ratio between neighboring zones. In
all cases, autoregressive models are estimated, allowing for frac-
tional integration. In the no congestion regime, the log of the
price ratio is zero, because prices are equal, hence all coefficients
are restricted to zero, only to switch to non-zero values when-
ever congestion arises, according to the transition probabilities
previously estimated. For a given status of the grid (congested in
import/congested in export/noncongested), the price equation coef-
ficients are constant, hence any latent regime trigger is assumed
away. The long-memory properties of the series differ across regimes
and grid locations.

The role of fundamentals that may make congestion more or less
likely, however, is best understood by making transitions endoge-
nous. Lucheroni (2010) builds a stochastic model in which price
spikes occur when the oscillations of a periodic driver cross a thresh-
old, and distance from the threshold is interpreted as distance from
congestion. In Sapio (2015a,b) an endogenous switching mechanism
is considered, whereby the congestion probability depends on the
relative balances between supply and demand in each zone as well as
on the transmission capacity, using Sicily as the test case. Congestion
is found to be significantly related to power demand and renewable
energy supply both in import and in export.

In this modeling strategy, price regimes can emerge even with-
out strategic behaviors, e.g. when renewable energy supply changes
suddenly and faster than demand. This does not deny that mar-
ket power can be a price determinant. Indeed, the results from the
vector autoregression analysis performed by Sapio (2014) suggest
that zonal market power exercise (proxied by the residual supply
index or by the Herfindahl–Hirschmann index) is higher when the
grid is congested. In fact, market power can be a determinant also in
the low-price regime, e.g. if the reserve margin at the national level
is thin, but the transmission capacity is large enough to guarantee
market integration.

2.5. Building hypotheses

Based on insights from the above literature review, four alter-
native hypotheses can be outlined in an empirically testable form,
concerning the ultimate determinants of the regime structure of
electricity prices: the arbitrary market power, the cost profile, the tacit
collusion, and the congestion hypothesis. For the sake of simplicity,
these hypotheses shall be built under the assumption that electricity
prices undergo a 2-regime dynamics, although statistical tests may
indicate otherwise. We shall refer to the two regimes as the high-
price regime and the low-price regime (high and low in short). We
could have called them the spike and drop regimes, as in Janczura
and Weron (2010), or the collusive and price war regimes (Fabra and
Toro, 2005); yet, our goal is precisely to assess the empirical plausi-
bility of the alternative interpretations of price regimes, which the
mentioned terminologies are associated with. The four hypotheses

are schematized in Table A.1, summarizing the expected impact of
some relevant variables (demand, RE supply, market power, and con-
gestion indicators) on price levels in the two regimes as well as on
the transitions between regimes.3

In the arbitrary market power hypothesis, a transition from
the high to the low regime is caused by changes in fundamentals:
increasing demand, market power, and congestion would have the
system shift to and persist in the high regime, whereas a larger
supply of renewables would favor a transition to the low regime
and persistence in it. Yet the magnitude of strategic behavior in the
high regime, as mirrored in the price level, is entirely random (as
with the spike regime in Janczura and Weron, 2010). Hence, in the
high regime, we expect all coefficients associated with fundamen-
tals in the price equation to lack statistical significance. The price
level in the low regime, instead, depends on demand and supply
fundamentals.

The cost profile hypothesis postulates that the transition proba-
bilities and the price levels in both regimes depend on demand, on
RE supply, and on congestion, as the switching dynamics is only dic-
tated by the presence of a kink in the cost-reflective supply stack.
Within regimes, demand and congestion are expected to act as posi-
tive drivers, whereas the merit order effect previously theorized and
detected in the literature a suggests a negative impact of renewables.
Demand, however, need not be significantly associated with the elec-
tricity price if the supply stack is nearly flat, as it could occur in the
low regime. An increase in the supply of renewables would cause the
location of the kink to shift rightwards, leading to higher persistence
in the low regime. Congestion, instead, would determine a regime
switch by changing the very shape of the supply stack, e.g. by limiting
the import of low-cost electricity from a neighboring zone. In a per-
haps simplified reading of the proposition in Kanamura and Ohashi
(2008) that assumes away the interplay among fundamentals, mar-
ket power has no role to play: it does not trigger switches and it does
not affect price levels within regimes.

The core of the tacit collusion hypothesis lies in the condi-
tions that trigger price wars (Ivaldi et al., 2003, Fabra and Toro,
2005). When colluding generators face a below average residual
demand, they expect to receive lower collusive profits. This may
happen because of low demand as well as because of a relatively
high supply of renewables. Uncertainty in the available amount of
the renewable resource makes coordination difficult, as shown in
the simulation analysis by Banal-Estañol and Ruperez-Micola (2011).
Evidence of profitability thinning due to wind power has been pro-
duced by Sioshansi (2011) and Hirth (2013). Compliance with a
collusive agreement would be less attractive in those circumstances.
A more concentrated market, with less competitors or with a pivotal
supplier would instead enforce collusion and increase persistence
in the high price regime. Anderson and Cau (2011) have theoreti-
cally shown that the collusive potential is maximized at intermediate
levels of market power, and less likely in competitive and symmet-
ric duopolistic settings. By limiting competition, network congestion
goes in the same direction of sustaining tacit collusion. Liu and
Hobbs (2013) provide perhaps the first theoretical analysis of how
transmission constraints affect collusive incentives, inspired by the
evidence of strategic exploitation of loop flows (Cicchetti et al., 2004).
Once the price enters a certain regime, demand, market power and
congestion are positive drivers of the price level, whereas the merit
order effect associated to RE supply acts as a mitigating factor. In this
hypothesis, too, the impact of demand may vanish in the low regime
because of a flat supply stack.

