
A

Verifying linearizability: A comparative survey

BRIJESH DONGOL, Brunel University
JOHN DERRICK, University of Sheffield

Linearizability is a key correctness criterion for concurrent data structures, ensuring that each history of the
concurrent object under consideration is consistent with respect to a history of the corresponding abstract
data structure. Linearizability allows concurrent (i.e., overlapping) operation calls take effect in any order,
but requires the real-time order of non-overlapping to be preserved. The sophisticated nature of concurrent
objects means that linearizability is difficult to judge, and hence, over the years, numerous techniques for
verifying linearizability have been developed using a variety of formal foundations such as data refinement,
shape analysis, reduction, etc. However, because the underlying framework, nomenclature and terminology
for each method is different, it has become difficult for practitioners to evaluate the differences between each
approach, and hence, evaluate the methodology most appropriate for verifying the data structure at hand.
In this paper, we compare the major of methods for verifying linearizability, describe the main contribution
of each method, and compare their advantages and limitations.
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1. INTRODUCTION
Highly optimised fine-grained concurrent algorithms are increasingly being used to
implement concurrent objects for modern multi/many-core applications due to the per-
formance advantages they provide over their coarse-grained counterparts. Due to their
complexity, correctness of such algorithms is notoriously difficult to judge. Formal ver-
ification has uncovered subtle bugs in published algorithms that were previously con-
sidered correct [Doherty 2003; Colvin and Groves 2005]. The main correctness criterion
for concurrent algorithms is linearizability, which defines consistency for the history
of invocation and response events generated by an execution of the algorithm at hand
[Herlihy and Wing 1990]. Linearizability requires every operation call to take effect
at some point between its invocation and response events. Thus, concurrent operation
calls may take effect in any order, but non-overlapping operation calls must take effect

This research is supported by EPSRC Grant EP/J003727/1.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0360-0300/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2

in their real-time order. A (concurrent) history is linearizable iff there is some order for
the effects of the operation calls that corresponds to a valid sequential history, where
valid means that the sequential history can be generated by an execution of the se-
quential specification object. A concurrent object is linearizable iff each of its histories
is linearizable.

Scalability of the proof methods for verifying linearizability remains a challenge,
and hence, an immense amount of research effort has been devoted to this problem.
Unfortunately, each new method is developed with respect to a specialised formal
framework, making it difficult to judge the merits of the different the proof meth-
ods. Therefore, we present a comparative survey of the major techniques for verifying
linearizability to examine the advantage of each method. We aim to make our com-
parison comprehensive, but with the scale of development in this area, it is inevitable
that some published methods for verifying linearizability will be left out. Our survey
does not aim to be comprehensive about fine-grained algorithms, nor about the sorts of
properties that these algorithms possess; for this, [Herlihy and Shavit 2008; Moir and
Shavit 2007] are already excellent resources. Instead, this survey is aimed at improv-
ing one’s understanding of the fundamental challenges of linearizability verification
and identifying avenues of future work. Some questions to be asked about the differ-
ent methods are:

— Locality of the proof method. How is a proof of linearizability (a global property) de-
composed so that proofs are performed in a process-local manner?

— Compositionality of the proof method. Does the method support compositional proofs,
where interference is captured at a high level of abstraction?

— Contribution of the framework. Does the underlying framework contribute to simpler
proofs? If so, how?

— Algorithms verified. Which algorithms have been verified and how complex are these
algorithms?

— Mechanisation. Has the method been mechanised? If so, what is the level of automa-
tion?

— Completeness. Has completeness1 of the proof method at hand been shown? If not,
what is the verification power of each method?

Most verification techniques involve identification of a linearization point for each
operation, which is an atomic statement of the algorithm implementing the concurrent
object whose execution causes the effect of the operation to take place, i.e., executing a
linearization point has the same effect as executing the corresponding abstract opera-
tion. It turns out that identification of linearization points is a non-trivial task. Some
algorithms have simple fixed linearization points, others have external linearization
points that are determined by the execution of other operations, while other yet more
complex algorithms have external linearization points that potentially modify the state
representation of the concurrent object. We therefore consider three case studies for
comparison which are increasingly more difficult to verify — (1) an optimistic set with
operations add and remove, both of which have fixed linearization points (2) a lazy set
[Heller et al. 2007], which is the optimistic set together with a wait-free contains op-
eration that may be linearized externally; and (3) Herlihy/Wing’s array-based queue
[Herlihy and Wing 1990], with future-dependent linearization points.

This paper is structured as follows. In Section 2, we present the intuition behind lin-
earizability as well as its formal definition using Herlihy and Wing’s original nomen-
clature. In Section 3, we present an overview of the different methods that have been

1A method is complete if whenever an implementation is linearizable with respect to an abstract specifica-
tion, it can be proved linearizable using the method.
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developed for verifying linearizability, which includes simulation, data refinement,
auxiliary variables, shape analysis, etc. Sections 4, 5 and 6 present our case studies,
where we consider algorithms for each of the different types of linearization points.

2. LINEARIZABILITY
A concurrent object allows different processes to concurrently execute its operations
(by interleaving their atomic statements) so that the intervals of execution for differ-
ent operation calls potentially overlap. There are numerous possible interpretations
of safety for concurrent objects [Herlihy and Shavit 2008], of which, the most widely
accepted condition is linearizability [Herlihy and Wing 1990]. We motivate lineariz-
ability using a non-blocking stack algorithm (Section 2.1) before presenting the formal
definition (Section 2.2). In Section 2.3, we discuss the correspondence between lineariz-
ability and observational refinement.

2.1. Example: The Treiber stack
Fig. 1 presents a simple non-blocking stack example due to Treiber [1986], which has
become a standard case study in the literature. The version we use assumes garbage
collection to avoid the so-called ABA problem [Doherty 2003], where changes to shared
pointers may go undetected due to the value changing from some value A to another
value B then back to A. Without garbage collection, additional complexities such as
version numbers for pointers must be introduced; such details are elided in this paper.

Init: Head = null

push(v)
H1: n := new(Node);
H2: n.val := v;
H3: repeat
H4: ss := Head;
H5: n.next := ss;
H6: until CAS(Head,ss,n)
H7: return

pop: lv
P1: repeat
P2: ss := Head;
P3: if ss = null then
P4: return empty
P5: ssn := ss.next;
P6: lv := ss.val
P7: until CAS(Head,ss,ssn);
P8: return lv

Fig. 1. The Treiber stack

Treiber’s stack algorithm (Fig. 1) implements the abstract stack in Fig. 2, where
brackets ‘〈’ and ‘〉’ are used to delimit sequences, ‘〈 〉’ to denote the empty sequence, and
‘a’ to denote sequence concatenation. The abstract stack consists of a shared sequence
of elements S together with two operations push (that pushes its input v 6= empty onto
the top of S) and pop (that returns empty and leaves S unchanged when S is empty,
and removes one element from the top of S and returns this top element otherwise).

Concurrent data structures (or more generally concurrent objects) are typically re-
alised as part of a system library, which are instantiated in a client program, and thus
the operations are assumed to be invoked by client processes. For reasoning purposes,
one typically thinks of an object as being executed by a most general client, which ig-
nores the behaviour of the clients themselves. A most general client formalises Herlihy
and Wing’s [Herlihy and Wing 1990] requirement that each process calls at most one
operation of the object it uses at a time. For example, a most general client process
of a stack [Amit et al. 2007] is given in Fig. 3, where the ? test in the if is used to
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model non-deterministic choice and rand() is assumed to return a randomly chosen
non-empty element. Usage of a most general client for verification was however pro-
posed in much earlier work [Doherty 2003].

Init: S = 〈 〉
push(v)
atomic {

S := 〈v〉aS
}

pop: lv
atomic {
if S = 〈 〉 then

return empty
else
lv := head(S);
S := tail(S);
return lv }

Fig. 2. An abstract stack specification

client(Stack st) {
do {
if (?)
push(st, rand());

else
pop(st);

} while true;
}

Fig. 3. Most general client process for a Stack

The implementation (Fig. 1) has fine-grained atomicity. Synchronisation is achieved
using an atomic compare-and-swap (CAS) operation, which takes as input a (shared)
variable gv, an expected value lv and a new value nv.

CAS(gv, lv, nv) “= atomic { if (gv = lv) then gv := nv ; return true
else return false }

In a single atomic step, the CAS operation compares gv to lv, potentially updates gv
to nv and returns a boolean. In particular, if gv = lv, it updates gv to nv and returns
true (to indicate that the update was successful), otherwise it leaves everything un-
changed and returns false. The CAS instruction is natively supported by most main-
stream hardware architectures. Operations that use CAS typically have a try-retry
structure with a loop that stores (shared variable) gv locally in lv, preforms some cal-
culations on lv to obtain nv (a new value for gv), then uses a CAS to attempt an update
to gv. If the CAS fails, there must have been some interference on gv since it was stored
locally at the start of the loop, and in this case the operation retries by re-reading gv.

We now explain the (concrete) program in Fig. 1, whose operations both have the
try-retry structure explained above. The concrete push operation first creates a new
node with the value to be pushed onto the stack (H1 and H2). It then repeatedly sets a
local variable ss to Head (H4) and the pointer of the new node to ss (H5) until the CAS
succeeds (H6), which means Head (still) equalled ss and has atomically been set to the
new node n (H6). Note that the CAS in push does not necessarily succeed: in case of
a concurrent push or pop operation, Head might have been changed between taking
the snapshot of Head at H4 and execution of the CAS at H6. The concrete pop operation
has a similar structure: it records the value of Head in ss (P2), and returns empty if
ss = null (P4). Otherwise, the next node is stored in ssn (P5), the return value is stored
in lv (P6), and a CAS is executed to attempt to update Head (P7). If this CAS succeeds,
the pop takes effect and the output value lv is returned (P8), otherwise, pop repeats its
steps loading a new value of Head.

The linearization points of the Treiber stack are as follows. The push operation lin-
earizes when the CAS at H6 is successful as this is the transition that adds an element
onto the top of the stack. The pop operation has two linearization points depending on
the value returned: if the stack is empty, the linearization point is the statement la-
belled P2, when Head = null is read, otherwise, the linearization point is a successful
execution of the CAS at P7. Note that P3 is not a linearization point for an empty stack
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as the test only checks local variable ss — the global variable Head might be non-null
again at this point. Notice, also, that this example illustrates the fact different state-
ments may qualify as a linearization point depending on the values returned. In the
pop operation, the location of the linearization point depends on whether or not the
stack is empty.

A possible execution of the Treiber Stack (by a most general client) is given in Fig. 4,
which depicts invocation (e.g., pushI

p(b)), response (e.g., pushR
p ), and internal transi-

tions of operations pushp(a), pushq(b) and popr: b, by processes p,q and r. A cross on a
transition arrow is used to denote the linearization points. Although the three opera-
tions execute concurrently by interleaving their statements, the order of linearization
points allows one to determine a sequential order for the operations. Importantly, this
order conforms to a valid execution of the stack from Fig. 2.

H6qpushI
p(a)

Sequential
history

Concrete
tracepushR

pH1p..H5p pushI
q(b)H6p popI

r P7r popR
r : b

pop: bpush(b)push(a)

Fig. 4. Relating interleaved traces and linearizability

2.2. Formalising linearizability
Although we have motivated our discussion of linearizability in terms of the order of
linearization points, and these being consistent with an abstract counterpart, we have
to relate this view to what is observable in a program. In particular, what is taken to
be observable are the histories, which are sequences of invocation and response events
of operation calls on an object. This represents the interaction between an object and
its client via the object’s external interface. Thus, in Fig. 4, the internal transitions
(including linearization points) are not observable.

Each observable event records the calling process (of type P), the operation that is
executed (of type O), and any input/output parameters of the event (of type V). Thus,
we define [Derrick et al. 2011a]:

Event::= inv〈〈P×O× V〉〉 | ret〈〈P×O× V〉〉

For brevity, we use notation opI
p(x) and opR

p : r for events inv(p, op, x) and ret(p, op, r),
respectively, and use opI

p and opR
p to respectively denote invocation and return events

with no inputs or outputs. For an event e = (p, op, x), we assume the existence of
projection functions πi(e) that returns the ith component of a tuple, e.g., π1(p, o, v) = p.

The definition of linearizability is formalised in terms of the history of events, which
is represented formally by a sequence. Namely, assuming seq(X) denotes sequences of
type X indexed from 0 onward, a history is an element of History “= seq(Event), i.e., is
a sequence of events.

To motivate linearizability in terms of histories, consider the following history of a
concurrent stack, where execution starts with an empty stack.

h1 “= 〈pushI
p(a),pushI

q(b),pushR
p ,pushR

q 〉
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Processes p and q are concurrent, and hence, the operation calls may be linearized in
either order, i.e., both histories below are valid linearizations.

hs1 “= 〈pushI
p(a),pushR

p ,pushI
q(b),pushR

q 〉
hs2 “= 〈pushI

q(b),pushR
q ,pushI

p(a),pushR
p 〉

Assuming execution starts with an empty stack, the abstract stack is 〈b,a〉 (with b
at the top) at the end of hs1 and 〈a,b〉 at the end of hs2. Now suppose, history h1 is
extended with a sequential pop operation:

h2 “= h1
a 〈popI

r,popR
r : b〉

No linearization of h2 may swap the order of the pop with either of the push opera-
tions in h1 because popI

r occurs after the return of both push operation calls, i.e., their
executions are not concurrent. Furthermore, because elements must be inserted and
removed from a stack in a last-in-first-out order, adding the pop that returns b re-
stricts the valid linearizations of h2. In particular, the only sensible choice is one in
which push(b) occurs after push(a), i.e.,

hs3 “= hs2 a 〈popI
r,popR

r : b〉

which results in an abstract stack 〈a〉 at the end of execution. Sequential history hs1 a
〈popI

r,popR
r : b〉 is an invalid linearization of h2. Now suppose h2 is appended with two

more pop operations as follows:

h3 “= h2
a 〈popI

s,popI
t ,popR

s : a,popR
t : a〉

History h3 cannot be linearized by any sequential stack history — the only possible
stack at the end of h2 is 〈a〉, yet the additional events in h3 are for two pop operations
both of which are successfully able to remove a from the stack. A concurrent stack
that generates h3 would therefore be deemed incorrect. By proving the Treiber stack
is linearizable, one can be assured that a history such as h3 is never generated by the
algorithm.

We now give some preliminary definitions for linearizability. For h ∈ History, let
h | p denote the subsequence of h consisting of all invocation and response events for
process p. Two histories h1, h2 are equivalent if for all processes p, h1 | p = h2 | p.
An index i ∈ dom(h) matches j ∈ dom(h) in h iff i < j, h(i) is an invocation, h(j) is
a response, π1(h(i)) = π1(h(j)), π2(h(i)) = π2(h(j)) and for all i < k < j, π1(h(k)) 6=
π1(h(i)). An invocation is pending in a history h iff there is no matching response to
the invocation in h. We say the invocation is complete in h iff it is not pending in
h. We let complete(h) denote the maximal subsequence of history h consisting of all
(completed) invocations and their matching responses in h, i.e., the history obtained
by removing all pending invocations within h. For a history h, let <h be an irreflexive
partial order on operations, where opi <h opj iff the response event of opi occurs before
the invocation event of opj in h. A history h is sequential iff the first element of h is an
invocation and each invocation (except possibly the last) is immediately followed by its
matching response. We say that h is well-formed iff the subhistory h | p is sequential.
For the rest of this paper, we assume the objects in question are executed by a most
general client, and hence, that the histories in question are well-formed.

