
h-Adaptive Finite Element Solution of UnsteadyThermally Driven Cavity ProblemDavid A. Mayne, Asif S. Usmani and Martin CrapperShool of Civil and Environmental Engineering, University of EdinburghAbstratAn h-adaptive �nite element ode for solving oupled Navier-Stokes and energy equationsis used to solve the thermally driven avity problem for Rayleigh numbers at whih nosteady state exists (greater than 1:9�108). This problem is haraterised by sharp thermaland ow boundary layers and highly advetion dominated transport, whih normallyrequires speial algorithms, suh as streamline upwinding, to ahieve stable and smoothsolutions. It will be shown that h-adaptivity provides a suitable solution to both ofthese problems (sharp gradients and advetion dominated transport). Adaptivity is alsovery e�etive in resolving the ow physis, haraterised by unsteady internal waves andseparation zones. Fundamental frequenies, generated by unsteady internal waves, arealulated for three Rayleigh numbers; 2 � 108, 3 � 108 and 4 � 108 using a Prandtlnumber of 0.71 and results are ompared with other published results.1 IntrodutionIt is well known that h-adaptive FEM is very well suited to modelling salar and vetor�elds ontaining sharp gradients by automatially re�ning the spatial disretisation to`�t' the solution. The re�nement is normally based on some a-posteriori estimation ofthe disretisation error. In previous papers [1, 2℄ the authors have learly shown thatfor transient ow and transport problems, where advetion is the dominant mehanism,h-adaptive FEM ful�ls another very important role. It removes the requirement of intro-duing any speial algorithm for treatment of the `wiggles' generated by using numerialshemes whih are essentially of a `entral di�erene' type, as is the ase with the standardGalerkin �nite element formulation, often referred to as GFEM. There has been a greatdeal of ontroversy over the speial shemes that are used to `suppress the wiggles' [3℄,however some of the best shemes, for instane SUPG [4℄, have been highly suessful inproviding a mathematially onsistent framework, by using non-Galerkin formulations forsuh problems. In a previous paper [1℄, Usmani learly demonstrated that if h-adaptive1



FEM is used for transient pure-advetion problem (the rotating one or osine-hill prob-lem) than the GFEM and SUPG solutions are pratially indistinguishable. This was aon�rmation of the original assertion by Gresho and Lee [3℄, `don't suppress the wigglesthey are telling you something'. The authors tested this further [2℄ for a oupled owand heat transfer problem (thermally driven avity problem for Rayleigh numbers up to10 � 108) with the same onlusion. The exerise here is partly to test the h-adaptiveGFEM solution proedure further, for even higher Rayleigh numbers when no steady statesolutions exist.Modelling the e�ets of a temperature di�erene aross a square avity has many im-portant tehnial appliations. A thorough understanding of the onvetive proessespresent at high Rayleigh numbers is ritial in assessing the transport of heat in nulearreators, solar olletors and buildings. The thermally driven avity problem also servesas a onvenient benhmark test for new programs [5℄, whih is another purpose of thisexerise, as the authors are using this program (CADTRAS) to model the transport of o-hesive sediments in estuarine waters, whih are haraterised by sharp density interfaes.The program was thoroughly tested by solving the thermally driven avity problem forRayleigh numbers up to 1:0�108 [2℄ and omparing results in onsiderable detail with thebest available benhmark solutions. In this paper detailed solution of the same problemis undertaken for Rayleigh numbers; 2� 108, 3� 108 and 4� 108.Bergholz [6℄ and Patterson et al [7℄ both disuss important features that are present inthe development of a transient solution for high Rayleigh number avity ows. Prandtlnumber strongly inuenes the transient development of the buoyany driven ow fea-tures. The separation and reirulation observed in the departing orners beomes lesspronouned and eventually disappears as the Rayleigh number is inreased [6,8℄. The or-ner regions are partiularly important in the development of the ow over time. Ivey [9℄proposed that the orner ow regions were harateristi of a hydrauli jump howeverRavi et al [8℄ have onluded that this was not possible for several reasons. Among these: � Theory of hydrauli jumps does not explain the separation of ow at the horizontalboundaries.� There is no substantial energy loss assoiated with the departing orner ow.� The Froude number dependeny appears to be arbitrary.They propose that the ow struture in the departing orner is solely dependent on ther-mal e�ets, produing a separation and reirulation of the boundary layer. They alsostate that the separation zone that haraterises the departing orner for high Rayleighnumber ows, does not form beyond a Prandtl number of 1.2, similarly the reirulationzone disappears for Prandtl numbers above 1.4. They go on to say that this is due to theore temperature distribution suppressing large undershoots of temperature at the bound-aries. Several researhers disuss the osillatory behaviour of the ow at high Rayleighnumber due to internal wave instability, [10{13℄. Chenoweth and Paolui [10℄ presentpower spetra plots of temperature time trae data, giving values of two key frequenies2



