
h-Adaptive Finite Element Solution of High RayleighNumber Thermally Driven Cavity ProblemDavid A. Mayne, Asif S. Usmani and Martin CrapperSchool of Civil and Environmental Engineering, University of EdinburghAbstractAn h-adaptive �nite element code for solving coupled Navier-Stokes and energy equationsis used to solve the thermally driven cavity problem. The buoyancy forces are representedusing the Boussinesq approximation. This problem is characterised by very thin bound-ary layers at high values of Rayleigh number (> 106). However steady state solutionsare achievable with adequate discretisation. This is where the auto-adaptive �nite ele-ment method provides a powerful means of achieving optimal solutions without havingto pre-de�ne a mesh, which may be either inadequate or too expensive. Steady state andtransient results are given for six di�erent Rayleigh numbers in the range 103 to 108 fora Prandtl number of 0.71. The use of h-adaptivity, based on a-posteriori error estimationis found to ensure a very accurate problem solution at a reasonable computational cost.1 IntroductionThermally driven cavity ow has been used to validate computer uid ow models forthe last two decades, it is also an important ow problem in its own right. Simulating alarge horizontal temperature di�erence across a vertical cavity has applications in nuclearreactor insulation, double glazing, predicting �re spread in buildings and dispersion ofheat in estuaries. The thermal cavity problem has been extensively studied and solved forPrandtl number of 0.71 (corresponding to an air �lled cavity ) over a range of Rayleighnumbers in a steady state [1{4], and transient manner [5{7]. Several researchers havesolved this problem using Pr = 1.0 [8{10], however Patterson and Imberger [11] determinedthat the steady state result is independent of the Prandtl number, but the transientbehaviour and hence the approach to steady state, is not. De Vahl Davis [1] invitedresearchers to submit solutions of the thermal cavity problem using Pr = 0.71. A completeset of results is available for comparison of ow data at Rayleigh numbers from 103 to 106.De Vahl Davis concluded that, for a given problem and solution technique, mesh densitycontrolled the accuracy of the results. 1



He also concluded that although there were accurate contributions from both the FEMand FDM the former was by and large the better, giving better results at higher Rayleighnumbers. De Vahl Davis also recommends that further work be conducted on the selectivere�nement of the mesh in the region of the boundary layers, stressing that this would beimportant for high Rayleigh numbers.Finally he reports that Upson et al, who produced one of the best solutions, used the�nite element method and had taken care to provide a high density of grid points in thewall and corner regions of the cavity.Solutions have been obtained for Rayleigh numbers of 107 and 108 by a number of authors,for instance [3,5,12{14], but the volume of published results is considerably less than forthe lower Rayleigh number cases. Solutions for Rayleigh numbers 103 to 108 will bepresented in this paper and compared with the existing results.2 Governing equationsThe governing equations have been written for a constant density, incompressible Newto-nian uid using the Boussinesq approximation to model buoyancy.Continuity r � v = 0 (1)where v represents the velocity.Navier-Stokes� @v@t + v � rv!+rP = r � � hrv+ (rv)T i� �g� (T � Tr) (2)subject to boundary conditions:F = Pn � � hrv+ (rv)T i � n (3)v = �v (x; y; t) (4)and initial conditions: v (t = 0) = vo with r � vo = 0 (5)2



� is the dynamic viscosity, g is the acceleration due to gravity, � is the volumetric co-e�cient of thermal expansion, T is the temperature, Tr is a reference temperature, Frepresents the applied tractions on the boundary and n is the unit normal vector.Energy @T@t + v � rT = r��rT (6)subject to boundary conditions: n � (�rT ) = q (7)T = �T (x; y; t) (8)and initial conditions: T (t = 0) = To (9)where q is a speci�ed normal heat ux and � is the thermal di�usivity given by,� = k�Cp (10)where, k is the thermal conductivity, � is the uid density and Cp is the speci�c heatcapacity.2.1 Finite Element FormulationThe program is based on the Galerkin Finite Element Method (GFEM), solving for theprimitive variables: U-velocity, V-velocity and T-temperature at all nodes in the meshand P-pressure at a reduced level of interpolation to avoid spurious pressure modes, usinga mixed formulation for the Navier-Stokes equations. The Navier-Stokes and energy equa-tions were coupled by the Boussinesq approximation for buoyancy. Notation used here isas used by Gresho et al, [8, 15]. The Galerkin FEM discretisation produces a system ofODE's as follows:Navier-Stokes264Mu 0 00 0 00 0 Mv 3750B@ _u_P_v 1CA + 264Kuu Cu KuvCTu 0 CTvKvu Cv Kvv 3750B@ uPv 1CA = 0B@Fu0Fv 1CA3



