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ABSTRACT 

The penetration of renewable energy sources has increased significantly in recent years 

due to the ongoing depletion of conventional resources and the transition to a low 

carbon energy system. Renewable energy sources such as wind energy are highly 

intermittent and unpredictable in nature, which makes the operation of the power grid 

more dynamic and therefore more complex. In order to operate the power system 

reliably under such conditions, Phasor Measurement Units (PMUs) through the use of 

satellite technology can offer a state-of-the-art Wide Area Monitoring System (WAMS) 

for improving power system monitoring, control and protection. They can improve the 

operation by providing highly precise and synchronised measurements near to real-time 

with higher frequency and accuracy. In order to achieve such objectives, a high-speed 

and reliable communications infrastructure is required to transfer time-critical PMU 

data from remote locations to the control centre. The signals measured by PMUs are 

transmitted across Local and Wide Area Networks, where they may encounter excessive 

delays. Signal delays can have a disruptive effect and make applications at best 

inefficient and at worse ineffective. 

The main research contribution of this thesis is the performance evaluation of 

communication infrastructures for WAMS. The evaluation begins from inside 

substations and continues over wide areas from substations to control centre. Through 

laboratory-based investigations and simulations, the performance of communications 

infrastructure in a typical power system substation has been analysed. In addition, the 

performance evaluation of WAMS communications infrastructure has been presented. 

In the modelling and analysis, an existing WAMS as installed on the GB transmission 

system has been considered. The actual PMU packets as received at the Phasor Data 

Concentrator (PDC) were captured for latency analysis. A novel algorithmic procedure 

has been developed and implemented to automate the large-scale latency calculations. 

Furthermore, the internal delays of PMUs have been investigated, determined and 

analysed. Subsequently, the WAMS has been simulated and detailed comparisons have 

been performed between the simulated model results and WAMS performance data 

captured from the actual WAMS. The validated WAMS model has been used for 

analysing possible future developments as well as to test newly proposed mechanisms, 

protocols, etc. in order to improve the communications infrastructure performance.  
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Chapter 1  
 

Introduction 

1.1 Environmental Legislation 

The emission of greenhouse gases like carbon dioxide in an uncontrolled manner can 

cause average global temperature to rise by up to 6°C by the end of this century [1]. In 

this condition, extreme weather events like floods and drought, and issues such as 

public health-related deaths, migration of people, conflict, and global instability are 

anticipated to become more prevalent. Correspondingly, the UK is also likely to be 

affected by an increase in floods, heat waves, and droughts. In order to prevent the 

critical impacts of climate change, the average global temperatures must rise no more 

than 2 degrees Celsius. To achieve this aim, the global emissions must start falling 

before 2020 and then fall to at least 50% below 1990 levels by 2050 [1]. To restrain 

global warming to this level requires reducing global emissions. However, 

decarbonising the energy systems will be a gradual process over the coming decades. 

Britain needs to become a low carbon country to play its part in reducing emissions. 

The 2008 Climate Change Act [2] made Britain the first country in the world to set 

legally binding ‘carbon budgets’, aiming to cut emissions by 34% by 2020 and at least 

80% by 2050 [3]. 

Based on this plan, by 2050 the UK is allowed to produce very few greenhouse gas 

emissions overall. Considering the costs and potential of all the options in different 
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sectors, the emissions from the power sector should be reduced to almost zero [1]. 

Renewables play a key part of the decarbonisation of the energy sector, alongside other 

clean energy technologies including nuclear, carbon capture and storage. According to 

the determined goals, 15% of energy demand should be provided from renewable 

sources by 2020 in a cost effective way. The Committee on Climate Change also 

proposed that the penetration of 30-45% renewable energy to the total energy 

consumption in the UK is achievable by 2030 [4]. The UK leads the world in offshore 

wind farms and more than 700 turbines were installed by 2011 [4]. The deployment of 

onshore wind farms is accelerating with the biggest projects in Europe which already 

operating and under construction in Scotland and Wales. Currently, the UK wind energy 

installed capacity is 12 GW, which 4.05 GW of it is from offshore wind farms [5]. In 

addition to meeting the carbon reduction objectives, increasing the renewable energy 

deployment will secure the UK’s future energy requirements, protect consumers from 

fossil fuel price fluctuations, and will drive investment in new jobs and businesses in the 

renewable energy sector [4]. 

Apart from deploying clean energy technologies, the efficiency of energy usage needs 

to improve. Demand for energy should be reduced dramatically through 2030 to 2050 

and in some projections the level of this reduction has been set at 40% of 2005 levels. 

However, it should be noted that even when the demand for energy is reduced, the need 

for electricity is likely to increase [1]. This is because as well as meeting traditional 

demand, electricity creates opportunity in the future for heat, transport, and industrial 

processes to be electrified in a sustainable way [3]. Recent DECC (Department of 

Energy and Climate Change) analysis shows that electricity demand is likely to increase 

by between 30% and 100% by 2050 [6].  

1.2 The GB Future Transmission System 

National Grid (NG) owns the high-voltage electricity transmission network in England 

and Wales and is the System Operator (SO) of the high-voltage electricity transmission 

network for the whole of Great Britain. The transmission network in Scotland is owned 

by two separate transmission companies and the offshore transmission systems are also 

separately owned [7]. In fact, NG is responsible for managing the flows of electricity 

from generators to consumers on a real time basis [8]. NG does not generate the power 
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neither does it sell power to consumers. It is paid by energy suppliers who buy 

electricity from the power stations and other electricity producers [9].  

The National Electricity Transmission System (NETS) mainly consists of 400 kV, 275 

kV and 132 kV assets connecting separately owned generation and distribution systems. 

The ‘transmission’ classification applies in Scotland or offshore to assets at 132 kV or 

above, and in England and Wales to assets at 275 kV or above. Assets that are at the 

lower voltage levels of grid are part of the six regional distribution companies supplying 

customers down to domestic level. There are also a number of separately owned 

interconnections to the European countries. Interconnectivity between European 

member states improves the security of the system, facilitates competition, and helps to 

integrate the renewable generation effectively [7]. 

Currently, the NETS peak demand is approximately 60 GW. 10 GW of renewable 

generation capacity is connected to the NETS, with a peak recorded output of 7.2 GW 

[7]. There are ongoing developments and radical changes in the energy landscape of the 

UK. Higher growth in nuclear and wind power is expected. Wind power is mainly being 

installed to the north and east of the system, particularly within Scotland. Accordingly, 

the power transfer from north to south has been increased, which intensifies the 

reinforcement requirements. The widespread location and intermittent nature of these 

generations need progressive development of transmission networks and advanced 

system operations [7]. Therefore, a larger and smarter electricity grid is required to 

manage a more complex system of electricity supply and demand [1]. 

National Grid has developed energy scenarios to visualise and plan how energy should 

be delivered in the future. In this regard, four scenarios have been determined which 

consider a range of potential drivers that might have an impact on the future of energy 

in the UK. These scenarios are distinctive based on the energy trilemma of security of 

supply, affordability and sustainability as shown in Figure 1 [3]. In order to develop the 

future transmission system based on the challenges ahead, a flexible approach has been 

adopted. The National Electricity Transmission System Operator (NETSO) and the 

Transmission Owners (TOs) deal with this uncertainty about the timing and location of 

future generation by considering these scenarios. The Future Energy Scenarios (FES) 

provide a detailed analysis of a range of credible futures. Based on the provided details 

in FES, the Gone Green will be generally the worst-case scenario for system strength in 
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terms of system inertia reduction, stability constraints and short circuit level, while No 

Progression is the closest to current situation [7]. 

Figure 2 [7] shows the impact of Gone Green scenario on the generation mix, up to 

2035/2036. As can be seen, wind reaches approximately 20 GW of capacity by 2020 

(just under 12 GW of this being offshore) and 47 GW by 2035 (35.5 GW of this being 

offshore). Furthermore, other renewables increase by 1.4 GW to 2020 and by 3.6 GW 

over the full period to 2035 [7]. It should be noted that these capacity values do not 

include any small and medium embedded generations. Embedded generations are small 

generation units that are connected to the distribution network, such as solar 

photovoltaic (PV) and wind [8]. 

In such a condition, the transmission network needs to be designed in a way to ensure 

required capacity for sending generated powers to consumers. In providing transfer 

capacity, the new infrastructure construction is not necessarily the first choice. NG’s 

priority for network reinforcement is to optimise the existing assets to fully utilise the 

available capability of the system. The higher boundary transfer can be achieved by 

 

Figure 1 UK future energy scenarios [3]  
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improving system operation using advanced monitoring, control, and protection tools 

[7]. In order to address the issues arising from integrating renewable energy sources 

number of projects have been defined. For example, VISOR project demonstrates the 

potential for new technologies to improve monitoring and understanding of the 

electrical transmission system in GB. The project will create a nationwide WAMS that 

can be used to improve the efficiency of network operation by reducing security 

margins [10]. Smart Frequency Control (SFC) project proposes a sustainable and cost-

effective way for a greater volume and speed of frequency response to keep the system 

stable [11]. 

1.3 Wide Area Monitoring Systems 

The environmental constraints described in Section  1.1 has led to the more complicated 

operation of power systems, and therefore they encounter more challenges. From the 

generation viewpoint, power industries have been deregulated and more independent 

power generators contribute as suppliers. In addition, there is a wider penetration of 

renewable and variable sources of generation. Furthermore, by the presence of less 

predictable load patterns and more power electronics driven sensitive loads, there is a 

 

Figure 2 Generation mix in Gone Green scenario [7] 
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higher requirement for providing reliability and power quality. Difficulties also exist in 

upgrading the transmission system proportional to the growing generations and loads, 

such as high cost and siting new transmission facilities. 

Reliability is one of the prominent factors in operation of power systems that has 

notable economic impact and influence on society. Historically, power systems have 

been remarkably reliable. Although minor outages have been common, large-scale and 

wide-spread outages rarely happened and such interruptions have occurred over 

relatively limited areas. However, changes in the wholesale electricity market alongside 

the difficulties in upgrading the transmission systems have caused power systems to 

face more challenging network-wide issues. In this condition, a minor disturbance can 

be intensified by a series of events leading to network-wide effect. Subsequently, 

system may completely collapse if timely actions are not adopted [12]. To avoid this, 

advanced and smart monitoring tools are required to quickly and reliably observe the 

changing state of the key electrical parameters in real time, take appropriate corrective 

measures, and isolate faults. 

Traditionally, Supervisory Control And Data Acquisition (SCADA) systems were 

designed for monitoring of the power systems by polling the Remote Terminal Units 

(RTUs) at all substations. These have been the essential component for monitoring in 

power system for years. However, the current SCADA systems collect data and observe 

grid conditions every few seconds. Thus they are incapable of providing information 

about the dynamic state of the power system and the monitoring is relatively static and 

infrequent. In addition, SCADA data are not consistently time-synchronised and shared 

widely across the network. Therefore, SCADA does not provide operators with real-

time and wide-area visibility. Consequently, it is not effective for the real-time wide-

area monitoring applications. 

The emergence of the new generation of measurement technology, known as Phasor 

Measurement Units (PMUs), provides a significant improvement in reliability [13]. 

PMUs offer unprecedented time-synchronised and high resolution information over a 

wide-area, in real-time. By using PMUs data can be provided in higher rates, commonly 

once every cycle, and at higher levels of accuracy. Many advanced smart grid 

applications can take advantage of the measurement capabilities of PMUs. These 

applications enable utilities to react promptly to the contingencies and prevent large-

scale blackouts [13]. 
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A PMU-based WAMS is a system in which PMUs measure power system parameters 

including frequency, voltage and current phasors with a high degree of accuracy, as 

shown in Figure 3 [14]. Meanwhile, the phasors are time-stamped using signals from 

Global Positioning System (GPS) so that the microsecond when the measurement taken 

is permanently attached to it. This feature enables simultaneous measurement of system 

parameters from different locations in the power system, making the comparison of 

measured parameters simple. Afterwards, the time-critical phasor data are collected 

from various locations in the electrical grid and will be transmitted to a central location 

known as Phasor Data Concentrator (PDC). A PDC receives and time-synchronises 

phasor data from geographically distributed PMUs and produces a real-time, 

synchronised output data stream. This information can be exploited by many smart grid 

applications, ranging from visualisation and alarms for situational awareness, to 

applications that provide sophisticated analytical, control, or protection functionality. 

The collected data can be also stored for future offline analysis [15].  

Even though PMUs found their use mainly in transmission systems, the interest in 

highly accurate measurements has driven to their deployment at lower voltage levels. 

Current investigations are taking place in order to exploit PMUs benefits in distribution 

networks. PMUs have a significant role to play in the successful transition of today’s 

huge amount of power delivery into a “Smart Transmission Grid” since the number of 

PMUs is growing in Europe and around the world [14, 15]. 

 

Figure 3 Deployment of PMUs in Wide Area Monitoring Systems 



 

 

8 

8 

In this thesis, a WAMS as installed on the GB transmission system is considered in 

order to evaluate the performance of Information and Communications Technologies 

(ICT) for communicating PMUs’ time-critical data. The WAMS consists of 9 

substations, which are geographically distributed and they are equipped with PMUs. 

Figure 4 shows the Wide Area Network (WAN) schematic of the real system and will 

be further discussed in Chapter 5. 

1.4 Research Objectives 

In order to achieve real-time monitoring, a high-speed and reliable communications 

infrastructure is required to transfer time-critical PMU data from remote locations to the 

PDC. Therefore, communications infrastructure represents potential bottlenecks in the 

architecture of such systems. In order to fulfil the communication requirements a 

number of factors should be considered, including:  

 Data volume  

PMUs provide higher sampling rates when compared to conventional Remote Terminal 

Units (RTU) in SCADA systems, which gives rise to a significant increase in the rate of 

packet generation.  
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Figure 4 WAN infrastructure schematic of the GB WAMS 
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 Load profile  

Different types of data may also be carried by the communications network including 

data from other substation based devices and applications. Such devices and 

applications may use the same shared communication infrastructure as PMUs.  

 Latency 

Communication delays play a crucial role in WAMS that support mission-critical 

applications, such as power system protection. It is obvious that excess delays in the 

communication network are a challenging factor that affects the PMUs data 

transmission and could make the applications at best inefficient and at worse 

ineffective. Therefore, the performance evaluation of latency exhibited in a WAMS is a 

very important aspect that should be fully investigated [16, 17].  

A WAN is more than just end user devices. It comprises of links, routers, protocols, 

mechanisms, etc., which means that when all these components are considered, setting 

up a WAN can be a complex and costly process. The extent of WAN makes the direct 

experiment of new designs almost impossible. Apart from the economic issues, it can 

lead to a serious damage and loss of data. Hence there is a need to have simulation 

models and testbeds which can accurately imitate the network behaviour. By simulating 

the intended network, it is possible to test the newly proposed mechanisms, protocols, 

topologies, etc. or modify some network parameters and observe the effect before actual 

deployment. 

In this regard, reference [18] analyses the communication requirements from the 

viewpoint of the anticipated smart grid applications. The authors used the open source 

network simulator NS2 [19] for simulating the possible communication scenarios on a 

Western Electricity Coordinating Council 225 bus and a Polish 2383 bus transmission 

system model. 

Reference [20] examines the performance aspects of Internet Protocol (IP) network 

infrastructures when utilised by continuous PMU data streams. A set of simulation 

models characterizing a network of a Nordic Transmission System Operator were built 

to perform the analysis. OMNeT++, an open source communication simulation 

environment [21], was used to simulate and study the impact of QoS mechanisms on 

PMU communications.  
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In reference [22] a simulation model of communication infrastructure was built based 

on requirements from transmission system operators with regard to wide area 

monitoring and control applications. This model, which is based on possible locations 

of PMUs in Sweden, was implemented in OPNET Modeler [23] to simulate the effect of 

different architectures. The authors considered different architectures with regards to 

dedicated or shared communication links and different data-sorting algorithms. In this 

paper the impact of PDC on the overall delay is also taken into consideration. 

The discussed references did not consider the impact of PMUs’ internal delay in 

WAMS operation. Furthermore, the obtained simulation results were not validated by 

the actual latency measurements of networks. The actual latency measurement enables 

monitoring of the communication infrastructures and can also be actively used to 

provide latency values as inputs to the power system controllers. Employing different 

communication protocols in accordance with WAMS applications and investigating the 

latency characteristics on this basis need to be also considered. 

The choice of the proper transmission media, network architecture, and protocols will 

play an important role in fulfilling the idea of wide area monitoring, protection and 

control. Early communication media, such as power line carrier and microwave, had 

constraints with regard to channel capacity, data transfer rate, reliability, scalability, 

robustness and so on. As a consequence of the emergence of optical fibre, these 

constraints have been improved significantly and it has now become the most suitable 

candidate for WAMS applications [17]. Furthermore, early communication networks 

carried continuous bit streams over physical links using a technique called circuit 

switching. Although this method was well suited for transmitting real-time data, a single 

physical link failure had dramatic consequences. In fact, this would cause interruption 

of all communications that were using the failed link. It is important to note that the 

Internet is a datagram packet switched network that solves this problem by dividing data 

into small chunks called packets [24]. These packets are individually routed through the 

network and during a link failure they can be rerouted to avoid the failed link. 

Compared to circuit switching networks, packet switching networks are more robust, 

flexible and efficient. However, it is more difficult to guarantee or manage flows of data 

in a packet switching network than in a circuit switching network since each packet is 

handled separately [24]. 
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Nowadays the Internet is playing a vital role due to the wide variety of applications and 

services provided. Meanwhile, the wide range of different Internet applications can 

cause problems with the communications.  Some applications like WAMS need real-

time communication and therefore low end-to-end delay. While for other applications 

like File Transfer Protocol (FTP), delay may not be an important issue. Therefore, a 

high performance communications network should consider the different applications 

when routing a packet. Fulfilment of such a requirement on the Internet is a challenging 

task for the conventional IP networks [25]. The Internet architecture has evolved over 

time to integrate new technologies and meet the new requirements of the users [26]. 

Multi-Protocol Label Switching (MPLS) as a Traffic Engineering (TE) tool has 

emerged to provide service requirements and managements for the next generation IP 

based backbone networks [24]. It should be noted that MPLS is not a replacement for 

IP. In fact, MPLS adds a set of rules to IP so that the traffic can be classified and 

policed [25]. 

1.5 Principal Research Contributions 

The principle contributions to knowledge, as presented in this thesis, can be summarised 

as follows: 

 

 The performance of a WAMS communications infrastructure as installed on the GB 

transmission system has been evaluated. The thesis can be considered as the first 

reference that provides performance evaluation of the British transmission system 

WAMS communications infrastructure in detail. Therefore, it can be a reference to 

be used for comparison of WAMS in other transmission systems. The evaluation 

steps are as follows: 

 

 The actual PMU packets at PDC server were captured using Wireshark [27], an 

open source network analyser. Furthermore, a novel algorithmic procedure was 

implemented in MATLAB to automate the large-scale latency calculations. 

Automating the calculation process can save time, reduce error and enables more 

detailed and larger scale analyses, especially for the high-resolution PMU data. 

This represents an original research contribution and to the best of researcher’s 
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knowledge this is the first time that it has been applied to an actual WAMS on a 

real transmission system. This novel procedure: 

 

‒ Uses the Wireshark exported files and is able to find the required 

information for latency calculation in that file automatically. 
 

‒ As each PMU type may have different formats when defining time stamps, 

such as number of digits, the algorithmic procedure calculates the latency 

value according to the PMU type. 
 

‒ Then a new Excel file is created and details of each packet along with its 

latency are written in a separate row.  
 

‒ This file also includes the Exponentially Weighted Moving Average 

(EWMA) of the PMUs latency value as well as other characteristics, such as 

maximum and minimum latency values for better statistical comparison. The 

user can also specify the desired EWMA smoothing constant to be used in 

the calculations.  
 

‒ Provides the time stamp of the packet that has maximum or minimum 

latency. 
 

‒ In the case of capturing traffic discretely in specified time intervals, the 

algorithmic procedure is able to open each exported file from Wireshark 

automatically one by one and then calculate the latency. At the end, 

calculated latency values for all packets are written continuously in a single 

Excel file, which is saved in a predefined location. It also records the 

maximum and minimum latency in each individual file with their relevant 

time stamps. 
 

‒ The novel algorithmic procedure as implemented can be used in future for 

the monitoring of WAMS communication networks. It can indicate the 

latency characteristics at specified time intervals. For example, the 

maximum latency can be monitored and when calculated values exceed the 

setting values, they trigger the events. The maximum delay for a PMU is an 

important factor that has an impact on the PDC time-out parameter and, in 

turn, on the whole WAMS performance. The time-out is the amount of time 
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the PDC is actively waiting for the remaining PMU packets with the same 

time stamp. 

 

 Simulations were performed through the models developed in Discrete Event 

Simulation (DES) tools, OPNET and OMNeT++, to determine the characteristics 

of communication delays and bottlenecks that can occur in WAMS. The effect of 

communication links data rates, deploying more than one PMU in substations, 

and background traffic have been fully investigated. 

 

 The internal delays of PMUs have been investigated, analysed and calculated in 

detail. It has been shown that the internal delays of PMUs can introduce 

considerable delay and, in turn, have significant impact on the performance of 

WAMS applications. Furthermore, the internal delays of PMUs have been 

modelled in the designed node models of PMUs in DES and their impact were 

taken into consideration for simulation.  

 

 Detailed comparisons have been performed between the simulation results and 

data captured from the existing WAMS. Through this comparison, the 

implemented modelling and simulation approach has been validated. Therefore, 

the novel WAMS model can be confidently used for analysing possible future 

developments as well as test the newly proposed mechanisms, protocols, etc. in 

order to improve the performance. 

 

 The performance of a typical power system substation communications 

infrastructure based on IEC 61850 standard has been evaluated through the 

following: 

 

 A laboratory-based IEC 61850 standard analysis has been provided. 

 

 Simulations were performed in a DES tool, OMNeT++, to investigate the 

performance of communications infrastructure in a typical power system 

substation.  

 

 The deployment of IEC 61850 for PMU communications has been investigated. 
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 A comprehensive overview of the common open standards within the scope of 

power system ICT has been provided. 
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1.7 Organisation of the Thesis 

This thesis has been divided into 6 chapters as follows: 

 

 Chapter 1 - Introduction 

This chapter provides an outline of the context and research motivations behind the 

thesis followed by contributions. It describes the targets set for emissions of greenhouse 

gases as well as renewable energy and highlights the relevant challenges. Using 

advanced monitoring systems to manage increasing transmission system issues are 

discussed and a brief background regarding WAMS is presented. Furthermore, the 

research rationale for evaluating the performance of communications infrastructure and 

the relevant research contributions are addressed. 

 Chapter 2 - Open Standards for ICT in Power Systems 

In this chapter, the most common open standards for smart grid and in the area of 

Information and Communications Technology (ICT) are investigated. As there are 

various manufacturers in the market, open standards are necessary in providing 

interoperability between equipment from these manufacturers. The chapter starts with 

synchrophasor standards for PMUs and describes the course of evolution for the 

standards, in detail. Then, the existent communication protocols for transferring data in 

a typical power system are discussed. Each of these communication protocols covers 

certain domains and specific groups of data. 

 Chapter 3 - Wide Area Monitoring Systems 

This chapter provides a comprehensive overview of WAMS. It divides WAMS into the 

four main parts of PMUs, PDCs, applications, and communication infrastructures. Then 

each part and its requirements will be fully discussed. Furthermore, the description of 

work carried out for deployment of WAMS on the GB system is provided. This includes 

both the high voltage transmission level and low voltage laboratory-based WAMS.  

Samples of events happened on the GB system that have been captured using WAMS 

will be also presented. 
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 Chapter 4 - Performance Evaluation of Substation Communications 

Infrastructure 

At the beginning of this chapter, a laboratory-based IEC 61850 standard analysis is 

provided. Afterwards, a brief introduction to the key concepts of network simulation 

and network simulators are presented. The three most commonly used network 

simulators: OPNET, OMNeT++, and NS3 are considered and their main features are 

investigated. Furthermore, the simulation and modelling of a typical power system 

substation communications infrastructure is also presented. The considered substation is 

based on IEC 61850 communication protocol and its communication performance is 

evaluated with regard to delays. The deployment of IEC 61850 for WAN applications, 

such as PMUs, will be also investigated. 

 Chapter 5 - Performance Evaluation of WAMS Communications Infrastructure  

This chapter presents the main contribution of the thesis. It provides a novel 

performance evaluation of the communications infrastructure with regard to latency 

from PMUs to PDC. In the novel modelling and analysis, an existing WAMS as 

installed on the GB transmission system is considered. Firstly, the actual PMU packets 

as received at the PDC server are captured using Wireshark for latency analysis. A 

novel algorithmic procedure will be implemented in MATLAB to automate the large-

scale latency calculations. This algorithmic procedure can save time, reduce error and 

enables more detailed and larger scale analyses, especially for the high-resolution PMU 

data. Furthermore, the internal delays of PMUs will be investigated, determined and 

analysed in detail. Subsequently, the WAMS will be simulated using both open source 

and commercial DES tools, and detailed comparisons will be performed between the 

simulated model results and WAMS performance data captured from the actual WAMS 

using Wireshark. In the WAMS simulated model, the internal delays of PMUs are 

modelled and their impacts will be taken into consideration. As a number of substations 

in this model have been equipped with two PMUs, the effect of deploying multiple 

PMUs will be analysed. Moreover, different communication protocols, mechanisms, 

and topologies will be investigated for the GB WAMS future developments. 
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 Chapter 6 - Conclusions and Further Research 

Finally, this chapter concludes the thesis and presents an overview of the aims and 

objectives fulfilled in this research. It summarises the results obtained and discusses the 

key findings. The thesis is ended with the proposal for further steps that can be taken as 

well as recommendations for possible future research directions. 
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Chapter 2  
 

Open Standards for ICT in Power Systems  

2.1 Introduction 

Smart grids have an essential role in transforming the functionality of the electricity 

supply system to provide a user-oriented service, high security, quality, and economic 

efficiency in an open market environment [28]. In this regard, having a wide area 

monitoring system is vital in order to detect problems and react to them as quickly as 

possible. The high number of different manufacturers active in the power system and 

WAMS markets, each implementing proprietary protocols and applications, could result 

in systems that cannot be interconnected. Therefore, standardization is key for the 

advancement of connectivity and interoperability within systems. In the past, utilities 

used to employ proprietary protocols, which were specified by the product vendors. 