that dominate high Rayleigh number ows; the frequeny of the boundary layer on thevertial wall and the frequeny of wave breaking at the departing orners. The dereasein thikness of the boundary layer with inreasing Rayleigh number imposes a onstrainton the solution of the problem, [10, 12, 14℄, requiring a high level of disretisation.2 Governing equationsThe governing equations have been written for a onstant density, inompressible Newto-nian uid using the Boussinesq approximation to model buoyany.Continuity r � v = 0 on 
 (1)where v represents the veloity and 
 represents the domain.Navier-Stokes� �v�t + v � rv!+rP = r � � hrv + (rv)T i� �g� (T � Tr) on 
 (2)subjet to boundary onditions:F = Pn� � hrv + (rv)T i � n on �F (3)v = �v (x; y; t) on �v (4)and initial onditions: v (t = 0) = vo with r � vo = 0 (5)� is the dynami visosity, g is the aeleration due to gravity, � is the volumetri o-eÆient of thermal expansion, T is the temperature, Tr is a referene temperature, Frepresents the applied trations on the boundary �F , n is the unit normal vetor and �vis the Dirihlet boundary ondition for veloity on the part of the boundary �v.Energy �T�t + v � rT = r��rT on 
 (6)subjet to boundary onditions:n � (�rT ) = q on �Q (7)3



T = �T (x; y; t) on �T (8)and initial onditions: T (t = 0) = To (9)where q is a spei�ed normal heat ux on the boundary �Q, �T is the Dirihlet boundaryondition for temperature on the boundary �T and � is the thermal di�usivity given by,� = k�Cp (10)where, k is the thermal ondutivity, � is the uid density and Cp is the spei� heatapaity.2.1 Finite Element FormulationThe program is based on the Galerkin Finite Element Method (GFEM), solving for theprimitive variables: u-veloity, v-veloity and T-temperature at all nodes in the mesh andP-pressure at a redued level of interpolation to avoid spurious pressure modes, using amixed formulation for the Navier-Stokes equations. The Navier-Stokes and energy equa-tions were oupled by the Boussinesq approximation for buoyany. Notation used here isas used by Gresho et al, [15, 16℄. The Galerkin FEM disretisation produes a system ofODE's as follows:Navier-Stokes264Mu 0 00 0 00 0 Mv 3750B� _u_P_v 1CA + 264Kuu Cu KuvCTu 0 CTvKvu Cv Kvv 3750B� uPv 1CA = 0B�Fu0Fv 1CAWhere M, K, C and F represent the mass matrix, visous stress matrix, pressure gra-dient matrix and global fore vetor respetively. The �rst to third rows represent thex-momentum, ontinuity and y-momentum equation respetively. The right hand sidevetor Fv ontains the oupling buoyany term.Energy [MT ℄ ( _T ) + [KT ℄ (T ) = (FT )Expansion of all terms an be found in Usmani et al [17℄. The two systems of equationsabove are solved as a oupled system, with theKT term ontaining the veloities (obtainedfrom solving the ow �eld) and the Fv term ontaining the buoyany fores (determinedby the temperature �eld). 4



