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There is an urgent need to make drug discovery cheaper and faster. This will

enable the development of treatments for diseases currently neglected for

economic reasons, such as tropical and orphan diseases, and generally increase

the supply of new drugs. Here, we report the Robot Scientist ‘Eve’ designed to

make drug discovery more economical. A Robot Scientist is a laboratory auto-

mation system that uses artificial intelligence (AI) techniques to discover

scientific knowledge through cycles of experimentation. Eve integrates and

automates library-screening, hit-confirmation, and lead generation through

cycles of quantitative structure activity relationship learning and testing.

Using econometric modelling we demonstrate that the use of AI to select

compounds economically outperforms standard drug screening. For further

efficiency Eve uses a standardized form of assay to compute Boolean functions

of compound properties. These assays can be quickly and cheaply engineered

using synthetic biology, enabling more targets to be assayed for a given

budget. Eve has repositioned several drugs against specific targets in parasites

that cause tropical diseases. One validated discovery is that the anti-cancer

compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the

malaria-causing parasite Plasmodium vivax.
1. Introduction
New drugs are generally slow (more than 10 years) and expensive (more than $1

Billion) to discover and develop. Consequently tropical diseases, malaria, schisto-

somiasis, Chagas’ disease, etc., which kill millions of people and infect hundreds

of millions of others are ‘neglected’ [1,2]; and ‘orphan’ diseases with few sufferers

remain untreatable [3]. More generally, the pharmaceutical industry is struggling

to cope with spiralling drug discovery and development costs [4].

The most important steps in early stage drug design are shown in figure 1 [5].

A key initial step is to develop an ‘assay’. This is a ‘wet’ (biological/chemical) or

‘dry’ (computational) experiment that estimates whether a small molecule (com-

pound) is likely to treat a disease. This assay should be relatively cheap and fast to

execute as it will be run multiple times. A compound that passes the assay is

called a ‘hit’. The next step is to run a drug screen, where a ‘library’ (set) of
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Figure 1. Early stage drug design. The contribution of standardized synthetic biology assays and Eve to a cheaper faster drug discovery pipeline. (Online version
in colour.)
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compounds is tested against the assay. This library may be very

large, tens/hundreds of thousands, maybe millions of com-

pounds. Such mass screening is generally done in a brute-

force and unintelligent way: ‘begin at the beginning and go

on till you come to the end: then stop’ (Lewis Carroll). As the

a priori probability of any library compound being a hit is

low, it is difficult to design an assay that does not have an

appreciable number of false positive hits. Therefore, it is gener-

ally necessary to execute experiments to retest (‘confirm’) the

hits. These experiments are more expensive and slow to exe-

cute, but have a much lower false positive probability. From

the set of confirmed hit activities, a quantitative structure

activity relationship (QSAR) is learnt [6]. This is a function

whose input is the structure of a compound, and whose

output is the predicted activity on the assay. As the output is

typically a real number, QSAR learning is generally a

regression task. QSARs generalize the results of assays and

guide the synthesis of new compounds. After new compounds

are synthesized, they are tested against the hit-confirmation

assay, and the results of these assays are used to learn a more

accurate QSAR, and the cycle repeated. The process is termi-

nated when a compound is found that has a sufficiently

high score on the assay, and which passes other tests such as

low predicted toxicity, potential for modification, etc. This

compound is called a ‘lead’.

The standard way to improve the economics of a process

is through automation and standardization [7]. The use of

automation has been enthusiastically pursued by the pharma-

ceutical industry. Much of this effort has gone into making

library screening faster, especially through miniaturization,

with the result that high-throughput robotic systems now rou-

tinely screen millions of compounds in library screens [5]. Less

effort has gone into automating other steps of early stage drug

design, and standardization has been little used.

A natural extension of the trend of increased involvement

of automation in science is the concept of a Robot Scientist

[8,9]. A Robot Scientist automatically: originates hypotheses

to explain observations, devises experiments to test these

hypotheses, physically runs the experiments using laboratory

robotics, interprets the results to change the probability of

hypotheses, and then repeats the cycle. In this way Robot

Scientists can automate high-throughput hypothesis led

research. Robot Scientists are also well suited to recording

scientific knowledge: as the experiments are conceived and

executed automatically by computer, it is possible to comple-

tely capture and digitally curate all aspects of the scientific

process. [9]. The first Robot Scientist ‘Adam’ was designed

to plan and execute yeast microbiological experiments.

