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Performance of the Distributed
Central Analysis in BaBar
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Abstract—The total dataset produced by the BaBar experiment
at the Stanford Linear Accelerator Center (SLAC) currently com-
prises roughly 3 109 data events and an equal amount of simu-
lated events, corresponding to 23 Tbytes of real data and 51 Tbytes
simulated events. Since individual analyses typically select a very
small fraction of all events, it would be extremely inefficient if each
analysis had to process the full dataset. A first, centrally managed
analysis step is therefore a common pre-selection (‘skimming’) of
all data according to very loose, inclusive criteria to facilitate data
access for later analysis. Usually, there are common selection cri-
teria for several analysis. However, they may change over time,
e.g., when new analyses are developed. Currently, (100) such
pre-selection streams (‘skims’) are defined. In order to provide
timely access to newly created or modified skims, it is necessary
to process the complete dataset several times a year. Additionally,
newly taken or simulated data has to be skimmed as it becomes
available. The system currently deployed for skim production is
using 1800 CPUs distributed over three production sites. It was
possible to process the complete dataset within about 3.5 months.
We report on the stability and the performance of the system.

Index Terms—Data handling, data management, data pro-
cessing, distributed computing.

I. INTRODUCTION

THE BaBar detector [1] at the Stanford Linear Accelerator
Center (SLAC) in the US collects data from colli-

sions at the B meson resonance. 230 fb of physics quality
data were collected in the years 1999 to 2004. This corresponds
to events or 23 Tbytes of reconstructed quantities, not
counting raw data ( Tbytes) or multiple reconstruction
passes. In addition, Monte Carlo (MC) events have
been simulated and reconstructed, adding another 51 Tbytes of
reconstructed data.
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A typical physics analysis selects only a tiny fraction of all
events. Therefore, it is extremely inefficient for each analysis to
loop over all data. Additionally, allowing many analysis jobs to
access the central event store puts a high load on the system and
requires a large local computing farm to provide the necessary
CPU power and disk capacity. In order to circumvent these is-
sues, the concept of a centrally managed pre-selection of events
was introduced as first step in the analysis chain (see Fig. 1).
The central analysis separates the events into streams,
called ‘skims’, according to loose, inclusive physics criteria de-
fined by the analysis groups or individual analysts. Therefore,
the analysis-specific skim contains a higher purity of interesting
events for a given analysis. On average, every event is found in
2 skims. The reconstruction quantities for selected events can be
duplicated and are included in the skim. Thus, they can be easily
distributed to different computing sites, grouped according to
physics interests. At the same time, analysis-specific quantities
can be added to the skims. This empowers the analysts to per-
form the final data fitting without a massive ntuple production
on their own.

The skim definitions change over time as a better under-
standing of the physics and the detector evolves. Also new
skims are devised, as new analysis topics emerge. Therefore,
it is necessary to have several skim production cycles per
year. Additionally, newly taken or simulated data needs to be
processed as it becomes available. Since all analyses depend on
the central skim production, a timely and reliable processing is
essential.

II. DATA ORGANIZATION

In fall 2003 a new computing model [2] was deployed in
BaBar. All data except the raw data is stored as ROOT [3] files.
The ROOT files are administered by a relational database. The
basic entity is a collection, uniquely defining a set of ROOT files
with a common denominator. A dataset holds multiple collec-
tions with similar content. A dataset is dynamically defined by
properties associated with a collection. E.g., a dataset can hold
all collections from a given run period. Datasets are updated au-
tomatically when new collections fitting the corresponding def-
inition become available. Tags, similar to CVS tags, are used
to freeze a dataset. Tags can be used to mark a common data
sample, e.g., the data used for analyses targeted at a specific
conference.

The ROOT files are accessed using the xrootd protocol [4].
This protocol is implemented in the ROOT framework and al-
lows a distributed access to the data. Additional tools have been
developed to copy local files into the xrootd event store. For
the central analysis, two types of xrootd event stores are used: a
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Fig. 1. Sketch of the analysis flow in BaBar. The reconstructed data originating from the BaBar detector and Monte Carlo (MC) simulation is stored in a central
event store. It is inefficient and requires large local resources to allow all analysis applications to directly access the central event store. Therefore, a central analysis
as first step in the analysis processes splits the physics events in O(100) skims according to physics criteria defined by the analysis groups. These skims can be
distributed to several remote farms where each analysis can access a purified sample of interesting events.

public event store where the reconstructed events and the skims
are stored, and for temporary storage of the intermediate output
produced during the skim production.

