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Abstract
Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engi-

neering. It consists of symbols representing DNA subsequences, including regulatory ele-

ments and DNA assembly features. These symbols can be used to draw illustrations for

communication and instruction, and as image assets for computer-aided design. SBOL

Visual is a community standard, freely available for personal, academic, and commercial

use (Creative Commons CC0 license). We provide prototypical symbol images that have

been used in scientific publications and software tools. We encourage users to use and

modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/

visual.
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Background
By the 1970s, molecular biologists had already developed many variations in the language used
to describe functional regions of DNA, or genetic sequence features, with different terms used
to describe similar features in different organisms. A protein-coding DNA sequence might be
called a coding sequence (CDS), an open reading frame, an exon, or simply a gene, depending
on the organism and method of study. To address such concerns, the Sequence Ontology [1]
maintains a standard set of terms for describing different genetic features. This effort helped
unify annotation efforts during the rise of high-throughput genome sequencing in the last
decade.

Across that same decade, synthetic biology has advanced capabilities for forward engineering
of complex genetic systems with multiple sequence features. This has increased the need for
consistent terminology and representations of genetic designs. A visual representation of
genetic sequence elements and their arrangement can quickly communicate adjacency, conti-
guity, repetition, and uniqueness. These properties become relevant as genetic designs become
more complex, with multiple promoters, CDSs, etc. This is especially true for genetic designs
expressed heterologously and when a system is engineered first in one organism (e.g., [2]), then
moved to a different host (e.g., [3,4]).

Standards are enabling technologies for communication: standard symbols have had a pro-
found impact in other engineering disciplines, such as the Institute of Electrical and Electronics
Engineers (IEEE) standards for representing electronic components and circuits [5,6], or com-
puter-aided design (CAD) standards for representing architecture and mechanical engineering
[7,8]. Standard symbols simplify figures and user interfaces, enhance familiarity, and stream-
line the design process. SBOL Visual aims to have a similar salutary effect for the engineering
of biological systems.

SBOL Visual Specification
Synthetic Biology Open Language (SBOL) Visual is the product of an ongoing community
effort to develop and standardize a graphical language for synthetic biology and biological engi-
neering, focusing initially on symbols for commonly used sequence features [9]. In its current
form, SBOL Visual is a set of symbols that correspond to sequence features encoded by a DNA
molecule. The meaning of each symbol is established by association with terms in the Sequence
Ontology (S1 and S2 Tables). SBOL Visual builds on the Sequence Ontology’s ten years of
work on standardizing precise definitions of genetic sequence features, and the success of this
work ensures that SBOL Visual symbols are well aligned with established scientific vocabulary.
The mapping to Sequence Ontology terms also connects SBOL Visual to the SBOL data
exchange standard, enabling automatic mapping from data to a graphical representation [9].

Though SBOL Visual makes use of Sequence Ontology terms, the two projects address objec-
tives of differing scope. The Sequence Ontology provides a controlled vocabulary for all func-
tional genetic features, while SBOL Visual focuses on facilitating the communication of
engineered genetic designs. One driving need for SBOL Visual is to abstract and simplify the
full complexity of sequence features that may be represented with a single symbol, e.g., the pro-
moter, which is composed of many functional subsequences [10]. For example, the “bent
arrow” symbol used by SBOL Visual for a promoter (SO:0000167) could also be used to denote
the transcription start (SO:0000315) when describing the substructure of the same promoter.
Such usage is common in the scientific literature, and unambiguous since the descriptions are
at different levels of detail. As such, each SBOL Visual symbol can map to one or more terms in
the Sequence Ontology. For features common in engineered systems but not yet in the Sequence
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Ontology, SBOL Visual has contributed back to the ongoing development of Sequence Ontol-
ogy by contributing several new terms (e.g., restriction_enzyme_assembly_scar, SO:0001953).

In developing these symbols, the community initially selected a set of commonly used
genetic parts and a set of features relevant for the assembly of DNA molecules. The symbols
were chosen based on common depiction of genetic designs in molecular, systems, and syn-
thetic biology publications. The 12 core features (S1 Table) include typical sequences needed
for the proper functioning of a gene: such as signals for DNA replication, RNA transcription,
and protein translation. We specify the simple rectangle symbol to be a “user-defined” catchall
for special genetic features not currently part of SBOL Visual. We also include nine symbols to
describe common methods of DNA assembly, such as restriction sites (S2 Table). Together
these 21 symbols were proposed and ratified as SBOL Visual 1.0 Specification.