Gradually, it was decided to move towards open standards to provide an interoperable 

environment and improve modelling capabilities. Apart from PMU standards, in a 

typical power system, several communication protocols exist and are required for 

transferring data, and each of them cover certain domains and specific groups of data. 

The objective of this chapter is to investigate the adoption, development and 

performance of the most common open standards to enable interoperable wide area 

monitoring systems. 
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2.2 Synchrophasor Standards 

2.2.1 Background 

The primary purpose of the synchrophasor standard is to ensure PMU interoperability. 

The first standard for synchrophasors, IEEE 1344, was introduced in 1995 and 

reaffirmed in 2001. It defined the basic concepts for the measurement and method of 

data handling. However, technology is constantly evolving and standards should be 

updated in order to accommodate new requirements. Thus, the new standard, IEEE 

C37.118, was published in 2005. This significantly improved the previous standard, 

while still maintaining basic compatibility [29]. The IEEE C37.118-2005 open standard 

specified a set of fundamental characteristics, including Time Reference (UTC - 

Coordinated Universal Time), Rate of Measurement, Phase Reference (cosine), 

Accuracy Metrics (Total Vector Error), and Communication Model (format of 

messages). By defining these specifications, the real-time and off-line processing of 

synchrophasor data from different measuring systems can be performed more easily 

[30]. Although the publication of IEEE C37.118-2005 was an important step in the 

standardisation of phasor measurements, this standard does not cover all aspects. For 

example, it does not specify PMU performance requirements under dynamic conditions, 

which could lead to PMUs using the same standard to show different results under 

transient situations. Moreover, it does not address frequency measurement 

requirements, and does not specify a communication protocol; it only defines the data 

format with basic methods for data transfer [29]. 

Due to the above issues, further work was done to revise the standard in 2008. In 

addition, IEC 61850 was proposed to be employed as a communication standard for 

transferring measured synchrophasors [31]. However, there were some problems in 

merging C37.118 into IEC 61850. As a solution to these issues, it was proposed to split 

the C37.118 standard into two parts. In fact, the revision separates the measurement and 

communication sub-clauses into individual standards. This facilitates widespread 

adoption and deployment of this standard by allowing freer use of other standards for 

synchrophasor communication. The two new revised standards were completed and 

published in December 2011. The first part, C37.118.1-2011, includes the 

synchrophasor measurement definitions and requirements, and the second part, 

C37.118.2-2011, includes a new standard for synchrophasor data transfer, which is 
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designed to be compatible with IEC 61850. Both standards have maintained features 

from the previous version, but with updates and additional provisions [32, 33]. 

2.2.2 IEEE C37.118.1-2011 

This standard, entitled ‘IEEE Standard for Synchrophasor Measurements for Power 

Systems’, defines synchronised phasor and frequency measurements across power 

systems using PMUs. In addition, it specifies a set of performance requirements for 

evaluating these measurements and compliance of devices from different manufacturers. 

When the measurements taken from various substations in power grids are compliant 

with the standard, they are comparable and can be accurately combined for power 

system operation analysis. This standard has five clauses along with six informative 

annexes [32]. The details regarding measurement accuracy and evaluation criteria, as 

well as PMU reporting times, are provided in Clause 5. 

2.2.2.1 Measurement Evaluation 

The values obtained from a PMU and the actual values of parameters may show 

differences. In order to assess the accuracy of measurements, this standard defines the 

uncertainty requirements for PMUs in terms of Total Vector Error (TVE). It defines 

TVE as the vectorial difference between the measured and theoretical values of the 

phasor, expressed as a fraction of the magnitude of the theoretical phasor. Considering 

the synchrophasor representation of a signal 𝑋(𝑛) is a complex value as in Equation (1) 

, the TVE value is given by Equation (2) [34]. 

where, at the instant of time 𝑛 of measurement, �̂�𝑟(𝑛) and �̂�𝑖(𝑛) are the measured 

values, given by the PMU, and 𝑋𝑟(𝑛) and 𝑋𝑖(𝑛) are the theoretical values of the input 

signal. 

 𝑋(𝑛) = 𝑋𝑟(𝑛) + 𝑗𝑋𝑖(𝑛) (1) 

 𝑇𝑉𝐸(𝑛) = √
(�̂�𝑟(𝑛) − 𝑋𝑟(𝑛))2 + (�̂�𝑖(𝑛) − 𝑋𝑖(𝑛))2

(𝑋𝑟(𝑛))2 + (𝑋𝑖(𝑛))2
 (2) 
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A PMU is deemed to be compliant with the standard, if TVE is maintained below the 

limit value of 1%. In fact, the magnitude and phase angle differences are considered 

together in the TVE quantity. However, as the phase angle is measured with respect to a 

time synchronised reference, signal timing errors cause errors in the phase angle 

measurement. Thus, timing errors will result in a different TVE depending on the 

system frequency. In this regard, for the 1% TVE criterion, the maximum magnitude 

error is ±0.01 when the error in phase angle is zero, and the maximum error in phase 

angle is 10 mrad (±0.5730°). The corresponding timing error at 50 Hz is ±31.8 μs (26.5 

µs at 60 Hz). The relationship between the actual phasor, the measured phasor and the 

TVE for an arbitrary limit of ε is shown in Figure 5. The 1% criterion for TVE can be 

presented as a circle with the radius of 𝜀 = 0.01 drawn at the end of the phasor. If the 

end point of the measured phasor lies inside the circle, the measurements fulfil the 

required accuracy and the PMU is compliant. It should be noted that Figure 5 is not to 

scale and has been greatly exaggerated for clarity [35, 36]. 

Apart from the TVE, the standard defines criteria for evaluating errors in frequency and 

rate of change of frequency (ROCOF) measurements. In addition, measurement 

response time and delay time, as well as measurement reporting latency, are also 

considered for the exact analysis of PMU operations. 

 

 

Figure 5 TVE criterion for an arbitary limit of ε 
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2.2.2.2 Measurement Reporting 

PMUs are required to be configured in a way to provide measurement reporting at 

multiples of the power system frequency. Reporting rate (𝐹𝑠) is an integer number of 

times per second when the rate of measurement is greater than one per second, or is an 

integer number of seconds between measurements when the measurement rate is equal 

to or slower than one per second. As lower reporting rates are not suitable for dynamic 

analysis of power systems, Fs is considered as the frequency of measurement in frames 

per second in this thesis. The measurements are reported at a constant rate and the 

intervals between them are all the same. As the UK power system is based on 50 Hz, the 

acceptable reporting rates (𝐹𝑠) for the deployed PMUs are 10, 25, 50, 100, etc. frames 

per second.    

A data frame consists of a set of information that may include multiple channels of 

phasor estimates, analog words, and digital words with a measurement status word and 

a time tag, as described in the IEEE C37.118.2-2011 standard. 

2.2.2.3 Measurement Compliance 

The C37.118.1 standard defines two classes of performance: P class and M class. P 

class is used for applications requiring fast response. The letter P is adopted since 

protection applications require a fast response. M class is used for applications that do 

not require a high reporting speed. The letter M is adopted since analytical 

measurements often require greater precision rather than minimal reporting delays. 

Therefore, the standard evaluates the compliance with requirements in accordance with 

the PMU’s class of performance. Clause 5 of the standard describes details regarding 

measurement conditions and requirements for PMUs in steady and dynamic states in 

order to be compliant with the standard. 

The concept of reporting latency, which is the maximum time interval between the data 

report time as indicated by the data time tag and the time when the data becomes 

available at PMU output, is fully described in  Chapter 5, where the internal delays for 

the NG PMUs are investigated. Clause 5 also provides the minimum accuracy for the 

reporting latency values and the PMU internal delay results obtained in  Chapter 5 will 

be checked and compared with the standard performance requirements. 
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2.2.3 IEEE C37.118.2-2011 

This standard, entitled ‘IEEE Standard for Synchrophasor Data Transfer for Power 

Systems’, defines a method for real-time exchange of synchronised phasor measurement 

data in power systems. It specifies data transmission formats that can be used with any 

suitable communication protocol for real-time data transfer between PMUs, PDCs, and 

relevant smart grid applications. It does not impose any constraints on the 

communication system or media itself. In fact, any communication system that is able to 

support the provided message structure in the standard and has sufficient bandwidth can 

be deployed for PMU data transmission. The required bandwidth depends on the 

reporting rate and message size. The message size in turn corresponds to the parameters 

included in the frame and is discussed in detail in the following subsections. This 

standard has six clauses along with six informative annexes. Clause 6 is the main one 

defining the real-time communication protocol and message formats. Informative 

annexes are provided to clarify the standard and give supporting information about 

communication options and requirements. 

2.2.3.1 Message Framework 

Four message types are defined in this standard, namely data, configuration, header, and 

command. The first three message types are transmitted from the data source, PMU or 

PDC, and the last one is received by the data source. It should be noted that PDC itself 

can be considered as a data source when it sends data to another PDC. The data, 

configuration and command messages are binary messages, and the header message is 

in a human-readable format. Data messages contain the actual measurements from 

PMUs. Configuration messages contain information required to decode the data 

messages. Headers contain descriptive information sent from the PMU/PDC but 

provided by the user. Command messages control the operation of the synchrophasor 

measurement device. 

All four types of message frames start with a 2-byte SYNC word followed by a 2-byte 

FRAMESIZE word, a 2-byte IDCODE, a time stamp consisting of a 4-byte second-of-

century (SOC) and 4-byte FRACSEC. Finally, after DATA relevant to the messages, 

the frames end with a 2-byte check word (CHK).  

 The SYNC word provides synchronization and frame identification. Bits 6-4 in the 

SYNC word determine which of the four message types the frame is, and bits 3–0 
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show the version number. All previously defined messages in IEEE C37.118-2005 

are version 1 and the messages added in IEEE C37.118.2-2011 are version 2. 

 The FRAMESIZE shows the total number of bytes in the frame, including CHK 

 The IDCODE indicates the source of a data, header, or configuration message, or 

the destination of a command message. In fact, the message IDCODE is related with 

a data stream and links data frames with the provided configuration and header 

information. 

 The SOC (Second of Century) time with FRACSEC shows the time stamp recorded 

on the PMU during measurement. In fact, the time stamp is an 8-byte message 

comprised of a 4-byte SOC and a 4-byte FRACSEC, which includes 3-byte for 

fraction of second and 1-byte time quality indicator. The SOC is the representation 

of the UTC time in seconds calculated from midnight of January 1, 1970.  

 CHK, which is a CRC-CCITT, is finally used for providing error detection. 

All frames are transmitted with the same order and format described with their relevant 

DATA and without any delimiters as shown in Figure 6. In normal operation, the PMU 

only sends data frames. Since the plan in this thesis is to analyse the WAMS latency 

over the data transmission period, the format for data messages is specifically 

investigated here. 

2.2.3.2 Data Frame 

The PMU data frame consists of binary data ordered as shown in Figure 7. Each row of 

the table contains a field of the message. The data frame contains measured data and is 

identified by having bits 4–6 in the SYNC word set to zero. The STAT provides status 

information for the data in its data block. The data can be one block from a single PMU 

or multiple blocks from different PMUs. Each PMU data block is headed by a STAT, 

 

Figure 6 Frame transmission order in the IEEE C37.118.2-2011 standard 
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which applies to that block only. Bits are set in this STAT flag first by the PMU that 

generates the data, and then can be also changed by other devices in the data chain, such 

as a PDC. As can be seen, the frame size is precisely described in the standard and 

varies depending on the number of phasors and analog and digital parameters included 

in the frame. Based on the provided information, typical frame sizes vary from 40–70 

bytes for a single PMU to over 1000 bytes in a frame from a PDC with data from 

numerous PMUs across the network. 

This standard considers that data are transmitted in real-time and immediately after 

measurement. Originally, only RS-232 serial communications were employed for PMU 

communications. Later, as communications evolved into network methods, PMUs 

moved towards using IP as well. 

No. Field Size (Bytes) Comments 

1 SYNC 2 
First byte: AA hex 

Second byte: 01 hex (frame is version 1, IEEE Std 

C37.118-2005) 

2 FRAMESIZE 2 Number of bytes in frame 

3 IDCODE 2 Stream source ID number, 16-bit integer 

4 SOC 4 SOC time stamp, for all measurements in frame 

5 FRACSEC 4 Fraction of Second and Time Quality 

6 STAT 2 Bit-mapped flags 

7 PHASORS 

4 × PHNMR 

or 

8 × PHNMR 

Phasor estimates. May be single phase or 3-phase positive, 

negative, or zero sequence.  

4 or 8 bytes each depending on the fixed 16-bit or floating-

point format. 

8 FREQ 2 / 4 Frequency (fixed or floating point) 

9 DFREQ 2 / 4 ROCOF (fixed or floating point) 

10 ANALOG 

2 × ANNMR 

or 

4 × ANNMR 

Analog data, 2 or 4 bytes per value depending on fixed or 

floating-point format 

11 DIGITAL 2 × DGNMR 
Digital data, usually representing 16 digital status points 

(channels) 

 Repeat 6–11  
Fields 6–11 are repeated for as many PMUs as in 

NUM_PMU field in configuration frame 

12 CHK 2 CRC-CCITT 

 

Figure 7 Data frame in the IEEE C37.118.2-2011 standard 
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2.3 Modbus 

The Modbus transmission protocol was developed by Gould Modicon (now Schneider) 

for process control systems. Basically, Modbus is a simple, inexpensive, robust, and 

easy to use serial communications protocol that has become the de facto standard 

communication protocol in the industry since 1979 [37, 38]. In fact, Modbus is an 

Application Layer protocol positioned at level 7 of the Open Systems Interconnection 

(OSI) model. Appendix A provides background information about network 

architectures, including the OSI model, as well as protocol layers. Modbus offers 

client/server communication for one server and up to 247 clients, which are connected 

to different networks [39]. Transactions are either of query/response type where only a 

single client is addressed, or of broadcast/no response type where all clients are 

addressed [37]. In either case, only the server initiates messages, and in other words, 

report by exception is not supported except for Modbus over Ethernet TCP/IP [39]. 

Therefore, the server must routinely poll each client to identify changes in the data. 

Accordingly, this occupies bandwidth and takes a great deal of time, which is 

significant where bandwidth is limited and expensive, such as over a low-bit-rate radio 

link. Modbus is currently implemented using the following different transmission 

protocols [39]: 

 TCP/IP over Ethernet 

 Asynchronous serial transmission over a variety of media (wire RS-232, 

422 or 485, fiber, radio, etc.) 

 Modbus Plus, a high speed token passing network (which is currently 

proprietary to Modicon) 

For Asynchronous Modbus and Modbus Plus, the Application Data Unit (ADU) is 

directly mapped to the Physical Layer, while in Modbus Ethernet TCP/IP it is first 

passed through the Transport and Network Layers. Figure 8 shows the concept of the 

Modbus communication stack for these three implementations [31]. By using gateways, 

these three implementation types can exist in a communication network at the same 

time and the Modbus protocol enables all types of network architecture to communicate 

with each other in a simple manner [31]. 
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Some characteristics of the Modbus protocol are fixed, such as frame format, frame 

sequence, dealing with communications errors and exception conditions, and the 

functions performed. On the other hand, other characteristics can be determined by the 

user. These include transmission medium, transmission characteristics and transmission 

modes (RTU or ASCII) [37]. 

A transaction is comprised of a single request from the host to a particular secondary 

device and afterwards a single response from that device back to the host. Both of these 

messages are formatted as Modbus message frames. The Modbus protocol defines a 

simple Protocol Data Unit (PDU) independent of the underlying communication layers 

for transmission of messages between server and clients [37]. Figure 9 shows a general 

Modbus frame (bytes demonstrated here are in Hex format and not in ASCII) [31]. 

As indicated, such message frames includes a series of bytes classified into four fields. 

These are described in the following paragraphs: 

Address Field, the first field of the Modbus frame is the address field, which is 

composed of a single byte of information. In the request frame, this byte identifies the 

controller to which the request is being directed. The response frame begins with the 

address of the responding device. Theoretically, each client may have an address field 

between 1 and 247. However, practical limitations will limit the maximum number of 

clients [37]. 

 

Figure 8 Modbus communication stack 

Application Data Unit (ADU) 
 Protocol Data Unit (PDU)  

1 Byte 1 Byte Variable 2 Bytes 

Address Field Function Field Data Field Error-Check Field 

 Figure 9 Modbus frame format 
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Function Field, the second field in each frame is the function field, which is also 

composed of a single byte of information. When a request message is sent from a host 

to a target, the function code field tells the target device what kind of action to perform. 

If the target device is able to perform the requested function, the response frame will 

have the same function field as the original request. Otherwise, the function field of the 

response frame will be echoed with its most-significant bit set to one. Thus, signalling 

an exception response including an appropriate exception code that the host application 

can use to determine the next action to be taken. Valid function codes are in the range of 

1 to 255 decimal, where the range 128-255 is reserved and applied for exception 

responses (function code “0” is not valid) [39]. 

Data Field, the third field in a message frame is the data field. The length of this byte is 

variable according to the function that is applied in the function field of the frame. In a 

host request, this field contains additional information that target devices use to take the 

action defined by the function code and in a target device response this field is 

comprised of any data requested by the host. The data field may have zero length where 

the server does not require any additional information and the function code alone 

specifies the action [39].  

Error-Check Field, the last field of a message frame is the 2-byte error-check field, 

which is used to verify that a set of data has not been corrupted. The numerical value of 

this field is calculated by performing a 16-bit Cyclic Redundancy Check (CRC-16) on 

the message frame. CRC is a technique for error detection and is based on the remainder 

of a polynomial division. During the receipt of a message, the receiving device also 

calculates a CRC and compares the calculated value to the one which was calculated by 

the transmitting device. If the two values differ, this will result in error. 

In order to provide reliable communication, the message’s reception must be 

synchronised with its transmission. In other words, the start of the new message frame 

must be recognizable by the receiving device. Under the Modbus RTU protocol, frame 

synchronization is established by limiting the elapsed time between the receipt of 

characters. If three character times (approximately three milliseconds) elapse without a 

new character or completion of a frame, then the pending message will be discarded, 

and the next received byte will be treated as the address field of a new message frame. 

Character time is the time it takes to transmit one character at the chosen baud rate [40]. 
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2.4 IEC 60870 

In 1988, the International Electrotechnical commission (IEC) started publishing a 

standard entitled ‘IEC 870 Telecontrol Equipment and System’. The standard was 

developed and published progressively and was later renamed IEC 60870 by adding the 

prefix 60. There are six main parts in the standard of which part five is for transmission 

protocols. IEC 60870-5 was developed in a hierarchical manner in five core sections 

alongside four companion standards in order to define an open standard for SCADA 

communications and wide area processes. The IEC 60870 protocol is mainly used in the 

electrical industries of European countries and has data objects that are specifically 

provided for such applications. However, it is not limited to electrical industries and has 

data objects that can be applied for general SCADA applications in any industry [41]. 

Primarily, the three-layer Enhanced Performance Architecture (EPA) was adopted as 

the basis for data transmission in the IEC 60870 standard. The EPA is the simplified 

three-layer sub-set of the OSI seven-layer model and consists of Application, Data Link 

and Physical Layers. One layer is normally added to the top of the EPA model, which is 

defined as the “user process” layer. This extra layer represents the various functions or 

processes that must be specified to provide telecontrol system operations. Generally, the 

IEC 60870-5 document determines four frame formats that are used for telecontrol 

applications. These four frame formats are FT1.1, FT1.2, FT2 and FT3 [37, 42].  

The companion standard IEC 60870-5-101 which is called ‘Companion Standard for 

Basic Telecontrol Tasks’ uses the FT1.2 frame format. In fact, when it is discussed 

about IEC 60870 in the context of SCADA system, the IEC 60870-5-101 part of the 

protocol has the key role. It provides the application level data objects that are required 

for SCADA operations. The IEC 60870-5 set of standards was initially published on the 

basis of IEC 60870-5-101 profile, as shown in Figure 10 [37]. It covered only 

transmission over relatively low bandwidth bit-serial communication circuits. However, 

after increasing of network communication applications, the fourth companion standard 

IEC 60870-5-104 was introduced in order to define the transport of IEC 60870-5 

applications messages over networks using the TCP/IP protocol. As Figure 11 shows 

[37], IEC60870-5-104, entitled ‘Network Access using Standard Transport Profiles’, 

provides a very different physical and data transport procedure compared to IEC 60870-

5-101. In this protocol, the lower levels have been completely replaced by the TCP and 

IP transport and network protocols, respectively. However, it retained most of the 
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higher application level functions and data objects. TCP and IP protocols are applied for 

the transport of Application Service Data Units (ASDUs) over local area and wide area 

networks [37]. IEC 60870-5-102 and IEC 60870-5-103 companion standards provide 

data types and functions to support electrical protection systems. However, here the 

main focus is on the T101 and T104 companion standards.  

Whereas T101 provides full definition of the protocol stack right down to the physical 

level, this is not provided under T104 as existing and varied Physical and Link Layer 

operations are employed. IEC 60870-5-101 supports point-to-point and multidrop 

communication links carrying bit-serial low-bandwidth data communications. It also 

provides the choice of using balanced or unbalanced communication at the link level. 

Under unbalanced communication, only the master can initiate communications by 

transmitting primary frames. As the slaves are not able to initiate a transaction, the 

collision avoidance process is not required. Under the T101 profile, balanced 

communication can be used only for point-to-point links. This means that the T101 

profile cannot support unsolicited messages from slaves to send data directly to the 

Layer Source Description 

User Process IEC 60870-5-5 Application functions 

Application 
IEC 60870-5-4 Application information elements 

IEC 60870-5-3 ASDUs 

Link 
IEC 60870-5-2 Transmission procedures 

IEC 60870-5-1 Frame formats 

Physical ITU-T Interface specification 

 
Figure 10 IEC 60870-5-101 communication stack 
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Figure 11 IEC 60870-5-104 communication stack 
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master for multidrop topologies. Therefore, it must adopt a cyclic polling procedure to 

inquire about secondary stations [37]. 

The IEC 60870-5-101 message structure is formed by the Data Link Layer and includes 

link address, control information, user data and so on. Each frame cannot carry more 

than one ASDU. Figure 12 shows the Data Link Layer frame and the structure of the 

ASDU carried by it [37]. 

It should be noted that for the network version, T104 profile, the ASDU is carried by 

the TCP/IP protocols instead of the T101 Link Layer. Therefore, the link frame of 

Figure 12 does not cover this part. This frame format will be briefly described in the 

following paragraphs. 

The length section is repeated twice, and the two values must be equal so that the whole 

frame can be considered as a valid one. The maximum frame length is 261 octets. 

However, a lower maximum frame length can be specified. 

The control field of the data frame has a key role in the operation of the transmission 

procedure. It depends on the modes of the transmission, balanced or unbalanced. In 

addition, the interpretation of the control field is dependent on whether the 

communication is a primary or secondary message [37]. 

 

 

Figure 12 Data link frame format 
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Under the T101 profile, addressing is both at the link and application level. The link 

address field may be 1 or 2 octets for unbalanced and 0, 1 or 2 octets for balanced 

communication. Because balanced communication is only applied for point-to-point 

architectures, the link address is not necessary and can be used just for security 

purposes. For addressing all stations, the link address FF or FFFF is used as a broadcast 

message [41]. The structure of ASDU is divided to two main sections, the data unit 

identifier and the data itself (one or more information objects). Finally, for security 

provisions, T101 uses an eight-bit checksum. 

2.5 Distributed Network Protocol Version 3 (DNP3) 

During the same period that IEC 60870-5 was being published, the DNP3 protocol was 

developed and introduced in North America. In fact, they originated from a common 

point provided by the early IEC 870 document. For instance, DNP3 uses FT3 format, 

which is one of the four frame formats defined by the IEC 60870 [37]. Nevertheless, 

they differ in many aspects of physical, data link and application functions. Initially, 

Harris Control Division created DNP3 as a proprietary protocol for electrical industry 

applications in the early 1990s. However, in November 1993 the protocol ownership 

was transferred to the DNP3 User Group in order to use it as an open standard in 

industry [31]. Both DNP3 and IEC 60870-5 were developed fundamentally for SCADA 

applications. These entail the acquisition of information and sending of control 

commands between master stations, RTUs and other IEDs. They are designed in a way 

to transmit relatively small packets of data in a deterministic sequence and reliable 

manner. Hence, they are distinct from more general purpose communication protocols, 

such as FTP. Whereas FTP and similar protocols can send quite large files, they are not 

suitable for SCADA applications [31]. 