Definition 2.1 (Linearizability [Herlihy and Wing 1990]). A history hc is lineariz-
able with respect to a sequential history hs iff hc can be extended to a history hc′ by
adding zero or more matching responses to pending invocations such that complete(hc′)
is equivalent to hs and <hc ⊆ <hs .
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We simply say hc is linearizable if there exists a history hs such that hc is linearizable
with respect to hs.

Note that Definition 2.1 allows histories to be extended with matching responses
to pending invocations. This is necessary because some pending operation may have
executed its linearization point, but not yet responded. For example, consider the fol-
lowing history, where the stack is initially empty.

〈pushI
p(x),popI

q,popR
q (x)〉 (1)

The linearization point of pushI
p(x) has clearly been executed in (1) because popq re-

turns x, but (1) is incomplete because the pushp is still pending. To cope with such
scenarios, by the definition of linearizability, (1) may be extended with a matching
response to pushI

p(x), and the extended history mapped to the following sequential
history: 〈pushI

p(x),pushR
p ,popI

q,popR
q (x)〉.

We have defined linearizability for concurrent histories. The purpose of linearizabil-
ity, however, is to define correctness of concurrent objects with respect to some abstract
specification. Thus, the definition is lifted to the level of objects as follows.

Definition 2.2. A concurrent object is linearizable with respect to a sequential ab-
stract specification iff for any legal history hc of the concurrent object, there exists
a sequential history hs of the abstract specification such that hc is linearizable with
respect to hs.

2.3. Linearizability and observational refinement
A missing link in linearizability theory is the connection between behaviours of objects
and clients executing together. Namely, from a programmer’s perspective, one may ask:
How are the behaviours of a client that uses a sequential object SO related to those of
the client when it uses a concurrent object CO instead provided some correctness condi-
tion has been established between CO and SO? An answer to this question was given
by Filipović et al. [2010] who consider concurrent object systems (which are collections
of concurrent objects) and establish a link between linearizability and observational
refinement. Their result covers data independent clients, i.e., those that communicate
only via their object systems and states that a concurrent object system COS observa-
tionally refines a sequential object system AOS iff every object in COS is sequentially
consistent with respect to its corresponding object in AOS, where:

— COS observationally refines AOS iff for any client program P parameterised by an
object system, the observable states2 of P(COS) is a subset of the observable states
of P(AOS), i.e., P(AOS) does not generate any new observations in comparison to
P(COS), and

— COS is sequentially consistent with respect to AOS iff for every history hC of COS,
there exists a sequential history hA such that the order of operation calls by the same
process in hC is preserved in hA.

It is well known that linearizability implies sequential consistency, and hence, if COS
is linearizable with respect to AOS, then COS also observationally refines AOS for
data independent clients. In addition, Filipović et al. [2010] show equivalence between
linearizability and observational refinement for clients that share data, i.e., that COS
observationally refines AOS iff COS is linearizable with respect to AOS, where the
definition of linearizability is suitably generalised to object systems.

2In their setting, the observable states consist of the variables of the clients only, i.e., none of the variables
of the object system are observable.
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Some authors have have presented constructive methods for developing fine-grained
objects, dispensing with linearizability as a proof obligation [Turon and Wand 2011;
Liang et al. 2012]. Instead, they focus on maintenance of the observable behaviour of
the abstract object directly. A survey of techniques for verifying observational refine-
ment lies outside the scope of this paper.

3. VERIFYING LINEARIZABILITY
This section discusses linearizability verification in general. Section 3.1 gives an out-
line of different methods for decomposing proofs, and Section 3.2 describes how lin-
earizability verification can be characterised in terms of the linearization points. We
give an overview of different methods for verifying linearizability in Sections 3.3-3.7.

3.1. Methods for proof decomposition
Capturing the correspondence between a concurrent implementation object and its se-
quential specification lies at the heart of linearizability. It comes as no surprise there-
fore that almost all methods for verifying linearizability uses some notion of refine-
ment [de Roever and Engelhardt 1996] to link concrete and abstract behaviours. In
this section, we classify linearizable objects based on the type of linearization point
they possess, then review the different methods for proving linearizability.

Typically, the internal representation of data in a concrete object and its abstract
specification differ, e.g., the Treiber stack is a linked list (Fig. 1), whereas its abstract
specification is a sequence of values (Fig. 2). A formal link between their observable
behaviours is given by data refinement [de Roever and Engelhardt 1996], which uses a
representation relation to relate concrete and abstract state spaces. Data refinement is
a system-wide (i.e., global) property and a monolithic proof of data refinement quickly
becomes unmanageable. Therefore, several methods for decomposing it have been de-
veloped. The proof methods for verifying linearizability all use some combination of
the methods below.

Simulation. Decomposition of data refinement into process-local proof obligations is
achieved via simulation, which allows one to reason about each transition of the con-
crete object individually. Fig. 5 shows four typical simulation rules where AInit, AOp
and AFin are abstract initialisation, operation and finalisation steps (and similarly
CInit, COp and CFin), σ, σ′ are abstract states, τ , τ ′ are concrete states, and rep is a
representation relation between abstract and concrete states. Simulation proofs may
be performed in a forwards or backwards manner and although the set of diagrams for
forwards and backward simulation are the same, the order in which each diagram is
traversed differs. In a relational setting, it turns out that neither forwards nor back-
wards simulation alone is complete for verifying data refinement, but the combination
of the two forms a complete method [de Roever and Engelhardt 1996].3

Compositional frameworks. Compositional frameworks modularise reasoning about
a concurrent program by capturing the behaviour of its environment abstractly. For
shared-variable concurrency, a popular approach to compositionality is Jones’ rely-
guarantee framework [Jones 1983], where a rely condition states assumptions about a
component’s environment, and a guarantee condition describes the behaviour a compo-
nent under the assumption that the rely condition holds. A detailed survey of different
compositional verification techniques lies outside the scope of this paper; we refer the
interested reader to [de Roever et al. 2001; van Staden 2015].

3Using a more general model of computation, e.g., predicate transformers, it is possible to develop a single
complete rule for data refinement [Gardiner and Morgan 1993], but these details are elided for the purposes
of this paper.
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rep rep

AFin

CFin

COp

rep

COp

rep
CInit

rep

σ

τ τ ′ τ τ ′

σ σ

τ

σ

τ

σ′

AIn
it

rep

AOp
Non-stutteringInitialisation Stuttering Finalisation

Fig. 5. Simulation diagrams

Reduction. Reduction enables one to ensure trace equivalence of the fine-grained im-
plementation and its coarse-grained abstraction by verifying commutativity properties
[Lipton 1975]. For example, in a program S1; S2 if S2 performs purely local modifica-
tions, (S2p ; Tq) = (Tq; S2p) will hold for any statement T and processes p, q such that
p 6= q. Therefore, S1; S2 in the program code may be treated as atomic{S1; S2}, which
in turn enables coarse-grained atomic blocks to be constructed from finer-grained
atomic statements in a manner that does not modify the global behaviour of the al-
gorithm. After a reduction-based transformation, the remaining proof only needs to fo-
cus on verifying linearizability of the coarse-grained abstraction [Groves 2008b; 2007;
Elmas et al. 2010], which is simpler than verifying the original program because fewer
statements need to be considered.

Interval-based reasoning. Linearizability is a property over the intervals in which
operations execute, requiring a linearization point to occur at some point between the
operation’s invocation and response. Some methods exploit interval logics (for example
ITL [Moszkowski 2000; 1997]) to simplify reasoning. Here, a program’s execution is
treated as an interval predicate that defines the evolution of the system over time, as
opposed to a relation that defines the individual transitions of the program.

Separation logic. Many linearizable objects are implemented using pointer-based
structures such as linked lists. A well known logic for reasoning about such imple-
mentations is separation logic [Reynolds 2002; O’Hearn et al. 2001], which uses a
so-called separating conjunction operator to split the memory heap into disjoint parti-
tions, then reasons about each of these individually. Such techniques enable localised
reasoning over the part of the heap that is important for the assertions at hand. Of
course, pointer-based structures are not the only application of separation logic in lin-
earizability verification, e.g., Gotsman and Yang [2013] use it to split the state spaces
of an object and its clients.

The methods we discuss in this paper all use some combination of the techniques
above. Prior to exploring these methods in detail, we first review the difficulties en-
countered when verifying linearizability.

3.2. Difficulties in verifying linearizability
One may classify different types of algorithms based on their linearization points (see
Table I4). The type of linearization point may be distinguished as being fixed (i.e,. the
linearization point may be predetermined), external (i.e,. the execution of a different
operation potentially determines the linearization point) and future-dependent (i.e.,
the linearization point is determined by the future executions of the operation and in
addition, these linearizations modify an the object’s abstract representation). Different

4There are several other algorithms that have not yet been formally verified, and hence, the list of algo-
rithms in Table I is only partial.
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operations of the same object may have different types of linearization points. In fact,
even within an operation, there are different types of linearization points depending
on the value returned. For example, the dequeue operation of the Michael/Scott queue
[Michael and Scott 1996] has both external (empty case) and fixed (non-empty case)
linearization points.

Table I. Classification of algorithms

Example algorithms Reference Operations (linearization type)

Treiber stack [Treiber 1986] Push (fixed), Pop (fixed)

MS queue [Michael and Scott 1996] Enqueue (fixed),
Dequeue (non-empty case fixed,

empty case external)

Array-based queue [Colvin and Groves 2005](1) Enqueue (non-full case fixed,
full case external),

Dequeue (non-empty case fixed,
empty case external)

Lock coupling list [Herlihy and Shavit 2008] Add (fixed), Remove (fixed)

Lazy set [Heller et al. 2007] Add (fixed), Remove (fixed),
Contains (external)

Elimination stack [Hendler et al. 2010] Push (external), Pop (external)

HW queue(2) [Herlihy and Wing 1990] Enqueue (future), Dequeue (future)

RDCSS [Harris et al. 2002] Restricted double-compare single-swap
(future)

CCAS [Fraser and Harris 2007] Conditional CAS (future)

Elimination queue [Moir et al. 2005a] Enqueue (future), Dequeue (future)

Snark deque [Doherty et al. 2004a] PushRight (future), PopRight (future),
PushLeft (future), PopLeft (future)

HM lock-free set [Michael 2002](3) Add (true case fixed, false case fut.),
Remove (true case fixed, false case fut.),
Contains (external)

TSR Multiset [Tofan et al. 2014] Insert (fixed), Delete (future),
Lookup (external)

(1) This is a corrected version of the queue by Shann et al. [2000].
(2) The dequeue operation is partial and retries as long as the queue is empty.
(3) Based on the algorithm by Harris [2001].

An example of an algorithm with fixed (or static) linearization points is the Treiber
stack [Treiber 1986]. Note that these linearization points can be conditional on the
global state. For example, in the pop operation of the Treiber stack, the statement la-
belled P2 is a linearization point for the empty case if Head = null holds when P2 is
executed — at this point, if Head = null holds, one can be guaranteed that the pop
operation will return empty and in addition that the corresponding abstract stack is
empty. Proving correctness of such algorithms is relatively straightforward because
reasoning may be performed in a forward manner. In particular, for each atomic state-
ment of the operation, one can predetermine whether or not the statement is a lin-
earization point and generate proof obligations accordingly. In some cases, reasoning
can even be automated [Vafeiadis 2010].
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An operation that has external linearization points is the contains operation of the
lazy set by Heller et al. [2007]. The contains operation executing in isolation must set
its own linearization points, but interference from other processes may cause it to be
linearized externally. Further details of this operation are given in Section 5.1.

An example of the third class of algorithm is the queue by Herlihy and Wing [1990],
where each concrete state corresponds to a set of abstract queue representations de-
termined by the shared array and the states of all operations operating on the array.
Reasoning here must be able to state properties of the form: “If in the future, the
algorithm has some behaviour, then the current statement of the algorithm is a lin-
earization point.” Further complications arise when states of concrete system poten-
tially corresponds to several possible states of the abstract data type. Hence, for each
step of the concrete, one must check that each potential abstract data type is modified
appropriately.

Table II presents a summary of methods for verifying linearizability, together with
the algorithms that have been verified with each method and references to the papers
in which the verifications are explained. Table III then presents further details of each
method. The first column details whether algorithms with fixed and external lineariza-
tion points have been proved, and the second details whether algorithms with future
linearization points have been proved. The third column details the associated tool (if
one exists), the fourth details whether the method uses a compositional approach, and
the fifth details whether each method is known to be complete. The final column de-
tails whether the methods have been linked formally to Herlihy and Wing’s definitions
of linearizability.

3.3. Simulation-based verification
The first formal proofs of linearizability [Colvin et al. 2006a; Colvin and Groves 2005;
Colvin et al. 2005; Doherty et al. 2004b; Doherty 2003] used simulation in the frame-
work of Input/Output Automata [Lynch and Tuttle 1989]. Verification proceeds with
respect to canonical constructions [Lynch 1996], where each operation call consists of
an invocation, a single atomic transition that performs the abstract operation, and a
return transition. The operations of a canonical object may be interleaved meaning its
histories are concurrent, but the main transition is performed in a single atomic step.
Lynch [1996] has shown that the history of every canonical construction is linearizable,
and hence, any implementation that refines can be guaranteed to be linearizable.