SBOL Visual was designed to serve a range of formats, including whiteboard discussions,
slide presentations, scientific publications, and computer-aided design [11]. Some symbols were
adjusted to account for communication goals, particularly to increase visual distinctiveness, to
decrease feature orientation ambiguity, and to facilitate rapid design. The SBOL Visual symbols
can thus be drawn quickly by hand, used as stencil art with computer illustration software, ren-
dered in a web browser, used as image primitives for building software tools, or applied as a
formal symbology for communication and instruction. Inspired by the clarity, simplicity, and
usefulness of electronic symbols, stylistic features such as scaling, line-width, color, and use of
text labels are left explicitly unspecified in SBOL Visual. This built-in flexibility facilitates varia-
tion in style for functional or aesthetic purposes, which allows genetic designers and software
developers to differentiate their images and interfaces to express additional information (e.g.,
module structure, protein type, origin of components) or artistic style while still benefiting
from the standard. Thus, SBOL Visual provides a set of readily distinguishable basic shapes,
which can be refined for individual applications.

Current Use in Publications and Software
Several scientific publications have already adopted SBOL Visual (e.g., [12–16]). To illustrate
the potential benefits of SBOL Visual in publication, consider the development of the multi-
color genetic reporter system shown in Fig 1. This system was initially built with three fluores-
cent protein genes to measure genetic regulation and noise in Escherichia coli [17], and it was
later modified to use as a test bed for measuring combinations of promoters and ribosome
binding sites [18], the effect of codon bias on the initiation of translation [19], and to analyze
the effects of carbon and nitrogen metabolism on synthetic circuit performance [20]. When
originally published, each of these publications used modified forms of the genetic system and
slightly different symbols to depict the genetic features (Fig 1A–1C left-side images). Unifying
such variant genetic visual depictions with a common symbology (Fig 1A–1C right-side
images) makes their relationship much more immediately apparent, and clearly communicates
their structural differences. We expect the use of SBOL Visual to disseminate new results,
inspire new genetic designs, and communicate ideas across human language barriers.

Adoption of SBOL Visual by software tools (see Box 1) has further helped to drive use of
SBOL Visual in publication. For example, early versions of the SBOL Visual symbols in Clotho
Spectacles [22] were used to produce schematics for a genetic system able to convert ambient
nitrogen to ammonia (nitrogen fixation) (S1 Fig) [13]. The SBOL Visual symbols have also
been used to represent software-generated combinatorial designs of transcriptional cascades
and feed-forward circuits [23], and in layered transcriptional circuit devices derived from
CRISPR for use in mammalian cells [15]. In sum, SBOL Visual is becoming an accepted stan-
dard for communicating genetic designs, both in software and in the scientific literature.
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Fig 1. SBOL Visual aids rapid communication of variant synthetic DNA designs: multi-color reporter variants. In this figure we present an example
genetic reporter device [17,21] to show how a common symbology can highlight the differences between a series of related DNA constructs. (A) The three-
color, green fluorescent protein (GFP)-based genetic reporter was designed for easy swapping of each cassette’s promoter by methods based on restriction
cloning or recombination, allowing it to be modified to measure promoters for analyzing the effects of growth condition on circuit performance variation (figure
modified from [20]). The SBOL Visual symbology (right) highlights that the promoters are variable, and the coloring of the CDS (which is not constrained by
SBOL Visual) is used to keep track of which genetic reporter is at which position, including three fluorescent proteins (CFP: cyan, YFP: yellow, RFP: red).
Equivalent means for distinguishing sequences include fill/hatch patterns (e.g., for black-and-white publication) or textual labels above the components. (B)
The three-color reporter was modified to make a protein fusion between the Yellow Fluorescent Protein gene and the cI repressor from phage lambda
(modified from [21] gray and yellow in the SBOL Visual diagram). This shows how the user-specified coloring can add new information to the basic glyphs.
This design also swapped around the positions of the different reporter genes, as well as replacing the promoters, to create a regulatory circuit in which the
regulatory protein could be directly observed via the protein fusion with YFP. (C) The three-color reporter was modified to a two-color system, and the YFP
gene was replaced with a GFP variant, to optimize two-color measurement. This system was used to systematically measure all combinations of 114
promoters and 111 ribosome binding sites (modified from [18]). (D) The DNA sequence of the three-color reporter construct presented in [17]. Here the
promoter and terminator sequences are underlined, and the three color fluorescent genes are indicated by highlighting the text as cyan, yellow, or red. The
purple sequences denote ribosome binding sites. This highlights how the SBOL Visual notation in (A) is much easier to quickly understand than the raw
sequence, while still clearly communicating the organization of genetic parts.