DNP3 supports multi-slave, peer-to-peer, and multiple master communications. It uses 

only balanced communications so it supports report by exception as well as polled 

operational mode. Report by exception capability enables outstation devices to send 

unsolicited messages to the master station. This provides efficient use of the 

communication system capacity and greater flexibility. It should be noted that although 

the outstation devices can initiate the communication in DNP3, only the master station 

could initiate a request for data or send commands [37]. 
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DNP3 is based on the EPA model, same as IEC 60870-5. However, it adds number of 

transport functions, which are represented as a layer named ‘Pseudo-Transport’. This 

layer is located below the Application Layer and provides the transmission of larger 

data blocks than Data Link Layer. Figure 13 shows the modified EPA model for DNP3 

implementation alongside the message build up structure [37]. Each layer offers a 

number of services to the layer above it and adds information header to the message 

blocks that are transferred to the lower layers. In the following paragraphs, the overall 

messaging sequence of the DNP3 protocol will be briefly described. 

At the highest layer of the stack, the Application Layer breaks down the data into 

smaller sized blocks, which are called Application Service Data Units (ASDUs). This 

layer then adds the application header, Application Protocol Control Information 

(APCI), to each chunk and builds the Application Protocol Data Unit (APDU). The 

maximum size of each APDU is 2048 bytes, but the number of APDU required to 

present an ASDU is not limited. The APDU passed to the Pseudo-Transport Layer are 

called Transport Service Data Unit (TSDU). TSDUs are broken down into smaller 

blocks, which are called Transport Protocol Data Units (TPDUs). Each TPDU is made 

 

Figure 13 DNP3 communication stack and data unit structures 
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up of one byte of header and a maximum of 249 bytes for data. The Data Link Layer 

receives the overall 250 bytes of TPDUs from the Pseudo-Transport Layer [37]. 

According to the FT3 frame format, a 10-byte header is added, including 2 bytes of 

Cyclic Redundancy Code (CRC) for providing error detection. These 2 bytes CRC will 

be repeated for each block of data in LPDUs. The maximum number of data blocks in 

LPDU is 16. Each block consists of 16 bytes of data (except the last block that may 

have less than 16 bytes according to the data size) and 2 bytes of CRC. The LPDU 

maximum size is 292 bytes, of which 250 bytes are data. Finally, the Physical Layer 

sends data as bit stream over the determined physical media [31].  

Due to the need to operate over larger geographical areas, it has been proposed to use 

the Internet Protocol suite and Ethernet for DNP3. In this case the Transport, Network 

and Data Link Layers related to the TCP/UDP, IP and Ethernet LAN will be added at 

the bottom of the Pseudo-Transport and Data Link Layers of DNP3 [31]. 
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2.6 IEC 61850 for Substation Automation Systems 

IEC 61850 is a communication standard released by the Technical Committee (TC) 57 

of IEC [43]. The goal of this standard is to provide interoperability between the IEDs 

from different suppliers or, more precisely, between functions to be performed for 

power utility automation. It was originally introduced for the design of Substation 

Automation Systems (SAS). It defines communication between IEDs in substations and 

related system requirements. As a consequence of employing advanced and fast devices, 

such as protection and control IEDs, the efficient and high-speed communication 

infrastructure has become an important issue in substations [43]. The IEC 61850 

standard has enabled IEDs and devices in a substation to be integrated on a high-speed 

peer-to-peer communication network as well as client/server. In this standard, the 

application is independent from the communication protocol by specifying a set of 

abstract services and objects. IEC 61850 applies Object Oriented (OO) data and service 

models to support all substation functions. This provides more flexibility to the 

developer and users, as well as simplifying engineering tasks [44]. 

The IEC 61850 set of documents is comprised of 10 parts, where each part defines a 

specific aspect of the standard. 

 IEC 61850-1: Introduction and overview 

 IEC 61850-2: Glossary of specific terminology and definitions 

 IEC 61850-3: General requirements of the communication network with regard to      

the quality requirements, environmental conditions, and auxiliary services 

 IEC 61850-4: System and project management with respect to the engineering 

process, the life cycle of the SAS, and the quality assurance 

 IEC 61850-5: Communication requirements for functions and device models 

 IEC 61850-6: Configuration description language for communication in electrical 

substations related to IEDs 

 IEC 61850-7: Basic Communication structure: 

 IEC 61850-7-1: Principles and models 

 IEC 61850-7-2: Abstract Communication Service Interface (ACSI) 

 IEC 61850-7-3: Common Data Classes 

 IEC 61850-7-4: Compatible logical node classes and data classes 

 IEC 61850-7-5: Application guide and usage of information models 
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 IEC 61850-8: Specific communication service mapping (SCSM) 

 IEC 61850-8-1: Mappings to MMS and to ISO/IEC 8802-3 

 IEC 61850-9: Specific communication service mapping (SCSM) 

 IEC 61850-9-1: Sampled values over serial unidirectional multi-drop 

point to point link 

 IEC 61850-9-2: Sampled values over ISO/IEC 8802-3 

 IEC 61850-l0: Conformance testing 

Parts 1 to 4 provide general information about the standard. Parts 6 and 10 are about 

configuration description language and conformance testing, respectively.  This section 

focuses on Part 5, 7, 8, and 9 of the IEC 61850 standard, which are directly relevant to 

the objectives of this thesis. 

 

IEC 61850-5 defines the communication requirements for functions and device models 

for power utility automation systems. Power utility functions refer to tasks which have 

to be performed by the automation system. These are functions to monitor, protect, 

control and maintain the system for reliable and economic operation. For specifying the 

communication requirements, all the functions need to be identified. Each IED includes 

various simple and complex functions that can be different in terms of supplier. In IEC 

61850, functions are split into indivisible pieces called Logical Nodes (LN), which are 

then used to communicate. In fact, these virtual units are the objects specified in the OO 

approach of the standard. For example, a virtual representation of a circuit breaker class 

as a LN with the standardised class name XCBR. This is one of the important 

advantages of the standard over legacy protocols. In other words, each individual 

function can be built up by integrating the required LN from the standard [45]. This 

allows identification of all functions independently from IEDs and supporting future 

implementations. These core pieces are used to exchange information and contain all 

data to be exchanged (Piece of Information for Communication, PICOM) between these 

core functions and respectively between the IEDs where the functions are implemented. 

Functions may be implemented in a single IED or can be hosted by different IEDs. The 

LNs are modelled and their requirements are defined from the conceptual application 

point of view in IEC 61850-5 [46]. 
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A logical device is mainly a composition of several LNs and additional services for 

communication purposes (for example, a representation of a bay unit). Logical devices 

provide information about the physical devices they use as host or about external 

devices that are controlled by the logical device. The grouping of LNs in logical devices 

is based on the common features of the LNs. For example, the modes of all these nodes 

are normally switched on and off together, or in the test mode. A logical device is 

always implemented in one IED; therefore, logical devices do not contain logical nodes 

from different IEDs [46]. 

Part 7-1 of the IEC 61850 series provides an overview of the architecture for 

communication and interaction between systems for power utility automation. It 

introduces the modelling methods, communication principles, and information models 

that are used in the various parts of the IEC 61850-7-x series. In addition, it describes 

the relationships between different parts of the IEC 61850 series. The modelling and 

implementation approaches applied in the different parts of the standard and their 

relations are shown in Figure 14 [47]. 

 

Figure 14 Relations between IEC 61850 parts 
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IEC 61850 documentation is quite extensive. There are also normative and informative 

documents in the standard, as shown in Figure 14. Technical Specifications provide 

guidelines for applying the standard for various applications areas and communication 

mapping. For example, using IEC 61850 between the control centre and substations 

together with IEC 60870-5-101 or 104 (specified in IEC 61850-80-1). Technical reports 

provide recommendations about applying the standard and for further enhancements or 

extensions. For example, using IEC 61850 to transmit synchrophasor information 

according to IEEE C37.118 (specified in IEC 61850-90-5). 

The LNs, data, data attributes and service parameters are defined in order to provide the 

information required to perform an application as well as exchange information between 

IEDs. A logical node groups a number of data classes to build up a specific 

functionality. Over one hundred logical nodes covering the most common applications 

of substation and feeder equipment are defined in IEC 61850-7-4 [48]. The applications 

include various functions for measurement, monitoring, protection, control, etc. The 

whole set of all data attributes defined for the data is called Common Data Class (CDC). 

IEC 61850-7-3 defines CDCs for a wide range of applications [49]. The names of the 

logical nodes, data objects, and data attributes are designated in a standard way to 

achieve interoperability [50]. 

Information exchange is defined by means of services and the categories of services are 

presented in IEC 61850-7-2 [51]. The provided services are called abstract services. 

Abstract means that only those aspects that are required to describe the relevant actions 

on the receiving and sending side of a service request are defined. The abstracting 

technique is the dominant architectural construct adopted by IEC 61850. This feature 

provides the definition of objects that are independent of any underlying communication 

protocols. In other words, abstract means that the standard only determines what the 

services are intended to provide, rather than how they are built. Therefore, abstraction 

allows various mappings of services appropriate for different requirements. 

Furthermore, the system will be compatible with future developments in the 

communication technology as there is no need to change models, databases, etc [52]. 

Additional mappings to other communication stacks are possible. However, in order to 

maintain interoperability efficiently, the number of adopted mappings in the standard 

should be limited [51, 53]. 
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The semantic of the service models with their attributes are defined in IEC 61850-7-2 

based on the functional requirements in IEC 61850-5. The communication services can 

be categorised into two groups. One group is based on the client-server model and the 

other one uses the peer-to-peer model. Figure 15 shows the five types of communication 

services provided by IEC 61850. Generic Object Oriented Substation Event (GOOSE) 

and Sampled Value (SV) are mapped directly to the Data Link Layer. Therefore, they 

eliminate the processing of any middle layers and increase performance. Generic 

Substation State Event (GSSE) is mapped to its own protocol profile. Client-server 

communication uses the mapping of the application model to Manufacturing Messaging 

Specification (MMS) [53].  

As shown in Figure 15, the information models (logical device, logical node, data, and 

data attributes) defined in IEC 61850-7-4 and IEC 61850-7-3 communicate using 

services provided in IEC 61850-7-2. Subsequently, the information exchange service 

models defined as abstract services (ACSI) in IEC 61850-7-2 are mapped to a specific 

protocol stack that can meet the data and services requirements. 

Among the IEC 61850 services, the focus is on the GOOSE and SV messages in this 

thesis. The corresponding peer-to-peer communication provides services for the 

Figure 15 Communication services defined in IEC 61850 

 



 

 

41 

41 

exchange of GOOSE based on multicast, and SV based on unicast or multicast. The 

GOOSE service is used for time-critical purposes (such as fast transmission of data 

between protection IEDs), and the SV service is used for the transmission of data on a 

periodic basis (such as transmission of measured values from merging units). Figure 16 

shows the structure of a GOOSE message. A GOOSE message should at least be 

generated each time when a value from members referenced by the data-set varies. 

Figure 17 shows the format used for the sampled value message. The transmission of 

SVs also requires special consideration with regard to time constraints. 

The syntax (format) and encoding of the messages that carry the parameters of a 

service, as well as the way that they are passed through a network, are defined in a 

Specific Communication Service Mapping (SCSM). In this regard, Part 8-1 of the 

standard specifies a method of exchanging GOOSE messages through LANs and using 

Ethernet. Furthermore, Part 9-2 is an extended mapping specification of IEC 61850-8-1 

to cover Sampled Values. As previously described, it should be noted that the new 

mappings of abstract services (IEC 61850-7-2) to a specific protocol or technology can 

be also defined. 

 

GOOSE message 

Parameter name Parameter type Comments 

DatSet ObjectReference 
Value of the attribute DatSet of the GOOSE control 

block (GoCB) 

GoID VISIBLE STRING129 Value of the attribute GoID of the GoCB 

GoCBRef ObjectReference Reference of the GoCB 

T TimeStamp Time at which the attribute StNum was incremented 

StNum INT32U 
Counter that increments when a GOOSE message 

has been sent and a value change has been detected 

within the data-set specified by DatSet 

SqNum INT32U 
Counter that increments when a GOOSE message 

has been sent 

Simulation BOOLEAN 
Indicates with the value TRUE that the message and 

its value have been issued by a simulation unit 

ConfRev INT32U Value of the ConfRev attribute of the GoCB 

NdsCom BOOLEAN Value of the attribute NdsCom of the GoCB 

GOOSEData [1..n] 

 Value (*) 

Value of a member of the data-set referenced in the 

GoCB 
 

(*) type depends on the appropriate common data 

classes (CDC) 

  

 

Figure 16 GOOSE message definition 
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Sampled Value format 

Parameter name Parameter type Comments 

MsvID or UsvID VISIBLE STRING129 
Values of the attributes MsvID or UsvID of the 

multicast sample value control block (MSVCB) or 

unicast sample value control block (USVCB) 

OptFlds 
a 

Specifies which of the optional fields (RefrTm, 

SmpRate and SmpMod, and DatSet) are included in 

the sampled value message 
 

a
 It is derived from the attribute OptFlds of the 

respective USVCB or MSVCB 

DatSet ObjectReference 
ObjectReference of the data-set whose values of the 

members are transmitted in the message (taken from 

the MSVCB or USVCB) 

Sample [1..n] 

 Value (*) 

Value of a member of data-set referenced by the 

MSVCB or USVCB 
 

(*) Type of the value typically belongs to the 

common data class SAV (sampled analogue value), 

but can be any other CDC’s process values 

  
SmpCnt INT16U 

Values of a counter, which is incremented when a 

new sample of the analogue value is taken 

RefrTm TimeStamp 
Time when the transmission buffer has been 

refreshed locally 

ConfRev INT32U 
Value of the attribute ConfRev of the MSVCB or 

USVCB 

SmpSynch INT8U 
Indicates whether the sampled values are 

synchronized by clock signals 

SmpRate INT16U 
Value of the attribute SmpRate of the MSVCB or 

USVCB 

SmpMod ENUMERATED 
Value of the attribute SmpMod of the MSVCB or 

USVCB 

Simulation BOOLEAN 
Indicates with the value TRUE that the message and 

its value have been issued by a simulation unit 

 

Figure 17 Sampled Value (SV) format definition 
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2.7 Concluding Remarks 

As there are many manufacturers in the power market, open standards should be 

employed to provide interoperability between equipment from different manufacturers. 

In this chapter, a number of common open standards in power systems were 

investigated, including synchrophasor standards as well as specific standards for 

communications. Among the communication standards, IEC 61850 has features that 

make it dominant, especially in time-critical applications. IEC 61850 was originally 

designed in a way to operate over Ethernet and modern networks. The legacy protocols 

that were described in this chapter were basically designed for traditional serial link 

technologies. Hence, due to the low bandwidth available at the time, they adopted a 

procedure to reduce the transmitting data bytes. Despite the fact that they were equipped 

with an Ethernet Layer, they could not benefit efficiently from the wider bandwidth as 

they are using the same procedure for data structure [53]. 

Although the scope of IEC 61850 was initially limited to the inside of substations, it is 

believed that the capabilities of IEC 61850 can be used to improve wide area 

communication applications. The integration of IEC 61850 for PMU communications is 

one of the proposed applications that will be investigated in this thesis [54]. 
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Chapter 3  
 

Wide Area Monitoring Systems 

3.1 Introduction 

Employing WAMS based on PMU functionalities enables dynamic view coverage of 

grid behaviour and, in turn, improves the stability and reliability of power system 

operations [35]. WAMS consists of three layers, similar to the traditional SCADA 

system. The first layer is the section that WAMS interfaces with power systems to 

measure required parameters. This layer is called the Data Acquisition Layer and PMUs 

are located in this section. Layer 2 is where PMU measured data are collected and time-

aligned. This layer is known as the Data Management Layer and PDC is placed at this 

layer. Finally, layer 3 is the Application Layer where the sorted PMU measurements are 

used by the different kinds of functions for the monitoring, control and protection 

applications [22]. These three layers are connected through communication networks. 

Therefore, WAMS is comprised of four main parts: PMUs, PDCs, application software, 

and communication networks. A successful implementation of WAMS needs an 

elaborate planning and designation of equipment and methods to fulfil the requirements 

of these four parts. Figure 18 illustrates the simple structure of WAMS and the four 

components discussed [55]. In this chapter, the working principles of PMUs and their 

installation requirements are described. Details regarding PDCs and their technical 

challenges are provided. Communication networks and related technologies are 

discussed. Common applications that benefit from synchrophasor measurements are 

addressed. In addition, information about WAMS deployment on the GB transmission 
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system and laboratory-based WAMS in Brunel University London as well as examples 

of events captured are presented.   

3.2 Phasor Measurement Units 

3.2.1 Phasor Definition 

Phasor representation of sinusoidal signals is commonly used in the AC power system 

concept. A phasor is a mathematical representation of an electrical waveform based on 

its amplitude and phase angle. A sinusoidal signal of a known frequency (𝑓) is 

described by its magnitude (𝑋𝑚) and angular position (∅) with respect to an arbitrary 

time reference, as defined in Equation (3): 

 

The phasor representation of the sinusoid is given by Equation (4): 

 

 

 𝑥(𝑡) = 𝑋𝑚 cos(𝜔𝑡 + ∅) = 𝑋𝑚 cos(2𝜋𝑓𝑡 + ∅) (3) 

 𝑋 ≡
𝑋𝑚

√2
𝑒𝑗∅ =

𝑋𝑚

√2
(cos ∅ + 𝑗 sin ∅) = 𝑋𝑟 + 𝑗𝑋𝑖 (4) 

 

Figure 18 WAMS structure  
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where the magnitude of the phasor (
𝑋𝑚

√2
) is the root-mean-square (rms) value of the 

sinusoid waveform. Its phase angle (∅) is the instantaneous phase angle of the sinusoid 

in Equation (3) relative to a cosine function at the nominal system frequency 

synchronised to UTC. The subscripts r and i signify the real and imaginary parts of the 

complex value in rectangular components, respectively. It should be noted that the 

signal angular frequency (𝜔) is not explicitly stated in the phasor representation [56]. 

The sinusoidal signal and its phasor representation are illustrated in Figure 19 [57]. 

The value of ∅ depends on the time scale, particularly where 𝑡 = 0. In addition, the 

frequency of the sinusoid is implicit in the phasor definition. Therefore, phasors can be 

evaluated and compared with each other if they have the same time scale and frequency 

[32]. 

Phasor representation compared to the time-domain has the benefit that the time 

dependant frequency factor can be factored out [58]. Therefore, Using phasor notation 

considerably simplifies not only the mathematics but also the electronics and processing 

power requirements [59].  

3.2.2 Phasor Measurement Concept 

The most common way to determine the phasor representation of AC waveforms is to 

take data samples from the waveform using an analogue to digital (A/D) converter and 

apply the Discrete Fourier Transform (DFT) [57]. Assuming that the signal is sampled 

 
Figure 19 Phasor representation of a sinusoidal signal 
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with the sampling frequency 𝐹𝑠 = 𝑁𝑓, meaning 𝑁 samples per cycle of the signal, the 

sampling period is 𝑇 = 1
𝐹𝑠

⁄ . Accordingly, 𝜔𝑇 = 2𝜋
𝑁⁄ . If 𝑥𝑘{𝑘 = 0, 1, … , 𝑁 − 1 } are 

the 𝑁 samples of the input signal taken over one period, then the DFT-based phasor 

calculation is performed as in Equation (5) [60]: 

 

where 𝑥𝑘 is the 𝑘th
 sample of the analogue signal.    

3.2.3 Phasor Measurement Units 

PMUs are installed at selected power system substations where they measure voltage 

and current phasors as well as frequency. There is a wide variety of phasor 

measurement equipment available. Many PMUs are produced as dedicated devices, 

while there are also vendors that offer PMU functionality as a supplementary feature on 

their other products, such as relays and Digital Fault Recorders (DFRs) [61]. Figure 20 

shows the functional block diagram of the elements in a typical PMU [62, 63]. The 

general structure is similar to many power system relays and DFRs [64]. 

 𝑋 =
√2

𝑁
∑ 𝑥𝑘𝑒−𝑗𝜔𝑇𝑘

𝑁−1

𝑘=0

=
√2

𝑁
∑ 𝑥𝑘𝑒−𝑗𝑘

2𝜋
𝑁

𝑁−1

𝑘=0

 (5) 

 

Figure 20 Functional block diagram of the elements in a typical PMU 
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PMUs need to have access to the voltage and/or current signals to be measured. In some 

substations these signals are available in a single location, while in others the signals are 

brought to different buildings or cabinets. Given this, it may be necessary to include 

several PMUs or use a PMU that has distributable input modules to cover the whole 

substation [65]. Analogue input signals corresponding to power grid voltages and 

currents are obtained from instrument transformers at substations, as shown in Figure 21 

[13]. Several instrument transformer technologies are available that can be used to 

transform signals to an appropriate level for PMU applications. It should be noted that 

the measurement accuracy of a PMU is directly affected by the instrument transformers 

[66]. 

Since sampled data are used to represent the input signal, it is required to apply an 

antialiasing filter to the signal before data samples are taken. Antialiasing filters are 

analogue devices which limit the bandwidth of the pass band to less than half the data 

sampling frequency (Nyquist criterion). Therefore, the unnecessary high frequency 

signal components are removed before digital sampling occurs in the A/D converter 

[57]. Meanwhile, the PMU receives GPS signals that provide precise timing data. The 

timing data serves as (a) the reference creating clock pulses for the phase-locked 

oscillator that determines sampling times in the A/D converter, and (b) the time-stamp 

for synchrophasor data [63]. 

 

 

Figure 21 Typical PMU installation and interconnection in a substation 
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Time synchronization of phasors is necessary in order to obtain a complete view of the 

grid at specific times and to make the comparison of measurements from PMUs 

installed at different geographical locations more accurate. Synchronised phasors are 

known as synchrophasors. In this regard, PMUs require a precise time input. This 

synchronization is achieved by using the described sampling clock which is phase-

locked to the one-pulse-per-second signal provided by a GPS receiver. The receiver 

may be built into the PMU or can also be installed as a separate unit in substations that 

distribute synchronizing pulses to the PMU and to other devices [57]. Most PMUs use a 

direct GPS input from an antenna or an Inter-Range Instrumentation Group (IRIG-B) 

time code. It is possible to use one GPS antenna for more than one PMU by using a 

GPS antenna splitter. It should be noted that if one of the PMUs provides antenna 

power, the splitter must have DC blocks on the other PMUs that do not supply power. 

The type and length of cable are important as the signal attenuates rapidly while passing 

through it. It is necessary to make sure that each PMU gets a strong enough signal from 

the antenna. The amplifier can be used to step up the low level signal to the acceptable 

level for PMUs [67].  

The phasor microprocessor in Figure 20 computes synchrophasor data from the 

digitised signal using the DFT algorithm. Finally, time-tagged data are sent to the 

communications module where they are formatted for transmission. 

In most cases, PMU installation is for a permanent operation so all aspects should be 

considered in order to have a well-established measurement system. PMUs can be 

different in terms of algorithm selection, timing input, number of voltage and current 

inputs, communication interface, accuracy, etc [68]. However, they have a number of 

common requirements including access to signals to be measured, a timing signal to 

synchronise the measurements, a power supply, etc. [65]. The power supply for PMUs 

comes from either an AC or DC source. However, it should be noted that PMUs need to 

operate continuously, especially during power system disturbances. Thus, they must be 

connected to an uninterruptible power source [65]. In addition, to assure that the 

measurements from all PMUs are comparable under various power system operations 

and for the advancement of connectivity and interoperability, standardization is an 

important requirement. Most PMUs on the market today use the IEEE C37.118 

standard, as described in  Chapter 2. Synchrophasor and frequency values must meet the 
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general definition as well as minimum accuracy requirements given by the standard 

[69]. 

3.3 Phasor Data Concentrators 

Typically, the PMUs located at various key substations generate and send data in real-

time to a PDC at the control centre where they are aggregated. The overall architecture 

of WAMS can be different from utility to utility. It may consist of hierarchical 

organised sets of PDCs. The top level PDC in the hierarchical structure is called 

SuperPDC (SPDC) and plays a similar role to the PDCs in the lower levels. If multiple 

IEDs in a substation provide synchrophasor measurements, a local PDC may be 

deployed. Between the SPDC and local PDCs, a number of regional mid-level 

distributed PDCs may be present that gather data from local PDCs and send them to the 

SPDC. Data from all of the PMUs in the network are not necessarily required at the 

SPDC. Since local PDCs represent a local point of failure for the data stream, backups 

and bypass options are needed for mitigating such failures. 

As described in  Chapter 2, the IEEE C37.118 standard defines four message types: data, 

configuration, header and command. The first three are transmitted from the data 

source, either PMU or PDC, and the last one is received by the data source. It should be 

noted that PDC itself can be considered as a data source when data from the PDC are 

transmitted to another PDC [33]. Data messages cannot stand alone, as they do not 

describe the data they contain. Configuration messages contain information required to 

determine the meaning of each individual field with the data message [70]. A typical 

exchange between a PMU and a PDC is as follows [71]: 

 The PDC sends a command message to the PMU to request human-readable 

description information; 
 

 the PMU replies with a header message; 
 

 the PDC sends a command message to the PMU to request configuration 

information; 
 

 the PMU replies with a configuration message; 
 

 the PDC sends a command message to the PMU to request data; 
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 the PMU replies with data messages until the PDC sends a command message to 

terminate its request. 

