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Rotating machinery is a critical asset of industrial plants worldwide. Bearings and gearboxes are 

two of the most common components found in rotating machinery of industrial plants. The 

malfunction of bearings and gearboxes lead the machine to fail and often these failures occur 

catastrophically leading to personnel injuries. Therefore it is of high importance to identify the 

deterioration at an early stage. Among the techniques applied to detect damage in rotating 

machinery, acoustic emission has been a prevalent field of research for its potential to detect 

defects at an earlier stage than other more established techniques such as vibration analysis and 

oil analysis. However, to reliably detect the fault at an early stage de-noising techniques often 

must be applied to reduce the AE noise generated by neighbouring components and normal 

component operation. For this purpose a novel signal processing algorithm has been developed 

combining Wavelet Packets as a pre-processor, Hilbert Transform, Autocorrelation function and 

Fast Fourier transform. The combination of these techniques allows identification of g repetitive 

patterns in the AE signal that are attributable to bearing and gear damage. The enhancement for 

early stage defect detection in bearings and gears provided by this method is beneficial in 

planning maintenance in advance, reducing machinery down-time and consequently reducing the 

costs associated with bearing breakdown. The effectiveness of the proposed method has been 

investigated experimentally using seeded and naturally developed defects in gears and bearings. 

In addition, research into the optimal Wavelet Packet node that offers the best de-noising results 

has been performed showing that the 250-750 kHz band gives the best SNR results. 

The detection of shaft angular misalignment using Acoustic Emission has been investigated and 

compared with acceleration spectra. The results obtained show enhancements of AE in detection 



shaft angular misalignment over vibration analysis in SNR and stability with varying operational 

conditions. 

Keywords: acoustic emission, condition monitoring, bearing, gearbox, misalignment, de-noising, 

fault detection, wavelet transform. 
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Chapter 1 
 

 

 

 

 

1. Introduction 

 

1.1. Motivation 

Rotating machinery is extensively used in a range of mechanical transmission systems and plays 

an important role in industrial applications. The severe working environment in industrial plants 

frequently causes rotating machinery to fail unexpectedly reducing machinery reliability. 

Unexpected machinery failure dramatically affects the cost of the final product and decreases the 
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safety in industrial plants because machines often fail catastrophically causing injury to personnel. 

Usually, to avoid this problem, preventive maintenance is performed in industrial plants to 

increase the machinery reliability and increase safety. Preventive maintenance is maintenance that 

is periodically carried out on the machinery to diminish the likelihood of failure. However, 

preventive maintenance is inefficient and expensive because it does not take into account the 

condition of the machine. According to the report issued by the National Wind Coordinating 

Committee (NWCC), in the wind turbine industry, maintenance costs accounts for 21% of the 

total power per annum costs. 75% of these costs are due to unscheduled maintenance [1]. 

A solution implemented to reduce the maintenance costs and increase safety in industrial plants 

is to apply condition monitoring (CM). CM is the process of monitoring parameters with the 

purpose of identifying a changing trend, which is generally produced by developing faults. CM 

allows predictive maintenance solution to be carried out. Predictive maintenance is a solution in 

which the condition of in-service equipment is known based on CM in order to predict when 

maintenance should be performed. Predictive maintenance allows scheduling the maintenance at 

a time when it is most cost-effective. Predictive maintenance is less expensive and time 

consuming than the traditional preventive maintenance, in which the machinery parts are 

replaced using the theoretical expected life, replacing parts which could be fit for purpose.  

Bearings are vital components found in the vast majority of rotating machines. Bearings have 

received considerable attention as the majority of the rotating machinery problems are caused by 

faulty bearings [2]. While the price of a single bearing is minimal, there are greater costs 

associated with bearing failures that may cause a forced shut-down [3].  

The gearbox is another key component in rotating machines and the costs associated with 

gearbox maintenance are high. As an illustrative example, the failure of the gearbox contributes 

21% to the total downtime of wind turbines [4]. Gearbox failure not only increases the costs 

associated with machinery down-time but also causes fatalities. A helicopter crashed in the North 

Sea in 2007 due to a catastrophic failure in the gearbox, resulting in the death of 16 passengers 
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on board [5]. Thus, if faults in gearboxes go undetected, they can incur high costs and a 

reduction in safety. 

In addition, generally throughout industry, there is a direction towards increased speed of 

rotating machinery [6]. This trend brings machine operation close to critical speeds and for this 

reason misalignment is becoming an increasingly important consideration in rotating machines. 

Misalignment occurs when two or more shafts in a rotating machine are not on the same 

centreline. Misalignment problems may cause up to 70% of the vibration problems observed in 

rotating machines [7]. 

There are numerous CM techniques being used to assess the integrity of rotating machinery 

including vibration analysis, oil analysis, motor current signature analysis and thermography. 

However, in recent years, acoustic emission (AE) has become a prevalent field for research as 

CM technique. AE technique provides two advantages to CM of rotating machinery, (i) fault 

detection at an early stage and (ii) the application for low speed rotating machine diagnosis, 

which is not achievable with the most established technique, vibration analysis [8]. AE has been 

applied as a non-destructive technique for fault detection for the last 50 years in several 

applications including monitoring the integrity of structures, pressure vessels, pipelines and 

rotating machinery. However, only a limited number of AE products for monitoring rotating 

machinery in comparison with vibration analysis are currently in the market [9, 10]. 

The main limitations of AE applied to rotating machinery fault detection are due to (i) the 

difficulty in processing, interpreting and classifying the information extracted from the signals, 

(ii) high levels of noise and (iii) the attenuation of the AE signals, particularly through joints 

[11][12].  Particularly, AE measurements are generally of low magnitude due to the high 

attenuation in the transmission of AE signals from the source to the sensor, which is normally 

installed in the component housing. This reduces the effectiveness of the AE for fault detection 

at an early stage. Thus, further investigation has to be carried out to apply AE for machinery 

early stage fault diagnosis as a reliable solution. 
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Hence, the ultimate aim of this research is concerned with the development of advance signal 

processing techniques to detect defects at an early stage in roller bearings and straight bevel 

gears.  This is achieved by increasing the Signal-to-Noise Ratio (SNR) of the AE signals 

generated by the friction between the defects and other components, reducing the AE noise 

from other sources. Thus, the combination of Wavelet Packets (WP), Hilbert Transform (HT), 

Autocorrelation Function (ACF) and Fast Fourier Transform (FFT) analysis was investigated for 

this purpose. 

In addition, the detection of shaft angular misalignment using AE technique is investigated in 

this thesis. This is a new application of AE which increases the fault detection capabilities of this 

technique. This investigation seeks to allow the use of AE technique not only as a 

complementary technique, as it is described in the literature [13], but as a technique that can 

detect a broad range of faults in rotating machinery. 

1.2. Aims of the research 

In the recent years CM systems are being adopted more and more in industrial plants as they 

provide resource savings and increase safety. As explained in the previous section, AE provides 

numerous advantages to CM of rotating machinery. However, to become a widely implemented 

technique some drawbacks of CM, highlighted in the previous section, have to be overcome. 

This research attempts to overcome some of these drawbacks. Thus, the specific objectives of 

this research are: 

• To review the state of the art of fault detection in rotating machinery using 

AE. 

• To develop novel algorithms using advanced signal processing techniques for 

bearings and gears in early stage defect detection. 

• To validate the effectiveness of the novel algorithms in tapered bearings, 

spherical bearings and straight bevel gears with both seeded and naturally 

developed defects. 
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• To investigate the potential detection of shaft angular misalignment (SAM) 

using AE by studying the impact of operational conditions. 

1.3. Methodology 

Noise reduction in the AE signal is the main challenge to detect defects at an early stage. The 

selection of suitable signal processing techniques for this purpose was the initial task. A 

preliminary experiment was carried out capturing AE signals from defected and non-defected 

bearings in order to find the similarities and differences between the signals and determine the 

most appropriate signal processing techniques. The signals obtained were decomposed in the 

time-frequency domain (to determine the frequency components present in the signals). It was 

observed that most of the AE noise was produced by normal bearing operation while the AE 

generated by neighbouring components were present in the 100-250 kHz band. As a result, 

frequency based technique for de-noising, was expected to provide an increased SNR in the AE 

signals.  Thus, WP was selected to enhance the performance of envelope analysis due to its 

optimum resolution at high frequencies [14]. Furthermore, the ACF was investigated as a post-

processor in combination with WP to increase the SNR of the AE signals. 

Once the method was formulated, it was validated in different conditions. Firstly, an experiment 

investigating the effect of different SNR conditions was conducted. Noise baseline addition up 

to 21 dB was accomplished to increase the noise in the AE signal generated in a defected bearing 

to simulate extremely low SNR conditions. In addition, experiments were conducted to analyse 

the performance of the proposed method to assess the algorithm detecting tapered roller 

bearings outer race defects and straight bevel gear defects. Furthermore, to validate the algorithm 

in industrial conditions, a spherical roller bearing with fatigue developed spall in the outer race 

was employed.  

The potential use of AE to detect shaft misalignment was also investigated. Misalignment is a 

major source of vibrations in rotating machinery [15]. Thus, the early detection of this fault is 

crucial to avoid machinery failures. In order to investigate the impact of operational conditions 
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on SAM detection using AE, 9 different conditions of load and speed were examined in a test 

rig. The results obtained with AE were also compared with the well-known acceleration 

spectrum.  

1.4. Organisation of the thesis 

Chapter 2 provides a broad overview to the research background including basic principles of 

AE, AE applied to rotating machinery fault diagnosis, AE sensors and basic principles of 

bearings and gearboxes. Chapter 3 presents a review of published literature of AE applied to 

rotating machinery fault detection including time-domain methods, wavelet transform, envelope 

analysis, classification methods and cyclostationarity analysis. In addition, a comparison between 

different CM techniques is also presented in chapter 3. Chapter 4 presents a novel method for 

bearing localised defect detection at an early stage using AE. Chapter 5 presents further 

validation of the previous method in gears and a spherical roller bearing. These include naturally 

developed defects in the bearing outer race and gear fault detection. Chapter 6 presents a novel 

application of AE. This is SAM detection. The results of AE are compared with acceleration 

spectrum analysis. The conclusions of the research are further discussed in chapter 7, where the 

contributions to the knowledge are also reviewed. In addition, further proposed work is 

presented in chapter 7. 

1.5. Contribution to new knowledge 

• Combination of Wavelet Packets, Hilbert Transform and 

Autocorrelation function for AE signal de-noising applied to localised 

defect detection for bearings and gears. This is the first time that these 

techniques have been combined for defect detection in rotating machinery 

using AE signals.  The combination of these techniques significantly improves 

the SNR in comparison with the traditional envelope analysis by 35 dB. The 

method has been applied on defect detection in spherical and tapered roller 
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bearings and bevel gears. This is the first know attempt to detect defects 

using AE on bevel gears. 

• In general, the WP nodes corresponding to frequency bands between 

250 and 750 kHz offer the optimal de-noising capabilities. However, the 

optimal frequency band varies for different conditions and is affected by 

the distance from the defect to the AE sensor. The higher the distance 

from the AE sensor to the defect, the optimal WP node shifts to lower 

frequencies. 

• AE signals processed with envelope analysis show advantages in the 

detection of SAM over acceleration spectrum in SNR and stability for 

varying operational conditions. 

1.6. Publications arising from the PhD 

• Juan Luis Ferrando Chacon, Estefania Artigao Andicoberry, Vassilios 

Kappatos, Georgios Asfis, Tat-Hean Gan and Wamadeva Balachandran “Shaft 

angular misalignment detection using acoustic emission” Applied Acoustics, 

Vol. 85, pp. 12-22, 2014. 

• Juan Luis Ferrando Chacon, Vassilios Kappatos, Wamadeva Balachandran and 

Tat-Hean Gan “A novel approach for incipient defect detection in rolling 

bearings using acoustic emission technique”,  Applied Acoustics,Vol. 89, pp. 

88–100, 2014. 

• Juan Luis Ferrando Chacon, Estefania Artigao Andicoberry, Vassilios 

Kappatos, Mayorkinos Papaelias, Cem Selcuk and Tat-Hean Gan “An 

Experimental Study on the Applicability of Acoustic Emission for Wind 

Turbine gearbox Health Diagnosis” Low Frequency Noise, Vibration and 

Active Control, submitted. 

• Juan Luis Ferrando Chacon, Estefania Artigao Andicoberry, Tat-Hean Gan, 

Georgios Asfis and Wamadeva Balachandran ”A comparative study on the use 
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of acoustic emission and vibration analysis for angular misalignment detection 

using envelope analysis”, The 10th International Conference on Condition 

Monitoring and Machinery Failure Prevention Technologies, Krakow, June 

2013.  

• Juan Luis Ferrando Chacon, Wamadeva Balachandran and Tat-Hean Gan 

“Acoustic Emission Technique Applied for Angular Misalignment Fault 

Detection Using Envelope Analysis”Brunel University School of Engineering 

and Design Research Student Conference - ResCon13, June 2013 

• Juan Luis Ferrando Chacon, Wamadeva Balachandran and Tat-Hean Gan “A 

novel algorithm for bearing fault detection using acoustic emission”Brunel 

University School of Engineering and Design Research Student Conference – 

ResCon14, June 2014. 

• Victor Kalinin, Alexander Stopps, Juan Luis Ferrando Chacon, Estefania 

Artigao, Vassilious Kappatos, Cem Selcuk and Tat-Hean Gan, Denja Lekou, 

and Ravin Ginige “The Application of Acoustic Emission and a Novel Torque 

sensor Design for Condition Monitoring of Wind Turbine Drivetrain”, The 

53rd Annual Conference of The British Institute of Non-Destructive 

Testing,2014. 

• Victor Kalinin, Alexander Stopps, Juan Luis Ferrando Chacon, Estefania 

Artigao, Vassilious Kappatos, Cem Selcuk and Tat-Hean Gan, Denja Lekou, 

and Alvaro Garcia Ruiz, “Novel torque sensor design  and enhanced envelope 

method of  acoustic emission signals in condition monitoring of the nacelle in 

wind turbines” The 11th International Conference on Condition Monitoring 

and Machinery Failure Prevention Technologies, Manchester, 2014. 
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Chapter 2 
 

 

 

2. Introduction to acoustic 

emissions and rotating machinery 

 

2.1. Introduction 

AE is a relatively new technique in CM and is not as widely applied as other techniques such as 

vibration and oil analysis.  AE applied in rotating machinery fault diagnosis uses many terms and 

concepts that will be constantly used in this thesis. Therefore, a general description of the AE 

technique is provided. The application of AE to rotating machinery CM differs from other more 



10 

 

common applications such as structural or tank monitoring which will be also detailed in this 

chapter. In addition a brief introduction to AE sensor types and a description and the sensor 

calibration techniques are presented. 

2.2. Basic principles of AE 

AE is defined as transient elastic waves generated from a rapid release of strain energy caused by 

a deformation or damage within or on the surface of a material [16].  This mechanical process is 

attributed to various phenomena such as crack initiation and growth, deformation, rubbing, 

leakage, etc.  The most detectible AE signals occur when a loaded material experiences plastic 

deformation or when a material is loaded at or near its yield stress [17]. When plastic 

deformation takes place, atomic planes slip past each other through the movement of 

dislocations. These phenomena produce elastic waves that travel in the material. Since the origin 

of AE activity is microscopic, the AE signal is broadband making it an efficient approach for 

early stage damage detection [18]. A graphical explanation is shown in Figure 2-1. It shows the 

AE generated by crack initiation within the material and the transmission of the AE wave to the 

sensor attached to the surface of the object. The AE sensor, which is usually made of 

piezoelectric material, transforms the elastic waves into electrical signals to be processed and 

analysed. 

AE technique is considered a unique Non-destructive testing (NDT) technique, since in order to 

generate AE signals the material has to be loaded and cracks must occur. Thus, AE must be 

applied during loading, while other NDT techniques are applied before or after loading the 

specimen. 
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Figure 2-1: The principle of AE testing. 

AE waves cover a broad frequency range between 100 kHz and 1 MHz [19]. Because of the high 

frequency content of the AE signals, attenuation is a major obstacle for this technique. In 

general, the attenuation is linearly dependent on frequency [20] and occurs due to several factors. 

The most important ones are geometric spreading, scattering and absorption. When the source is 

close to the sensing element, the most influential factor is geometric spreading. However, at 

longer distances the scattering and energy absorption dominate [21]. Furthermore, a considerable 

attenuation is also produced when the AE signal crosses joints.  

In general, overall ultrasound attenuation is characterized by the following exponential decrease 

of the pressure amplitude p and of the amplitude of the acoustic intensity I with the traveling 
distance z [22]: 

� = ����	
         (2.1) 

� = �����	
        (2.2) 

where �� and �� are the pressure and intensity at z = 0, respectively. The coefficient 
is the 
pressure frequency-dependent attenuation coefficient expressed as: 


��� ∙ ����� = �

 ∙ 10�� ��

� = 8.68
������        (2.3) 

In order to artificially simulate AE events to evaluate the attenuation of the waves in certain 

material, or to test the coupling between the sensor and the surface, typically the Hsu-Nielsen 

source is used [23].  This test consists of breaking a 0.5 mm diameter pencil lead tip 
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approximately 3 mm by pressing it against the surface of the material. This source generates a 

burst similar to a natural AE event. In addition, the amplitude of the burst generated by the Hsu-

Nielsen source is within the range of the common crack sources. The Hsu-Nielsen source has 

become accepted as a simulation for AE sources. The signals recorded by the measuring system 

are a function of source effects, wave propagation effects, sensor transfer functions and 

instrumentation effects. An example of the effect of the transfer function of the AE sensor to 

the step response produced by a capillary break is show in Figure 2-2 [24]. These five graphs 

show the theoretical displacement produced by a capillary break in a 50mm thick steel block, the 

measured displacement using a capacitive sensor and the responses of 3 different AE sensors 

(PAC R15, PAC NANO30 AND DW B1025). While the real displacement produced by pencil 

lead break is impulse-like function, the responses of the different sensors to this input are 

attributed to the transfer function of the sensor which depends on the incident wave types as 

different vibration modes of a sensing element are excited non-uniquely [25]. 
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Figure 2-2: Theoretical displacement of the surface produce by capillary break and response of 
different type of AE sensors [24]. 

The usual procedure to generate an attenuation graph is to break a lead several times at different 

distances from the sensor and record the maximum amplitude of the signal measured. Averaging 

the values at each distance generates a graph recording the attenuation of the AE signal with the 

distance in the object under investigation. As example, Figure 2-3 shows the attenuation curve 

generated by performing pencil lead breaks in a steel bar. This graph is particularly important to 

determine the distance between sensors in a particular application. 

 

Figure 2-3: Example of the graph produced in the attenuation test. 

According to the monitoring strategy, two different approaches are applied to analyse the AE 

signals. These are shown in Figure 2-4: 

• Burst type emission: Burst type emission is expected when the monitored 

sources of emission are non-repeatable and occur discretely; independent in 

the time-domain, such as local catastrophic yielding, crack growth, cavitation, 

corrosion, etc.[26]. 

• Continuous type: Refers to a waveform where transient bursts are not 

discriminated. AE is produced by the overlapping of numerous individual AE 
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events such as those occurring in friction processes or produced by leakages in 

storage tanks. 

 

Figure 2-4: Example of burst signals compared to a continuous emission of acoustic waves [27]. 

2.3. Applications of AE 

The different materials in which AE has been applied include the following [28]: 

• Composite materials and polymers: sandwich composite, glass-reinforced 

plastic (GRP) and carbon fibre. 

• Metals: steel, carbon steel, alloy, aluminium, aluminium alloys, magnesium 

alloys, and others (e.g., copper and its alloys, uranium alloys, titanium, and 

zirconium alloys). 

• Concrete, reinforced concrete. 

• Rocks. 

• Wood. 

AE has been applied in numerous applications to date. These applications include the following 

[29]: 
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• Behaviour of materials in metals, ceramics, composites and rocks including 

crack propagation, yielding, fatigue, corrosion, stress corrosion, creep, fibre 

fracture and delamination. 

• Non-destructive testing during manufacturing processes: material processing, 

phase transformation in metals and alloys (martensitic transformation), detects 

defects, fabrication, deforming processes, welding and brazing and weld 

monitoring for process control. 

• Continuous monitoring and periodic testing (pressure vessels, pipelines, 

bridges, cables), loose part detection, leak detection and rotating machinery 

fault detection 

• Special applications: petrochemical and chemical (storage tanks, reactor vessels, 

offshore platforms, drill pipe, pipelines, valves), electric utilities (nuclear 

reactor vessels, piping, steam generators, ceramic insulators, transformers, 

aerial devices), aircraft and aerospace (fatigue cracks, corrosion, composite 

structures) and electronics (loose particles in electronic components, bonding, 

substrate cracking). 