To demonstrate this technique, consider the concrete trace from Fig. 5, recalling that
the successful CAS statements at H6 and P7 are linearization points for the push and
non-empty pop operations, respectively. One obtains the mapping between the concrete
and canonical traces shown in Fig. 6. Namely, each invocation (response) transition of
the concrete maps to an invocation (response) of the abstract, while a linearizing tran-
sition maps to a main transition marked in Fig. 6 by a cross. The other concrete tran-
sitions are stuttering steps (see Fig. 5), and hence, have no effect on the corresponding
canonical state.

popR
r : bpushR

p P7r

popI
r doPushq doPopr popR

r : bpushR
ppushR

q

popI
r H6q

Canonical
trace

Concrete
trace

doPushp

H6ppushI
p(a)

pushI
p(a)

H1p..H5p pushI
q(b)

pushI
q(b)

Fig. 6. Groves et al.’s simulation proofs for linearizability
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Table II. Methods for verifying linearizability

Method Algorithms verified Reference

Canonical
abstraction(1)

Treiber stack
MS queue
Array-based queue
Lazy set
Elimination stack
Snark double-ended queue

[Groves 2009]
[Doherty et al. 2004b](2)
[Colvin and Groves 2005]
[Colvin et al. 2006a]
[Groves and Colvin 2007]
[Doherty et al. 2004a]

Sequential abstraction Treiber stack, Lock-coupling set
Lazy set
HW queue

[Derrick et al. 2011a]
[Derrick et al. 2011b]
[Schellhorn et al. 2014]

Rely-guarantee and
separation logic

RDCSS, Lock-coupling set,
Optimistic set, Lazy set
MCAS
CCAS, Elimination stack,
Two-lock queue, MS queue(2),
HM lock-free set(4)

[Vafeiadis 2007] and
[Liang and Feng 2013a]

[Vafeiadis 2007]
[Liang and Feng 2013a]

Reduction Treiber stack
MS queue
Elimination stack
Simplified multiset

[Elmas et al. 2010; Groves 2009]
[Groves 2008b; Elmas et al. 2010]
[Groves and Colvin 2009]
[Elmas et al. 2010]

Rely-guarantee and in-
terval temporal logic

Treiber stack, MS queue(2)
Treiber stack with hazard pointers
TSR multiset

[Bäumler et al. 2011]
[Tofan et al. 2011]
[Tofan et al. 2014]

Shape analysis Treiber stack, MS queue(2)
Numerous algorithms from
[Herlihy and Shavit 2008]

[Amit et al. 2007]
[Vafeiadis 2010]

Construction-based Treiber stack
MS queue

Elimination stack
Optimistic set

[Jonsson 2012]
[Abrial and Cansell 2005]
and [Groves and Colvin 2009]
[Groves and Colvin 2007]
[Vechev and Yahav 2008]

Hindsight lemma Optimistic set(3), Lazy set(3) [O’Hearn et al. 2010a; 2010b]

Interval abstraction Lazy set [Dongol and Derrick 2013]

Aspect-oriented proofs HW queue [Henzinger et al. 2013b]

(1) This is the only method known to have found two bugs in existing algorithms [Doherty 2003; Colvin and
Groves 2005].

(2) Including a variation by Doherty et al. [2004b].
(3) The use of atomicity brackets prohibits behaviours that are permitted by the fine-grained algorithm.
(4) Set algorithm by Michael [2002], which is based on the algorithm by Harris [2001].

Although Groves et al. present a sound method for proving linearizability, a funda-
mental question about the link between concurrent and sequential programs remains.
Can linearizability be formulated as an instance of data refinement between a concur-
rent implementation and a sequential abstract program? This is answered by Derrick
et al. [2011a], who present a simulation-based method linking the concurrent object in
question with its sequential (as opposed to canonical) abstraction. This is achieved by
including an auxiliary history variable in the states of both the concrete and abstract
objects so that linearizability is established as part of the refinement. In addition, a
number of process-local proof obligations that dispense with histories are generated,
whose satisfaction implies linearizability. Instead of proving refinement in a layered
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Table III. Comparison of verification methods

Method Fixed &
External Future Tool Compo-

sitional? Complete? Linked
to HW

Canonical abstraction X X PVS (1) (4)

Sequential abstraction X X KIV (2) X

RG+SL X X X (3) (5)

Reduction X QED

RGITL X X KIV X (2) (6)

Shape analysis X CAVE

Construction-based X

Hindsight lemma X

Interval abstraction X X

Aspect-oriented proofs X CAVE (7)

(1) Forwards and backwards simulation is complete for showing refinement of input/output automata
[Lynch and Vaandrager 1995].

(2) Backward simulation for history-enhanced data types shown to be complete for linearizability [Schell-
horn et al. 2012; 2014].

(3) Completeness could potentially be proved by linking these methods the results of Abadi and Lamport
[1991], however, this link has thus far not been made.

(4) Using results of Lynch [1996].
(5) Using results in [Liang and Feng 2013b; 2013a].
(6) Using an alternative characterisation of linearizability based on possibilities [Herlihy and Wing 1990].
(7) Applies purely blocking implementations only.

manner (as done by Groves et al.), Derrick et al.’s proofs aim to capture the relation-
ships between the abstract and concrete systems within the refinement relation itself.

For a concrete example, once again consider the stack trace from Fig. 5. Using the
methods of Derrick et al. [2011a], one would obtain a refinement shown in Fig. 7,
where the concrete transitions that update the history are indicated with a bold ar-
row. Assume hc and ha are the concrete and abstract history variables, both of which
are sequences of events. Each concrete invoke or return transition appends the corre-
sponding event to the end of hc, e.g., transition pushI

p(a) updates hc to hca 〈pushI
p(a)〉.

Every abstract transition updates the ha with matching invocation and response pairs,
e.g., APushp updates the ha to ha a 〈pushI

p(a),pushR
p 〉. Therefore, the concrete history

hc may be concurrent, whereas the abstract history ha is sequential. This enables the
proof of linearizability to be built into the refinement relation, as opposed to relying on
a canonical abstraction that generates linearizable histories.

APushq(b)Apushp(a) APopr: b

popI
rH6p H6qpushI

q(b) popR
r : bpushI

p(a)

trace
Sequential

Concrete
traceH1p..H5p pushR

p P7r

Fig. 7. Derrick et al.’s refinement proofs for linearizability
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3.4. Augmented states
Instead of defining concrete and abstract objects as separate systems and using a rep-
resentation relation to link their behaviours (as done in Section 3.3), one may em-
bed the abstract system directly within the concrete system as an auxiliary extension
[Vafeiadis 2007] and prove linearizability by reasoning about this combined system.
For example, in a proof of the Treiber stack, one would introduce the abstract sequence
S as an auxiliary variable to the program in Section 1. At each linearization point of
the Treiber stack, a corresponding operation is performed on S, e.g., the successful CAS
transition at H6 is augmented so that S is updated to 〈v〉 a S [Vafeiadis 2007]. This
has the advantage of flattening the state space into a single layer meaning proofs of
linearizability follow from invariants on the combined state. Vafeiadis [2007] further
simplifies proofs by using a framework that combines separation logic [O’Hearn et al.
2001] (to reason about pointers) and rely-guarantee [Jones 1983] (to support composi-
tionality). It is worth noting, however, the underlying theory using this method relies
on refinement [Liang and Feng 2013b]. Namely, the augmentation of each concrete
state must be an appropriate abstraction of the concrete object in question.

popR
r : bpushR

p P7r

Apushp(a) Apushq(b) Apopr: b

popI
rpushI

q(b)H6p H6qpushI
p(a)

Augmented
trace

H1p..H5p

Fig. 8. Vafeiadis et al.’s augmented state based proofs

To visualise this approach, again consider the example trace from Fig. 4, where em-
bedding the abstract state as an auxiliary variable produces the augmented trace in
Fig. 8. For algorithms with fixed linearization points (which can be verified using for-
ward simulation), reasoning about invariants over the flattened state space is sim-
pler than simulation proofs. (This is also observed in the forward simulation proof of
Colvin et al. [2006a], where auxiliary variables that encode the abstract state are in-
troduced at the concrete level.) However, invariant-based proofs only allow reasoning
about a single state at a time, and hence are less flexible than refinement relations,
which relate a concrete state to potentially many abstract states. Vafeiadis [2007] ad-
dresses these shortcomings by using more sophisticated auxiliary statements that are
able to linearize both the currently executing operation as well as other executing
processes. In addition, prophecy variables [Abadi and Lamport 1991] are used to rea-
son about operations whose linearization points depend on future behaviour. Recently,
Liang and Feng [2013b] have consolidated these ideas augmentations by allowing aux-
iliary statements linself, (which performs the same function as the augmentations of
Vafeiadis by linearizing the currently executing process [Vafeiadis et al. 2006]) and
lin(p), (which performs the linearization of process p different from self that may be
executing a different operation). Liang and Feng (unlike Vafeiadis) allow augmenta-
tions that use try and commit pairs, where the try is used to guess potential lineariza-
tion points, and the commit used to pick from the linearization points that have been
guessed thus far.

Augmented state spaces also form the basis for shape analysis [Jones and Much-
nick 1982], which is a static analysis technique for verifying properties of objects with
dynamically allocated memory. One of the first shape-analysis-based linearizability
proofs is that of Amit et al. [2007], who consider implementations using singly linked
lists and fixed linearization points. The following paraphrases Amit et al. [2007, pg
480], by clarifying their nomenclature with the terminology used in this paper.
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The proof method uses a correlating semantics, which simultaneously ma-
nipulates two memory states: a so-called candidate state [i.e., concrete state]
and the reference state [i.e., abstract state]. The candidate state is manipu-
lated according to an interleaved execution and whenever a process reaches
a linearization point in a given procedure, the correlating semantics invokes
the same procedure with the same arguments on the reference state. The
interleaved execution is not allowed to proceed until the execution over
the reference state terminates. The reference response [i.e., return value]
is saved, and compared to the response of the corresponding candidate op-
eration when it terminates. Thus linearizability of an interleaved execution
is verified by constructing a (serial) witness execution for every interleaved
execution.

These methods are extended by Vafeiadis [2009], where a distinction is made between
shape abstraction (describing the structure of a concurrent object) and value abstrac-
tion (describing the values contained within the object). The method is used to verify
several algorithms, including the complex RDCSS algorithm with future linearization
points.

Although the behaviours of concurrent objects are complex, the algorithms that im-
plement them are often short, consisting of only a few lines of code. This makes it feasi-
ble to perform a brute-force search for their linearization points. To this end, Vafeiadis
[2010] presents a fully automated method that infers the required abstraction map-
pings based on the given program and abstract specification of the objects. The method
is, thus far, only able to handle so-called logically pure operations. An example of a logi-
cally impure operation is the remove operation of the optimistic set (Section 4.1), which
uses a special “marked bit” to denote nodes that have been logically removed from the
set.

3.5. Interval-based methods
Interval-based methods aim to treat programs as executing over an interval of time,
as opposed to relations between pre and post states. Schellhorn et al. combine rely-
guarantee reasoning with interval temporal logic [Moszkowski 2000], which enables
one to reason over the interval of time in which a program executes, as opposed to
single state transition [Schellhorn et al. 2011]. The proofs are carried out using the
KIV theorem prover [Drexler et al. 1993], which is combined with symbolic execution
[Burstall 1974; Bäumler et al. 2010] to enable guarantee conditions to be checked.
This involves inductively stepping through the program statements within KIV itself,
simplifying verification. These methods have been applied to verify the Treiber stack
and the Michael/Scott queue [Bäumler et al. 2011].

Dongol and Derrick [2013] verify behaviour refinement between a coarse-grained
abstraction and fine-grained implementation. Unlike all other methods, these proofs
do not rely on identification of linearization points in the concrete code. The method
has been applied to the lazy set algorithm [Heller et al. 2007], including the contains
operation with external linearization points.

3.6. Problem-specific techniques.
Researchers have also developed problem-specific methods, sacrificing generality in
favour of simpler linearizability proofs for a specific subset of concurrent objects. One
such method for non-blocking algorithms is the Hindsight Lemma [O’Hearn et al.
2010a], which applies to linked list implementations of concurrent sets (e.g., the lazy
set) and characterises conditions under which a node is guaranteed to have been in
or out of a set. The original paper [O’Hearn et al. 2010a] only considers a simple opti-
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mistic set. The extended technical report [O’Hearn et al. 2010b] presents a proof of the
Heller et al.’s lazy set. Unfortunately, the locks within the add and remove operations
are modelled using atomicity brackets, which has the unwanted side effect of disallow-
ing concurrent reads of the locked nodes. Thus, the algorithm verified by O’Hearn et al.
[2010b] differs operationally from the Heller et al. lazy set [Heller et al. 2007]. Over-
all, the ideas behind problem-specific simplifications such as the Hindsight Lemma are
interesting, but the logic used and the objects considered are highly specialised.

Some objects like queues and stacks can be uniquely identified by their aspects,
which are properties that uniquely characterise the object in question. This is exploited
by Henzinger et al. [2013b], who present an aspect-oriented proof of the Herlihy/Wing
queue. Further details of this particular method are provided in Section 6.2.

Automation has been achieved for algorithms with helping mechanisms and exter-
nal linearization points such as the elimination stack [Dragoi et al. 2013]. These tech-
niques require the algorithms to satisfy so-called R-linearizability [Pacull and Sandoz
1993], a stronger condition than linearizability, hence, verification of algorithms with
linearization points based on future behaviour are excluded.

3.7. Construction-based proofs
Several researchers have also proposed the development of linearizable algorithms via
incremental refinement, starting with an abstract specification. Due to the transitiv-
ity of refinement, and because the operations of the initial program are atomic (and
trivially linearizable), linearizability of the final program is also guaranteed. An ad-
vantage of this approach is the ability to design an implementation algorithm, leaving
open the possibility of developing variations of the desired algorithm.

The first constructive approach to linearizability is by Abrial and Cansell [2005],
who use the Event-B framework [Abrial 2010] and the associated proof tool. However,
the final algorithm they obtain requires counters on the nodes (as opposed to point-
ers [Michael and Scott 1996]), thus it is not clear whether such a scheme really is
implementable. Groves [2008a] presents a derivation of the Michael/Scott queue using
reduction to justify each refinement step [Lipton 1975]. This is extended by Groves and
Colvin [2009], who derive a more complicated stack by Hendler et al. [2010] that uses
an additional “backoff array” in the presence of high contention for the shared central
stack. Their derivation methods allow data refinement (without changing atomicity),
operation refinement (where atomicity is modified, but state spaces remain the same)
and refactoring (where the structure of the program is modified without changing its
logical meaning) [Groves and Colvin 2009; 2007]. These proofs are not mechanised,
but there is potential to perform mechanisation using proof tools such as QED [Elmas
2010].

Gao et al. [2009; 2007; 2005] present a number of derivations of non-blocking al-
gorithms and develop a number of special-purpose reduction theorems for derivation
[Gao and Hesselink 2007]. However, these derivations aim to preserve lock-freedom (a
progress property) [Massalin and Pu 1992], as opposed to linearizability.

Vechev et al. [2008; 2009] present a tool-assisted derivation method based on
bounded model checking. Starting with a sequential linked-list set, they derive sev-
eral variations of set algorithms implemented using DCAS (double compare-and-swap)
and CAS instructions, as well as variations that use marking schemes. Although their
methods allow relatively large state spaces to be searched, these state spaces are
bounded in size, and hence, only finite executions by a fixed number of processes are
checked, i.e., linearizability of the final algorithms derived cannot be guaranteed.

More recently, Jonsson [2012] has presented a derivation of the Treiber stack and
Michael/Scott queue in a refinement calculus framework [Morgan and Vickers 1992].
Jonsson defines linearizability as
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Table IV. Overview of methods for verifying set algorithms

Reference
Lin. point

identification Additional notes

[Vafeiadis et al. 2006] Manual Operation contains not verified

[Colvin et al. 2006a] Manual Allows model checking

[Vafeiadis 2007] Manual Auxiliary code can linearize other operations

[Vafeiadis 2010] Automatic Full automation via shape analysis, but the lazy
set [Heller et al. 2007] is not yet verified in the
method.