A PDC collects data from multiple PMUs or other PDCs and time-aligns them 

according to their time-stamps to create a system-wide measurement set. In fact, it 

forms a data packet with a given time-stamp, and then assembles all the data received 

with that time-stamp into the single packet. The produced real-time and synchronised 

output data stream can be exploited by smart grid applications and is also stored for 

future analysis. A high number of PMUs are installed in the entire power system and 

depend on a limited number of PDCs to process and store their data. Therefore, each 

PDC needs to deal with a huge amount of data and the required data storage capacity 

should be considered [72]. As more PMUs are deployed in the system, the number of 

measurement samples increases and the storage requirement accelerates [73]. Storing 

and processing a huge volume of PMU data and scanning through terabytes of 

information to find the particular event will be a big challenge for WAMS. Currently 

available storage and processing systems, such as Storage Area Network (SAN) and 

Relational DataBase Management System (RDBMS), have low read rates and do not 

work well with the high resolution time-series data of WAMS. Thus, an efficient 

platform is required to interact with a huge amount of high-resolution data, such as 

Hadoop [74, 75]. 

3.3.1 Hadoop Framework 

Hadoop is a framework provided by the Apache Software Foundation [76] as an open 

source project for running applications on large clusters of commodity hardware. Whilst 

data concentrators such as openPDC [77] do not offer a cloud computing platform, they 

can utilise this scalable fault-tolerant distributed system for data storage and processing. 

Hadoop has two primarily parts: the Hadoop Distributed File System (HDFS) and 

MapReduce programming model [78].  

HDFS is the storage system used by Hadoop and has master-slave architecture. 

Accordingly, each cluster consists of a single NameNode and a set of DataNodes. 

Figure 22 provides an illustration of the high-level architecture for the HDFS working 

principle [79]. When data is transferred to the Hadoop cluster, HDFS creates user-

definable replications of the data and stores them in blocks on the various DataNodes. 
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NameNode will retain and index all locations. In this case, any node failure will never 

cause data loss. Furthermore, this replication of data also enables parallel data reading, 

which in turn reduces the required time for pulling large data [80, 81]. 

MapReduce is a programming framework designed for the parallel processing of huge 

datasets on distributed sources [82]. This computing model is divided into two parts, 

Map and Reduce. In the Map step, input is divided into smaller segments and 

distributed to the nodes. Then nodes will process the related segments and produce 

intermediate outputs separately. In the Reduce step, the individual outputs are collected 

from the nodes, and after aggregating, they form the main output. Therefore, by running 

parallel processes, analysis can be conducted in less time. In fact, Hadoop transfers the 

processing to the data instead of the conventional procedure of transferring the data to 

the processing [82].   

3.4 WAMS Applications 

WAMS have great potential to improve the reliability and stability of grids based on the 

operational feature of PMUs. In the literature, there are a large number of WAMS 

applications; however, they can be divided into the three main groups of monitoring, 

protection, and control applications [83, 84]. Furthermore, the applications are also 

categorised as on-line or off-line. On-line applications process real-time data as it 

arrives to the client system. In contrast, off-line applications process data that are 

archived [85]. 

 

Figure 22 High-level architecture for HDFS working principle 
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3.4.1 Power System Monitoring 

PMU-based monitoring systems offer various kinds of functions, such as wide area 

visualisation, model validation, state estimation, near real-time event replay, post event 

analysis, early warning of potential problems, etc. These functionalities will 

significantly improve situational awareness. When power systems operate under normal 

conditions, providing applications with reduced resolution synchrophasor measurements 

is sufficient. However, for the near real-time event replay mode and post event analysis, 

measurements with full resolution are required [86, 87]. 

State estimation is an important method for the monitoring of power systems. It uses 

measurements of real and reactive power in line flows and injection points in order to 

estimate the bus voltage angle and magnitude. Each measurement cycle may take 

couple of seconds to minutes, and during this period, system is assumed to be static. 

However, the real system condition is dynamic and oscillation occurs on the flow. By 

using PMUs, the time-stamped measurements can be relayed on a continuous basis and 

the state vector can follow the dynamics of the system [16, 88]. PMUs offer a number 

of possible benefits to the state estimation application including direct calculation using 

phasors, faster solution convergence, enhanced observability, improved solution 

accuracy and robustness, bad data detection and topology error correction, etc [89]. 

A large amount of technology that is new to the GB system has already been deployed 

in other areas of the world. In this regard, the Chinese are building one of the biggest 

and most complex power systems. To date China is the leader in the deployment of 

PMUs with over 2500 active PMUs. Due to long transmission lines running across 

relatively weak interconnections in China, the WAMS network is primarily concerned 

with monitoring low frequency oscillations. Also model validation and wide-area data 

recording and playback, with applications such as state estimation and adaptive 

protection schemes are currently undergoing development [90]. 

3.4.2 Power System Protection 

Power system protection applications work based on the measurements obtained from 

monitoring applications. The fast evolution of WAMS enables real-time processing of 

wide-area measurement data for the use in system protection applications [91]. These 

applications analyse the measured data and evaluate the status of the network in order to 
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guarantee the safe operation of the grid. Currently, most of the decision-making and 

protection actions are performed locally. However, WAMS can enhance the 

dependability and security of system protections [92]. Synchronised phasor 

measurements offer solutions to a number of complex protection problems and improve 

the performance of protection applications. It should be noted that the communication 

needs for various protection applications are different. Phasor measurements are 

particularly effective in enhancing power system protection functions that have a slow 

response time requirement. Some protection systems that could benefit from PMUs 

include adaptive dependability and security, back up protection of distance relays, 

adaptive out-of-step, angular voltage stability of network, etc [57]. 

3.4.3 Power system control 

If by means of communication regional or system-wide data is available, wide area 

control systems can be deployed that enhance the functionalities of local control. 

Besides the benefit of fast control in contingency cases, dynamic control is of growing 

importance along with the rise of fast controllable equipment such as HVDC and 

FACTS devices [91]. Prior to the emergence of real-time phasor measurements, most 

control systems were processed locally due to low time delays. Controllers like Variable 

Series Capacitors (VSCs), Universal Power Flow Controllers (UPFCs), and Power 

System Stabilizers (PSSs) regulate the grid based on local feedback. In addition to 

remote control of the power systems, synchrophasors can provide direct feedback to 

these controllers and enable dynamic control of power systems. Using PMUs to damp 

the low frequency inter-area oscillations is one of the effective applications of WAMS 

[57, 88]. 

3.5 Communication Infrastructures 

In developing a WAMS, reliable and high-speed communication infrastructures that 

enable secure sharing of data among PMUs, PDCs and smart grid applications play an 

important role. IEEE C37.118 frames are typically not sent directly over networks, 

rather, they are based on the concept of layered protocols and encapsulated within the 

frames of other communication protocols [70]. The speed of data transfer is less critical 

for off-line applications; however, for on-line applications faster data transfer is 
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required and depends on the type of application. For example, the latency requirement 

for state estimation is around 1 s, transient stability is 100 ms and voltage stability is 1-5 

s [18]. The communication infrastructure should therefore be able to support different 

Quality of Service (QoS) classes for traffic and should be able to prioritise one class 

over another [12]. Utilities can use Multi-Protocol Label Switching (MPLS) or frame 

relay technology for WANs. These communication media provide a guaranteed bit rate 

but are not guaranteed to be error free [70]. Since data may be shared with multiple 

entities at the same time and for communication redundancy, WAMS should also 

support multicast data sharing. It is also crucial to secure WAMS in order to ensure the 

availability, integrity, and confidentiality of the data transmitted over a network [12]. 

Most PMUs have an Ethernet interface, although there are some models that only use 

asynchronous serial (RS 232). An interface device (modem, router, etc.) is required 

between the PMU communication link and the communication system.  

3.5.1 Internet Protocol  

For transmitting data over networks using Internet Protocol (IP), each node in the 

substations of a WAMS is given a unique IP address. The source node sends packets to 

the destination node through the intermediate routers based on the destination IP 

address. In IP routing, each router takes an independent routing decision on each 

incoming packet to identify the next hop, to which the packet has to be sent. To make 

such a decision, each router maintains a routing table. In conventional IP, the building 

of routing tables is performed by routing algorithms like Open Shortest Path First 

(OSPF), Routing Information Protocol (RIP), Border Gateway Protocol (BGP), Interior 

Gateway Protocol (IGP) or Intermediate System-to-Intermediate System (IS-IS) [93] . 

Depending on the destination address in the packet header and routing table, the router 

forwards the packet to the next planned hop. This process is continued by the following 

routers until the packet reaches its destination [25]. 

Communication over networks using IP can be connection-oriented (TCP) or 

connectionless (UDP).  

TCP (Transmission Control Protocol) is a transport mechanism over IP, which offers 

connection-oriented communication. It supports retransmit capabilities, flow control, 

buffer handling and traffic shaping properties. TCP/IP is used by common services like 

FTP, Database, HTTP, etc. TCP rearranges data packets in the specified order and 
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retransmits lost or corrupted data. In order to handle packet drops, every packet being 

received is acknowledged back to inform sender the successful transmission of packet. 

Afterwards, the sender will release the “transmit buffer” for new data to be transmitted 

[94]. Although TCP provides reliable communication, it is not suitable for real-time 

communications since the acknowledgment and retransmission feature lead to excessive 

delays [25]. 

On the other hand, UDP (User Datagram Protocol) is a transport mechanism over IP, 

which offers connection-less communication. It does not provide a mechanism for flow 

control and rate adaptation that otherwise is associated with TCP. UDP can be used for 

unicast, multicast, broadcast and anycast applications. It is used by services like VOIP, 

DNS, DHCP, etc [94]. In the case of UDP, there is no built-in ordering and recovery of 

data, but the transmission speed is higher than TCP. Therefore, time-sensitive 

applications often use UDP, since a small amount of lost data is preferable over delayed 

data in many real-time applications [65].  

3.5.2 Quality of Service (QoS) 

The communications infrastructure in smart grid carries traffic for various applications. 

These applications have different delay requirements from a few milliseconds to several 

seconds. Allocating exclusive bandwidth for each application is not practical and 

requires a large overall link bandwidth, which is not cost-effective. Basically, 

communication links are selected in a way to support the average expected data rates 

with an additional margin to accommodate traffic variations. However, this margin may 

not be sufficient for the dynamic traffic load of a congested network and causes packets 

to be temporarily stored at routers. In addition, without adopting an appropriate 

approach to manage the traffic, the packets exit routers based on the First-In-First-Out 

(FIFO) order. In this case, a packet of a time-critical application may need to wait 

behind a number of packets of applications that can tolerate large delays. In this regard, 

Quality of Service (QoS) policy can be used to ensure that excessive delay does not 

occur for time-critical application packets in a shared network. QoS refers to the set of 

tools and techniques that are needed to manage network resources and provide 

preferential treatment to data from certain priority applications over data from other 

applications [95, 96]. Figure 23 illustrates how this classification is implemented in a 

router [94]. 
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The second byte in an Internet Protocol version 4 (IPv4) packet is the Type of Service 

(ToS) byte, which allows different types of IP packets to be distinguished from each 

other. Using the content of the ToS byte, the router then can provide a specific level of 

service in accordance with the determined priority [95].   
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Figure 23 Classification of traffic based on priority 
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3.6 WAMS Deployment on the GB System 

3.6.1 WAMS Deployment on the Transmission System 

The first WAMS was deployed in the GB Electricity National Control Centre (ENCC) 

in 1998. This system was developed by Psymetrix and is running PhasorPoint 

application to carry out continuous analysis of the dynamics of the GB system  [97]. To 

effectively monitor the inter-area modes between Scotland and England, information is 

required from the respective centres of inertia for both areas [98]. In the absence of data 

from the Scottish system, one PMU was installed in the North of England, close to the 

Anglo-Scottish boundary and another PMU was installed close to the centre of inertia 

for England and Wales as shown in Figure 24. By comparing the level of oscillations 

between the two locations it is possible to determine whether the source of the 

oscillation is in the north or the south of the network. Also the provided information 

enables operators to identify whether the oscillation damping on the system has fallen 

below the predefined stability margins. In addition to the two PMUs configured for 

detecting inter-area modes, a total of 40 PMUs have been installed to the transmission 

network of England and Wales. The majority of them have been configured to report 

back to the central PDC at the ENCC, using the internal Business LAN. 

 
Figure 24 PMU placement for monitoring of the Anglo-Scottish interconnection 
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3.6.2 Brunel University Laboratory-Based WAMS 

The high cost of early PMU devices historically restricted their use to the transmission 

systems. However, due to recent developments, the cost of the components from which 

PMUs are assembled decreased dramatically. Hence, deploying PMUs has become 

prevalent across the utility environment, including distribution systems [61]. Moreover, 

employing PMUs in a laboratory-based and domestic level simplifies the investigation 

of WAMS compared to the more complicated case of installing them in substations. 

More equipment is required inside a substation for deploying PMUs, such as step-down 

transformers that bring the three-phase voltage or current level to the instrumentation 

level. Brunel University London installed a PMU that is connected to the 3 phase 415 V 

AC domestic supply level and joined a laboratory-based WAMS as a part of the EPSRC 

project “FlexNet” [99]. Currently, PMU measured synchrophasors from 4 UK 

Universities (Brunel, Birmingham, Manchester, and Strathclyde) are transmitted via the 

Internet to a server in Ljubljana, Slovenia. As the PMUs are well geographically 

distributed across the Scottish to England system, as depicted in Figure 25, they provide 

a relatively good visibility of events through the covered area. The installed PMU at 

Brunel for this project is an Arbiter 1133a [67], which has been configured to measure 

and send 50 samples of the required parameters per second. The number of measured 

parameters in the PMU output determines the size of data packet. Each data stream 

consists of measurements such as voltage magnitude, voltage angle, frequency, 

frequency delta (
𝑑𝑓

𝑑𝑡
⁄ ) etc.  

In addition to the Arbiter PMU installed for the “FlexNet” project, Brunel has also 

deployed and investigated other types of PMUs. The Frequency Disturbance Recorder 

(FDR) is one of them. The FDR is the data acquisition device of the FNET (Frequency 

Monitoring Network). FNET is a low-cost wide-area power system frequency 

measurement network. The FDR, which is a single phase PMU, computes power system 

parameters using phasor techniques developed specifically for single phase 

measurements. The measured data are then continuously transmitted over the Internet to 

the FNET server housed at the University of Tennessee [100]. This system also uses a 

triangulation method based on the travelling wave of system events to determine the 

approximate source of an event or incident in the grid [90]. National Instruments (NI) 

CompactRIO is another measurement device that includes the core hardware and 
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software components to design an advanced PMU. CompactRIO is a reconfigurable 

embedded control and acquisition system that is programmed with NI LabVIEW 

graphical programming tools [101] and can be used in a variety of control and 

monitoring applications [102].  

A number of different data concentrator packages have also been employed and 

investigated, and these are described in the following subsections. 

3.6.2.1 ELPROS 

The PDC in Slovenia is running WAProtector, which is a system for wide area 

monitoring, protection and control provided by the ELPROS [103]. This application 

presents various details from the collected PMU data such as phasor representation of 

voltages, phase angle geographic charts, two dimensional frequency, voltage magnitude 

and phase angle trending charts, angle difference and oscillation graphs, and so on. The 

event details including time, location, and type of events, are shown on the main display 

and are also stored for future analysis.  

 

Figure 25 The laboratory-based WAMS PMUs locations across the UK 
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Figure 26 shows an example of identifying voltage and frequency deviations across the 

UK network happened on 30 September 2012 using data from the four laboratory-based 

PMUs. Frequency is a good indicator of the condition of power systems and the size of 

frequency deviation is well correlated with the severity of the event [13]. The voltage 

phase angle difference between nodes is another key factor in monitoring. Power flows 

 

 

(a) Voltage magnitude measured by the 4 PMUs 

 

(b) Frequency measured by the 4 PMUs 
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from nodes with higher phase angle toward nodes with lower phase angle. The larger 

the phase angle difference between the two nodes, the greater the power flow between 

them. Exceeding the power flow from a certain level can make the power system 

unstable. Therefore, a significant divergence in phase angle can be a sign of instability 

risk [104]. Figure 27(a) shows the phase angle deviation which occurred between 

Glasgow and London on 22 February 2013.   

3.6.2.2 Schweitzer Engineering Laboratories (SEL) PDC 

A local PDC was also been developed by using SEL-5073 PDC, which collects 

measurements locally from the PMU in the laboratory [105]. SEL-5073 PDC software 

with integrated built-in archiving runs on a windows-based computing platform and is 

able to receive synchrophasor messages using Ethernet or serial communication. It can 

process incoming data from more than 500 PMUs at a maximum data rate of 240 

messages per second. The processed data can be transmitted to up to six external clients 

as well as internal archive. The PDC Assistant software, a user-friendly interface, 

provides the ability to view the PDC real-time status, configure the PDC inputs, outputs, 

archives and so on. SEL-5073 has high-speed calculation capability that can perform 

various phasor and analogue calculations. This real-time measurement calculation 

function uses the measured parameters of the PMUs to calculate new parameters that 

are not directly collected, such as the calculation of real and reactive power, derivatives, 
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Figure 27 Angle and frequency of UK network on 22 February 2013 
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network latency, etc. These calculations can be archived with other PMU data or sent as 

an output stream. SEL-5073 offers two types of archiving modes, triggered and 

continuous. The triggered archive stores data whenever an event happens, while the 

continuous archive stores all the data received. Another feature of SEL-5073 is the 

archive retention setting, which enables archive data to be deleted after a specified 

duration. However, it offers Archive Collection Service (ACS) to back up the archive 

data and store data on a local or network storage drive automatically. For visualising 

and analysing real-time streaming and archive data SEL-5073 can be integrated with 

SEL-5078-2 Central software. The SEL Central allows a quick translate of 

synchrophasor data into visual information [105, 106]. 

3.6.2.3 Open Source PDC (openPDC) 

An open source PDC has also been employed for further investigation. The previously 

discussed PDCs were specialised standalone units and not openly available. However, 

openPDC is an open source PDC developed and made available to public by the 

Tennessee Valley Authority (TVA) in October 2009. OpenPDC architecturally consists 

of three layers: the Input, Action and Output Layers. Each layer performs a specific set 

of functions [14, 77]. 

The Input Adapter Layer reads streaming data from the measurement devices that may 

use different protocols. In fact, it allows the parsing of protocol and provides a generic 

data format. After assigning an ID to the measurement, it will transfer them to the 

Action Layer. Currently openPDC supports different kinds of protocols including IEEE 

C37.118-2005 and 2011, IEEE 1344, BPA PDCStream, Virginia Tech FNET, 

Macrodyne, SEL Fast Message, etc. However, custom Input Adapters can be written to 

collect data from user desired input sources [73, 80].    

The Action Adapter Layer deals with concentration and processing of the input 

measurements. An important function of this layer is the phasor time alignment adapter. 

In this function the measurements received from the Input Layer are sorted by their 

associated GPS time-stamps and time-aligned before transferring them to the next layer. 

The Action Adapter Layer also provides two more essential functions, which are real-

time measurement calculation and real-time event detection. The real-time measurement 

calculation function uses the measured parameters of the PMUs to calculate new 
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parameters that are not directly collected; For instance, the calculation of active and 

reactive power. It is evident that all the required parameters for the calculation of new 

parameter must be measured and available by the PMU. The real-time event detection 

function monitors the incoming measurements and ensures that they are within the 

specified limits. Otherwise, it will notify of such an occurrence [73]. 

Finally, the Output Adapter Layer of the openPDC receives all measured and calculated 

parameters at the end and queues up and forwards the data to either historian system to 

be archived for future off-line analysis or to any other defined client systems. The 

Output Adapter can re-encapsulate the data in several protocols. Examples of openPDC 

output are IEEE C37.118 concentrator output stream, Inter Control Center Protocol 

(ICCP), Comma Separated Values (CSV) file export, and historian archiving output [73, 

77]. 

OpenPDC has various features that make the monitoring of power systems more 

convenient. One of them is the ability to replay a data stream from a specific time in the 

past. In this mode, the stored data from the historian will be retransmitted to the 

openPDC software. The data is shown as if it were coming from the PMU. The user can 

also speed up or slow down the replay speed. This near real-time event replay facilitates 

event analysis and helps the system operator to take appropriate corrective or protective 

control actions quickly. Another feature of openPDC is that each of the Adapter Layer’s 

functionalities can be improved or extended by the user or developer. For example, a 

new model can be written for Input Adapter to enable support of new protocols, or a 

new Action Adapter can be defined to provide a particular function, detection of 

specific event, etc [80, 86].  

Figure 27(b) shows the frequency graph for the Brunel University PMU captured by 

openPDC on 22 February 2013. 

3.6.3 Challenges and Future Developments 

The main challenges in developing WAMS include: 

Having more PMUs installed across the power system provides a better view of the 

event propagation in the network. Therefore, more PMUs are required to send data to 

the ENCC. Furthermore, there should be sufficient numbers of PMUs to test the 

applications on the openPDC platform at Brunel.  
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In the laboratory-based deployment of WAMS, a few PMUs transmit data to the PDC. 

While a high number of PMUs are installed for the entire GB power system, they 

depend on a limited number of PDCs to process and store their data. Therefore, each 

PDC needs to deal with a huge amount of data and the required data storage capacity 

should be considered. In the case of Brunel University, the PC hard drive works as a 

server for storing streams of data locally. However, the capacity should be extended for 

future developments. As more PMUs are deployed in the system, the number of 

measurement samples increases and the storage requirement accelerates [73][22]. 

Storing and processing huge volumes of PMU generated measurements and scanning 

through terabytes of information to find particular events will be a big challenge. Thus, 

efficient platforms should be employed to interact with huge amounts of high-resolution 

data. Hadoop is a proposed computing and storage framework to be used with data 

concentrators and handle these concerns. More information about Hadoop has been 

provided in Subsection  3.3.1 [74]. 

Advanced applications that can analyse data efficiently and recognise potential 

problems quickly need to be developed and implemented. These applications provide 

useful information for operators to identify sequences of events and their causes during 

a power system disturbance. Hence, operators would have more time and better 

understanding to evaluate the simulation and adopt appropriate control actions [86]. 

Common smart grid applications that can exploit the measurements have been provided 

in Section  3.4. 
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3.7 Concluding Remarks 

WAMS is an invaluable technology to enhance the reliability of power grids. In this 

chapter, the components of a WAMS were divided into four main parts. Each part, 

alongside its requirements, technical challenges, and related technologies was discussed 

in detail. A successful implementation of WAMS needs an elaborate plan and design of 

these components. Furthermore, the WAMS deployment on the GB system was divided 

into two parts, the transmission system and laboratory-based, and the relevant details for 

each were provided. Samples of events captured by laboratory-based employment of 

WAMS across the UK network were presented. A number of data concentrator software 

and their features were also investigated. Among them openPDC source codes are 

openly available, which enables users to extend and modify functionalities of the data 

concentrator.   
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Chapter 4  
 

Performance Evaluation of Substation 

Communications Infrastructure 

4.1 Introduction 

Changes in the wholesale electricity market alongside the difficulties in upgrading the 

transmission system have increased the complexity of power network operations [107]. 

This fact has placed heavier demands on developing new technologies to manage power 

systems reliably. Substations are key nodes in the power system, where information 

from the system is retrieved and used for reliable operation and management of the 

network. Substation Automation Systems (SASs) are now being implemented using 

IEDs interconnected through communication network technologies to facilitate 

substation monitoring, control and protection. Interest in SAS has increased rapidly due 

to its numerous benefits to utilities. Digital data acquisition affords a level of visibility 

never considered possible in the electromechanical era of substations. Moreover, SAS 

provides additional capabilities and information that can be used to further improve the 

operations, maintenance, and efficiency of substations [44, 108] . 

As a consequence of employing advanced and fast devices, the efficient and high-speed 

communication infrastructure has become an important issue in the design of 

substations. In this regard, the state-of-the-art IEC 61850 standard, released by the 

International Electrotechnical Commission (IEC), has enabled IEDs and devices in a 

substation to be integrated on a high-speed communication network. Furthermore, IEC 
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61850 has the objective of enabling interoperability between IEDs within a substation 

[109]. Interoperability is defined as the ability of two or more IEDs from the same 

vendor, or different vendors, to exchange information and use it for the correct 

execution of specified functions  [110]. By applying object oriented (OO) data and 

service models, IEC 61850 supports all substation functions and provides more 

flexibility to the developer and users  [69]. 

Due to the criticality of some of the smart grid applications, the communication 

infrastructure performance in such networks needs a thorough analysis to ascertain that 

the required specifications will be met. In this chapter, a laboratory-based IEC 61850 

analysis is provided. Afterwards, the simulation and modelling of a typical power 

system substation communications infrastructure will be presented. The purpose of this 

research is to create IEC 61850-based IED models and setup a simulation framework 

for substation communication networks. One of the important aspects of communication 

network performance analysis is the delay characteristics, especially for the smart grid’s 

control and protection functions that have a fast response time requirement. By 

simulating the substation communications network using DES, the End-to-End (EtE) 

delay of the specific transmitted information can be investigated in detail. 

Although IEC 61850 was originally introduced for the automation of substations, the 

application of IEC61850 is expanding rapidly. The deployment of IEC 61850 for Wide 

Area Network (WAN) applications such as PMUs is one of the proposed applications. 

Basically, PMUs are deployed for WAMS. Although PMUs transmit data from 

substations to PDC through WAN, investigating their behaviour inside the substation 

can be an effective step in introducing new protocols for their communications  [75]. 