III. CENTRAL ANALYSIS

The central analysis consists of several tasks handling dif-
ferent types of data. Each task uses as input one or several
datasets. The tasks are distributed to different computing cen-
ters and assigned priorities for the processing. Each task pro-
cesses all collections belonging to its associated datasets. As the
processing of one collection typically takes several CPU days,
it turned out to be more efficient to split each collection into
smaller chunks that can be processed within 4 to 5 hours. This
allows a more flexible handing of the CPU queues. It also saves
a considerable amount of CPU time if a job crashes due to com-
puting problems. Each job produces all skims which are defined
for the given skim cycle. Each skim corresponds to a ROOT
file, that is typically less than a few kbytes, since only a tiny
fraction of the events is selected. Mass storage systems ineffi-
ciently handle small files and there is a considerable overhead
in opening many small files during the analysis. Therefore, a
second step merges several files belonging to the same skim and
having some commonality into larger files. These files are im-
ported into the mass storage system and their properties are in-
serted into the bookkeeping database, where the corresponding

Fig. 2. The Task Management controls the job creation and batch execution as
well as the bookkeeping of processed input collections and produced temporary
and final collections.

collections are created and added to datasets. The analyst can
access the skimmed collections using datasets.

The central analysis needs a huge amount of CPU power
to process all available data in a reasonable time. In order to
achieve a timely production, the load is distributed over multiple
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TABLE I
PROCESSED EVENTS AND OUTPUT PRODUCED DURING THE FIRST FIVE SKIM CYCLES

computing centers. Up to now we used the computing centers
at the University of Padova/INFN (Italy), GridKa (Karlsruhe,
Germany) and SLAC (California, US). The assignment of tasks
is agreed upon before a given skimming cycle starts. The data
distribution is done using multi-stream file transfer tools. In
order to facilitate the bookkeeping of processed and available
collections, all input data was transfered from SLAC to the re-
mote sites and the finished skim collections were copied back
into the SLAC event store before redistributing them to the anal-
ysis centers.

The Task Management (TM) framework [5] is used to
manage the central analysis (Fig. 2). The TM handles the
job submission and control. It creates the skimming jobs for
the input collections, assuring that each input collection is
only processed once. It submits them to the batch system and
checks for their successful execution. In case of job failures, a
basic failure classification is done and jobs likely to succeed
on a further try are resubmitted. The TM keeps track of the
temporary output collections and determines which ones can
be merged together. It also handles the creation and submission
of the merge jobs as well as the final import into the event store
and bookkeeping database.

Further tools were developed during the skim production
to improve the flexibility in automatically handling multiple
parallel tasks on the batch system and to keep the batch queues
filled. Monitoring tools were used to create websites with
progress and status information. Additional tools were needed
for managing the data distribution to the remote sites and for
database consistency checks.

IV. PERFORMANCE

Given that all analyses depend on the availability of skims,
the timely production of skims is essential for the success of the
physics program. The aim is to have 3 to 4 skimming cycles per
year. In each cycle, only modified or newly defined skims need
to be produced unless a new reconstruction was performed. For
newly available data all defined skims need to be produced.

Table I lists the skim cycles completed so far. The first skim
cycle R14 was started at the beginning of 2004 and produced
all skims defined at that time. The R14a skim cycle fixed a few
bugs present at the beginning of data skimming. The subsequent
R16a skim cycle started in late December 2004 producing 91
newly defined and 70 redefined skims. The following two skim
cycles produced a total of 38 new skims. Currently, a full recon-
struction and new simulation effort is ongoing which is being
skimmed as the reconstructed data becomes available.

Fig. 3. Event rate for data skimming as function of the number of events
processed by one job, comparing the different CPU types available at SLAC.
The default number of events processed by one job is 20000. The event rate is
using wall clock time and includes the overhead for initializing and checking
of the output.

In the following, we will look at the performance and relia-
bility of the last large scale skim production cycle R16a.

The batch queue used at SLAC consists of approximately
450 PIII 1.4 GHz, 300 Xeon 2.6 GHz, and 220 Opteron
1.8 GHz machines. The actual number of CPUs varied due to
machine failures and queue allocation policies. The Opteron
machines became available during January 2005 and their
number gradually increased over the following month. All
machines are dual-CPU machines with 2 Gbytes memory.
Fig. 3 shows the processing rate versus the number of events
processed by a skim job running over real data. The processing
time is wall clock, i.e., it includes all overheads from starting
job and checking the output for consistency, but does not
including the batch queuing time. It can be clearly seen that
below 5000 events the overhead for initializing and checking
dominates, while for larger chunks the processing rate is con-
stant. The skim performance of PIII and Xeon processors is
comparable, while the rate of the Opteron machines is 1.8 times
higher. A similar behavior is observed for MC events. The
processing rate depends on the type of simulated events being
processed. The processing rate is reduced by a factor 5 for
the most demanding MC (‘B generics’) which include the full
spectrum of possible B decays overlaid with background data.