The �rst to third rows represent the x-momentum, continuity and y-momentum equationrespectively. The right hand side vector Fv contains the coupling buoyancy term.Energy [MT ] ( _T ) + [KT ] (T ) = (FT )Expansion of all terms can be found in Usmani et al [16]. The two systems of equationsabove are solved as a coupled system, with theKT term containing the velocities (obtainedfrom solving the ow �eld) and the Fv term containing the buoyancy forces (determinedby the temperature �eld).2.2 Temporal discretisationTemporal discretisation of the time domain is achieved by applying the generalised mid-point rule, [17,18]."Mn+���t +Kn+�# (�n+1) = "Mn+���t � (1 � �)� Kn+�# (�n) + (Fn+�)� (11)Variation of � leads to di�erent members of this family of methods i.e.� = 0 -Forward Di�erence or Forward Euler.� = 12 -Midpoint rule or Crank Nicolson.� = 23 -Galerkin.� = 1 -Backward Di�erence or Backward Euler.The Crank Nicolson, Galerkin and Backward Euler schemes are all unconditionally stable,however, of these methods the oscillation limit is lowest for � = 12 . A larger time stepsize chosen for Ra ! 103 to 107 constrains the choice of � to 23. The time step sizefor Ra = 108 is chosen to be small enough to avoid an oscillatory solution when using� = 12 . The choice of unconditionally stable implicit methods is enforced by the use of h-adaptivity as the smallest elements determine the stability of conditionally stable explicitmethods, which makes them impractical for use in this context.The formulations described above were implemented in the implicit transient FE codeCADTRAS (Coupled Advective Di�usive TRAnSport model), which was used to solvethe thermally driven cavity problem. The code incorporates an unstructured Delaunaytriangulation based mesh generator [19], which allows automatic adaptive re-meshing totake place at each time step if necessitated by the a-posteriori error estimation algorithm.Six-node triangular elements are used for all the meshes.4



3 AdaptivityThe use of h-adaptivity enables the solution of this problem at high Rayleigh number with-out the necessity of designing a suitable mesh at �rst and going through a trial-and-errorprocess. Adaptivity automatically produces an optimal mesh based on a user speci�eddiscretisation error thus saving computational time and focusing e�ort intelligently oversuccessive time steps on areas of high scalar gradients (which for this problem coincidewith the areas of high velocity gradients). There are �ve distinct steps to the iterativeadaptive process used here :1. Solution of the coupled system2. Recovery of smoothed scalar gradients using the super-convergent patch recovery(SPR) method [20]3. Error Estimation using the a-posteriori error calculated at all nodes in the mesh forthe scalar �eld4. Re-meshing based on the mesh sizes produced from the previous step5. Transfer of all data to the new meshRecoveryThe temperature �eld generated by the �nite element method is most accurate at nodalpoints whereas the temperature gradients are most accurate at Gaussian integrationpoints, known as the super-convergence phenomenon. Hinton and Campbell [21] showedthat �nite elements produce superior values of temperature gradient at node points afterapplication of a smoothing procedure. Their method was based on a global smoothingscheme requiring the solution of a large system of equations. A more e�cient and e�ec-tive procedure was introduced by Zienkiewicz and Zhu [20], called super-convergent patchrecovery (SPR). The smoothed nodal gradients are calculated from the Gauss points on apatch of elements surrounding a node, using a least squares interpolation, for each nodein the mesh.Error EstimationThe error estimator used was originally derived for heat conduction [22]. Mathematicaljusti�cation of using such an estimator for the problem of this paper does not exist,however as the estimator used is based on the scalar ux, it has proven very e�ective indetecting regions of high scalar gradient, which in practice is su�cient for the purposesof this paper. The a-posteriori error is based upon an energy norm (see [22]),jjejj2 = Z
(rT )T�rTd
� Z
(rT̂ )T�rT̂ d
 (12)5