Adam was fully automated and during an investigation
there was no essential requirement for a technician, except

to periodically add laboratory consumables and remove

waste. Adam was the first machine demonstrated to have

autonomously discovered novel scientific knowledge [9].

Adam investigated the functional genomics of S. cerevisiae
and discovered the function of locally orphan enzymes—

enzymes known to be in yeast but for which the gene(s)

encoding them are unknown [9]. The advances that distin-

guished Adam from other complex laboratory systems

(such as high-throughput drug-screening pipelines and

X-ray crystallography crystal-screening systems) was its arti-

ficial intelligence (AI) software, its many complex internal

cycles, and its ability to execute high-throughput individually

planned cycles of experiments.

In this paper, we demonstrate the viability of the Robot

Scientist ‘Eve’ in drug discovery. We focus on finding lead

compounds for neglected tropical diseases. However, the

principles and methods used can be generally employed.

The reasons for the focus on neglected tropical diseases are:

— These diseases are a scourge of humanity, infecting hun-

dreds of millions of people, and annually killing

millions of people.

— The aetiology of these diseases is clear, as is what needs to

be done to treat them (kill the parasites), and how to

achieve this treatment with a small molecule drug.

These criteria are not met for many diseases targeted by

the Pharmaceutical Industry.

— There is little competition from the much better funded

Pharmaceutical Industry.

2. Eve
2.1. Design
We report the development of the Robot Scientist Eve

designed to automate early stage drug design (figure 2).

The initial design of Eve was given in [10]. Eve has three inte-

grated modes corresponding to successive stages in lead drug

discovery. In its Library-screening mode, Eve systematically

tests each member from a large set of compounds against

an assay in the standard brute-force way of conventional

mass screening [5]. While simple to automate, brute-force

mass screening is slow and wasteful of resources as every

compound in the library is tested. It is also unintelligent, as

it makes no use of what is learnt during screening. Eve

starts the lead discovery process by mass-screening a subset

of its library to find ‘hit’ compounds for the assay. This

subset is currently chosen randomly.



(b)

(a)

Figure 2. (a) A diagram of Eve. Showing the location of the main instru-
ments. (b) A photo of Eve. Eve has been designed to be flexible in terms
of the biological assays that it can perform, and is physically capable of
screening at a moderately high-throughput rate.
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In its hit-confirmation mode Eve re-assays the hit com-

pounds using multiple repeats and titrations to reduce the

probability of false positives. Eve’s integration of screening

and hit-confirmation is similar to advanced screening sys-

tems that first execute a high-throughput screen, and then a

high-content screen for selected compounds.

Starting from the set of confirmed hits, Eve execu-

tes cycles of statistics/machine learning that hypothesize

QSARs, and tests these QSARs on new compounds. As Eve

currently does not have access to chemical synthesis auto-

mation [11], we applied Eve to screen untested compounds

from its library in lieu of synthesizing compounds. Such intel-

ligent library screening may be more economical than

standard mass screening as it potentially saves on time and

compound use.
2.2. Hardware
Eve’s robotic system is capable of moderately high-throughput

compound screening: greater than 10 000 compounds per day,

depending on the length of time taken to assay compounds.

Eve is designed to be sufficiently flexible that it can be rapidly

reconfigured to carry out a number of different biological

assays, using fluorescence, absorbance or cell morphology as

read-outs (figure 2). Eve’s robotic system integrates a range

of off-the-shelf pieces of laboratory automation equipment

into a single system that can perform library-screening, hit-

confirmation and cycles of QSAR hypothesis formation and
testing using selected compounds from a compound library.

Eve can also be reconfigured to copy compound libraries.

Eve’s compound library is maintained in a dry-store, with

the compounds dissolved in DMSO. Compounds to be assayed

are transferred from the storage plates to the assay plates using

a non-contact acoustic transfer liquid-handling system. This

has the advantages of high accuracy and saving pipette tips.