2.4. AE in rotating machinery 

AE accompanies most of the known processes occurring in solids [30]. In rotating machinery, 

AE is defined as transient elastic waves generated by the interaction of two surfaces in relative 

motion [31]. Sources of AE in rotating machinery include impacting, cyclic fatigue, leakage, 

friction, material loss, etc. [12]. In rotating machinery, friction-related processes are the main 

source of AE. Several physical and chemical processes occur simultaneously in friction. The 

principal are mechanical and chemical interaction of surfaces in contact, structural and chemical 

changes and damage of surfaces. The main sources of AE in friction are the following [30]: 

• Elastic interaction, impacts 

• Changes in stress-strain state of a local volume of solid surface layer 
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• Plastic deformation, damage 

• Generation, motion and interaction of dislocations 

• Energy liberation at repeated deformation or phase hardening-weakening and 

damage of surface layer 

• Changes in friction surface structure 

• Formation of microcracks, micropores and new surfaces because of wear 

• Appearance of wear debris 

• Surface spalling and formation of fatigue pit 

The key advantage AE in monitoring rotating machinery is that it offers earlier defect detection 

than other techniques [32]. In addition, it also offers other benefits such as subsurface crack 

detection and the fact that the high frequency content of AE signals makes it immune to 

machinery noise (usually <50 kHz) which can be eliminated using a simple high pass filter [33] . 

2.5. AE sensors 

AE sensors are usually made of piezoelectric materials. These materials have the characteristic of 

generating electric fields when they undergo deformation. The Output signal is a function of the 

displacement of the measured surface in contact with the sensor. The function is not only 

dependent on time but also on the position within the measurement area of the transducer. AE 

sensors are sensitive to displacement normal to the surface in which they are installed [34]. The 

type of sensor selected strongly influence the shape of the electrical signal measured due to the 

different sensitivity, frequency response, temperature impact, resonant frequency and 

directionality. 

The most widely used material of this type is lead zirconate titanate (PZT) because it offers the 

highest sensitivity among the piezoelectric sensors. Also, there are other type of AE sensors in 

the market including interferometers and capacitance sensors. Interferometers are utilised when 

sensitivity at higher frequencies, up to several MHz, are required. The sensitivity and bandwidth 

of the different sensors are shown in Table 2-1. 
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Table 2-1: Sensitivity of different types of transducers [34]. 

TYPE OF TRANSDUCER SENSITIVITY (m) BANDWIDTH (MHz) 

Piezoelectric resonant 10-13 0.1 to 0.3 

Piezoelectric wideband 10-12 0.1 to 2 

Capacitance 10-11 DC to 50 

Laser interferometer 10-10 0.05 to 100 

The piezoelectric element is enclosed in the sensor case as illustrated in Figure 2-5. It is a passive 

sensor and the electrical response of the sensor to the AE signals is the proportional to the 

weighted average of the displacement and it can be described as follows: 

� !" = �
# ∬ % &, (, !") &, ("�&�(*     2.4" 

Where - &, (" is the local sensitivity of the transducer face, S is the surface of contact, A the 
area of the surface S and % &, y, t" is the displacement on the surface. 

Voltage generated by AE sensors are usually of very low amplitude (µV or few mV). For this 

reason an amplification stage is usually necessary. The most common gains used for amplifying 

AE signals are 20dB, 40dB and 60dB depending on the amplitude of the source. 
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Figure 2-5: AE sensor schematic [35]. 

AE sensors are commonly classified into different groups: 

• Wideband: The frequency response of these sensors is wide, sometimes up to 2 

MHz and considerably flat. The drawback is the low sensitivity which produces 

lower voltage for the same displacement than resonant sensors. These sensors 

are used when frequency analysis is required in signal post-processing. 

• Resonant: These sensors have a narrow frequency response but the peak 

sensitivity is higher than wideband sensors. The size of the piezoelectric 

element affects the resonant frequency of the AE-sensor. In general the 

resonant frequency is higher for smaller piezo-elements [36]. The most 

common resonant frequencies of these sensors are in the range between 150 

and 300 kHz. 

In rotating machines, the AE sensors should be placed close to potentially faulty components 

and in the same location from one test to the next. Locating sensors onto rotating parts would 

also improve fault detection significantly [37]. 
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2.5.1. AE sensor calibration 

The objective of the sensor calibration is to find the response of the sensor to an input signal at 

different frequencies. A typical calibration graph of a sensor can be found in Figure 2-6. 

 

Figure 2-6: Example of a typical AE sensor calibration graph [38]. 

Sensor calibration is carried out using the following approaches [34]: 

• Primary calibration: For this type of calibration the absolute value of the input 

signal and waveform are needed. A source with known characteristics must be 

provided. In [39] and [40] two different primary method of calibration are 

described (step function and reciprocity). In step function calibration a 

standard reference capacitance transducer is used and the step-force is 

generated by the fracture of a glass capillary. The response of the sensor being 

calibrated to the step-force source is compared with the reference transducer, 

which measures the surface displacement due to the elastic surface waves. In 

reciprocity calibrations two different sensors are used, the emitter and the 

receiver. The current absorbed by the emitter and voltage across the receiving 

sensor are captured. This process is repeated for three AE sensor pairs. Then 

the voltages and currents acquired from these sensors are processed to obtain 

the frequency response[41].  
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• Secondary calibration: In this case a reference sensor with known 

characteristics is required. The calibration process is carried out comparing the 

outputs of that sensor and the one that has to be calibrated. The information 

given by the second calibration is more limited than the primary in terms of 

frequency and error of calibration [42]. 

2.5.2. Couplants for AE sensors 

The use of a couplant is of high importance when the sensor is attached to the surface to obtain 

measurements with high SNR. The couplant works matching acoustic impedance between the 

AE sensor and the surface in which it is attached, impeding the air to be in the contact area 

between the sensor and the surface. The acoustic impedance (Z) of material is defined as: 

3 = 45     (2.5) 

where ρ is the density and V the velocity of the acoustic waves in the material. 

Due to the low acoustic impedance of air in comparison with contact surfaces, it allows very 

little transmission of acoustic energy at the typical frequencies of AE.  Thus, the use of a 

couplant can greatly improve this transmission by around 2 times at 100 kHz and more than 10 

times at 500 kHz [43]. Figure 2-7 shows the difference in transmission among different common 

AE couplants for different frequencies. A description of the application procedure and further 

details can be found in the “ATSME Standard Guide for Mounting Piezoelectric Acoustic 

Emission Sensors” [44]. 
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Figure 2-7: Sensitivity of AE sensor using different couplants [43]. 

2.6. Bearings 

Bearings are mechanical devices that allow relative motion between two surfaces with restricted 

friction. Bearings are found widespread in domestic and industrial applications and are critical 

components of rotating machinery. Bearing monitoring has received considerable attention as 

the majority of the problems with rotating machinery are caused by faulty bearings [2]. Hence, 

the detection of faults in bearing using CM systems is of high importance to avoid these 

problems. The roller bearings consist of an inner race, outer race, rolling elements and cage 

(Figure 2-8). 
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Figure 2-8: Bearing components [45]. 

There are numerous types of bearings in the market. The type of bearing is selected mainly 

according to the type of operation and the load and speed of the application. The most widely 

used types of bearings are the following: 

• Plain bearing: It consists just in two surfaces in relative motion with lubrication 

and no rolling elements are used. 

• Magnetic bearing: The load is supported by a magnetic field. This is applied to 

very high rotating speed machines. The main inconvenience of this is that it 

requires power to generate the magnetic field. 

• Fluid bearing: This type of bearing supports the load using a thin layer of gas 

or fluid. The main disadvantage is that the power consumption is higher than 

roller bearings. 

• Rolling-element bearing such as ball bearings and roller bearings. In this group 

the most common types are the followings: 

o Ball Bearing: This type of bearings is very common in rotating 

machines acting as support by reducing the friction and providing a 



23 

 

smoother operation for the machine. It consists of a large outer ring, a 

small inner ring, balls between the rings and a cage to prevent the balls 

collision.   

o Cylindrical Roller Bearings: In this type of bearing, the rolling is done 

by the cylinders leading to better distributing of loads across the 

broader surface by having a greater contact area with linear contact area 

with outer ring. As a result, they are suitable for high speed applications 

as they support a relatively high radial capacity of load.  

o Tapered Roller Bearing: They are made of a tapered inner and outer 

ring which results in enduring high combined load, such as 

continuously acting radial and axial loads. To provide true rolling and 

low friction, the projection of the raceway lines meet on a common 

point on the axis. 

o Needle Roller Bearing: The advantages of this type of bearings are (i) 

smaller cross-section, (ii) higher load-carrying capacity, (iii) greater 

rigidity and (iv) lower inertia forces. They are suitable for use under 

severe condition. 

o Spherical Bearing: As the spherical bearing allows angular rotation, they 

are good at accommodating misalignment as they are suitable for 

movement oscillation.  

The failure of bearings consists of the following stages[46]: 

• Pre-failure: This is the first stage of bearing failure. In this stage micro-cracks 

and microscopic spalls are developed. An important advantage of AE is that it 

is sensitive to micro-crack initiation and growth in metals [47] and 

consequently is capable of detecting defects at this stage. 
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• Failure:  In this stage the cracks and spalls grow and are visible to the human 

eye. Several localised defects can appear in the surface of the bearing 

components. 

• Catastrophic failure: This stage leads to a rapid failure of the bearing. 

Significant increases in temperature are caused as result. 

The expected life of a bearing for a particular operational condition of load and speed can be 

easily calculated. The logarithm of the reciprocal of the probability of survival S can be expressed 
as a power function of the orthogonal shear stress 8� life N, depth to the maximum orthogonal 

shear stress 3� and stressed volume V,  i.e. [48], 

�� �
* = :;

<=>?

@�
<A 5                (2.6) 

Where e is the Wiebul factor, B�,� are material dependent coefficients with values functions of 

elasticity, fracture and fatigue limit, and, 

5 = C�3�          (2.7) 

where C	is the semi major axis of the Hertzian contact ellipse, and l the length of the running 

track of the race. Then, 

�� �
* = :;<=>?DE

@�
<AF=                (2.8) 

The rating life of a group of identical bearings is generally defined as the number of revolutions 

(or operating time at a stated speed) which will be attained by 90% of the group before 

replacement is necessary[49]. The normal failure mode of a bearing is flaking or spalling. These 

phenomena are caused by rapid metal fatigue in cyclically stressed surfaces. However, in most 

cases the failure occurs previous to the expected life. There are many causes for this including 

overload, inadequate or unsuitable lubrication, careless handling, ineffective sealing, or fits that 

are too tight, with resultant insufficient internal bearing clearance [50]. The most common 

bearing failure modes are the following: 
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• Flaking or spalling 

• True brinelling 

• False brinelling 

• Overheating 

• Overload 

• Oil contamination 

• Lubricant failure 

• Corrosion 

• Misalignment 

2.7. Gearboxes 

A Gearbox consists of gears and gear trains to generate speed and torque conversions from a 

rotating source to another device. Gearboxes are widespread in industrial and domestic 

applications for automobiles and wind turbines. The main components that are included in any 

gearbox are bearings, gears and shafts (Figure 2-9). There is a variety of gear types for 

transmission; however, spur and helical gears are the most common. Spur gears are the simplest 

type of gear, consisting of a cylinder or disk with teeth along the edge and each tooth being 

straight and parallel to the axis of rotation. This type of gear is used for low operational speeds. 

On the other hand, with helical gears the edges of the teeth are not parallel to the axis of rotation 

but at an angle. This angle provides a smoother operation than spur gears which makes it an 

efficient solution in high torque and high speed applications. Bevel gears are used when the axes 

of the two shafts intersect; the surfaces of the gears have a conical shape. Other types of gears 

also found in different applications are hypoid, worm, double helical, etc. 
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Figure 2-9: Gearbox schematic [51]. 

Although kinematic the motion of a pair of gears is analogous to that of a pair of two pitch 

cylinders which roll without slip, the action on the meshing teeth consists of a combination of 

both rolling and sliding. Gear tooth sliding velocity is defined as the difference between rolling 

velocities between during the mesh. The equation to calculate the sliding velocity is as follows: 

5G = 5HI# − 5HK#																																																																	(2.9) 

Where Vs is the sliding velocity, Vrpa is the rolling velocity at a point A, pinion and Vrga is the 

rolling velocity. 
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Chapter 3 
 

 

 

3. Literature review 

 

 

3.1. Introduction 

This state of the art commences with an overview of the signal processing techniques using for 

fault detection in rotating machinery using AE. Next, a detailed literature review is given 

regarding the rotor dynamic faults, emphasizing the misalignments. Furthermore, a description 

of bearing and gear fault detection using AE is presented. This literature review concludes with a 
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discussion of other techniques applied in CM including vibration analysis, oil analysis, 

thermography and torque and a comparison between them. 

3.2. Signal processing techniques applied for AE for rotating 

machinery fault diagnosis 

In this section the signal processing techniques for AE monitoring in rotating machinery are 

explained. The traditional method and most commonly applied due to the simplicity, is to extract 

features from the time-domain signal and assess these parameters to detect increasing trends 

which are associated to bearing deterioration. However, more advanced signal processing 

techniques including wavelet transform (WT), classification methods, cyclostationarity theory 

and envelope analysis are also explained. Numerous techniques applied to AE have been 

extracted from vibration literature. However, because the characteristics of AE signals are quite 

different from those of the vibration signals acquired by accelerometers, this signal processing 

methods have to be reconsidered to be applied to AE signals [52]. Thus, techniques that have 

been successfully applied in vibration signals may not be able to be applied directly to AE 

signals. 

3.2.1. Time-domain methods 

In order to characterise the AE signals acquired the most applied and simple approach is to 

extract the features from the time-domain signal and trend them finding increasing patterns that 

are related with particular faults. Rotating machinery failure modes such as spalling, pitting, 

flaking, oil contaminants, oil starvation, etc. produce an increase in AE features that can lead to 

diagnosis of the fault. 

One of the most common features extracted from AE signals is the root mean square (RMS). 

This is a statistical measure of the magnitude of a varying quantity. An increase in the global 

signal produced by a distributed defect or oil starvation is expected to show an increase in this 

feature. Mathematically the RMS of a signal x(t)between the instants T1 and T2 it is defined as: 
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V= 	                       (3.1) 

where x(t) is the signal in the time domain. 

Several studies were published investigating the influence on this feature produced by the 

introduction of defect in bearings. Al-Ghamda and Mba [53] studied the effect on AE RMS and 

vibration RMS produced by a radially loaded bearing, increasing defect size. The defects were 

artificially seeded in the outer race. They concluded that AE RMS increased with increasing 

defect severity. The authors also highlighted the high impact of load and speed on the AE RMS.   

The energy is a measure of the true energy and is derived from the integral of the squared 

voltage. It calculates the area defined by the signal curve. The energy EYof a signal x t" is defined 
as: 

EY = W |x t"|�[
�[ dt        (3.2) 

The peak amplitude is the maximum voltage value in the signal. Tandon and Nakra [54] 

evaluated the peak amplitude value as parameter for defect detection in roller bearings. They 

concluded that AE peak amplitude provided an indication of defects irrespective of the defect 

size. 

The crest factor (CF) is calculated from the peak amplitude of the waveform divided by the RMS 

value of the waveform. The CF of an AE signal provides an estimate of the amount of impact 

wear in a bearing. However, the CF is a reliable indicator only in the presence of incipient defects 

while it does not respond enough to significantly increasing damage in the bearing; as the 

damage increased CF values reduced to the undamaged levels [55]. 

CF = |_|`abc
_def

         (3.3) 

Information entropy (IE) is usually defined as a measure of uncertainty of a process. As the 

working condition of a machine system deteriorates due to the initiation and/or progression of 

structural defects, the number of frequency components contained in the AE signal increase, 
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resulting in a decrease in its regularity and an increase in its corresponding information entropy 

value. Elforjani et al. [55] showed that, by employing information entropy, the presence of a 

crack onset and its propagation in bearings can be detected by the AE technique. The IE of a 

discrete random variable x is defined as: 

�g = − ∑ ij ∙ log ij">jm�         (3.4) 

Where i is the probability mass function. 

Counts is possibly the most employed feature for defect detection in roller bearings. Counts is 

defined as the number of times that a predefined threshold is crossed by the AE signal. 

Choudhary et al. [56] applied AE for different size defect identification at changing the rotating 

speed of the rig. It was observed that AE counts were low for defect-free bearings. They also 

observed that speed had a direct impact in the counts parameter. The threshold selection is one 

of the conventional questions to extract this feature. Changing the threshold level will have a 

significant impact in the count number. However, as discussed in [57], the relationship between 

bearing mechanical integrity and AE counts is independent of the chosen threshold level, 

although a threshold of at least 30% of the lowest speed and load operating condition is 

recommended. 

3.2.2. Wavelet transform 

The WT is a mathematical tool which transforms sequential data in time axis to the spectral data 

in both time and frequency [58]. In contrast with sinusoids, wavelets are localised in both the 

time and frequency domains, so wavelet signal processing is suitable for non-stationary signals, 

whose spectral content changes over time. Thus, due to the AE signals generated by a defected 

bearing are intrinsically non-stationary and the outstanding ability WT to analyse these non-

stationary signals, the WT provide an improvement in the diagnosis of the bearing integrity.  

A comparison of the performances of different time-frequency analysis methods is shown in 

Table 3-1. 
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Table 3-1: Comparison of different time-frequency analysis methods [59]. 

Method Resolution Interference term Speed 

Continuous 

Wavelet 

Transform 

(CWT) 

Good frequency resolution and low time 

resolution for low-frequency components; 

low frequency resolution and good time 

resolution for high-frequency components 

No Fast 

Short Time 

Fourier 

transform 

(STFT) 

Dependent on window function, good 

time or frequency resolution 

No Slower than 

CWT 

Wigner–Ville 

distribution 

(WVD) 

Good time and frequency resolution Severe interference 

terms 

Slower than 

STFT 

Choi–Willams 

distribution 

(CWD) 

Good time and frequency resolution Less interference terms 

than WVD 

Very slow 

Cone-shaped 

distribution 

(CSD) 

Good time and frequency resolution Less interference terms 

then CWD 

Very slow 

The application of WT to rotating machinery fault diagnosis is quite extensive, particularly in 

vibration analysis. Yan et al. reviewed the application of wavelets for fault diagnosis in rotating 

machinery [60]. One of the most effective applications of wavelets is noise reduction. The 

wavelet transform-based method can produce considerable higher de-noising quality than 

conventional methods [61][62]. It has been applied in two different approaches, single-scale, in 

which a certain wavelet node is chosen as the most efficient de-noising the AE signal from an 

unwanted noise source and multi-scale, in which different scales are used to characterise or de-

noise the AE signal. The main application of the first is to select the most efficient bandwidth of 

the vibrations signals as pre-processor in the envelope analysis when the resonance frequency of 

the bearing is unknown. Traditionally, DWT decomposition tree has been applied to AE and 
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vibration signals to for signal de-noising. However, this decomposition filter may not be precise 

enough to obtain necessary information from the signal. A more detailed frequency resolution 

can be obtained by implementing WP transform to the signal. The WP is a generalization of the 

Wavelet decomposition that offers further decomposition. In the DWT, each decomposition 

level is calculated by passing the wavelet approximation coefficients through low and high pass 

quadrature mirror filters (Figure 3-1). The n-level decomposition generates n+1 wavelet nodes. 

 

Figure 3-1: 3-level DWT decomposition tree. 

However in the WP, both the detail and approximation coefficients are decomposed. This 

generates more than 2n-1 different decompositions. This is known as a WP decomposition tree 

(Figure 3-2). It should be noted that the DWT decomposition tree is part of the WP 

decomposition tree. 

 

Figure 3-2: 3-Level WP decomposition tree. 

S 

A1 

A2 D2 

D1 

A3 D3 



33 

 

One of the few investigations about the application of WP to AE signals was carried out by Feng 

and Schlindwein [63] who developed a new technique using the normalised wavelet packets 

quantifiers as a new tool for CM using AE. However, the bandwidth in which the WP analysis 

was performed was limited. The authors used a sampling rate of 200 kHz and they downsampled 

the signals to 80 kHz. Therefore, the effective bandwidth of the analysis was reduced to 40 kHz. 

They investigated the detection of two different faults, localised defect and oil contamination. 

The authors concluded that applying this novel signal processing technique, both localised 

defects and advanced contamination faults can be detected and the WP relative energy of band B 

(20, 30kHz) was the optimal quantifier. Wang et al. [65] investigated the propagation of the AE 

signal across turbine runners using WP. The authors indicated that WP is an effective tool in 

extracting the attenuation characteristics of the AE signal. 

 Bo and Yu [66] studied the application of the Db6 Wavelet for bearing defect detection. Two 

different cases were studied, roller defected bearings and grease contamination. The type of 

defect created was not detailed. The authors concluded that the bands of 125-250 kHz and 250-

500 kHz contained most of the information regarding the defect and grease contamination 

respectively. Feng et al. [61]studied de-noising problem of AE signal by using DWT thresholding 

methods. The Donoho-Johnstone threshold method [67] and parameter method were studied 

and compared in order to reduce the noise in the AE. Law et al. [68]  presented an approach 

based on WP decomposition and Hilbert-Huang transform (WPD-HHT) for spindle bearings 

CM. The authors remarked that the simulated results showed that the method was effective for 

detecting all instantaneous frequencies. Loutas et al. [69] performed a study in a single-stage 

gearbox with artificially induced gear cracks using AE and vibration analysis. They extracted 

conventional parameters from both AE and vibration signals as well as some novel parameters 

such as energy and entropy extracted from the WT nodes. 