Finally, under the congestion hypothesis, congestion is the only
driver of regime transitions; demand, renewables, and market power
do not exert any independent effect on regime switches. In turn,

3 All tables and plots are in the Appendix.
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congestion triggers market power exercise in the high regime (which
is likely to correspond to a congested grid and hence to a more
concentrated zonal market). If regimes were perfectly predicted
by congestion, a congestion indicator (such as the number of con-
gested hours in a day) would display very little variance, if any,
within each price regime. Hence, the congestion hypothesis predicts
that the coefficients associated to congestion in both regimes would
not be statistically significant. All other fundamentals are expected
to affect the price within regimes as in the tacit collusion hypothesis.

3. The model

Testing the hypotheses formulated in the previous section
requires the set up of a rather general regime-switching model
with time-varying transition probabilities, including the same set of
explanatory variables both in the price equation and in the transi-
tion probabilities equation. Following Filardo (1998), the coefficients
of the price process and of the switching process in the time-varying
transition probability model can be consistently estimated via a max-
imum likelihood estimator (MLE) if, given the current price, the
trigger variables are conditionally uncorrelated with the regime.4

This condition holds even if the trigger variables are included as
regressors in the price equation; moreover, the nonlinear relation-
ship between the variables included in the price equation and those
in the transition probability equation is sufficient to identify the
parameters. One difficulty may arise if there is reverse causality
in the transition equation — say, if generating companies induce
congestion in order to achieve a regime switch. Since regimes are
unobserved, direct verification of reverse causation is not possible
(Filardo, 1998).

However, our attempts at estimating the full model were upset by
computational issues, presumably due to the relatively large space of
explanatory variables that we deal with, and resulting in the lack of
convergence of the MLE algorithm. Therefore, we were constrained
to follow an alternative approach: trying to learn as much as possible
from models that are nested into the “general” one. At first, we esti-
mate a regime-switching model with fixed transition probabilities:

pt =l(st) +
4∑

i=1

bipt−i + a(st)dt + d(st)rt (1)

+ k(st)mt + h(st)ct + s(st)et , (t ∈ T) ,

l(st) =
h∑

i=l

l(i)1{st = i} and s(st) =
h∑

i=l

s (i)1{st = i} (2)

where pt = (pricet), dt = (demandt), rt =(renewable energy
supplyt), mt = (market powert) and ct = (congestiont). All these
variables are in natural logarithms. Autoregressive terms (up to
four lags) are considered. Therefore, the parameters vector of the
mean price Eq. (1) is defined by l(i) and s (i), (i = l, h) which are real
constants, the autoregressive terms 4

i=1bi, and the parameters a, d,
k, and h, which measure the impact of demand, renewable energy
supply, the residual supply index and congestion, respectively.

{et} includes i.i.d. errors with E (et) = 0 and E(e2
t ) = 1, and {st}

are random variables in S = {l, h} that indicate the unobserved state
of the system at date t. Throughout, the regime indicators {st} are

4 This, indeed, allows to concentrate out of the likelihood function the parameters
of the trigger variables processes and yield ML estimators with desirable properties.

assumed to form a Markov chain on S with a transition probability
matrix

P =
[

pll 1 − pll

1 − phh phh

]
(3)

where pij = Pr(st = j|st−1 = i), and 0 < pll,phh < 1. It is also
assumed that {et} and {st} are independent.

Both the mean and the conditional variance of the price pro-
cess are assumed to vary across regimes. Due to convexity of the
supply stack, the mean price and the variance are expected to
move together, so that a high-price regime is also likely to be a
high-variance regime.

This model, despite assuming away any effect of fundamental
variables on regime transitions, allows to discriminate among the
hypotheses we have outlined. Indeed, each hypothesis entails a dis-
tinct pattern of restrictions on the price equation (see Table A.1). In
particular, we reject the arbitrary market power hypothesis if signif-
icant parameters in the high-price regime equation are found, i.e. if
prices in the high regime are predictable; the cost profile hypothe-
sis is rejected if the coefficients of market power are significant in
both regimes; whereas the tacit collusion hypothesis is supposed to
hold if all fundamentals are significantly associated with prices, with
the possible exception of demand in the low regime. Finally, one
rejects the congestion hypothesis if, within regimes, congestion is
significant.

We then undertake the estimation of a non-ergodic Markov
switching process by allowing the transition probabilities to be func-
tion of demand, renewables, market power, and congestion, and
assuming that these variables only affect electricity prices through
transition probabilities. The conditional mean equation has the fol-
lowing specification:

pt = l(st) +
4∑

i=1

bipt−i + s(st)et , (t ∈ T) , (4)

l(st) =
h∑

i=l

l(i)1{st = i} and s(st) =
h∑

i=l

s (i)1{st = i}. (5)

The conditional mean value (l l for prices in the low regime
and lh for prices in the high regime) follows an independent regime-
shifting process (Diebold et al., 1994) with the transition mecha-
nism governing {st} given by the following time-varying transition
probabilities:

pll,t =
exp

(
kl + aldt + dlrt + klmt + hlct

)
1 + exp

(
kl + aldt + dlrt + klmt + hlct

) ,

phh,t =
exp

(
kh + ahdt + dhrt + khmt + hhct

)
1 + exp

(
kh + ahdt + dhrt + khmt + hhct

) (6)

where pij,t denotes the probability of a transition from regime i to
regime j at time t, such that pll,t + plh,t = 1 and phh,t + phl,t = 1.
Demand (dt), renewable energy production (rt), market power index
(mt) and congestion (ct) are variables that are now allowed to affect
the transition probabilities rather than the mean equation as in
Eq.(1). The smoothed probabilities derived from the time-varying
transition probability model are defined as Pr(st = i|x, IT), where It =
{pt−1, pt−2, pt−3, pt−4, dt, rt, mt, ct} be the set of explanatory variables
at time t, and x = {l i,b1,b2,b3,b4,s i, ki,ai, di,ki, hi}, with i ∈ {h, l}.