In library-screening mode there is a direct mapping from

storage plates to assay plates, and a single transfer volume is

used in each well. In hit-confirmation and intelligent-screening

modes a single compound from the storage plate is transferred

to multiple wells in the assay plate, and at different volumes, to

realize multiple repeats dose–response experiments. After the

addition of assay compound, the target yeast strain pool is

added using a simple liquid-handling robot, as the same

volume is added to each well. The yeast pool is created exter-

nally and stored by Eve for use. Once the assay plates are

formed they are placed in a shaking incubator. Every 90 min,

the plates are removed from the incubator, and fluorescence

measured. Eve has two microplate readers capable of recording

measurements across a broad range of both excitation and

emission wavelengths. Eve also has an automated microscope

capable of taking both bright-field and fluorescence images

across a broad range of wavelengths. Upon completion of the

assay, the plates are automatically removed from the system.

To transfer the plates between different pieces of laboratory

automation equipment, Eve uses robotic arms and linear

actuators. All plates are bar-coded and movements recorded.

2.3. Low-level software
Software was written to integrate Eve’s AI software with the

robotics and thereby automate and integrate Eve’s early stage

drug design functions: library-screening, hit-confirmation and

QSAR cycles. The software to control the robotics, instrumenta-

tion and used to execute the experiments was written on top of

Peak Analysis and Automation’s Overlord software. An inter-

face was written to a relational database that stores all

experiment-related data and meta-data, e.g. all fluorescence

measurements. The software to parametrize growth curves for

the different yeast strains in each well was taken from the

Adam project [9]. The main parameters are estimated maximum

growth, doubling time and lag time. These growth parameters

were then transferred to the AI QSAR software. Software was

also written to coordinate library-screening, and to plan hit-

confirmation. This was also integrated with the AI software so

that the active learning algorithm could select compoundsto test.

2.4. Automated quantitative structure activity
relationship formation

To form QSARs Eve uses least-squares linear regression with

mild 2-norm regularization (ridge regression). This can be

interpreted as a Gaussian process with a linear kernel [12],

hence we can compute the posterior uncertainty, allowing us

to use an optimization method which is more efficient, i.e.

which needs fewer function evaluations [13]. The linear

kernel choice has the distinct advantage that it permits more

efficient computation than other kernels when the dimension-

ality of the feature space is smaller than the number of

examples. The feature space consists of binary fingerprints

of all paths up to length 7. We computed these with Open

Babel [14].
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2.5. Active learning
To select compounds to test its hypotheses Eve uses active

learning [13,15]. The active learning task is comparable to

that in many other areas of science and engineering: identify

or design artefacts that have optimal performance. However,

it has an extra ingredient reminiscent of reinforcement learn-

ing: balancing the exploration of compound space with the

exploitation of regions of highly active compounds. Another

complication is that it is desirable to identify the K best

diverse compounds in the library: ‘leads’ [13]. Therefore,

the QSAR active learning problem is: given a finite pool P
of instances, an unknown QSAR function f that maps

instances x [ P to their target values f(x), an assay (noisy

‘oracle’) that can bequeried for the target value ofanyx in batches

of N, the number K of leads required; then find the top K leads in

P. (In computer science, an ‘oracle’ is a machine, the workings of

which are unexplained, which always returns the correct answer

to a question. A noisy oracle has a probability of returning an

incorrect answer.) We found a successful approach to be a com-

bination of selecting compounds with high estimated activity T,

and high estimated variance, i.e. select the example where
�T þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(T)

p
is maximal [13] (electronic supplementary

material). As it is generally inefficient to assay (or synthesize),

a single compound in a QSAR cycle, batches of N compounds

should be selected (for Eve, N¼ 64). Like the requirement to

find the K best leads this greatly increases the computational

complexity of choosing the best experiment. Therefore, Eve

adopts a greedy strategy to select batch compounds.
3. Standardized assays
There are three main forms of assay: computational [16],

biochemical and cell-based [17]. The most general type is com-

putational (in silico screening, [18])—assuming the Church–

Turing thesis [19], they could compute any conceivable assay.
The advantages of in silico screening are that it is cheap, fast,

and that compounds can be tested without synthesizing

them. These enable very large libraries to be evaluated, and

hence in silico screening has proved its worth many time [18].

