
Using Blind Analysis for Software Engineering
Experiments

Boyce Sigweni Martin Shepperd
Department of Computer Science

Brunel University London
UB8 3PH,United Kingdom

{boyce.sigweni,martin.shepperd}@brunel.ac.uk

ABSTRACT
Context : In recent years there has been growing concern
about conflicting experimental results in empirical software
engineering. This has been paralleled by awareness of how
bias can impact research results.
Objective: To explore the practicalities of blind analysis of
experimental results to reduce bias.
Method : We apply blind analysis to a real software
engineering experiment that compares three feature
weighting approaches with a näıve benchmark (sample
mean) to the Finnish software effort data set. We use this
experiment as an example to explore blind analysis as a
method to reduce researcher bias.
Results: Our experience shows that blinding can be a
relatively straightforward procedure. We also highlight
various statistical analysis decisions which ought not be
guided by the hunt for statistical significance and show
that results can be inverted merely through a seemingly
inconsequential statistical nicety (i.e., the degree of
trimming).
Conclusion : Whilst there are minor challenges and some
limits to the degree of blinding possible, blind analysis is a
very practical and easy to implement method that
supports more objective analysis of experimental results.
Therefore we argue that blind analysis should be the norm
for analysing software engineering experiments.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Cost
estimation; I.2.6 [Learning]: Analogies

Keywords
Researcher Bias, Blind analysis, Software engineering
experimentation, Software effort estimation

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
EASE‘15, April 27 - 29, 2015, Nanjing, China
Copyright 2015 ACM 978-1-4503-3350-4/15/04 ...$15.00.
http://dx.doi.org/10.1145/2745802.2745832

We seek to evaluate blinding techniques, specifically blind
analysis, to reduce researcher bias within empirical
software engineering. As a vehicle to explore this we use an
experiment to compare various feature weighting
techniques over a software project effort data set and
report our experiences. Our goal is to make blind analysis
a more widespread practice.

For some time commentators have been concerned about
the lack of agreement amongst the many empirical studies
conducted in the various branches of empirical software
engineering including defect prediction [19] and software
effort estimation (SEE) [15, 22]. Closer investigation
suggests that a contributory reason — though only one of
many — is selective reporting and partial analysis [21, 14].
One technique for reducing the propensity for bias is to
conduct blind analysis [11]. This entails, as a minimum,
the labels of the different treatments being anonymised
such that the researchers performing the analysis of the
results do not know which result data (i.e., the response
variables) relate to which treatment. This renders “cherry
picking” results more difficult.

In order to explore this technique in a practical setting
we apply it to a real life empirical investigation of various
feature weighting techniques applied to analogy-based SEE.
This involves benchmarking various existing methods, näıve
methods and a new method proposed by one of the authors
[BS]. The techniques are evaluated on the Finnish software
effort data set used in the study by [17].

The remainder of the paper is organised as follows. Next
we review what is known about bias in scientific research
in general and empirical software engineering in particular.
This is followed by a description of the context of our SEE
empirical study. Then we give a description of our
experimental approach and the decision making involved,
results and experimental conclusions. The final section
discusses the conduct of, and issues relating to, blinding
the analysis.

2. SOURCES OF BIAS IN RESEARCH AND
BLINDING TECHNIQUES

“[L]et us define bias as the combination of various
design, data, analysis, and presentation factors
that tend to produce research findings when they
should not be produced.” John Ioannidis [13]

Researchers have been concerned about the potential
impact of unintentional bias upon the part of scientists for

at least the past three decades. In considering this it is
important to distinguish between bias where there are
systematic underlying reasons and processes leading to
wrong research findings and general randomness. Since
confidence limits and null hypothesis testing typically set
thresholds at 95% this implies an acceptance of 5% of Type
I errors, i.e., wrongly rejecting the null hypothesis or where
the true population statistic lies outside the estimated and
reported sample confidence limits. Conversely, depending
upon the power of the study there is also the random
possibility of failing to reject the null hypothesis when we
should i.e., a Type II error.