Hence, in this research, a preliminary analysis on introducing the IEC 61850 protocol 

for PMU communications at the substation level has been performed.  
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4.2 Laboratory-Based IEC 61850 Analysis  

As discussed in Chapter 2, IEC 61850 is a complex standard and the development of a 

system capable of communicating based on this standard can involve a huge investment 

as well as considerable development time [111]. In this regard, the Beck DK61 kit [112] 

contains all the hardware and software components required for the fast development of 

custom applications, including the IEC 61850 stack. This protocol stack is developed 

and maintained by SystemCORP [113] and enables users to quickly develop and test 

IEC 61850-based applications. The Beck DK61 development kit runs over the @CHIP-

RTOS, which is a proprietary Real Time Operating System compatible with most basic 

DOS commands. The kit is also equipped with the embedded IPC@CHIP SC143, which 

is an advanced web microcontroller used mainly in the telecommunication industry. 

Using the SC143 chip allows for deployment of embedded software in C/C++ as well as 

Programmable Logic Control within the DK61 development environment [114]. Figure 

28 shows the hardware architecture of the DK61 board [115]. 

The laboratory experiment in this section complements the theoretical background 

presented in Chapter 2 and provides a real insight into the fundamental performance of 

the IEC 61850 standard. The DK61 board can be configured to act as a server or client. 

For this analysis, DK61 is set up to be used as a server, which exchanges the status 

values (on or off) of DIP switches on the board with a client based on GOOSE 

messages. The lab PC is used as a client and runs an open source network analyser, 

Wireshark [27], to capture and visualise the IEC 61850-based generated packets and 

 

Figure 28 Hardware architecture of the DK61 board 
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investigate their characteristics. 

For setting up the server, the CHIPTOOL [116] software needs to be installed on the PC 

and is used to configure the DK61 board. The CHIPTOOL application is the Beck IPC 

specific tool for communication with the SC143 on the DK61 board. It provides a 

number of services, such as the Ping function, Telnet, FTP, HTTP, IP configuration, etc. 

The required configuration files have been uploaded on the DK61 board using FTP and 

the server can be started by opening a Telnet session into DK61 using CHIPTOOL 

[114].  

Using the ICD Designer application [117], the hierarchical structure of IEDs under IEC 

61850 standard including Logical Nodes, Data Objects and Data Attributes can be 

depicted. ICD Designer is a tool that is used for the configuration of IEC 61850 enabled 

products. As can be seen in Figure 29, the so-called standardised Logical Node (LN) 

“GGIO” (Generic Process Input Output) is used to designate input and output signals. 

The LN has also a number (1 to 3) at the end in order to differentiate several LNs that 

have the same class name. Apart from common information Mod, Beh, Health and 

NamPlt, the Logical Node has a Data Object Ind for status information.  For example, 

the Data Object DIPS_GGIO1.Ind1 of the corresponding LN specifies three Data 

Attributes: stVal (Boolean), q (Quality), and t (TimeStamp). The value stVal represents 

the status of a DIP Switch. The other two attributes q and t should also be specified and 

 

Figure 29 Hierarchical structure of DK61 under IEC 61850 
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need to be stored together with the status value. Each of the three attributes will be 

communicated when a client reads the Data Object Ind. The server logical device 

structure shown in Figure 29 contains information about these three Data attributes. The 

first one represents the stVal and is of type Boolean. The second type is a Bit-string that 

represents the quality information. The last component is the UTC time stamp; it should 

be noted that the time of the clock was not synchronised during the test [115]. 

The positions of the DIP Switches can be changed manually. By operating DIP switches 

on the server, the positions (information) are intended to be communicated by IEC 

61850 services. In fact, the DK61 acts as a server and publishes the status of DIP 

switches in GOOSE messages and the PC acts as a client and subscribes to that GOOSE 

message [111]. Various client test applications such as IEDScout can be also connected 

to this server. The status of the switches is represented by Booleans. The ON position 

will be represented by Boolean true and the OFF position by Boolean false. After 

toggling a DIP switch the published GOOSE message from the DK61 board was 

captured on the PC using Wireshark. Figure 30 illustrates the captured GOOSE 

message, which shows the updated status of the DIP switches. As can be seen from 

Figure 30, the GOOSE message has only the Data Link (Ethernet) layer among the 

Application and Physical layer, while the transmitted UDP message comprises all layers 

including Data Link, IP, and UDP. 

 

Figure 30 The captured GOOSE message using Wireshark 
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4.3 Network Simulators 

Establishing a network for any experiment and testing a simple problem takes a large 

amount of time and expense. Therefore, it is not quite possible to implement the entire 

network scenarios for analysis in the real world. There are many tools which help 

network developers to test their network scenarios virtually. These network simulators 

are used for performance analysis in the field of communication. With the help of these 

simulation tools, both the time and cost of testing the functionality of proposed 

networks can be reduced and implementations are made straightforward. Generally, 

network simulators include a wide range of networking technologies and protocols 

which help users to build complex networks from basic building blocks. Users can 

simply design different network topologies using various types of basic building blocks, 

such as end host, hubs, routers, switches, etc. There are a large number of network 

simulators including OPNET, QualNet, ns-2, ns-3, OMNET++, GloMoSiM, SWAN, 

Jist, NetSim, J-Sim, SSFNet, etc. Therefore, selection of a suitable network simulator 

for specific research work can be a crucial task [118]. 

Network simulators can be categorised into the two types of free and commercial 

software. Apart from providing the affiliated packages to the user for free, the free 

network simulators may provide their source codes. This is an important advantage of 

this type of network simulator and they are also called open source simulators based on 

this feature. In these simulators, everyone can contribute to their development and help 

fix bugs. There are no limitations on the interfaces, so they are also open for future 

improvement. Because of their flexibility, recent developments and new technologies 

are implemented in a faster way than in commercial network simulators. Typical open 

source network simulators include OMNeT++ and NS-3 [118]. 

The commercial network simulators do not provide the licensed version for free. Users 

need to pay for the complete software or specific packages that fulfil their specific 

requirements. OPNET is a commonly used commercial simulator and QualNet is 

another example of this type. Commercial simulators have a number of specific 

advantages. The main advantage is that they are managed and maintained consistently 

by specialised staff of the company and generally have comprehensive and updated 

documentations. Open source network simulators are weak in this regard since there are 

not enough specialists working on their documentations. This causes serious problems 

when different versions are issued with new or modified functionalities. Hence, without 
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any proper documentation, it will become more difficult to trace or understand the 

updated features [118]. 

The question of which simulator to be used is not an easy one and the answer is largely 

dependent on the specific use case. Existing computer network communication 

simulators have been studied on the basis of availability, simplicity, scalability, data 

manipulation, graphical display, and other important properties in order to be used in 

this research. The following subsection gives an overview on three common network 

simulators. These network simulators are also called Discrete Event Simulation (DES) 

tools as the network behaviour is simulated by modelling the events in a system as per 

order of the scenarios that the user has setup [119]. In fact, prior to the execution of the 

simulation, the user defines a list of events to be triggered at particular time periods or 

some conditional events. These stored events are then processed in order when the 

command to run the simulation is given. DES can provide a flexible, scalable and 

highly repeatable way to analyse the performance and behaviour of the communication 

networks under different conditions [120].  

4.3.1 OPNET Modeler 

OPNET Modeler [23] (Optimized Network Engineering Tools) is a well-established 

commercial DES tool that provides advanced communications network modelling and 

simulation capabilities. It was first proposed in 1986 and initially developed by 

Massachusetts Institute of Technology in 1987 using C++. Currently, OPNET is a very 

expensive package with powerful capabilities for developing different scenarios and is 

widely used by network industries [118, 121]. 

Generally, it is a comprehensive tool for simulation with a high level of modelling 

details and customizable presentation of simulation results [118]. OPNET consists of a 

high level user interface constructed from C and C++ source code blocks with a library 

of OPNET specific functions. Devices, network protocols, algorithms, applications, 

queuing policies, etc. can be modelled in detail using OPNET Modeler’s powerful 

object-oriented modelling approach [119]. It provides a huge library of models and 

commercially available network technologies. Its friendly Graphical User Interface 

(GUI) and flexibility make the model building and implementation phases easier. 

OPNET Modeler has a hierarchical modelling procedure that is divided into the three 

main scopes of network, node, and process models [122] . Network devices such as 
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workstations, switches and routers are called nodes. A node model consists of modules 

connected by packet streams or statistical wires, and each module is assigned to a 

process model to achieve the required behaviour  [123]. A hierarchical structure helps 

users to organise the networks. OPNET simulator is very efficient when working with 

complex networks with a high number of devices and traffic flows, or in networks 

where small changes could be critical. In addition, it benefits from a fast discrete 

simulation engine [119].  

4.3.2 OMNeT++ 

The open source DES tool OMNeT++ [21] (Objective Modular Network Testbed in 

C++) has been available to the public since 1997 [124]. Although OMNET++ is most 

commonly used for communication network simulations, it can be used for the 

simulation of complex IT systems, hardware architectures, and queuing networks as 

well [124]. It should be noted that OMNeT++ is not a simulator itself but rather a 

simulation framework. In fact, it provides infrastructure and tools for writing 

simulations [125]. Currently, OMNeT++ is gaining widespread popularity as a network 

simulation platform in academia as well as industry [120]. 

It is a modular component-based simulation package with extensive GUI support. 

Components are also called modules and are programmed in C++. The components are 

then assembled into larger components and models by using a high-level language 

called Network Description (NED) [120]. Using NED Editor, the communication 

network’s topology is created. NED can be edited both graphically and in text mode. 

The network description consists of a number of component descriptions such as 

channels, simple and compound module types. In addition, introducing communications 

network traffic for each workstation takes place in ini files that also carry configuration 

options for the simulator. OMNeT++ simulations can be executed using two different 

interfaces. The graphical Tkenv user interface is extremely useful for demonstration and 

debugging purposes. The command-line Cmdenv user interface is the best for batch 

execution [119]. 

OMNeT++ has generic and flexible architecture that enables various modules to be 

easily integrated  [126]. Along with the OMNeT++ widespread application more 

models, networks, protocols etc. are contained in model library. The INET framework, 
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an open-source communication network simulation package for OMNeT++, contains 

the common node models and protocols   [127].  

The online documentation for OMNeT++ is extensive. However, more protocols and 

communication technologies need to be implemented and included in order to avoid 

having to perform significant background work. In addition, participation and 

contribution of more organizations are required for further development [118, 119]. 

4.3.3 ns-3 

The ns-3 [128] project, initiated in 2006, is also an open source DES tool and has been 

primarily targeted for research and educational use [124]. It is licensed under the GNU 

GPLv2 license and is freely available for developments. ns-3 is a new simulator that has 

been designed to replace the current popular ns-2. It is not an updated version of ns-2 

and also not backward-compatible with ns-2 [118]. ns-3 is written in the C++ and 

Python programming languages. However, ns-3 network simulations can be 

implemented in pure C++, or some parts of the simulations can also be written using 

Python [124]. It has a strong library which is useful for users to perform their simulation 

by editing the provided models. Animations are also used to visually display the 

obtained results. It should be noted that ns-3 is an active project and still under 

development. In addition, the simulation credibility needs to be improved. It has a 

community-based development and maintenance model, requiring the participation and 

contributions of more users and organizations [119]. 

In this chapter, OMNeT++ DES tool has been selected for simulation of a typical 

substation as its open source and also provides GUI supports. In Chapter 5, apart from 

OMNeT++, OPNET Modeler has also been employed for simulation as the OPNET’s 

extensive library enables to simulate and model the exact communication devices in the 

existing GB WAMS.  
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4.4 Substation Automation Systems 

It is not sufficient that substations operate properly; they must also operate reliably 

under credible contingency situations  [129, 130]. Fast and reliable information about the 

current state of power systems leads to better operation and management. In this regard, 

SAS can provide a powerful, fast, and viable way to design and implement substation 

monitoring, protection, and control functions in modern transmission and distribution 

grids  [131]. The deployment of SAS has also fulfilled a market requirement to decrease 

the total cost. For example, optimization of maintenance costs and, in turn, reducing the 

life cycle costs of substations, provides highly efficient operation or near-limit operation 

of substation equipment  [132].  

Automated substations consist of smart and advanced equipment, such as relays, circuit 

breakers, transformers, switches, etc. that are integrated and monitored by a graphical 

interface unit that can be remotely accessed  [133]. During the last decades, 

electromechanical devices in SAS have been replaced by IEDs and they now perform 

most functions, including protection and control. The basic functions of a SAS can be 

categorised as described in Table 1. Most SAS have these functions even though they 

may vary in different projects  [132, 134]. 

 

Basic Functions Examples 

Monitoring 

 Monitoring of switchgear status, status of transformer and 

tap changer, status of protection and control equipment, etc. 

 Monitoring of electrical parameters; e.g. frequency, voltage, 

current, real and reactive power, etc. 

 Fault record of facility and device disturbance record 

Control 

 Control of switchgear and transformer tap 

 Synchronism check and interlocking 

 Load shedding, voltage regulation, reactive power control, 

etc. 

Protection 

 Protection for transmission line, transformer, busbar, feeder, 

etc. 

 Overcurrent, distance, differential protection, etc. 

 

Table 1 Overview of the functions of a Substation Automation System 
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The architecture of a SAS can be mapped into three levels hierarchically as shown in 

Figure 31  [47]. Station level, provides an overview across the whole station and assures 

the supervision of all the substation equipment. This level includes Human Machine 

Interface (HMI) and engineering workstations as well as gateways to connect the 

substation control centre to WAN. Bay level, includes the protection and control IEDs 

of different bays, such as circuit breakers, transformers, and capacitor banks. Equipment 

in the bay level and station level are called secondary equipment. Process level, 

includes switchyard equipment (called primary equipment) such as CTs/PTs, remote 

I/O, actuators, Merging Units (MU) etc. The main purpose of this level is to acquire 

data from the electric processes and to make switching operations  [43]. 

The communications of these three levels are carried out through the Process Bus and 

Station Bus. The Process bus is the communication network which connects the IEDs at 

the primary equipment level to other IEDs, such as MUs providing sampled measured 

values of current and voltage via the Local Area Network (LAN). The Station Bus is the 

Communication network which inter-connects IEDs at the Bay Level, IEDs at the 

Station Level, and connects the Bay Level to the Station Level  [43]. 

The communication network is now considered the backbone of substation automation. 

Inappropriate configuration of the communication network may cause failure of 

 
Figure 31 Substation Automation System (SAS) architecture 
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substation automation functions and could make the applications at best inefficient and 

at worse ineffective. The IEC 61850 standard has enabled IEDs and devices in a 

substation to be integrated on a high-speed peer-to-peer communication network, as 

well as client/server communication  [44, 135]. 

4.5 Substation Communications Architecture Simulation 

The open source OMNeT++ [21] has been used as a DES tool to simulate the proposed 

substation architecture in this section. The INET framework [127], an open-source 

communication network simulation package for OMNeT++, contains the common node 

models and protocols. However, some required models were designed and configured 

and will be discussed in the following subsection. 

4.5.1 Simulation Model Configuration 

The substation model that has been considered for simulation consists of one 

Transformer Bay, two Feeder Bays, a Station PC and Server. All of these nodes are 

connected via Ethernet Switch through star architecture. Figure 32 shows the 

communications architecture of the simulated substation in OMNeT++. The 

Transformer Bay model has two Protection and Control IEDs, two Breakers, one 

Merging Unit (MU), and is also equipped with one PMU. The two Feeders have similar 

architecture, which consists of two Protection and Control IEDs, one Breaker, and one 

MU. These IEDs are also connected via Ethernet Switch through star architecture.  

The MU IEDs need to send Sampled Value messages so they are modelled based on a 

three-layer communication protocol stack, which Application Layer packets are directly 

mapped to the Ethernet Link Layer. The Protection and Control IEDs may require 

communicating with Station PC and Server using TCP/IP protocol, apart from receiving 

Sampled Values from the MUs and sending GOOSE Trip messages to the Breakers. 

Therefore, they should support both 5-layer Internet Protocol and 3-layer IEC 61850 

communication protocol stacks. A new node model has been designed for this purpose 

in OMNeT++. This node model has two types of applications (TCP/IP and IEC 61850-

based applications), which have a shared Link Layer. In the Link Layer, a new module 

has been designed, called Controller, to perform two required tasks. The first task is to 

provide two separate connections for the packets of two applications arriving to the 
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Queue and Ethernet Encapsulation modules. The second task is to classify the packet 

received by the node to determine whether it is a TCP/IP or IEC 61850 packet so that it 

can be passed to the relevant Application Layer. A similar node model has been created 

for the Breaker IEDs, since they need to send status information to the Station Server 

based on TCP/IP as well as communicate with Protection and control IEDs to receive or 

send IEC 61850-based commands or status information. 

The generated traffic by the nodes has been configured based on the following 

assumptions in accordance with references [123, 136]. The MUs send Sampled Value 

messages to the corresponding Protection and Control IEDs at a sampling rate of 4800 

Hz. For the MUs inside the two Feeders, the message size is 52 bytes, while for the 

Transformer Bay MU it is 98 bytes. This is because the Transformer Bay MU contains 

two datasets of current and voltage. The PMU IED generates 50 samples per second 

with the destination of Station Server. The PMU communicate based on the User 

Datagram Protocol (UDP) with the message size of 50 bytes. Communication over 

networks using the Internet Protocol (IP) can be connection-oriented (TCP) or 

 

Figure 32 The communications architecture of the simulated substation 
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connectionless (UDP). TCP rearranges data packets in the order specified and 

retransmits lost or corrupted data. In the case of UDP, there is no built-in ordering and 

recovery of data, but the transmission speed is higher than TCP. Therefore, currently 

UDP is used commonly with PMUs since a small amount of lost data is preferable over 

delayed data in real-time measurements [137] .The packet size depends on the number 

of synchrophasor parameters that a PMU measures. The 50 bytes message size has been 

chosen through capturing real PMU packets using Wireshark [27], an open source 

packet analyser, and analysing the packets specifications. 

Furthermore, all the Protection and Control IEDs, as well as Breaker IEDs, send 

updated meter values or Breaker status information to the Station Server. These 

messages are sent at a rate of 20 Hz with a 32 bytes size using the TCP/IP protocol. It 

has been assumed that a fault happens in Feeder1 causing Protection and Control IEDs 

in Feeder1 and Transformer Bay to send GOOSE Trip messages to the corresponding 

Breakers. The Trip message size has been set to 16 bytes and is sent four times to 

ensure its delivery. One of the Protection and Control IEDs in Transformer Bay has 

been configured to send Trip messages continuously in order to introduce possible 

higher background traffic. 

4.5.2 Simulation Results and Analysis 

In the first scenario, 10 Mbps LAN has been considered for all the substation 

communications and Table 2 shows the obtained simulation EtE delay results for 

Sampled Value and Trip messages, respectively. The table provides statistical 

characteristics, including minimum, maximum, average, and standard deviation. 

In the second scenario, the previous substation LAN has been replaced by 100 Mbps 

LAN while the other network configurations and design are the same as in the previous 

scenario. The obtained results show a great improvement from the latency point of 

view, as illustrated in Table 3. 

Apart from the Sampled Value and Trip messages, delays of the PMU packets have also 

been analysed. In this analysis, four scenarios were performed to investigate the delay 

characteristics of the PMU inside the substation. The first scenario is that already 

described using the UDP/IP protocol. For the second scenario, the PMU has been 

modelled based on the created IEC 61850 node to communicate over the Ethernet. In 
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this scenario, the average EtE delays of the PMU packets were reduced by 10% 

compared to the UDP/IP scenario. However, as a large portion of this EtE delay is due 

to the relatively heavy background traffic on the Station Server, a new server has been 

added to the Station Level of the substation to work as PDC. The third and fourth 

scenarios were performed for more accurate comparison of the UDP/IP and IEC 61850-

based PMU communication. From the obtained results shown in Table 4, the Ethernet-

based IEC 61850 communications reduced the average delays of the PMU packets by 

27% compared to the UDP/IP protocol.  

In SAS, the propagation delays in the physical links are much smaller compared to the 

other latency factors associated with protocols, acknowledgement messages, processing 

delays etc. This is merely due to the relatively short distances that the packets need to 

travel between communicating nodes in the network [131]. 

In the next section, the recently proposed IEC 61850-90-5 technical report [138] is 

briefly investigated. This document enables IEC 61850 to transmit synchrophasor 

information according to IEEE C37.118 and over wide area.  

 

 

 

(a) Sampled Value 

Bay Minimum Maximum Average Deviation 

     
Transformer 0.1985 0.2656 0.2019 0.0119 

Feeder 1 0.1441 0.2108 0.1488 0.0131 

Feeder 2 0.1249 0.1912 0.1287 0.0138 

     

(b) Trip message 

Bay Minimum Maximum Average Deviation 

     
Transformer 0.1153 0.187 0.1225 0.0167 

Feeder 1 0.1153 0.1734 0.1275 0.0214 

Interbay 0.2306 0.3937 0.2618 0.0401 

     
 

Table 2 Latency charactristics for 10 Mbps Scenario  

                  (millisecond) 
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4.6 IEC 61850 for Synchrophasors over Wide Area 

The technical report IEC 61850-90-5 [138], which has been published in 2012, provides 

a way of sending PMU data to PDCs and control centre applications. As the PMUs 

generate data based on the IEEE C37.118 standard, the data needs to be transmitted in 

such a way that is also compliant with the concept of IEC 61850. In addition, PMU data 

are transmitted over wide area where they need a routable profile. Accordingly, the 

 

 

Scenario Minimum Maximum Average Deviation 

     
Station Server-UDP/IP 

 
0.0548 0.0666 0.0602 0.0029 

Station Server-IEC 61850 0.0455 0.0618 0.0540 0.0037 

PDC Server-UDP/IP 0.0251 0.0317 0.0265 0.0022 

PDC Server-IEC 61850 0.0183 0.0249 0.0192 0.0017 

     
 

 

(a) Sampled Value 

Bay Minimum Maximum Average Deviation 

     
Transformer 0.0199 0.0266 0.0206 0.0019 

Feeder 1 0.0145 0.0212 0.0152 0.0018 

Feeder 2 0.0125 0.0189 0.0130 0.0014 

     

(b) Trip message 

Bay Minimum Maximum Average Deviation 

     
Transformer 0.0116 0.0199 0.0129 0.0025 

Feeder 1 0.0116 0.0173 0.0122 0.0014 

Interbay 0.0232 0.0399 0.0273 0.0054 

     
 

Table 3 Latency charactristics for 100 Mbps Scenario  

                  (millisecond) 

Table 4 Latency characteristics of PMU 

                      (millisecond) 
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IEEE 61850-90-5 standard has been proposed to provide routable profiles for IEC 

61850-8-1 (GOOSE) and IEC 61850-9-2 (SV) services, referred to as R-GOOSE and R-

SV, respectively [138]. 

As described in Chapter 2, IEC 61850 is basically a layer 2 protocol and does not 

provide a Network Layer protocol. As such, this protocol does not inherently provide 

the routing capability required for wide area applications. The Internet Protocol (IP) is 

one of the options for communications over wide area. This is the protocol that the 

IEEE C37.118.2 standard uses for the transmission of data over networks. Although 

IEEE C37.118.2 allows communication over IP using both the TCP and UDP transport 

protocols, IEC 61850-90-5 focuses on UDP. Figure 33 illustrates the mapping of R-

GOOSE and R-SV services. As can be seen, the Application Profile (A-Profile) consists 

of the GOOSE and SV as the Application and Presentation Layers encapsulated in the 

Session Protocol defined in IEC 61850-90-5. The A-profile in turn is bound to the 

Transport Profile (T-Profile), which provides a routing tunnel as specified by the 

Session Layer. In order to conform to IEC 61850-90-5, implementations should at least 

 

Figure 33 Mapping of R-GOOSE and R-SV services 
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support IPv4. Additionally, IPv6 can be used in parallel with IPv4 allowing higher wide 

area routing ability for larger scale information exchange [138]. 

The IEEE C37.118.2 standard, which represents the communication aspect of the 

standard, does not explicitly address the communication services. Instead, it specifies 

the synchrophasor message format. As described in Chapter 2, it defines the four 

message types of Data, Configuration, Header, and Command. Therefore, in order to be 

compliant with IEC 61850, the functions that are performed by these frame types need 

to be mapped to the existing services in IEC 61850. The control and configuration 

services are mapped to the conventional IEC 61850 MMS over TCP/IP, while the data 

need to use the proposed R-GOOSE or R-SV services. According to the IEC 61850 

standard services, fast cyclic communications are typically based on SV, and additional 

event data can be communicated using GOOSE. Therefore, synchrophasor measurement 

data should map into the SV service [138]. 

The UDP protocol utilised in IEC 61850-90-5 does not guarantee data delivery and a 

lost packet cannot be recovered automatically. In the case of GOOSE messages, the 

reliability is achieved by repetitive sending of the same message. Therefore, the 

probability for data to be received by subscribers is greatly increased. SV messages do 

not originally make use of a repeat mechanism. As for applications with high send rates, 

such as Merging Units in substations, loss of a few samples is not critical. However, for 

synchrophasor applications where the send rates may not be as high as the previously 

mentioned applications and data is transmitted over wide area, it may be desirable to 

increase the reliability. If required, this can be provided through using the re-transmit 

approach of GOOSE for the SV packets. Furthermore, where the loss of samples is 

critical, but the response time requirement is not deterministic, the reporting mechanism 

of IEC 61850-7-2 and IEC 61850-8-1 can also be used. However, the TCP based 

services are restricted to point-to-point associations between client and server [138]. 