2.2 Temporal disretisationTemporal disretisation of the time domain is ahieved by applying the generalised mid-point rule, [18, 19℄."Mn+���t +Kn+�# (�n+1) = "Mn+���t � (1� �)� Kn+�# (�n) + (Fn+�)� (11)Variation of � leads to di�erent members of this family of methods i.e.� = 0 -Forward Di�erene or Forward Euler.� = 12 -Midpoint rule or Crank Niolson.� = 23 -Galerkin.� = 1 -Bakward Di�erene or Bakward Euler.The Crank Niolson, Galerkin and Bakward Euler shemes are all unonditionally stable,however, of these methods the osillation limit is lowest for � = 12 . The time step sizehosen for all Rayleigh numbers is small enough to avoid an osillatory solution whenusing � = 12 . The hoie of unonditionally stable impliit methods is enfored by theuse of h-adaptivity as the smallest elements determine the stability of onditionally stableexpliit methods, whih makes them impratial for use in this ontext.The formulations desribed above were implemented in the impliit transient FE odeCADTRAS (Coupled Advetive Di�usive TRAnSport model), whih was used to solvethe thermally driven avity problem. The ode inorporates an unstrutured Delaunaytriangulation based mesh generator [20℄, whih allows automati adaptive re-meshing totake plae at eah time step if neessitated by the a-posteriori error estimation algorithm.Six-node triangular elements are used for all the meshes.3 AdaptivityThe use of h-adaptivity enables the solution of this problem at high Rayleigh number with-out the neessity of designing a suitable mesh at �rst and going through a trial-and-errorproess. Adaptivity automatially produes an optimal mesh based on a user spei�eddisretisation error thus saving omputational time and fousing e�ort intelligently oversuessive time steps on areas of high salar gradients (whih for this problem oinidewith the areas of high veloity gradients). There are �ve distint steps to the iterativeadaptive proess used here :1. Solution of the oupled system2. Reovery of smoothed salar gradients using the super-onvergent path reovery(SPR) method [21℄ 5



3. Error Estimation using the a-posteriori error alulated at all nodes in the mesh forthe salar �eld4. Re-meshing based on the mesh sizes produed from the previous step5. Transfer of all data to the new meshReoveryThe temperature �eld generated by the �nite element method is most aurate at nodalpoints whereas the temperature gradients are most aurate at Gaussian integrationpoints, known as the super-onvergene phenomenon. Hinton and Campbell [22℄ showedthat �nite elements produe superior values of temperature gradient at node points afterappliation of a smoothing proedure. Their method was based on a global smoothingsheme requiring the solution of a large system of equations. A more eÆient and e�e-tive proedure was introdued by Zienkiewiz and Zhu [21℄, alled super-onvergent pathreovery (SPR). The smoothed nodal gradients are alulated from the Gauss points on apath of elements surrounding a node, using a least squares interpolation, for eah nodein the mesh.Error EstimationThe error estimator used was originally derived for heat ondution [23℄. Mathematialjusti�ation of using suh an estimator for the problem of this paper does not exist,however as the estimator used is based on the salar ux, it has proven very e�etive indeteting regions of high salar gradient, whih in pratie is suÆient for the purposesof this paper. The a-posteriori error is based upon an energy norm (see [23℄),jjejj2 = Z
(rT )T�rTd
� Z
(rT̂ )T�rT̂ d
 (12)if we de�ne, jjQjj2 = Z
(rT )T�rTd
jjQ̂jj2 = Z
(rT̂ )T�rT̂ d
 (13)then Equation (12) an be rewritten asjjejj2 = jjQjj2 � jjQ̂jj2 (14)Suh a de�nition allows a pratial representation of the error norm in terms of a per-entage error �, � = jjejjjjQjjx100% (15)Re-meshing and mesh generationSpei�ation of a permissible error �� determines the level of re�nement throughout themesh, leading to a predited redution or inrease in the element sizes so that the new6



mesh may possess an approximately equal distribution of error. The maximum permissibleerror for eah element is alulated as,jjêjje = ��  jjQjj2m ! 12 (16)where m is the number of elements, �� is the spei�ed maximum perentage error. Dividingjjêjje by the alulated error in an element yields a parameter �e as follows,�e = jjejjejjêjje (17)i.e. if �e > 1 the mesh must be re�ned in the viinity of element e, onversely, if �e < 1the mesh may be oarsened. The new element size is alulated using,�he = he�e 1p (18)where he is the original element size and p is the order of the element shape funtions.Mesh data transferEnsuring proper transfer of variables between meshes is ruial for onservation of quan-tities suh as energy and momentum. A transfer strategy using loal oordinates of nodalpoints and elemental shape funtions has been used that maps the mesh data aurately.The loal oordinates (� � �) of eah node in the adapted mesh are determined with re-spet to the elements of the previous mesh. Element shape funtions are then used tointerpolate the data onto the new mesh nodes.4 The Benhmark ProblemThe problem involves modelling uid ow in a two dimensional square avity of typialdimension L with the two vertial walls being maintained at a temperature di�erene of�T . The top and bottom walls are insulated and the veloities at all boundaries setto zero. The uid inside the avity is initially at rest and at a temperature whih is themean of the temperatures on the vertial walls. The resulting ow an be desribed bythe Rayleigh number: Ra = GrPr = g��TL3�� (19)where g is the aeleration due to gravity, � is the oeÆient of volumetri expansion, Lthe typial dimension of the avity, �T is the temperature di�erene between the vertialwalls, � is the kinemati visosity and � is the thermal di�usivity.7