There have been concerns that many areas of research
ranging from medicine to social policy and experimental
psychology to genomics have been impacted by different
sources of bias. Delgado-Rodŕıguez and Llorca [3] have
published a catalogue of more than 70 different types of
scientific bias. Moreover these exclude those specifically
related to data analysis, reporting and citation behaviours.
At a generic level these include:

• publication bias [4], which is the reduced likelihood of
publishing certain types of study when the results are
not perceived as ‘interesting’. Generally results seen
as not interesting are typically exemplified by the null
hypothesis being retained. This may either be due to
the peer review process (some results are seen more
favourably by the referees than others) or the “file
drawer problem” [20] (when researchers fail to
complete or submit papers in a non-random way).

• selective reporting in that the study only reports a
subset of results [12]. Again this process can lead to
the over-reporting of ‘interesting’ results and the
under reporting of non-significant results or results
with small or no effect size.

• analysis bias where statistical procedures are selected
according to their ability to yield ‘interesting’ results.
In passing we note that null hypothesis significance
testing (NHST) is particularly vulnerable since the
logic of this approach leads the researcher to an all or
nothing situation, of significance or no significance.
More than twenty years ago Dickersin observed how
significant results are substantially over-represented
in the field of medical research [4].

Unfortunately software engineering does not seem to be
immune from these biases. A major meta-analysis of 600
results derived from 42 primary studies of defect prediction
algorithms found that the research team that conducted
the work explained approximately 25 times more variance
in the performance of the predictor as did the choice of
algorithm [21]. Research group was also more important
than the data set used to validate the predictor and
considerably more so than choice of metrics or inputs to
the predictor. Such biases also confound meta-analyses
since the goal to uncover all relevant studies is thwarted by
the systematic non-availability of certain types of result.
Thus the entire research community is harmed along with
our reduced ability to make reliable recommendations to
practitioners.

Of course the question arises as to why scientists may
exhibit bias. The first thing we wish to be absolutely clear

about is that we are not suggesting that this bias is
intentional or for morally questionable reasons. Possible
explanations include the fact that expertise may not be
evenly distributed, moreover some techniques are highly
sophisticated and the parameter free-space extensive. As a
result it is conceivable that a research group may be able
to use Technique A more effectively than Technique B.
Conversely a second group might behave in the opposite
way. Another explanation is the majority of predictors
exploit different machine learning techniques [26]. Such
research generally proceeds experimentally and there is
little theory to guide. Such research tends also to explore
many variants of prediction systems often with many
different parameter settings. The consequence is many
results. This in itself is not necessarily problematic and
there are various statistical procedures for adjusting
significance thresholds accordingly. However what is less
clear and therefore more difficult is the stopping criterion;
at what stage should the researchers stop their experiments
and report results? And a related problem is should all
results be reported? There may be many intermediate
results. These kind of problems mean that selective
reporting can be difficult to address.

One approach to combat these biases is blinding the
analysis [11]. The idea is that by relabeling the different
treatments e.g., as predictor 1, 2, ... , n then the researcher
conducting the analysis of the results is no longer aware of
which is the new ‘pet’ technique nor which are the results
from benchmarks. Searching for a test or procedure that
yields statistical significance is less straightforward since it
is more difficult for the analyst to have a view as to what
results are ‘interesting’. Note that only the response
variables are blinded, therefore context descriptors will be
unchanged. We are unaware of this approach being used in
software engineering but there are examples in other
disciplines such as physics [1]. Note also that the technique
is not appropriate to other forms of empirical analysis such
as case studies and focus groups.