3.2.3. Classification methods 

Different classification methods have been applied to categorise the data obtained from AE 

sensors. Among them, artificial neural networks (ANN) have been possibly the most investigated 
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classification method. This approach has been applied to rotating machinery fault detection to 

solve the problem of the complex classification process. ANN can model complex relationships 

between inputs and outputs to find patterns in data. It is an imitation of the human brain, where 

information processing is performed. An ANN is composed of units call neurons. Every neuron 

receives an input through connexions and generates an output. The output is composed through 

three functions: 

1 The propagation function. It is generally the sum of each input multiplied by the weight 

of the interconnection.  

2 An activation function that modifies the previous one. It can be removed and the 

propagation function is used as output. 

3 A transfer function that is applied to the output value of the activation function. It is used 

to limit the output of the neuron. The most common are the sigmoid function with 

output values between 0 and 1, and the hyperbolic function with output values between -1 

and 1. 

The ANN is trained to recognise signals from a healthy component and then indicates when the 

AE deviates from this normal condition. In general, the ANN does not process the raw AE 

signal. Contrary, it uses as input the results of various processing techniques, such as features 

extracted from the time domain signal or wavelet analysis, learning how these techniques 

perform with of healthy and faulty data. Taha and Widiyati[70] applied two different learning 

tasks for ANN, function approximation and pattern recognition, for detection and monitoring of 

defects in ball bearing. They concluded that function approximation learning tasks are more 

accurate than pattern recognition learning tasks for ball bearing defect monitoring. In [71] the 

authors investigated a combination of continuous WT to extract several features from a sound 

signal, acquired using a microphone, and ANN for classification for gearbox fault detection. The 

authors pointed out that the sound emission can be used to monitor the condition of the gear-set 

platform and the proposed system achieved a fault recognition rate of 98% in the experimental 
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gear-set platform. Al-Raheem et al. [72] applied the Laplace-Wavelet to identify bearing fault 

characteristic frequencies classifying the data using three types of ANN, namely, Multilayer 

Perceptron with BP algorithm, Radial Basis Function network, and Probabilistic Neural 

Network. The results showed the relative effectiveness of the three classifiers in detection of the 

bearing condition with different learning speeds and success rates. 

Support vector machine is also a classification technique that has been applied with AE signals 

for fault detection in rotating machinery. Support vector machines are supervised learning 

models with associated learning algorithms that analyse data and recognise patterns, used for 

classification and regression analysis. It was first introduced by Vladimir Vapnik for the problem 

of pattern recognition. Samanta et al. [73] compared the performance of bearing fault detection 

using two different classifiers, namely, ANN and support vector machines. They used six 

features from the signals and gave 100% classification for both ANNs and SVMs. The authors 

concluded the potential application of genetic algorithms for the selection of features and the 

classification of the parameters in machine condition detection. Widodo et al. [74] applied multi-

class relevance vector machine for defect detection in low speed bearings. This study was aimed 

at finding a reliable method for low speed machines fault diagnosis based on AE signal. The 

result showed that multi-class relevance vector machine offers a promising approach for fault 

diagnosis of low speed machines. 

3.2.4. Envelope analysis 

Envelope analysis is a well-known technique used to detect periodic variations in the amplitude 

of the signal. It is widely used in vibration analysis to detect localised defects. It is usually 

accomplished using the following procedure: (i) band pass filter (ii) signal rectification (iii) 

Hilbert transform and (iv) spectral analysis. In the first step, the signal is filtered around the 

resonance frequency of the bearing. However, in AE, as the resonant frequency is not a matter 

of study since this frequency is considered as noise (vibrations) by the band pass filtered and is 

generally excluded from the process. When the envelope is extracted, the time-domain signal is 
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transformed into the frequency domain using a FFT to study the frequency content of the 

demodulated signal. The frequencies presented in this spectrum are related to the defected 

bearing component. They can be calculated as follows:  

BPFI = pq
� ∙ S r1 + tu

vu cos∅y            (3.5) 

BPFO = pq
� ∙ S r1 − tu

vu cos∅y                (3.6) 

BSF = vu
�tu ∙ S {1 − rtu

vuy�  cos∅"�|            (3.7) 

FTF = ~
� �1 − rtu

vu cos∅y�                    (3.8) 

RPM – Revolutions per minute 

S- Revolutions per second or relative speed difference between inner and outer race 

BPFI – Ball pass frequency of inner race 

BPFO – Ball pass frequency of outer race 

BFS – Ball spin frequency 

FTF – Fundamental train frequency 

Bd – Ball or roller diameter 

Nb – Number of balls or rollers 

Pd – Pitch diameter 

ϕ- Contact angle 
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The most common technique to extract the envelope to the AE signals is the HT. Applying HT 

to the signal provides some additional information about the amplitude, instantaneous phase and 

frequency of vibrations [75]. The Hilbert Transform h t" of a function x t" is defined as: 

h t" = H�x t"� = �
� W _ �"

��� dτ[
�[     (3.9) 

The HT of x t"  (H�x t"�) is the convolution of x t"with the signal 1/πt. Hence, it can be 
interpreted as the output of a system linear time-invariant system with input h t"  and impulse 

response 1/πt. The envelope analysis technique was successfully applied using AE signals for 
bearing localised defect detection by Elforjani and Mba [55].  Further explanation of envelope 

extraction is presented in section 4.2. 

Several enhancements to the traditional envelope analysis have been studied in the recent years. 

Most of the studies were performed for vibration analysis. On the other hand, studies to enhance 

the envelope analysis for AE signals have been limited. Kim et al. [76] proposed the DWT as 

pre-processor to de-noise the AE signal for gearbox defect detection. Because of the complex 

process to determine the optimum frequency band to extract the envelope, WT was used as a 

pre-processor, decomposing the signal in different frequency bands. The authors achieved 

improved results determining the characteristic fault frequencies in gear fault detection using the 

DWT as pre-processor for the envelope analysis. 

3.2.5. Cyclostationarity theory 

Increasing interest is growing in the recent years around Cyclostationarity analysis in machinery 

fault detection. This technique has been applied previously in several applications such as 

telecommunications, telemetry, radar and sonar applications. Wide-sense cyclostationary 

stochastic processes have autocorrelation functions that vary periodically with time [77]. A 

random signal & !" is considered cyclostationary if it satisfies the following: 

• It is cyclostationary with respect to the mean, namely, the mean of the signal is a 

periodic function: 
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g�& ! + ��"� = g�& !"�       (3.10) 

• It is cyclostationary in the autocorrelation domain with period �� as follows: 

-� !, ! + 8" = -� ! + �� , ! + �� + 8"  (3.11) 

The earliest studies regarding the application of cyclostationarity theory in machinery fault 

detection were performed by Randal and Antoni using vibration signals [78]. The application of 

this technique to vibration analysis is quite extensive. However, only a small number of studies 

have been published for AE. Kilundu et al. [79] presented a study that characterises the 

cyclostationary aspect of AE signals acquired from a defective bearing. The authors compared 

the cyclic spectral correlation, a tool dedicated to evidence the presence of cyclostationarity, with 

the traditional envelope analysis. This comparison revealed that the cyclic spectral correlation 

was more efficient than the traditional envelope analysis to identify the defect present in the 

bearing outer race. However, this success was not found with inner race defects. Molina 

Vicuña[80] introduced the cyclostationary character of AE signals acquired from a planetary 

gearbox. The authors indicated the need for higher cyclic frequency resolution. However, this 

was not done due to the high computational demands needed. Thus, this investigation 

emphasises the main drawback of the cyclostationarity analysis, which is the inapplicability for 

real-time diagnosis due to the high computational complexity [81]. 

3.2.6. Other methods 

Lin et al. [82] accomplished an investigation into the application of Hilbert-Huang transform to 

bearing fault detection in winds turbine using AE. The results obtained showed that AE in the 

wind turbine bearing can be described in terms of features like frequency and energy, and 

inferences can be made about the kinds of damage processes taking place in the bearing. Thus, 

the Hilbert-Huang transform analysis method has a good potential for the AE signal processing 

in wind turbines. Lin et al. [83] presented a practical approach for CM of low speed machinery 

using Peak-Hold-Down algorithm. The purpose of this method was to reduce the amount of 

data in order to enable rapid data transfer in remote CM application, particularly for low speed 
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rotating machinery in which the amount of data is large. He et al. [84] combined short-time RMS 

and autocorrelation function for bearing defect diagnosis. The results showed that the proposed 

method is effective to extract the characteristic frequency of the bearing using the AE signals. 

Shiroishi et al. [85] combined the high frequency resonance technique (HFRT) and adaptive line 

enhancer (ALE) to detect localised defects using AE and vibration measurements. They 

concluded that the proposed method applied to AE signals were better than vibration in 

detecting outer race defects but the AE sensor was not sensitive to the inner race defects tested. 

In [86] the authors applied morphological filtering to eliminate colour noise in frequency domain 

to de-noise the AE signal acquired from a defected bearing. The simulation results showed that 

that the proposed methodology can achieve significant noise reduction, and is beneficial to the 

subsequent processing and analysis of signals.  

3.3. AE for the detection of rotor-dynamic faults 

Common rotor-dynamic faults include self-excited vibration, generated due to system instability, 

and, vibration produced by externally applied load, such as cracked rotors or bent shafts, 

misalignment and unbalance [87].The diagnostics of rotor faults has been gaining importance in 

recent years [88]. These types of faults generate frictional rubbing between the rotor and the 

static components such as bearings. The rotor-dynamic faults generate partial or continuous 

interactions. The first type produces brief intermittent contacts and the second describes more 

constant contact between rotor and stator. Several authors have investigated the AE generated 

birotor-stator interaction. Zhansheng Liu et. Al [89] compared vibration analysis and AE for the 

detection of the seal rubbing on a rotor rig. The authors conclude that AE offered earlier fault 

detection than vibration analysis, allowing the user to detect the rubbing-impact of the rotor 

system, unachievable with vibration analysis. Hall and Mba [90] proved the use of Kolmogorov-

Smirnov statistics for discriminating different classes of shaft-seal rubbing. Again, Hall and Mba 

[91] presented a case study to investigate the rotor-stator rubbing in an operational 500 MEW 

turbine using AE.  The authors were able to locate the position of the rubbing using phase delay 

between adjacent AE modulations. 
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Although several studies have been conducted to detect rotor-stator interaction using AE, no 

detailed investigation regarding the rotor-stator AE signals produced by misalignment has been 

investigated. As one of the topics of this thesis is misalignment fault detection using AE, the 

state of the art of misalignment fault is presented. Traditionally, vibration analysis has been 

applied to detect this type of faults in rotating machinery. However, it presents some drawbacks 

that are discussed in the next section. 

3.3.1. Misalignment 

Shaft misalignment occurs when the shafts are not on the same centreline. Misalignment is one 

of the most common faults and yet it is still not fully understood [92]. There are two different 

types of shaft misalignment: (i) shaft angular misalignment in which shaft centrelines intersect, 

and (ii) shaft parallel misalignment in which shaft centrelines are parallel (Figure 3-3). In fact, in 

most cases the misalignment is caused by a combination of both. 

 

Figure 3-3: Graphical explanation of (a) SAM and (b) parallel misalignment. 

Several studies have been accomplished on misaligned shaft dynamics, including modelling its 

effects. Most of these studies show the main peak at the shaft rotation frequency (1X) and 

smaller peaks at the harmonic frequencies (2X, 3X and 4X) in the vibration spectrum. Pennacchi 

et al. [93] presented a study in order to model this fault accurately. The ratios of 1X/2X, 1X/3X 

and 1X/4X harmonics of vibration signals in bearings were investigated, showing changes 
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according to the severity of parallel and angular misalignment. They concluded that (i) nonlinear 

effects are evident in both types of misalignment and (ii) the ratio between the higher harmonic 

components and the 1X component in angular misalignment is greater than parallel 

misalignment. Hili et al. [94] carried out a study of angular misalignment characterization and 

developed a theoretical model. They found three characteristic peak frequencies in the shaft 

behaviour: (i) the most prominent being at 1X; (ii) a smaller peak at 2X; and (iii) the last peak 

corresponding to the natural frequency of the system. Sidebands of the rotation frequency 

around it were also visible. Al-Hussain [95] presented a study of the effect of angular 

misalignment of two rigid rotors connected through a flexible mechanical coupling. The results 

showed that an increase in angular misalignment, or mechanical coupling stiffness terms, leads to 

an increase of the model stability region. However, the variability of the signature, produced by 

misalignment at different operational conditions of load and speed in the vibration spectrum, is 

one of the main drawbacks of vibration analysis [96]. Toth and Ganeriwala [97] studied the 

vibration signature for misalignment under a varying operating and design conditions such as 

speed, type and level of misalignment, coupling types and machinery dynamic stiffness. The aim 

was to develop a misalignment model and diagnostics procedure. Measurements were performed 

at three different shaft speeds, using three types of couplings, rigid, spiral and rubber, three shaft 

diameters and multiple misalignment configurations which include parallel and angular types 

with three different severity levels. The results indicated that the rotor speed, the coupling and 

shaft stiffness, have high impact on the vibration signature. The authors concluded that the 

signature of misalignment produced in vibration spectrum was unsteady for different operational 

conditions. 

Although several AE studies have been conducted to detect crack onset and propagation, spalls 

and wear using AE technique, the detection of rotor-dynamic faults such as misalignment using 

AE technique has not been fully investigated. One of the studies regarding this problem was 

carried out by Gu et al. [98].  The combination of WT and envelope analysis was applied to the 

AE signals captured from a misaligned and defected gearbox. Misalignment was created by a 
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twisted case caused by arc-welding to fix the base. They found a peak at 1X in the spectrum of 

the envelope AE signal that was attributed to gear misalignment. Toutountzakis and Mba [99] 

presented an experimental investigation on the application of AE for gear defect diagnosis. They 

observed that the AE RMS and energy were greater with misalignment than was observed for 

background noise under defect free conditions. Sikorska and Mba [37] indicated that 

misalignment generates low frequency modulation of the background continuous AE level also 

common in reciprocating machinery signals. However, in this study, they refer to this 

modulation produced in the AE signals as noise that can limits the detection of other faults. 

However, in this thesis, that modulation is investigated in detail to detect misalignment at 

different load and speed conditions. 

3.4. Sources of noise in AE 

 AE has shown to be more reliable in early stage defect detection than vibration analysis in 

numerous investigations [100]. However, AE signals produced by early stage defect are usually of 

low amplitude. Thus, since AE signals generally contain high levels of noise, this must be 

reduced in order to detect faults at an early stage. 

In AE, what is considered as noise varies from one application to the next. The noise in the AE 

signal may come from the following sources [37]: 

i. Distorted signal components due to beyond the limits of mechanisms in the signal 

acquisition process including periodic transient events, such as valve activity, electro-

magnetic interference and radio frequency interference. 

ii. Residual, periodic electronic noise generated or captured in the electronic 

components (amplifier, power supply, filter, data acquisition card). 

iii. Quasi-periodic transient impulses such as wear of seals or bearing localised defects 

(when not looking for incipient seal or bearing faults). 
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iv. Modulation produced at low frequency in the AE signal due to shaft or gear 

misalignment or reciprocating machines.  

v. AE noise from mechanisms of no interest to the analysis being performed. These 

include AE activity generated by the operation of healthy machines. 

Due to the diversity of sources and the high level of the noise in AE signals, one of the most 

investigated topics in the application of AE to rotating machinery is the AE signal de-noising. 

Thus, numerous de-noising techniques have been applied for noise suppression in the AE signal 

such as empirical mode decomposition, spectral kurtosis, morphological filters and Wavelet 

transform [19][101][86]. 

3.5. Influence of operational conditions on AE 

3.5.1. Influence of load 

Increasing the load results in an increase of the real contact area between bearing components. 

This is due to the increase of the contact spot number while the spot dimensions grow 

insignificantly [30]. The pressure undertaken by each junction is constant and thus the real 

contact area is proportional to the load [102]. Parameters such as RMS and counts have been 

demonstrated to correlate directly with increasing load [54][57]. 

3.5.2. Influence of speed 

Increasing the rotating speed of a rotating machine has a direct impact in AE generation. 

Morhain and Mba [57] studied the effect of speed in the AE produced by a spherical roller 

bearing. They obtained a direct correlation between RMS value and rotating speed. 

3.5.3. Influence of lubrication condition 

Most of bearings fail because rolling elements and raceways are not properly separated by a 

protective lubricant film [103]. Contaminants and lubricant starvation lead to an increase in wear 

rate produced by an increase in asperity contact between bearing surfaces. Miettinen and 
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Andersson [104] accomplished an investigation to clarify how the contaminants in the grease 

influence the AE of the rolling bearing. They observed changes in the time-domain AE signal 

even with the lowest concentration of contaminants tested (0.02 weight% of quartz dust or 0.075 

weight% of steel M2 powder). Furthermore, they observed that small size contaminant particles 

generated a higher AE pulse count level than large size particles.  

3.5.4. Influence of Temperature 

Tan and Mba [105] studied the effect of temperature on the AE generation in spur gears. They 

attributed the increase of AE RMS with load and speed indirectly due to an increase of oil 

temperature. Load and speed caused an increase in lubricant temperature. The increase of 

lubricant temperature leads to a reduction in lubricant film thickness and as a result the asperity 

contact between surfaces increases. The authors observed that the lubricant temperature is the 

dominant factor in the AE generation and the load or speed is a secondary factor of the oil 

temperature. 

3.6. Fault detection in bearings using AE 

Bearing failure modes include friction processes producing, seizure, flaking, fluting, spalling, 

pitting, etc. [12] . All these modes are known sources of AE. Several studies have been carried 

out to detect this type of bearing faults using AE. Tandon and Choudhury [33] reviewed 

vibration and AE methods to defect detection in rolling element bearings stating that AE had a 

promising future for bearing early defect diagnosis. 

Several studies have been carried out regarding defect size identification of bearings extracting 

the AE features from the time-domain signal. Tandon and Nakra [54] carried out an 

experimental investigation regarding defect detection in the inner race, outer race and balls. The 

results showed that AE performed better in detecting defects in a deep grove ball bearing at 

lower speeds than vibration parameters such as acceleration, envelope detected acceleration, 

overall sound intensity and sound pressure and shock pulse. However, no information about 
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sensor mounting and placing was provided. The authors concluded that, in general, AE and 

envelope detected acceleration offered the best results in detecting defects.  Mba [106] studied 

the changes produced in AE signals by changing the speed, load and defect size in the outer and 

inner race. The authors observed that increases in rotational speed and load produced an 

increment in RMS value. Small and large defects introduced in the outer race resulted in an 

increase in RMS value. In the case of defects in the inner race, the same tendency was not 

observed with line defects. The author concluded that RMS values and counts were validated as 

a robust technique for detecting bearing damage using AE. Al-Ghamda and D. Mba[53] 

investigated the relationship between AE RMS value, amplitude and kurtosis for different defect 

sizes. In addition, the authors also studied the dominant source of AE generated by seeded 

defects. The authors concluded that the primary source of AE was the material protrusions 

above the mean surface roughness and the burst duration was directly correlated to the seeded 

defect length along the race in the direction of the rolling action. Tandon and Nakra [107] 

performed a comparative study between AE and vibration analysis for bearing defect detection. 

The vibration and acoustic measurements performed were: overall vibration acceleration, 

envelope detected acceleration, overall sound intensity and sound pressure, shock pulse, and AE 

ringdown counts and peak amplitude. They concluded that in general, the detectability of defects 

at lower speeds is highest by acoustic emission and lowest by the shock pulse method. Saad Al-

Dossary et al [108] investigated the application AE for characterising the defect sizes on a 

radially loaded bearing. They observed that the energy values correlated with increase defect 

severity for inner and outer race. Furthermore, burst duration was shown to be as a good 

parameter to find geometric size of outer race. However, this does not apply to the inner race. 

Tandon et al. [109] investigated the detection of inner and outer race bearing faults of different 

sizes at different loads. They observed that AE peak amplitude and shock pulse maximum 

normalised value level increase as defect size increases. They concluded that AE performed 

better identifying the defects than vibration analysis and motor current signature analysis. 
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Al-Balushi et al. [110] proposed an Energy Index technique for detecting masked AE signatures 

associated with the loss of mechanical integrity in bearings. Energy Index tested under both 

simulated and real AE signals. The Energy Index is defined as the square of the ratio of RMS of 

a part of a signal to the RMS. of the entire signal. The equation to calculate the Energy Index is 

as follows: 

g��)�(	����& = rH�*�?��?��
H�*�;���

y>
    (3.12) 

By increasing the power (N) of the Energy Index, the values that are above the average RMS are 

amplified and those that are below the average RMS are highly attenuated. The main advantage 

of this technique is the suitability for detecting short duration AE burst even where SNR is low. 

The authors concluded that Energy Index technique was effective in detecting AE burst buried 

in random noise offering an improvement in the diagnosis. However, no information about 

sensors, mounting, amplification or filtering was provided. 

In the recent past there have been investigations regarding AE in low speed rotating machinery. 

The importance of these studies lies with the limitations of vibration analysis to be applied for 

fault detection in low speed rotating machinery [111]. Thus, complementary CM techniques such 

as AE are applied in this case. 

