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NOMENCLATURE

angle of rotation

C, specific heat capacity (m? s72K™!)
e a-posteriori error

F right hand side vector

F  traction force (kg m s—2)

g acceleration due to gravity (m s=2)
he  element size (m)

k thermal conductivity (m kg s=3)
K  stiffness matrix

L characteristic length (m)

m  number of elements

M  consistent mass matrix

n unit normal vector

Nu  Nusselt number

P pressure (kg m~! s72)

q  heat flux (kg s73)

Q@  smoothed value of total heat flow dissipation (kg s™3)
Q  total heat flow dissipation (kg s™3)

Ra  Rayleigh number
t time (s)
t* non-dimensionalised time

T dependent scalar variable or temperature

U velocity in the z - direction (m s~ !)

v velocity in the y - direction (m s~1)

v*  non-dimensionalised velocity in the y - direction
v velocity vector (m s™1)

Vo intial value of the velocity vector (m s 1)

W weighting functions



AT

time stepping factor

volumetric coefficient of thermal expansion
control surface

time step size

percentage error

maximum permissible percentage error
thermal diffusivity (m? s™1)

dynamic viscosity (kg m~! s71)

density of fluid (kg m3)

domain area (m?)



ABSTRACT

A standard 2D GFEM code for coupled Navier-Stokes and energy equations is used with h-adaptive
meshing based on a-posteriori error estimation using the super-convergent patch recovery technique
for solving a range of advection dominated transport problems. It is demonstrated that such a method
provides a highly effective, simple and efficient way of dealing with the perennial problems in numerical
modelling of advection dominated transport, such as oscillations or wiggles with central difference type
discretisations (such as GFEM) and numerical (‘false’) diffusion when wiggle-suppressent schemes are
used. Additionally, the auto-adaptive finite element method provides a powerful means of achieving
optimal solutions without having to pre-define a mesh, which may be either inadequate or too expen-
sive. A number of benchmark problems are presented as application examples for this method before
solving a problem of natural convection in an air filled cavity with various orientations, for which

experimental results are available.



1 INTRODUCTION

A lot has been written on the issue of dealing with ”wiggles” or oscillations in CFD solutions, gener-
ated most commonly when using spatial (or temporal) discretisations akin to central differencing, for
instance the Galerkin Finite Element Method often abbreviated to GFEM [1]. The informed opinion
on this issue has tended to gravitate towards one of the two groups of protagonists, one favouring the
use of ‘honest’ methods and tolerating wiggles as a ‘self diagnostic property’ [1] and the other advocat-
ing use of special techniques to suppress the wiggles resulting in smoother solutions. In the relatively
smaller group of FEM-CFD researchers, the former group is led, quite vociferously, by Phil Gresho
and his colleagues [2] and we recognise Thomas Hughes [3], as the foremost member of the latter group
(again from a finite element perspective). We have immense respect for both of these authors and
their eminent colleagues and have profited abundantly from their labours. One purpose of this paper

is to provide a review of our experiences with both of these, ostensibly, opposing philosophies.

One of the principal reasons for generation of wiggles is lack of spatial resolution available in the
computational mesh. This is particularly problematic when dealing with advection of wave-forms not
adequately resolved by the mesh, as it is advection that really tests the mesh resolution because of
much higher signal propagation rate relative to diffusive processes. A detailed analysis of the reasons
for this can be be found in [1], among others. If the problem is identified as being that of inadequate
spatial resolution, the remedy then simply becomes a matter of exercising care in designing ones
mesh. However, this is not a simple task and does to an extent require an a-priori knowledge of the
solution. Furthermore, in dealing with time-dependent problems, the mesh resolution requirement
may change over the course of the analysis, making it even more difficult and expensive to use a single
mesh that retains adequate discretisation. These questions naturally lead one to look for a solution
based on adaptive mesh refinement strategies as it did one of the authors [4,5]. This work has been
extended considerably over the years [6-8] and a large number of numerical experiments have been
undertaken to show that the h-adaptive mesh refinement provides an effective bridge between the
two opposing philosophies discussed above. It can be used in conjunction with good Petrov-Galerkin
methods (such as SUPG [3]) to provide a solution where it may be impossible to achieve with ‘honest’
GFEM for ‘difficult’ problems (such as [5]) and it can be used just with ‘honest’” GFEM for most
advection dominated time-dependent problems with impressive results [9]. In effect this method