Clearly for blind analysis to be effective it requires a
minimum of two researchers. Figure 1 outlines the process
which we describe in more detail in subsequent sections.
Note that in our study Researcher 1 was BS and
Researcher 2 was MS. Thus the blinding was achieved as
follows. MS selected a data set. The application of the
different prediction systems to the data set was performed
by BS who then sanitised the treatment labels. Next the
results files were passed to MS who performed the
statistical analysis. Once this was complete BS revealed
the actual treatments which are described in Section 4.

The remainder of this paper reports on our experiences
of using blinding when experimentally evaluating a new
algorithm for feature weighting when using case-based
reasoning to predict software project effort.

3. EXPERIMENTAL DESIGN
The description follows the steps numbered within Figure 1.

Step 1: Researcher 1 determined four different
treatments or methods for software effort estimation using
various analogy or case-based reasoning (CBR) methods,
specifically:

1. Forward sequential weighting (FSW) uses continuous,
non-negative weights [24]

2. Forward sequential selection(FSS) uses binary weights,
thus a feature is selected or excluded

3. Case-based reasoning (CBR) uses all features equally
weighted

4. Näıve prediction uses the sample mean.

Select Dataset

Perform

Experiments

Blinding

1

2

3

4

5

7

Researcher 1 Researcher 2

Descriptive Stats

Reveal actual

Treatments

6

8

Raw results

e.g residuals

e.g Finnish

Decide

Treatments

Experimental

Design

Effect size,

confidence limits

Inferential Tests
Test results

Figure 1: Experimental design and blind analysis process

These methods present a range of possible strategies for
analogy based effort estimation. A trivial or näıve
approach is included in order to determine the extent to
which the more sophisticated techniques offer any value, in
other words a baseline we expect to be able to improve
upon.

In passing we note that elsewhere we have demonstrated
the dangers of not using proper benchmarks and how
researchers can be unaware that their methods in fact
perform less well than guessing [22]. CBR might be
thought of as the baseline well-established technique and
has been applied since the mid 1990s [23]. Subsequently
FSS has generally been found to be an effective
improvement over CBR; our systematic review found 16
out of 17 relevant primary studies reported positive results
[25]. Finally FSW is a recent improvement to FSS [24] that
uses an efficient algorithm to search for individual feature
weights.

The response variables are Standardised Accuracy (SA)
[22] and the absolute residuals to measure predictive
performance. MMRE is avoided due to its asymmetry and
bias towards prediction models that under-estimate [18, 9].

For this experiment a leave-one-out cross-validation
(LOOCV) procedure is employed [5]. Although
computationally intensive for larger datasets when using a
wrapper (because a new predictor has to be built for each
case or project in the data set being held out) there is the

advantage of the results being deterministic. By
comparison, m × n fold cross validation will depend upon
the random allocation of cases to the individual folds and
so there is often some variability in the results.

Step 2: The choice of data set(s) is made independently
by Researcher 2 without knowledge of the treatments. This
is because it could be known that some data sets might
particularly favour some SEE methods. It is a relatively
complex data set so will challenge a feature weighting
technique as there are a large number of cases and
features. The data set characteristics are shown in Table 1.
The Finnish data set has also been used for studies
focusing on meta-heuristic search for FSS e.g.,[17, 16].
This data set is characterised by a skewed distribution of
effort values as can be seen from the fact that the mean is
considerably greater than the median. A redacted version
of the data set is available from [8].

Step 3: The data set used in this study is the same data
set used by [17] which removed some features due to
missing values so as to ensure none of the projects had
missing values. Researcher 1 did not remove any outliers.
However, two projects had the actual effort being equal to
zero which is hard to interpret as meaningful, therefore
these were removed these two projects (so out of the total
of 407 projects 405 remain). Researcher 1 then applied all
the treatments (prediction methods) to the data set using
the archANGEL software tool (adapted to also compute
the FSW) and for each result computed the absolute
residual i.e, |yi − ŷi|.