[O’Hearn et al. 2010a] N/A Uses Hindsight Lemma to generate proof obliga-
tions, and hence, only applicable to list-based set
implementations

[Elmas et al. 2009] N/A Linearizability proofs are performed for coarse-
grained abstractions

[Derrick et al. 2011b] Manual Data refinement proofs

[Liang and Feng 2013a] Manual Separation logic encoding

[Dongol and Derrick 2013] N/A Interval-based reasoning; linearizability is proved
for coarse-grained abstractions

A program P is linearizable if and only if atomic{P} is refined by P.
[Jonsson 2012, Definition 3.1]

Reduction-style commutativity checks are used to justify splitting the atomicity at
each stage. With this interpretation of linearizability, Jonsson is able able to start by
treating the entire concrete operation as a single atomic transition, then incrementally
split its atomicity into finer-grained statements.

4. CASE STUDY 1: AN OPTIMISTIC SET ALGORITHM
Set algorithms have become standard case studies for showing applicability of a theory
for verifying linearizability. Of particular interest is the lazy set by Heller et al. [2007],
which is a simple algorithm with add and remove operations that have fixed lineariza-
tion points and a contains operation that is potentially linearized by the execution of
other operations. We first present a verification of a simplified version that consists of
add and remove operations only. An overview of the different approaches to verifying
set algorithms is given in Table IV. Further details of each method are provided in
the sections that follow. The formalisation in this section aims to highlight the main
ideas behind each method. We refer readers interested in reproducing each proof to
the original papers.

4.1. An optimistic set
In this section, we present a simplified version of Heller et al.’s concurrent set algo-
rithm [Heller et al. 2007] (see Fig. 9) operating on a shared linked list, that is sorted
in strictly ascending values order. Locks are used to control concurrent access to list
nodes. The algorithm consists of operations add and remove that use auxiliary opera-
tion locate to optimistically determine the position of the node to be inserted/deleted
from the linked list.

Each node of the list consists of fields val,next,mark, and lock, where val stores
the value of the node, next is a pointer to the next node in the list, mark denotes the
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add(x):
A1: n1, n3 := locate(x);
A2: if n3.val != x then
A3: n2 := new Node(x);
A4: n2.next := n3;
A5: n1.next := n2;
A6: res := true

else
A7: res := false
A8: n1.unlock();
A9: n3.unlock();

A10: return res

remove(x):
R1: n1, n2 := locate(x);
R2: if n2.val = x then
R3: n2.mark := true;
R4: n3 := n2.next;
R5: n1.next := n3;
R6: res := true

else
R7: res := false;
R8: n1.unlock();
R9: n2.unlock();

R10: return res

locate(x):
while true do

L1: pred := Head;
L2: curr := pred.next;
L3: while curr.val < x do
L4: pred := curr;
L5: curr := pred.next
L6: pred.lock();
L7: curr.lock();
L8: if !pred.mark

and !curr.mark
and pred.next = curr

L9: then return pred, curr
else

L10: pred.unlock();
L11: curr.unlock()

Fig. 9. Optimistic set algorithm operations

marked bit5 and lock stores the identifier of the process that currently holds the lock to
the node (if any). The lock field of each node only prevents modification to the node; it
is possible for processes executing locate and contains to read values of locked nodes
when they traverse the list. Two dummy nodes with values −∞ and ∞ are used at
the start (Head) and end (Tail) of the list, and all values v inserted into the set are
assumed to satisfy −∞ < v <∞.

Operation locate(x) is used to obtain pointers to two nodes pred (the predecessor
node) and curr (the current node). A call to locate(x) operation traverses the list
ignoring locks, acquires locks once a node with value greater than or equal to x is
reached, then validates the locked nodes. If the validation fails, the locks are released
and the search for x is restarted. When locate(x) returns, both pred and curr are
locked by the calling process, the value of pred is always less than x, and the value of
curr may either be greater than x (if x is not in the list) or equal to x (if x is in the list).

Operation add(x) calls locate(x), then if x is not already in the list (i.e., value of
the current node n3 is strictly greater than x), a new node n2 with value field x is
inserted into the list between n1 and n3 and true is returned. If x is already in the
list, add(x) does nothing and returns false. Operation remove(x) also starts by calling
locate(x), then if x is in the list the current node n2 is removed and true is returned
to indicate that x was found and removed. If x is not in the list, the remove operation
does nothing and returns false. Note that operation remove(x) distinguishes between
a logical removal, which sets the marked field of n2 (the node corresponding to x), and
a physical removal, which updates the next field of n1 so that n2 is no longer reachable.

As a concrete example, consider the linked list in Fig. 10 (a), which represents the
set {3, 18, 77}, and an execution of add(42) by process p without interference. Execu-
tion starts by calling locate(42) and once this returns, n1p and n2p are set as shown
in Fig. 10 (b). Having found and locked the correct location for the insertion, process
p tests to see that the value is not already in the set (line A2), then creates a new un-
marked node n3p with value 42 and next pointer n3p (see Fig. 10 (c)). Then by executing
A4, the executing process sets the next pointer of n1p to n2p, linearizing a successful add
operation (see Fig. 10 (d)). Thus, provided no remove(42) operations are executed, any
other add(42) operation that is started after A4 has been executed will return false.

5The mark bit is not strictly necessary to implement the optimistic set (e.g., [Vafeiadis 2007]), however, we
use it here to simplify the lead up to the lazy set in Section 5.
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After the linearization, process p releases the locks on n1p and n3p and returns true to
indicate the operation was successful.

−∞ 3 18 77 ∞

(a)

−∞ 3 18 77 ∞

42

n3pn1p

n2p

lock = p lock = p

(c)

−∞ 3 18 77 ∞
lock = p

n3pn1p

lock = p

(b)

−∞ 3 18 77 ∞

42

n3p

n2p

n1p

lock = p lock = p

(d) State immediately after linearization
Fig. 10. Execution of add(42) by process p

Now consider the execution of remove(18) by process p on the set {3, 18, 77} depicted
by the linked list in Fig. 11 (a), where the process executes without interference. Like
add, operation remove(18) operation first calls locate(18), which returns the state
depicted in Fig. 11 (b). At R2, a check is made that the element to be removed (given by
node n2p) is actually in the set. Then, the node n2p is removed logically by setting its
marked value to true (line R3), which is the linearization point of remove (see Fig. 11
(c)). After execution of the linearization point, operation remove sets n3p to be the next
pointer of the removed node (line R4), and then node n2p is physically removed by
setting the next pointer of n1 to n3p (see Fig. 11 (d)). Then, the held locks are released
and true is returned to indicate that the remove operation has succeeded. Note that
although 18 has been logically removed from the set in Fig. 11 (c), no other process is
able to insert 18 to the set until the marked node has also been physically removed (as
depicted in Fig. 11 (d)), and the lock on n1p has been released.

∞77183−∞

(a)

−∞ 3 18 77 ∞
n1p n2p

lock = p lock = p

(c) State immediately after linearization

−∞ 3 18 77 ∞
n1p n2p

lock = p lock = p

(b)

−∞ 3 18 77 ∞
n1p n2p n3p

lock = p lock = p

(d)
Fig. 11. Execution of remove(18) by process p

Verifying add and remove operations. Verifying correctness of add and remove, which
have fixed linearization points, is relatively straightforward because the globally vis-
ible effect of both operations may be determined without having to refer to the future
states of the linked list. The refinement-based methods (Section 3.3) verify correctness
using forward simulation and the state augmentation methods (Section 3.4) modify
the abstract state directly.
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We present outlines of the proofs using the simulation-based methods of Colvin et al.
[2006a] (Section 4.2), refinement-based method of Derrick et al. [2011b] (Section 4.3)
and auxiliary variable method of Vafeiadis [2007] (Section 4.4). To unify the presen-
tation, we translate the PVS formulae from [Colvin et al. 2006b] and the Vafeiadis’
RGSep notation [Vafeiadis and Parkinson 2007; Vafeiadis 2007] into Z [Bowen 1996],
which is the notation used by Derrick et al. Inevitably, this causes some of the benefits
of a proof method to be lost; we discuss the effect of the translation and the benefits
provided by the original framework where necessary.

Full details on modelling concurrent algorithms in Z are given by Derrick et al.
[2011a]. To reason about linked lists, memory must be explicitly modelled, and hence,
the concrete state CState is defined as follows, where Label and Node are assumed
to be the types of a program counter label and node, respectively. Each atomic pro-
gram statement is represented by a Z schema. The schema for the statements in Fig. 9
labelled A5 and A7 executed by process p are modelled by Add5p and Add7p, respec-
tively. Notation ∆CState imports both unprimed and primed version of the variables of
CState into the specification enabling one to identify specifications that modify CState;
unprimed and primed variables are evaluated in the current and next states, respec-
tively. Using the Object-Z [Smith 1999] convention, we assume that variables v′ = v
for every variable v unless v′ = k is explicitly defined for some value k.

CState
pred, curr: P→ Node
n1,n2,n3: P→ Node
pc: P→ Label
lock: Node→ PP
next: Node→ Node
mark: Node→ B
res: P→ V

Add5p
∆CState

pc(p) = A5
next′(n1(p)) = n2(p)

Add7p
∆CState

pc(p) = A7
res′(p) = false

4.2. Method 1: Proofs against canonical specifications
This section reviews Groves et al.’s simulation methods against canonical specifica-
tions [Doherty et al. 2004b]. Here, one is required to perform the following steps.

(1) Identify and fix the linearization points of each concrete operation.
(2) Define a canonical abstraction and a representation relation that describes the link

between the canonical and concrete representations.
(3) Prove simulation between the concrete program (which is the program in Fig. 9

formalised in Z) and canonical abstraction, where the concrete initialisation and
responses are matched with abstract initialisation and response operations, re-
spectively. The linearization points must be matched with main canonical opera-
tions. Simulation may be performed in a forwards or backwards manner, and in
some cases, both are required (whereby several intermediate layers of abstraction
may be introduced). The proof may require introduction of additional invariants at
the concrete level to specify additional properties of the data structure in question.

The linearization points have been described in Section 4.1. To model the canonical
specification, first the abstract state AState must be defined.

AState
S:PV
pc: P→ Label
v: P→ V
res: P→ B
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The canonical operations corresponding to the add operation are given by the following
Z schema, where variables decorated with ? and ! denote inputs and outputs, respec-
tively.

AddInvp
∆AState
x? ∈ V

pc(p) = idle
pc′(p) = addi
v′(p) = x?

AddOKp
∆AState

pc(p) = addi
v(p) ∈ S
S′ = S ∪ {v(p)}
res′(p) = true
pc′(p) = addo

AddFailp
∆AState

pc(p) = addi
v(p) 6∈ S
res′(p) = false
pc′(p) = addo

AddResp
∆AState
r! ∈ B

pc(p) = addo
r! = res(p)
pc′(p) = idle

Similar schema are generated for the canonical form of the remove operation. Fol-
lowing Lynch [1996], any history generated by such canonical specifications are lin-
earizable, and therefore, any refinement of the canonical specification must also be
linearizable.

As highlighted in Section 5, the forward simulation must consider four different
simulation diagrams: initialisation, stuttering and non-stuttering transitions, and fi-
nalisation. For the non-stuttering transitions, which are the most interesting of these,
the forward simulation proof rule states the following, where AOpp is the abstract op-
eration corresponding to the COpp in process p, rep is a relation from the abstract
to the concrete state space, and ‘o9’ denotes relational composition, i.e., for relations
r1 ∈ VX ↔ VY and r2 ∈ VY ↔ VZ, we define r1 o

9 r2 = {(x, z) | x ∈ VX ∧ z ∈ VZ ∧
∃y: VY • (x, y) ∈ r1 ∧ (y, z) ∈ r2}.

∀p: P • rep o
9 COpp ⊆ AOpp o

9 rep (2)

Thus, for any abstract state σ and concrete state τ linked by the representation rela-
tion rep, if the concrete statement COpp is able to transition from τ to τ ′, then there
must exist an abstract state σ′ such that AOpp can transition from σ to σ′ and σ′ is
related to τ ′ via rep.

Colvin et al. [2006a] set up a framework that enables model checking of possible
invariants prior to its formal verification in a theorem prover. To this end, auxiliary
variables that reflect the abstract space are introduced at the concrete level together
with invariants over these auxiliary variables that correspond to the simulation re-
lation. For the lazy set, one such variable is aux S, which stores the set of elements
currently in the set. The set aux S is updated whenever a node is inserted into the list,
or is marked for deletion. To verify that aux S does indeed represent the abstract set,
one must prove that the following holds:

cs(aux S) = {k ∈ V | InList(cs,k)}
where cs is a reachable concrete state and InList is a function that determines whether
or not the value k is in the list (i.e., an unmarked node with value k is reachable from
the head). Using aux S, the main invariants that Colvin et al. prove are:6

∀p: P • pc(p) ∈ {A5,R7} ⇒ v(p) 6∈ aux S (3)
∀p: P • pc(p) ∈ {A7,R3} ⇒ v(p) ∈ aux S (4)

By (3), for any process p, prior to execution of execution of A5 (a successful add) and R7
(a failed remove), the element being added and removed, respectively must not be in
the set. Condition (4) is similar. The representation relation between an abstract state

6In [Colvin et al. 2006b] A5 and A7 are labelled add6 and add8, respectively.
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as and concrete state cs is defined as follows, where step rel is a relation between the
program counters of as and cs.

rep(as, cs) “= as(S) = cs(aux S) ∧ step rel(as, cs)

Proofs of these conditions require a number of additional invariants to be established,
e.g., stating that the list is sorted. However, it is worth noting that a substantial num-
ber of these invariants are introduced to prove the full lazy set. These proofs are car-
ried out entirely within PVS [Owre et al. 1996].

4.3. Method 2: Proofs against sequential specifications
Derrick et al.’s method considers proofs directly against a sequential specification
(with atomic operations), unlike the previous method that verifies refinement against
a canonical specification with additional invoke/return transitions. Verification using
this method consists of the following steps.

(1) Identify and fix the linearization points of each operation.
(2) Decompose the proof into process-local proof obligations using a status function.
(3) Prove, using simulation, that each concrete step is a refinement of some abstract

step.
(4) Show that other processes running in parallel maintain the refinement relation. To

this end, encode the interference freedom and disjointness proof obligations within
the invariants.

(5) Finally, prove that the initialisation establishes the refinement relation.