Note that, since ∂phh,t/∂dt (∂phh,t/∂rt, ∂phh,t/∂mt, ∂phh,t/∂ct) has
the same sign as ah(dh,kh, hh), ah > 0(dh > 0,kh > 0, hh > 0)
an increase in dt (rt, mt, ct) increases the probability of remaining
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in the state characterized by a high price. Similarly, al > 0(dl >
0,kl > 0, hl > 0) implies that an increase in dt (rt, mt, ct) will
increase the probability of remaining in the low regime (low
price). Coefficients kh and kl characterize the behavior of the tran-
sition probabilities in the theoretical instance when all explanatory
variables or their coefficients are null.5

Based on the coefficient patterns implied by our hypotheses
(Table A.1), this estimation strategy does not allow to distinguish
between arbitrary market power and tacit collusion; yet the cost
profile and congestion hypotheses can be assessed.

Admittedly, coefficient estimates may be biased in both modeling
strategies, as we omit relevant variables, whose effects may how-
ever be taken up by the autoregressive terms if lagged prices are
correlated with fundamentals. It is worth noting that our hypotheses
are formulated in terms of signs and significance of the coeffi-
cients, hence any potential bias is not of concern for our analysis.
Nonetheless, the implications of omitting variables in regime switch-
ing models are not well understood,6 and taking into account a
regime-dependent conditional variance is expected to alleviate that
issue.

Taken together, the whole set of estimates (from fixed and time-
varying probability models) shall guide us on the empirical validity
of the proposed hypotheses. Table A.2 outlines how information
from the estimates of the two models shall be used to reject any
hypothesis. For each model, we identify the hypotheses that can-
not be rejected. Let NRf and NRtv denote the set of hypotheses
that cannot be rejected, respectively, by the estimates of the fixed
and time-varying transition probability models. We shall consider
the results to be consistent only with the hypotheses that nei-
ther model can reject, i.e. with hypothesis H such that H ∈ NRf ∩
NRtv.

4. Empirical analysis

4.1. Data sources

Day-ahead wholesale trading of electricity takes place in the
Italian Power Exchange (IPEx), managed by State-owned Gestore dei
Mercati Energetici (GME). The IPEx day-ahead market is a closed,
non-discriminatory, uniform-price double auction. Each day, mar-
ket participants can submit bids and offers valid for each hour of
the next day, used by GME to clear the market using a merit order
rule.

If transmission constraints do not bind, all day-ahead supply
offers are remunerated by the same price, the System Marginal Price
(SMP), except for holders of long-term contracts, who receive the
contract price, and subsidized plants, receiving the regulated tariffs.
The optimal dispatch solution involves the calculation of zonal prices
when lines are congested, in which case the Italian grid is segmented
into up to 6 market zones (North, Center-North, Center-South, South,
Sicily, and Sardinia) and 5 limited production poles.7 Sicily is the

5 In that case, the transition probabilities are fixed and are equal to pll,t = exp kl

1+exp kl

and phh,t = exp kh

1+exp kh .
6 Monte Carlo simulations of a fixed probability model in Hamilton (1996)

(assuming omission of a dummy from the “main” equation) suggest a small-sample
attenuation bias and the underestimation of standard errors. We are not aware of any
similar result applying to omitting variables from the main equation in a time-varying
transition probability model.

7 A zone is a subset of the transmission network that groups local unconstrained
connections. Zones are defined and updated by the transmission system operator, or
TSO (Terna in Italy) based on the structure of the transmission power-flow constraints.

zone most frequently separated and is only connected with the South
zone through the Rossano production pole.8

Data on the wholesale day-ahead electricity market have been
collected from the IPEx website (www.mercatoelettrico.org) for the
period Jan.1, 2012–Dec.31, 2014. These data are recorded with a
hourly frequency and include: zonal prices (Eur/MWh), zonal pur-
chased quantities (MWh) and the residual supply index (RSI). In the
econometric analysis, we focus on the Sicily zone and we aggregate
these hourly variables on a daily horizon, by taking daily averages (in
the case of zonal prices) or the sum across hours (purchased quan-
tities). The daily purchased quantity on the day-ahead market is a
good proxy for the overall electricity demand in Sicily, considering
the high liquidity of the IPEx market (roughly between 60% and 70%
in the sample period; sources: GME, 2012, 2013 and website). More-
over, one can safely consider demand as price-inelastic. End users
who have not switched to competitive retailers are served by the
publicly-owned company Acquirente Unico (single acquirer), and the
available evidence cast doubts on the efficacy of existing demand
responsiveness programs, despite the relatively good diffusion of
meters in Italy.9

As it is well known, power markets are imperfectly competitive,
with strategic exploitation of market power opportunities leading
to higher than marginal cost clearing prices. Traditional measures
of market power (Lerner index, concentration measures) have been
shown to be less than satisfactory in a sector, such as electricity,
characterized by non-storability, capacity constraints, and network
congestion (Borenstein et al., 1999). The residual supply index (RSI)
is a more appropriate measure, aiming to catch the ability of a gen-
erator to impede market clearing through the threat of capacity
withholding (Sheffrin, 2002; Swinand et al., 2010). The RSI published
by the IPEx is defined as the sum of the overall quantities offered by
sale, minus the number of the operators multiplied by the difference
between the sum of the overall quantities offered by sale and the
sum of the overall quantities sold.10 We use the daily median, which
is to be preferred to the mean because of the very skewed within-day
distribution of the hourly RSI values.

Network congestion, a major determinant of price dynamics in
Sicily, is measured as the daily number of hours when prices in Sicily
and in the South zone differed. The coefficient associated to the num-
ber of congested hours can be seen as the effect of an additional
hour of congestion, directly on the electricity price level or indirectly
through transition probabilities.11 As many congestion measures,
this is an imperfect one, since a single congested hour might have a
greater impact on the price dynamics than a whole congested day.
As a way of capturing this, we could have weighted the different
hours by using hourly demand levels, as the impact of congestion
is stronger in hours with a tighter balance between demand and
supply. Yet, this would induce undesired cross-correlation between
explanatory variables.