4. EXPERIMENTAL RESULTS
Step 4: All statistical analysis of the results is based on
absolute residuals. These were provided with anonymised
treatment labels to Researcher 2. Note that for this
experiment we were using a repeated measures design and
there was no particular need to look at context variables or
experimental moderators. In other settings this might be
relevant, however, it is only the treatments labels that need
blinding consequently blind analysis does not inhibit richer
or more sophisticated analysis when appropriate.

PS1 PS2 PS3 PS4

0

10000

20000

30000

40000

50000

60000

Figure 2: Boxplots showing residual distributions for
Finnish Data Set

Table 1: Descriptive statistics for the ‘cleaned’ Finnish data set

Data set No. of cases No. of features Min effort Max effort Mean effort Median effort

Finnish 405 44 55 63694 5031 2500

Step 5: However, there were a number of challenges
relating to the statistical analysis of the experimental
results. First, the distributions of the residuals are
extremely skewed and not amenable to simple
transformations (see the box plots of the absolute residuals
for the prediction systems PS1, . . . , PS4. in Figure 2).
Second, there are many ties (depending upon the
particular pairwise comparison this ranges between 114
and 168 out of 405 cases). Third the data are dependent
since we are comparing the performance of four different
predictors on the same data. Finally alpha needs
correcting since multiple pairwise comparisons or tests are
needed (in our case six, since there are four treatments).

Table 2: Comparing absolute residuals by prediction sys-
tem

Pred Mean abs Median abs

system residual residual

PS2 (FSW) 1911.5 701.9

PS4 (FSS) 2146.8 761.3

PS3 (CBR) 2645.7 1173.3

PS1 (Näıve) 4438.5 3580.0

Step 6: Next Researcher 2 considered the questions of
confidence limits for the descriptive statistics such as
medians and then measures of effect size. Non-parametric
methods are required due to the non-normality of the
distributions of the absolute residuals.

The Harrell-Davis percentile estimator [10] with
bootstrap was used as an efficient, robust technique to
estimate the 95% confidence limits for the median (i.e., the
50th quantile) value of the absolute residuals (see Table 3).
If the intervals are compared it would seem some overlap,
for example, PS2 and PS4 and others do not, for example,
PS3 and PS1. Note that the treatments are listed in
decreasing order of performance so that smallest residuals
,and therefore best predictive performance, occur first. The
treatments are labelled for the reader’s convenience only as
this information was not available to Researcher 2 at the
time of the analysis.

Table 3: Harrell-Davis 50th percentile estimators for pre-
diction system absolute residuals

Pred Lower Upper Estimated

system bound bound median

PS2 (FSW) 581.8 848.1 711.4

PS4 (FSS) 676.6 913.76 772.7

PS3 (CBR) 1069.7 1712.9 1235.8

PS1 (Näıve) 3370.7 3787.2 3597.7

The next part of the analysis was to turn attention to

effect size [6], in this case measured as ∆ which is defined
as the difference in the median absolute residuals for the
two treatments being compared and normalised by the
pooled standard deviation. This is reported in Table 4
along with the Standardised Accuracy (SA) of each
approach relative to guessing based on permutation (see
Shepperd and McDonnell [22] for details of the method).
Note even using the sample mean is 11% better than
guessing. To help interpret the effect sizes relative to
guessing, these could be characterised as ‘small’ (∼ 0.2) or
‘medium’ (∼ 0.5) and although not obtained, ∼ 0.8 might
be regarded as a ‘large’ effect size [2]. Analysed in this
fashion none of the SEE techniques can be seen as
particularly successful and is a powerful reminder of how
far we still have to go in pursuit of practical, effective SEE.

Table 4: SA and effect size ∆

Approach
Criteria

SA (%) ∆

PS2 (FSW) 62.16 0.427

PS4 (FSS) 57.48 0.395

PS3 (CBR) 47.40 0.326

PS1 (Näıve) 11.42 0.078

Step 7: The basic descriptive analysis from Steps 5 and 6
suggests that the medians of the absolute residuals appear
to differ by treatment but this difference needs to be tested
using inferential statistics. Likewise Step 6 suggests that the
95% confidence limits from the medians do not all overlap
implying significant differences.