Fig. 4(a) shows the number of successfully skimmed events
versus time. After a slow startup phase over Christmas 2004, the
real data was skimmed within 1.5 months. The bulk of the MC
skimming was finished two months later. Roughly 10% of the
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Fig. 4. Performance of the last large scale skim production cycle R16a. On the left we show the cumulative number of events skimmed versus time (shown in
month/day format for the years 2004/2005). After a slow startup phase over Christmas 2004, the real data was skimmed within 1.5 months, while the bulk of
simulated Monte Carlo events was skimmed 2 months later. On the right the number of CPUs used at SLAC versus time during the main production period in 2005
is shown. The number of available CPUs increased during this time and except for short periods of time, all CPUs were busy. (a) Number of successfully skimmed
events versus time. (b) Number of CPUs used at SLAC versus time.

Fig. 5. Scalability of the system shown for data (left) and Monte Carlo (right). The number of processed events per day scales nicely with the number of CPUs
used. The linear fit to the data points yields 10M (2M) events/day/100 CPUs for data (Monte Carlo).

jobs had to be resubmitted due to machine failures or I/O prob-
lems. Fig. 4(b) depicts the queue usage at SLAC during the main
production period. It shows that it was possible to constantly use
all available CPUs at SLAC. The occasional lower CPU usage
was due to the limitations in the available disk space used for
storing the temporary collections.

V. SCALABILITY

The number of CPUs devoted to a given task changed over
time. This allows the investigation of the scalability of the
system as function of used CPUs. Fig. 5 shows the number
of events being successfully processed per day versus the
number of CPUs utilized. We observe a linear behavior. The
scatter of the points around the fitted line is mainly due to
the fact that we did not correct for the different processing
speeds of the machines involved. The linear fit yields 10 M
(2 M) events/day/100 CPUs for data (Monte Carlo). This rate
includes the time needed for initializing the jobs, checking the

produced output, and rerunning of failed jobs. It also includes
the overheads from bookkeeping, but does not account for
batch queuing time.

VI. CONCLUSION

The concept of a central analysis within the new computing
model based on ROOT files has been successfully implemented.
Since its deployment in fall 2003, 5 skim production cycles have
been completed. We demonstrated that it is possible to process
the huge data sample in a reasonable time and to provide skims
to the analysts. With a special effort before a major conference,
we succeeded to have skims available for data taken only eight
days before. The system enables a reliable and large scale oper-
ation and shows an excellent scaling behavior. Given the recent
experience, the target of running 3 to 4 skim cycles per year in
a timely fashion is achievable. We successfully processed more
than events and produced 220 Tbytes of skims using
in excess of 600 000 CPU-days at three computing centers.
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For future development, skim production in the grid is an in-
teresting option. We are already running at three different com-
puting centers, and the Task Management system demonstrated
the feasibility for running in a distributed environment. The cen-
trally defined skim applications are more stable than individual
user analyses which makes the code distribution easier. In con-
trast to simulation tasks which already run routinely in the grid,
skimming could be an application to test the data access within
the grid, without the difficulties of unpredictable access patterns
imposed by normal analysis tasks.

ACKNOWLEDGMENT

This work builds on a large body of development by the
BaBar Computing Group, and would not have been possible
without a strong collaborative effort.

REFERENCES

[1] B. Aubert, “The BaBar detector,” Nucl. Instrum. Methods Phys. Res.
A, vol. A479, pp. 1–116, 2002.

[2] D. N. Brown, “The new BaBar analysis model,” in Proc. CHEP ’04,
Interlaken, Switzerland, Sep. 2004.

[3] R. Brun and F. Rademakers, “ROOT—An object oriented data anal-
ysis framework,” Nucl. Instrum. Methods Phys. Res. A, vol. A389, pp.
81–86, 1997.

[4] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “XROOTD—A
highly scalable architecture for data access,” in Proc. WSEAS Conf.,
Prague, Czech Republic, Mar. 2005.

[5] W. Roethel, “The BaBar analysis task manager,” in Proc. CHEP ’04,
Interlaken, Switzerland, Sep. 2004, pp. 348–353.