The main disadvantage of in silico screening is that it is compu-

tationally infeasible to simulate the full complexity of biological

systems. Biochemical assays have the advantage of being target-

based (enabling rational drug design), but often assume a

specific mechanism of interaction, and provide little infor-

mation about toxicity, drug uptake into cells and in vivo
activity. Cell-based assays are the most biologically realistic,

but are rarely target-based, and thus provide limited infor-

mation on the mechanism of action of a drug. Moreover,

cell-based assays are not applicable when searching for

compounds active against parasites that are not currently

possible or difficult to culture (e.g. Plasmodium vivax). All

these types of assay are slow and expensive to develop—even

computational ones if reasonable realism is to be achieved.

We have developed a standardized form of screening

assay that combines advantages of computational assays

(generality), biochemical assays (targeted) and using live

cells (biological realism, and early screening for toxicity)

(figure 3). These assays are designed to be automatically

engineered using existing laboratory automation, and can

be generated much faster and more cheaply than the bespoke

assays that are currently standard. This enables more types of

assay to be executed, more efficient use of screening facilities

to be made, and thereby increases the probability of a discov-

ery within a given budget. The assays are biological systems

designed to compute Boolean functions of desired properties

[20]. This concept generalizes previous uses of engineered

cells in drug discovery assays [21–23].

As an illustration, consider the example of designing an

assay that targets both wild-type and pyrimethamine-resistant

(drug-resistant) P. vivax dihydrofolate reductases (DHFRs)

(figure 3). To compute this function, we first engineer a



Table 1. The targets (disease/species/protein/drug-resistant) and libraries screened (May, Maybridge Hitfinder; JH, Johns Hopkins University Clinical Compound
Library).

disease species enzyme drug-resistant libraries

malaria P. falciparum DHFR no May, JH

malaria P. falciparum DHFR yes May, JH

malaria P. falciparum DHFR no May, JH

malaria P. vivax DHFR no May, JH

malaria P. vivax DHFR yes May, JH

malaria P. vivax DHFR no May, JH

malaria P. vivax PGK no May, JH

malaria P. vivax NMT no May, JH

Chagas T. cruzi DHFR no May, JH

Chagas T. cruzi PGK no May, JH

Chagas T. cruzi NMT no May, JH

African sleeping sickness T. brucei DHFR no May, JH

African sleeping sickness T. brucei PGK no May, JH

African sleeping sickness T. brucei NMT no May, JH

schistosomiasis S. mansoni DHFR no May, JH

schistosomiasis S. mansoni PGK no May, JH

schistosomiasis S. mansoni NMT no May, JH

leishmaniasis L. major DHFR no May, JH

bacterial infection S. aureus DHFR no May, JH
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chimeric yeast (Saccharomyces cerevisiae) strain with its DHFR

coding sequence (cds) replaced by that for wild-type P. vivax
DHFR (yPvDHFRp), then engineer a second chimeric yeast

strain (yPvRdhfrp) with its DHFR cds replaced by that for

drug-resistant P. vivax DHFR. We then engineer a third chi-

meric yeast strain (yHsDHFRp) with its DHFR cds replaced

by that for H. sapiens DHFR. Finally, we apply this biological

system to assay for compounds that inhibit growth of the

strains expressing the parasite targets (yPvDHFRp and

yPvRdhfrp) and not the strain expressing their human counter-

part (yHsDHFRp) [24]. Such compounds are ‘true’ for the

assay. They are unlikely to be cytotoxic, as that would imply

that the yeast strain expressing the human enzyme would

also be inhibited. However, this does not completely remove

the probability of human cytotoxicity as there could be off

target effects specific to human cells, therefore further studies

are required. In practice, Eve grows the strains in competition,

in mixed cultures and in 384-well microtitre plates [23] in the

presence of one compound from its library. The whole

system is a model of what we really are interested in: the

in vivo survival of wild-type/drug-resistant P. vivax cells

versus those of its human host. It can be seen that a set of

genetically engineered yeast strains can compute arbitrarily

complex Boolean functions of desired assay properties.
4. Drug screening and repositioning
4.1. Standardized assays
We first demonstrated that we could efficiently generate stan-

dardized assays. We generated assays targeting DHFRs (wild-

type and pyrimethamine-resistant), N-myristoyltransferase
(NMT) and phosphoglycerate kinase (PGK) from multiple para-

sitic organisms: Trypanosoma brucei (African sleeping sickness),

Trypanosoma cruzi (Chagas disease), Leishmania major (Leishma-

niasis) and Schistosoma mansoni (Schistosomiasis) (electronic

supplementary material). These assays were much faster and

cheaper to develop than using standard methods of assay devel-

opment: engineering each assay took about one person-month,

and cost approximately $15 k. A subset of these assays were

reported in [23].