if we de�ne, jjQjj2 = Z
(rT )T�rTd
jjQ̂jj2 = Z
(rT̂ )T�rT̂ d
 (13)then Equation (12) can be rewritten asjjejj2 = jjQjj2 � jjQ̂jj2 (14)Such a de�nition allows a practical representation of the error norm in terms of a per-centage error �, � = jjejjjjQjjx100% (15)Re-meshing and mesh generationSpeci�cation of a permissible error �� determines the level of re�nement throughout themesh, leading to a predicted reduction or increase in the element sizes so that the newmeshmay possess an approximately equal distribution of error. The maximumpermissibleerror for each element is calculated as,jjêjje = ��  jjQjj2m ! 12 (16)wherem is the number of elements, �� is the speci�ed maximumpercentage error. Dividingjjêjje by the calculated error in an element yields a parameter �e as follows,�e = jjejjejjêjje (17)i.e. if �e > 1 the mesh must be re�ned in the vicinity of element e, conversely, if �e < 1the mesh may be coarsened. The new element size is calculated using,�he = he�e 1p (18)where he is the original element size and p is the order of the element shape functions.Mesh data transferEnsuring proper transfer of variables between meshes is crucial for conservation of quan-tities such as energy and momentum. A transfer strategy using local coordinates of nodalpoints and elemental shape functions has been used that maps the mesh data accurately.The local coordinates (� � �) of each node in the adapted mesh are determined with re-spect to the elements of the previous mesh. Element shape functions are then used tointerpolate the data onto the new mesh nodes.6



4 The thermally driven cavity benchmark problemThe problem involves modelling uid ow in a two dimensional square cavity of typicaldimension L with the two vertical walls being maintained at a temperature di�erenceof �T (see Figure 1). The top and bottom walls are insulated and the velocities at allboundaries set to zero. The uid inside the cavity is initially at rest and at a temperaturewhich is the mean of the temperatures on the vertical walls.
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Figure 1: Boundary conditions for thermal cavity benchmark problemThe steady state ow and heat transfer in the thermal cavity is characterised by theRayleigh number Ra = g��TL3�� (19)The following non-dimensional groups are used in the analysis and presentation of thecomputational results:Velocity u� = uL� (20)v� = vL� (21)7



Temperature T � = T � T2T1 � T2 (22)Coordinates x� = xL (23)y� = yL (24)Time t� = �tL2 (25)where * indicates the the non-dimensional quantity. T1 and T2 are the �xed temperaturesat the two side walls of the cavity.The Nusselt number is calculated at each node in the domain usingNu = uT � @T@x (26)where the temperature gradient is obtained by the gradient recovery process.5 ResultsThe spacing between the isotherms at the sides of the cavity decreases with increasingRayleigh number. The high level of mesh re�nement in this area allows the thin bound-ary layer to be captured accurately, avoiding any oscillations that can be generated whenmodelling steep temperature gradients without adequate discretisation. A uniformly dis-tributed mesh with the `same' number of elements will be inadequate to model largechanges in temperature at the boundary and will produce an oscillatory solution. At highRayleigh numbers (> 106) a convergent solution may not be possible at all. Figure 2shows the top half of the cavity for four di�erent dimensionless times. It can be seen thatthe mesh adapts to follow the high temperature gradient front as it passes the departingcorner. The re�nement of the mesh around the side walls at t = 0:0001 (Figure 2(a)) isdue to a pre-adaptive loop where the mesh is re�ned based on the the initial conditions.Figure 3 shows plots of velocity and temperature along the centre line of the cavity (y = 0)for each Rayleigh number at steady state. The �gure clearly shows that mesh re�nement8