To date, most of the investigations regarding defect detection in bearings were accomplished in 

artificially defected bearings. A small number of publications have addressed the detection of 

naturally developed defects. One of them was accomplished by Elforjani and Mba [55], who 

presented a study about the detection of degradation in bearings at low speeds. To accelerate the 

bearing degradation, one race of the thrust ball bearing was replaced with the flat race of the 

thrust roller bearing. A housing was constructed to allow placement of sensors directly into the 

race. The authors introduced information entropy as a new method to detect degradation in 

bearings and applied three non-linear power spectral estimation methods (Prony’s Energy 

Method, Eigen-Analysis and Auto-regressive). Prony’s Energy method showed an advantage 

over the other techniques in that it could produce relatively large frequency components. They 
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also correlated AE burst duration with defect size obtaining positive results. Nohál et al [100] 

investigated the detection and monitoring of the onset and propagation of natural defects of 

steel specimens using AE technique. To assess the deterioration of the bearing the authors 

extracted RMS and counts using different threshold levels from the time-domain AE signal. 

They also compared the performance of AE with vibration analysis. In the test performed, the 

authors observed that AE was able to identify the micropitting in the bearing race, while the 

changes in the vibration signal only started in the latest stage of deterioration, when a large spall 

in the race arouse.  

3.7. Fault detection in gears using AE 

The AE technique applied to gearbox fault detection is still in its infancy. Only a few 

publications have assessed the possibility to apply AE technique in gearboxes. One of the earliest 

investigations of AE in gearboxes was carried out by Miyachika et al [112]. The study consisted 

of bending fatigue testing using AE technique in spur gears. Three different gears were used; two 

of them were made of SC415 hardened steel and the other made of S45C steel without 

hardening. The parameters obtained from this investigation were frequency spectrum, 

cumulative event count, peak amplitude and event count rate. The authors concluded that the 

prediction of crack initiation was possible only for hardened gear but not for normalised gears. 

Eftekharnejad and Mba [113] presented a study to detect different size seeded faults in steel 

helical gears. An AE sensor was attached to the gearbox pinion. The signals acquired were 

compared with vibration analysis. In order to control the temperature a thermocouple was 

installed in the oil bath. To produce the faults a drill was used.  The authors extracted two 

conclusions. Firstly, the observation that seeded defects in helical gears was evident in AE 

waveform. This is not the case reported for spur gears by Toutountzakis et al [114]. Secondly, 

the direct relation between volume of defect and RMS of the AE signals. 

Tan et al. [115] carried out a study with spur gears in which they stated that the protrusions 

produced around the edge of the seeded defect were the cause of AE activity. 
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Toutountzakis and Mba [99] investigated the relation between background AE noise and 

rotational speed in oil bath lubricated gearboxes with and without misalignment. The gear set 

employed was made of 045M15 steel with no heat treatment. A constant torque was applied in 

all tests. Two AE sensors were used, one attached to the driven gear wheel and the other on the 

ball bearing casing of the driven gear wheel shaft. Energy and RMS values were processed in real 

time. The background noise was evaluated at 600, 1300 and 1800 rpm, initially with 

misalignment and in a later stage, without misalignment. In the case with no defects the results 

were that increasing rotational speed resulted in an increment in AE RMS and energy in both AE 

sensors. The change in rotational speed resulted in a significant increment of RMS and energy 

values but a gradual decrease of these values to a base level was observed. In the investigation 

with misalignment at 1300 rpm the AE values showed indications of reaching a base level, as in 

the previous case, but the values began to rise and move upwards in both sensors. The method 

to produce the misalignment in the rig is not described in the paper as well as the grade of 

misalignment produced. The author highlighted the viability of AE for gear defect diagnosis and 

the possibility to detect the gear defect from the bearing casing. Loutas et al. [69] carried out a 

study on a single stage gearbox with artificial defects with emphasis on the signal processing. The 

aim of this investigation was to extract conventional parameters as well as novel parameters 

using also wavelet analysis to link them with fault progression. In addition, the authors compared 

them with the well-known vibration analysis. The defect consists of a transverse cut of 25% of 

root thickness of the tooth. In conclusion the author emphasised the superiority of AE 

technique over vibration regarding the detection of early crack propagation. 

Raka Hamzah and Mba [116] presented an experimental study which correlated AE activity to 

different load and speed conditions during the operation of a set of helical and spur gears. The 

gearboxes used were lubricated by an oil bath. Test gears were made of 045M15 steel with no 

heat treatment. A thermocouple was employed to measure lubricant and gear metal temperature. 

They noticed that the specific film was related with AE RMS in both helical and spur gears. 

However, when AE levels were higher for helical gears, the relative changes in AE levels as a 
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function of changes in specific film thickness were higher for spur gears. As for the effect of 

speed it was noticed that an increase in speed resulted in an increase of AE RMS for all load 

conditions. The authors concluded that AE is more sensitive to changes in specific film 

thickness under combination of rolling and sliding (spur gear) than pure rolling (helical). 

Furthermore, the variations in AE levels in helical gearboxes are attributed not only to the 

influence of asperity levels but also to the variation in the contact length during meshing. 

Eftekharnejad et al. [117] compared motor current signature analysis (MCSA), vibration and AE 

to  identify the presence of a naturally fatigued pinion shaft in an operating gearbox. However, 

during the tests the transmission shaft fatigued unexpectedly. This naturally fatigued shaft 

offered an opportunity to assess the potential of the three different measuring technologies to 

identify this problem. The shaft was loaded until breaking andmonitored over 426 hours. Results 

showed that the surface damage was only detected by AE and vibration techniques while MCSA 

did not show any correlation. The rupture of shaft after 385 hours was detected using AE and 

vibration sensors but it was required to apply envelope analysis to detect it. The authors 

concluded that the presence of a cracked shaft was detected by all three technologies. Qu et al. 

[118] presented new approach combining a heterodyne based frequency reduction technique 

with time synchronous averaging and spectral kurtosis to process AE signals and extract features 

as condition indictors for gear fault detection. Partial tooth cut faults were seeded in a gearbox 

test rig and experimentally tested. Condition indicators, such as RMS, kurtosis, and crest factor, 

were computed from the raw signals applying time synchronous averaging. The authors 

concluded that among all indicators investigated, kurtosis related condition indicators showed 

the best performance of detecting the gear tooth crack in all the testing conditions. 

3.8. Other condition monitoring techniques 

3.8.1. Vibration analysis 

The use of vibration analysis is one of the fundamental tools for CM. It has been developed 

extensively over a period of approximately 35 years [119]. This technology is currently the most 
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widespread method for CM in rotating machinery. It can be utilised in all rotating equipment on 

site. It is used to isolate the location of damage to rotating components, as well as to inform 

quantitatively about the amount of damage produced.  

The type of sensors used depends on the frequency range. Position, velocity and acceleration are 

measured for low, medium and high frequency respectively. The change in the system vibrations 

can be produced by cracks, unbalance, misalignment, rubbing, wear, deterioration, etc.  

In order to interpret the vibration signal it requires complex methods which need specialised 

operators. Currently there are numerous automated applications that generate data analysis 

automatically. The most popular method is to demodulate the vibration signal to find some 

frequencies on it. These frequencies correspond to certain mechanical defects in components 

(for example, spurious produced by bearing defect), unbalance or misalignment. By examining 

these frequencies the location of the problem can be identified. 

The main limitation of this technique is the low sensitivity to faults at low speed [32]. Low speed 

rotating machinery generates relatively low energy loss rates from damage related processes and 

therefore vibration analysis is not as sensitive as AE [28]. 

3.8.2. Thermography 

Slight temperature variations across a surface can be discovered with visual inspection and non-

destructive testing with thermography. Inadequate lubricant, defective bearings, and 

misalignment can overheat couplings, shafts and gearboxes [41]. Modern infrared cameras and 

diagnostic software are suitable for on-line process monitoring. A typical image produced by IR 

camera is shown in Figure 3-4. 
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Figure 3-4: Image produced by an IR camera 

In order to monitor the conditions as well as diagnose the machine faults, signal processing 

techniques are firstly required to process the data acquired from the machine. The most popular 

technique which frequently uses for processing IR signals is FFT. 

3.8.3. Oil analysis 

CM based on oil analysis can be used to predict failure. It is usually carried out due to two 

different purposes. Firstly, to find out wear debris produced by friction in machinery associated 

with degradation of the components. The second one is to identify the oil properties including 

the base oil, additives and contaminants which can produce problems in the machinery.  

The main aspects that influence the condition of the lubricating oil are, elevated temperature, 

presence of air, water, fuel or other lubricants and solid matter including wear debris, dust and 

dirt[120]. Contaminants such as dust and wear debris alter the performance of lubricant. These 

changes always produce a change of dielectric constant in the lubricant. Therefore, any abnormal 

state such as contaminant ingression, wear debris or chemical products can be located by 

monitoring the dielectric constant of the lubricant [121]. 
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3.8.4. Torque 

Torque measurements have been utilised for rotating machinery fault detection. The rotor 

defects may cause either a torsional vibrations or a change in the torque-speed ratio. Such 

information can be used to detect rotor faults, e.g. mass imbalance [4]. The measurement of 

torque is of high importance for the precise machinery assembly, the improvement of machine 

performance and the control part about power transmission system [84]. 

Torque measurements are usually carried out using the next technologies: 

• Strain gauges applied to a rotating shaft or axle. 

• Surface acoustic wave devices attached to the shaft. 

• Twist angle measurement or phase shift measurement. 

3.8.5. Advantages and disadvantages of the condition monitoring methods 

The Table 3-2 summarises the advantages and disadvantages of the previous explained 

techniques: 

Table 3-2: Summary of the different condition monitoring techniques 

Technique Advantages Disadvantages 

AE • Suitable for low speed  

• Early stage detection 

• Frequency range far from 

mechanical noise 

• Non-intrusive 

• Expensive 

• High sampling rate which 

generates large amount of 

data 

• High attenuation of the AE 

signal, particularly in joints 

Vibration analysis • Standardised 

• Reliable 

• Poor performance in low 

speed machinery 

• Not for early stage defect 

detection 
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Oil analysis • Reliable • Mostly off-line 

• Only applicable in lubricated 

parts 

Thermography • Standardised • Expensive 

• Not for early stage detection 

• Mostly off-line 

Torque • Suitable for on-line 

monitoring 

• Intrusive 

• Expensive 

 

3.9. Summary 

Although there are several techniques for monitoring rotating machinery, as discussed in section 

3.8.5AE offers the advantage of earlier fault detection than other techniques. However, as 

presented in section 3.4, noise is a crucial problem in AE. This noise can come from several 

sources. One of the most important sources is genuine AE produced by neighbourhood 

components or AE generated within the same component under investigation that carries no 

information about the defect itself (i.e. noise produced by normal bearing operation when 

looking at localised defects). For this reason, the development of de-noising algorithms to deal 

with this noise is extremely important when the aim is to detect defects in early stage as the SNR 

is extremely low. Several de-noising techniques have been applied to date to AE. Among them, 

DWT has been applied to de-noise AE signals. However, as presented in section3.2.2, WP offers 

higher de-noising capabilities than the DWT, particularly in the high frequency range. Thus, 

Chapter 4 presents a study combining the use of WP as pre-processor and autocorrelation 

function as postprocessor for the envelope analysis for the detection of seeded localised defects 

in bearings using AE. Furthermore, the performance of the proposed method for detecting a 

naturally developed defect in the outer race of aspherical roller bearing and bevel gear defects is 

presented in Chapter 5. 
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Section 3.3.1reviewed the detection of misalignment using vibration analysis and its importance. 

However, it presents some drawbacks. One of them is the high impact of operational conditions 

in the vibration signature. For this reason, to overcome this problem, an experimental study 

regarding the application of AE and envelope analysis for the detection of SAM is presented in 

section chapter 6. 
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Chapter 4 
 

 

4. Combination of Wavelet Packet 

and Autocorrelation function 

(WP-ACF) for incipient defect 

detection using AE 

 

4.1. Introduction 

This chapter investigates a novel technique for early stage defect detection in bearings using AE. 

The importance of this investigation falls on the importance of bearing monitoring as bearings 

are critical components in rotating machinery and the majority of machinery failures are caused 

by bearing malfunction [2]. In addition, in most cases the bearing failure occurs previous to the 
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expected life. For these reasons, this chapter describes a novel technique using AE that aims to 

detect bearing defects in early stage. To detect defects in early stage the reduction of the noise in 

the AE signals is extremely important. Numerous de-noising techniques have been developed 

for noise suppression in the AE signal. Possibly, the discrete wavelet transform (DWT) is the 

most established technique for AE signal de-noising. However, due to the fact that the 

decomposition treats only the approximation component at each level using the dyadic filter 

bank, the results of frequency resolution in higher-level DWT decompositions are less accurate 

[57]. It may cause problems while applying DWT in AE signals in which the important 

information is located in higher frequency components. Thus, the frequency resolution of the 

DWT may not be precise enough to extract necessary information from the decomposed 

component of the signal. For this reason, the Wavelet packet, which is a generalisation of WT, 

offers better de-noising ability for non-stationary signals such as the AE signals produced by a 

defected bearing.  

In order to further enhance the detection of the transients produced in the early stage defect in 

the AE signals, the autocorrelation function is applied. The ACF is widely used to find patterns 

in a signal, particularly, to find periodicity in a noisy signal. This function has not been widely 

applied in AE bearing defect detection. The only study regarding this topic was carried out by He 

et al. [84] who combined short-time RMS and ACF to extract the bearing fault characteristic 

frequency from a defected specimen. The results showed that the proposed method was very 

effective in estimating the bearing fault characteristic frequency from the AE signal. However, in 

extremely low SNR conditions, such as those present when the defect is at an incipient state, the 

combination of these two techniques may not be able to extract the periodicities of the AE signal 

generated by the defected bearing. 

In order to further de-noise the AE signal and the proposed method (WP-ACF) aims to reduce 

the AE generated from the normal bearing operation and to enhance the AE burst produced by 

localised defects. For this reason, an enhanced envelope analysis is proposed that combines WP 

as a pre-processor, HT for envelope extraction and ACF to find periodic patterns in the AE 
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envelope prior to applying the FFT to de-noise the AE signal and detect incipient defected 

bearings. Thus, a novel method is proposed that combines the advantages of these signal 

processing techniques to provide a robust and effective approach for bearing localised defect 

detection in low SNR conditions such as the conditions existing in the early stages of defected 

bearings. An experimental study using a tapered roller bearing is carried out to evaluate the 

reliability and effectiveness of the proposed method. Furthermore, the results obtained are 

compared with the traditional envelope analysis. 

4.2. Problem definition and proposed method 

Failure alarm for a rolling element bearing is often based on the detection of the onset of 

localised defects [122]. Once a localised defect emerges in the inner or outer race of the bearing, 

an impact occurs every time the rolling element crosses the defected area of the bearing race. As 

a result, a high frequency AE burst is generated periodically due to (i) elastic or plastic 

deformation of asperities, (ii) fracture of asperities or (iii) the adhesion between asperities 

[102][30]. Envelope analysis is a well-known technique for bearing fault detection and it is 

suitable for the detection of these types of defects. It has been applied to vibration and AE 

signals to detect periodic increases in the amplitude of the signal caused by defected components 

in bearings [55][83][123]. Typically, envelope analysis refers to the following procedures: (i) band-

pass filtering (ii) signal rectification, (iii) HT and (iv) power spectrum extraction. Figure 4-1shows 

a visual explanation of the burst produced by the impact in the AE signal (blue) and the 

envelope of the AE signal is shown in red. 

 

Figure 4-1: Graphical explanation of the modulation produced by a defected bearing and the 
envelope extraction. 
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However, when the defect is in an incipient state, the AE background noise caused by normal 

operation can be of higher amplitude than the AE burst produced by the interaction of asperities 

between the defected area and other components such as rolling elements. For this reason, the 

incipient defects are extremely difficult to detect. As a result, the envelope spectrum will not 

show the peak at the frequency in which the impact is produced. As an illustrative example, three 

different SNR scenarios simulating the AE signal produced by a defected bearing are shown in 

Figure 4-2. They represent the problem of the traditional envelope analysis under low SNR 

conditions. In high SNR condition the impacts are clearly shown in the time-domain signal and 

the envelope spectrum shows prominent peaks which inform about the existence of a defect in 

the bearing.  However, in low SNR conditions the detection is not achievable using traditional 

envelope analysis. 

 

Figure 4-2: Simulated time-domain AE signal (top) and Envelope spectrum (bottom) under 3 
different SNR conditions. 

For this reason, the proposed method enhances the envelope analysis for low SNR conditions. It 

combines the HT envelope with the autocorrelation function and the WP to obtain a prominent 

peak in the AE envelope spectrum, even for an extremely noisy AE signal. A block diagram of 

the proposed method is shown in Figure 4-3. It consists of the following steps: 
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Step 1 AE signal acquisition 

Step 2 Signal de-noising using WP. The WP can be considered as a pre-processor of the 

proposed method. It divides the bandwidth of the signal into narrow frequency bands 

to select the most appropriate band with the highest SNR ratio.  

Step 3 Envelope extraction applying the HT.  

Step 4 Pattern recognition using the ACF. It is applied to the signal envelope to find cyclic 

patterns in the data produced by the impact between the rolling elements and the 

defect and, as a result, a cleaner envelope spectrum is obtained. 

Step 5 Frequency domain conversion applying the FFT. 

Step 6 Peak search to identify the peaks that indicate the existence of defects.  

The output of the WP-ACF envelope is the frequency spectrum of the autocorrelation function. 

This spectrum shows peaks at different frequencies according to the defected component of the 

bearing. These are the inner race, outer race and rolling elements. 
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Figure 4-3: Flow chart of the proposed method. 

The WP is used as pre-processor to de-noise the AE signals. WP is a generalization of wavelet 

decomposition. The CWT is a decomposition of an input function using scaled and translated 

versions of a Wavelet function known as mother Wavelet. Mathematically the Wavelet 

coefficients are extracted using the function below: 

����&�(C, �) = 〈&, �D,�〉 = W &(!)�D,�(!)�t	      (4.1) 

where  ψ�,q is the mother Wavelet which is defined as: 
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�D,� = 1
√C � {! − �

C | 

where a and b are defined as scale and position respectively. 

The DWT is the analogous mathematical tool of CWT for discrete functions. It is used for 

digital signal analysis. The DWT consists of identifying the parameters �¡�¢,¡, £ ∈  ℕ, ¦ ∈ ℕ   of 
the equation: 

§ !" =  ∑ �¡¨ ! − £" + ∑ ∑ �¢,¡� [¢m�[¡m�[[¡m�[ 2¢! − £"              (4.2) 

Where ¨ !" and � !" are the function known respectively as father Wavelet and mother 

Wavelet. The father Wavelet is in fact a scaling function that depends on the mother Wavelet. 

The ¨ !" and � !" can be calculated as sequences ℎ = �ℎª�� ∈ ℤ and � = ��ª�� ∈ ℤ: 

ℎª = ¬��,ª, ��,�­®� !" = √2 ∑ ℎªªℤ∈ ¨ 2! − �"      (4.3) 

and 

�ª = ¬¨�,ª, ¨�,�­®¨ !" = √2 ∑ �ªªℤ∈ ¨ 2! − �"               (4.4) 

These two sequences are the basis of the DWT. 

The common procedure of applying the DWT is through filter bank with a filter determined by 

the coefficients ℎ = �ℎª�� ∈ ℤ,  corresponding to a high-pass filter and  � = ��ª�� ∈ ℤ, 
corresponding to a low-pass filter. 

The filters h and g are linear operators that can be applied to a digital input signal  & as a 
convolution: 

� �" = ∑ � £"& � − £" = � ∗ &¡                               (4.5) 

and  

� �" = ∑ ℎ £"& � − £" = ℎ ∗ &¡                 (4.6) 
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The signal � �" is known as approximation and � �" as detail. 

It is possible to repeat the filters shown in equations 4.5 and 4.6 generating a cascade of high-

pass and low-pass filters. Consequently, the results are the shown in Figure 4-4(a). This tree is 

known as a filter bank. However, this decomposition filter may not be precise enough to obtain 

necessary information from the signal. A more detailed frequency resolution can be obtained by 

implementing WP transform to the signal (Figure 4-4 (b)). The WP is a generalization of the 

Wavelet decomposition that offers further decomposition. Consequently, it provides better 

frequency resolution for the decomposition of the signal[124].  In a similar manner as the DWT, 

the WP decomposition tree is obtained by: 

�¢°�
�± ��� = √2 ∑ ��� − 2���¢

±��� [ªm�[    (4.7) 

 

�¢°�
�±°���� = √2 ∑ ℎ�� − 2���¢

±���[ªm�[    (4.8) 

where j is the depth of the node and p indexes the nodes in the same depth, every c²
³
 with p even 

is associated to approximations and every c²
³
 with p odd is associated to details.  Thus, this low 

pass and high pass filters are applied to the AE signal in order to select the node that offers 

higher de-noising capabilities. 