Besides being an energy island in most market sessions, Sicily is
also quite rich in renewables, thanks to good insolation and wind
speeds. Omitting renewables would undermine the understanding
of price dynamics. Data on the actual generation of intermittent

8 In all cases, electricity buyers pay a weighted average of zonal prices, called PUN
(Prezzo Unico Nazionale, or single national price), with weights equal to zonal demand
shares.

9 By the end of 2009, about 90% of final customers were equipped with smart meters
supplied by Enel, the largest generating company in Italy. Time-of-use pricing has had
a limited impact, because of fixed, regulated peak-off peak price differences for retail
customers (Lo Schiavo et al., 2013).
10 This is the negative of the sum (over companies) of the RSI index presented in

Gianfreda and Grossi (2012), hence it is increasing in market power.
11 We have alternatively used the daily change in the number of congested hours,

with very similar results.

http://www.mercatoelettrico.org
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renewables are downloaded from the Terna website (www.terna.it).
We sum the zonal sold quantities for the two available technologies
(on-shore wind, photovoltaics) for each hour, and then take the daily
sums. Detailed biomass and hydropower production data were not
available for the whole sample period, while geothermal is absent in
Sicily.

For each variable, 1096 daily data points are available. Table A.3
summarizes the notation, definitions, and sources of the variables
used in the econometric analysis.12

4.2. Summary statistics

Summary statistics for the sample are given in Table A.4 for the
Sicily zone, before applying filters. Sicilian power demand averaged
52,271 MWh per day in the sample period, corresponding to 6.6%
of the national power demand. 12,540 MWh per day was accounted
for by intermittent renewables. The whole sample statistics about
Sicilian electricity prices hide the differences due to network con-
gestion. The line between Sicily and South zones was congested in
about 80% of the hourly market sessions; hence, on average, Sicily
was separated from the rest of the Italian system about 19 h per
day on average. Congestion was nearly always in import, i.e. from
the Italian peninsula to Sicily, resulting in higher prices in Sicily
(95.41 Eur/MWh on average under congestion, with a maximum
of 3000 Eur/MWh in a hourly session, vs. a whole sample aver-
age of 51.81 Eur/MWh). The penetration rates of wind and photo-
voltaics in Sicily were, respectively, 16.0% and 8.2% in the sample
period. These figures have been computed by summing the total
RE sold quantities in Sicily for each source, and dividing them
by the total power demand in Sicily in the sample period. Sicily
ranked very high among Italian regions in terms of wind power
(20.4% of the national wind power capacity in 2013), and fairly
good also in regard to photovoltaic production (a 6.9% capacity
share).13

Figs. A.1 and A.2 depict the time series of the variables of interest.
Fig. A.1 features the daily average electricity prices (top panel) and
the daily purchases (bottom panel) in Sicily. The two annual peaks
in the demand series correspond to the winter and summer sea-
sons, due to, respectively, heating and cooling needs. The price series
retains the seasonal pattern in quite a milder fashion, as its behav-
ior is more erratic and is occasionally punctuated by sudden and
short-lived spikes (the tallest one on August 21, 2012, an average
daily price of 273.64 Eur/MWh). A downward trend in demand is
visible, motivated more by deteriorating macroeconomic conditions
than by improvements in energy efficiency, but the price seems
to have fallen significantly only during the winter between 2013
and 2014; electricity in the summer of 2014 was on average as
expensive as in the summer of 2012, except for the different spike
magnitudes.14

The time series of daily supply from intermittent renewables
(mid-panel of Fig. A.2) shows relatively low and stable amounts only

12 Data from previous years have not been considered, because the spatial config-
uration of the grid changed over time: the former Calabria zone was merged with
the South zone since January 2009; the SAPEI cable between Sardinia and the Center-
South zone was inaugurated in March 2011. Concerning the use of fuel prices, see
Footnote 17.
13 Authors’ elaborations on data from GSE (2013). Hydropower capacity in Sicily was

rather marginal (0.01% of the national hydropower capacity in 2013; hydropower pro-
duction was 2.3% of the Sicilian electricity demand in 2012). Its exclusion from the
analysis should not affect the results.
14 Daily averaging in Fig. A.1 smooths out the otherwise extreme excursions that

have been mentioned in the Introduction.

during the summer seasons, meaning that the seasonality is mainly
in the variance of the RE generating process and is characterized by
an annual frequency. The relatively high volatility of the wintertime
RE supply reflects the relatively large availability of wind power, ver-
sus the preponderance of the more predictable photovoltaic resource
in the summer months. Similarly, the number of congested hours
(bottom panel of Fig. A.2) was on average higher and less variable
during the summer than in the other seasons. It stayed at its high-
est (24 h) for several consecutive days during the summer of 2014.
An interesting qualitative change is detected in the time series of the
RSI index (top panel of Fig. A.2), which after fluctuating wildly and
reaching very high values in the first 8 months of 2012, collapsed
to values often close to zero with occasional outbursts of lower
magnitude than in the past. This was due to entry of new plants
(GME, 2012).

In line with the abovementioned trends, seasonals, and spikes,
unit root tests (Augmented Dickey–Fuller, Phillips–Perron) per-
formed on the time series of electricity prices, demand, and supply
variables reject the null of non-stationary mean. The null of station-
arity tested through the KPSS is rejected, too.15 The logs of price,
demand, and supply are thus treated by means of the recursive
filter on (log-)prices (RFP) proposed by Janczura et al. (2013).16 The
descriptive statistics of the filtered data are in Table A.5, whereas
Table A.6 reports the cross-correlations among variables before and
after filtering.17

The only cross-correlation of some concern that we find between
explanatory variables involves congestion and renewables, and is
negative, in line with the findings in Sapio (2015b). Provided that
results do not suggest variance inflation, we retain both variables
in the model, as their effects on price are interesting for their
own sake, and they are not correlated by construction.18 Other siz-
able cross-correlations, e.g. between demand and renewables, or
demand and the RSI, get weaker after filtering, presumably because
the filter removes the common trends that lay behind the cross-
correlations.