The abstract state and operations add and remove are modelled as follows:

AState “= [S:PV]

Addp “= [∆AState, x?: V, r!:B | S′ = S ∪ {x?} ∧ r! = (S′ 6= S)]

Removep “= [∆AState, x?: V, r!:B | S′ = S \ {x?} ∧ r! = (S′ 6= S)]

The proofs rely on history-enhanced objects, which introduce the sequential and con-
crete histories as auxiliary variables. Executing operations append events to a history,
e.g., an invocation op with input x executed by process p, appends inv(p, op, x) to the
history. Thus, if h is the concrete history variable, the invocation and return schema of
the add operation are extended as follows:

AddInvHp “= AddInvp ∧ [h,h′: seq(Event) | h′ = h a 〈inv(p,add, x?)〉]

AddRetHp “= AddRetp ∧ [h,h′: seq(Event) | h′ = h a 〈ret(p,add, r!)〉]
The abstract data types execute the operations atomically, and hence, their invo-

cation and return occur as part of a single transition. Given that hs is the auxiliary
sequential history variable, the following schema formalise the history-enhanced ab-
stract add and remove operations:

AddHp “= Addp ∧ [hs,hs′: seq(Event) | hs′ = hs a 〈inv(p,add, x?), ret(p,add, r!)〉]

RemHp “= Removep ∧ [hs,hs′: seq(Event) | hs′ = hs a 〈inv(p, rem, x?), ret(p, rem, r!)〉]
Therefore, the abstract history is sequential, whereas the concrete is concurrent. Re-
finement between the abstract and concrete history-enhanced data types must explic-
itly prove linearizability between the two histories.

The proofs here involve showing that each process is a non-atomic refinement [Der-
rick and Wehrheim 2003; 2005] of the abstract data type. To cope with incomplete his-
tories, Derrick et al. use an additional set R that stores a set of return events for pend-
ing invocations that have linearized but not yet returned, and therefore, contributes to
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the operation in the corresponding abstract history hs. In particular, assuming bseq(X)
denotes bijective sequences generated from a set X, some h0 ∈ bseq(R) can be used as
the h0 that completes pending invocations. The set bseq(R) contains all sequences con-
structed from R, so that each element of R appears in the sequence exactly once.

The proofs refer to the status (of type STATUS ::= IDLE | IN〈〈V〉〉 | OUT〈〈V〉〉) of
each process. Namely, process p has status IDLE iff p is not executing any operation,
IN(x) iff p is executing an operation with input x, but has not passed the linearization
point of the operation, and OUT(r) iff p is executing an operation and has passed the
linearization point with return value r. This is combined with a function runs: CState×
P → O ∪ {none} denoting that the operation the given process is executing in a given
state (none if the process is idle), and a function status: CState× P→ STATUS, which
determines whether or not the process contributes a return event in a given state. The
encoding of the status is such that its value is IDLE if runs(cs,p) = none; is IN(x) if
runs(cs,p) = op and cs(pc(p)) has executed the linearization point of op; and is OUT(r)
if runs(cs,p) = op and cs(pc(p)) has executed the linearization point of op operation
that returns value r.

The forward simulation relation rep is then of the following form, where pi(n,h)
denotes that h(n) is a pending invocation event, i.e., h(n) is an invocation and for all
m > n, h(m) is not a return event that matches h(n).

rep((as,hs), (cs,h)) “=
ABS(as, cs) ∧ INV(cs) ∧ (∀p,q • p 6= q⇒ D(cs,p,q)) (5)
∧ (∀n • pi(n,h)⇒ runs(cs, π1(h(n))) = π2(h(n))) (6)
∧ ∀p, x • status(cs,p) = IN(x)⇒ ∃n • pi(n,h) ∧ h(n) = inv(p, runs(cs,p), x) (7)
∧ ∃R • R = {ret(p, op, r) | runs(cs,p) = op ∧ status(cs,p) = OUT(r)}

∧ ∀h0: bseq(R) • linearizable(h,h0,hs)
(8)

Here, (5) states that both abstraction ABS and invariant INV hold, and that D(cs,p,q)
holds, which ensures interference freedom for the local states of process p are not mod-
ified by execution of process q. Conjunct (6) states that if h(n) is a pending invocation,
then function runs is accurate. Conjunct (7) states that whenever process p’s status is
IN(x) for some x, there must exist an index n ∈ dom(h) such that h(n) is a pending
invocation, and corresponds to an invocation that is executing runs(cs,p) with input x.
Finally conjunct (8) relates h to hs using the set of processes with status OUT. It re-
quires that there exist a set R of events corresponding to processes that have executed
a linearizing statement, but not yet returned, such that for any bijective sequence h0

generated from R, linearizable(h,h0,hs) holds.
Using rep, a number of process-local7 proof obligations that do not need to refer

to histories hs and h are generated, and a theorem that ensures satisfaction of the
process-local properties that implies rep is proved. These proof obligations use the
status function to determine the correct proof rule to apply. For example, the proof
obligation below is for steps of process p that transition from a status IN(in), where
COpp potentially corresponds to the execution of a linearization point.

∀as: AS, cs, cs′: CState,p: P • rep(as, cs) ∧ status(cs,p) = IN(in) ∧ COpp(cs, cs′)⇒
status(cs′,p) = IN(in) ∧ rep(as, cs′) ∨
(∃as′, out • AOpp(in,as,as′, out) ∧ status(cs′,p) = OUT(out) ∧ rep(as′, cs′))

Verifying invocation and response transitions are straightforward because the corre-
sponding abstract state representation is not modified, and stuttering transitions are

7Thread-local in the terminology of Derrick et al. [2011a].
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straightforward because neither the histories nor the state representations are modi-
fied. The non-stuttering transitions linearize the abstract object. This is reflected in the
status function, whose value changes from IN(x) before the transition to OUT(r) after
the transition. Locality of the proof method is guaranteed using the well-established
technique of non-atomic refinement [Derrick and Wehrheim 2005] (we refer the inter-
ested reader to [Derrick et al. 2011a] for details).

4.4. Method 3: Augmented states
The method of Vafeiadis [2007], requires the following steps.
(1) Introduce auxiliary variables to the existing program, at least one of which is an

abstraction of the data type in question, then define the abstract operations on
these auxiliary variables that are required to be implemented by the concrete pro-
gram.

(2) Identify the linearization points of the concrete implementation, then introduce
the appropriate auxiliary statements at each linearization point.

(3) Define a rely condition by identifying statements that modify the global state, and
developing an abstraction of each statement. The overall rely is a disjunction of
each such abstraction.

(4) Define and prove an invariant that links the abstract and concrete representations.
Vafeiadis’ proofs are performed using the RGSep framework [Vafeiadis 2007; Vafeiadis
and Parkinson 2007]. In this paper, for uniformity, we translate the example expressed
in RGSep into Z.

For the add operation, a state space is extended with a fresh variables AbsRes (rep-
resenting the abstract result) and S (representing the abstract set) to obtain an aug-
mented state AugState. In addition, the fixed linearization points A5 and A7 are aug-
mented as follows, where the brackets < > delimit atomicity.

add(x):
...
A5: <n1.next := n2; AbsRes := (x 6∈ S); S := (S ∪ {x})>
...
A7: <res := false; AbsRes := (x 6∈ S); S := (S ∪ {x})> ...

Note that at A7, the auxiliary code sets AbsRes to false (i.e., x 6∈ S), and therefore the
abstract set S remains unchanged. The remove operation is similar, therefore its details
are elided.

Assume that lock(n) returns the id of the process that currently holds the lock on
node n and that lock(n) = ∅ holds if no process has locked n. Furthermore, assuming
that val(n), next(n) and mark(n) denote the value, next and mark fields of n, respec-
tively, we define predicates:

lvn(n) “= (lock(n), val(n),next(n))

lvnm(n) “= (lock(n), val(n),next(n),mark(n))

The non-stuttering actions of a program’s environment are abstracted by rely condi-
tions, which are relations on the pre-post states, representing transitions that mod-
ify the global state8. We replace all instances of separating conjunction ‘∗’ by logical
conjunction ‘∧’, which enables simpler comparison among the different methods. We
discuss the differences that arise from this translation where needed.

AugState “= CState ∧ [S:PV]

8Vafeiadis [2007] defines provisos for some of these actions, which we interpret as preconditions of each Z
operation.
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Lockp “= [∆AugState,n: Node | lock(n) = ∅ ∧ p 6= 0 ∧ lock′(n) = {p}]
Unlockp “= [∆AugState,n: Node | lock(n) = {p} ∧ p 6= 0 ∧ lock′(n) = ∅]

Markp “= [
∆AugState,n,n1: Node, v: V

lvn(n1) = (p, v,n) ∧
lvnm′(n1) = (p, v,n, true) ∧
S′ = S\{v}

]

Addp “= [
∆AugState,
n1,n2,n3: Node,u, v: Val

(u < v < val(n3)) ∧ lvn(n1) = (p,u,n3) ∧
lock(n3) = {p} ∧ lvn(n2) = (∅, v,n3) ∧
next′(n1) = n2 ∧ S′ = S ∪ {v}

]

Removep “= [
∆AugState,
n1,n2,n3: Node,u, v: V

lvn(n1) = (p,u,n2) ∧
lvnm(n2) = (p, v,n3, true) ∧
lvn′(n1) = (p,u,n3)

]

The rely condition for process p is
Relyp “= ∨q∈P\{p} Lockq ∨ Unlockq ∨ Addq ∨Markq ∨ Removeq

which describes the potential global modifications that the environment of process p
can make. With this encoding, one can clearly see that the rely condition is an abstrac-
tion of statements of add and remove that modify the global state.

Vafeiadis [2007] requires annotation of code using separation logic-style assertions.
In addition, building on the framework of Jones [1983], these assertions must be stable
with respect to the rely conditions. The proof outlines for the lazy set are elided by
Vafeiadis [2007], however, may be reconstructed from the other list examples in the
thesis. We further adapt the proof outlines using Z-style notation. The invariants are
formalised using the following predicates, where ls(x,A, y) converts the linked list from
node x to node y into an sequence A (where we assume y is reachable from x), predicate
sorted(A) holds iff A is sorted in ascending order, and s(A) returns the set of elements
corresponding to A.

ls(x,A, y) “= (x = y ∧ A = 〈〉) ∨
∃v, z,B • x 6= y ∧ A = 〈v〉a B ∧ val(x) = v ∧ next(x) = z ∧ ls(z,B, y)

sorted(A) “= if A ∈ {〈 〉, 〈a〉} then true
elseif A = 〈a,b〉a B then (a < b) ∧ sorted(〈b〉a B) else false

s(A) “= S = ran(A)\{−∞,∞}

Note that due to a typographical error, the case of the add operation that returns
false is missing in [Vafeiadis 2007], however, it can be reconstructed from the remove
operation (see Fig. 12). Of course, the annotations in Fig. 12 are not available in Z, but
can be encoded as invariants on the overall specification by explicitly introducing a
program counter variable. For example, given that pc(p) denotes the program counter
for process p, whose value is a program label, the assertion at A7 can be encoded as a
predicate:

POA7p “= pc(p) = A7⇒ ∃n,A,B • ls(Head,A,n3p) ∧ lvn(n3p) = (p, x,n) ∧
ls(n,B,Tail) ∧ s(A a 〈x〉a B)

Such proof obligations must be resilient to interference from other processes [Owicki
and Gries 1976], and hence, one must verify that the following holds for each p,q ∈ P
such that p 6= q, and Envq ∈ {Lockq,Unlockq,Markq,Addq,Removeq}.

POA7p o
9 Envq ⇒ POA7′p

Liang and Feng [2013a] provide outlines for the remove and contains operations
albeit using a different framework, and define a number of additional predicates prior
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add(x) :
...
∃u, v • ∃n,A,B • ls(Head,A,n1p) ∧ lvn(n1p) = (p,u,n3p)

∧ lvn(n3p) = (p, v,n) ∧ ls(n,B,Tail) ∧ s(A a 〈u, v〉a B)
∧ lvn(n2p) = (∅, x,n3p) ∧ u < x ∧ x < v


A5: <n1.next := n2; AbsRes := (x 6∈ S); S := (S ∪ {x})>ß∃u, v • ∃n,A,B • ls(Head,A,n1p) ∧ lvn(n1p) = (p,u,n2p)

∧ lvn(n2p) = (p, x,n) ∧ ls(n,B,Tail) ∧ s(A a 〈u, x〉a B)

™
...¶
∃n,A,B • ls(Head,A,n3p) ∧ lvn(n3p) = (p, x,n) ∧ ls(n,B,Tail) ∧ s(A a 〈x〉a B)

©
A7: <res := false; AbsRes := (x 6∈ S); S := (S ∪ {x})>
{∃A • ls(Head,A,Tail) ∧ s(A)}
...

Fig. 12. Reconstructed proof outline for add(x)

to the proof for remove and contains. These predicates largely mimic Vafeiadis’ rely
conditions. As with Vafeiadis’ proofs, a translation of Liang and Feng’s formalisation
to Z is also possible, but due to the similarities between the proof methods, we elide
the details in this survey and refer the interested reader to Liang and Feng [2013b].

4.5. Discussion
With the advances in linearizability verification, correctness of the optimistic set is
straightforward, and there is even the possibility of automating the verification pro-
cess (e.g., by extending methods of Vafeiadis [2010] and Dragoi et al. [2013]9). We have
presented a detailed account of three methods that manually identify the linearization
points, as well as abstraction relations and invariants. These methods are based on dif-
fering formal foundations: method 1 uses I/O Automata, method 2 uses Z, and method
3 uses RGSep. To simplify comparison between these approaches, we have translated
each of these to Z. An advantage of RGSep (method 3) that is lost in the translation
to Z is the ability to syntactically distinguish between predicates that may be affected
by the environment. However, as already discussed, the majority of predicates in each
assertion are non-local, and hence, the loss of this feature does not overly affect the
complexity of the proof. Methods 1 and 2 are mechanised in theorem provers PVS and
KIV, respectively. Tool support for extensions to method 3 have been developed, and
there is a possibility for mechanising proofs using method 3 directly, but this has thus
far not been done. Each of the methods supports process-local verification. Method 1
proves invariants that describe the behaviours of the other processes, method 2 explic-
itly encodes interference freedom conditions in the refinement relation, and method 3
additionally supports compositionality via rely-guarantee reasoning.

The underlying challenges in verifying linearizability are manifested in each of the
proof methods in essentially the same way. Namely, the identification of the correct
abstraction relations and invariants, correct identification of linearization points and

9Note that the optimistic set in [Vafeiadis 2010] does not use a marking scheme, and hence, is different from
the algorithm in Section 4.1. The methods in [Dragoi et al. 2013] can only automatically verify algorithms
with helping mechanisms.
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contains(x) :
C1: curr := Head;
C2: while curr.val < x do
C3: curr := curr.next
C4: res := !curr.mark and

(curr.val = x)
C5: return res

Fig. 13. The contains operation

contains(x) :
...
...
C4a: r1 := !curr.mark;
C4b: res := r1 and

(curr.val = x);
...

Fig. 14. Splitting atomicity (a)

contains(x) :
...
...
C4c: r1 := (curr.val = x);
C4d: res := !curr.mark and

r1;
...

Fig. 15. Splitting atomicity (b)

the corresponding abstract changes that occur at each linearization point. These also
remain the difficult aspects of a proof to automate.