provides a mechanism whereby an experienced user has the choice of using ‘pure’ central difference



type discretisations with highly refined adaptive meshes or adding a degree of upwinding with selective
refinement to obtain ‘smooth’ solutions, all the while being aware of the merits or otherwise of their

choices.

In the following sections the basic equations and formulations, which are standard and well known, will
be reproduced in brief, for completeness. A review of some of the earlier work mentioned above will
be undertaken and selected results will be presented. Finally the method (using the author’s program
CADTRAS Coupled Advective Diffusive TRAnSport model) will be used to solve an experimental
benchmark problem by Leong et al [10,11]. They have undertaken experiments to produce a three
dimensional thermally driven titling cavity benchmark problem and have also solved it numerically.
Nusselt numbers have been made available for various inclination angles and Rayleigh numbers with
a view to establishing a physically-realizable benchmark solution for CFD code validation. This
paper aims to solve this essentially 3-D problem using a 2-D code and compare results with existing
experimental and numerical solutions set out by Leong et al [11]. The purpose is to demonstrate,
using another example, the effectiveness of the proposed combination of hA-adaptivity with ‘honest’

GFEM.

2 GOVERNING EQUATIONS AND NUMERICAL FORMULA-
TION

For the problems considered in this paper, either a scalar advection-diffusion equation has been solved
on its own or it has been solved as part of a coupled set with the Navier-Stokes equations for incom-

pressible flow:

The Navier-Stokes equations with a Boussinesq approximation included for natural convection prob-

lems:

p(aa—‘t’-i-v-Vv)—i-VP = V-u[Vv+(Vv)T]—pgﬂ(T—TT) on (1)

subject to the Continuity constraint:
V-v=0 on Q (2)
These equations are subject to the usual set of boundary conditions:
F = Pn—yp [Vv+ (Vv)T] ‘n on Ig (3)
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and initial conditions:

v(t=0)=v, with  V.ve=0 (5)

The notations have commonly implied meanings, therefore, v represents the velocity, T represents
temperature, 7, is a reference temperature, P represents pressure, u is the dynamic viscosity, g is
the acceleration due to gravity, 8 is the volumetric coefficient of thermal expansion, F represents the
applied tractions on the boundary I'r, n is the unit normal vector and v is the Dirichlet boundary

condition for velocity on the part of the boundary I',.

The Scalar Advection-Diffusion equation written using 7' as the dependent variable:

T
88_t +v-VT = VkVT on (6)
subject to boundary conditions:
n-(kVT) = ¢ on Ty (7)
T = T(z,y,t) on T (8)

and initial conditions:

T(t=0)=T, 9)

where ¢ is a specified normal scalar flux on the boundary I'g, T is the specified value of the scalar on

the boundary I'r and « is the diffusivity, which for heat transfer problems is given by,

K = — (10)

where, k is the thermal conductivity, p is the fluid density and C), is the specific heat capacity.



2.1 Finite element method

The standard Galerkin form of the finite element method (GFEM) is applied to the equation system
using the mized formulation with lower interpolation of pressures than that of the velocities. This
method is primarily chosen as it is ‘honest’” GFEM and with unconditionally stable implicit time
integration schemes (such as the mid-point rule used here) it is perfectly suited for use with h-adaptive
mesh refinement. The semi-discrete Navier-Stokes and scalar transport equations are presented as

follows using notation from Gresho et al, [12,13]:

Navier-Stokes

M, 0 O i Kuw Cu Kuw] /u F.
0 0 0 P|l+|CcT o cT||P|=]0 (11)
0 0 My] \v K Cv Kov| \v F,