The null hypothesis of linearity against the alternative of
Markov regime switching cannot be tested directly using a standard
likelihood ratio (LR) test.19 Hence we properly test for multiple
regimes against linearity using the Hansen (1992) test. The results
(Table A.5) support a two-states regime-switching model. The pres-
ence of a third state was also tested for and rejected.

As shown in Fig. A.3, the filtered electricity price behaved
more erratically in the second and fourth quarters, approximately

15 The results of the tests are available upon request to the authors.
16 The RFP is an iterative outlier detection method, wherein the outliers are defined

in each iteration as the observations lying more than three standard deviations away
from the mean of the de-seasonalized prices. The data are de-seasonalized here in
two steps: the short-term seasonal is removed by means of 7-day moving averages;
then a Daubechies 5 wavelet is computed as the long-term seasonal component and
subtracted. Any observation identified as an outlier/spike is replaced by the average
offer price for the corresponding week–day.
17 Filtering allows to interpret the data as short-term deviations from seasonals and

long-term trends, including the co-integrating relationships between electricity and
fossil fuel prices found, among others, by Bunn et al. (2015) (see Janczura and Weron,
2010 for a similar reasoning). In fact, the measure of fuel prices that is most widely
used by practitioners in Italy is the ITEC12/REF-E index (published by the energy
consultancy company REF-E), a monthly-frequency weighted average of international
coal and natural gas prices, adjusted for average thermal efficiencies, with weights
corresponding to the average coal and natural gas shares in the Italian generation
capacity.
18 Ex-post, this is worrisome for estimation purposes if we find large standard errors,

which is not case (see Section 4.3).
19 Standard regularity conditions for likelihood-based inference are violated under

the null hypothesis of linearity. Under such circumstances the information matrix
is singular.

http://www.terna.it
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corresponding to spring and fall, while the amplitude of its fluctua-
tions tended to narrow down in the first and third quarters (winter
and summer), with apparently some more serial correlation. Winters
and summers are also the time locations of the demand peaks (see
the bottom panel of Fig. A.1).

In despiking the data, we follow the industry standard, yet we run
the risk of underestimating the effects of our explanatory variables,
since all of them could be causing spike occurrences (see evidence in
Mari, 2008, and in Hellström et al., 2012). If we retained the spikes,
we would need to resort to a different modeling strategy, such as
regime spikes (see Huisman and Mahieu, 2003; Mari, 2008; Eichler
and Tuerk, 2013). While appropriate in this case, regime spikes are
implemented in an autoregressive framework, with minimal inclu-
sion, if any, of exogenous regressors (typically, deterministic trends
and seasonals). There is probably a trade-off between the com-
plexity of a model including spike processes along with regimes,
and the ability to extract information regarding the price impact of
fundamental variables.

4.3. Results

Maximum likelihood (ML) estimates of the fixed transition prob-
ability model are reported in Table A.7. The model appears to be well
identified: parameters are significant and the standardized residuals
exhibit no signs of linear or nonlinear dependence. The significance
levels are high enough to dissipate fears of variance inflation due to
multicollinearity.

The statistical tests identify two regimes, with the estimated
mean electricity prices in Sicily being farther from 0 in the high
regime (l(h) = 0.0408) than in the low regime (l(l) = −0.0042).
The Sicilian electricity price is also more volatile in the high regime
(s(h) = 0.1339) than in the low regime (s(l) = 0.0648).

The fixed transition probability model shows that changes in
demand have a significant effect on prices only in the high regime
(ah = 0.7346). Along with the lack of significance in the low regime,
these results are consistent with a hockey-stick supply stack (flat in
the low regime, steep in the high regime). Renewable energy exer-
cises a downward pressure on prices in both regimes, although more
strongly so in the high regime (|dh| > |dl|). The same pattern is
observed for the residual supply index, for which we find positive
and significant coefficients in both regimes (kh > kl); and similarly
for congestion (hh > hl). Both regimes are very persistent: the esti-
mated pll and phh are both in the vicinity of 97%, so that the average
duration of the system in the low regime is nearly 33 days, and 38
days in the high regime.

Looking at the time-varying transition probability model, in order
to assess whether changes in demand, renewable energy supply,
residual supply index and congestion contribute to predict changes
in the electricity prices in Sicily, we need to both (i) analyze the
sign and significance of the parameters of the time-varying transition
probabilities, as this will enable us to find out whether the inde-
pendent variables affect the probability of staying in, or switching
regime; and (ii) inquire, by looking at the temporal evolution of the
time varying transition probabilities, whether changes in regime are
triggered by changes in the independent variables.

The estimated coefficients for the transition probability func-
tions, presented in Table A.8, show that an increase (decrease) in
the renewable energy supply increases (decreases) the probabil-
ity of remaining in the low (high) regime; an increase (decrease)
in the RSI raises (decreases) the probability of remaining in the
high (low) regime; whereas an increase (decrease) in congestion
raises (decreases) the probability of remaining in the high (low)
regime.

The impact of demand on the probability to stay in the low regime
is not significant whereas it has a strong and significant effect (ah =
24.2837) on the probability to remain in the high regime. Again, this

is consistent with a hockey-stick supply stack. In comparison, the
coefficients associated to the RSI (kl and kh) are higher in magnitude
than those related to congestion (hl and hh), and more unequal across
regimes. Having assumed logit transition probabilities, we can inter-
pret the coefficients as elasticities of the log-odds to stay in a certain
regime. A 10% increase in congestion yields a fall in the log-odds of
the low-regime probability by 13.02% and increases the log-odds of
the high-regime probability by +3.73%, whereas the effects induced
by a 10% increase in the RSI amount to, respectively, −35.98% and
+7.41%. Market power, thus, looks like a stronger driver of regime
switches than congestion.