(a) t� = 0:0001, mesh (b) t� = 0:0001, isotherms (c) t� = 0:0001, velocityvectors(d) t� = 0:0005, mesh (e) t� = 0:0005, isotherms (f) t� = 0:0005, velocityvectors(g) t� = 0:0008, mesh (h) t� = 0:0008, isotherms (i) t� = 0:0008, velocityvectors(j) t� = 0:001, mesh (k) t� = 0:001, isotherms (l) t� = 0:001, velocityvectorsFigure 2: Mesh development for Ra = 108.9
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(a) Plot of velocity on y = 0.5 near boundary
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(b) Plot of temperature on y = 0.5 near boundaryFigure 3: Velocity and temperature near the vertical boundary10



Parameter DescriptionUmax Maximum horizontal velocity on vertical mid plane of cavityy y-coordinate position of maximum horizontal velocity on vertical mid planeVmax Maximum vertical velocity on horizontal mid plane of cavityx x-coordinate position of maximum vertical velocity on horizontal mid planeNu0 Average Nusselt number on the vertical boundary x = 0Numax Maximum Nusselt number on the vertical boundary x = 0y y-coordinate position of maximum Nusselt number on vertical boundary x = 0Numin Minimum Nusselt number on the vertical boundary x = 0y y-coordinate position of minimum Nusselt number on vertical boundary x = 0Table 1: Measured parametersbased only upon the temperature gradients is appropriate for this problem as the steepvelocity gradients occur in the same locations as the steep temperature gradients.Figures 4 to 9 show the mesh, velocity vectors, pressure �eld and isotherms for eachRayleigh number at steady state.Table 2 shows results obtained for the six Rayleigh numbers investigated. The parameterspresented are described in table 1.Ra! 103 to 106The results for all the values measured are very close to the accurate results obtainedby De Vahl Davis [4], only deviating slightly at 106. The error between De Vahl Davis'solution and the adaptive FEM results have been calculated and presented in table 3, inthe manner presented in reference [1].Ra! 107 to 108Established benchmark solutions analogous to the lower Rayleigh number results do notexist for the higher Rayleigh number problems. However, several researchers have solvedthe thermally driven cavity problem for 107 and above. Table 4 shows the comparison ofthe adaptive FEM results with others for the Rayleigh number of 107. Again the adaptiveFEM results compare well with other solutions both in the magnitude of velocity andheat transfer rates but also with the locations of the maximum and minimum values. Asimilar comparison is shown in Table 5 for Rayleigh number 108, the same conclusionsapply. 11



(a) Mesh (b) Velocity Vectors
(c) Pressure (d) TemperatureFigure 4: Above �gures show the mesh, velocity vector plot, temperature contours andpressure contours for a Rayleigh number of 103103 104 105 106 107 108Umax 3.6493 16.1798 34.7741 64.6912 145.2666 283.0689y 0.8125 0.8235 0.8535 0.8460 0.8845 0.9455Vmax 3.6962 19.6177 68.6920 220.8331 703.2526 2223.4424x 0.1790 0.1195 0.0665 0.0380 0.0215 0.0130Nu0 1.1149 2.2593 4.4832 8.8811 16.3869 29.6256Numax 1.5062 3.5305 7.7084 17.5308 41.0247 91.2095y 0.08956 0.1426 0.08353 0.03768 0.03899 0.0670Numin 0.6913 0.5850 0.7282 0.9845 1.3799 2.0440y 1.0 1.0 1.0 1.0 1.0 1.0Table 2: The benchmark solution12



(a) Mesh (b) Velocity Vectors
(c) Pressure (d) TemperatureFigure 5: Above �gures show the mesh, velocity vector plot, temperature contours andpressure contours for a Rayleigh number of 104103 104 105 106Umax 0.0 0.0 -0.1 -0.1Vmax 0.0 0.0 -0.1 -0.7Nu0 0.2 -1.0 0.6 -0.7Numax -0.1 -0.1 0.1 2.2Numin 0.1 0.2 0.1 0.5Table 3: Solution error (%)13