The following non-dimensional groups are used in the analysis and presentation of theomputational results:Veloity u� = uL� (20)v� = vL� (21)Temperature T � = T � T2T1 � T2 (22)Coordinates x� = xL (23)y� = yL (24)Time t� = �tL2 (25)where * indiates the the non-dimensional quantity. T1 and T2 are the �xed temperaturesat the two side walls of the avity.The Nusselt number is alulated at eah node in the domain usingNu = uT � �T�x (26)where the temperature gradient is obtained by the gradient reovery proess.4.1 Departing Corner FlowIt is important to understand the mehanism that generates the destabilising internalwaves, ditating the pattern of the ow �eld. As mentioned in the introdution, Raviet al [8℄ set out a desription of the ow behaviour in the departing orners and give amehanism for its reation. The left avity region next to the vertial boundary arriesow at large veloities. This ow, after departing the orner, slows down, the isothermsthat were paked losely together at the wall boundary spread out over a muh thikerlayer. The highest veloity layer, nearest the to the hot boundary experienes the greatesthange in veloity after passing the departing orner. A slightly ooler layer (travellingat a slightly lower veloity) next to the hot layer is fored to slide over it in the ornerregion. This auses a sharp reversal in veloity as the ooler boundary layer plungesabruptly bak into the ooler ore, resulting in the harateristi u-shape isotherm. Athigh Rayleigh numbers the downward fore of the negatively buoyant plume is enoughto ause separation of ow from the horizontal boundary. Reirulation ours when theuid is re-entrained into the vertial wall boundary from the plume.8



5 ResultsValues of u-veloity, v-veloity and temperature were reorded over the duration of thesimulation for all three Rayleigh numbers; 2�108, 3�108 and 4�108. They where reordedat a point x = 0:1032, y = 0:8036 within the unit square avity, following Chenoweth etal [10℄. This point falls in a partiularly sensitive loation regarding the osillatory natureof the boundary layer. Figures 1 and 2 show time trae histories for all three variables.The temperature time history data was also onverted from the time domain into thefrequeny domain using Fast Fourier Transform (FFT) analysis, this allows frequeniesthat haraterise the time plots to be seen more learly, see Figure 2.The graphs showing primitive variable time histories for Ra = 2� 108, �gures 1(a),1(b),2(a) show onvergene to a periodi osillation. Eah plot is dominated by one fundamen-tal frequeny. This fundamental frequeny is generated by the internal boundary layerinstability at the departing orners.Figure 2(b) shows one very lear spike, indiating the fundamental frequeny, with avalue of 546.9 Hz. The Ra = 3 � 108 time histories show a lear waveform onsistingof more than one frequeny, exhibiting quasi-periodi behaviour. The FFT plot, �gure2(d), reveals a lear fundamental frequeny at 651.0 Hz. followed by several small, highfrequeny omponents. The time history graphs for Ra = 4 � 108 show mildly haoti,quasi-periodi behaviour, as previously shown by Chenoweth and Paolui [10℄. Thefundamental frequeny as per �gure 2(f) is 781.3 Hz. There is also an inreased amountof high frequeny bakground noise.It is lear from the results that an inrease in Rayleigh number is aompanied by aninrease in the fundamental frequeny of the osillation. Chenoweth et al [10℄ present atable of results showing a similar inrease in frequeny with Rayleigh number howeverthe values they obtained were slightly higher; 630.3, 737.7 and 850.2 for Ra = 2 � 108,3� 108 and 4� 108 respetively.The frequeny plot for Ra = 3�108, �gure 2(d), shows a lear high amplitude fundamentalfrequeny followed by several low amplitude high frequenies. The amplitude of thefundamental frequeny is signi�antly larger than that of 2� 108 and 4� 108. For 3� 108the majority of the spetral energy resides in this spike while in the other Rayleigh numbersthis energy is divided up between the fundamental frequeny and other more substantialhigher frequeny omponents. The spetral plots presented by Chenoweth and Paolui[10℄ show the same phenomenon but on a log sale for amplitude.
5.1 Rayleigh number behaviour saleFigure 3 has been onstruted on the basis of results presented in several researh papers,[10,12,24℄. The �rst important threshold marked on the diagram is Ra = 1:9� 108. Thisrepresents the transition from steady state ow to unsteady periodi ow, as reorded9