Scalar advection-diffusion

[Mrz](T)+[Kr](T) = (Fr) (12)

Where M, K, C and F represent the mass matrix, viscous stress matrix, pressure gradient matrix
and global force vector respectively. Expansion of all terms can be found in Usmani et al [14]. The
two systems of equations above are solved as required: either as a coupled system, with the K
term containing the velocities (obtained from solving the flow field) and the F term containing the
buoyancy forces (determined by the temperature field) for natural convection problems; or separately
from each other for a given problem. For the coupled flow and scalar transport problems a six-noded
Taylor-Hood [15] element (with 3 continuous pressure nodes) is used, which is not the best choice for
enforcing continuity, however it is sufficient for the purposes of this paper. Therefore, the program
solves for the primitive variables: u-velocity, v-velocity and T-scalar at all nodes in the mesh and P-
pressure at the corner nodes. For the uncoupled scalar transport problems any common 2D element

may be chosen, linear triangles and quads are used for two of the benchmark problems discussed later.

For the sake of comparison, optional extra terms corresponding to the an SUPG (streamline-upwind
Petrov-Galerkin) formulation [3,5] formulation are added to the advection-diffusion stiffness term K
of the discretised scalar transport equation 12, which adds some additional diffusion in the streamline
direction (this however as part of a consistent Petrov-Galerkin approach). The ‘smoothing’ effect
is further enhanced by a ‘discontinuity capturing’ term [16] in the direction of the steepest scalar

gradients.



2.2 Time integration

Temporal discretisation of the time domain is achieved by applying the generalised midpoint rule,

[17,18].

M F
ax;ta + Kn—|—a:| (Tn—}—l) = - Kn—|—a (Tn) + M

alt o «o

[Mn+a (1 — a) (13)

Variation of « leads to different members of this family of methods i.e.

a = 0 -Forward Difference or Forward Euler

a = % -Midpoint rule

a = % -Galerkin

a = 1 -Backward Difference or Backward Euler

In keeping with the ‘honest’ GFEM theme of this paper the midpoint rule is chosen, with timestep sizes
chosen to be small enough to avoid oscillations between time steps. The choice of an unconditionally
stable implicit method is enforced by the use of h-adaptivity as the smallest elements determine the

stability of conditionally stable explicit methods, which makes them impractical for use in this context.

3 ADAPTIVITY

The use of h-adaptivity removes the necessity of designing a suitable mesh at first and perhaps going
through an expensive trial-and-error process. Adaptivity automatically produces an optimal mesh
based on a user specified discretisation error thus saving computational time and focusing effort
intelligently over successive time steps on areas of high scalar gradients (which for the problems
considered here coincide with the areas of high velocity gradients). There are five distinct steps to the

iterative adaptive process used here:

1. Solution of the coupled system

2. Recovery of smoothed scalar gradients using the super-convergent patch recovery (SPR) method

[19]



3. Error Estimation using the a-posteriori error calculated at all nodes in the mesh for the scalar

field
4. Mesh refinement based on the mesh sizes produced from the previous step

5. Transfer of all data to the new mesh

3.1 Recovery

The temperature field generated by the finite element method is most accurate at nodal points whereas
the temperature gradients are most accurate at Gaussian integration points, known as the super-
convergence phenomenon. Hinton and Campbell [20] showed that finite elements produce superior
values of temperature gradient at node points after application of a smoothing procedure. Their
method was based on a global smoothing scheme requiring the solution of a large system of equations.
A more efficient and effective procedure was introduced by Zienkiewicz and Zhu [19], called super-
convergent patch recovery (SPR). The smoothed nodal gradients are calculated from the Gauss points
on a patch of elements surrounding a node, using a least squares interpolation, for each node in the

mesh.