Fig. A.4 displays the estimated smoothed regime probabilities
(high regime on top, low regime in the bottom panel). The Sicilian
electricity zone remained in a high-price regime more frequently
during the winter and summer months. Notice, however, that the
high-regime probability was on average higher in 2012 than it would
be later. It never fell below 0.5 from approximately mid-January to
the beginning of April, and again from the end of May to mid Septem-
ber. These two long spells were interrupted by a rather persistent
stay in the low regime (April) and a shorter dip in mid-May. The same
pattern was not replicated in 2013, when the high regime was less
frequent, especially in the second quarter. The first quarter of 2014
was markedly different from the first quarter of 2012, as testified
by the small probability of the high regime, while some persistence
resumed in the third quarter. Apart from a short spell in the low
regime in late August, the high regime probability was above 0.90
from mid-July to mid-October.

It is hard to reconcile these changing patterns with the dynamics
of either demand or renewables. Congestion (bottom panel of
Fig. A.2) behaved very similarly in 2012 and 2013, although persis-
tence in the high regime in the summer of 2014 can easily be linked
to the amazingly long streak of fully congested days. More insights
come from the change in the qualitative behavior of the RSI time
series after August 2012. The lower ability of the system to sustain
the high regime in 2013 and 2014 may be due to the diminished
power of the pivotal supplier. As these observations imply, both the
congestion and tacit collusion stories have explanatory power to
some extent.

Fig. A.5, which presents the evolution of time varying transition
probabilities, is very informative. It is clear that the probabilities of
remaining in the same regime vary throughout the sample. Com-
paring the transition probabilities with the “raw” values of the
explanatory variables (Figs. A.1 and A.2), we find that the probabil-
ity of remaining in the high regime (phh) is rather well in sync with
the summer demand peaks, but not with the winter peaks. Inter-
estingly, in summer months the probability of remaining in the low
regime (pll) is high, too, outlining a clearer regime structure in the
price process than in other seasons.

One reason for lack of synchronization between the high-regime
persistence and the winter demand peak may rest with the volatile
behavior of renewables during the winter season. Looking at Fig. A.2
(mid-panel), it is rather clear that the supply of renewables is often
abundant during the winter, presumably because of wind power pro-
duction, hence countervailing the wintertime increase in demand,
while the relative scarcity of renewables during the summer rein-
forces the residual demand available to power producers and their
market power opportunities.20 Adding to this, congestion on the
Sicily-Rossano line is on average less frequent during the winter.
There is, instead, a nice visual association between the probabil-
ity to persist in the high regime and the congestion indicator. The
coefficient estimates, though, point to market power as a stronger
determinant of regime transitions.

20 It is worth recalling that the photovoltaic penetration rate in Sicily is about half
the wind power penetration rate (see Section 4.2).
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5. Discussion and conclusion

By means of regime-switching models of the day-ahead elec-
tricity price, this paper is able to compare theoretical hypotheses
on the determinants of price regimes in Sicily over the 2012–2014
period, shedding light on the reasons why Sicilian prices were less
responsive to the general declining trend induced by renewables in
Italy.

Our statistical tests identify two regimes, both of which display
a relatively high persistence, yet the price process is not absorbed
in either. This would be consistent with a collusion story, in which
tacit agreements between generators are sustained for rather long
spells and punishment periods are similarly long. Yet, one may
obtain a similar pattern from a scenario in which the line connect-
ing Sicily with the Italian mainland is congested due to protracted
supply deficits on the island. As a matter of fact, in the three sam-
ple years, summer seasons in Sicily have lasted longer than usual,
keeping up the power demand and requiring massive inflows of
electricity from the South zone. The serial correlation of our conges-
tion proxy, consistently, is .468 after 1 daily lag and tapers off quite
slowly (around .10 between lags 15 and 20, and .16 at the 21-days
lags). By the same token, persistence in the high regime obtains if
demand persistently remains above the supply kink hypothesized by
Kanamura and Ohashi (2008).

Conditioning the transition probabilities is the key to discrimi-
nating among the competing hypotheses. If regimes were only due
to a kinked cost profile, the RSI and congestion would not have
the explanatory power they display (see the time-varying regime
switching results). Indeed, Table A.2 suggests that the cost profile
hypothesis is rejected if the RSI coefficients are significant in the
price equations or in the transition equation. In days with more con-
gestion, high-to-low transitions are less frequent, and conversely,
congestion seems to drive transitions towards the high regime and to
increase its persistence. This would support the congestion hypothe-
sis, yet the variance in the congestion indicator within each regime is
not negligible, as implied by the price equation estimates. Table A.2
in this case indicates rejection of the congestion hypothesis. What
casts doubts on the arbitrary market power hypothesis, instead,
is finding that price levels in the high regime are predictable by
means of data on demand, supply, market power, and congestion
(see Table A.2 again). Hence, while in the high regime, generators do
not seem to randomize.

As a bottom line, the estimated patterns seem to only be consis-
tent with a tacit collusion story.21 According to our results, high-to-
low transitions are more likely when the supply of renewables covers
a large share of power demand, when the pivotal supplier cannot
affect market clearing, and when Sicily is integrated with the rest
of Italy. In all these cases, the profit share lost by deviating is rel-
atively small, in line with theoretical insights from repeated games
with multiple equilibria.

Our paper adds to the existing evidence on tacit collusion, but
its key message concerns the interplay between tacit collusion and
transmission constraints, responding to the challenge presented by
Liu and Hobbs (2013), and in line with Bigerna et al. (2015), who
estimate market power measures adjusted for congestion. While the
tacit collusion story is more empirically sound than a “pure” conges-
tion story, it must be stressed that without the bottlenecks arising
in the Sicily-Rossano line, the collusive incentives would have been

21 NRf , the set of hypotheses that are not rejected through the fixed transition
model, only includes tacit collusion; NRtv , the set of hypotheses that are not rejected
by the time-varying transition model, includes arbitrary market power, tacit collu-
sion, and congestion. Only tacit collusion belongs to the intersection of the NRf and
NRtv sets.

much weaker. An implied message is that the reinforcement of the
cable connecting Sicily to the Italian peninsula will curb market
power, but at least as importantly, our results point to the tacit collu-
sion literature as a source of alternative weapons against the threat
of soaring electricity prices.