(a) Mesh (b) Velocity Vectors
(c) Pressure (d) TemperatureFigure 6: Above �gures show the mesh, velocity vector plot, temperature contours andpressure contours for a Rayleigh number of 105Present work Haldenwang [12,13] Le Quere [5] Chenoweth [6] Le Quere [14]Umax 145.26 381.6 148.6 146 148.8y 0.8845 0.879 0.881 0.879Vmax 703.2526 700.4 699.1 699 699.3x 0.0215 0.021 0.0213 0.0213Nu0 16.3869 16.53 16.523 16.82 16.51Numax 41.0247 39.39 39.37y 0.03899 0.018 0.0180Numin 1.3799 1.36635 1.367y 1.0 1.0 1.0Table 4: The benchmark solution for Ra = 10714



(a) Mesh (b) Velocity Vectors
(c) Pressure (d) TemperatureFigure 7: Above �gures show the mesh, velocity vector plot, temperature contours andpressure contours for a Rayleigh number of 106Present work Haldenwang [12,13] Le Quere [5]Umax 283.0689 1082 321.9y 0.9455 0.928Vmax 2223.4424 2192 2222x 0.0130 0.012Nu0 29.6256 30.26 30.225Numax 91.2095 87.2355y 0.0067 0.008Numin 2.0440 1.91907y 1.0 1.0Table 5: The benchmark solution for Ra = 10815



(a) Mesh (b) Velocity Vectors
(c) Pressure (d) TemperatureFigure 8: Above �gures show the mesh, velocity vector plot, temperature contours andpressure contours for a Rayleigh number of 107
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(a) Mesh (b) Velocity Vectors
(c) Pressure (d) TemperatureFigure 9: Above �gures show the mesh, velocity vector plot, temperature contours andpressure contours for a Rayleigh number of 108
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6 ConclusionA full set of results has been produced for the thermally driven cavity problem at Rayleighnumbers of 103 to 108. The use of h-adaptivity ensures a very accurate solution to thisproblem at a reasonable computational cost. A pre-adaptive step, adapting the mesh onthe basis of the �xed temperature boundary conditions, allows the thin boundary layersto be captured e�ectively from the very beginning. The results presented compare wellwith existing transient and steady state solutions both qualitatively and quantitatively.For highly advection dominated problems, such as the high Rayleigh number cases of thethermally driven cavity, h-adaptivity ful�ls another very important function, in additionto the vital task of providing optimal meshes. This function is related to the de�ciencyof standard Galerkin �nite element method (analogous to centred di�erence FDM) insolving ow and transport problems where advection is the dominant mechanism. Manyspecial techniques exist in order to address this de�ciency, such as the SUPG method [23]and the Taylor-Galerkin method [24]. However Gresho and Lee [25] have shown that theoscillations that result from using GFEM in advection dominated problems are stronglyrelated to inadequate spatial discretisation. Usmani [26] showed conclusively that fortransient solution of advection dominated problems this was indeed the case and thediscretisation produced by using h-adaptivity made it unnecessary to use any specialschemes for advection dominant problems. This �nding is con�rmed by the results of thispaper, where all results have been produced using simply honest GFEM. In the opinionof the authors, this fact makes it doubly attractive to use this method.References[1] G. de Vahl Davis and I.P.Jones. Natural convection in a square cavity: a comparisonexercise. International Journal for Numerical Methods in Fluids, 3:227{248, 1983.[2] I.P.Jones. A comparison problem for numerical methods in uid dynamics, the 'dou-ble glazing' problem. In First International Conference for Numerical Methods inThermal Problems, pages 338{348, Swansea,UK, 1979.[3] T.Saitoh and K.Hirose. High-accuracy bench mark solutions to natural convectionin a square cavity. Computational Mechanics, 4:417{427, 1989.[4] G. de Vahl Davis. Natural convection of air in a square cavity: a benchmark solution.International Journal for Numerical Methods in Fluids, 3:249{264, 1983.[5] P.Le Quere. Accurate solutions to the square thermally driven cavity at high rayleighnumber. Computers and Fluids, 20:29{41, 1991.[6] D.R.Chenoweth and S.Paolucci. Natural convection in an enclosed vertical air layerwith large horizontal temperature di�erences. Journal of Fluid Mechanics, 169:173{210, 1986. 18
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