Unfortunately traditional non-parametric tests such as
Wilcoxon-Mann-Whitney can lack power [7], do not handle
ties well and are unlikely to be satisfactory [28]. For this
reason a robust test was used to compare differences in
marginal medians using Wilcox’s percentile bootstrap using
the R function dmedpb from the WRS library. Family-wise
errors arising from multiple testing were controlled using
Rom’s method since k < 10. For details see Wilcox [27].

The predictors are compared pairwise starting with the
greatest median difference. The probability of the median
difference = 0 is given by p. The upper and lower bounds
give the 95% confidence limits for the median difference
therefore for a significant difference one would not expect
the limits to straddle zero.

The analysis is shown in Table 5 in which the pairwise
comparisons between prediction systems are organised in
decreasing order of difference which facilitates the
application of Rom’s method which is based on the idea of
sequential rejection so that once a threshold has been
exceeded there is no purpose in testing for smaller
differences [28]. Again the results are presented unblinded
for the convenience of the reader.

Step 8: The results of the analysis therefore show that
whilst the new technique FSW outperforms the näıve

Table 5: Pairwise comparison of median absolute residual
differences using Wilcox’s percentile bootstrap

Lower Upper Median

Test p bound bound difference

FSW v Näıve ∼ 0 -2741.6 -2100.0 -2489.5

FSS v Näıve ∼ 0 -2658.8 -1771.1 -2410.0

CBR v Näıve ∼ 0 -2140.8 -1227.3 -1758.8

FSW v CBR ∼ 0 -457.4 -146.0 -252.7

FSS v CBR ∼ 0 -289.3 -58.9 -179.5

FSW v FSS 0.954 -0.5 0 0

sample mean and traditional CBR there is no significant
difference with FSS for this particular data set despite a
slightly superior effect size ∆ and SA value (see Table 4).
Thus we cannot argue the new feature weighting technique
is superior for this particular data set.

5. DISCUSSION AND CONCLUSIONS
Although the previous section describes the procedure
adopted by Researcher 2, in practice MS had a number of
decisions to make and no a priori reason to consider one
superior to another.

• The level of trimming to apply since trimming
provides a continuum of approaches from including
all observations in estimating population
characteristics to the other extreme of excluding all
but the central point, i.e., the median. Researcher 2
elected to use medians primarily because this is
common practice but other decisions might easily be
justified such as trimming 10% or 20% of each tail
[28]. If we apply a 20% trim (see Table 6) then this
yields a different set of results; specifically that there
is a significant difference between the absolute
residuals from FSW and FSS such that FSW would
be reported as significantly superior.

• The choice between Winsorized trimming and
trimming since Winsorizing involves the replacement
of values with the trimmed minimum or maximum as
opposed to discarding the values with trimming. The
impact of such as choice is unclear.

• The type and direction of the null hypothesis, for
example one could use one or two tailed tests.
Researcher 2 chose to use 2-tailed tests.

• How to correct alpha since methods range from
Bonferroni’s correction which is a conservative
method to methods such as Rom’s method as
adopted by Researcher 2.

• The choice of inferential test to compare medians is
again somewhat open even if we correctly restrict
ourselves to robust methods since these include
Cliff’s, Brunner-Munzel and Wilcox’s methods.