5. CASE STUDY 2: A LAZY SET ALGORITHM
In this section, we present the full lazy set algorithm, which consists of a contains
operation in addition to the add and remove operations of the optimistic set from Sec-
tion 4. Section 5.1 presents the contains operation in detail. Despite the simplicity
of this operation, its verification introduces significant complexity in the proof meth-
ods, requiring the use of more advanced verification techniques. Sections 5.2 and 5.3
present simulation-based proof methods with respect to canonical and sequential ab-
stract specifications, respectively, and Section 5.4 presents a method based on aug-
mented states.

5.1. The contains operation
A process executing contains(x) traverses the list (ignoring locks) from Head, stop-
ping as soon as a node with value greater or equal to x is found. Value true is returned
if the node is unmarked and its value is equal to x, otherwise false is returned. Un-
like locate, the contains operation does not acquire locks, and performs at most one
traversal of the linked list.

When verifying linearizability of the contains operation, atomicity constraints of an
implementation often dictate that the expression in C4 be split. Because the order in
which the variables within a non-atomic expression are accessed is not known, there
are two possible evaluation orders: Fig. 14 and Fig. 15, both of which use a temporary
variable r1. To verify linearizability of the original operation in Fig. 13, both orders
of evaluation must be verified. However, Derrick et al. [2011b] and Vafeiadis [2007]
only consider the variation in Fig. 14, while Colvin et al. [2006a] only consider Fig. 15.
It is also possible to consider both possibilities at the same time using logics that en-
able reasoning about the non-determinism in expression evaluation under concurrency
[Hayes et al. 2013], which is the approach taken by Dongol and Derrick [2013].

Unlike the add and remove operations, none of the statements of contains qualify as
valid linearization points. To see this, we consider the two most suitable candidates,
i.e., C4a and C4b, and present counter-examples to show that neither of these are valid.
The essence of the issue is that a verifier must decide whether or not the contains
will return true or false (i.e., as its future behaviour) by considering the state of the
shared object when C4a or C4b is executed, and this is impossible. Suppose C4a is chosen
as the linearization point of the contains operation. Now consider the state of the
shared linked list in Fig. 16 (a), where process p is executing contains(50) and has
just exited its loop because currp.val ≥ 50, but has not yet executed statement C4a.
Suppose another process q executes add(50) to completion. This results in the linked
list in Fig. 16 (b), which corresponds to an abstract state {3, 18, 50}. Execution of C4a by
process p from this state will set r1p to false, and hence the contains(50) will return
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false, even though the element 50 is in the set (corresponding to the shared linked list)
when C4a is executed.

−∞ 3 18 77 ∞
currp

(a)

18 50 77 ∞3−∞
currp

(b)

−∞ 3 18 ∞77

currp

(c)

77

currp

−∞ 3 18 ∞

(d)
Fig. 16. Counter-examples for C4a and C4b as linearization points of contains

Similarly, suppose C4b is chosen to be the linearization point of the contains opera-
tion. Assume there are no other concurrent operations and that process p is executing
contains(77) on the linked list in Fig. 11 (a), and execution has reached (but not yet
executed) statement C4b. This results in the state of the linked list in Fig. 16 (c). Sup-
pose another process q executes a remove(77) operation to completion. This results in
Fig. 16 (d), corresponding to the abstract queue {3, 18}. Now, when process p executes
C4b, it will set resp to true, and hence, return true even though 77 is not in the abstract
set corresponding to the shared linked list when C4b is executed. Therefore, neither
C4a nor C4b are appropriate linearization points for contains .

Proving linearizability it turns out must consider the execution of other operations,
i.e., the linearization point cannot be determined statically by examining the state-
ments within the contains operation alone. Here, contains may be linearized by the
execution of an add or a remove operation. As Colvin et al. point out:

The key to proving that [Heller et al’s] lazy set is linearizable is to show
that, for any failed contains(x) operation, x is absent from the set at some
point during its execution [Colvin et al. 2006a].

That is, within any interval in which contains(x) executes and returns true, there
is some point in the interval such that the abstract set corresponding to the shared
linked list contains x. Similarly, if contains(x) returns false, there is some point in
the interval of execution such that the corresponding abstract set does not contain
x. The statement that removes x from the set is also responsible for linearizing any
contains(x) operations that may return false.

From a refinement perspective, the abstract specification resolves its non-
determinism earlier than the concrete implementation, resulting in a future concrete
transition that cannot be matched with an abstract transition when the forward sim-
ulation rule (2) is used. Instead proofs must be performed using backward simulation
[de Roever and Engelhardt 1996], which for a non-stuttering transition generates a
proof obligation of the form:

∀p: P • COpp o
9 rep ⊆ rep o

9 AOpp

This states that, for any process p, if COpp can transition from τ to τ ′ and τ ′ is related
by rep to some abstract state σ′, then there must exist an abstract state σ such that
rep holds between τ and σ and AOpp can transition from σ to σ′. Such proofs involve
reasoning from the end of computation to the start, and hence, are more complicated
than forward simulation. Equivalent to this is an encoding using prophecy variables
[Abadi and Lamport 1991; Vafeiadis 2007; Zhang et al. 2012].
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5.2. Method 1: Proofs against canonical automata
Colvin et al. split their simulation proofs by introducing an intermediate specification,
that “eliminates the need to know the future” [Colvin et al. 2006a, pg 481]. They then
prove backward simulation between the canonical and intermediate specifications and
forward simulation between the intermediate and concrete specifications. To simplify
the backward simulation, the intermediate specification is kept as similar to the canon-
ical abstraction as possible, and almost no data refinement is performed.

The intermediate state introduces a local boolean variable seen out(p) that holds for
a process p executing contains(x) iff x has been absent from the abstract set since p
invoked contains(x). The invocation of the intermediate contains(x) operation sets
seen out(p) to false if x is in S and to true otherwise. Furthermore, when the lineariza-
tion point of remove(x) is executed, in addition to linearizing itself, the executing pro-
cess also linearizes all invoked contains(x) operations that have not yet set their
res(p) value. Therefore, IContInvp (which invoke the contains) and IRemOKp (which
performs the main remove operation) in the intermediate specification are defined as
follows:

IContInvp(x) “= [∆IState, x?: V | ContInvp(x?) ∧ seen out′(p) = (x? 6∈ S)]

IRemOKp(x) “= [
∆IState, x?: V

RemOKp(x?) ∧
∀q: P • pc(q) = CIn ∧ v(q) = v(p)⇒

seen out′(q) = true

]
The intermediate contains(x) operation is allowed to return false whenever
seen out(x) holds, therefore, ContFailp is replaced by IContFailp below:

IContFailp “= [∆IState | pc(p) = CIn ∧ seen out(p) ∧ res′(p) = false ∧ pc′(p) = COut]
Unlike ContFailp, schema IContFailp can set res(p) to false even if v(p) ∈ S holds in
the current state. This is allowed because whenever pc(p) = CIn ∧ seen out(p) holds,
a state for which v(p) 6∈ S holds must have occurred at some point since the invoca-
tion of the contains operation. When pc(p) = CIn ∧ seen out(p) ∧ v(p) ∈ S holds,
both IContOKp and IContFailp are enabled and process p may non-deterministically
choose to match with res(p) = true (in the current state) or with res(p) = false (having
linearized at some point in the past).

The backward simulation relation bsr below between the canonical and intermediate
state spaces is relatively straightforward. In particular, one obtains the following for
an intermediate state is and abstract state as.

bsr(is,as) =̂ is(S) = as(S) ∧
∀p • is(pc(p)) = as(pc(p)) ∨

(is(pc(p)) = CIn ∧ is(seen out(p)) ∧
as(pc(p)) = COut ∧ as(res(p)) = false

)
The second disjunct within the universal quantification is needed because p may have
already executed ContFailp at the abstract level, and decided to return false, whereas
the corresponding intermediate operation has not yet made its choice. Note that this
delay in the intermediate specification is only allowed if seen out(p) holds in the inter-
mediate state.

A forward simulation is then used to prove refinement between the intermediate
and concrete systems. As in the proof of the optimistic set (Section 4.2), this proof is
simplified by introducing an auxiliary set aux S to the concrete state space, which is
updated in the same way as in Section 4.2. The proof also uses the same simulation
as Section 4.2, but additional invariants related to the contains operation must be
introduced. For example:

∀p •

Å
(pc(p) = 4c ∧ val(curr(p)) 6= v(p)) ∨
(pc(p) ∈ {4c, 4d} ∧ mark(curr(p)))

ã
⇒ seen out(p) (9)
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∀p • pc(p) = 4d ∧ ¬mark(curr(p)) ⇒ v(p) ∈ aux S (10)

By (9), if the concrete program is in a position to return false, it must have already seen
that the value being searched is not in the set, and by (10), if the concrete program is
in a position to return true, the value being searched must be in the set. The proof of
forward simulation then proceeds in a standard manner.

5.3. Method 2: Proofs against sequential specifications
This section summarises the proof by Derrick et al. [2011b], where linearizability is
proved against a sequential set specification. The abstraction of the contains operation
is therefore given by

AbsContp “= [∆AState, x?: V, r!:B | r! = (x? ∈ S)]

To cope with the non-determinism in the linearization points, Derrick et al. generalise
the notion of a status by introducing INOUT(in, out) that covers a situation in which
an operation has potentially linearized with input in and output out. Thus, in this new
setting:

STATUS ::= IDLE | IN〈〈V〉〉 | OUT〈〈V〉〉 | INOUT〈〈V × V〉〉
For example, in the lazy set, a status INOUT(3, true) denotes a process that has po-
tentially executed its linearization point, with 3 as input and is set to return output
true.

The proof proceeds by defining the status of each process in the concrete states.
Namely, for a contains(x) operation executed by process p, given that cs is a concrete
state, we assume that status is defined such that the following holds:

(cs.pc(p) = C1 ⇒ status(cs,p) = IN(x)) ∧
(cs.pc(p) ∈ {C2,C3,C4a} ⇒ status(cs,p) = INOUT(x, x ∈ cs.aux S)) ∧

(cs.pc(p) = C4b ⇒ status(cs,p) = OUT(cs.(val(curr(p))) = x)) ∧
(cs.pc(p) = C5 ⇒ status(cs,p) = OUT(cs.res(p)))

While executing C2, C3 or C4a, a contains operation may now “change its mind” about
the linearization point and its eventual return value as often as necessary, provided
each change is justified by the current set representation. In particular, a process q
marking the element that is searched by process p will change the status of process
p executing contains to false. This is justified because the value being searched by p
is also removed from the set representation. A process q inserting a node with x after
node curr(p) will change p’s status to true, which is justified because x is also added to
the set representation.

To cope with the fact a step in an operation potentially linearizes those in (several)
other operations, two new simulation types are introduced in addition to those in Fig. 5
(see [Derrick et al. 2011b] for full details). The left diagram of Fig. 17 shows the case
where the execution of operation COpp definitely sets its own as well as the lineariza-
tion point of process q that executes an operation that does not modify the global state
(e.g., a contains operation). The right hand side depicts the case where the abstract
operation of process p is a potential linearization point for p that does not modify the
abstract state (e.g,. a contains operation).

5.4. Method 3: Augmented states
The method of Vafeiadis also requires substantial changes to cope with verification of
the contains operation. In particular, auxiliary statements that are able to linearize
the currently executing contains operations must be introduced to the remove opera-
tion.
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σ′

τ ′

rep

σ
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rep

COpp

AOpp
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τ ′

σ

τ
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(AOpp ∨ id) o
9 AOpq

Fig. 17. Additional simulation types

The augmented state introduces a further auxiliary variable OSet ⊆ P×V×B, where
(p, v, r) ∈ OSet iff process p is executing a contains operation with input v that has
set its return value to r. This requires modification of environment actions that modify
the shared state space. Operations Lockp, Unlockp, Addp and Removep are as given
in Section 4.4. The Markp action, which is an environment action for process p that
marks a node, must also modify the abstract set S (as in Section 4.4) and the auxiliary
OSet. In addition to setting the marked value to true and removing v from the abstract
set, the executing process p also sets the return value of all processes in C ⊆ OSet that
are currently executing a contains(v) to false, which linearizes each of the processes
in C.

Markp
∆AugState
n,n1: Node,B,C: (P× V × B), v: V, r:B

lvn(n1) = (p, v,n) ∧ OSet = B ∪ C ∧ (∀b: B • π2(b) 6= v) ∧ (∀c: C • π2(c) = v)
lvnm′(n1) = (p, v,n, true) ∧ S′ = S\{v}
OSet′ = B ∪ {(q, v, false) | ∃r • (q, v, r) ∈ C}

In addition, two environment steps that add and remove triples of type P×V×B to/from
the auxiliary variable OSet are introduced. These represent environment processes
that invoke and complete a contains operation.

AddOutp “= [∆AugState, v: V, r:B | (∀o: OSet • o.1 6= p) ∧ OSet′ = OSet ∪ {(p, v, r)}]
RemOutp “= [∆AugState, v: V, r:B | (p, v, r) ∈ OSet ∧ OSet′ = OSet\{(p, v, r)}]

The auxiliary code to the add and remove operations are as before, but a remove(x) op-
eration must additionally linearize processes in OSet that are executing contains(x).
Thus, statement R3 is augmented as follows:

remove(x):
...
R3: <n2.mark := true; AbsRes(this) := (x ∈ S);

for each q ∈ OSet do if q.2 = n2.val then AbsRes(q) := false >
...

The augmented version of the contains operation is given below10. Like Vafeiadis
[2007], details of the annotation for the proof outline are elided below, but the inter-
ested reader may consult Liang and Feng [2013a].

10The presentation by Vafeiadis [2007] suffers from a few typos, which are confirmed by the proof by Liang
and Feng [2013a]. In particular, the auxiliary code that linearizes itself (in statement C4a) should only set
the abstract result to true if both not res and curr.val = e hold, as opposed to only not res as indicated
by Vafeiadis [2007].

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32

contains(x) :
<AbsRes(this) := (x 6∈ S); OSet := OSet ∪ {this}>;

C1: curr := Head;
...
C4a: <r1 := curr.marked;

AbsRes(this) := (not r1 and curr.val = x);
OutOps := OutOps \ {this}> ...

The augmentation is such that any process p that invokes contains(x) initially lin-
earizes to true or false depending on whether or not x is in the abstract set, then records
itself in OSet. This allows other processes executing remove(x) to set p’s linearization
point when x is marked (i.e., logically removed). The linearization point for an execu-
tion that returns true is set at statement C4a if curr(p) points to an unmarked node
with value x.

5.5. Discussion
The lazy set represents a class of algorithms that can only be verified by allowing an
operation to set the linearization point of another, and its proof is therefore more in-
volved. The methods we have considered tackle the problem using seemingly different
techniques. However, translating each proof to a uniform framework, in this case Z,
one can see that the underlying ideas behind the methods are similar, and experience
in verification using one of these methods can aid in the proof in another. Identify-
ing the linearization points and understanding the effects of linearization on object
at hand remains the difficult task. Here, further complications arise because external
operations potentially set the linearization point of the current operation.