 

Figure 4-4: A comparison between the three-level (a) DWT and (b) WP decomposition. 
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Once the signal has been decomposed using in different frequency bands using the WP, the 

envelope of the different bands is extracted using the Hilbert transform.  The HT of a discrete 

signal is given by the following equation: 

´�&���� = �
µ ∑ ��j�

>�j
[jm�[     (4.9) 

Being N the number of samples and  &�¶� the discrete samples of the signal.HT is often 

interpreted as a 90 degrees phase shifter. From the signal x(t), the complex analytic signal can be 

described as: 

·�&���� = &��� + ¦´�&���� = g����¢¸�ª� , (4.10) 

being the modulus g��� = ¹&���� + ´�&����� and phase  º��� = !C��� ´�&����/&���" are 
known as the envelope and instantaneous frequency respectively. 

Once the envelope has been extracted using the HT the ACF is applied to obtain the elements Y 
of the discrete input signal x using the following equation:   

¼¢ = ∑ &¡½½½ ∙ &¢°¡>��¾m�     (4.11) 

for j = –(N–1), –(N–2), …, –1, 0, 1, …, (N–2), (N–1) 

where Y is the sequence whose indexing can be negative, N the number of elements in the input 

sequence x and &̅is the complex conjugate of &.  

The elements of the output sequence Rxx are related to the elements in the sequence Y by 

-��Ám¼j� >��"     (4.12)    

for i = 0, 1, 2, … , 2N–2 
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The final step of the proposed method is to transform the values obtained using the ACF to the 

frequency domain using FFT. The FFT computes the discrete Fourier transform (DFT) of the 

input sequence with a fast Fourier transform algorithm. The DFT is defined as: 

¼¡ = ∑ &ª��¢�µ¡ª/>>��ªm�     (4.13)    

for n = 0, 1, 2, …, N–1 

where x is the input sequence, N is the number of elements of x, and Y is the transform result. 

4.3. Experimental validation 

In order to evaluate the performance of the WP-ACF method, an experimental investigation has 

been conducted using a tapered roller bearing with a seeded defect in the outer race. One AE 

sensor has been used to acquire the AE signals from the case of the bearing mode HR 30326J 

from NSK and identify the optimum wavelet parameters such as mother Wavelet, 

decomposition level and WP node. Noise baseline addition is applied to the signal reducing the 

SNR to validate the method under extremely low conditions (up to 21 dB added noise). In 

addition, a comparison between the proposed method and the traditional envelope analysis is 

also presented. 

4.3.1. Experimental setup 

The test rig (Figure 4-5) was designed to represent the shaft arrangement in a typical 2MW wind 

turbine. The shaft was supported by three test bearings; one spherical roller bearing and two 

tapered roller bearings. The load was generated by hydraulic actuators, applying axial and radial 

loads through the slave bearings. A thrust bearing was used as the axial slave bearing and a 

spherical bearing as the radial slave.  

A 30kW motor was used to power the test rig with a nominal speed of 1650 rpm. It was 

controlled through a variable frequency drive that modified the rotational speed. The rated axial 
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and radial load of the rig was 40 kN and 140 kN, respectively. The test rig was capable of 

reproducing a wide range of dynamic loads typically experienced by wind turbine drive train. 

 

Figure 4-5: Test rig (Courtesy of Romax Technology Ltd.). 

The bearing used in this investigation was NSK HR 30326J. This is a single row tapered roller 

bearings composed of an outer ring and an inner ring with a group of conical roller sustained by 

basket shape cage. The characteristics of the bearing are the following:  

• Internal diameter: 130mm;  

• External diameter: 280mm;  

• Width: 72mm;  

• Weight: 18 kg. 

4.3.2. Instrumentation 

One Vallen VS900RIC AE transducer was employed. This sensor was selected for this 

investigation due to the following reasons: 
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• Wideband and flat response operative from 100 kHz to 1 MHz 

• High sensitivity  

• It is operative in a wide range of temperatures (-40 to 85 ˚C).   

• It includes an internal amplifier which makes the AE signals less affected by 

noise. 

The frequency response of the sensor is displayed in Figure 4-6 showing peak sensitivity at 350 

kHz. 

 

Figure 4-6: Frequency response of the VS-900RIC sensor 

The signal was band-pass filtered from 70 kHz to 500 kHz. The sensor was attached to the test 

bearing using a magnetic holder as shown in Figure 4-7. Ultrasonic couplant was used to ensure 

good transmission from the bearing case to the AE sensor due to the good frequency 

performance (refer to section 2.5.2). Ultragel II® was selected for this task which is a water-

based gel suitable for a broad range of temperatures (-25 ˚C to 100 ˚C).  The sensor internal 

preamplifier was powered through a decoupling box connected to a linear power supply.  The 

decoupling box was connected to a commercial data acquisition card through a coaxial cable. 

The data acquisition card used was NI 9223 with a maximum sampling rate of 1MSamples/sec, 

16-bit resolution and ±10V input range. The sampling rate was set at the maximum for this card, 

1MSsamples/sec. The data was acquired, processed and saved using LabView® Software. 
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Figure 4-7: AE Sensor location. 

4.3.3. Experimental procedure 

A defect was artificially introduced in the outer race of the bearing by mechanical indentation 

using a drill. The defect dimensions were approximately 3mm along the race direction, 5mm 

width and 1mm depth. Figure 4-8shows an image of the defect obtained by endoscopic 

inspection. 

 

Figure 4-8: Outer race artificial defect (courtesy of Romax Technology Ltd.). 
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The test rig was operated at 1650 rpm and the radial and axial load was 40 kN and 140 kN 

respectively. It was in operation for 1 hour prior to the beginning of the data acquisition in order 

to reach thermal equilibrium. 18 data files were acquired, being the interval between two 

measurements of 10 seconds and the time window of the acquisition was 2 seconds.  

In addition, prior to the introduction of the defect, several AE samples using the same setup and 

procedure were acquired in order to present a comparison of the AE signal with the defect and 

in the absence of outer race defect (section 4.3.4.1). 

4.3.4. Selection of the optimal Wavelet parameters 

4.3.4.1. Scalograms of the AE signal 

The purpose of this section is to show the effect that is caused on AE signals due to the 

introduction of the defect in the bearing. AE signals are wideband and complex in terms of 

frequency components. For this reason, in order to understand the frequency components 

present in the signal, in both the frequency and time-domain, the scalogram obtained using the 

CWT is displayed for the bearing with a defect and for the signals acquired prior to the 

introduction of the defect. As a result, a clear picture of the effect on AE signals generated by 

the defect in the outer race is displayed. To show an intuitive plot, the scales of the wavelets have 

been transformed to frequency using the following equation[125]: 

F� = ÂÃ
�∆     (4.14) 

where a is the scale, Δ is the sampling period, Fc refers to the centre frequency of the wavelet in 
Hz and Fa is the pseudo-frequency corresponding to the scale a, in Hz. 

A typical waveform acquired from the defected bearing is shown in Figure 4-9(a).  In the time-

domain signal, the bursts produced by the impact between the outer race defect and the rolling 

elements are not appreciable.  This is the typical waveform expected for incipient defects in 

which the SNR is low. Figure 4-9(b) shows the time-frequency decomposition of the AE signal 
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in the scalogram. Only 50 ms of the waveform is shown of the 2 second signal acquired in order 

to make the AE burst generated by the impact visually appreciable.  It clearly shows two 

different components in the signal: 

• Continuous bearing noise generated by normal bearing operation in the 

frequency range between 70 and 250 kHz. Most of the energy of the signal is 

part of this noise. This is the sum of many different individual AE events that 

occur due to the friction within the bearing components and appears in the 

signal as continuous noise. 

• AE bursts of high frequency and very low amplitude that are attributed to the 

impact between the outer race defect and the rolling elements. The equation to 

calculate defect frequency for the bearing under investigation (ball pass 

frequency of the outer race (BPFO)) is as follows[126]: 

 BPFO = pq
� ∙ S r1 − tu

vu cos∅y   (4.15) 

where S is the revolutions per second or relative speed difference between inner and outer race, 
Bd the ball or roller diameter, Nb refers to the number of balls or rollers, Pd is the pitch 
diameter and Φ the Contact angle. It was calculated as 6.61X for the bearing under investigation, 

being X the rotating speed. As the rotating speed was 1650 rpm, the time interval between the 

burst produced by the defect impact in the AE signal was calculated as 5.5 ms, which coincides 

with the high frequency AE transients observed in the high frequency region in the Wavelet 

scalogram. These AE signals are generated in the defected area when the rolling elements impact 

on it, and propagate from the source (defect) to the sensor. AE frequency components of up to 

500 kHz are generated by the impact between the rolling elements and the defect in the outer 

race.  
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Figure 4-9: AE signal from defected bearing in (a) time-domain and (b) scalogram. 

The AE signal captured prior to the introduction of the defect in the same operational 

conditions is displayed in Figure 4-10(a). It is clear that visually, the time-domain signal does not 

show any remarkable difference with the AE signal captured in the defected bearing (Figure 4-9 

(a)). However, in the scalogram (Figure 4-10 (b)) the high frequency burst that the previous 

figure shows generated by the impact between the rolling elements and the outer race are not 

present. Thus, Figure 4-9 and Figure 4-10  present a time and time-frequency comparison of the 

change in the AE signal produced by an early stage defected bearing and a defect-free bearing. 

The scalograms shows clearly the frequencies excited by the normal bearing operation can be 

found up to 250-300 kHz. From these frequencies the power of the AE signal is extremely low. 
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Figure 4-10: AE signal captured from non-defected bearing in (a) time-domain and (b) 
scalogram. 

Thus, the AE signal carried more information about the defect in the high frequency range 

rather than in the low frequency range. For this reason, the WP, which offers higher resolution at 

higher frequencies than the DWT, has been selected as a pre-processor in the proposed method. 

4.3.4.2. Optimal Wavelet packet decomposition level 

The results of the spectrum generated by the proposed method, obtained using different WP 

level decomposition are presented in this section. The purpose of this is to find the WP node 

and decomposition level that offers optimum results in the de-noising process. The optimal level 

of decomposition and WP node are required for an efficient signal de-noising. Thus, with the 

objective of having a value that estimates the SNR of the output spectrum generated by the 

proposed method, the SNR of the WP-ACF spectrum is calculated as follows: 

SNR dB" = 20log rvÈ�É Ê�ËÌÈ  tvÂÍ"
ÎÏ~ÐÑÒfa

y   (4.16) 

The different frequencies ranges associated with each wavelet nodes for different decomposition 

levels used in this section are presented in Table 4-1: 
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Table 4-1: Frequency range associated with each wavelet node for 1, 2, 3 and 4 decomposition 
level. 

1 level decomposition 2 level decomposition 3 level decomposition 4 level decomposition 

Node Freq. (kHz) Node Freq. (kHz) Node Freq. (kHz) Node Freq. (kHz) 

1,0 0-250 2,0 0-125 3,0 0-62.5 4,0 0-31.25 

1,1 250-500 2,1 125-250 3,1 62.5-125 4,1 31.25-62.5 

- - 2,2 375-500 3,2 187.5-250 4,2 93.75-125 

- - 2,3 250-375 3,3 125-187.5 4,3 62.5-93.75 

- - - - 3,4 437.5-500 4,4 218.75-250 

- - - - 3,5 375-437.5 4,5 187.5-218.75 

- - - - 3,6 250-312.5 4,6 125-156.25 

- - - - 3,7 312.5-375 4,7 156.25-187.5 

- - - - - - 4,8 468.75-500 

- - - - - - 4,9 437.5-468.75 

- - - - - - 4,10 375-406.25 

- - - - - - 4,11 406.25-437.5 

- - - - - - 4,12 250-281.25 

- - - - - - 4,13 281.25-312.5 

- - - - - - 4,14 343.75-375 

- - - - - - 4,15 312.5-343.75 

The SNR value provides the ratio between the peak value of the BPFO (which is considered the 

valuable indicator of the presence of the defect), which is 6.61X for the bearing under 

investigation, and the noise floor in the vicinity of the BPFO peak. An example of the AE signal 

decomposed using the WP 3-level decomposition is shown in Figure 4-11. It clearly shows that 

for the different bands, the SNR of the AE signal generated by the impact between the defect 

and the defect varies. In the bands corresponding to lower frequencies ((3,0) and (3,1)) the AE 

signal produced by the defect is not visually detectable. However, in high frequency bands the 
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AE signal produced by the defect is visually noticeable, particularly in the band from (3,4)  to 

(3,7) corresponding to different frequency bands from 250 and 500 kHz. In these bands, the 

impulse generated at the start of the burst rise clearly over the noise level with higher SNR. The 

frequency bandwidth for the application of de-noising technique based on WP is limited by the 

sampling rate used in the data acquisition. However, increasing the sampling rate increases the 

computational complexity. Thus, to find a compromise between both, it was selected 

1Msample/sec as sampling rate, which provides 500 kHz bandwidth to the AE signal according 

to the Nyquist theorem. 

It is worth noting the low amplitude in the high frequency WP nodes. The node with the higher 

SNR, (3,4) has a maximum amplitude of 9 mV, in contrast with the (3,1) node, in which higher 

amplitudes are present, up to 70 mV. Therefore, any unexpected source of noise, such as 

electrical noise coming from the power source, that can affect the measurement in the high 

frequency band, would have a significant impact on the detection due to the low amplitude of 

the AE signals in the high frequency region. Consequently, the performance of WP to de-noise 

the AE burst from the continuous AE signal would be deteriorated if unwanted sources of noise 

in the high frequency range are present. To overcome this obstacle, a resonant sensor, with peak 

sensitivity in the high frequency band can be used to increase the amplitude measured at high 

frequencies and increment the SNR. In addition, the importance of using couplant is critical  

since as described in section 2.5.2, the use of a couplant can greatly improve this transmission by 

around 10 times at 500 kHz. 
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Figure 4-11: AE signal decomposed using 3-level WP. 

The SNR of the WP-ACF spectrum obtained using different WP level decomposition and the 

wavelet Db11 is shown in Figure 4-12. To obtain consistent results, the figure shows the average 

obtained from the 18 samples acquired in the experiment. The highest SNR value corresponds 

to the (2,2) Wavelet node (57.63 dB) and (4,0) the lowest (29.39 dB). The frequency range of the 

(2,2) band corresponds to 375-500 kHz. The WP nodes (3,4) and (4,8) also show positive results 

with SNR values of 57.39 dB and 56.89 dB, respectively. The considerable variation of the SNR 
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for different WP parameters illustrates the importance of the parameter selection in the pre-

processor. 

 

Figure 4-12: SNR for 1-4 level decomposition. 

An example of the original signal and the signal obtained after the application of the WP 2 level 

decomposition (2,2) is presented in Figure 4-13. This figure shows that the periodic bursts in the 

signal are appreciable in the de-noised signal using WP (Figure 4-13(b)) but not in the raw signal 

(Figure 4-13 (a)). Thus, the WP used as a pre-processor in the WP-ACF method enhances the 

higher frequencies included in the AE burst and reduces the power of the signal attributed to 

continuous AE generated by normal bearing operation in the band 70-250 kHz. Moreover, the 

de-noised signal shows that the impacts do not produce the same amplitude with a considerable 

variation. It should be noted that the bursts are evenly distributed in time and the delay between 

them is constant (5.5 ms). 



76 

 

 

Figure 4-13: AE time-domain signal (a) before WP de-noise and (b) after WP de-noise. 

4.3.4.3. Optimal Mother Wavelet selection 

One of the most important steps to ensure a precise decomposition of the AE signal into 

frequency bands and signal de-noising is the selection of the mother Wavelet.  Different mother 

Wavelets have different properties such as regularity, orthogonally, admissibility and vanishing 

moments [29]. These parameters affect the frequency band decomposition and therefore the de-

noising capabilities. Furthermore, different types of wavelets have different time-frequency 

structures; the Wavelet whose time-frequency structure best matches that of the transient 

component in order to detect the transient component effectively [127]. This section evaluates 

the best mother wavelet empirically calculating the SNR using again equation 4.16. As described 

in the previous section the results obtained for the mother Wavelet selection are the average of 

the 18 AE samples acquired. The mother Wavelets utilised are the well-known Daubechies, 

Coiflet, and Symmlet. 
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Figure 4-14: Calculated SNR for the WP-ACF spectrum using different mother Wavelets. 

The results for the different the mothers Wavelets are shown in Figure 4-14. In the horizontal 

axis, the coefficient shown next to the mother wavelet represents the order for that particular 

mother wavelet. It clearly shows increasing SNR with increasing mother Wavelet order. 

Furthermore, the results obtained for the different mother Wavelets with high order are similar. 

The Db1 provides the lower result, 47.64 dB. The highest SNR was obtained with the Db11 with 

57.82 dB. It should be pointed out the high influence of the selected mother Wavelet in the 

proposed method which produces a high impact on the SNR of the WP-ACF spectrum. To 

illustrate the significance of the choice of mother Wavelet, the WP-ACF spectrum using the 

mother Wavelets that provides the highest and the lowest SNR (Db1 and Db11) are shown in 

Figure 4-15. It is evident that the signal is significantly noisier using the Db1 mother Wavelet. 

Therefore, in the results presented in the following sections, the mother Wavelet and 

decomposition node used are Db11 and (2,2) respectively. 
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Figure 4-15: Comparison of the WP-ACF spectrum obtained with using the (a) Db1and (b) 
Db11 mother Wavelet. 

4.3.5. Autocorrelation function 

The autocorrelation function increases significantly the SNR of the WP-ACF spectrum. Due to 

the high frequency content of AE, and the fact that the AE signal pattern occurs only in the 

amplitude modulation, the ACF applied directly to the AE signals does not have the ability to 

find the patterns in the signal. For this reason, when the ACF is applied directly to the AE signal, 

the SNR of the WP-ACF is decreased and for this reason, not valid in for the proposed method. 

However, if the ACF is applied to the envelope extracted from the AE signal, instead of to the 

AE signal itself, there is a significant increase in the SNR of the spectrum. Figure 4-16 shows an 

example of the application of the ACF prior and after the extraction of the envelope. 
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Figure 4-16: (a) AE time-domain signal and WP-ACF spectrum obtained with autocorrelation 
applied (b) prior and (c) after to the extraction of the envelope. 

A comparison of the WP-ACF spectrum and the spectrum without applying the ACF is shown 

in Figure 4-17. The increase in the SNR with the ACF is evident. The noise floor is reduced 

significantly by applying the ACF to the AE enveloped signal. 
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Figure 4-17: Spectrum without (a) the post-processor and (b) with post-processor. 

4.3.6. Results of the proposed method 

To illustrate the advantage and strength of the WP-ACF method, the spectrum generated by 

both traditional envelope and WP-ACF spectrum are shown in Figure 4-18. The BPFO 

calculated as 6.61X using equation 4.14 can be visually distinguished in both graphs.  However, it 

is clear that the ratio between the peak at the BPFO (6.61X) and the noise floor is considerably 

higher in the WP-ACF spectrum. This is a major benefit for automated fault detection since it is 

usually carried out using a threshold detector. The method avoids false alarms produced by a 

threshold being crossed by noise instead of the spike at the characteristic frequency produced by 

the defect. Harmonics of the BPFO are also appreciable in the graph (2XBPFO and 3XBPFO). 
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Figure 4-18: An example of the traditional envelope spectrum and the WP-ACF spectrum. 

In order to evaluate the proposed method under extremely low SNR conditions, additional noise 

is superimposed on the signal. The frequency spectrum of the AE noise produced by normal 

bearing operation is not evenly distributed at all frequencies; the authors believe that adding 

white noise does not represent a real scenario. To obtain a more realistic scenario, the type of 

added noise was the AE signal acquired from the same bearing when it was in a healthy 

condition (defect free). These signals only include AE noise produced by normal bearing 

operation, but the bursts produced by the impact between the defect and the rolling elements are 

not present. Therefore, adding this noise to the AE signal captured in the defected bearing 

reduces the SNR ratio and simulates early stage defects, decreasing the ratio between AE bursts 

and continuous bearing AE noise.  The noise was captured using the same experimental setup 

and operational conditions existing prior to the introduction of the defect.  

The added noise to the AE signals was in the range between -21dB and 21dB in intervals of 3dB. 

The equation to calculate the added noise is as follows: 

Added noise  dB" = 20 log {ÎÏ~ÐÑÒfa
ÎÏ~fÒÖÐb×

|   (4.17)    
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Some examples of the AE signal captured from the defected bearing with 0, 6, 12 and 15dB 

added noise are presented in Figure 4-19. It shows a clear increase of amplitude caused by the 

increase of additional noise.  The AE signals are highly affected by a significant amount of noise. 

As a result, the bursts produced by the defect are not visually distinguishable in any of the 

waveforms. 

 

Figure 4-19: Some examples of the time-domain AE signal captured in the defected bearing with 
additional noise (0, 6, 12 and 15dB). 

Figure 4-20 displays the de-noised signals using the (2,2) WP node and Db11 mother Wavelet, as 

previously selected as the most efficient for AE de-noising.  The AE bursts produced by the 

outer race defect are only visible with 0dB of additional noise. However, for the rest of the AE 

waveforms, the AE transients are not visually evident.  This is caused by an increase in amplitude 

due to the addition of noise. Thus, the WP de-noising technique is not sufficient under extremely 

noisy conditions. Therefore, further signal processing where the HT and the autocorrelation 

function are applied in order to unmask the defect.  Therefore, although the noise is extremely 

high even when the de-noised signal possesses 6, 12 or 15dB additional noise, as it is presented 

later in this section, the WP-ACF spectrum is able to distinguish the defect and locate the fault 

frequency (BPFO). 
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Figure 4-20: Some examples of the time-domain AE signal with additional noise (0, 6, 12 and 
15dB) after de-noising. 