According to the details that have been laid out in the report, the main focus of IEC 

61850-90-5 is to provide a more seamless interoperable system. In this regard, the 

communications delay may not be as low as the time-critical services of the original 

three-layer IEC 61850. This is because the fast services of the standard are now mapped 

into the Internet Protocol and transmitted over wide area network. 
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4.7 Concluding Remarks 

SAS is widely used in order to improve the reliability of power systems. The success of 

a SAS relies heavily on the use of an effective communication system to link the 

various monitoring, control, and protection elements within a substation. In this 

research, for the performance analysis of substation communications networks, typical 

substation communication architecture has been simulated using OMNeT++, an open 

source DES tool. From the analysis, it can be observed that IEC 61850 based on 

Ethernet shows acceptable performance for substation communications. Furthermore, 

preliminary studies were performed to introduce and evaluate the IEC 61850 protocol 

for PMU applications. For future work, this simulated model of a substation 

communications network can be refined and improved from a number of aspects. One is 

to use more accurate Application Layer and message format for IEC 61850-based 

communications, Sampled Value and GOOSE. Also, VLAN can be configured in the 

Ethernet Layer in order to reduce the broadcast domain and limit it into the bay. In 

addition, the considered substation in this research has star architecture, which has a 

backbone switch that links all other switches. The advantage of star configuration is its 

easy maintenance, flexibility for expansion, and low delay. However, a failure of this 

switch will result in the entire communication system going down. Other substation 

communications architectures that provide higher redundancy can be investigated in 

future work. 
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Chapter 5  
 

Performance Evaluation of WAMS Communications 

Infrastructure 

5.1 Introduction 

WAMS will be vital in the operation of future systems, where the need to instantly 

detect problems and react swiftly to a wide range of technical issues will become more 

crucial in order to deliver secure and reliable power. With regard to the WAMS 

deployment on the GB transmission system, operated by NG, a PDC located at the 

control centre is maintained by Psymetrix and is running the PhasorPoint application for 

stability analysis [97]. Critical to the operation of such systems is a robust and secure 

communications infrastructure; with the performance of communications links between 

PMUs and PDCs having a direct impact on the ability to meet specific monitoring and 

control requirements. In this chapter, performance evaluation of the WAMS 

communications infrastructure is presented in order to determine the characteristics of 

communication delays and bottlenecks that can occur in WAMS. An actual WAMS as 

installed on the transmission system of GB is modelled using both proprietary and open 

source DES tools, OPNET and OMNeT++. Comparisons will be drawn between the 

modelled approach and measurements from the actual WAMS as well as between the 

two simulation environments. In addition, different protocols, mechanisms, and 

topologies will be investigated for the GB WAMS future developments.  
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5.2 The GB WAMS Communications Infrastructure Analysis 

5.2.1 Wide Area Network Model Architecture of GB 

The considered WAN of the GB WAMS consists of 9 substations, which are 

geographically distributed. Except for Substations 8 and 9, which have been equipped 

with two PMUs, all other substations have only one PMU. These PMUs obtain the 

analog input signals corresponding to voltages and currents from the instrument 

transformers and measure power system parameters. The PMUs data messages are 

based on the IEEE C37.118 standard, which specifies a set of fundamental 

characteristics including time reference, rate of measurement, phase reference, accuracy 

metrics, and format of messages. PMUs are also connected to a Local Area Network 

(LAN), and the LAN is in turn connected via a substation router to the WAN. Using this 

network the measurement data from the PMUs are transmitted to a PDC based on 

TCP/IP protocol. Figure 34 presents a simplified schematic of the WAN model 

infrastructure [139]. 

Substations 6 and 7 are connected to the WAN through 2 Mbps links, and the other 

substations are connected by 256 kbps links. In addition, the bandwidth of the link 

between the IP Cloud and PDC is equal to 155 Mbps. Links are shared and used for 

 

 

Figure 34 WAN infrastructure schematic of the real system 
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different communication applications. All PMUs have a sampling rate of 50 samples per 

second, so they generate constant traffic. However, there are other substation-based 

applications that generate variable traffic. The PMU in Substation 1 is Arbiter 1133A 

and the size of packets transmitted from it is equal to 50 bytes [140]. For the other 8 

substations, AMETEK TR-2000 multi-function recorders are used as PMUs and 

generate packets of 42 bytes [141]. The packet sizes have been obtained by running 

Wireshark  [27] on the Psymetrix [97] PDC server and capturing PMU packets. These 

are the respective IEEE C37.118 packet sizes in the Application Layer. In fact, the 

headers for IP and TCP are added to the IEEE C37.118 packet when packets are 

encapsulated through the protocol stack in the respective layers. The packet size 

depends on the number of synchrophasor parameters that a PMU measures. It should 

also be noted that the PDC uses a DELL PowerEdge workstation with 1 Gbps 

connection ports as a server, and as mentioned, the deployed PMUs are not all from the 

same manufacturer. 

This section has provided relevant information about the physical structure and 

characteristics of the WAN model. Due to a lack of detail regarding some aspects of the 

model and also for simplicity, some assumptions and simplifications have been made in 

order to perform the simulations. The simplifications, along with the main aspects of the 

model implementation and configuration, will be fully described in Section  5.2.3. 

5.2.2 Calculation of latency for the WAMS network 

Generally, the time from when an event occurs in a power system until the 

corresponding data becomes available at a data receiver unit is called latency. Latency is 

important for real-time applications, and the acceptable level is highly dependent on the 

type of application [142]. Performing a tcpdump [143] capture at the PDC server allows 

a user to intercept and display details of synchrophasor and other application generated 

packets being transmitted or received over the network interface. Tcpdump is a 

command-line packet analyser that prints out a description of the contents of packets on 

a network interface. Therefore, the packet specification of all the PMUs that are 

communicating with the PDC can be obtained. Wireshark [27] functionality is very 

similar to tcpdump [143], but it also has a Graphical User Interface (GUI), plus more 

information-sorting and filtering options. Opening up the captured file using Wireshark 

and decoding packets as PMU packets, all the phasor data captured by the tcpdump 
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function can be inspected. The packet information provided allows users to investigate 

the latency for the individual PMUs. 

The two parameters that are required for latency calculation are the time stamp of the 

PMU and arrival time. Wireshark receives the time stamp recorded on the PMU during 

measurement, expressed as SOC (Second of Century) time. In addition, arrival time is 

the time the data frame arrived at the PDC. The time on the central PhasorPoint PDC 

server is locked to a National Grid Network Time Protocol (NTP) server. NTP is a 

networking protocol designed to synchronise clocks between computer systems. It is 

possible to observe how well it is locked to the source NTP server, but time accuracy 

will depend on the accuracy of the source NTP signal. Based on the information from 

NG, currently the PhasorPoint [97] server deviates from the NTP source by -0.000158 s. 

On this basis it has been deemed comparable to the GPS time of the PMU. Therefore, 

the packet latency can be calculated from Equation (6). 

Calculating the latency of each packet one-by-one manually is a very time-consuming 

process. Automating the large-scale calculation process can save time, reduce error and 

enables more detailed and larger scale analyses. Therefore, a novel algorithmic 

procedure was implemented in MATLAB to automate the large-scale latency 

calculations.  

The algorithmic procedure consists of several sub-routines called by a main function. It 

is able to read the exported comma-separated values (CSV) file from Wireshark and is 

then able to calculate each packet’s latency. As each PMU type may have different 

formats when defining time stamps, such as number of digits, the algorithmic procedure 

requires the user to specify each of the PMU types and then calculates the latency value 

accordingly. A new Excel file is then created and the details of each packet along with 

its latency are written in a separate row. By having the time stamps of all packets, the 

latency graphs against time for all PMUs can be synchronised.  

Since the resultant latency has great variation, it is difficult to compare the graphs of 

different PMUs’ latencies together. Therefore, it is necessary to calculate and plot the 

Exponentially Weighted Moving Average (EWMA) of each PMU’s latency values. 

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 − 𝑃𝑀𝑈 𝑇𝑖𝑚𝑒 𝑆𝑡𝑎𝑚𝑝 (6) 
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Hence, after calculating latency, the algorithmic procedure also calculates EWMA 

values, as well as other characteristics such as maximum and minimum latency values 

for better statistical comparison. The EWMA model enables calculation of a value for a 

given time on the basis of the previous values. In fact, this method can provide a 

weighted average of previous latency values as determined by a specified parameter. 

Therefore, EWMA can weight current values more heavily than past values and places 

more importance on changes in recent values. This gives the advantage of being quicker 

to respond to value fluctuations than methods such as the Simple Moving Average 

(SMA). The desired EWMA smoothing factor, which is used in the algorithmic 

calculations, can be determined based on the level of smoothing requirements. The 

lower smoothing factors result in the smoother latency graphs. The user can also specify 

the desired EWMA smoothing constant that is used in the algorithmic calculations. The 

novel algorithmic procedure also provides the time stamp of the packet that has 

maximum or minimum latency.  

In the real-world WAMS being considered here (that of GB), the communication 

network available to the PMUs is not dedicated to the WAMS application. In fact, it is a 

shared network that different types of applications use for their communications. The 

traffic that these non-WAMS applications generate on the network has been considered 

as background traffic. The background traffic is not necessarily constant over time. For 

example, during working hours, operational and field staff are expected to use 

communication applications that generate additional traffic. Therefore, it was necessary 

to perform investigations in order to analyse PMUs latency over different times of a 

day. To analyse latency over different times of a day, tcpdump data is required that has 

captured data over a one-day period. To reduce the file size, the traffic should be 

captured discretely in specified time intervals. In this case, it was every 5 minutes such 

that every 5 minutes tcpdump generates a separate .pcap file [143]. The algorithmic 

procedure is implemented in MATLAB in such a way that it is able to open each 

exported CSV file automatically, one-by-one, and then calculate the latency. At the end, 

calculated latency values for all packets are written continuously in a single Excel file, 

which is saved in a predefined location. The procedure also records the maximum and 

minimum latency in each individual file with their relevant time stamps.  

Figure 35 shows the measured latency for the PMU packets sent from five of the PMUs 

located inside substations to the PDC over a period of one second. As other PMUs show 



 

 

91 

91 

similar results to these 5 PMUs, for better comparison these 5 PMUs have been selected 

for the analysis. In order to clearly illustrate the latency trends, the EWMA graphs were 

plotted based on a 0.06 smoothing constant that was chosen empirically. The sampling 

rates of the PMUs are 50 samples per second, so each PMU transmits one packet every 

20 ms. Due to the PMUs’ high sampling rates, a short period of time was adopted when 

plotting graphs in order to better present individual packet latency. Table 5 presents the 

actual statistical characteristics regarding latency, including minimum, maximum, 

average, and standard deviation, for a number of the PMUs over a 1 minute period. 

However, the calculated latency time includes any internal measurement processing 

delay associated with a particular type of PMU, in addition to the network latency. 

Hence, to obtain the actual network latency, we need to deduct the internal PMU delay, 

which occurs after the time stamp point, from the total latency calculated from the 

Wireshark information.  

The internal delay of the PMU depends on different factors including measurement 

delay due to the data acquisition delay, signal processing time for phasor calculation, 

and data transfer time, which is dependent on the utilised interface [67]. PMUs from 

various manufacturers may have a different internal delay according to their adopted 
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Figure 35 Latency of the PMU packets for 5 of the PMUs 
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procedures and design specifications. In addition, PMUs from the same manufacturer, 

depending on their configuration settings, such as window size, can also exhibit 

different delays. Substation 1 in the considered WAMS has been equipped with an 

appropriately configured PMU from Arbiter Systems. Hence, investigations were 

carried out to accurately estimate the internal delay of this PMU. The results of this 

study are as follows. 

As described in Section  3.2, a PMU rapidly samples analog power system quantities and 

generates discrete digital samples of the data using an analog to digital converter. Using 

the data samples taken from the waveform, phasor values are computed by applying the 

Discrete Fourier Transform (DFT). In practice, a PMU collects a window of measured 

samples to calculate the phasor representation of the input signals. A window length of 

6 cycles or more may be needed to smooth the frequency spectrum obtained and thereby 

reduce error in estimation of phase and frequency. Meanwhile, the calculated phasors 

must also be time-stamped using GPS signals. Figure 36 shows the basic block diagram 

of a working PMU in principle [88]. 

The original IEEE 1344 synchrophasor standard recommended the end of a window for 

placing the time stamp, while IEEE C37.118 recommends the middle of the window 

[144]. However, neither of the standards requires the time stamp to be placed in a 

certain location relative to the data window. Regardless of the placement of the time 

stamp in the measurement window, a PMU must wait for a full window of the data to be 

sampled. The following assumptions and internal measurement delay calculations are 

Substation PMU Minimum Maximum Average Deviation 

1 1 134.00 295.40 167.53 28.86 

4 1 58.21 687.60 86.88 47.41 

5 1 70.60 201.50 95.03 13.72 

7 1 65.21 170.80 84.60 10.95 

8 
1 53.95 151.60 72.29 10.97 

2 53.79 214.40 73.65 13.53 

9 
1 55.76 139.30 75.05 11.07 

2 55.25 164.90 75.22 11.22 

 

Table 5 Actual latency characteristics 

                                                                   (millisecond) 
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based on information from the IEEE C37.118 standard measurement specifications [33] 

and the operational manual of Arbiter PMU in use [67]. 

It should be noted that the Arbiter 1133A does not time-tag like many PMUs, but rather 

it measures synchronously. There is a difference in these two concepts: i.e. “time 

tagging” and “synchronous measurement”. The important fact to know is that the 

measurements are accurately timed in synchronous measurement. In other words, all 

measurements with this PMU start at exactly the second or multiples by 20 ms after, 

when the reporting rate is 50𝑥. This is in contrast to other PMUs which start sampling 

more or less “freely” and add a time-tag to the sample they take. 

In the Arbiter PMU, results are calculated every 50 ms, and there is also a calculation 

time associated with the signal processing that is approximately 15 ms. Then there is a 

communication time, which is dependent on the employed interface and message 

format. Given the packet size from the Ethernet overhead and the message length for 

selected data items, we can calculate the time a message takes to go out on the wire and 

reach the output port of a PMU. In addition, the time reported in the data frame is used 

for reference; this is the time for which the estimator result is calculated at the centre of 

the measurement window in the implementation. Therefore, half the window length for 

the selected window must be also added in order to determine when the PMU will have 

the data available to start the calculations. The descriptions above suggest a series of 

steps to determine when a message will be ready for transmitting from the Arbiter PMU 

port. The following is a sample calculation: 

 

Figure 36 Basic block diagram of a typical PMU 
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 Select a nominal message time (this must be at intervals equal to one over the 

reporting rate, which in this case is every 20 ms) 
 

‒ The time tag of 𝑥𝑥𝑥. 06000 seconds is considered 

 

 Add half the window length (for this case the window length has been set to 6 

cycles, and as the power network works on the 50 Hz frequency and by converting 

cycles to ms, half the window length would be 60 ms) 
 

‒ Data available at 𝑥𝑥𝑥. 12000 seconds  

 

 Round up to the next 50 ms increment if required, when calculations will begin 
 

‒ Next calculation cycle starts at 𝑥𝑥𝑥. 15000 seconds 

 

 Add calculation time of 15 ms 
 

‒ Thus, calculation is complete at 𝑥𝑥𝑥. 16500 seconds 

 

 Add data transfer time, 𝑇𝑡, to the output; considering a 50 octets long packet and 

Ethernet interface which runs at 100 Mbps: 

‒ As the value is negligible it can be ignored in the calculation 

Thus, the difference between the time tag and the time that data is ready on the wire for 

transmission, which is the PMU internal delay, would be: 

𝑥𝑥𝑥. 16500 𝑠 − 𝑥𝑥𝑥. 06000 𝑠 = 105 𝑚𝑠 

It should be noted that this delay would be different for various values of time tags, as it 

depends on when in the 50 ms calculation cycle the half window length ends. In fact, 

this is determined for each packet by how far in time (ms) it is from the next 50 ms 

calculation cycle. In the above example, the PMU starts calculating 30 ms after the 

sampling ends. Thus, depending on the sample time, the delay could be anywhere 

between 75 ms (finished sampling and start calculating directly) and 115 ms (finish 

sampling and wait the maximum of 40 ms), as depicted in Figure 37. 

 𝑇𝑡 =
50 × 8

100 × 106
= 4 𝜇𝑠 (7) 
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PMU standards recommend a maximum allowable time for synchrophasor calculation 

[32]. The proceeding sample calculation gives a credible value falling within the 

allowable range. As described, a phasor is calculated based on a user-definable number 

of cycles of the 50 Hz waveform. In this case the measurements were taken over 6 

cycles. As the reporting rate is 50 samples per second, we get 6 samples within 6 cycles. 

However, it does not take 6 cycles, calculate 6 samples, report and then again take 6 

cycles. It will start sampling 6 cycles to calculate 1 report (with time in the middle of 

the sampling window), but after 1 cycle it will start another 6 cycles and after another 

cycle it will start another 6 cycles. Figure 38 illustrates this concept; the blocks are the 

cycles and the numbers are the reports (6 reports have been shown in this figure, but it 

goes on).  
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Figure 37 Arbiter PMU internal delay 

Figure 38  Sampling window for phasor calculation 
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In the case of other substations, where other types of PMUs are installed, the internal 

delay will be different. The AMETEK TR-2000 is a multi-function recorder that can 

simultaneously perform a number of tasks, including disturbance recording, power 

quality analysis, and phasor measurements. According to the operation manual and 

information provided by the manufacturer, it uses a 1 cycle window to calculate 

synchrophasor data from the DFT technique. The time stamp point is at the beginning of 

the window so the whole window length must be considered, which is 1 cycle or 20ms. 

A 10 ms calculation time has also been assumed for each sample. Therefore, on average 

we assumed 30 ms internal delay for the AMETEK PMUs. As AMETEK TR-2000 is a 

fault recorder, it is reasonable for it to have a lower internal latency. 

By applying these details, the algorithmic procedure as implemented in MATLAB in 

this research also calculates the network communication latency by subtracting the 

internal delay corresponding to the time tag of each sample from the total latency and 

appends accordingly updated values. Figure 39 illustrates the network communication 

latency for the same PMUs and period of time as Figure 35. The PMU in Substation 1 

still has a higher latency than other PMUs. This might be due to the existence of higher 
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Figure 39 Smoothed network latency for 5 of the PMUs 
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traffic levels in this substation, or other sources of delay inside the PMU such as TCP 

buffer or the algorithm it uses. Overestimating PMU calculation times on other 

substations may be another reason.  

Using TCP/IP, the TCP stack can buffer multiple messages and send them out in one 

packet over the network delaying the first messages in the packet. There is no way of 

predicting if the stack will or will not do this. This can be prevented by using UDP 

which does not buffer multiple messages in one packet. 

In this section, the actual latency measurements for the considered GB WAMS were 

analysed and in the next section the model and simulation process will be discussed. 

The results presented in this section along with the results obtained in the next section 

from network simulations will be compared and discussed in detail in Section  5.2.4.  
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5.2.3 The GB WAMS Simulation Model  

5.2.3.1 Simulation Model Configuration in OPNET Modeler  

As described in Section  5.2.1, there are 9 substations in the WAN model that are located 

at different distances from the PDC. According to the information provided by National 

Grid, Substations 6 and 7 are connected to the WAN by 2 Mbps links that have more 

communications network activity in terms of staff presence and data transferred. 

Whereas Substations 8 and 9, which have been equipped with two PMUs, have a lower 

level of background traffic. Based on this information, some substations should be 

modelled differently from others. All substations have one local server and several 

workstations. Substations 1 to 5 are assumed to have a similar structure and each of 

them has five workstations such that one of them is defined to operate as a PMU. 

Substations 6 and 7 are assumed to have 13 workstations each, such that one of the 

workstations works as a PMU. Finally, Substations 8 and 9 have 3 workstations each, 

such that two of them work as a PMU. Figure 40 illustrates the simulation model as 

implemented using OPNET Modeler [23]. The 9 octagons on the left-hand side of the IP 

 

 

 

 

Figure 40 The infrastructure of the GB simulated network in OPNET 
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cloud represent the 9 substations and the one on the right-hand side is the data centre. 

The data centre was configured in a way to have 2 workstations and 3 servers, as shown 

in Figure 41; one of the servers is the DELL PowerEdge that works as a PDC. 

It should be pointed out that in  Chapter 4, the simulation and modelling of a typical 

power system substation communication infrastructure have been presented; 

nevertheless in this chapter the architecture of substations are modelled based on the 

workstations that transmit data outside the substations scopes and over WAN. It is also 

important to note that the geographical locations of substations and data centre in the 

simulation model are not their actual locations in the real system due to the confidential 

nature of information. 

 

 

 

 

 

Figure 41 Subnets configurations of the WAMS model in OPNET 
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The workstation nodes are “Ethernet_wkstn_adv” models running over TCP/IP as 

defined in the OPNET model library [23]. It is important to note that different methods 

are available in OPNET for introducing communications network traffic. Since the EtE 

delays of PMU packets from the source Application Layer to destination Application 

Layer are required to accurately model PMU traffic, custom applications were defined. 

In OPNET, all custom applications are defined through a series of tasks. Each task is 

further divided into individual phases [23], [145]. Therefore, two tasks were configured 

by using the Task Config utility object in OPNET that represents traffic associated with 

the two types of PMUs that exist in the model. The main difference between these two 

tasks is the packet size, such that for Arbiter PMU is 50 bytes and for AMETEK PMU 

is 42 bytes. Both tasks were configured to generate packets every 20 ms, which means 

they create 50 samples per second. The final destination of all PMUs packets is the 

DELL PowerEdge server in the data centre node, which represents the PDC. After 

defining the single phase task of custom application for both types of PMUs, the custom 

application itself can be configured using the Application Config utility object in 

OPNET. Finally, by using the Profile Config utility, the profile that employs the 

configured custom applications can be specified. A user profile is a mechanism for 

specifying how applications are used by an end user during a simulation. In order to 

separate the latency results for each PMU, a distinct profile was created for each 

individual PMU in the network. Otherwise, the latency results for all PMUs are shown 

together in the same profile at the PDC node in OPNET, which makes the individual 

analysis of latency for each PMU impossible.  

Apart from PMUs, for other workstations inside the substations, standard application 

models in OPNET were used to configure traffic. Standard application models provide 

an adequate level of detail for modelling the commonly used applications. For these 

workstations, one profile consisting of Database Access, File Transfer, and Email 

applications were specified that may send data to the substations’ local server or the 

servers at the data centre. Once all applications and user profiles have been defined, 

they can be deployed by corresponding nodes. This can be done by configuring each 

node through the Edit Attributes window to support desired profiles and applications. 

The traffic is generated in the Application module and then is passed to the Transport 

Layer module and thereafter to the Network Layer and so on. The PMU generated data 
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will be first transmitted to the substation switch, and then to the substation router. 

Switches and routers were given default configurations and the 100Base-T link was 

used for all substation LAN communications. A standard IP/Ethernet cloud was 

employed as opposed to an IP/Multi-Protocol Label Switching (MPLS). This approach 

has been adopted as insufficient information was available on the exact implementation 

of the MPLS deployed in National Grid. The modelling of the system as an IP/Ethernet 

cloud was configured in a way to show a comparable performance with the MPLS 

behaviour and, in turn, with the results obtained from live Wireshark data. In  5.4, the 

performance of a MPLS-enabled communications infrastructure is evaluated on the 

same considered GB WAMS model and results are compared with the conventional IP 

network. The IP/Ethernet cloud was specified with normal distribution packet latency 

with the mean outcome of 0.03 s. Substations have been connected to an IP/Ethernet 

cloud using PPP point-to-point links and the same type of link was used for connecting 

the IP/Ethernet cloud to the router in the data centre. The links’ data rates have been 

selected according to the specified architecture in  5.2.1. From the router in the data 

centre, the data finally will be transmitted through the LAN to the PDC server. 

Furthermore, background traffic was defined for the links between substations and data 

centre in the WAN to make the simulation model and results more realistic. The 

determined background traffic of each link is proportional to the number of 

workstations in different substations and the traffic they generate. It was not possible to 

 

From To 
Background Traffic 

(% of link bandwidth) 

   
Substation 1 IP Cloud 50% 

Substation 2 IP Cloud 50% 

Substation 3 IP Cloud 50% 

Substation 4 IP Cloud 50% 

Substation 5 IP Cloud 50% 

Substation 6 IP Cloud 70% 

Substation 7 IP Cloud 70% 

Substation 8 IP Cloud 0% 

Substation 9 IP Cloud 0% 

IP Cloud Data Centre 60% 

   
 

Table 6 WAN links background traffic 
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simulate the exact data traffic of the real network due to its stochastic nature. However, 

reasonably accurate traffic profiles were determined and adopted for implementation. 

Table 6 shows the applied background traffic for WAN links in terms of percentage of 

link bandwidth.  

The overall communication delay consists of four components: Transmission delay, 

which occurs during transmission and depends on the data size and link data rate; 

Propagation delay, which is related to the transmission distance and speed of the 

employed media; Processing delay, which is the time taken to process the packets, for 

instance in routers; and queuing delay that is caused by the network congestion and is 

the time packets need to wait in a queue until they can be processed [18], [146]. 

However, it is also necessary to include the internal processing delay of the PMUs in 

the modelled network. Therefore, in the case of an Arbiter PMU the average delay of 95 

ms and for AMETEK PMUs the average delay of 30 ms was introduced in both their 

node models in OPNET, respectively, through the packet stream connected to the 

Application Layer. 