Dongol and Derrick [2013] present a method for verifying linearizability using
an interval-based framework, which aims to capture the fact that operations like
contains must only observe the value being checked as being in the set at some point
within its interval of execution. The logic is able to prove properties of the form

behp(contains(x), true) ∧ relyp ⇒ �(x ∈ absSet)
behp(contains(x), false) ∧ relyp ⇒ �(x 6∈ absSet)

Here, behp(contains(x), true) defines an interval-based semantics of the behaviour of
contains(x) executed by process p that returns true, relyp is an interval predicate that
defines the behaviour of the environment of p and �(x ∈ absSet) is an interval pred-
icate that holds if x ∈ absSet is true at some point in the given interval. Such proofs
allow one to avoid backward reasoning because the entire interval of execution is taken
into account.

6. CASE STUDY 3: THE HERLIHY-WING QUEUE
We now discuss the third type of algorithm, where none of the atomic program state-
ments qualify as linearization points. Instead, execution of an atomic statement that
linearizes an operation depends on future executions, and in addition, the potential
linearization points may modify the representation of the data structure at hand. One
such algorithm is the array-based queue by Herlihy and Wing [1990], which we present
in Fig. 18. The abstract object corresponding to a concrete state cannot be determined
by examining the shared data structure (in this case a shared array) alone — one must
additionally take into consideration the currently executing operations and their po-
tential future executions. As these operations may potentially modify the shared data
structure in the future, each concrete state ends up corresponding to a set of abstract
states.
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enq(lv : V)
E1: (k,back) := (back, back+1); // increment
E2: AR[k]:= lv; // store
E3: return

deq():
D1: lback := back; k:=0; lv := null;
D2: if k < lback goto D3 else goto D1
D3: (lv, AR[k]) := (AR[k], lv); // swap
D4: if lv != null then goto D6 else goto D5
D5: k := k + 1; goto D2
D6: return(lv)

Fig. 18. The Herlihy-Wing queue

In Fig. 18, each line corresponds to a single atomic statement, including for exam-
ple D1, which consists of several assignments. These operations operate on an infinite
array, AR (initially null at each index), and use a single shared global counter, back
(initially 0) that points to the end of the queue.

An enqueue operation (enq) atomically increments back (line E1) and stores the old
value of back locally in a variable k. Thus executing E1 allows the executing process to
reserve the index of back before the increment as the location at which the enqueue
will be performed. The enqueued value is stored at E2. A dequeue operation (deq) stores
back locally in lback, then traverses AR from the front (i.e., from index 0) using k. As
it traverses AR, it swaps the value of AR at k with null (D3). If a non-null element is
encountered (D4), then this value is returned as the head of the queue. If the traversal
reaches lback (i.e., the local copy of back read at line D1) and a non-null element has
not been found, then the operation restarts. Note that deq is partial [Herlihy and Wing
1990] in that it does not terminate if AR is null at every index. In particular, a dequeue
only terminates if it returns a value from the queue.

To see why verifying linearizability of the algorithm is difficult, we first show that
neither E1 nor E2 qualify as a valid linearization points for enq. It is straightforward
to derive a similar counter example for E3. Suppose E1 is picked as the linearization
point and consider the following complete execution, where p,q, r ∈ P. Assume p and q
enqueue v1 and v2, respectively.

〈E1p, E1q, E2q, D1r, D2r, D3r, D4r, D5r, D2r, D3r, D4r, D6r, E2p, E3q, E3p〉 (11)

Although E1p is executed before E1q, the dequeue operation returns v2 before v1, con-
tradicting FIFO ordering, and hence, E1 cannot be a linearization point. Now suppose
E2 is picked as the linearization point and consider the following complete execution:

〈E1p, E1q, D1r, D2r, D3r, D4r, D5r, E2p, E2q, D2r, D3r, D4r, D6r, E3q, E3p〉 (12)

Now, E2p is executed before E2q, but deq returns v2 before v1 has been dequeued.
The histories corresponding to both executions are however, linearizable because the

operation calls enqp, enqq and deqr overlap, allowing their effects to occur in any order.
In particular, both (11) and (12) correspond to history

〈enqI
p(v1), enqI

q(v2),deqI
r,deqR

r (v2), enqR
q , enqR

p 〉

which is linearizable.
Aside from the proof sketch in Herlihy/Wing’s original paper [Herlihy and Wing

1990], there are two known formal proofs of linearizability: [Schellhorn et al. 2012;
2014] (which uses backwards simulation) and [Henzinger et al. 2013b] (which decom-
poses the problem into several aspects). Henzinger et al.’s main ordering property uses
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prophecy variables, and hence, must perform reasoning similar to backward simula-
tion.

Backward simulation and prophecy variables are known to be equivalent formula-
tions, that allow the future non-determinism to be taken into account [de Roever and
Engelhardt 1996]. Both allow one to capture the fact that in order to decide whether
the enqueue operation has taken effect, one must consider the state of all currently
executing operations

6.1. Method 1: Backward simulation proofs
Schellhorn et al. [2014] have shown that backward simulation is sufficient for proving
linearizability, i.e., backward simulation with the addition of auxiliary history vari-
ables is a complete method for proving linearizability. These methods however, do not
show how such a simulation relation may be constructed, and hence, creativity is re-
quired on the part of the verifier to develop the correct simulation relation. As already
discussed, each concrete state corresponds to multiple abstract queues depending on
the states of the executing operations. Schellhorn et al’s approach is to encode, within
the simulation relation, all possible ways in which the currently executing enq opera-
tions can complete, as well as all possible ways in which these could be dequeued. To
this end, they construct a so-called observation tree. In effect, this constructs the set of
all possible queues that could relate to the current concrete queue based on the state of
AR and the pending concurrent operations. The proof methods build on previous work
on potential linearization points (Section 5.3), the difference here is that linearizing
external operations modifies the data structure in question.

For example, statement E1 of enq is a potential linearization point, and hence, one
must perform case analysis to check whether or not its execution linearizes the cur-
rently executing enqueue operation. The non-linearizing cases are straightforward as
one must only check that the set of queues from the post-state are the same as those
in the pre-state. For the linearizing case, there must be some abstract queue related
to the concrete post-state for which the element being enqueued is at the tail of some
abstract queue related to the pre-state. Proving this is further complicated by the fact
that an enq operation call that executes E1 may ‘overtake’ other enq operation calls
that executed E1 earlier (and hence have a lower local value of k), causing the effect of
a latter execution of E1 to occur earlier. In fact, depending on the configuration of op-
eration calls in the concrete state, executing E1 may even overtake other enq operation
calls that have executed E2.

The full argument is rather complex, and hence, we do not present further details of
this verification here. Instead we ask the interested reader to consult [Schellhorn et al.
2014]. We note that their proofs are fully mechanised using the KIV theorem prover.

6.2. Method 2: Aspect-oriented proofs
A second proof of the Herlihy/Wing queue is given by Henzinger et al. [2013b], who
define a set of aspects that characterise the behaviour of a queue and show that Her-
lihy/Wing’s queue satisfies these aspects. In particular, the following aspects are re-
quired of a FIFO queue:

VFresh. A dequeue event returning a value not inserted by any enqueue event.
VRepet. Two dequeue events returning the value inserted by the same enqueue
event.
VOrd. Two ordered dequeue events returning values inserted by enqueue events
in the inverse order.
VWit. A dequeue event returning empty even though the queue is never logically
empty during the execution of the dequeue event.
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These aspects are only shown to be necessary and sufficient for proving linearizability
if the implementation is purely-blocking, meaning that from any reachable state, any
pending operation, if run in isolation will either terminate or its entire execution does
not modify the global state.

For the Herlihy-Wing queue, VWit is irrelevant as the dequeue loop only terminates
if a non-null element is read, i.e., it never returns empty. Both aspects VFresh and
VRepet are straightforward to check. VOrd, however is more involved as it must rea-
son about potential reordering of enq operation (as encountered by [Schellhorn et al.
2014]). Aspect VOrd is reformulated as POrd, which states the following.

Fix a value v2 and consider a history c where every method call enqueuing
v2 is preceded by some method call enqueuing some different value v1 and
there are no deq() calls returning v1 (there may be arbitrarily many concur-
rent enq() and deq() calls enqueuing or dequeuing other values). The goal
is to show that in this history, no deq() return v2. [Henzinger et al. 2013b]

In other words, if an ordering of values v1 and v2 in a history c has been decided so that
the enqueue of v1 precedes the enqueue of v2, and no dequeue operation calls return
the first value v1, then there are no operations that dequeue the second value v2.

The proof POrd for the Herlihy/Wing queue requires the use of prophecy variables
that allow dequeue operations to ‘guess’ the value that they will dequeue. Assertions
on prophecy variables are encoded within the program code, then verification proceeds
by showing that these guesses are correct. Again, we leave out the full details of the
proof method, and ask the interested reader to consult [Henzinger et al. 2013b].

6.3. Discussion
The Herlihy-Wing queue represents a class of algorithms that can only be proved lin-
earizable by considering the future behaviours of the currently executing operation
calls, further complicated by the potential for these operations to modify the data struc-
ture at hand. Reasoning must therefore appeal to backward simulation or prophecy
variables.

Schellhorn et al. [2014] use a monolithic backward simulation relation that captures
all possible future behaviours at the abstract level. The method has been show to be
complete for verifying linearizability, however, developing and verifying such a sim-
ulation relation is a complex task. The aspect-oriented proof method decomposes a
linearizability proof for purely blocking algorithms into simpler aspects that are (in
theory) easier to verify [Henzinger et al. 2013b]. However, it is currently not clear
whether every data structure can be decomposed into such aspects.

These are not the only method capable of handling future linearization points —
two other methods, both based on backward simulation, could be applied to verify the
Herlihy-Wing queue. We have not presented a detailed comparison here as they have
not verified the Herlihy-Wing queue (i.e., we do not attempt a proof using their meth-
ods ourselves). Groves et al’s backward simulations against canonical automata can
cope with future linearization points [Doherty et al. 2004a]. Tofan et al. [2014] have
continued to improve the simulation-based methods (Section 6.1), and incorporated
the core theory into a interval-based rely/guarantee framework. Here, linearizability
is re-encoded using possibilities, which describe the orders of completions of pending
operation calls. The use of symbolic execution simplifies mechanisation of their ap-
proach within KIV. Their methods have been applied to verify correctness of an array-
based multiset with insert, delete, and lookup operations. An interesting aspect of this
algorithm is that it is possible for a lookup of an element x to return false even if the
element x is in the array in all concrete states throughout the execution of the lookup
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operation. Their methods have been linked to the completeness results of Schellhorn
et al. [2014].

7. CONCLUSIONS
There has been remarkable progress since Herlihy and Wing’s original paper on lin-
earizability [Herlihy and Wing 1990], and with the increasing necessity for concur-
rency, this trend is set to continue. The basic idea behind linearizability is simple,
yet it provides a robust consistency condition applicable to a large number of algo-
rithms, and in some cases precisely captures the meaning of atomicity [Raynal 2013].
For concurrent objects, linearizability has shown to coincide with contextual observa-
tional refinement [Filipović et al. 2010], ensuring that the behaviours of client objects
are preserved. Linearizability is compositional in the sense that a set of objects is lin-
earizable if each object in the set is linearizable [Herlihy and Shavit 2008; Herlihy
and Wing 1990], making it an appealing property. Besides shared variable concurrent
objects, linearizability has also been applied to distributed systems [Birman 1992],
databases [Ramamritham and Chrysanthis 1992] and fault-tolerant systems [Guer-
raoui and Schiper 1996].

This paper considered verification of linearizability, and the associated proof meth-
ods that have been developed for it in the context of concurrent objects. Necessity of
such proofs is alluded to by the subtleties in the behaviours of the algorithms that
implement concurrent objects, and by the fact that it’s errors have been found in al-
gorithms that were previously believed to be correct [Doherty et al. 2004a; Colvin and
Groves 2005]. Current proof techniques continue to struggle with the scalability and
as a result, only a handful of fine-grained algorithms have been formally verified to be
linearizable. The longest fully verified algorithm (in terms of lines of code) is the Snark
algorithm [Doherty et al. 2004a]. However, number of lines of code is not an indicator
of complexity, with even simple algorithms like Herlihy and Wing’s queue [Herlihy and
Wing 1990] posing immense challenges [Schellhorn et al. 2012; Schellhorn et al. 2014;
Henzinger et al. 2013b] due to the fact that future behaviour must be considered.

Our survey has aimed to answer the questions that were posed in Section 1. We now
return to these to discuss concluding remarks.
Locality of the proof method. Each of the methods we’ve considered enable localised
reasoning, only requiring the behaviour of a single process to be considered. However,
interference must be accounted for in the invariants and refinement relations gener-
ated, complicating each verification step. Namely, one must show that holds locally
and is preserved by the each step of an arbitrarily chosen process, and that it holds in
the presence of interference from other processes.
Compositionality of the proof method. Some methods have incorporated Jones-
style rely/guarantee reasoning into their respective frameworks (e.g., RGSep and
RGITL), allowing potential interference from the environment to be captured ab-
stractly by a rely condition. An additional step of reasoning is required to show that
the rely condition is indeed an abstraction of the potential interference, but once this
is done, a reduction in the proof load is achieved via a reduction in the number of cases
that must be considered.
Contribution of the underlying framework. None of the existing frameworks thus
far provide a silver bullet for linearizability verification. Identification of the lineariza-
tion points and appropriate representation relations remain the difficult aspects of a
proof. If the verifier believes an algorithm to have fixed linearization points, then it
would be fruitful to attempt an initial verification using a tool such as the one pro-
vided by Vafeiadis [2010]. For more complex algorithms, using a setup such as the one
provided by Colvin et al. [2006a] would allow invariants to be model checked prior to
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verification. On the other hand, Derrick et al. [2011a] have developed a systematic
method for constructing representation relations, invariants and interference freedom
conditions as well as proof obligations that enables process-local verification. Tech-
niques specific to certain implementations (e.g., the Hindsight Lemma, aspect-oriented
verification) enable some decomposition possibilities, but have not been generalised to
cope with arbitrary implementations.
Algorithms verified. A survey of these has been given in Section 3.2. There exist
several other algorithms in the literature whose linearizability has been conjectured,
but not yet been formally verified. For the frameworks we’ve studied, the number of
algorithms verified is however not a measure of it capabilities; rather it is whether the
framework can handle complex algorithms with future linearization points such as the
Herlihy/Wing queue.