doi:10.1371/journal.pbio.1002310.g001
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New Symbol Adoption and Symbol Variations Process
Although SBOL Visual can express many useful features of genetic designs, it is not complete.
SBOL Visual is developed through an open and ongoing community process, and any synthetic
biology practitioner is encouraged to propose new symbols and modifications to existing sym-
bols. This is done by submitting a proposal to the SBOL Visual working group by email, con-
taining the proposed name, symbol, associated Sequence Ontology term, and motivation for
addition of the symbol. In cases in which no appropriate Sequence Ontology term exists, the
SBOL Visual working group requests one; we have so far submitted ten such terms to the
Sequence Ontology. The proposed symbol then goes through an endorsement process, a trial
period, and finally adoption by open community vote.

Using the same process, a symbol may be proposed as a variant of an existing symbol. Sym-
bol variants share the same Sequence Ontology term, but may be more useful in different con-
texts. For example, an asymmetric variant of the symbol for transcriptional terminator has
been proposed in order to better capture the often directional behavior of these genetic parts.
While a more complex shape, it allows for more explicit specification of directionality when

Box 1. SBOL Visual Adoption in Academic and Commercial
Software Tools Enables Clear Design Specification and Accurate
Sequence Annotation

• Pigeon [24] is a synthetic biology design visualizer that generates SBOL Visual figures
from terse strings similar to classical genotype notation with a great deal of flexibility,
including the ability to color-code, invert, and add text descriptions to the symbols.

• The ICE genetic design repository software platform [25] includes an SBOL Visual
view (created automatically using Pigeon) with DNA component types (CDS, termina-
tor, etc.), encouraging more accurate sequence annotation. This view is automatically
generated from the uploaded annotated sequence file.

• The GraphViz graph visualization package [26] includes SBOL visual symbols, which
can be used to visualize genetic constructs and include them as components in arbi-
trary graph diagrams.

• SBOL Visual WebWidgets (see Table 1) allow for dynamically rendering the symbols
in Scalable Vector Graphics (SVG) and their styling using Cascading Style Sheets
(CSS). The current set of available widgets include CDS, promoter, terminator, and
restriction site.

• The VisBOLWeb-based design visualizer (see Table 1) is an open-source tool enabling
the dynamic, automated generation of SBOL Visual designs from SBOL documents in
the browser, while DasBOL (see Table 1) provides a web service for querying relation-
ships between SBOL Visual and Sequence Ontology terms.

• SBOL Visual symbols are used as interactive abstractions of genetic parts in a number
of genetic design applications, including BioCompiler [16], Clotho [22], DeviceEditor
[27], GenoCAD [28], SBOL Designer [29] and its Geneious extension [30], TeselaGen
Design Editor [31], Tinkercell [32], and VectorNTI Express Designer [33].
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significant. Variant symbols may also be proposed by software tools, to allow for style differ-
ences between user interfaces. Variants also provide a path for improvement of symbols and
deprecation of obsolete versions over time, and they allow contextual details and styles to be
recognized by the SBOL Visual standard.

Collaboration and Future Work
SBOL Visual can be combined with other graphical languages, such as symbols from the Sys-
tems Biology Graphical Notation (SBGN), a standard for depiction of biological regulatory net-
works and molecular interactions [34]. SBOL and SBGN are both core standards of the
COMBINE community project [35]. The SBGN Activity Flow language has codified the com-
mon use of network interactions diagrams between biological components, and can display
regulatory interactions between genetic parts represented by SBOL Visual (S1A Fig). The
SBOL Visual and SBGN development groups are collaborating with the aim of enabling seam-
less and unambiguous use of both standards. With such collaborations and the development of
further SBOL Visual symbols, we hope to enable better depiction at the various levels of organi-
zation required to represent engineered biological systems.

Parallel efforts are underway to extend the language with higher-level concepts like genetic
devices, genetic systems, and cellular chassis. At the sequence level, many genetic features
become strongly dependent on the host organism. We envision that several of the 12 core
design SBOL Visual symbols could be expanded in detail to more detailed visual languages.

For example, the CDS symbol could display more detailed information about the protein it
encodes. For rational protein engineering, a common design task is to fuse two different pro-
tein functional domains into a single molecule, such as the repressor-YFP fusion depicted Fig
1B. Often, designs use a flexible linker sequence in between two functional domains. One future
goal is to develop a systematic visual representation of protein coding sequences that can dis-
play the design choices in making such fusions. This protein design language could also include
distinctive symbols representing design elements such as cellular localization signals, protein
degradation signals, phosphorylation sites, protein cleavage sites, and purification tags. Many

Table 1. Links to SBOL Visual resources and related tools.