5.2.3.2 Simulation Results and Analysis  

After the completion of network configuration, the statistics to be collected can be 

specified in OPNET [23]. In this WAMS network research, the EtE delay from the 

PMU to PDC is a key statistic that reflects the WAMS performance. Therefore from the 

node statistics section in OPNET, the responding or requesting custom application 

statistics can be selected. Figure 42 illustrates the latency results in OPNET over 1 

minute of simulation time.  

It should be noted that in OPNET the default collection mode for network delay 

statistics is bucket mode. In this mode, OPNET groups data points that occur within a 

period, referred to as a bucket, and then applies a statistical function to each group of 

values. The resulting output vector contains one value for each bucket. This value can 

be the maximum, minimum, mean, etc. of the results for samples available in a bucket. 

The default bucket mode in OPNET for the provided result in Figure 42 is sample 

mean. The collection mode was also changed to All Values mode so that it was possible 

to obtain all samples latency in order to compare the characteristics of OPNET results 

with the Wireshark results as presented in Table 5. After exporting the latency results 
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from OPNET to Excel, the required characteristics were calculated and have been 

presented in Table 7. 

From the obtained simulation results, we can see that the latencies of the PMUs are very 

similar to the real system results provided in Section  5.2.2.  

 

0 10 20 30 40 50 60
80

90

100

110

120

130

140

150

160

170

180

Simulation time (s)

L
a
te

n
c
y
 (

m
s)

 

 

Sub1

Sub4

Sub5

Sub7

Sub9 PMU1

Figure 42 Simulated latency of the PMU packets in OPNET 

Table 7 Latency characteristics of OPNET modelling 

                         (millisecond) 

Substation PMU Minimum Maximum Average Deviation 

1 1 127.8 403.3 165.104 28.73 

4 1 64.85 354.9 100.67 29.06 

5 1 65.12 525.7 104.94 50.38 

7 1 62.15 120.9 86.04 8.39 

8 
1 60.49 204.2 82.82 9.39 

2 56.03 201.2 81.73 9.42 

9 
1 61.53 218.4 84.49 9.5 

2 60.67 202.2 83.76 9.35 
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5.2.4 Results Discussion 

Both Wireshark and OPNET results show that although Substations 8 and 9 have two 

operating PMUs and are connected to the WAN through 256 Kbps links, the latency of 

the PMUs packets are less than other substations, including the 2Mbps connected 

substations. This is due to the lower overall traffic levels in these two substations. 

According to the investigation performed PMUs latencies are very sensitive to the level 

of introduced background traffic. 

We can see that in some cases PMU packets may experience greater latency than their 

expected average latency. For example, consider PMU 4 in Table 5, which had a 

maximum latency value that was about 8 times higher than its average. This variation in 

latency can be due to congestion in the network. When a connection is in use, no other 

data can be transmitted between other points concurrently. Therefore, sometimes 

devices have to wait until the network becomes idle and then initiate a connection to 

undertake a task. For further analysis, the probability distribution of latency values for 

each substation has been investigated. The analysis has shown that the Generalized 

Extreme Value (GEV) probability distribution type is the closest distribution to the 

obtained PMUs latency results among more than 15 considered distribution types. Table 

8 shows the three closest probability distribution types to the latency results of a number 

of substations. In addition, Figure 43 and Figure 44 show the Cumulative Distribution 

Function (CDF) and CDF error for the three closest probability distribution types to the 

latency results of Substation 1, respectively. As can be seen from the figures, the GEV 

probability distribution has the lowest error. The probability distributions of latency 

values for the PMU in Substation 1 and the first PMU in Substation 9 are presented in 

Figure 45. 

 

Table 8 Probability distribution types for the latency results 

Substation Probability Distribution Types 

1 generalized extreme value, tlocationscale, loglogistic 

4 generalized extreme value, tlocationscale, loglogistic 

5 generalized extreme value, loglogistic, lognormal 

7 generalized extreme value, loglogistic, lognormal 

9 – PMU1 generalized extreme value, lognormal, inverse guassian 
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Substations that have similar configuration and PMU type might have different latency 

averages. This is more likely to happen in the actual system rather than OPNET 

simulation. This is because in OPNET we defined the same traffic profile for all 

workstations. Apart from the different traffic levels, the communication path that they 

use can be another reason. The number of hops or routers that packets pass through to 

reach the data centre may be different. A high hop or router load will add delay to the 
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Figure 44 CDF  error for the latency results of Substation 1 

Figure 43 CDF for the latency results of Substation 1 
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connection. Furthermore, the internal delays of PMUs have been investigated, 

determined and analysed in detail. As can be seen from the latency results of Substation 

1, the internal delays of PMUs can introduce considerable delay and, in turn, have 

significant impact on the performance of WAMS applications. 

One of the important factors that should be noticed with regard to delay in a WAMS is 

the window size of the PMUs and the algorithm they use. By having longer window 

size measurements are provided with higher accuracy, but it imposes extra delay on the 

measurement process. Therefore, window size and the algorithm adopted by PMUs 

should be proportional to the PMUs application. For PMUs that are used for monitoring 

 

(a) Substation 1 
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or off-line analysis accuracy is desirable, while for PMUs deployed in control and 

protection systems the fast provision of measurements is more important. Transmitted 

packets from other workstations inside the substations that have a different traffic 

profile experience higher latency than PMU packets. This can be due to the larger 

packet size that they generate. Although PMUs generate large volumes of data in the 

long-term, the stream of data per second is modest. 

Further latency results and evaluation are available in  Appendix B. 

5.3 The GB WAMS Future Development Analysis 

Apart from the analysis presented in Section  5.2 for the existing WAMS, further 

scenarios have been proposed to evaluate the WAN performance for the future GB 

WAMS developments [147]. In fact, this is the stage that the developed simulation 

model can be employed for analysing possible future architectures as well as methods to 

improve the performance, such as new communication protocols, mechanisms etc. In 

this regard, four main scenarios have been specified, of which the first two scenarios 

investigate the future possible architectures and the last two scenarios investigate a 

different communication protocol and mechanism. The first scenario examines the 

effect on PMUs latencies, by increasing the number of PMUs installed in each 

substation. In the second scenario, the number of PMUs in substations is kept 

unchanged, but it is assumed that more substations in the power system are equipped 

with PMU and join the WAMS. Hence, the overall number of PMUs increases and 

investigations will be carried out to find the upper limit for the number of additional 

substations in order to achieve an acceptable level of latency for the WAMS operation. 

The third scenario evaluates the effectiveness of using UDP Transport Layer protocol 

instead of TCP for PMUs communications. Finally, the fourth scenario considers the 

QoS mechanism for improving the WAN performance. 

5.3.1 Increasing the Number of PMUs in Substations 

The number of installed PMUs in a substation depends on various factors, such as 

number of the substation’s feeders from which measurements are required, applications, 

redundancy, etc. For example, when the operating application only considers the 

frequency of different locations, by installing multiple PMUs in the same substation, 
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they just provide the same information. On the other hand if the power calculations are 

required on various feeders, we have to install multiple PMUs in one substation. In this 

scenario the latencies of the PMUs packets have been compared when different numbers 

of PMUs are deployed in substations and for different levels of WAN links background 

traffic. As the WAN shares links for different applications, the ICT infrastructure of the 

WAMS has been tested for various background traffic conditions. Table 9 shows the 

obtained simulation results. It can be seen that in higher links background traffic and 

number of PMUs the performance of communications network is degraded 

significantly. In this case, phasor data have to be queued in the router buffer and wait 

for processing due to the network congestion. Substations 1 and 5, which have been 

connected to the WAN through 256 kbps links, for the 60% background traffic and 4-

PMU case study could not send PMU packets to the PDC successfully in the determined 

simulation time. While Substation 7, which has been connected through a 2 Mbps link, 

shows acceptable performance. Overall, substations connected via 2 Mbps links shows a 

modest increase in latency compared to other substations.  

Background 

Traffic (% of 

link bandwidth) 

Number 

Of PMUs 

Substation 1 

(256 kbps) 

Substation 5 

(256 kbps) 

Substation 7 

(2 Mbps) 

0 

1 148.6 82.3 80 

 2 150.6 83.8 80.7 

3 152.9 84.8 82.1 

4 153.9 86.3 82.3 

20 

1 150.6 87.3 80.3 

2 153.7 88.8 81.3 

3 158.3 91.3 82.3 

4 174 101.1 82.7 

40 

1 157.5 92.4 81.6 

2 165.1 97.4 82.2 

3 207.4 133.6 82.7 

4 2993.9 3512.9 84 

60 

1 176.5 107.4 83.7 

2 363.2 176.3 84.1 

3 3776.5 3603.8 84.9 

4 - - 85 

 

Table 9 Average latency for different numbers of PMUs in substations 

                       (millisecond) 
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5.3.2 Increasing the Number of Substations 

WAMS cannot benefit from the main provided parameters of the power system 

efficiently unless PMUs have been installed to the appropriate number of substations 

over the transmission system. Although WAMS can completely replace the SCADA in 

theory, it is not practical with the present level of technology, and PMUs cannot be 

installed as widely as RTUs. There is a number of problems with respect to achieving 

this aim including: communication problems, the large amount of real time data, which 

is produced by WAMS in the time scale of millisecond, would bring much pressure to 

the present communication infrastructure of the power system; storage problems, the 

control centre needs to store a huge amount of real-time data that could reach the level 

of TB or even PB every year; management problems, processing and utilizing a 

massive volume of data will be a big challenge [148, 149]. 

In this scenario, the number of substations has been increased in order to investigate the 

performance of WAN communication infrastructure, when more substations are 

equipped with PMUs and join the WAMS. It has been assumed that the new connected 

substations have the same structure as Substations 1 to 5 in the considered WAMS. 

Hence, they have been equipped with one PMU and connected to the WAN through 256 

kbps links. Table 10 shows the average latency of the PMUs for three of the substations 

when extra substations are added to the WAMS. After connecting more than 20 extra 

substations, the latency will be very high and from the point we add the 25th substation 

(total of 34 substations), the communication network will become unstable and latency 

values are not converged. Therefore, in order to add more PMUs into the WAMS in 

future the existing communications infrastructure need to be upgraded. 

It should be also noted that to have a completely observable power system, it is not 

economical to equip all buses with PMUs as a PMU and its associated facilities are 

Number of Additional  

Substations 
Substation 1 Substation 5 Substation 7 

    
10 172.7 106.2 90.3 

15 178.5 108.6 93.4 

20 188.8 118.8 105 

    
 

 

Table 10 Average latency for different numbers of substations 

                       (milliseconds) 
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costly. Furthermore, it is not necessary to equip all buses as the voltage phasor of the 

buses adjacent to the bus with installed PMU can be computed using current phasor and 

the line parameters. Accordingly, the first step in placing the PMUs is to determine the 

appropriate locations. In an actual power system, there may be certain buses that are 

strategically important, such as buses that are connected to a heavily loaded or 

economically important area, or a bus anticipated to be a future expansion point. In 

these cases, PMUs should be placed at the preferred buses, and the rest of buses should 

be made observable by placing a minimum number of additional PMUs. There has been 

a significant research activity in recent years to find the optimal number and placement 

for PMUs [150, 151]. 

5.3.3 UDP/IP Protocol  

UDP, User Datagram Protocol, is a transport mechanism over IP that offers a 

connection-less communication. It does not provide mechanisms for flow control and 

rate adaptation that otherwise are associated with TCP. In the case of UDP, there is no 

built-in ordering and recovery of data and therefore the transmission speed can be 

higher than TCP and can offer a more stable delay. Accordingly, time-sensitive 

applications, such as voice over IP and video streaming, often use UDP since a small 

amount of lost data is preferable over delayed data in these types of applications. 

In this scenario, all the PMUs have been configured to use UDP/IP protocol in their 

communications with PDC. Table 11 presents the obtained simulation results. The 

results show a lower average latency compared to the currently employed TCP/IP 

protocol. Based on the obtained results, as for time-sensitive PMU applications like 

Substation PMU Minimum Maximum Average Deviation 

1 1 124.6 355 160.3 26.34 

4 1 59.78 369.8 95.38 27.48 

5 1 59.9 285.4 95.82 25.18 

7 1 57.55 124.7 82.74 8.86 

8 
1 57.9 218.9 80.76 9.43 

2 60.23 210.1 80.78 9.46 

9 
1 57.72 189.8 80.19 9.33 

2 59.97 196.9 81.38 9.22 

 

Table 11 Latency characteristics using UDP/IP 

                         (millisecond) 
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control and protection it is recommended to use UDP protocol. However, if the PMU 

data are used for monitoring and off-line analysis, the TCP protocol can guarantee the 

delivery of all generated PMU packets. 

5.3.4 UDP/IP protocol with QoS 

Quality of Service (QoS) policy can be used to ensure the excessive delay does not 

occur for the time-critical applications packets in a shared network. In fact, QoS is a 

request from an application to the network to provide a guarantee on the quality of a 

connection. By marking the packet for different levels of priority, the queue with higher 

priority is first checked for the sending packet. For further improvement of the WAN 

performance for PMUs communications, in this scenario the deployment of QoS 

mechanism has been investigated.  

The Weighted Fair Queuing (WFQ) scheduling schemes alongside the Type of Service 

(ToS) profile have been used in OPNET to carry out the relevant analysis. The QoS 

profiles in OPNET contain detailed information about their mechanism settings, such as 

the number of queues used, their respective weights, and queue size limits. Table 12 

shows the simulation results. According to the obtained results, the QoS mechanism 

improved the WAN performance significantly, especially regarding maximum latency 

and deviation. However, a slight increase in the average latency for PMU2 in Substation 

9 can be seen. This happens because of the effect that the traffic in the same priority 

class has on themselves. For better comparison, Figure 46 shows the graphs of relevant 

results in the same plot for the three scenarios: TCP/IP, UDP/IP, and UDP/IP with QoS.  

Substation PMU Minimum Maximum Average Deviation 

1 1 125.9 212.6 147.57 9.44 

4 1 62.02 153.6 82.23 9.68 

5 1 61.5 142.8 82.44 9.46 

7 1 59.08 117.7 79.37 8.11 

8 
1 60.8 142.3 79.6 8.3 

2 57.84 143.6 80.07 8.65 

9 
1 56.57 141.3 80.2 8.72 

2 62.9 144.3 84.5 8.5 

 

Table 12 Latency characteristics using UDP/IP with QoS 

(millisecond) 
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                           (a) Substation 1 

 

                          (b) Substation 5 

 

(c) Substation 7 

 

(d) Substation 9 – PMU 1 
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Figure 46 Comparison of results for the three scenarios 
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5.4 Evaluation of MPLS-Enabled Communications Infrastructure 

5.4.1 Multi-Protocol Label Switching (MPLS) 

MPLS is an advanced technology for high performance packet control and forwarding 

mechanism [152]. In fact, MPLS adds new capabilities to the IP architecture, which 

enables support of new features and applications. It increases the network performance, 

improves the scalability of Network Layer routing, and provides routing flexibility and 

Traffic Engineering (TE) [153]. The MPLS domain can be divided into two parts of 

MPLS core and MPLS edge [24]. The core consists of routers that are only connected to 

MPLS capable routers. MPLS edge is the boundary of the MPLS network and consists 

of routers that are connected to both MPLS-capable and incapable routers. The routers 

which are in the MPLS domain and forward the packets based on label switching are 

called Label Switch Routers (LSR). Routers that operate at the edge of the MPLS 

network are specifically called Label Edge Routers (LER). Packets enter into the MPLS 

domain through Ingress LERs and leave the MPLS domain through Egress LERs. The 

Ingress LER attaches a short fixed-length label to every incoming packet and then 

forwards it into the MPLS core. This label is used, rather than the IP header, by LSRs to 

forward the packet through the MPLS network. The route by which the packet is 

forwarded through the MPLS domain is assigned when the packet enters the domain. 

This route that is established between Ingress and Egress LERs is called Label Switched 

Path (LSP). On the other edge of the network, the Egress router removes the attached 

label of the outgoing packet and sends the packet further to the destination according to 

the IP routing [25, 93]. 

The MPLS header has 32 bits, as shown in Figure 47 [26]. The header consists of a 20-

bit Label value, which represents the LSP assigned to the packet; LSRs use this value to 

 

Figure 47 MPLS header 
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make forwarding decisions. Following the Label field is the 3-bit Experimental (EXP) 

field, which is also known as the Traffic Class (TC) field; it is used for Quality of 

Service (QoS) related functions and drop precedence. The next field is the 1-bit Stack 

field, which is used to indicate the bottom of the label stack. Finally, there is the 8-bit 

Time to Live (TTL) field, which has the same function as the TTL field in the IP 

header. The Ingress LER sets the TTL, a counter that is decremented by each LSR along 

the path. If the TTL expires, the LSR discards the packet. The MPLS header is placed 

between the Link Layer and Network Layer headers. Since MPLS operates between 

layers 2 and 3, the routing process is much faster than conventional IP. In fact, it forms 

layer 2.5 label switched network on the layer 2 switching functionality without the layer 

3 IP routing [153]. 

The packet is assigned a label and mapped on to the LSP in accordance with the 

Forwarding Equivalence Class (FEC) [154]. FEC is a set of packets that have related 

characteristics and are forwarded over the same path through a network. FECs can be 

created from any combination of attributes including source and destination IP address, 

transport protocol, and port number. MPLS uses Label Distribution Protocol (LDP) to 

exchange label mapping information between LSRs and set up LSPs. LSPs can be 

manually specified or dynamically computed. Multiple parallel LSPs can be configured 

between an Ingress-Egress pair. These LSPs can be set up on different physical paths in 

order to distribute the traffic load and provide more flexibility [155]. 

5.4.2 Simulation Model Configuration 

For the performance evaluation of MPLS technology for WAMS, the same WAMS 

model of GB as in Section  5.2 has been considered. However, the IP cloud has been 

replaced by the MPLS subnet in the simulation model. The process of configuring 

MPLS in the network has three main steps of configuring LSPs, creating FECs, and 

configuring LSRs. Due to insufficient information on the exact implementation of the 

MPLS deployed in National Grid, the architecture shown in Figure 48 was considered 

for the MPLS subnet in the model. It consists of two LERs, one as Ingress and the other 

as Egress router, and several LSRs at the core of the MPLS network. These routers are 

connected through the DS1 links. OPNET supports both static and dynamic LSPs. With 

static LSPs, the exact route used by the LSP can be specified. Therefore, we have used 

static LSP, as it allows more routing control and makes the analysis straightforward. 
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Three LSPs were configured as shown in Figure 48 in green, red and blue colours. 

MPLS attributes, which are used to configure network-wide MPLS parameters, are 

grouped in the MPLS Config object. FEC specifications attribute can be used to specify 

the FEC parameters employed by MPLS. In this model, three types of FECs have been 

defined for PMU, Database Access and Email packets. Routers’ MPLS attributes are 

grouped in the MPLS Parameters attribute on each router. Using this attribute of LERs, 

TE bindings between FECs and LSPs can be determined. In our simulation, the blue 

LSP, which is the shortest path, has been assigned for PMU packets. In addition, 

Database Access and Email packets are transmitted through the green and red LSPs, 

respectively. 

 

 

 

Figure 48 The architecture of MPLS subnet 
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5.4.3 Simulation Results and Analysis 

After the completion of network configuration, the statistics to be collected can be 

specified in OPNET [23]. The main concern of this research is to evaluate the effect of 

using MPLS technology on delay characteristics of the communications network from 

the PMUs to PDC. Therefore, to have better comparison between different scenarios, 

only the communications network delay has been considered in the results, without 

internal delay of PMUs. Figure 49 illustrates the latency results for the generated 

packets of PMU in Substation 5 in three different scenarios. In the first scenario, PMUs 

packets are transmitted over a conventional IP network based on TCP protocol. In the 

second and third scenarios, the MPLS feature has been added and PMUs packets are 

transmitted based on TCP and UDP protocols, respectively. Furthermore, for better 

presentation of results and in order to have better insight into comparison of the three 

scenarios, Figure 50 shows the three-dimensional (3D) plot for the PMU 1 in Substation 

9. The additional dimension, in which graphs can be separated, mitigates the problem of 

over-plotting. As can be seen from the graphs, the MPLS/UDP scenario shows better 

performance, especially in preventing dramatic increase of delay.   
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Furthermore, after exporting the EtE delay results from OPNET Modeler, the required 

delay characteristics for four of the PMUs have been presented for each scenario in a 

separate table. Table 13 shows the latency characteristics of the conventional TCP/IP 

scenario. In addition, Table 14 and Table 15 show the results for the two MPLS-enabled 

scenarios using TCP and UDP protocol, respectively. These characteristics are 

minimum, maximum, average, and standard deviation of the packets delays. It should 

be noted that Substation 9 has two PMUs, and the results for one of them has been 

presented as they show similar behaviour. For the conventional IP scenario, all routers 

in the MPLS subnet are MPLS disabled, and the packets are routed using OSPF 

protocol without TE. However, simulations are based on the common topology. All the 

defined applications in the IP scenario use the shortest path to forward traffic, and this 

causes congestion on the links forming this path. The traffic exceeds the capacity of the 

shortest path, while there are under-utilised longer paths available. Therefore, as can be 

seen from the IP scenario results, PMUs packets may experience much greater delay 

than their expected average delay. For example, the PMU in Substation 1 has average 

EtE delay of 83.18 ms; however, according to Table 13 and for the considered 

simulation time period, it experienced the maximum delay of 616.84 ms. For the MPLS 

scenario, the MPLS features of the network are enabled, which allows results to be 

 

0
20

40
60

80
100

120
140

0

100

200

300

400

500

 

Simulation Time (s)
 

L
a
te

n
c
y
 (

m
s)

TCP/IP

MPLS - TCP

MPLS - UDP

Figure 50 Latency of PMU 1 packets in Substation 9 for the three scenarios 



 

 

118 

118 

obtained for MPLS TE simulation. Database Access traffic is routed to the green LSP 

and Email traffic is routed to the red LSP. Hence, these traffic types avoid the 

bottleneck of the shortest path, and the network can offer better service to the WAMS 

time-critical application. Finally, as can be seen from the results, WAMS 

communication over UDP through MPLS has shown the lowest EtE delay among the 

three scenarios. 

  

Substation Minimum Maximum Average Deviation 

     
1 47.11 616.84 83.18 85.04 

5 40.67 452.05 82.58 73.98 

7 40.46 419.60 67.96 68.46 

9-PMU 1 30.98 414.20 66.91 68.76 

     
 

Substation Minimum Maximum Average Deviation 

     
1 46.42 216.76 68.78 30.84 

5 46.09 237.01 67.19 27.90 

7 38.28 204.14 55.00 23.13 

9-PMU 1 34.74 202.05 53.99 23.14 

     
 

Substation Minimum Maximum Average Deviation 

     
1 40.66 158.58 52.36 15.03 

5 39.23 128.11 49.59 12.63 

7 33.90 99.35 39.82 9.09 

9-PMU 1 30.90 96.74 37.10 9.14 

     
 

Table 13 Latency characteristics for conventional TCP/IP scenario 

                        (millisecond) 

 

Table 14 Latency characteristics for MPLS-enabled scenario using TCP 

                         (millisecond) 

 

Table 15 Latency characteristics for MPLS-enabled scenario using UDP 

                          (millisecond) 
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5.5 Simulation Model using OMNeT++ 

The open source DES tool OMNeT++ [21] has also been used to simulate the 

considered WAN. The INET framework, an open-source communication network 

simulation package for the OMNeT++, contains the common node models and 

protocols   [127]. However, a number of modifications have been made to simulate the 

WAN that will be discussed in this section.  

Using NED Editor in OMNeT++, the communication network’s topology is created. To 

simulate the considered WAN, the StandardHost node model in INET framework has 

been used for workstations. In order to model the two types of PMUs, the internal 

delays of them have been added by modifying the StandardHost node model. 

Furthermore, the required communication links according to their data rates have been 

defined. Using these workstations and communication links, different compound 

modules to represent different substations and data centre have been designed. By 

connecting these compound modules, the entire network can be created as shown in 

Figure 51. For IP cloud, the InternetCloud node model in INET framework has been 

 

Figure 51 The GB WAMS simulated network in OMNeT++ 
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used. It has been configured based on the specified parameters in  5.2.3.1 for OPNET 

and by writing a separate XML file.  

In OMNeT++, introducing communications network traffic for each workstation takes 

place in .ini files that also carry configuration options for the simulator. In this section, 

it is assumed that PMUs are communicating with PDC over UDP/IP protocol. 

Therefore, from the application sources available in INET framework, the 

UDPBasicApp has been used to configure the two types of PMUs traffic. In order to 

have the EtE delay of each PMU separately in the simulation result, the PMUs have 

been configured to send their data to the different ports of the PDC node. On the other 

hand, the UDPSink application has been defined for PDC to handle and discard the 

transmitted PMUs packets, as well as calculating the EtE delays.  