Infrastructural investments, indeed, prove less viable in austerity
times. Completion of the second Sorgente-Rizziconi line, scheduled
for 2015, 5 years after authorization, has been meeting opposition
from environmental associations, leading the regional administra-
tion to call for a revision in the project and prompting judiciary
investigations. Relaxing the transmission constraints can also yield
unwelcome market power “export” effects when the excess capac-
ity in one zone can be deployed in others after integration (Boffa
and Scarpa, 2009) or when integration allows a low-cost dominant
generator to access a more competitive zone (Bunn and Zachmann,
2010). The experience of lower prices in Sardinia after the inaugura-
tion of the SAPEI cable in 2011 is reassuring in this respect. Sardinia
is similar to Sicily as regards climate conditions, renewable energy
potential and hydropower scarcity.

Alternative anti-collusive means include reforming the day-
ahead auction format, limiting multi-market contracts, and stimu-
lating renewables. Fabra (2003) showed how collusion is harder to
enforce in pay-as-bid auctions. Regulatory discussions almost led to
replacing the day-ahead uniform price auction in the Italian Power
Exchange in 2009 under pressure from industrial consumers, before
the project was halted by the new government. Multi-market con-
tacts across the forward curve, with companies competing in several
derivative markets, need to be carefully regulated. This task is far
from easy, in light of the proliferation of trading venues for for-
wards (MTE —Mercato a Termine per l’Energia, run by GME), futures
and options (IDEX, managed by Borsa Italiana). Derivatives regula-
tion and day-ahead auction formats are subtly linked, as pay-as-bid
auctions are expected to yield lower volatility (Rassenti et al., 2003)
and hence reduce the demand for hedging and the associated multi-
market contacts.

Fostering further diffusion of renewable energy sources is yet
another way to go. Our estimates suggest that more renewables keep
the price process in the low regime and, within each regime, perform
a mitigating function on price. Related work (Sapio, 2015b), more-
over, highlights the beneficial role of renewables as substitutes for
electricity imports from neighboring zones.

Our results should be taken into account in regulatory and policy-
making circles, as in the implementation of the projects of common
interest envisioned by the 2030 Climate-Energy Package. The case
studies of Baltic States, Ireland and the Iberian countries all have
their own peculiarities, yet the evidence on Sicily provides new
and useful information on the potential benefits and risks asso-
ciated to different infrastructural and institutional architectures.
Behind the discussion on anti-collusive tools, outlined above, lies
the tension between investments in the generation and transmission
segments of the electricity industry (see also Boffa and Sapio, 2015).
These entertain non-trivial complementarity and substitution rela-
tionships whose full understanding is a challenging task for future
research.
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Table A.1
Hypotheses on the expected effects of fundamentals (demand, RE supply, market power, congestion) on wholesale day-ahead prices
within regimes and on regime probabilities. > 0 (< 0) indicates a positive (negative) and statistically significant effect. 0 means lack of
statistical significance. ≥ 0 and ≤ 0 are used when hypotheses do not yield sharp predictions on the statistical significance of the effects.

Effects on price Effects on probabilities

↓ Hypotheses Low regime High regime Low regime High regime

Arbitrary market power
Demand ≥ 0 0 ≤ 0 > 0
RE supply < 0 0 > 0 < 0
Market power 0 0 < 0 > 0
Congestion > 0 0 < 0 > 0

Cost profile
Demand ≥ 0 > 0 ≤ 0 > 0
RE supply < 0 < 0 > 0 < 0
Market power 0 0 0 0
Congestion > 0 > 0 < 0 > 0

Tacit collusion
Demand ≥ 0 > 0 ≤ 0 > 0
RE supply < 0 < 0 > 0 < 0
Market power > 0 > 0 < 0 > 0
Congestion > 0 > 0 < 0 > 0

Congestion
Demand ≥ 0 > 0 0 0
RE supply < 0 < 0 0 0
Market power > 0 > 0 0 0
Congestion 0 0 < 0 > 0

Table A.2
Criteria for rejecting the theoretical hypotheses using the coefficient estimates of the fixed and time-varying regime switching models.

Hypotheses Reject in fixed transition model if. . . Reject in time-varying transition model if. . .

Arbitrary market power Any significant in high regime Any non-significant in transitions, except demand
a(h) �= 0 ∨ d(h) �= 0 ∨ k(h) �= 0 ∨ h(h) �= 0 di = 0 ∨ ki = 0 ∨ hi = 0, i ∈ {h, l}

Cost profile Market power significant in either regime Market power significant in transitions
k(i) �= 0, i ∈ {h, l} ki �= 0, i ∈ {h, l}

Tacit collusion Any non-significant in either regime, except demand Any non-significant in transitions, except demand
d(i) = 0 ∨ k(i) = 0 ∨ h(i) = 0, i ∈ {h, l} di = 0 ∨ ki = 0 ∨ hi = 0, i ∈ {h, l}

Congestion Congestion significant in either regime Congestion not significant in transitions
h(i) �= 0, i ∈ {h, l} hi = 0, i ∈ {h, l}

Note: Let NRf and NRtv denote the set of hypotheses that cannot be rejected, respectively, by means of the estimated fixed transition and time-varying transition models. The data
are considered to be consistent with hypotheses H such that H ∈ NRf ∩ NRtv .

Appendix A

Table A.3
Notation, definitions, and sources of the variables used in the econometric analysis.

Notation Short name Variable definition Source

pt Price Daily average of hourly electricity prices in the Sicily zone IPEx (day-ahead)
dt Demand Daily purchased quantities of electricity in the Sicily zone ”
rt Congestion Daily number of hours when the prices in the Sicily and South

zones differed; or: daily change in the number of congestion hours ”
mt RSI Daily average of the residual supply index for the Sicily zone ”
ct Renewables Daily production of intermittent renewables in the Sicily zone Terna
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Table A.4
Descriptive statistics of the sample used in the econometric analysis on the Sicilian electricity market
zone: before de-seasonalization and de-spiking. Number of observations: 1096.