-2500

-2000

-1500

-1000

-500

0

500

1000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

U
-V

el
oc

ity

Time(a) U-Veloity, Ra = 2� 108 -3000

-2000

-1000

0

1000

2000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

V
-V

el
oc

ity

Time(b) V-Veloity, Ra = 2� 108

-2500

-2000

-1500

-1000

-500

0

500

1000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

U
-V

el
oc

ity

Time() U-Veloity, Ra = 3� 108 -3000

-2000

-1000

0

1000

2000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

V
-V

el
oc

ity

Time(d) V-Veloity, Ra = 3� 108

-2500

-2000

-1500

-1000

-500

0

500

1000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

U
-V

el
oc

ity

Time(e) U-Veloity, Ra = 4� 108 -3000

-2000

-1000

0

1000

2000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

V
-V

el
oc

ity

Time(f) V-Veloity, Ra = 4� 108Figure 1: Time trae histories at x = 0.1032, y = 0.8036 for U and V veloities.
10



-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

T
em

pe
ra

tu
re

Time(a) Temperature, Ra = 2� 108 0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 2000 4000 6000 8000

A
m

pl
itu

de

Frequency(b) FFT, Ra = 2� 108

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

T
em

pe
ra

tu
re

Time() Temperature, Ra = 3� 108 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 2000 4000 6000 8000

A
m

pl
itu

de

Frequency(d) FFT, Ra = 3� 108

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

T
em

pe
ra

tu
re

Time(e) Temperature, Ra = 4� 108 0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 2000 4000 6000 8000

A
m

pl
itu

de

Frequency(f) FFT, Ra = 4� 108Figure 2: Time trae histories and FFT plots at x = 0.1032, y = 0.8036 for temperature
11



Stable,

steady state

Periodic Quasi−periodic
Mildly chaotic,

quasi−periodic

1.9x108

2x108 3x108 4x1081x108

Figure 3: Rayleigh number versus behaviourby Chenoweth et al [10℄ and Le Quere [25℄. Chenoweth and Paolui go on to predittwo more regions of transition; instability of the wall boundary layers leading to quasi-periodi ow near 2:7�108 and a further hange to mildly haoti ow somewhere between3 � 108 and 4 � 108. Very similar behaviour is notied in the presented results, in thatat Ra = 2 � 108 the ow is periodi, at 3� 108 the ow is learly quasi-periodi and at4� 108 the ow is still maintains its quasi-periodi nature but shows signs of haotiity,see Chenoweth et al �gure 13 [10℄.5.2 h-adaptivity and its role in the solutionFigure 4 shows a sequene of meshes produed during the solution of the thermally drivenavity problem for Ra = 4 � 108. There were a total of 750 time steps produing 13separate adaptive meshes during the simulation, six are shown to highlight the e�etiveapture of important ow features. The orresponding veloity vetors and temperatureontours are shown in Figures 5 and 6.Mesh 1 - This is the pre-adaptive mesh i.e. the result of a number of re-meshing ylesbased on the boundary onditions. The area around the vertial boundary layers is heavilydisretised to apture the steep temperature gradients.Mesh 6 - The boundary layer has rounded the orner and is moving aross the horizon-tal surfae. The mesh follows the temperature front as it moves, some degree of owseparation is manifested in the mesh at the departing orner.Mesh 8 - The boundary layer is half way aross the avity, there are two distint regionsthat form the leading edge of the intrusion; the separated zone and the boundary layerstill attahed to the horizontal surfae.Mesh 10 - The boundary layer has reahed the opposite vertial boundary. A ontinuousplume strethes aross the avity. 12