The verifications thus far, have only considered linear (flat) data structures. Re-
cently, more challenging structures such as SkipTries [Oshman and Shavit 2013] and
binary search trees [Chatterjee et al. 2014] have been developed. Their linearizabil-
ity has been informally argued, but not mechanically verified. It is not easy to know
exactly how the proof complexity increases for such data structures, however, the com-
plex nature of the underlying algorithm and the abstract representations suggest that
the proofs will also be more complex.
Mechanisation. Many of the methods described in this paper have additional tool
support that support mechanical validation of the proof obligations, reducing the po-
tential for human error. In some cases, automation has been achieved, reducing human
effort, but these are currently only successful for algorithms with fixed linearization
points and a limited number of algorithms with external linearization points.
Completeness. Completeness of a proof method is clearly a desirable quality — espe-
cially for proofs of linearizability, which require considerable effort. Backwards simu-
lation alone is known to be complete for verifying linearizability against an abstract
sequential specification [Schellhorn et al. 2012; Schellhorn et al. 2014]. Furthermore, a
combination of forwards and backwards simulations is known to be complete for data
refinement [Lynch 1996; de Roever and Engelhardt 1996], and combining auxiliary
and prophecy variables is known to be complete for reasoning about past and future
behaviour [Abadi and Lamport 1991].

Completeness of a method does not guarantee simpler proofs, as evidenced by the
maximal backwards simulation constructed by Schellhorn et al. [2012; 2014] to prove
linearizability. The completeness results [Schellhorn et al. 2012; 2014] show that by
using the global theory any linearizable algorithm can be proved correct. This shows
that for every linearizable object, a backward simulation in between abstract and con-
crete specification can be found. This result does, however, not directly give one a way
of constructing this backward simulation. This is common to all completeness results:
they state the existence of a proof within a particular framework, but not the way of
finding this proof. That such proofs can for individual instances indeed be found, is
exemplified by the highly non-trivial case study of the paper.

Future directions. Despite the numerous advances in verification methodologies, for-
mal correctness proofs of concurrent algorithms in a scalable manner remains an open
problem. This in turn affects verification of specific properties such as linearizability.
The rate at which new algorithms are developed far outpace the rate at which these
algorithms are formally verified. However, as concurrent implementations become in-
creasingly prevalent within programming libraries (e.g., java.util.concurrent) the
need for formal verification remains important.
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So what will future algorithms look like? To reduce sequential bottlenecks, there
is no doubt that concurrent objects of the future will continue to become more so-
phisticated with more subtle (architecture-specific) optimisations becoming prevalent.
Proving linearizability of such algorithms will almost certainly require consideration
of some aspect of future behaviour. It is therefore imperative that verification tech-
niques that are able to handle this complex class of algorithms continue to be im-
proved. The frameworks themselves must continue to integrate the various methods
for proof decomposition (e.g., Section 3.1). For example, Tofan et al. [2014] have de-
veloped a framework that combines interval temporal logic, rely/guarantee and sim-
ulation proofs. Further simplifications could be achieved by extending the framework
with aspects of separation logic. In some cases, decomposition of a proof into stages,
e.g., using reduction, or interval-based abstraction has been useful, where the decom-
position not only reduces the number of statements that must be considered, but also
transfers the algorithm from a proof that requires consideration of external lineariza-
tion points to a proof with fixed linearization points. Until a scalable generic solution
is found, it is worthwhile pursuing problem-specific approaches (e.g., [Henzinger et al.
2013b; Dragoi et al. 2013]).

Another avenue of work is proof modularisation. To explain this, consider the elim-
ination queue [Moir et al. 2005b], which embeds an elimination mechanism (imple-
mented as an array) on top of the queue by Michael and Scott [1996] (with some mod-
ifications). Although linearizability of Michael and Scott’s queue is well studied, cur-
rent techniques require the entire elimination queue data structure to be verified from
scratch. Development of modular proof techniques would enable linearizability proofs
to be lifted from low-level data structures to more complex (optimised) versions. New
results such as parameterised linearizability [Cerone et al. 2014] suggest that modular
concurrent objects and associated proof techniques will continue to evolve.

Next, we discuss some additional aspects surrounding correctness of concurrent ob-
jects.

Model checking. An important strand of research is model checking, which due to the
finite nature of the state space searched is often not adequate for ensuring linearizabil-
ity. This paper has focused on verification methods, and hence, a detailed comparison of
model checking methods have been elided. Like Colvin et al. [2006a], we believe model
checking can play a complementary role in verification, e.g., allowing invariants to be
model checked prior to verification to provide assurances that they can be proved cor-
rect. Methods for model checking linearizability may be found in [Vechev et al. 2009;
Friggens 2013; Liu et al. 2009; Liu et al. 2013]; a comparison of these techniques is
beyond the scope of this survey.

Progress properties. In many applications, one must often consider the progress
properties that an algorithm guarantees. Here, like safety, several different types of
progress conditions have been identified such as starvation freedom, wait freedom, lock
freedom and obstruction freedom (see [Herlihy and Shavit 2008; 2011; Dongol 2009;
2006; Tofan et al. 2010; Liang et al. 2013; Gotsman et al. 2009]). Progress properties
are not the main focus of this paper, and hence, discussion of methods for verifying
them have been elided. Nevertheless, they remain an important property to consider
when developing algorithms.

Parameter passing. A deficiency in linearizability theory is that it assumes data in-
dependence between libraries and clients, and hence only admits pass-by-value pa-
rameter passing mechanisms. Real-world systems however, also allow data sharing
between libraries and clients, e.g., via pass-by-reference mechanisms. Here, ownership
transfer between shared resources may occur. To this end, Gotsman and Yang [2012;
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2013] have extended linearizability theory to cope with parameter sharing between
concurrent objects and its clients. Cerone et al. [2014] have further extended these
results and defined parameterised linearizability that allows linearizable objects to be
taken as parameters to form more complex linearizable objects.

Relaxing linearizability. The increasing popularity of multicore/multiprocess archi-
tectures, has led to an increasing necessity for highly optimised algorithms. Here, re-
searchers are questioning whether linearizability is itself causing sequential bottle-
necks, which in turn affects performance. Due to Amdahl’s Law, it is known that if
only 10% of a program’s code remains sequential, then one can achieve at best a five-
fold speedup on a 10-core machine, meaning at least half of the machine’s capability is
wasted [Shavit 2011; Moir and Shavit 2007]. As a result, Shavit [2011] predicts future
systems will trend towards more relaxed notions of correctness.

To this end several conditions weaker than linearizability have been defined to allow
greater flexibility in an implementation, e.g., quasi-linearizability [Afek et al. 2010],
k-linearizability [Henzinger et al. 2013a], eventual consistency [Shapiro and Kemme
2009]. Part of the problem is that linearizability insists on sequential consistency [Lam-
port 1997; Herlihy and Shavit 2008], i.e., that the order of events within a process is
maintained. However, modern processors use local caches for efficiency, and hence, are
not sequentially consistent. Instead, they only implement weak memory models that
allow memory instructions to be reordered in a restricted manner [Adve and Ghara-
chorloo 1996]. Shavit [2011] purports quiescent consistency, which only requires the
real-time order of operation calls to be maintained when the calls are separated by
a period of quiescence (which is a period without any pending operation invocations).
Unlike linearizability, quiescent consistency does not imply sequential consistency, and
hence, can be applied to weak memory models [Smith et al. 2014]. As quiescent con-
sistency is weak condition, more recent work has consider quantitative relaxations
to bridge the gap between linearizability and quiescent consistency [Jagadeesan and
Riely 2014]. Dongol et al. [2015] have recently developed a framework for formally
studying these correctness conditions, including those conditions developed for weak
memory.

Weakening correctness conditions however, does not mean that the algorithms be-
come easier to verify and furthermore methods for verifying linearizability can be
ported to weaker conditions (e.g., see [Derrick et al. 2014]). Therefore, techniques for
simplifying linearizability proofs will not be in vain if in the future weaker conditions
become the accepted standard.
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Halldórsson and S. Dolev (Eds.). ACM, 322–331.

R. Colvin, S. Doherty, and L. Groves. 2005. Verifying Concurrent Data Structures by Simulation. Electr.
Notes Theor. Comput. Sci. 137, 2 (2005), 93–110.

R. Colvin and L. Groves. 2005. Formal Verification of an Array-Based Nonblocking Queue. In ICECCS (16-20
June 2005). IEEE Computer Society, 507–516.

R. Colvin, L. Groves, V. Luchangco, and M. Moir. 2006a. Formal Verification of a Lazy Concurrent List-Based
Set Algorithm. In CAV (LNCS), T. Ball and R. B. Jones (Eds.), Vol. 4144. Springer, 475–488.

R. Colvin, L. Groves, V. Luchangco, and M. Moir. 2006b. PVS proofs for Lazy Set Algorithm. (2006). http:
//www.mcs.vuw.ac.nz/research/SunVUW/LazyListFiles/

W. P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers. 2001. Concur-
rency Verification: Introduction to Compositional and Noncompositional Methods. Cambridge Univer-
sity Press.

W. P. de Roever and K. Engelhardt. 1996. Data Refinement: Model-oriented proof methods and their compar-
ison. Number 47 in Cambridge Tracts in Theor. Comp. Sci. Cambridge University Press.

J. Derrick, B. Dongol, G. Schellhorn, B. Tofan, O. Travkin, and H. Wehrheim. 2014. Quiescent Consistency:
Defining and Verifying Relaxed Linearizability. In FM (LNCS), C. B. Jones, P. Pihlajasaari, and J. Sun
(Eds.), Vol. 8442. Springer, 200–214.

J. Derrick, G. Schellhorn, and H. Wehrheim. 2011a. Mechanically verified proof obligations for linearizabil-
ity. ACM Trans. Program. Lang. Syst. 33, 1 (2011), 4.

J. Derrick, G. Schellhorn, and H. Wehrheim. 2011b. Verifying Linearisability with Potential Linearisation
Points. In FM (LNCS), M. Butler and W. Schulte (Eds.), Vol. 6664. Springer, 323–337.

J. Derrick and H. Wehrheim. 2003. Using coupled simulations in non-atomic refinement. In ZB 2003: Formal
Specification and Development in Z and B (LNCS). Springer, 127–147.

J. Derrick and H. Wehrheim. 2005. Non-atomic Refinement in Z and CSP. In ZB (LNCS), H. Treharne,
S. King, M. C. Henson, and S. A. Schneider (Eds.), Vol. 3455. Springer, 24–44.

S. Doherty. 2003. Modelling and verifying non-blocking algorithms that use dynamically allocated memory.
Master’s thesis. Victoria University of Wellington.

S. Doherty, D. Detlefs, L. Groves, C. H. Flood, V. Luchangco, P. A. Martin, M. Moir, N. Shavit, and G. Steel.
2004a. DCAS is not a silver bullet for nonblocking algorithm design. In SPAA. 216–294.

S. Doherty, L. Groves, V. Luchangco, and M. Moir. 2004b. Formal Verification of a Practical Lock-Free Queue
Algorithm. In FORTE (LNCS), D. de Frutos-Escrig and M. Núñez (Eds.), Vol. 3235. Springer, 97–114.
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(Eds.). Morgan Kaufmann, 212–230.

M. Raynal. 2013. Distributed Algorithms for Message-Passing Systems. Springer, Chapter Atomic Consis-
tency (Linearizability), 427–446.

J. C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE Com-
puter Society, 55–74.

G. Schellhorn, J. Derrick, and H. Wehrheim. 2014. A Sound and Complete Proof Technique for Lineariz-
ability of Concurrent Data Structures. ACM Trans. Comput. Logic 15, 4, Article 31 (Sept. 2014), 37
pages.

G. Schellhorn, B. Tofan, G. Ernst, and W. Reif. 2011. Interleaved Programs and Rely-Guarantee Reasoning
with ITL. In TIME, C. Combi, M. Leucker, and F. Wolter (Eds.). IEEE, 99–106.

G. Schellhorn, H. Wehrheim, and J. Derrick. 2012. How to Prove Algorithms Linearisable. In CAV (LNCS),
P. Madhusudan and S. A. Seshia (Eds.), Vol. 7358. Springer, 243–259.

C.-H. Shann, T.-L. Huang, and C. Chen. 2000. A Practical Nonblocking Queue Algorithm Using Compare-
and-Swap. In ICPADS. 470–475.

M. Shapiro and B. Kemme. 2009. Eventual Consistency. In Encyclopedia of Database Systems, L. Liu and
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B. Tofan, S. Bäumler, G. Schellhorn, and W. Reif. 2010. Temporal Logic Verification of Lock-Freedom. In

MPC (LNCS), C. Bolduc, J. Desharnais, and B. Ktari (Eds.), Vol. 6120. Springer, 377–396.
B. Tofan, G. Schellhorn, and W. Reif. 2011. Formal Verification of a Lock-Free Stack with Hazard Pointers.

In ICTAC (LNCS), A. Cerone and P. Pihlajasaari (Eds.), Vol. 6916. Springer, 239–255.
B. Tofan, G. Schellhorn, and W. Reif. 2014. A Compositional Proof Method for Linearizability Applied to a

Wait-Free Multiset. In iFM (LNCS), E. Albert and E. Sekerinski (Eds.), Vol. 8739. Springer, 357–372.
R. K. Treiber. 1986. Systems programming: Coping with parallelism. Technical Report RJ 5118. IBM Al-

maden Res. Ctr.
A. J. Turon and M. Wand. 2011. A separation logic for refining concurrent objects. In POPL, T. Ball and

M. Sagiv (Eds.). ACM, 247–258.
V. Vafeiadis. 2007. Modular fine-grained concurrency verification. Ph.D. Dissertation. University of Cam-

bridge.
V. Vafeiadis. 2009. Shape-Value Abstraction for Verifying Linearizability. In VMCAI (LNCS), N. D. Jones

and M. Müller-Olm (Eds.), Vol. 5403. Springer, 335–348.
V. Vafeiadis. 2010. Automatically Proving Linearizability. In CAV (LNCS), T. Touili, B. Cook, and P. Jackson

(Eds.), Vol. 6174. Springer, 450–464.
V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. 2006. Proving correctness of highly-concurrent linearis-

able objects. In PPOPP, J. Torrellas and S. Chatterjee (Eds.). 129–136.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:44

V. Vafeiadis and M. J. Parkinson. 2007. A Marriage of Rely/Guarantee and Separation Logic. In CONCUR
(LNCS), L. Caires and V. T. Vasconcelos (Eds.), Vol. 4703. Springer, 256–271.

S. van Staden. 2015. On Rely-Guarantee Reasoning. In MPC (LNCS), R. Hinze and J. Voigtländer (Eds.),
Vol. 9129. Springer, 30–49. DOI:http://dx.doi.org/10.1007/978-3-319-19797-5 2

M. T. Vechev and E. Yahav. 2008. Deriving linearizable fine-grained concurrent objects. In PLDI, R. Gupta
and S. P. Amarasinghe (Eds.). ACM, 125–135.

M. T. Vechev, E. Yahav, and G. Yorsh. 2009. Experience with Model Checking Linearizability. In SPIN
(LNCS), C. S. Pasareanu (Ed.), Vol. 5578. Springer, 261–278.

Z. Zhang, X. Feng, M. Fu, Z. Shao, and Y. Li. 2012. A Structural Approach to Prophecy Variables. In TAMC
(LNCS), M. Agrawal, S. B. Cooper, and A. Li (Eds.), Vol. 7287. Springer, 61–71.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.