The quantifier used to investigate the performance of the WP-ACF spectrum and the traditional 

Hilbert envelope is again the SNR value, calculated using in equation 4.16. In contrast with 

vibration analysis, the AE signals can be demodulated directly to reveal characteristic defect 

frequency without the need to determine the resonance frequency band. For this reason, the 

traditional envelope analysis has been applied to the AE signals without the application of any 

narrow band-pass filter prior to the extraction of the envelope. 

The results of the traditional envelope analysis and the proposed method are presented in Figure 

4-21. The horizontal axis shows the added noise in dB and the vertical axis displays the SNR 

values in dB. The difference in SNR between the proposed method and the traditional method is 

approximately 33dB with low added noise (<0dB). The graph shows that the noise up to -9dB 

has little impact in the SNR in both methods. From this value, there is a clear trend of decreasing 

SNR in both techniques. However, the WP-ACF spectrum identifies the defect up to 15dB 

added noise. From 15dB the SNR is so low that the peak cannot be distinguished from the noise 

floor using the proposed method. In contrast, with the traditional method, the defect cannot be 

detected from 6dB added noise due to the low SNR. The maximum difference in SNR 
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corresponds with 3dB added noise is 35.15. This result clearly shows the better performance of 

the WP-ACF spectrum detecting incipient defects in extremely low SNR conditions. 

 

Figure 4-21: SNR calculated for the traditional and WP-ACF method for different noise 
conditions. 

Figure 4-22 shows the spectrum generated by both methods with added noise. In the first case 

(0dB), both methods are able to identify the fault frequency at 6.61X (BPFO) and harmonics, 

indicating a defected outer race. However, the WP-ACF spectrum shows significantly higher 

SNR and the floor noise is diminished compared with the traditional envelope method. The 

results of both methods with 6 dB added noise show that using the traditional envelope analysis, 

the BPFO is hardly detected and the proposed method is still able to identify the peak at the 

BPFO with high SNR. This level of added noise is the limit for the traditional method to identify 

the defect. The next case (12dB) shows how the envelope analysis method is not able to identify 

the BPFO but it is still distinguishable with the WP-ACF method with high SNR.  In the last 

figure (15dB added noise) the WP-ACF spectrum is able to identify the BPFO but, in this case, 

high noise at other frequencies is also present, whereas the traditional method is still not able to 

distinguish the fault frequency. 
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Figure 4-22: Examples of the results obtained with the WP-ACF method and the traditional 
envelope analysis with 0, 6, 12 and 15dB of added noise. 

4.4. Summary 

In this chapter a novel method for bearing incipient defect detection has been presented. The 

effectiveness of the WP-ACF spectrum was tested using experimental data.  This investigation 
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shows promising results of the proposed method and better performance for localised defect 

detection in tapered roller bearings in both high and low SNR conditions compared to the 

traditional envelope analysis. The WP-ACF is able to identify the defect present in the bearing 

outer race under 9dB lower SNR conditions than traditional envelope analysis. 

The most efficient mother Wavelet and WP node in the de-noising process have been 

investigated. The (2,2) WP node, which corresponds to the frequency band 375-500 kHz, show 

the best results for AE signal de-noising. However, this frequency band could be enhanced due 

to the fact that frequencies in excess of 500 kHz cannot be investigated due to the sampling rate 

used (1 MSsamples/sec). In the next chapter, the optimal frequency band for localised defect 

detection in helical gears and spherical roller bearings is further investigated increasing the 

sampling rate to 5 MSsamples/sec.  In addition, the effect of the optimum frequency band 

varying the distance of the sensor to the defect is further explored. The optimal mother wavelet 

for signal de-noising was dB11; however, the rest of mother families investigated show similar 

results and the performance for AE signal de-noising clearly improves increasing the wavelet 

order.  

The research presented in this chapter has been published in the peer reviewed journal, Applied 

Acoustics. 
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Chapter 5 
 

 

 

5. Further validation of the WP-

ACF method 

 

5.1. Introduction 

In order to further validate the WP-ACF algorithm described in chapter 4 in different 

conditions, further experiments were carried out to evaluate under which conditions the 

proposed method is applicable. For this task, two different test scenarios were investigated. 

Firstly, the detection of a naturally developed defect in the outer race of spherical roller bearings 
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using the WP-ACF method was investigated. The test rig was operated in different operational 

conditions in order to evaluate the impact of speed and load on the detection. The importance of 

this experiment lies with the fact that the vast majority of the studies carried out for defect 

detection using AE have been performed using artificially defected bearings[55]. Thus, very few 

studies have targeted the detection of naturally degraded bearings. Secondly, the detection of 

gear defects using the WP-ACF method was explored. Gear fault detection is of high importance 

in numerous fields such as automotive and wind energy industry[128]. Thus, a test rig was 

utilised to artificially generate a defect in a straight bevel gear and the AE signals acquired from 

the gearbox case were processed using the WP-ACF algorithm. This is the first known attempt 

to detect faults in bevel gears using AE. 

5.2. WP-ACF for the detection of a naturally developed defect 

The following investigations were carried out in this experiment: 

• Investigate the performance of the WP-ACF for detection of a naturally 

developed defect 

• Investigate the performance of the WP-ACF for defect detection in spherical 

roller bearings. 

• Investigate the optimum frequency range using higher sampling rate 

(5MSamples/sec) which provides an enhanced bandwidth to further 

investigate the WP de-noising capabilities at higher frequencies. 

• Study the impact on the defect detection using the WP-ACF method produced 

by the change of operational conditions (load and speed). 

• Investigate how distance from the defect to the AE sensor position impacts on 

the optimal WP node for signal de-noising. For this reason, two different 

sensors were installed in the bearing case at different distances from the defect. 
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5.2.1. Instrumentation 

In this experiment, two different AE sensors were used. The purpose of using two sensors is to 

is to study the optimal WP node for different distance from the defect to the sensor. The sensors 

utilised were Vallen VS900RIC AE. These include an internal preamplifier with a 34dB gain and 

are capable of operating in a range from -40 to 85 ˚C. The signal was band-pass filtered from 100 

kHz to 1000 kHz. The first sensor (AE1) was installed at the top region of the bearing, close to 

the defected area. The second sensor (AE2) was installed at the bottom of the bearing, at 40 cm 

approximately from the defect. A graphical description of the sensor arrangement is presented in 

Figure 5-1.  The preamplifier was powered through a decoupling box connected to a linear 

power supply. The decoupling box was connected to a commercial data acquisition card through 

a coaxial cable. The data acquisition card used was ADlink PCI-9816, with a maximum sampling 

rate of 10 MSamples/sec, 16-bit resolution and ±5V input range. The sampling rate was set at 5 

Msamples/sec. Following to the acquisition, the data was downsampled to 2 Msamples/sec to 

avoid unnecessary signal processing without loss of significant information. The data were 

acquired, saved and processed using LabView® 2012. 
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Figure 5-1: Sensor arrangement. 

5.2.2. Experimental procedure 

The test rig used in this investigation is the same that was used for the experiments described in 

section4.3. The picture of the defect captured by endoscopic inspection is shown in Figure 5-2. 

The size of the spall is approximately 5x10mm.  The test bearing is a spherical roller bearing 

from SKF model 22234 CC. The BPFO for this bearing provided by the manufacturer is 8.17X 

where X corresponds to the rotating speed. This bearing was used as radial slave bearing to 

transmit the force from the radial hydraulic actuator to the shaft in order to simulate different 

load conditions. The region where the spall originated was in the top area of the bearing outer 

race, where the radial hydraulic actuator pushes the bearing to produce the radial load in the 

shaft. This is the region where the defects are expected to originate due to the high stress 

generated by the radial load produced by the hydraulic actuator. The test rig was operated for 1 

hour prior to the beginning of the data acquisition in order to reach thermal equilibrium. The 

test rig was operated at 9 different conditions of load and speed in order to study the effect of 

the operational conditions in the fault detection (Table 5-1). 

Bearing Case 
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Figure 5-2: Outer race natural spall. 

Table 5-1: Operational conditions of the test rig during the experiments. 

Condition Speed (RPM) Axial load(KN) Radial load (KN) 

C1 500 1 8 

C2 1000 1 8 

C3 1650 1 8 

C4 500 8 68 

C5 1000 8 68 

C6 1650 8 68 

C7 500 34 138 

C8 1000 34 138 

C9 1650 34 138 

18 data files were acquired, being the interval between two measurements of 10 seconds and the 

time window of the acquisition was 2 seconds. 
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5.2.3. Experimental results and observations 

Typical time-domain AE signal acquired in C6 is shown in Figure 5-3. It shows an amplitude 

modulated AE signal that is attributed to misalignment which produces modulation at 1X. This 

was further investigated in Chapter 6. It is clear that the impact between rolling elements and 

defect is not evident in the AE waveform. However, The SNR of the AE signal generated by the 

impact between the rolling elements and the AE signal produced by normal bearing operation 

changes drastically for different operational conditions. As displayed in Figure 5-4, the raw AE 

signal in C8, in which the AE burst generated by the defect is clearly seen above the noise level, 

is opposite to the observation in other conditions such as 1,2,3,4,5,6,7. Thus, the high load and 

high rotating speed combination generates higher SNR. Particularly, C8 and C9 show very high 

SNR. Thus, this scenario offers a good potential for testing the WP-ACF in different SNR 

conditions due to the different SNR produced by the change in load and rotating speed. 

 

Figure 5-3: Raw AE signal acquired in C6. 
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Figure 5-4: Raw AE signal acquired in C8. 

The frequency spectrum of the recorded AE signals from both AE1 and AE2 sensor show 

similar results (Figure 5-5). The AE activity is concentrated between 70 and 400 kHz with peak 

value at around 100 kHz. The energy of the signals at frequencies above 700 kHz is extremely 

low. 

   AE1         AE2 

 

Figure 5-5: Frequency content of the AE signals captured in the experiment. 

Figure 5-6 displays the signals from both AE1 and AE2 showing one of the burst generated by 

the outer race defect. The waveforms show how the sensor installed closer to the defect (AE1) 

receives this AE burst before AE2, installed in the opposite side of the bearing case. Therefore, 

the AE signal generated in the defect has to travel further to reach the sensor AE2. This time 
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difference is approximately 150 µs. The effect of the distance travel by the AE signal from the 

defect to the sensor is further studied in the next section. 

 

Figure 5-6: AE burst produced by the outer race defect showing different arrival time for both 
AE sensors. 

5.2.3.1. Optimal WP node 

The optimal WP-node was investigated in this section. This study aims to determine the effect of 

the distance from the defect to the AE sensor on the selection of the optimal WP node. In 

addition, the effect of different operational conditions in the SNR is presented. The SNR of WP-

ACF spectrum was estimated using equation 4.16. Due to the higher sampling rate used in this 

experiment in comparison with the experiment presented in chapter 4, the optimal WP node can 

be investigated in more detail, offering the possibility to evaluate the SNR with frequencies up to 

1 MHz, instead of 500 kHz. Although the sampling rate was 5Msamples/sec, which would 

theoretically give the possibility to analyse signals up to 2.5 MHz, according to the Nyquist–

Shannon sampling theorem. However, to reduce computational complexity, the signals were 

downsampled to 2 Msamples/sec. The different frequencies range associated with each wavelet 

nodes for different decomposition levels used in this section are presented in Table 5-2. 
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Table 5-2: Frequency range associated with each wavelet node for 1, 2, 3 and 4 decomposition 
level. 

1 level 

decomposition 

2 level 

decomposition 

3 level 

decomposition 

4 level 

decomposition 

Node Freq (kHz) Node Freq (kHz) Node Freq (kHz) Node Freq (kHz) 

1,0 0-500 2,0 0-250 3,0 0-125 4,0 0-62.5 

1,1 500-1000 2,1 250-500 3,1 125-250 4,1 62.5-125 

- - 2,2 750-1000 3,2 375-500 4,2 187.5-250 

- - 2,3 500-750 3,3 250-375 4,3 125-187.5 

- - - - 3,4 875-1000 4,4 437.5-500 

- - - - 3,5 750-875 4,5 375-437.5 

- - - - 3,6 500-625 4,6 250-312.5 

- - - - 3,7 625-750 4,7 312.5-375 

- - - - - - 4,8 937.5-1000 

- - - - - - 4,9 875-937.5 

- - - - - - 4,10 750-812.5 

- - - - - - 4,11 812.5-875 

- - - - - - 4,12 500-562.5 

- - - - - - 4,13 562.5-625 

- - - - - - 4,14 687.5-750 

- - - - - - 4,15 625-687.5 

The SNR of WP-ACF using different WP levels and nodes for the signals captured with AE1 

and AE2 are presented in Figure 5-7. In both AE1 and AE2, the WP nodes which correspond to 

high frequencies show higher SNR than the ones corresponding to low frequencies. 

It is also evident that that the SNR of the signals captured from AE1provide higher SNR using 

the high frequency WP nodes. This is attributed to the distance from the sensor to the defect. 

The signals generated in the spall have to travel a longer distance to reach the sensor AE2. As 
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the attenuation of AE increases with frequency[129], higher frequencies attenuate faster than low 

frequency signals to reach AE2. AE1 is very close to the defected area so the attenuation of the 

high frequency content of the AE1 signal is lower than AE2. As a result, the SNR in the high 

frequency band is higher using the signals from AE1. The WP nodes that present higher SNR 

are (2,3) (38.73 dB) and (2,1) (37.09 dB) for AE1 and AE2 respectively. Similar results are 

obtained for the nodes (1,1) and (3,6) for AE1 and (3,2) for AE2. 

On the other hand, in the low frequency range (0-250 kHz) the calculated SNR with AE1 is 

lower than AE2. This is attributed to the higher load produced by the radial actuator at the top 

of the bearing close to the area where AE1 is installed. Due to the higher load, the continuous 

AE generated is higher in that area (refer to section 3.5.1). As the continuous AE noise is present 

in the low frequency range, the signals captured with the sensor AE1 contain more of this 

continuous AE noise due to its position closer to the loaded area. For this reason, the SNR of 

the WP-ACF obtained with the wavelets nodes that correspond to the low frequency range are 

lower using sensor AE1 than AE2. 
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Figure 5-7: SNR for 1-4 level decomposition. 

5.2.3.2.  Effect of operational conditions 

The different operational conditions of load and speed at which the test rig has been operated 

produce different SNR in the AE signals. The SNR calculated with equation 4.16using the WP-

ACF and traditional envelope analysis is shown in Figure 5-8. This graph shows the high impact 

of operational conditions on the SNR in both traditional envelope analysis and WP-ACF. It is 

evident that using the WP-ACF the SNR is higher in all conditions. The difference between 

them differs from 24.49dB in C8 to 2.35dB in C3. There is no clear trend between varying speed 

and SNR value. While increasing speed increases SNR in C7, C8 and C9 (high load), the same 
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trend is not observed in C1 to C6 (low and medium load). This divergence is also observed in 

the variation of SNR with load. However, in general higher loads correspond to higher SNR 

values. The highest SNR values are obtained in C7 to C9, which correspond to the highest load 

conditions (8 and 68 kN axial and radial load respectively). 

 

Figure 5-8: SNR of the WP-ACF and traditional envelope analysis for different operational 
conditions. 

The spectra of several samples for C1 to C5 and C6 to C9 are displayed in Figure 5-9 and Figure 

5-10 respectively. It is evident that the spectrum of both WP-ACF and traditional envelope 

analysis varies significantly with operational conditions. The WP-ACF spectra shows how the 

peak at the BPFO (8.17X) which provides the information regarding the defect is present in all 

conditions except in C3. In C1 to C7 the main peak in the WP-ACF is 1X, which is attributed to 

SAM. Further information regarding this peak at 1X attributed to SAM can be found in section 

6.  However, in C8 and C9 the peak at BPFO becomes dominant in the WP-ACF with high 

SNR. Furthermore, 2X is shown in C3, C5 and C6 in both WP-ACF and traditional envelope 

analysis which is also attributed to misalignment.  1X sidebands around the BPFO are evident in 

C7 and C8 in the WP-ACF spectrum. Sidebands are attributed to modulation of the AE burst 

generated due to the impact between bearings and rolling elements at the rotating speed 
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produced by the displacement of the shaft produced by misalignment. The displacement of the 

shaft is shown in section 6.4.1using the signals captured from proximity sensors installed on the 

shaft. 

In the spectrum using traditional envelope analysis 1X is the main source of modulation in all 

conditions. In C1 and C2 2XBPFO is also present which might be indicative of the defected 

outer race. However, the main indication of the defect is the peak at BPFO which is not found 

in the spectrums of C1 and C2. Using the traditional envelope analysis, the BPFO peak is only 

presents in C6, C8 and C9. 
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Figure 5-9: WP-ACF spectrum and traditional envelope spectrum for C1 to C5. 
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Figure 5-10: WP-ACF spectrum and traditional envelope spectrum for C6 to C9. 

5.3. WP-ACF for the defection of gears defects 

A seeded defect test is performed to assess the effectiveness of WP-ACF for the identification of 

seeded defects on straight bevel gears. The difficulty for gear defect detection using AE lies with 

the fact that the AE sensors are usually installed on the casing due to the complicated access to 
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the gears. The path between the gears and the case is usually very complex. The signal has to 

travel from the gears to the shaft, then to the bearings to reach the case. For this reason, the 

amplitude of the AE generated in the gear mesh when they reach the sensor is extremely low. 

The gear mesh frequency (GMF) peak and sidebands around it provides significant information 

regarding the condition of the gears and is very valuable for detection gearbox faults. The 

difficulty to detect the variation in the gear mesh falls on the high attenuation of the AE signals 

generated in the gear mesh to the bearing housing.  Singh et al. [13] observed an attenuation of 

19 dB across the gear mesh and a total loss of up to 45 dB was noted from the gear mesh to the 

bearing housing. For these reasons the AE signal generated in the gear mesh is of very low SNR 

and de-noising is of high importance. Also the high complexity of gearboxes, which usually 

contain a high number of bearings, contributes to an extremely noisy scenario since bearings also 

generate AE which is considered noise when looking at gear defects[130]. 

To validate the WP-ACF, AE waveforms were acquired from a gearbox in both defected and 

non-defected condition. The results are compared with the traditional envelope analysis. 

5.3.1. Experimental setup 

The AE measurements were carried out with a Machinery Fault Simulator manufactured by 

SpectraQuest, Richmond, VA, 1997[131]. The Machinery Fault Simulator allows for the 

measurement of AE data under a variety of fault conditions and is displayed in Figure 5-11 and 

Figure 5-12 (side view). It consists on a 745 W motor coupled to the gearbox which is connected 

to a generator to produce the load and increases the torque in the shaft. The motor speed is 

controlled through a variable frequency drive. A seeded defect was created in one of the pinion 

teeth to evaluate the performance of the WP-ACF method. The gearbox consists of three-way 

accessible straight cut bevels with 1.5:1 ratio (Figure 5-13). Further specifications of the gearbox 

are presented in Table 5-3. 
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Figure 5-11: Test rig. 

 

Figure 5-12: Test rig side view. 
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Figure 5-13: Gear arrangement [132]. 

Table 5-3: Gearbox specifications. 

 Value 

Gearbox Model Hub City M2 

Ratio 1.5:1 

Gear type Straight cut bevel 

Pitch angle gear 56˚ 19’ 

Pitch angle pinion 33˚ 41’ 

Pressure angle for gear and pinion 20˚ 

Material Forged steel 

Backslash tolerance 25.4-127µm 

Pitch diameter pinion 28.57 mm 

Pitch diameter gear 42.86 mm 

Number teeth pinion 18 

Number teeth gear 27 

5.3.2. Instrumentation 

A Vallen VS900RIC AE transducer was employed with a bandwidth from 100 kHz up to 1 

MHz. It includes an internal preamplifier of 34dB gain and was capable of operating from -40 to 

85 ˚C. The signal was band-pass filtered from 70 kHz to 1000 kHz. The AE sensor was attached 

Gear 

Pinion 
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to the test gearbox housing using a magnetic holder as shown in Figure 5-14. The paint of the 

gearbox was removed prior to the experiments and treated with a degreaser to avoid attenuation 

of the signals. The preamplifier was powered through a decoupling box connected to a linear 

power supply.  The decoupling box was connected to a commercial data acquisition card 

through a coaxial cable. The data acquisition card used was ADlink PCI-9816, with a maximum 

sampling rate of 10 MSamples/sec, 16-bit resolution and ±5V input range. The sampling rate 

was set at 5 Msamples/sec. The acquired data was downsampled to 2 Msamples/sec to reduce 

the computational load without loss of significant information. The data was acquired, saved and 

processed using LabView® 2012. 

 

Figure 5-14: Sensor installation on the gearbox. 

5.3.3. Experimental procedure 

Prior to the introduction of the defect, 12 AE waveforms were acquired to observe the results 

obtained using the WP-ACF from a healthy gearbox and compare it with the results obtained 

with the AE data captured from the defected gearbox. The waveforms were acquired at 6000 

rpm. For the experiments, the generator was disconnected so the shaft rotated unconstrained. 