2� 108 3� 108 4� 108Numax, y 6:7140� 10�3 6:7031� 10�3 6:7328� 10�3Numin, y 1.0 1.0 0.9938Table 1: Nusselt number positions for eah Rayleigh numberMesh 12 - The boundary layer has di�used into its surroundings to some degree ausingthe temperature gradients to derease. The mesh has oarsened in these areas aordingly.Mesh 13 - The highest level of disretisation is foussed in the departing orners apturingthe zone of boundary layer reirulation. The entre of the reirulating eddy is just visibleas an area of lower disretisation near the orner. The ow has settled down onsiderably,however the separated boundary layer is moving bak and forth quasi-periodially. Thisis the last re-meshing yle of the run, the temperature gradients are only varying aroundthe departing orners and they have been disretised adequately to apture the unsteadyinternal waves.Figures 5 to 7 show the development of the veloity �eld and temperature ontours overtime. The isotherms beome inreasingly strati�ed resulting in the distribution shownin Figure 7(f). The ow is mildly haoti and unsteady but still retains a high degreeof struture. The asymmetry of the ow, apparent in the isotherms and veloity vetorplots in �gures 5, 6 and 7, is mentioned by Chenoweth and Paolui [10℄. They suggestthat the loss of symmetry is due to the quasi-periodi nature of the ow generated bypresene of two di�erent fundamental frequenies i.e. the internal wave and wall boundaryosillations.Figure 8 shows the time history of temperature reorded at two points for Ra = 2 �108, one at x = 0:1032, y = 0:8036 and the other at x = 0:8968, y = 0:1964. Thefundamental frequenies of the two time traes are very similar but there is an obviousdi�erene between the two time history plots in �gure 8. Unfortunately the lower timetrae seems `damped' ompared to the top trae, this is due to the e�et of unstruturedmesh generation. The appliation of a strutured mesh generator should remove thisproblem and allow a thorough analysis of any possible phase di�erenes, however this isbeyond the sope of this paper.Table 1 shows the vertial positions of of maximum and minimum Nusselt numbers forthe three Rayleigh numbers presented. Figures 9, 10 and 11 show the variation of Nusseltnumber over a period of time. The maximum, minimum and average Nusselt number onthe boundary x = 0:0 plotted against dimensionless time are shown. All nine plots showthat the value of Nusselt number at the vertial boundary show periodi variation. Thetime histories of maximum and average Nusselt numbers show small amplitude osilla-tion while the minimum Nusselt number is more sensitive to the unsteady nature of theow, exhibiting larger amplitude osillation, beoming more pronouned with inreasingRayleigh number. 13



(a) Time step 1, mesh 1 (b) Time step 14, mesh 6.

() Time step 22, mesh 8. (d) Time step 33, mesh 10.

(e) Time step 69, mesh 12. (f) Time step 78, mesh 13.Figure 4: Adaptive mesh �les for Ra = 4 � 108 at (a) t� = 0:0; (b) t� = 0:00028; ()t� = 0:00044; (d) t� = 0:00066; (e) t� = 0:00138; (f) t� = 0:00156.14



(a) Time step 1, veloity vetors. (b) Time step 1, isotherms.

() Time step 14, veloity vetors. (d) Time step 14, isotherms.

(e) Time step 22, veloity vetors. (f) Time step 22, isotherms.Figure 5: Veloity vetors and isotherms for Ra = 4 � 108 at (a),(b) t� = 0:0; (),(d)t� = 0:00028; (e),(f) t� = 0:00044. 15



(a) Time step 33, veloity vetors. (b) Time step 33, isotherms.

() Time step 69, veloity vetors. (d) Time step 69, isotherms.

(e) Time step 78, veloity vetors. (f) Time step 78, isothermsFigure 6: Veloity vetors and isotherms for Ra = 4� 108 at (a),(b) t� = 0:00066; (),(d)t� = 0:00138; (e),(f) t� = 0:00156. 16



(a) Time step 188, veloity vetors. (b) Time step 188, isotherms.

() Time step 468, veloity vetors. (d) Time step 468, isotherms.

(e) Time step 748, veloity vetors. (f) Time step 748, isothermsFigure 7: Veloity vetors and isotherms for Ra = 4� 108 at (a),(b) t� = 0:00376; (),(d)t� = 0:01808; (e),(f) t� = 0:03488. 17
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by [10℄. The primitive variable time history results indiate that the transition fromperiodi to quasi-periodi and quasi-periodi to mildy haoti ow math those ompiledfrom past results. Further details suh as the possible phase di�erenes between theosillations at the two departing orners ould not be investigated here as an unstruturedmesh generator was used in this work. Unless one is prepared to re�ne to a muh lowermesh size (whih will be very expensive) it is diÆult to separate the e�ets aused bysmall di�erenes in the loal mesh re�nement and genuine ow features. A struturedmesh version of this program is under development, whih will allow suh investigationsto be undertaken reliably.7 AknowledgementsThis work was funded by an EPSRC researh studentship. The authors are also gratefulto Dr M.O.Gordon for his assistane with the FFT analysis.
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