3.2 Error Estimation

The error estimator used was originally derived for heat conduction [21]. Mathematical justification
of using such an estimator for advection-diffusion problems does not exist, however as the estimator
used is based on the scalar flux, it has proven very effective in detecting regions of high scalar gradient,
which in practice is sufficient for the purposes of this paper. The a-posteriori error is based upon an

energy norm (see [21]),

lell? = / (VT)TwVTdQ — / (VT vV TdQ (14)
Q Q

if we define,

QI = [ (v7)TkVTd0

Q]2 = /Q (VD) s Td0 (15)
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then Equation (14) can be rewritten as

lell” = 11QI”* - [|QII” (16)
Such a definition allows a practical representation of the error norm in terms of a percentage error 7,

el
= 17 v100% 17
= Q0% a7

3.3 Mesh refinement

Specification of a permissible error 7 determines the level of refinement throughout the mesh, leading
to a predicted reduction or increase in the element sizes so that the new mesh may possess an approx-
imately equal distribution of error. The maximum permissible error for each element is calculated

as,
TR
lell, = n(—m ) (18)

where m is the number of elements, 7 is the specified maximum percentage error. Dividing ||é|[, by

the calculated error in an element yields a parameter &, as follows,

@

€e (19)

®

i.e. if & > 1 the mesh must be refined in the vicinity of element e, conversely, if £, < 1 the mesh may

be coarsened. The new element size is calculated using,

where h, is the original element size and p is the order of the element shape functions.

3.4 Data transfer to new mesh

Ensuring proper transfer of variables between meshes is crucial for conservation of quantities such

as energy, mass and momentum. A transfer strategy using local coordinates of nodal points and

11



elemental shape functions has been used that maps the mesh data accurately. The local coordinates
(€ — n) of each node in the adapted mesh are determined with respect to the elements of the previous

mesh. Element shape functions are then used to interpolate the data onto the new mesh nodes.

The formulations described above have been implemented in the implicit transient FE code CADTRAS
(Coupled Advective Diffusive TRAnSport model). The code incorporates an unstructured Delaunay
triangulation based mesh generator [22], which allows automatic adaptive re-meshing to take place at

each time step if necessitated by the error estimation algorithm.

4 BECNCHARAK EXAMPLES

A number of benchmark problems are presented in the following sections to demonstrate the method

described.

4.1 Steady state pure advection

The first problem considered is one where no amount mesh refinement is able to provide a satisfactory
solution without using a ‘wiggle suppressent’ [5,6]. It is a classical benchmark problem for testing
advective transport algorithms, where a step discontinuity at a boundary is advected into and out of
a domain of regular geometry. The source of ‘wiggles’ in this problem is both the steepness of the

‘wave form’ to be advected and that it is introduced as a Dirichlet boundary condition.

For this problem the SUPG method is used (with and without the discontinuity capturing term) and
the (excellent) results are shown in Figure 1. These results were achieved using an iterative adaptive

scheme, four intermediate meshes from which are shown in Figure 2.

The same problem was solved using GFEM using the final adaptive mesh obtained from the SUPG
solution. The result is shown in Figure 3, which clearly shows that for this problem the SUPG method

or equivalent is indispensable.

4.2 Time-dependent pure advection

The second problem that of a advecting a cosine hill in a rotating velocity field, the exact solution

being a rigid body rotation of the cosine hill. For this problem a few adaptive passes were executed

12



Figure 1: Adaptive solution (a)SUPG with discontinuity capturing term (b)SUPG without disconti-

nuity capturing term

Figure 2: Sequence of selected adaptive meshes
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Figure 3: GFEM solution using the final adaptive mesh

on the initial conditions to obtain a suitable mesh right from the beginning of the analysis [6]. Figure
4 shows the solutions obtained after one revolution of the cosine hill, using both SUPG and GFEM.
Although there is relatively larger phase error in the GFEM solution (demonstrated by the thickness
of the base), the results from this problem show quite clearly that unlike the previous problem, a
wiggle suppressent (such as SUPQG) is not essential for time-dependent problems if h-adaptivity is used
leading to meshes appropriate for the problem being produced automatically. Four of these meshes

are shown in Figure 5.