The interval between two acquisitions was set at 10 seconds and the time window of the 

Magnetic holder 

AE sensor 

Gearbox 
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acquisition was 1 s. The gearbox was then stopped and dismantled. A defect was artificially 

introduced in one of the pinion teeth using an engraving machine [57]. The defect size was 

approximately 2 by 6 mm (Figure 5-15). The gearbox was then operated again at 6000 rpm and 

12 AE waveforms were acquired. 

 

Figure 5-15: Seeded defect on the pinion tooth. 

5.3.4. Experimental results and observations 

A typical waveform associated with the defect-free condition is presented in Figure 5-16. 

Continuous type AE is dominant but several AE discrete events are also present in the signal. It 

is worth noting the complex pattern, contrary to what was observed in the AE signal captured 

from the healthy bearing (Figure 4-10) in which the continuous AE signal dominates with no 

remarkable AE discrete transients present. The period of the AE transient displayed in the AE 

signal show a random pattern with no fixed period between them. Figure 5-17 shows the raw AE 

signal associated with defect condition. The signal displays similar shape to that shown for the 

non-defected condition. Figure 5-18 shows the frequency spectrum of the AE signal calculated 

in both the defected and non-defected condition. It shows that the energy of the signal is 

concentrated between 70 and 350 kHz with no particular difference between them. 
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Figure 5-16: AE waveform acquired in defect-free condition. 

 

Figure 5-17: AE Waveform acquired in defected condition. 

 

Figure 5-18: AE frequency spectrum associated with defected and defect-free condition 

Figure 5-19 shows the AE time-domain signal and time-frequency decomposition using WT 

associated with the defect free condition. As observed with the AE signals captured from 

bearings, continuous AE noise dominates in the frequency range between 70 and 250 kHz. 

However, in contrast to the observations in the AE signals captured from bearings, even in 

defect-free conditions, several AE discrete events with peak frequencies up to 600 kHz are 

present in the scalogram. The AE time-domain signal and time-frequency decomposition of the 

signal captured in defected condition is shown in Figure 5-20. It displays similar shape as 
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observed in defect free condition with continuous AE noise and numerous discrete AE events. 

It is worth noting, the AE events in both defected and defected-free conditions show random 

and non-periodic pattern opposite to the observations in the AE signals associated with non-

defected bearings. This is attributed to the higher complexity of gearboxes in comparison with a 

single bearing as the gearbox under investigation includes three bearings and two gears. 

Therefore, the AE events could originate in any of the gearbox parts. 

 

Figure 5-19: AE signal from the gearbox in defect-free condition in (a) time-domain and (b) 
scalogram. 
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Figure 5-20: AE signal from the gearbox in defected condition in (a) time-domain and (b) 
scalogram. 

Figure 5-21 shows the decomposition of the AE signal in defected condition using WP. The 

signal was decomposed using Db11 wavelet and 3 levels. The levels corresponding to the higher 

frequencies were discarded due to the high amount of electronic noise as the AE signal at 

frequencies above 500 kHz is extremely low as shown in Figure 5-18. Thus, only (4,0) to (4,7) 

nodes are shown which correspond to the bands between 0-500 kHz (Table 5-2). A portion of 

0.1 s of the signal is shown, which corresponds to 10 rotations of the shaft at 6000 rpm. Similar 

to the results obtained for bearings, the nodes corresponding to the high frequency bands de-

noise the signal and show the discrete AE events with higher SNR than low frequency nodes. 

The performance of the nodes (4,2), (4,6) and (4,7) is particularly efficient in de-noising the AE 

discrete events from the continuous background noise. However, in this case, the periodicity of 

the AE events is not uniform as shown for bearing defects and cannot be correlated with the 

defect generated in the gear tooth. If the AE events were generated by the defect the AE events 

periodicity should be at 1X of the gear (0.66X of the pinion speed) as for every rotation the 

defects enter once in the gear mesh. However, this is not visually discernible in the decomposed 

signal using WP. 



110 

 

 

Figure 5-21: 4-level WP decomposition of the AE signal associated with defected condition. 

Figure 5-22shows the WP-ACF spectrum applied to the AE signal associated with defect-free 

condition. The WP was applied using Db11 wavelet and the (2,1) (250-500 kHz) wavelet has 

been selected as it offers the highest SNR for the GMF .The GMF corresponding to 18X of the 

pinion and 2XGMF is dominant in the spectrum. The source of AE activity that produces these 
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peaks is asperity interactions between gears in mesh. The WP-ACF shows high sensitivity to de-

noise these AE events. It is worth noting that sidebands are not present around the GMF, which 

indicate a healthy condition of the gears. Figure 5-23, displays the traditional envelope analysis in 

which the GMF and 2XGMF are also present. However, the SNR of both peaks are much lower 

than the WP-ACF peaks. This suggests that the traditional envelope analysis is less sensitive than 

the WP-ACF to the AE burst generated by asperity contact in gear mesh than the WP-ACF 

spectrum. 

 

Figure 5-22: WP-ACF spectrum in defect-free condition. 

 

Figure 5-23: Traditional envelop analysis spectrum in non-defected condition. 

Figure 5-24 shows the spectrum obtained using the WP-ACF associated with the defected 

condition. It clearly shows higher number of frequency components excited in the spectrum. 

The main peak is the GMF and 2XGMF is also present. There are also prominent peaks at 1X 

and 2X of the gear and 1X of the pinion. It is worth remarking the presence of sidebands of 1X 

of the pinion rotating speed around the GMF. Usually, the presence of meshing frequency 

harmonic sidebands and their amplitudes can prove to be very valuable when diagnosing gear 

GMF 
2 X GMF 

GMF 2 X GMF 
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defects[133].The increment in the number and amplitude of such sidebands may indicate a fault 

condition[134]. As observed in Figure 5-22 the sidebands were not present before the 

introduction of the seeded defect. Thus, the appearance of these sidebands in the WP-ACF 

around the GMF suggests amplitude modulation around the GMF which could be attributed to 

defected pinion tooth[135]. Furthermore, the spacing of the sidebands is related to their 

source[136]. The fact that the sidebands are spaced 1X of the pinion rotating speed, where the 

defect was seeded and not 1X of the gear rotating speed, strongly indicate that the sidebands are 

caused by the amplitude modulation in the GMF produced by the seeded defect introduced. 

Figure 5-25 shows the spectrum obtained with the traditional envelope analysis. In this case, the 

main peak is not GMF as observed in the WP-ACF spectrum, but the peak at 1X of the pinion 

rotating speed. The GMF peak is present with extremely low SNR as observed in the non-

defected condition. However, the sidebands around the rotating speed are not visible using the 

traditional envelope analysis, attributed to the low SNR. As a result, the sidebands are below the 

noise level and are not discernible. In addition, 1X and 2X of the gear rotating speed are also 

present in the spectrum. 

 

Figure 5-24: WP-ACF spectrum in defected condition. 
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Figure 5-25: Traditional envelop analysis spectrum in defected condition. 

5.4. Summary 

5.4.1. On the naturally defected spherical bearings 

The WP-ACF method has been validated for the detection of a naturally developed defect in the 

outer race of spherical roller bearings. This experiment allows validating the method in a 

situation closer to a real industrial condition than the experiments presented in chapter 4.  

The high sampling rate used in the experiments (5 Msamples/sec) allows further investigating 

the WP as a pre-processor with higher frequency range than the experiments presented in 

chapter 4. The WP nodes corresponding to the high frequency range provides higher SNR and 

they show higher sensitivity to the natural defect as they were also observed in the experiment 

with seeded defects in the previous chapter. In particular, for the sensor AE1, the WP node (2,3) 

(500-750kHz) displays the highest SNR. In addition, the node (1,1)(500-1000kHz) and (3,6) 

(500-625kHz) showed slightly lower SNR. For the sensor AE2 the node (2,1) (250-500 kHz) 

offers the highest SNR for this sensor with similar results for (3,2) (375-500kHz). Although the 

optimum frequency range varies slightly between the scenarios with seeded and natural defects, 

the medium - high frequency range shows better de-noising potential and consequently higher 

SNR.  
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Another interesting finding is the significant impact of operational conditions on both WP- ACF 

traditional envelope analyses. While the SNR using the WP-ACF is 42.62dB in C9, in C3 it is as 

low as 6.67dB. Thus, the detection of the defect is highly influenced by operational conditions. 

The sensor installed closer to the defect (AE1) exhibits optimal SNR results at higher 

frequencies than AE2 sensor which are 500-750 kHz and 250-500 kHz respectively. This is 

attributed to the higher attenuation of the high frequency signals and they have to be transmitted 

further to reach AE2.  

Comparison of the WP-ACF and traditional envelope analysis results demonstrate that the WP-

ACF is more sensitive in detecting the natural incipient bearing defect than traditional envelope 

analysis in all conditions but C3 in which the BPFO peak is present neither in the WP-ACF 

spectrum nor in the traditional envelope analysis. Thus, the detection of the fault cannot be 

achieved.  

5.4.2. On the seeded defected Bevel gears 

Preliminary experiments on the application of WP-ACF for straight bevel gear defect detection 

have been presented. This is the first known attempt to detect defects in bevel gears using AE. 

The spectrum calculated from the AE signals captures from the gearbox using both WP-ACF 

and traditional envelope analysis show an increase in spectral components in the defected 

condition particularly in the gear and pinon rotating speed range. However, the most important 

component in gear fault diagnosis is GMF and its harmonics, together with sidebands produced 

by modulation. The increment in the number and amplitude of such sidebands indicates a fault 

condition[134]. Thus, the higher SNR of these peaks shown using the WP-ACF shows the 

higher sensitivity and the potential use of this method for gear defect detection. 
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Chapter 6 
 

 

 

6. Shaft angular misalignment 

detection using AE 

 

6.1. Introduction  

To date, the most common technique applied to detect shaft misalignment is vibration analysis 

and in particular, vibration spectrum; however, the speed, the coupling type and the stiffness 

have a strong effect on the vibration spectrum that may lead to an inaccurate diagnosis [96]. In 

addition, vibration signals are usually acquired using accelerometers installed in the bearing 
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housing or on the machine case. Thus, the signal measured is in fact a response to those forces 

that are transmitted from the rotor to the stationary parts of the machine such as the bearing 

case [137].  

Although several AE studies have been conducted to detect crack onset and propagation, spalls, 

pitting and wear in different components of rotating machinery using AE technique[117][28][55], 

the detection of rotor-dynamic faults such as misalignment using AE technique has not been 

fully investigated. For this reason, the main aim of this study is to develop an approach based on 

AE signal analysis in order to detect SAM and study the effect of operational conditions. This 

experimental study uses proximity sensors to accurately characterise the periodic displacement of 

the shaft produced by SAM. Then, the detection of the shaft displacement using AE and 

acceleration signals is accomplished using sensors installed in one of the bearing housing. The 

results obtained using these two techniques are compared and discussed. 

6.2. Proposed method for SAM detection 

Misalignment produces periodic changes in the lubricant film thickness and the frictional 

moment between the bearing and the shaft [138][139]. These phenomena cause frictional 

rubbing between the shaft and stator components which causes a release of AE energy that 

propagates from the rub source to the sensor installed in the bearing housing [140]. Thus, the 

signals captured by the AE sensors are modulated due to the periodic variation of rubbing. The 

WP-ACF method has been investigated to detect misalignment fault. However, as the 

modulation produced by misalignment does not produce rapid transient AE produced by 

interaction between defect and rolling elements, the method is not efficient in this case. On the 

contrary, the modulation produced by misalignment is a smooth modulation of the background 

continuous AE noise that was considered noise in the previous chapters. Therefore envelope 

analysis is applied to the AE signals to detect this variation of AE generated by misalignment 

(Figure 6-1). Envelope analysis has been traditionally used to identify bearing and gear 
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defects[141]. Nevertheless, in this study, the effect of SAM in the AE envelope spectrum under 

varying operational conditions is investigated. 

 

Figure 6-1: Schematic of the proposed method for misalignment detection. 

The signal acquisition is carried out, using an AE sensor, followed by amplification, filtering and 

analog to digital conversion. More detailed information about the data acquisition procedure is 

presented in section6.3.2.1. Subsequent to the signal acquisition, envelope analysis is applied. 

This technique has been traditionally used in vibration to detect a broad range of faults in 

rotating machinery; however, it also has been successfully developed for bearing and gearbox 

defect detection using AE [55][83]. The process of extracting the envelope of a signal has two 

different steps: signal rectification and a HT. Further information about envelope analysis can be 

found in section 3.2.4. 

Subsequent to the envelope extraction, the time-domain signal is transformed into frequency 

domain using the FFT to obtain the frequency spectrum of the enveloped AE signal.  

6.3. Experimental setup and measurements 

6.3.1. Test rig 

The test rig used in this work (Figure 6-2) was developed by Romax Technology Ltd. in order to 

investigate bearing skidding and its effect on the bearing useful life. The test rig was designed to 

represent the shaft arrangement in a typical 2 MW wind turbine. The shaft was supported by 
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three test bearings; one spherical roller bearing and two tapered roller bearings. Gear load was 

simulated by hydraulic actuators, applying axial and radial loads through the slave bearings. A 

thrust bearing was used as the axial slave bearing and a spherical bearing as the radial slave.  

A 30 kW motor was used to power the test rig with a nominal speed of 1650RPM. It was 

controlled through a variable frequency drive that modified the rotational speed. The rated axial 

and radial load of the rig was 40 kN and 140 kN, respectively. The test rig is capable of 

reproducing a wide range of dynamic loads typically experienced by wind turbine drive trains. 

 

Figure 6-2: Test rig used in the experiment. 

6.3.2. Instrumentation 

Three different types of sensors were utilised in this investigation (Figure 6-3): 

• One AE sensor, 

• One accelerometer to compare the results obtained using AE and acceleration 

spectrum, 

MOTOR 
RADIAL 

AXIAL HYDRAULIC 
ACTUATOR 

THRUST 
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• Two proximity sensors to measure accurately the displacement of the shaft 

produced by the SAM and correlate it with the AE envelope spectrum and the 

acceleration spectrum. 

6.3.2.1. AE 

One Vallen VS900RIC AE transducer was employed with a bandwidth from 100 kHz up to 

1000 kHz. It includes an internal preamplifier with a 34dB gain and is operative in a range of -40 

to 85 0C. The signal was band-pass filtered from 100 kHz to 1000 kHz. The sensor was attached 

to the spherical slave bearing that supported the radial load produced by the hydraulic actuator 

(Figure 6-3). The preamplifier was powered through a decoupling box connected to a linear 

power supply. The decoupling box was connected to a commercial data acquisition card through 

a coaxial cable. The data acquisition card used was ADlink PCI-9816, with a maximum sampling 

rate of 10MSamples/sec, 16-bit resolution and ±5V input range. The sampling rate was set as 

5Msamples/sec and the data was acquired, saved and processed using LabView® 2012. 

 

Figure 6-3: AE sensor location. 

AE SENSOR 
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6.3.2.2. Accelerometers 

The accelerometer employed was 4519-003 from Brüel & Kjær offering a response from 0.5Hz 

to 20 kHz and 100 mV/g sensitivity. It was installed in vertical direction of the spherical bearing. 

The acceleration signal was continuously acquired during the whole test using the NI 9234 data 

acquisition card and CompactRIO platform from National instruments. The NI 9234 data 

acquisition offers 51 kSamples/sec as maximum sample rate, accurate 24-bit resolution 

conversion, ±5 V input range and includes antialiasing filter. The acceleration signal was sampled 

at 20 kSamples/sec. 

6.3.2.3. Proximity sensors 

Proximity sensors provide a direct measurement of the shaft position. Two proximity sensors 

were installed in vertical and horizontal direction in order to analyse the shaft displacement in 

both axes. The proximity sensors were installed next to the spherical bearing where the 

accelerometer and AE sensor were installed. The proximity sensor used was a Baumer model 

IWRM 12 U9502 and the signal was sampled at 300 Samples/sec using the data acquisition card 

NI 9205 from National Instruments. It offers 250 kSamples/sec maximum sample rate with 16-

bit resolution. 
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Figure 6-4: Proximity sensor location 

6.3.2.4. Measurements 

The test rig was operated continuously for 1 hour prior to the beginning of the data acquisition 

in order to reach thermal equilibrium. The measurements were carried out in 9 different 

operational conditions of varying axial load, radial load and rotational speed in order to study the 

impact on AE and acceleration signals (Table 6-1). 18 AE data files were acquired for each 

condition. The time between two measurements was set at 10 seconds and the time window of 

the acquisition was 2 seconds. A total of 162 AE data files were acquired. The signals from the 

accelerometers and proximity sensors were acquired and recorded continuously. 

Table 6-1: Test rig operating conditions. 

Condition Speed (RPM) Axial load(kN) Radial load (kN) 

C1 500 1 8 

C2 1000 1 8 

VERTICAL DIRECTION 

HORIZONTAL DIRECTION 
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C3 1650 1 8 

C4 500 8 68 

C5 1000 8 68 

C6 1650 8 68 

C7 500 34 138 

C8 1000 34 138 

C9 1650 34 138 

6.4. Experimental results and observations 

6.4.1. Proximity sensor signals results and observations 

A direct displacement measurement was carried out in order to correlate the shaft displacement 

with AE and acceleration signals. The accurate characterisation of the shaft displacement 

produced by SAM is carried out through the displacement signals acquired from the proximity 

sensors. The signals generated by these sensors provide precise information about the shaft 

displacement in all different operational conditions. The time-domain signals obtained from the 

proximity sensors in both vertical and horizontal direction are presented in Figure 6-5 (C2), 

displaying a sinusoidal shape in both directions. The displacement obtained in the other 

conditions is similar as shown in Figure 6-5. The DC offset in both graphs was caused by the 

distance of the proximity sensors to the shaft.  
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Figure 6-5: Horizontal (a) and vertical (b) displacement measurement of the shaft in the 
condition 2, using proximity sensors. 

The displacement signals in the frequency domain calculated using FFT is presented in Figure 

6-6. This is calculated in order to characterise the displacement of the shaft and correlate it to the 

rotational speed. The graph shows the frequency domain signals acquired from the proximity 

sensors in C2 in horizontal (a) and vertical (b) direction. The X-axis indicates the normalised 

frequency (times the rotational speed) and the Y-axis denotes displacement (mm). It shows 

dominant 1X behaviour that is also obvious in the other conditions. The amplitude of 1X is 

slightly higher in the horizontal than in the vertical direction. The results exhibit also the 2X 

component of shaft displacement but the amplitude of this displacement is significantly lower 

than the 1X amplitude and it is almost twice as important in the vertical direction compared with 

the horizontal direction. 1X is 16.6 and 28.57 times higher than 2X amplitudes in vertical and 

horizontal direction respectively in C2. It is similar under the other operational conditions. 3X 

component is also present but the amplitude is extremely low in comparison with 1X. 
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Figure 6-6: Horizontal (a) and vertical (b) displacement measurement on the shaft in C2 in the 

frequency domain. 

The frequency spectrum of the proximity sensor signals shows that SAM produce a main 1X 

peak and a smaller 2X peak that agrees with the SAM characterization reported in [92] and[93]. 

On the other hand, imbalance and looseness can generate high 1X and moderate 2X amplitudes 

in the shaft displacement. However, they can be discarded due to the following reasons: 

• Looseness generates harmonics (2X, 3X, 4X, etc.), which are usually of higher 

amplitude and not as low as presented for the proximity sensor signals and the 

noise floor would be raised[142]. 

• Unbalance is discarded due to the high vibration measured in the axial 

direction (1X and 2X) with the accelerometers shown in the next section. 

Misalignment generates high axial vibrations, sometimes even higher than 

radial vibrations. Unbalance does not produce significant vibrations in axial 

a 

b 
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direction[143][144]. Furthermore, when SAM is present, the measurements in 

vertical direction are slightly smaller than vertical direction as displayed in 

Figure 6-6 (1X peak) [143]. 

6.4.2. Acceleration signals results and observations 

A typical acceleration waveform acquired in C1 is displayed in Figure 6-7.  

 

Figure 6-7: Example of acceleration signal acquired during the test (C1). 

FFT analysis was applied to 25 seconds of the acceleration signal to obtain the frequency 

components of the 9 operational conditions. Only the low frequencies are shown in the 

acceleration spectrum because this is the interesting range for the investigation of misalignment 

detection (Figure 6-8). Peaks at 1X and 2X are distinguishable under all conditions. Under C1 

and C2 the peak at 2X shows greater value than 1X in contrast to the results shown in the 

displacement signals. It is also evident that the underlying background noise is significantly 

higher than the displacement signals shown in the previous section. In the operational C3 to C9, 

the peak at 1X becomes dominant over the other peaks. Several peaks related to unknown 

sources of vibration are also present in the spectrum at different frequencies. In addition, the 

noise floor level changes for the different conditions. This spectrum noise floor and SNR of the 

acceleration signals are further investigated in section6.4.6. 
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Figure 6-8: frequency spectrum of the acceleration signals. Peaks at 1X and 2X are visible in all 
conditions. 

In order to show the high axial vibrations to discard the presence of unbalance described in the 

previous section, the acceleration spectrum in the axial direction is shown in Figure 6-9 (C9). It 

displays higher 1X and similar 2X vibrations than radial direction vibrations (Figure 6-8, C9). 
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This discards the potential of unbalance fault. Only C9 is displayed in the figure, however, the 

rest of the conditions also display higher 1X peak values in axial direction than radial direction. 