• Lastly, a small but subtle difference is median
difference between treatments or comparison of the
medians of the treatments

Table 6: Pairwise comparison of mean absolute residual
differences using Wilcox’s percentile bootstrap (Trimmed
means 0.2)

Lower Upper Median

Test p bound bound difference

FSW v Näıve ∼ 0 -2764.5 -2219.7 -2492.1

FSS v Näıve ∼ 0 -2652.0 -2098.0 -2375.0

CBR v Näıve ∼ 0 -2112.9 -1511.9 -1812.4

FSW v CBR ∼ 0 -880.2 -479.3 -679.7

FSS v CBR ∼ 0 -769.8 -355.5 -562.6

FSW v FSS ∼ 0 -75.1 -59.0 -64.7

The decisions taken by Researcher 2, as previously
mentioned can lead to a different conclusion. For example,
Table 6 shows that using an analysis based on 20%
trimmed means results in p ∼ 0 for the pairwise
comparison of FSW v FSS (see the highlighted cell). This
strongly contrasts with Table 5 where the same test yields
p = 0.954. The consequence is that a ‘result’ may be
transformed from insignificant to significant by changing
the choice of interferential test. Thus in evaluating FSW v
FSS Researcher2 could easily and ‘correctly’ employ
trimmed means to evaluate FSW v FSS. Trimmed mean
looks to reduce the effects of outliers but in a less
conservative fashion than analysis based on medians which
in a sense is the most extreme form of trimming possible
since only the central observation is retained [28]. The
choice results in different conclusions for the evaluation of
FSW v FSS.

But our point is not which is the most appropriate
statistical approach to make comparisons between
experiment treatments but that if the analyst has a priori
expectations, and it’s difficult not to, then these can
influence the choice of technique and in a highly
non-random fashion. Blind analysis does not prevent
inappropriate analysis, it does, however, militate against
systematic use of statistical methods in order to yield
‘positive’ results.

So to summarise, it is relatively easy to change the
results of a statistical analysis without resorting to
scientific misconduct. This is particularly the case for null
hypothesis significance testing. For example moving to
trimmed means (0.2) has the impact on the results
transforming a not significant result (Table 5) in terms of
evaluating a new algorithm into a significant one (Table 6).

The basic principle of blind analysis was straightforward
to implement. The analyst was only provided with
residuals since actual predicted values could potentially
jeopardise the blinding for techniques such as using a
sample mean since all predicted values would be the same.
One advantage of the relatively meaningless values was
that the analyst (Researcher 2) could proceed in a
somewhat detached fashion.

As a means of reducing systematic bias in terms of
statistical and analysis decisions being made in order to
achieve particular types of outcome we believe blind
analysis has a great deal to commend it. However, it needs
to be stressed that blind analysis will not eliminate
statistical errors and poor practice but what it does

address is statistical procedures being systematically
selected on the basis of them yielding desired results.

In this paper we have described our experiences for a
single experiment. There is no control and n = 1. All this
demonstrates is that it is possible to manipulate results
without recourse to poor practice or scientific misconduct
and that it is straightforward to blind the analysis. Beyond
this our argument rests upon advocacy. Nevertheless, we
do argue that blind analysis should become normal practice
within empirical software engineering when dealing with
multiple treatments (and associated response variables) in
some experimental or quasi-experimental setting.

Acknowledgements
The authors would like to thank Pekka Forselius for provid-
ing the Finnish data set.

6. REFERENCES
[1] E. Aprile and et al. Dark matter results from 225 live

days of xenon100 data. Phys. Rev. Lett., 109:181301,
Nov 2012.

[2] J. Cohen. A power primer. Psychological Bulletin,
112(1):155–159, 1992.

[3] M. Delgado-Rodŕıguez and J. Llorca. Bias. J. of
Epidemiolgy and Community Health, 58:635–641, 2004.

[4] K. Dickersin. The existence of publication bias and
risk factors for its occurrence. J. Am. Med. Assoc.,
263:1385–1389, 1990.

[5] B. Efron and G. Gong. A leisurely look at the
bootstrap, the jackknife and cross-validation. The
American Statistician, 37(1):36–48, 1983.

[6] P. Ellis. The Essential Guide to Effect Sizes: Statistical
Power, Meta-Analysis, and the Interpretation of
Research Results. Cambridge University Press, 2010.