4.3 Natural convection in a thermally driven cavity at high Rayleigh numbers

The method is further tested by application to the well documented benchmark problem of the ther-
mally driven cavity. This problem becomes more difficult to solve at high Rayleigh numbers char-
acterised by; thin boundary layers, separation and recirculation zones and oscillatory internal waves
dominating the flow behaviour. The authors successfully benchmarked this method for Rayleigh num-
bers (Ra) up to 108 [7], when the solution reaches a steady state. Further tests were performed for

even higher Ra, up to 4 x 108, for cases where no steady states exist and the solution moves from
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Figure 4: Cosine hill after one revolution using an adaptive mesh and 200 timesteps

Figure 5: Adaptive meshes at quarter revolutions
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periodic to quasi-periodic to mildly chaotic [8]. Figure 6 show adaptive meshes at 6 time points for
the Ra = 4 x 10® case. Figures 7 and 8 show the corresponding velocity and temperature fields. The
apparent wiggles in the temperature field contours indicates that the mesh may still not be sufficiently
refined (the ‘self diagnostic’ property of GFEM), this is because a limit to the minimum element size
possible was enforced during the adaptive process. Finally, Figure 9 shows the time history of the tem-
perature variation at the top left-hand departing corner of the square cavity (x=0.1032, y=0.8036)
along with a fast-Fourier transform analysis unravel the frequency content of the solution. These

results compared favourably with other published work [23].

4.4 Natural convection in a cubical air-filled cavity

This final problem was set as a 3D benchmarking exercise for the CHT’01 Conference [24]. It involves
modelling fluid flow in a two dimensional square cavity of typical dimension L with the two opposing
walls being maintained at a temperature difference of AT (see Figure 10). The temperature of the
remaining walls varies linearly from T} to T¢, set to 300 K and 307 K respectively. The velocities at
all four walls are set to zero, enforcing no-slip conditions. The fluid inside the cavity is initially at rest
and at a temperature which is the mean of the temperatures on the vertical walls. Fluid properties are
considered to be invariant with temperature. The steady state flow and heat transfer in the thermal
cavity is characterised by the Rayleigh number,

ATL3

voa

Ra = gf

(21)
Temperature, velocity, time and distance were non-dimensionalised as per Mayne et al [25].
Table 1 presents a range of Nusselt numbers for each angle and Rayleigh number examined.

0 = 90°

Solutions for Ra = 108 and 107 are given in table 1 and compare well to results presented in Leong et
al. Ra = 10® problem does not reach steady state in a reasonable computational length of time. The
magnitude of oscillations in the temperature field in the top left and bottom right hand corners of the
cavity for Ra = 10% do not decrease over time which suggests an unsteady solution to the problem or
at least a very slow progression to steady state. The same problem solved with adiabatic horizontal

walls reaches steady state quite rapidly [7]. The influence of the linear temperature variation across
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(a) Time step 1, velocity vectors. (b) Time step 1, isotherms.

(e) Time step 22, velocity vectors. (f) Time step 22, isotherms.

Figure 7: Velocity vectors and isotherms for Ra = 4 x 10% at (a),(b) t* = 0.0; (c),(d) #* = 0.00028;

18
(e),(£) ¢* = 0.00044.



(b) Time step 33, isotherms.

(e) Time step 78, velocity vectors. (f) Time step 78, isotherms

Figure 8: Velocity vectors and isotherms for Ra = 4 x 10% at (a),(b) t* = 0.00066; (c),(d) t* = 0.00138;

19
(e),(f) t* = 0.00156.
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Figure 9: Time trace histories and FFT plots at x = 0.1032, y = 0.8036 for temperature

20




Linear —
variation from
TctoTh

Figure 10: Boundary conditions for thermal cavity benchmark problem

the top and bottom boundaries destabilises the flow preventing a steady state solution. The absence
of the third dimension in the model also removes the damping effect of the end walls in the cubic

cavity, the 2-D solution assuming an infinitely wide cavity perpendicular to the plane.