 

Figure 6-9: acceleration spectra in axial direction in C9. 

6.4.3. AE signals results and observations 

The AE waveforms for all 9 operational conditions under investigation are presented in Figure 

6-10. The periodicity of amplitude modulation in the time-domain signal is more evident under 

low load than under high load conditions (C7, C8 and C9). The variation of amplitude 

modulation frequency in the AE signals is caused by the change of rotational speed. This 

variation is very clear in condition C1, C2 and C3. The change in AE signal level with both 

increasing load and speed is also evident. It is worth remarking that some random AE transients 

are visible under some conditions, which are attributed to unknown AE sources which could be 

cracking in any of the bearing components. 
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Figure 6-10: AE waveforms for all 9 conditions. Amplitude modulation is obvious under most of 
the conditions. 

In order to analyse the frequency components of the amplitude modulation in the AE signals, 

envelope analysis was applied. The envelope was estimated using the Hilbert transform following 

1rotation 

Random AE event 
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a full signal rectification and FFT as described in section 6.2. The AE envelope spectrum 

resulting from this analysis is presented in Figure 6-11. 

 

Figure 6-11: AE envelope spectrum for all 9 conditions. 
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The 1X peak is clearly the main peak in all conditions and samples. However, peaks at 2X are 

not obvious under C1 and C2. This is attributed to the low displacement of the shaft at 2X, 

observed in the proximity sensor results. Thus, the modulation of AE signals in the 2X peak is 

masked in some samples by the AE background noise. It is remarkable that under C7, C8 andC9, 

peaks at 8.17X and 16.34X are also present. They correspond to the BPFO and twice this 

frequency (2XBPFO) respectively [145]. Modulation at the BPFO in the AE signals is generally 

present when outer race defects are present [146]. However, the presence of a defect in the outer 

race cannot be confirmed because the bearing was not inspected before the experiments. 

Moreover, peaks at non-synchronous frequencies are also present in C4 andC5 and C6 at 0.60X, 

0.40X, 0.18X respectively. The source of these peaks is further investigated in section 6.4.5. 

6.4.4. Influence of operational conditions 

The impact of load and speed in the displacement, AE and acceleration signals is described in 

this section. The effect of operational conditions on the detection of rotor-dynamics faults, i.e. 

misalignment is of high importance because of a high variability in the signature produced in AE 

or acceleration signals can be an obstacle for the correct diagnosis of this fault. 

6.4.4.1. Influence on shaft displacement 

The 1X and 2X peak values in both vertical and horizontal direction are shown in Figure 6-12 

and Figure 6-13. These four graphs are generated by calculating the peak value of 1X and 2X 

under the 9 different conditions of load and speed for horizontal and vertical direction. As 

observed in these graphs, the variation of the shaft displacement behaviour is rather low (less 

than 20%) and it is evident that the speed and load do not significantly affect the values, 

particularly for the main behaviour of the shaft, 1X. The ratio 1X peak/2X peak under C2 is 16.6 

and 28.57 for vertical and horizontal direction, respectively, which is similar for the other 

operational conditions. Thus, the 1X peak is by a considerable margin the major component of 

the shaft displacement signature.  
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Figure 6-12: 1X and 2X peaks of displacement signals in vertical direction. 
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Figure 6-13: 1X and 2X peaks of displacement signals in horizontal direction. 

6.4.4.2. Influence on acceleration signals 

As previously presented for the proximity sensor signals, the 1X and 2X peak values in the 

acceleration spectrum are shown in Figure 6-14. The 1X peak values have a pronounced increase 

with increasing rotational speed. An illustrative example is the change in peak values when 

moving from C1 to C3 (changing rotational speed at constant load), which is 50 times higher 

(0.00052 m/s2 to 0.028995 m/s2). On the other hand, the load has little impact on the peak at 

1X. With respect to the peaks values at 2X, they show a similar trend as the 1X peak. However, 
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in the lowest load conditions (C1, C2 and C3) the 2X peak value is significantly greater than in 

the higher load conditions. There is also a remarkable increase of 2X in 1-8KN load condition at 

1000 and 1650 RPM. 

 

Figure 6-14: Peak amplitude at 1X and 2X of acceleration spectrum. 

6.4.4.3. Influence on AE signals 

The peaks in the AE envelope spectrum at 1X and 2X were calculated by averaging the values 

from the 18 samples acquired for each condition (Figure 6-15). The 1X peak values clearly rise 

with increasing speed. In contrast, there is no significant impact of load variations on the 1X 
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peak. The 2X peaks have a similar trend as the 1X peaks with increasing speed. However, in 

contrast to 1X, the 2X peak is slightly more affected by load, particularly under 34-138KN load. 

It is should be noted that the value of the 1X and 2X peaks rise with increasing speed and this 

effect was also observed in the acceleration spectrum. 

 

Figure 6-15: Peak amplitude at 1X and 2X in AE envelope spectrum. 

6.4.5. Observations of non-synchronous peaks 

In the AE envelope spectrum C4, C5 and C6 display a prominent peak at a non-synchronous 

frequency (5 Hz). This peak does not vary in frequency with rotational speed. It can be found in 

the AE envelope spectrum under C4, C5 and C6 at 0.6X, 0.3X and 0.18X, respectively (Figure 
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6-11). The source of that modulation is the control loop frequency of the hydraulic actuators. 

The control loop produces a ripple in the load applied to the rig in the radial and vertical 

direction with a frequency of 5 Hz. It was detected using the load transducer installed in the rig. 

Figure 6-16 shows the FFT spectrum of the signal acquired from the radial load transducer. It 

shows a prominent peak at 0.18X that corresponds to 5 Hz at the maximum rotational speed 

(1650RPM). Although the ripple is of low amplitude compared with the constant load, which is 

68 kN in radial direction (5.8%), this periodic fluctuation of the load affects the shaft 

displacement spectrum and modulates the AE signal as shown in Figure 6-17(a)-(b) respectively. 

The Y-axis of the displacement signals is displayed on a logarithmic scale due to the small 

displacement of the shaft produced by the ripple of the load. It is worth noting that the impact 

of this load variation on the AE signals is significantly higher than displacement spectrum and 

the peak is comparable with 1X. On the other hand, as shown in Figure 6-16 (c) the load 

fluctuation is not evident in the spectrum. 

Studies in elasto-hydrodynamic lubrication have shown that the thickness of an oil film is 

influenced by the load [147]. As the main source of AE in rotating machinery is attributed to 

asperity contact between surfaces in relative motion, the change in film lubricant thickness with 

varying load leads to a change in AE amplitude. Thus, the periodic variation of load is detected 

using envelope analysis. The increase of the AE amplitude with increasing load has been 

reported by other authors [57]. Thus, the combination of AE signals and envelope analysis was 

capable of detecting small variations of radial load in the shaft. This was not the case for 

acceleration spectrum. 
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Figure 6-16: FFT spectrum of the signal acquired from the radial load transducer (C6). 

 

 

Figure 6-17: Spectrum of (a) vertical proximity sensor, (b) enveloped AE and (c) vibration (C6). 
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6.4.6. Signal to noise ratio 

In order to compare the performance of AE and acceleration in the detection of SAM faults, the 

SNR was defined as the ratio of the peak of the 1X to the RMS noise level calculated over the 

range 0.7X -4X, expressed in dB: 

SNRut = 20log r vÈ�É		Ê�ËÌÈ(�Ø)
ÎÏ~	ÙÚÛYÈ(�.ÜØ�ÝØ)y    (6.1) 

The harmonics of the fundamental frequency (2X, 3X, etc.) are not considered to be noise and 

are not included as noise in SNR calculations. The range 0.7X -4X was used for the noise 

calculation in order to allow a direct comparison of the SNR of AE and acceleration signals. The 

reason for selecting the first value was in order to eliminate the subsynchronous peaks described 

in section 6.4.5. The higher limit was set as 4X because it was considered that the high frequency 

noise does not influence diagnosis and detection of the peaks in the low frequency spectrum 

(1X, 2X, 3X, etc.). 

The SNR of the acceleration spectrum for all the operational conditions is presented in Figure 

6-18. It shows that this SNR does not follow a linear trend with increasing rotational speed. The 

intermediate speed presents a lower SNR than the other two. The highest speed presents the 

greatest SNR ratio. On the other hand, the SNR clearly increases with increasing load. 
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Figure 6-18: SNR of 1X in acceleration spectrum. 

The 1X SNR of the AE envelope spectrum for all operational conditions (Figure 6-19) was 

determined using the same equation used for the acceleration signals (equation 2). A clear trend 

of reduction of SNR value with increasing load can be observed. On the other hand, there is no 

linear trend in SNR variation with changing rotational speed. These values of SNR are higher in 

all conditions than the obtained for acceleration signals. 

 

Figure 6-19: SNR for the 1X peak in the AE envelope. 
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6.5. Discussion 

As presented and described in section 6.4.1, SAM produces shaft displacement principally at 1X 

in all operational conditions. It is 16.6 and 28.57 times more than the 2X peak as shown in the 

displacement signals. However, the acceleration spectrum shows the 1X peak clearly lower than 

the 2X peak under C1 and C2 which could lead on to an inaccurate diagnosis of SAM. Figure 

6-20 shows the spectrum of the AE envelope (a) and acceleration (b) under C2. The 1X peak is 

clearly lower than the 2X peak in the acceleration spectrum, while AE shows a prominent 1X 

peak, which represents the main behaviour of the shaft measured, using proximity sensors. On 

the other hand, AE shows a prominent 1X peak in all the 9 operational conditions, clearly of 

greater amplitude than 2X and other sources of modulation such as BPFO and 2XBPFO. 

Therefore, as shown in the results presented here, the signature of SAM generated in the AE 

using envelope spectrum is more stable with changing operational conditions than the 

acceleration spectrum signature.  The high impact in acceleration spectrum with varying 

operational conditions was also concluded by Toht and Ganeriwala in [97]. 

 

 

Figure 6-20: Results of (a) AE envelope spectrum and (b) acceleration spectrum under C2. 
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The shaft displacement has been shown to be slightly affected under all operational conditions, 

while in AE and acceleration measurements the impact is significantly higher. AE and 

acceleration signals are both highly affected by rotational speed. However, the impact of load on 

the 1X and 2X spectrum components is not as influential as rotational speed in both techniques. 

AE envelope spectrum offers higher SNR than acceleration spectrum in all conditions. AE and 

acceleration spectrum have opposite behaviour on the impact of operational conditions on the 

SNR of 1X peak. While increasing load increases the SNR of the acceleration signals, the SNR of 

the 1X peak in the AE envelope spectrum decreases. On the other hand, the SNR does not 

follow a linear trend with varying speed of both techniques. 

6.6. Summary 

In this chapter, the detectability of SAM using AE and acceleration signals with variable 

operating conditions has been presented. This is the first attempt to evaluate the detection of 

SAM using AE technique with varying operational conditions. The shaft displacement detected 

with proximity sensors has been compared with vibration analysis and AE technique. AE 

combined with envelope analysis has shown the capability and reliability to detect SAM. 

Traditionally, vibration analysis has been used to detect misalignment fault in rotating machinery. 

However, the results show that AE offers more stability and higher SNR in the detection of 

SAM under varying operational conditions. 

As shown in section 6.4.5 while AE has shown high sensitivity to the periodic fluctuation of 

radial load produced by the hydraulic actuator on the test bearing, acceleration spectrum does 

not show any indication of this problem. This indicates a high sensitivity of AE technique to 

radial load variation. Fluctuations of bearing load greatly affect rolling fatigue life, seizure 

performance and the stiffness of the shaft support system [148]. 

It is worth noting that although the displacement spectrum shows that the shaft displacement 

keeps nearly constant with changing load and speed, the impact of load and speed in AE and 

particularly in acceleration spectrum is rather high. 
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The research presented in this chapter has been published in the peer reviewed journal Applied 

Acoustics. 
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Chapter 7 
 

 

 

7. Conclusions and 

recommendations for further 

work 

 

Rotating machinery is extensively used in a range of mechanical transmission systems and its 

reliability is key aspect of many domestic and industrial applications. The detection of faults at an 

early stage in rotating machinery is of high importance to avoid unexpected breakdowns, saving 

resources and increasing safety in industrial plants. The AE technique shows improvements for 
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early fault detection in rotating machinery in previous studies. However, it presents some 

drawbacks that have to be overcome for it to be applied as a reliable solution, mainly in 

processing, interpreting and classifying the information. Noise reduction is a vital aspect for fault 

detection at an early stage as the signals are frequently noisy and the attenuation of the signals 

generated by the defect is extremely high as the AE signals have to travel to the sensors, usually 

installed in the component housing. The main objective of this thesis has been the investigation 

of two different approaches to enhance AE technique to detect faults in rotating machinery. 

Firstly, the detection of localised defects at an early stage in bearings and gears using AE has 

been improved combining WP as a pre-processor and ACF as postprocessor to the envelope 

analysis. Secondly, the detection of SAM using AE has been explored, finding superiorities to the 

well-known acceleration spectrum in detection of the fault in different operational conditions. 

The topic of the research and the background in which this thesis was established is described in 

Chapter 1. The aim of this research is provided in this chapter as well as the main contributions 

to the knowledge. 

Chapter 2 introduces the theoretical background of AE technique, emphasising the application 

of AE for rotating machinery fault detection. This section also describes the applications of AE, 

the types of AE sensors and the typical defects that are encountered in bearings and gears 

associated with rotating machinery industrial environments. 

Chapter 3 presents a literature review of signal processing techniques used in rotating machinery 

fault detection using AE with a detailed description of time-domain methods, WT, classification 

methods, envelope analysis and cyclostationarity analysis.  

Chapter 4 describes a novel signal processing technique applied to AE signals for incipient defect 

detection in bearings. A mathematical formulation describing the method is presented in this 

chapter. Subsequently, an experimental study was conducted to validate the method of detecting 

a seeded defect in the outer race of a bearing, applying noise baseline in addition to simulate 

extremely low SNR conditions. The proposed method has shown to perform better than the 
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traditional envelope analysis and it is able to detect localised defects at lower SNR conditions 

providing a significant advantage in bearing defect detection in low SNR conditions with 9dB 

lower SNR than the traditional method. This scenario, in which the SNR is extremely low, is 

typically present in defects at an early stage. These significant improvements can be implemented 

into currently available commercial equipment, and so can be used by CM systems to detect 

defects in rotating machinery at an earlier stage in several fields including marine, nuclear and 

mining. The enhancement for early stage defect detection of bearings provided by this method is 

beneficial in planning the maintenance in advance, reducing the machinery down-time and 

consequently reducing the costs associated with bearing breakdown. The WP-ACF spectrum is 

simple to implement in an automated system by applying a threshold detector in the spectrum to 

find the peaks which are related to bearing and gear faults. In addition, the proposed method can 

be applied to real-time monitoring as it is computationally efficient. 

The literature proposes initial concepts as to how to de-noise the AE signal using DWT prior to 

applying envelope analysis signal [18][98]. However, WP offers advantages in signal de-noising 

particularly if the information is present in the high frequency components. For this reason, the 

use of WP transform as pre-processor for envelope analysis was investigated. The optimal WP 

node and wavelet family in a wide range of frequencies were studied to obtain the most efficient 

performance of detecting localised defects in gears and bearings. The result for the optimal WP 

node presented by Feng showed that the optimal WP for bearing fault detection was [20-30 kHz] 

[52]. However, the total bandwidth analysed was 0-40 kHz. In the present investigation the 

bandwidth analyses was 70-500 kHz for the seeded defect in the outer race of the bearing and 

70-1000 kHz for the naturally developed defect in the bearing outer race and seeded defect in 

straight bevel gears.  This provides wider bandwidth to estimate the optimal WP node for AE 

signal de-noising. The results of this investigation show that the optimal bandwidth for AE 

signal de-noising varies between scenarios. However, in general, mid-high frequencies (250-750 

kHz) allow for optimal signal de-noising. In addition, an investigation was conducted in Chapter 

5 to clarify the impact of the distance from the defect to the AE sensor on the optimal WP node. 
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The results show that the higher the distance from the AE sensor to the defect, the optimal WP 

node for signal de-noising shifts to lower frequencies. The optimal mother wavelet for AE signal 

de-noising has shown to be Db11. However, other families such as Coiflet and Symlet offer 

similar results using higher order mother wavelets. 

Due to the low amplitude of the AE signals in the optimal bands (250-750 kHz), the lower 

frequencies of any unexpected sources of noise, such as electrical noise transmitted through the 

power source or any electromagnetic interference, that can affect the measurement in this 

frequency band, would have a significant impact on the detection using the WP-ACF. Thus, the 

performance of WP to de-noise the AE burst from the continuous AE signal would be 

deteriorated. As described in section 2.5.2. the use of couplant can greatly improves the 

transmission from the bearing case to the sensor by about 10 times at 500 kHz. Thus, the use of 

couplant is of high importance to obtain an optimal SNR, applying the WP-ACF method as it 

analyses the mid-high frequency components of the AE signals. 

The WP-ACF method requires a priori knowledge of the bearing and gear to identify the fault 

frequencies, and sometimes the access to this information presents some difficulties or is not 

possible. This is an intrinsic shortcoming of any algorithm derived from envelope analysis. 

Chapter 5 presents a validation of the WP-ACF method in two different scenarios. First, the 

detection of a naturally developed defect in the outer race of a spherical roller bearing is 

investigated. The results obtained in this investigation show the high impact of operational 

conditions in the detection of the defect on the WP-ACF method. The same tendency is 

observed using the traditional envelope analysis.  In general, an increase in load increases the 

sensitivity of the WP-ACF for defect detection. The impact of rotational speed in the WP-ACF 

SNR does not show any evident relationship. 

Secondly, an experimental study was conducted on the detection of a seeded defect on one of 

the gear tooth of a bevel gear. This is the first known attempt to detect defects in bevel gears 

using AE. The results of this investigation again show better performance of WP-ACF over 
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traditional envelope analysis in de-noising the GMF. The increment or presence of sidebands 

around this characteristic frequency produced by amplitude modulation can inform about the 

presence of localised defect in any of the gear tooth and tooth wear. Thus, it can be concluded 

that the WP-ACF method offers advantages to AE for gear defect detection. 

In chapter 6, an experimental investigation of the detection of SAM using AE and acceleration 

signals with variable operating conditions is presented. Other researchers have identified the 

modulation on the AE signals produced by misalignment [98][99][37]; however, their 

investigations did not target the detection of misalignment and the impact of operational 

conditions on the detection of misalignment using AE. Therefore, this is the first attempt to 

evaluate the detection of SAM using AE technique with varying operational conditions. The 

shaft displacement produced by SAM detected using proximity sensors installed in the shaft has 

been compared with acceleration spectrum and AE technique. AE combined with envelope 

analysis has shown the capability to detect SAM. Acceleration spectrum has been traditionally 

used to detect misalignment fault in rotating machinery. However, this research has shown that 

AE offers higher stability and up to 34 dB higher SNR for the detection of SAM under varying 

operational conditions. The results shown in this investigation enable AE technique to be further 

investigated to detect rotor-dynamic faults. 

Future work 

WP-ACF method has been shown to perform effectively in spherical and tapered roller bearings 

and bevel gears. However, the effectiveness of the proposed method has not been validated in 

other types of common bearings and gears such as ball and needle roller bearings and helical and 

spurs gears. In addition, the WP-ACF method has been validated for steel bearings. Thus the 

application of this novel method in other type of bearings which are currently being used in the 

industry such as ceramic and plastic bearings should be further investigated. 

Similarly, in the present research, the validation of the WP-ACF method for bearings has been 

carried out in the outer race. As concluded by other researchers [85][12],  inner race defects are 
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more difficult to detect due to the higher attenuation of the AE signals generated in the defect  

that have to travel to the outer race and bearing housing. For this reason, more investigations 

should be conducted to investigate the performance of the WP-ACF for inner race defects. 

An exhaustive investigation regarding the optimal frequencies for signal de-noising using wavelet 

packets has been presented in several scenarios. In addition, the impact of distance from the 

defect to the sensor on the optimal WP node has been investigated. The author believes that the 

impact of the joints that the AE signals cross to reach the sensor must have high impact on the 

selection of the optimal WP node for AE signal de-noising. Therefore, this should be further 

investigated. 

Although the detection of SAM has been investigated in this thesis, any other type of rotor-

dynamic faults such as unbalance, looseness, etc. may be detected combining AE and envelope 

analysis as they also cause a periodic displacement of the shaft leading to periodic variations of 

rotor-stator rubbing. Thus, the application of the proposed method on other types of rotor-

dynamic faults would be an interesting subject for further investigations. In addition, the 

misalignment severity investigated was not varied due to test rig limitations. Further experiments 

can be carried out to investigate the impact on the AE envelope spectrum for varying 

misalignment severity. 

The ultimate aim of CM is not only to detect the fault. The diagnosis and prognosis are also 

important aspects of CM. This investigation has focused on fault detection. Further work must 

be carried out for diagnosis and prognosis using the WP-ACF methods which are vital aspects 

for predictive maintenance [149]. 
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