[7] M. W. Fagerland and L. Sandvik. The
Wilcoxon–Mann–Whitney test under scrutiny.
Statistics in Medicine, 28(10):1487–1497, 2009.

[8] Finnish Software Effort Dataset.
http://dx.doi.org/10.6084/m9.figshare.1334271. 03
2015.

[9] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit.
A simulation study of the model evaluation criterion
mmre. IEEE Transactions on Software Engineering,
29(11):985–995, 2003.

[10] F. Harrell and C. Davis. A new distribution-free
quantile estimator. Biometrika, 69(3):635–640, 1982.

[11] J. Heinrich. Benefits of blind analysis techniques.
Report CDF/MEMO/STATISTICS/PUBLIC/6576
Version 1, University of Pennsylvania, 2003.

[12] J. Hutton and P. Williamson. Bias in meta-analysis
with variable selection within studies. Applied
Statistics, 49(3):359–70, 2000.

[13] J. Ioannidis. Why most published research findings are
false. PLoS Medicine, 2(8):e124, 2005.

[14] M. Jørgensen, T. Dyb̊a, K. Liestøl, and D. Sjøberg.
Incorrect results in software engineering experiments:
How to improve research practices. J. of Systems and

Software, under review, 2015.

[15] M. Jørgensen and M. Shepperd. A systematic review
of software development cost estimation studies. IEEE
Transactions on Software Engineering, 33(1):33–53,
2007.

[16] C. Kirsopp and M. Shepperd. Case and feature subset
selection in case-based software project effort
prediction. In The 22nd BCS SGAI International
Conference on Knowledge Based Systems and Applied
Artificial Intelligence, pages 61–74, 2003.

[17] C. Kirsopp, M. J. Shepperd, and J. Hart. Search
heuristics, case-based reasoning and software project
effort prediction. In GECCO’02 Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 1367–1374. Morgan Kaufmann Publishers Inc.,
2002.

[18] B. Kitchenham, S. MacDonell, L. Pickard, and
M. Shepperd. What accuracy statistics really measure.
IEE Proceedings - Software Engineering, 148(3):81–85,
2001.

[19] T. Menzies and M. Shepperd. Editorial: Special issue
on repeatable results in software engineering
prediction. Empirical Software Engineering,
17(1-2):1–17, 2012.

[20] R. Rosenthal. The “file drawer problem” and tolerance
for null results. Psychological Bulletin, 86(3):638–641,
1979.

[21] M. Shepperd, D. Bowes, and T. Hall. Researcher bias:
The use of machine learning in software defect
prediction. IEEE Transactions on Software
Engineering, 40(6):603–616, 2014.

[22] M. Shepperd and S. MacDonell. Evaluating prediction
systems in software project estimation. Information
and Software Technology, 54(8):820–827, Jan. 2012.

[23] M. Shepperd and C. Schofield. Estimating software
project effort using analogies. IEEE Transactions on
Software Engineering, 23(11):736–743, 1997.

[24] B. Sigweni. Feature weighting for case-based reasoning
software project effort estimation. In The 18th
International Conference on Evaluation and
Assessment in Software Engineering, page 54. ACM,
2014.

[25] B. Sigweni and M. Shepperd. Feature weighting
techniques for CBR in software effort estimation
studies: a review and empirical evaluation. In The
10th International Conference on Predictive Models in
Software Engineering, pages 32–41. ACM, 2014.

[26] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang.
Systematic literature review of machine learning based
software development effort estimation models.
Information and Software Technology, 54(1):41–59,
2012.

[27] R. Wilcox. Pairwise comparisons of dependent groups
based on medians. Computational Statistics and Data
Analysis, 50(10):2933–2941, 2006.

[28] R. Wilcox. Introduction to robust estimation and
hypothesis testing (3rd Edn). Academic Press,
3rd edition, 2012.

	Introduction
	Sources of Bias in Research and Blinding Techniques
	Experimental design
	Experimental Results
	Discussion and Conclusions
	References