4.2. Drug screening
We then tested the utility of these assays, and the efficiency of

Eve at standard screening, i.e. running in its library-screening

and hit-confirmation modes (table 1). We ran the Maybridge

Hitfinder library of approximately 14 400 chemically diverse

compounds to these assays. This identified numerous hits.

A subset of these results were reported in [23].

4.3. Drug screening for drug repositioning
We then applied the assays to the challenge of drug

repositioning—the application of known drugs to new diseases

(table 1). To do this, we again used Eve in its library-screening

and hit-confirmation modes to screen and confirm hits for the

above assays, but using the Johns Hopkins University Clinical

Compound Library that contains approximately 1600 FDA-

and foreign-approved drugs. Several repositioned compounds

were found that discriminate between host and parasite, and

have passed initial cytotoxicity tests. To maximize the utility

and reuse of these screening data, they are available as open

data in Resource Description Framework (RDF) format [25]

(electronic supplementary material).
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4.4. Repositioning TNP-470 as an anti-malaria
compound

The compound TNP-470 was derived from the antimicrobial

compound fumagillin (figure 4). TNP-470 is an angiogenesis

inhibitor (mediated by its irreversible binding to methionine

aminopeptidase-2 (MetAP2)) that has been investigated as an

anti-cancer drug. TNP-470 and its analogues have been

shown to bind to P. falciparum MetAP2 in vitro, to inhibit

growth of P. falciparum strains (including the chloroquine-

resistant strains W2 and C2B), and to inhibit parasitaemia

in a mouse model [26–28]. Eve’s yeast synthetic biology

assay results indicate that TNP-470 has high activity against

P. vivax DHFR (figure 5). To further confirm that DHFR is

an additional target of TNP-470 we performed DHFR

enzyme inhibition assays [29]. We observed that P. vivax
DHFR was 1000-fold more sensitive to TNP-470 than its

human counterpart; the drug’s IC50 for the parasite enzyme

being 0.16 mM, compared to more than 165 mM for human

DHFR. This is consistent with the results of Eve’s assays

and suggests that our approach identified a bona fide DHFR

inhibitor with improved selectivity.

DHFR inhibitors are currently routinely used as prophylac-

tics against malaria and are given to over a million children in

seasonal malaria chemoprevention. However, DHFR inhibi-

tors are no longer used as a standard treatment because of

the evolution of drug resistance [6]. Extensive efforts to dis-

cover a second-generation DHFR-targeted anti-malarial drug

with efficacy against pyrimethamine-resistant strains have yet

to produce a compound that has passed clinical trials [30].

Therefore, the discovery of an approved compound with

activity against DHFR is of high potential value. It is also sig-

nificant that TNP-470 is an example of ‘polypharmacology’

[31], in that it targets both Plasmodium DHFR and MetAP2.

This means that it should be pre-hardened to the evolution of

drug resistance, as this would require simultaneous alteration

of both targets.
5. Automating drug development
5.1. Automating drug development
We integrated all three of Eve’s modes (library-screening, hit-

confirmation, intelligent screening) together to demonstrate

that early stage drug development can be automated, includ-

ing QSAR generate-and-test cycles. The division of labour

between Eve and the human scientists and technicians was

as follows: the problem task was first tightly defined by the

humans who engineered the assays, and defined the QSAR

problem. This was the extent of human intellectual effort.

Human manual effort was required to maintain and run Eve,

maintain consumables, yeast stocks, etc. Human manual

effort was also required to run certain programs during the
different stages of the cycles, as some of the steps are not

fully integrated; these program steps are predetermined, and

could if necessary be fully automated.

The first full experimental tests of the active learning loop

were conducted by splitting the screened data comprising the

heterologous DHFR yeast strains for P. falciparum, P. vivax,

and that of humans, using 4800 compounds as a training

set. The ratio of the yields of the HsDHFR and PvDHFR

and PfDHFR strains were passed to the selection algorithm,

together with fingerprints of the remaining 9600 compounds.