Mean Std. dev. Skewness Kurtosis Min Max

pt 89.401 19.418 0.451 11.009 20.608 273.637
dt 52271.08 5498.788 0.253 2.874 35570.56 71830.18
rt 12540.05 6275.72 1.072 3.640 1366 34528
mt 33.778 94.742 3.967 22.197 0 812.298
ct 20.694 4.154 −1.264 3.736 5 24

Table A.5
Descriptive statistics and tests after de-seasonalization and de-spiking. Number of observations: 1096.

Mean Std. dev. Skewness Kurtosis Jarque–Bera

pt 0.0151 0.1378 −0.1978 3.5966 23.408
dt 0.0028 0.0305 −0.0649 3.0534 0.9008
rt 0.0063 0.4345 0.0898 2.7824 3.6347
mt −0.1816 1.0508 0.8337 4.7416 28.893
ct −0.0063 4.2811 −0.1489 4.8508 16.332

Markov switching state dimension: Hansen test
Standardized LR test Linearity vs.two-states Two-states vs.three-states
LR 3.7765 0.4591
M = 0 (0.0012) (0.6987)
M = 1 (0.0026) (0.6900)
M = 2 (0.0054) (0.6987)
M = 3 (0.0059) (0.7034)
M = 4 (0.0131) (0.7124)

Note: The Hansen’s standardized likelihood ratio test p-values are calculated according to the method described in Hansen [31], using 1000 random draws from the relevant
limiting Gaussian processes and bandwidth parameter M = 0,1,. . . ,4. Test results for the presence of a third state are also reported.

Table A.6
Cross-correlations among the variables, before and after de-seasonalization and de-spiking.

log-price log-purch. log-RE log-RSI log-cong.

Before filtering:
Daily log-price 1.0000
Daily log-purchases 0.4515 1.0000
Daily log-RE sold quantities −0.5410 0.0237 1.0000
Daily log-median RSI 0.3109 0.3166 −0.1688 1.0000
Daily log-n. congested hours 0.6260 0.1865 −0.5269 0.1069 1.0000

After filtering:
Daily log-price 1.0000
Daily log-purchases 0.0673 1.0000
Daily log-RE sold quantities −0.5220 0.0631 1.0000
Daily log-median RSI 0.1952 0.1819 −0.1060 1.0000
Daily log-n. congested hours 0.5615 −0.0208 −0.5428 0.1005 1.0000
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Table A.7
Fixed transition probability model of day-ahead log-prices in Sicily, after de-seasonalizing and de-spiking the daily averages: maximum
likelihood estimates.

Low regime High regime

Parameters p-Value Parameters p-Value

l(l) −0.0042 (0.0265) l(h) 0.0408 (0.0000)
a(l) −0.0057 (0.3525) a(h) 0.7346 (0.0000)
d(l) −0.0811 (0.0000) d(h) −0.1889 (0.0000)
k(l) 0.0164 (0.0000) k(h) 0.0169 (0.0111)
h(l) 0.0035 (0.0008) h(h) 0.0059 (0.0000)
s(l) 0.0648 (0.0000) s(h) 0.1339 (0.0000)
pll 0.9697 (0.0000) phh 0.9738 (0.0000)
Duration 32.9065 38.2463
LB(5) 1.4232

[0.8962]
LogLik 947.3662

LB2
(5) 3.5576

[0.5422]

Note: Autocorrelation and heteroscedasticity-consistent standard errors, computed using the Newey and West (1987) variance
covariance matrix, are reported in brackets. LB5 and LB2

5 are respectively the Ljung-Box test (1978) of significance of autocorrelations
of five lags in the standardized and standardized squared residuals, p-values are reported in brackets. Duration indicates the expected
number of days the dependent variable stays in each regime, and is equal to 1

1−pjj
for regime j.

Table A.8
Time-varying transition probability model of day-ahead log-prices in Sicily, after de-seasonalizing and de-spiking the daily averages: maximum likelihood estimates.

Mean equation Transition equation

Parameters p-Value Parameters p-Value

l l −0.0791 (0.0000) kl −5.1381 (0.0006)
lh 0.0993 (0.0000) kh −1.8593 (0.0000)

al 8.4328 (0.6418)
ah 24.2837 (0.0031)

s l 0.1014 (0.0000) dl 6.0316 (0.0006)
sh 0.1127 (0.0000) dh −4.9401 (0.0046)

kl −3.5976 (0.0055)
kh 0.7411 (0.0118)
hl −1.3016 (0.0049)
hh 0.3729 (0.0000)

LB(5) 2.8293
[0.7262]

LogLik 839.1521

LB2
(5) 5.1578

[0.3969]

Note: See notes to Table A.7. The time varying transition probabilities evolve according to Eq. (6), where al and ah measure the effects of power demand on the probability to
remain in the low and high regimes, respectively; the effects of renewable energy production, RSI, and congestion are measured by (dl , dh), (kl ,kh), (hl , hh), respectively.
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Fig. A.1. Daily average electricity price (top) and daily purchases (bottom) in Sicily, 2012–2014.
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Fig. A.2. Daily median residual supply index (top), daily total production of
intermittent renewable energy (middle), and number of congested hours (bottom) in
Sicily, 2012–2014.

Fig. A.3. Deseasonalized and despiked daily average electricity prices in Sicily, 2012–
2014.

Fig. A.4. Smoothed probabilities that the price process be in the low (Pr(st = l)) and
high (Pr(st = h)) regimes.
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Fig. A.5. Transition probabilities in the time-varying transition probability model (Eqs. 4, 5 and 6). phh and pll denote the probability of staying in the high regime (state h) and
the probability of staying in the low regime (state l) respectively, whereas plh and phl denote, respectively, the probability of low-to-high and high-to-low transitions.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.eneco.2016.01.008.
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