0 = 45°

The average Nusselt number on the cold wall for Ra=10% compares well with results presented by
Leong et al [11], coming to within 0.5 % of the experimental value. Figure 11 show the temperature
and velocity fields for this case at steady state. In the solution of Ra=107 the progression to steady

state is very slow again and a range of Nusselt number variation at the end of the analysis is given in

table 1.

0=0°
In most of the analyses for the thermally driven cavity problem, the adaptive process reaches a stable
discretisation, beyond which the mesh doesn’t change any further. This happens because either the

calculated errors remain below the specified maximum percentage error 7) or, the specified minimum

21



(a) Temperature field (b) Velocity vectors
Figure 11: Steady state results for Ra=10°

element size has been achieved by the mesh, the latter being the more likely explanantion in regions
of steep gradients. Figure 12 shows the final refined mesh for the angle of 0° and Ra=10°. The
boundary regions are highly refined, allowing effective capture of the steep temperature gradients.
Figure 13 illustrates the development of isotherms and velocity vectors over time. Figure 13(a) shows
the temperature distribution near the start of the run, at t* = 0.05439. The isotherms are practically
symmetrical in both directions, this is reflected in the velocity vectors that clearly show four identical
cells, one in each corner. The equilibrium between hot and cold fronts is destabilised at t* = 0.08653.
This leads to hot air rising up along the left half of the domain. Figure 13(c) shows tilting in the
isotherms and the beginning of a single large cell in the centre of the cavity. Finally steady state is
achieved, a large central eddy dominates the flow field, two smaller re-circulations persist in the top-left
and bottom right corners, see figures 13(e) and 13(f). The steady state solution for Ra = 10° is very
different from the 3-D solution presented by Leong et al. The flow is clearly fully three-dimensional
and cannot be modelled effectively in 2-D as stated by Kuyper et al [26] however the 2-D solution of
this problem still generates interesting features and is worth pursuing in its own right as a benchmark
for testing transient 2-D codes. The average value of Nusselt number on the cold face is lower than
the experimental results. The average Nusselt number on the cold face obtained for Ra = 10° is also

significantly below that presented by Leong et al.
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Figure 12: Last adaptive mesh and isotherms for § = 0°, Ra = 10°

Nu
Ra | 6 =0° 6 = 45° 6 = 90°
10° | 2.6549 - -
106 | 3.4214 8.8823 6.4806
107 - 15.3427-19.9798 12.4286
108 - - 22.7993-24.1878

Table 1: Results

It is clear from the above analysis that this problem can be successfully modelled in 2-D for angles

of 90° and 45° for the Rayleigh numbers considered, however, the flow is fully three-dimensional at

0 = 0° and 2-D modelling is not satisfactory.

5 CONCLUSIONS

The benchmark examples presented show clearly that for the time-dependent problems discretisation

produced by using h-adaptivity made it unnecessary to use any special schemes and GFEM was suf-

ficient for producing accurate and efficient solutions while maintaining its ‘self diagnostic’ property.

The accuracy compared favourably with other published solutions. Both the spatial and temporal dis-

cretisation schemes used here have a central difference character and suffer from oscillatory behaviour
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(f) Velocity vectors, t* = 0.48703
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in problems where sharp gradients are present, leading to the use of ‘wiggle suppressent’ upwinding or
other higher order schemes, with uncertain results. h-adaptive methods with automatic mesh refine-
ment based upon the actual physics of the problem are inherently efficient as no development time is
required to create the ‘right’ mesh for a problem. They are also economical as an ‘optimal’ discreti-
sation is produced for a desired level of accuracy, with grid-points placed only where they are needed.
Another significant advantage in using such an approach is that relatively little additional work is
required in modifying existing codes. The actual computational time is divided between the solution
of the discretised governing equations and the adaptive process (gradient recovery, error-estimation
and mesh refinement). The adaptive process accounted for only 0.25% of the total CPU time in the
thermally driven cavity problems solved here. This can be reduced further by using simpler structured
meshes with a mesh enrichment method of refinement. In solving these problems the conservation of
mass was also monitored and the differences arising from data transfer from one mesh to another were

within one half of a percent.
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