The results from the first ‘cherry-picking’ round (compounds

selected by active learning and using the hit-confirmation

assays) (n ¼ 96; 12 plates of eight compounds per plate;

eight replicates of six concentrations) were then added to

the original dataset, and a second cherry-picking round

conducted. We used these data to evaluate different approaches

to the problem of combining cherry-picking and mass-screening

data. The approach based on using the mean of replicates

multiplied by log(10/conc.) was found to perform best.

We then ran the active learning loop through three iterations: an

initial set of 4800 compounds was screened (single iteration,

10 mM), and three loops of 96 cherry-picked compounds

(eight replicates, at a range of concentrations) were selected.

The mean log-weighted cherry-picking data was cycled back

into the training set.
5.2. Econometric modelling
A thorough investigation of Eve’s QSAR active learning

methods, comparing intelligent screening versus standard

brute-force screening, requires the analysis of thousands of

cycles. We therefore decided to use our empirical results

from using Eve (in Library-screening mode) against the com-

plete set of 14 400 compounds of the Maybridge HitFinder

library against DHFR assays from multiple parasitic organisms

(see above)—we considered the Johns Hopkin’s library to be

too small for intelligent screening. The idea was to use these

results as an oracle—instead of new physical experiments.

One refinement that we did not investigate was the role of



Uh

Tm/Tc

Cm/Cc

Ne/Nm
Nx

utility of a hit

no. compounds assayed/not assayed by Eve
no. hits missed by Eve
cost of the loss of a compound in the mass/cherry-screening assay
cost of the time to screen a compound using mass/cherry-screening

D utility of Eve = S (Tm – Tc + Cm – Cc) + S (Tc + Cc – Uh) + S (Tm + Cm) 
Ne

1

Nx

1

Nm

1

Figure 6. Modelling the economics of drug discovery. The econometric model of the differential utility of intelligent screening versus mass screening with
hit-confirmation.

250

200

150

100

50

0

–50

250

200

150

100

50

0

–50

compounds screened

hi
ts

 id
en

tif
ie

d

ut
ili

ty
 in

cr
ea

se

0 2000 4000 6000 8000 10 000

Figure 7. Intelligent versus Random Screening. An example simulation run of
intelligent screening: cycles of QSAR learning/testing from a compound
library. The data are taken for a screen of the Maybridge Hitfinder library
against the P. vivax DHFR as target (electronic supplementary material).
Intelligent screening is red and standard brute-force black. The differential
utility of intelligent screening is shown in blue. It can be seen that it is
cost-optimal to screen between a third and a half of Eve’s small library,
with a larger library the screened proportion would be expected to be smal-
ler. Similar diagrams for the other targets can be found in the electronic
supplementary material.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141289

7

ordering of compounds in the library: we used a constant

random order. It would have been interesting to investigate

the use molecular of diversity measures to order compounds

for screening, this would be expected to find hits faster than

random screening. In cases where the target has a known struc-

ture, it would have been interesting to investigate in silico
screening to order compounds as likely hits.

To quantify the utility of intelligent screening, we devel-

oped an econometric model (figure 6). In this model the net

utility is the cost saving due to not screening compounds,

minus the cost due to missing any hits, minus the cumulative

cost of the number of active learning cycles performed. Active

learning was applied to the seed input data, and predictions

made to produce simulated learning curves. The progression

of these learning curves was then compared to the base case

of standard library screening. For each 96-compound loop,

the utility equation was applied. Figure 7 shows the result

of one such run involving many cycles of learning and

demonstrates hit enrichment by intelligent screening.