Apart from the PMUs, for other workstations inside the substations and data centre, 

traffic similar to OPNET model has been specified using TCPBasicClientApp. After 

assigning traffic and configuration options for a simulation in the .ini file, the simulation 

can be run. Simulation results are saved in the results folder of the project. The 

OMNeT++ Analysis Tool enables users to select, process, and plot the results. It will 

save the analysis into a .anf file in the parent folder. Table 16 shows the latency 

characteristics obtained from the OMNeT++ results. It shows a similar behaviour with 

OPNET results, especially in the case of average values. However, there are some 

differences that can be due to the model components library and the way that 

communication links background traffic has been introduced in OMNeT++, by reducing 

data rates of the communication links. As can be seen from the results, although 

 

 

Substation PMU Minimum Maximum Average OPNET 

Comparison 
Deviation OPNET 

Comparison 

1 1 128.04 303.09 156.3 -4 30.5 +4.16 

4 1 62.72 234.27 99.4 +4.02 34.5 +7.02 

5 1 62.46 240.8 96.3 +0.48 36.9 +11.72 

7 1 60.65 258.6 83.83 +1.09 24.2 +15.34 

8 
1 64.20 136.65 76.52 -4.24 18.1 +8.67 

2 68.8 140.8 81.25 +0.47 18.1 +8.64 

9 
1 64.14 136.3 77.44 -2.75 18.59 +9.26 

2 68.9 141.3 82.15 +0.77 18.57 +9.35 

 

Table 16 Latency characteristics for UDP/IP scenario using OMNeT++ 

                         (millisecond) 
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OMNeT++ does not provide models’ library as specific as OPNET, the results are 

acceptable. 

5.6 Concluding Remarks 

The main concern of this chapter is the delay characteristics from the PMUs to PDC, 

due to their critical role in providing satisfactory performance levels in real-time 

WAMS applications. This chapter demonstrated a novel framework of the WAMS 

modelling and analysis tools. An actual WAMS for the GB transmission system has 

been simulated using both proprietary and open source DES tools, OPNET and 

OMNeT++. The calculated delay of PMU packets, using Wireshark and MATLAB, 

verified the obtained simulation results. In this research, the internal delays of PMUs 

were taken into consideration and it was shown that they can introduce considerable 

delay and have significant impact on the performance of WAMS applications. In the 

existing GB WAMS, the packets generated by PMUs are transmitted based on TCP/IP 

protocol to the PDC server. However, other communication protocols, mechanisms, and 

topologies have been investigated for future developments. In this chapter, the obtained 

results were presented in different scenarios. The analysis showed improvement on 

PMUs data transmission when using UDP transport protocol as compared to when 

employing TCP. The effect of the QoS mechanism on WAMS network delay was also 

evaluated. It was demonstrated that how QoS policy can be used to ensure the excessive 

delay does not occur for the PMU packets. Moreover, the WAMS as installed on the GB 

transmission system was used to illustrate the benefits of employing MPLS TE to 

enhance the real-time communication of PMUs. Performance of WAMS 

communications infrastructure was evaluated and compared with regard to conventional 

IP and MPLS networks. MPLS-enabled communications infrastructure utilises the 

network resources efficiently compared to IP network and provides better performance.  

 

 

 



 

 

122 

122 

Chapter 6  
 

Conclusions and Further Research 

6.1 Conclusions 

This final chapter provides a summary of the work presented in this thesis and 

highlights the main achievements and contributions. 

As discussed in  Chapter 1, the benefits of reducing carbon emissions and the need to 

reduce reliance on fossil fuels have caused a higher penetration of renewable and 

variable sources in power generation. Furthermore, the real-time operation of power 

systems is largely dependent on the type and amount of generation as well as the nature 

of the loads. In such a condition with high penetrations of renewables, power systems 

face more challenging network-wide issues with regard to ensuring secure and reliable 

operation. The changes expected to occur in the energy industry in the next 20 to 30 

years will have a much faster pace than the changes of the previous decades. In the case 

of the UK, wind energy plays a key part of decarbonisation. The installed capacity of 

wind generation and HVDC interconnectors connected at the transmission level may 

exceed the minimum demand in a few years. As a result, during periods of low demand 

and high non-synchronous generation, the challenges are likely to be intensified. If one 

part of a power grid becomes significantly out of synchronism with the rest, the whole 

network can become unstable, and blackout may occur. The concept of collecting real-

time measurements extensively throughout transmission networks provides the 

possibility to operate and manage such systems more efficiently and securely [7]. 
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Driven by the growing smart grid applications, ICT infrastructures are becoming more 

important for the communication of monitoring, control and protection information at 

both the local and wide area levels. The excess delay in the communications network is 

a challenging factor that affects the data transmission and could make the applications at 

best inefficient and at worse ineffective. The main area of investigation reported in this 

thesis is the performance evaluation of communication infrastructures in the smart grid. 

This evaluation began from inside substations based on the IEC 61850 standard. IEC 

61850 is a standard released by the IEC for power utilities that can provide integrated 

and interoperable data communications. It defines communication between IEDs in 

substations and related system requirements. Chapter 2 presented the relevant 

background information on IEC 61850 alongside the other common open standards for 

ICTs in the scope of the smart grid. 

In the IEC 61850 standard, protection and control functions of substations can be 

represented with LNs. This is one of the outstanding advantages of the standard over 

legacy protocols [45, 69]. In addition, the dominant architectural construct that IEC 

61850 adopts is the abstracting technique. This feature provides the definition of objects 

that are independent of any underlying communication protocols. In fact, the abstract 

model can be mapped to any protocol stacks that can meet the data and service 

requirements. Therefore, the system will be compatible with future developments in the 

field of communication technologies. IEC 61850 provides five types of communication 

services. Among them, this thesis focused on SV and GOOSE messages as they are 

more suitable for time-critical applications. These two services are directly mapped to 

the Ethernet Link Layer and eliminate the layers in between [53].  

An important component when providing monitoring and control for transmission 

networks is the SCADA system, which connects the substations to the control centre by 

polling data from RTUs. However, due to data rate limitations, this monitoring is 

relatively static and therefore not suitable for real-time applications. Moreover, because 

of the extension of the power networks, suitable devices are required to enable 

synchronization between the remote instruments. The state-of-the-art synchronised 

phasor measurement technique offers a complementary way to monitor the power 

systems. Wide area monitoring is one of the vital requirements in developing the smart 

grid concept in power systems. In this regard, PMUs are considered to be the key 

component of WAMS [35]. They can improve monitoring by providing precise 
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synchronised measurements in near real-time, with high rates and high accuracy. 

In  Chapter 3, the WAMS deployment on the GB system was described, both at 

transmission system and laboratory levels. Moreover, future aims and challenges for the 

development of WAMS were discussed. Efficiently storing, processing and analysing a 

huge volume of PMU measurements are the crucial challenges in developing such a 

system. In this regard, frameworks such as Hadoop can provide a scalable fault-tolerant 

distributed system for data storage and processing. Hadoop splits data into chunks and 

distributes them across the nodes in clusters and enables parallel processing. 

Brunel University has deployed PMUs as well as commercial and open source PDCs to 

visualise, process and archive measured grid data at a lower voltage level, locally in the 

laboratory. In this thesis, an investigation on openPDC features has been performed, and 

samples of events captured using this laboratory-based deployment of PMUs have been 

presented. OpenPDC was released to provide open source PDC, and its modular design 

enables processing of time-series measurement data in a protocol independent manner. 

Its Input, Action and Output Layers deal with measurement acquisition, measurement 

processing and measurement forwarding, respectively. 

PMUs offer state-of-the-art technology for improving wide area monitoring, control and 

protection. However, a high-speed and appropriate communication infrastructure is the 

key to transfer phasor measurement data to the remote control centres and make time-

critical wide area measurement applications feasible. WAMS applications inherently 

depend on the underlying ICT infrastructures. A low latency communications 

infrastructure is required for transmitting time-critical PMU data across a 

geographically-dispersed network. Even if all phasors are successfully delivered to the 

PDC, the time delay associated with each phasor measurement causes the derived 

system state to be different from the actual system state by that time. In addition, for 

WAMS applications such as control and protection, the delay must be sufficiently low 

to act in a timely manner. Therefore, along with the continual deployment of PMUs in 

Great Britain’s transmission system substations, a high-performance communications 

infrastructure is becoming essential with regard to the establishment of reliable WAMS. 

 Chapter 4 described an example of a SAS and presented simulations of a typical 

substation communications architecture based on IEC 61850 using OMNeT++. Two 

scenarios were considered for the simulation based on the LAN link data rates. The 

second scenario, which had higher LAN data rates, showed a great improvement from 
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the latency perspective. Overall, it could be observed that IEC 61850 based on Ethernet 

provided acceptable performance for substation communications. In addition, the 

integration of IEC 61850 standard for PMU communications was simulated within the 

scope of substations and investigated for transmission over wide areas. According to the 

obtained simulation results, the Ethernet-based IEC 61850 could reduce the average 

delays of PMU packets by 27% compared to the conventional UDP/IP protocol within 

the substation.  

It is necessary to fully investigate the EtE delay in WAMS, and the research presented 

in  Chapter 5 concerns this issue. In that chapter, the existing WAMS as installed on the 

GB transmission system has been considered for novel modelling and analysis.  

First, the actual PMU packets as received at the Psymetrix PDC server were captured 

using Wireshark. The obtained information provided real insight into the WAMS 

communications traffic and PMU packets and enabled the determination of EtE delays. 

A novel algorithmic procedure was implemented in MATLAB to automate the large-

scale PMU packet latency calculations. This algorithmic procedure could save time, 

reduce error and enabled to perform more detailed and larger scale analyses. 

Furthermore, investigations were carried out to accurately estimate the internal delay of 

the two types of PMUs according to their configuration settings, operation manuals, and 

information provided from the manufacturers. The Arbiter PMU installed in Substation 

1 was configured in a way to provide more accurate measurements, whereas AMETEK 

PMUs installed in other substations configured to provide measurements quickly. The 

obtained internal delay for each PMU type was considered in the simulated model of 

PMUs for DES.  

Numerous DES tools are available for the analysis of the performance and behaviour of 

communication networks. In this thesis, both proprietary and open source DES tools 

have been used to evaluate the performance of ICT infrastructure in the existing WAMS 

installed on the transmission system of GB. Based on the obtained results, a PMU itself 

may not require high channel capacity, and the bottleneck for WAMS communication is 

the overall network latency. Low latency is essential for control and protection 

applications with short response time requirements. The latency measured and modelled 

for the existing communication infrastructure of GB WAMS is approximately 10 times 

higher than that required for power system protection. Therefore, when exploiting 

PMUs for protection schemes, a higher-speed communications infrastructure is 
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necessary. It has been seen that in some cases, PMU packets experienced much higher 

latency than their expected average. It should be noted that jitter or variation in delay 

will cause a variation in action time of any applications that use the PMU data. In fact, 

data concentration will be delayed by jitter because PDC must wait for all PMU data 

with the same time-stamp to arrive before assembling a complete packet and forwarding 

it to the relevant smart grid applications. As long as the jitter is considerably lower than 

the data rate interval of PMUs, it should not have much effect on the application [138]. 

Accordingly, it is also recommended that all PMUs in the WAMS experience roughly 

the same level of delay because a PMU with high latency can have an undesirable 

influence on the whole WAMS delay.  

The delays of PMU packets, calculated using Wireshark and MATLAB, verified the 

obtained simulation results. Therefore, the novel WAMS model can be confidently used 

for analysing possible future developments as well as testing the newly proposed 

mechanisms, protocols, etc., in order to improve the performance. To analyse the 

possible future developments, the number of PMUs in each substation and the number 

of substations equipped with PMUs have been increased to investigate the performance 

of the WAN communication infrastructure. The provided results showed the level of 

degradation of latency against increasing the number of PMUs and the point at which 

the communication network becomes unstable. 

Furthermore, PMU communications from geographically distributed substations to PDC 

has been investigated over different Transport Protocols. In the existing GB WAMS, the 

generated PMU packets are transmitted based on the TCP/IP protocol to the PDC 

server. TCP rearranges data packets in the specified order and retransmits lost or 

corrupted data. Although TCP provides a reliable communication, it is unsuitable for 

real-time communications because the acknowledgment/retransmission feature leads to 

excessive delays [25, 152]. Therefore, the other Transport Layer protocol in the IP suite, 

UDP, was investigated for PMU communications in the simulation model. In the case of 

UDP, there is no built-in ordering and recovery of data, but the simulation results 

showed lower latency than the currently employed TCP protocol. For time-sensitive 

PMU applications such as control and protection a small amount of lost data is 

preferable over delayed data; thus, it is recommended to use UDP protocol. However, if 

the PMU data are used for monitoring and off-line analysis, the TCP protocol can 

guarantee the delivery of all generated PMU packets. In another scenario, the Quality of 
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Service (QoS) policy was also used with UDP protocol to further reduce the possibility 

of excessive delay occurrence for the PMU packets in the considered shared network.  

The conventional IP routing has a number of drawbacks. It does not consider the 

capacity constraints and traffic characteristics when routing decisions are made. Hence, 

some links in a network can become congested while other under-utilised links exist. 

Furthermore, IP networks are not scalable, and TE is difficult to implement. TE is the 

process of controlling how traffic flows through the network to make the best use of 

resources and optimise the network performance. Moreover, IP routing takes place in 

the Network Layer, which is slower than the switching. Overall, with these limitations, 

it is very challenging to implement a real-time application such as WAMS in the 

conventional IP network. In order to overcome these limitations, Internet Engineering 

Task Force (IETF) has introduced Multi-Protocol Label Switching (MPLS) technology. 

The performance of the real-time WAMS communications infrastructure when MPLS 

capability is added to a conventional IP network was also evaluated in this thesis. The 

obtained simulation results showed that the MPLS-enabled communications 

infrastructure utilises the network resources efficiently compared to the conventional IP 

network and provides better EtE performance [152]. 

Using standards developed for time critical applications, such as IEC 61850, in wide 

area communication can provide a higher level of interoperability for power systems. 

However, with regard to delay, it should be noted that GOOSE and SV services of the 

IEC 61850 protocol are not originally IP-based. As discussed in Appendix A, the 

Network Layer is mainly responsible for the routing of messages from node to node. 

Therefore, to transmit GOOSE and SV messages in a wide area, they need to be 

encapsulated in an IP-based packet. In this condition, we cannot expect a delay level as 

low as what the original GOOSE and SV were experiencing inside substation 

communications. Nevertheless, in the core of the network, the MPLS technology can be 

used to mitigate the additional delay. Because MPLS operates between layers 2 and 3, 

the routing process is much faster than conventional IP. In fact, it forms a layer 2.5 label 

switched network on the layer 2 switching functionality without the layer 3 (IP) routing.  
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6.2 Further Research 

In this section, further research is proposed as a continuation of the research presented 

in this thesis. The issues that have been addressed within this thesis can be extended, 

demonstrated, and developed from different aspects.  

 A laboratory-based Substation Automation System (SAS) based on the IEC 61850 

standard should be designed and implemented. The design can be based on the 

available IEDs in Brunel University. Figure 52 shows a proposed design for this 

SAS. Both the SEL 487E transformer protection relay [156] and SEL 351S 

protection system [157] IEDs support IEC 61850 communication standard. The SEL 

487 operates as a bay controller to perform transformer protection, bus breaker 

control, bus protection, etc. The two SEL 351S provide feeder protection, feeder 

breaker control, etc. The test injection set, OMICRON-CMC 256 [158], can be used 

to generate a fault condition such as overcurrent. The laboratory-based SAS 

provides a platform for better understanding of the evolving IEC 61850 protocol and 

contributes to the research regarding the deployment of this protocol in different 
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levels of power automation. It can be also used for testing and validation of new 

IEDs and substation automation applications. 

 The algorithmic procedure as implemented with Wireshark should be used to 

develop a toolkit for the online monitoring of WAMS communication networks in 

the future. It can also be used to indicate the latency characteristics at specified time 

intervals. For example, the maximum latency can be monitored, and when the 

calculated values exceed the predefined limits, an event can be triggered to inform 

the operator. 

 Wide area controllers need measured signals in remote areas to be transmitted 

through communication networks. The communication networks introduce time 

delays to the control loops, which can reduce the controllers’ performance. 

Therefore, in the design of such controllers, the delays must be considered and 

compensated. These delays are not constant and can vary from tens of milliseconds 

to several hundred milliseconds. The results provided in this thesis yield accurate 

delay values and can be used for the efficient design of wide area controllers for the 

GB system. In this way, controllers can actively compensate time delays in the wide 

area feedback signals [159-161]. 
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Appendix A  

 

Network Architecture and Protocol Layers 

A communication network provides data transfer services between two or more 

endpoints to support their respective applications. In communications between nodes, 

the Application Layer and Physical Layer are always present. An Application Layer is 

necessary for meaningful communication and must be defined for executing a function. 

On the other hand, a medium is required as a Physical Layer to make the transfer of bits 

of data possible. However, in order to have a reliable and efficient communication 

network, more layers can be added between these two layers to provide additional 

services [95]. 

In this case, each layer provides its services to the above layer by performing specific 

actions within the layer as well as using the services of the layer directly below it. The 

network protocols are organised in these layers, and each protocol belongs to one of the 

layers [162]. A protocol is basically a set of rules specified for orderly communication 

through a network [163]. It should be noted that a layer N protocol is distributed among 

the end systems, and if required, among packet switches and other components that 

build up the whole network [162]. These layers determine how data should flow from 

one end to another over a communication network. The devices can communicate only 

when each of their corresponding layers conforms to each other [163].  

In fact, each protocol in layers defines two types of interface. First, there is a service 

interface to the objects on the same device for using services. Second, there is a peer 

interface to its counterpart on another device, which defines the form and meaning of 
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exchanged messages between protocol peers for communication. Apart from the 

Physical Layer that peers can directly communicate with each other through a 

communication link, peer-to-peer communication is performed indirectly. The protocol 

messages are transmitted to their corresponding peers through lower layers. The 

message transmitted from the application through layers is not an interpreted string of 

bytes for the layers. Layers do not need to know the information in the message. They 

just need to provide the message to their peers alongside the additional control 

information to help peer layers communicate with each other and deal with the message. 

The additional control information for each layer is attached as a small data block to the 

original message and used for implementing the lower layers’ communication services. 

Headers are generally attached at the beginning of the message. However, there are 

cases in which the control information is placed at the end of the original message, 

which is called trailer. The format of the header or trailer depends on the applied 

protocol specification. On the other hand, when the transmitted data arrive at the 

destination host, they will pass up the layers up to the Application Layer, and each peer 

layer will remove its corresponding header. Finally, the destination host application will 

receive the exact message sent by the source host application without any headers [164]. 

The protocols of the different layers altogether are called the protocol stack. The 

protocol stack for communication network interconnection can have any combination of 

layers between the Application and Physical Layers [95]. In addition, many different 

protocols that satisfy the requirements for application communications can be utilised. 

There are standardization bodies, such as the International Standards Organization 

(ISO) and Internet Engineering Task Force (IETF) [165] that proposed specific network 

architectures. Open Systems Interconnection (OSI) and Internet are two of the most 

widely referenced architectures provided by ISO and IETF, respectively [164]. 

The International Standards Organisation (ISO) was one of the first organizations that 

defined a common way for communication process. It has divided the communication 

architecture into seven layers, which compose the so-called 7-layer model, also referred 

to as the OSI. The seven layers are: Application, Presentation, Session, Transport, 

Network, Data Link, and Physical Layers [164]. Figure 53 illustrates the concept of 

protocol layers and the OSI 7-layer reference model. Each layer performs specific 

functions and operates independently of the other layers. However, the successful 

operation of one layer depends on the successful operation of previous layer. The 
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assigned functionality to a given layer is implemented by one or more protocols [163, 

164]. The OSI reference model is only a framework for network architecture and 

protocol specifications. Networking standards and communication processes do not 

necessarily need to follow the specifications defined in the OSI model. In fact, in many 

practical communication networks, including the smart grid communication 

applications, not all seven layers are used in the proposed standards [95].   

The Internet Protocol stack was developed independently of the OSI reference model 

and consists of five layers: the Application, Transport, Network, Data Link, and 

Physical Layers. The functionalities of these layers are similar to their corresponding 

OSI counterparts. The Internet lacks the Presentation and Session Layers available in 

the OSI reference model. In fact, the application developer should decide whether a 

specific service is required and build that functionality into the application [162]. 

A brief summary of the seven layers on the OSI reference model is as follows [37, 162, 

164, 166]: 

 

Figure 53 OSI reference model protocol layers 
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 The Application Layer is the topmost layer. It consists of the network applications 

and end-user processes and is responsible for giving them access to the network. 

The Application Layer has a higher variety of services that are commonly needed by 

users compared to the lower layers. 

 

 The role of the Presentation Layer is to provide services that allow communicating 

applications to interpret the meaning of data exchanged. Unlike the lower layers, 

which are mostly concerned with transmitting bits, the Presentation Layer is 

concerned with presenting information in a manner suitable for the applications and 

users. 

 

 The Session Layer allows users on different devices to establish sessions between 

them. It establishes, manages and terminates connections between applications. It is 

responsible for synchronizing and sequencing the packets in a network connection 

as well as ensuring that appropriate security measures are taken during a session. 

 

 The Transport Layer transports Application Layer messages between application 

endpoints. It is responsible for providing data transfer at a specified level of quality, 

such as transmission speeds and error rates. The Transport Layer has a key role as it 

is located between the upper layers (which are mainly application-dependant) and 

the lower layers, which are network-based. 

 

 The Network Layer is mainly responsible for the routing of messages. It provides 

routing technologies and creates logical paths (known as virtual circuits) for 

transmitting data from node to node. Routes can be based on static tables or can be 

highly dynamic to consider the current network load. 

 

 To move a packet from one node to the next node in the route, the Network Layer 

relies on the services of the Link Layer. The Data Link Layer generates packets 

based on the network architecture being used. The network adaptors and drivers 

running in the operating system of devices typically implement the data link level.  

 

 The Physical Layer is the lowest layer. It is concerned with transmitting raw bits 

over a communications link. It converts the contents of the packets into a series of 

electrical signals that represent 0 and 1 values in a digital transmission. The 

protocols in this layer depend on the actual transmission medium of the link. 
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It is also possible that a layer in a protocol stack provides services to more than one 

entity at the above layer. For example, the Network Layer at a device can use different 

Link Layers to communicate with other devices [95]. 

The layered architecture is an effective way to organise complex communication 

network architectures. It has conceptual and structural advantages. Layering breaks the 

communication networks down into more manageable components and makes the 

implementation changes easier for the services provided by layers. As long as a layer 

provides the same services to the layer above and uses the same services from the layer 

below, the layer implementation can be revised without affecting the whole 

communication system. If a new service is required, only the functionality at one layer 

needs to be modified, and the functions provided at all the other layers can be used 

without any changes. For large and complex systems such as communication networks 

that are constantly being updated, this ability is vital and is an important advantage of 

layering [162]. 

Apart from the advantages, protocol layering may have a few drawbacks. One of them 

is the possible duplication of lower-layer functionality (for example, error recovery on 

both a per-link basis and an end-to-end basis). Another one is that functionality at a 

layer may require information (for example, a timestamp value) from a different layer, 

which violates the purpose of the separation of layers [162]. 

 

 



 

 

135 

135 

Appendix B  

 

Further Latency Evaluation 

In this appendix, more detailed results obtained from the latency evaluation of the 

WAMS as installed on the GB transmission system are provided. 
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Figure 54 Latency of PMU1 for 13.03.2012 9:49:59 – 9:51:01 AM 
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Figure 55 Latency of PMUs for 13.03.2012 9:49:59 – 9:51:01 AM 
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Figure 56 Latency of PMUs in Sub9 for 13.03.2012 9:49:59 – 9:51:01 AM 
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Substation Link Bandwidth PMU Min Max Range Average STDEV 

1 256 kbps PMU1 134.067 295.406 161.33 167.52 28.86 

4 256 kbps PMU1 58.218 687.6 629.382 86.88 47.41 

5 256 kbps PMU1 70.599 201.509 130.91 95.026 13.72 

7 2 Mbps PMU1 65.21 170.843 105.633 84.607 10.952 

8 256 kbps 
PMU1 53.955 151.624 97.669 72.29 10.972 

PMU2 53.78 214.483 160.69 73.64 13.52 

9 256 kbps 
PMU1 55.758 139.33 83.571 75.05 11.06 

PMU2 55.253 164.922 109.669 75.22 11.221 

 

 

Table 17 Actual latency characteristics of PMUs for 13.03.2012 9:49:59 – 9:51:01 AM 

                (millisecond) 

Substation Link Bandwidth PMU Min Max Range Average STDEV 

1 256 kbps PMU1 154.344 211.12 56.77 167.48 7.25 

4 256 kbps PMU1 74.7596 442.115 367.35 86.99 37.77 

5 256 kbps PMU1 87.41 124.42 37.011 95.052 5.55 

7 2 Mbps PMU1 79.09 102.17 23.07 84.63 3.13 

8 256 kbps 
PMU1 67.183 99.39 32.21 72.31 5.205 

PMU2 66.72 123.66 56.94 73.61 7.62 

9 256 kbps 
PMU1 69.28 98.48 29.20 75.03 4.86 

PMU2 69.340 104.52 35.183 75.20 4.695 

 

 

Table 18 Smoothed latency characteristics of PMUs for 13.03.2012 9:49:59 – 9:51:01 AM  

                (millisecond) 



 

 
140 

 

Figure 57 Latency of PMUs for 23.07.2012 11:35:00 – 11:40:00 AM 
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Figure 58 Maximum latency of PMUs for 2.11.2012 3:00:00 – 5:00:00 AM 

 

 

 

Figure 59 Minimum latency of PMUs for 2.11.2012 3:00:00 – 5:00:00 AM   
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Figure 60 Maximum latency of PMUs for 2.11.2012 14:00:00 – 16:00:00 PM  

 

 

 

Figure 61 Minimum latency of PMUs for 2.11.2012 14:00:00 – 16:00:00 PM
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