SBOL Visual website: Project page with information about SBOL Visual and
download links

http://sbolstandard.org/
visual/

Sequence Ontology: Terms used to establish SBOL Visual symbol meanings http://sequenceontology.
org/

Pigeon: Web tool for fast and easy scripting of SBOL Visual diagrams (open
public web server)

http://pigeoncad.org/

ICE Genetic Repository: Repository for parts, generates SBOL Visual from
annotated sequence files (open source but requires login account to use
public web server)

https://public-registry.jbei.
org

Web Widgets: JavaScript SBOL Visual web renderer (open source with live
demo)

http://drdozer.github.io/
sbolv/

VisBOL: Open-source web-based SBOL Visual design visualizer in
JavaScript, with support for visualizing Genbank and SBOL standard file
formats

http://visbol.org/design/

DasBOL: A web service which looks up SBOL Visual terms associated with
Sequence Ontology codes

http://dasbol.org/

DeviceEditor: A visual biological CAD canvas (not open source and requires
registration)

https://j5.jbei.org/

TeselaGen Design Editor: A visual biological CAD canvas (commercial
software, requires registration, free for academic use with registration)

https://teselagen.com/

doi:10.1371/journal.pbio.1002310.t001
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functional protein domains have been annotated by SwissProt and UniProtKB [36] and pro-
vide a rich source of sequences for rational protein design. For example, an inducible eukary-
otic transcription factor was rationally designed by fusing domains for DNA binding, estrogen
response, and promoter activation [37]. We hope to extend SBOL Visual to be able to visually
depict such feats of engineering at the sequence design level.

The SBOL Visual Website and Data Distribution
The SBOL Visual website hosts prototypical symbol images in several formats, including vector
files, an Omnigraffle stencil set, a set of web widgets, and a TrueType SBOL Visual font for
word processors. The website also provides human-readable mappings between our terms and
the Sequence Ontology terms, descriptions of how these terms are being used in CAD tools,
and instructions for submitting new symbols and symbol variants. A machine-readable map-
ping of SBOL Visual symbols to common GenBank feature keys, Sequence Ontology terms,
and Pigeon and Graphviz codes are provided as S1 Data and are also available via the SBOL
Visual website. The SBOL Visual specification is published as a BioBrick Foundation Request
for Comments (BBF RFC) upon approval by the SBOL Developers Group. SBOL Visual ver-
sion 1.0.0, was published as BBF RFC 93 [38]. To make suggestions, ask questions, or join the
SBOL Visual working group, visit the SBOL Visual website or email visual@sbolstandard.org.

Supporting Information
S1 Data. Machine-readable mapping of SBOL Visual symbols to common GenBank feature
keys, Sequence Ontology terms, and Pigeon and Graphviz codes in CSV format.
(CSV)

S1 Fig. SBOL Visual diagrams can be created by multiple methods for various use cases and
levels of formality. A gene regulatory network for production of T7 RNA Polymerase as an
output to isopropyl-beta-D-thiogalactopyranoside(IPTG) AND aTc logic as presented by
Temme et al. is shown: (A) informally sketched on a whiteboard, as might be done in design
brainstorming, and (B) generated using Pigeon. These illustrate how different stages of the
design process use the symbols differently. For example, (A) and (B) include regulation arcs
while the figure in the original manuscript includes origin of replication and resistance mark-
ers. Also illustrated here is how symbol use influences the development of the standard. Use of
the circle around an “x” for spacer by Temme et al. led to the inclusion of the symbol in Pigeon,
and the symbol is currently going through the new symbol adoption process. Parts (A) and (B)
demonstrate depiction of regulation alongside SBOL Visual. For example, “repressor tetR
represses promoter Ptet”is represented by a line linking the tetR CDS symbol with the Ptet pro-
moter symbol. This is formally described by SBGN Activity Flow as an inhibitory arc. In such
combined diagrams, SBOL Visual depicts the genetic parts while SBGN depicts the network of
interactions between biological components. SBGN is particularly compatible with SBOL
Visual, and the vast majority of regulation maps in synthetic biology publications can be
described using the SBGN Activity Flow language. In Activity Flow, nodes represent “activities”
(e.g., gene activity) while arcs represent the effect of one activity on another. Therefore, SBOL
Visual symbols can represent Activity Flow nodes, with arcs representing the regulation logic.
(TIFF)

S1 Table. SBOL Visual symbols for genetic design.
(PDF)

S2 Table. SBOL Visual symbols used for cloning and sequencing.
(PDF)
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