We used the model to investigate a range of costings to

determine under what conditions it is economically advan-

tageous compared with performing a standard whole-library

screen. Figure 8 shows that under most conditions it is econ-

omically rational to screen intelligently. Assuming that the

probability of a compound being a hit is independent of the

size of the library, i.e. they are independent and identically dis-

tributed variables (iid), then the utility gained from intelligent

screening is proportional to the size of the library—larger

libraries produce larger savings. The iid assumption is reason-

able and, in large part, the motivation for the collation of the

very large libraries currently used for screening. However, it

is also conservative, as the difficulties in physically creating

structurally diverse libraries means that the probability of an

individual compound being a novel structural hit probably

decreases with the size of the library, which means that the sav-

ings are probably much greater for large libraries. Therefore,

intelligent screening is more cost-effective with larger libraries,

more valuable compounds and fast cycles of assay screening

and testing—this is the standard regime for pharmaceutical

screening, suggesting that adoption of intelligent screening is

economically rational.
6. Data and code
We developed a semantic data model of Eve’s-screening assay

results (see electronic supplementary material), where the root

node ‘assay triple screen’ represents the main group of data

items used to analyse the results. This root node is linked to

the node ‘Eve’ via the relation ro:has-agent. The semantics of
this association are that Eve initiates and runs the process

‘assay triple screen’. The assay triple screen process has the fol-

lowing inputs (ro: has-input): synthetic yeast strain(s), each has a

unique identifier and ro:has-part fluorophore and DHFR target;

compound is represented by SMILES code and sio:has-identifier
compound common name and Maybridge hit finder ID; plate

is represented by a code and ro:has-part well-column and well-

row to identify each well. The semantics of these associations

are that synthetic yeast strains, compounds and a plate partici-

pate in the assay triple screen process and are present at

the beginning of the process. The assay triple screen process

has the following outputs (ro: has-output): venus, sapphire

and cherry initial fluorescence in a well; venus, sapphire

and cherry final fluorescence in a well; venus, sapphire and

cherry doubling time in a well; venus, sapphire and cherry lag-

time2 in a well; venus, sapphire and cherry error code in a well.

The semantics of these associations are that initial and final

fluorescence, doubling time, lagtime2 and error code mea-

surements were produced by the assay process and are

present at the end of the process. Additionally, the relation

has-target-origin was introduced to link a target and an organ-

ism of origin. We included this relation and other entities that

are required to define semantic meaning of Eve data in a
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small ontology EVE that was specially designed to support the

semantic data model of Eve’s-screening assay results (http://

disc.brunel.ac.uk/eve.). The node ‘DHFR target’ is linked

via this relation to the host (Homo sapiens) and parasites. A

target may be drug-resistant. This is expressed via the link

sio:has-quality. The dataset is deposited at http://disc.brunel.

ac.uk/eve-dataset.

To facilitate the reuse of the code, we have placed all

the software: Eve low-level control software, QSAR software

and active learning software on GitHub using the GNU

General Public License v. 3 (https://github.com/RobotEve/

RobotEve).
7. Discussion and conclusion
Eve’s standardized assays could easily be engineered for other

targets classes or target species (e.g. bacteria), for adjunctive

targets (e.g. to drug import or efflux pumps) or for combina-

tory functions (e.g. to screen for drug synergies across

multiple targets). In addition, the biological realism of the

assays could be increased by the incorporation of multiple

parasite targets within that same yeast cell, creating increas-

ingly parasite-mimetic and human-mimetic cells. The assays

could also be modified to be much faster—as using growth

as the read-out limits the speed of executing the assay.

The economics of drug development are influenced by

many factors [1–4] some technical (understanding how to

intervene to treat a disease, the difficulty of achieving the

intervention, etc.), others societal (safety standards, the

drug pricing, etc.). Although the costs of drug discovery are
substantial, they are relatively small compared with later

stages in development. Such arguments tell against increased

automation and standardization in drug discovery making

much economic difference. However, they fail to take into

account the ‘art of the soluble’ (Sir Peter Medawar). Prevent-

ing drug failures in late-stage development is an intrinsically

very hard problem, as human biology is very complex. By

contrast, we argue that a radical decrease in the cost and

increase in the speed of drug discovery could be achieved

by the full automation and standardization of procedures.

By this, we mean a robotic system that once given a target

could autonomously develop a standardized assay for that

target, screen a compound library using that assay, confirm

hit compounds and identify lead compounds through

cycles of QSAR learning and testing. This could be achieved

today: Eve’s synthetic biology assays could be automated

using existing technology, and chemical synthesis machines

exist that could be integrated with Eve [11]. Such integration

would achieve the goal of a robotic system that could auton-

omously generate hits for targets, and radically decrease the

cost and increase the speed of drug discovery.
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